

US00H002284H

(19) United States

(12) Statutory Invention Registration

(10) **Reg. No.:** US H2284 H (43) Published: Sep. 3, 2013

Stöhr et al.

(54) VACCINES FOR PROTECTING AGAINST INFLUENZA

- (75) Inventors: Klaus Stöhr, Cambridge, MA (US);
 Philip Ralph Dormitzer, Weston, MA (US); Michael Broeker, Marburg (DE)
- (73) Assignee: Novartis AG, Basel (CH)
- (21) Appl. No.: 12/768,662
- (22) Filed: Apr. 27, 2010

Related U.S. Application Data

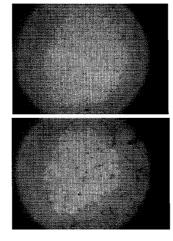
- (60) Provisional application No. 60/214,787, filed on Apr. 27, 2009, provisional application No. 60/216,198, filed on May 13, 2009, provisional application No. 60/238,628, filed on Aug. 31, 2009, and provisional application No. 60/279,665, filed on Oct. 22, 2009.
- (51) **Int. Cl.**

A61K 39/145	(2006.01)
A61K 39/295	(2006.01)
A61P 37/04	(2006.01)
A61P 31/16	(2006.01)
C12N 7/00	(2006.01)
C12N 5/00	(2006.01)

- (52) U.S. Cl. 424/209.1; 424/206.1

See application file for complete search history.

(56) **References Cited**


U.S. PATENT DOCUMENTS

4,680,338 A	7/1987	Sundoro
4,689,338 A	8/1987	Gerster
4,929,624 A	5/1990	Gerster et al.
4,988,815 A	1/1991	Andre et al.
5,011,828 A	4/1991	Goodman et al.
5,238,944 A	8/1993	Wick et al.
5,266,575 A	11/1993	Gerster et al.
5,268,376 A	12/1993	Gester
5,346,905 A	9/1994	Gerster
5,352,784 A	10/1994	Nikolaides et al.
5,389,640 A	2/1995	Gerster et al.

5,395,937	Α	3/1995	Nikolaides et al.
5,482,936	Α	1/1996	Lindstrom
5,494,916	Α	2/1996	Lindstrom et al.
5,525,612	Α	6/1996	Gerster
5,658,731	Α	8/1997	Sproat et al.
5,936,076	А	8/1999	Higa et al.
5,948,410	Α	9/1999	Van Scharrenburg et al.
6,083,505	Α	7/2000	Miller et al.
6,355,271	B1	3/2002	Bell et al.
6,440,992	B1	8/2002	Gerster et al.
6,468,544	B1	10/2002	Egorov et al.
6,605,617	B2	8/2003	Renhowe et al.
6,627,640	B2	9/2003	Gerster et al.
6,649,372	B1	11/2003	Palese et al.
6,656,938	B2	12/2003	Crooks et al.
6,660,735	B2	12/2003	Crooks et al.
6,660,747	B2	12/2003	Crooks et al.
6,664,260		12/2003	Charles et al.
6,664,264		12/2003	Dellaria et al.
6,664,265	B2	12/2003	Crooks et al.
6,667,312	B2	12/2003	Bonk et al.
6,670,372	B2	12/2003	Charles et al.
6,677,347	B2	1/2004	Crooks et al.
6,677,348	B2	1/2004	Heppner et al.
6,677,349	B1	1/2004	Griesgraber
6,683,088	B2	1/2004	Crooks et al.
6,703,402	B2	3/2004	Gerster et al.
, ,	B2	6/2004	Lindstrom et al.
6,800,624		10/2004	Crooks et al.
6,809,203	B2	10/2004	Gerster et al.
6,888,000		5/2005	Crooks et al.
6,924,271		8/2005	Averett et al.
6,924,293		8/2005	Lindstrom
2005/0070556	A1	3/2005	Averett et al.
2005/0192248	A1	9/2005	Tsuji et al.
2005/0215517	A1	9/2005	Rossignol et al.
2010/0010199	A1	* 1/2010	Tsai et al 435/235.1

FOREIGN PATENT DOCUMENTS

EP	0870508 B1	10/1998
EP	1260581 A1	11/2002
FR	2859633 A1	3/2005
WO	WO-92/15582 A1	9/1992
WO	WO-95/18861 A1	7/1995
WO	WO-96/37624 A1	11/1996
WO	WO-97/37000 A1	10/1997
WO	WO-97/37001 A1	10/1997
WO	WO-98/46262 A1	10/1998
WO	WO-99/64068 A1	12/1999

WO	WO-00/60050	A2	10/2000		
WO	WO-01/04333	A1	1/2001		
WO	WO-01/21151	Al	3/2001		
WO	WO-01/22972	A2	4/2001		
WO	WO-01/22992	A2	4/2001		
WO	WO-01/64846	Al	9/2001		
WO	WO-01/83794	A2	11/2001		
WO	WO-01/85938	A1	11/2001		
WO	WO-02/18383	A2	3/2002		
WO	WO-02/28422	A2	4/2002		
WO	WO-02/067983	A1	9/2002		
WO	WO-02/074336	A2	9/2002		
WO	WO-02/097072	A1	12/2002		
WO	WO-03/011223	A2	2/2003		
WO	WO-03/023021		3/2003		
WO	WO-03/023025		3/2003		
WO	WO-03/043415		5/2003		
WO	WO-03/076601		9/2003		
WO	WO-03/082272		10/2003		
WO	WO-03/105769		12/2003		
WO	WO-2004/018455		3/2004		
WO	WO-2004/060308		7/2004		
WO	WO-2004/064715		8/2004		
WO	WO-2004/064759		8/2004		
wo	WO-2004/087153		10/2004		
wo	WO-2005/042728		5/2005		
wo	WO-2005/102049		11/2005		
wo	WO-2005/113756		12/2005		
WO	WO-2005/113758		12/2005		
wo	WO-2006/027698		3/2006		
wo	WO-2006/067211		6/2006		
wo	WO-2006/071563		7/2006		
wo	WO-2006/108846		10/2006		
wo	WO-2007/002008		1/2007		
wo	WO-2007/052163		5/2007		
wO	WO-2007/032103	A2	5/2007		
	OTHER	۲ PUB	LICATIO	ONS	
Chan	at al Vinal 2006	1 2/	15 Ma 0		6 422 *
	et al. Virol. 2006,				
-	r et al. J. Virol. 19				
Massa		Med	Virol.	1999	Oct.–Dec.;9
(4):23	7–244.*				
Andri	anov et al. 91998)	Biome	aterials 1	9:109-	115.
	off (2000) Immun				
	on et al. (2002) In				
	s et al. (1999) <i>Dev</i>				
	s (1991) J Parente				•
	et al. (2008) PLo				
Dm1h1	at al (2000) Vaca	in a 10	1140 50		

Bruhl et al. (2000) Vaccine 19:1149-58.

Caillet et al. (2010) Vaccine 28:3076-3079.

Centers for Diseases Control and Prevention. (May 22, 2009) MMWR 58(19):521-56.

Chen et al. (2003) Vaccine 21:2830-2836.

Clark et al. (2009) NEJM 361:2424-35.

Cooper (1995) Pharm Biotechnol 6:559-80.

Couceiro & Baum (1994) Mem Inst Oswaldo Cruz 89(4):587-91.

Crevar & Ross (2008) Virology Journal 5(131), 9 pages.

de Jong et al. (2003) Dev. Biol (Basel) 115:63-73.

De Libero et al. (2005) Nature Reviews Immunology 5:485-496.

Del Giudice et al. (2009) Sci Transl Med. 1(12):1-3.

Dolin et al. (1977) J Infect. Dis. 136(Suppl.):S435-S442.

Doroshenko & Halperin (2009) Expert Rev Vaccines 8:679-88.

Dyakonova et al. (2004) Int Immunopharmacol 4(13):1615-23.

Efferson et al. (2006) J Viral. 80(1):383-94.

Ershler et al. (2007) Ann NYAcad Sci. 1112:375-84. Evans et al. (2003) Expert Rev Vaccines 2:219-229. Galli et al. (2009) PNAS USA 106:7962-7. Gambaryan & Matrosovich (1992) J Virol Methods 39(1-2):111-23. Garten et al. (2009) Science 325:197-201. GenBank sequence GI:325176, (Aug. 2, 1993), 1 page. GenBank sequence GI:325237, (Aug. 2, 1993), 1 page. Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472. Goff et al (2004) JAm. Chem. Soc. 126:13602-13603. Greenbaum et at. (2004) Vaccine 22:2566-2577. Greenberg et al. (2009) NEJM 361(25):2405-2413. Guidance for Industry: Bioanalytical Method Validation, (May 2001). U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM). Halperin et al. (2002) Vaccine 20:1240-7. Halperin et al. (1979) Am J Public Health 69:1247-1250. Hehme et al. (2004) Virus Res. 103(1-2):163-171. Herbert et al. (1979) J Infect Dis 140:234-238. Herlocher et al. (2004) J Infect Dis 190(9):1627-30. Hoffmann et al. (2002) Vaccine 20:3165-3170. Hoffmann et al. (2000) Virology 267(2):310-7. Huckriede et al. (2003) Methods Enzymol 373:74-91. Hussain et al. (2010) Vaccine 28(22):3848-3855. Ji et al. (2002) Biotechniques 32:1162-7. Jin et al. (2003) Virology 306:18-24. Johnson et al. (1999) Bioorg Med Chem Lett 9:2273-2278. Jones (2003) Curr Opin Invest Drugs 4:214-218. Keitel et al. (1996) Clin Diagn Lab Immunol 3:507-10. Kistner et al. (1998) Vaccine 16:960-8. Kistner et al. (1999) Dev Biol Stand 98:101-10. Kistner et al. (2010) PLoS ONE 5(2): e9349. Kitikoon et al. (2010) Vaccine 28:523-31. Lahijani et al. (1998) Hum Gene Ther. 9:1173-80. Liu et al. (2003) Virology 314:580-90. Lokteff et al. (2001) Biologicals 29:123-32. Lundblad (2001) Biotechnology and Applied Biochemistry 34:195-7. Mann et al. (2004) Vaccine 22:2425-9. Mastrosovich et al. (1999) J Virol 73:1146-55. McCullers et al. (1999) J Virol 73:7343-8. Meraldi et al. (2003) Vaccine 21:2485-2491. Munster et al. (2009) Science 325:481-3. Neumann et al. (2005) Proc Natl Acad Sci USA 102:16825-29. Nony et al. (2001) Vaccine 27:3645-51. Oki et al. (2004) J Clin. Investig. 113:1631-1640. Ozaki et al. (2004) J. Virol. 78:1851-7. Pajak et al. (2003) Vaccine 21:836-842. Partidos et al. (1999) Immunol Lett 67:209-216. Pau et al. (2001) Vaccine 19:2716-21. Payne et al. (1998) Adv Drug Delivery Review 31:185-196. Peppeloni et al. (2003) Expert Rev Vaccines 2:285-293. Piascik (2003) J am Pharm Assoc (Wash DC). 43:728-30. Pine et al. (2002) J Control Release 85:263-270. Pizza et al. (2000) Int J Med Microbiol 290:455-461. Pizza et al. (2001) Vaccine 19:2534-2541. Poole & Mussett (1989) J Biol Stand 17:161-71. Poole et al. (1997) J Endotoxin Res 4:221-31. Potter & Oxford (1979) Br Med Bull 35:69-75.

Quan et al. (2010) PLoS ONE 5(2):e9161.

Roman et al. (2010) Vaccine 28:1740-45.

Ryan et al. (1999) Infect Immun 67:6270-6280.

Scharton-Kersten et al. (2000) Infect Immun 68:5306-5313.

Schellack et al. (2006) Vaccine 24:5461-72.

Signorelli & Hadden (2003) Int Immunopharmacol 3(8):1177–86.

Smith et al. (2009) Nature 459:1122-5.

Stanley (2002) Clin Exp Dermatol 27:571-577.

Stephenson et al. (2003) Vaccine 21:1687–93.

Stevens et al. (2006) J Mol Biol 355:1143–55.

Subbarao et al. (2003) Virology 305:192-200.

Talbot et al. (2008) Vaccine 26:4057-61.

Tebbey et al. (2000) *Vaccine* 18:2723–34.

Treanor et al. (1996) *J Infect Dis* 173:1467–70.

Tree et al. (2001) *Vaccine* 19:3444–50.

Powell & Newman, eds., (1995). *Vaccine Design: The Subunit and Adjuvant Approach* Plenum Press (ISBN 0–306–44867–XP).

Plotkin & Orenstein, eds., (2004) Vaccines. 4th edition, ISBN: 0-7216-9688-0.

Vajo et al. (2010) Lancet 375:49-55.

Vasilakos et al. (2000) Cell Immunol. 204(1):64-74.

Webby et al. (2004) Lancet 363:1099–103.

Wong et al. (2003) J Clin Pharmacol 43(7):735-42.

Wu et al. (2004) Antiviral Res. 64(2):79-83.

Yang et al. (2004) Angew. Chem. Int. Ed. 43:3818–3822. Zangwill et al. (2008) J Infect Dis. 197(4):580–3. Zurbriggen et al. (2003) Expert Rev Vaccines 2:295–304.

* cited by examiner

Primary Examiner—Daniel Pihulic (74) Attorney, Agent, or Firm—Morrison & Foerster LLP

(57) ABSTRACT

A live attenuated influenza vaccine contains a H1 subtype influenza A strain. Its hemagglutinin is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3.

2 Claims, 2 Drawing Sheets

A statutory invention registration is not a patent. It has the defensive attributes of a patent but does not have the enforceable attributes of a patent. No article or advertisement or the like may use the term patent, or any term suggestive of a patent, when referring to a statutory invention registration. For more specific information on the rights associated with a statutory invention registration see 35 U.S.C. 157. FIGURE 1

FIGURE 1A

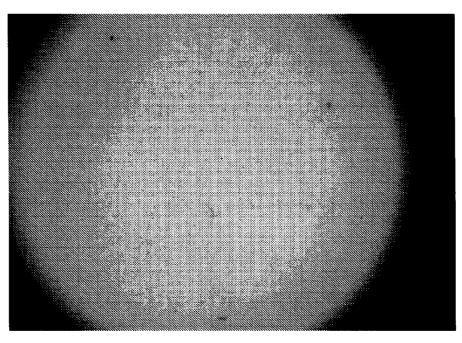
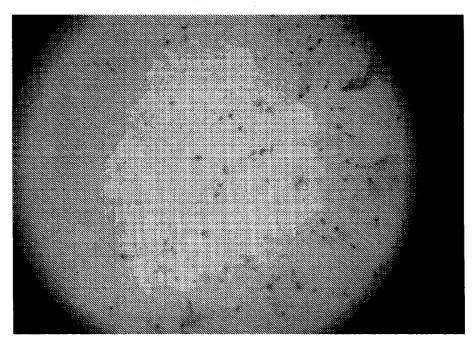
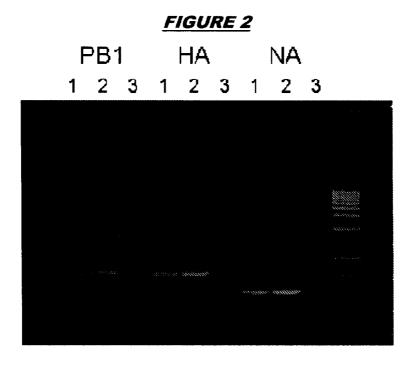
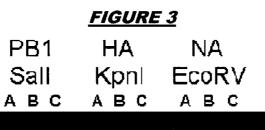






FIGURE 1B

50

VACCINES FOR PROTECTING AGAINST **INFLUENZA**

This application claims the benefit of U.S. provisional applications 61/214,787 filed Apr. 27, 2009, 61/216,198 5 filed May 13, 2009, 61/238,628 filed Aug. 31, 2009, and 61/279,665 filed Oct. 22, 2009. No subject matter of these provisional applications has been inadvertently omitted from the present application.

SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE

The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 223002113100SEQLIST.txt, date recorded: Apr. 27, 2010, size: 51 KB).

TECHNICAL FIELD

This invention is in the field of live attenuated vaccines for protecting against influenza virus infection, and in particular against the swine flu strain(s) which emerged in April 2009. The invention described and claimed herein is not concerned with any influenza vaccines except for live attenuated influ- 25 enza vaccines.

BACKGROUND ART

In April 2009 a human outbreak of swine flu was confirmed in many countries including Mexico and USA, and $\ ^{30}$ then spread rapidly across the globe. A pandemic was declared by the WHO in June 2009. The disease was caused by a newly identified swine influenza virus A/California/04/ 2009 A(H1N1). This swine flu strain seems to have no immunological cross-reactivity with current human influ-35 enza vaccines strains, including the A(H1N1) antigens in current human seasonal vaccines. The virus has been referred to variously as 'swine influenza', 'novel swineorigin H1N1 influenza', 'human-swine influenza', 'novel 40 influenza A(H1N1)' and 'influenza A(H1N1)v'.

There is a need for a vaccine to prevent further human-tohuman transmission of this swine flu and variants of it.

SUMMARY OF THE DISCLOSURE

The invention provides a live attenuated influenza vaccine, wherein the virus in the vaccine has a hemagglutinin genome segment which encodes a H1 hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3.

The invention also provides a process for preparing a vaccine, comprising growing an attenuated influenza virus in eggs, harvesting the virus, diluting the harvested virus, and formulating the diluted virus as a live attenuated influenza virus vaccine for intranasal administration, wherein the 55 attenuated influenza virus has a hemagglutinin genome segment which encodes a H1 hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3.

The invention also provides a process for preparing a vaccine, comprising growing an attenuated influenza virus in 60 MDCK cells, harvesting the virus, diluting the harvested virus, and formulating the diluted virus as a live attenuated influenza virus vaccine for intranasal administration, wherein the attenuated influenza virus has a hemagglutinin genome segment which encodes a H1 hemagglutinin which 65 is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3.

The vaccine strain's neuraminidase genome segment may encode a neuraminidase which is more closely related to SEQ ID NO: 4 than to SEQ ID NO: 5.

The invention also provides a process for preparing a live attenuated influenza vaccine comprising steps of: (i) growing an influenza virus with a viral hemagglutinin gene segment encoding a hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3 and with at least one other viral segment from the AA/6/60 influenza ¹⁰ virus strain; and (ii) formulating virus grown in step (i) as the vaccine. The viruses may be grown in eggs in step (i). Step (ii) may involve: filtering harvested allantoic fluid from eggs; concentration by ultracentrifugation; addition of stabilizing buffer to the concentrated virus; sterile filtration; and dilution to a desired potency e.g. to between $10^{6.5}$ and $10^{7.5}$ FFU (fluorescent focus units) of live attenuated virus per dose. The vaccine produced by this process may include monosodium glutamate (e.g. at a final concentration 0.09% w/v), hydrolyzed porcine gelatin (e.g. at a final concentration 1.00% w/v), arginine (e.g. at a final concentration 1.21% w/v), sucrose (e.g. at a final concentration 6.84% w/v) and/or phosphate (e.g. at a final concentration 1.61% w/v). The formulated vaccine can then be filled directly into individual sprayers for nasal administration.

The invention also provides an influenza A virus, wherein (a) the viral hemagglutinin gene encodes a hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3 and (b) at least one other viral gene is from the AA/6/60 (A/Ann Arbor/6/60) influenza virus strain. These reassortant strains are useful for preparing live attenuated vaccines.

The invention also provides an influenza A virus, wherein (a) the viral hemagglutinin gene encodes a hemagglutinin protein which has at least k % sequence identity to SEQ ID NO: 1, where k is 85 or more e.g. 85, 88, 90, 92, 94, 95, 96, 97, 98, 99 or more (e.g. 100), and (b) at least one other viral gene is from the AA/6/60 influenza virus strain (A/Ann Arbor/6/60). These reassortant strains are useful for preparing live attenuated vaccines.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the results of a reverse genetics experiment. FIG. 2 shows the results of PCR amplification from res-

⁴⁵ cued virus, and

FIG. 3 shows results of a restriction digest.

DETAILED DESCRIPTION OF EMBODIMENTS Vaccine strains

The invention uses a live attenuated influenza A virus strain as a vaccine antigen. The strain in the vaccine encodes a hemagglutinin antigen which, when (if) administered to a human subject in polypeptide form (e.g. unadjuvanted), elicits anti-hemagglutinin antibodies which cross-react with A/California/04/2009 hemagglutinin (SEQ ID NO: 1; GI:227809830). In other embodiments the hemagglutinin is from A/California/04/2009 (SEQ ID NO: 1). In other embodiments the hemagglutinin comprises an HA1 amino acid sequence having at least i % sequence identity to SEQ ID NO: 2, where i is 85 or more e.g. 85, 88, 90, 92, 94, 95, 96, 97, 98, 99 or more.

H1N1 strains which encode suitable HA antigens include A/California/04/2009 itself, A/California/7/2009, A/Texas/ 5/2009, A/England/195/2009, and A/New York/18/2009.

The hemagglutinin is more closely related to SEQ ID NO: 1 (A/California/04/2009) than to SEQ ID NO: 3 (A/Chile/1/ 1983). A hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3 (i.e. has a higher degree sequence identity when compared to SEQ ID NO: 1 than to SEQ ID NO: 3 using the same algorithm and parameters) is referred to hereafter as a 'H1*' hemagglutinin. SEQ ID NOs: 1 and 3 are 80.4% identical.

Useful full-length H1 hemagglutinin sequences for use with the invention include SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, as well as those comprising an amino acid sequence having at least i % sequence identity to SEQ ID NO: 2 as discussed above, or 10 having at least i % sequence identity to SEQ ID NO: 12. Ideally the hemagglutinin does not include a hyper-basic regions around the HA1/HA2 cleavage site. Preferred hemagglutinins have a binding preference for oligosaccharides with a Sia(α 2,6)Gal terminal disaccharide compared to 15 oligosaccharides with a Sia(α 2,3)Gal terminal disaccharide (see below).

SEQ ID NO: 11 (comprising SEQ ID NO: 12) is a useful H1* hemagglutinin. It differs from SEQ ID NO: 1 at residues 214, 226 and 240 (i.e. 99.47% identity).

The vaccine strain may be a reassortant e.g. it may include one or more non-HA and non-NA genome segments ("backbone segments") from, for instance, an A/Ann Arbor/ 6/60 strain. Thus the virus may include at least one of segments NP, M, NS, PA, PB1 and/or PB2 from AA/6/60. The 25 encoded PB1 protein may include one or more of K391E, E581G &/or A661T mutations in PB1, a N265S mutation in PB2, and/or a D34G mutation in NP.

The vaccine strain may be a cold-adapted ("ca") strain i.e. it can replicate efficiently at 25° C., a temperature that is 30 restrictive for replication of many wildtype influenza viruses. The strain may be temperature-sensitive ("ts") i.e. its replication is restricted at temperatures at which many wild-type influenza viruses grow efficiently (37-39° C.). The strain may be attenuated ("att") e.g. so as not to produce 35 influenza-like illness in a ferret model of human influenza infection. The cumulative effect of the antigenic properties and the ca, ts, and att phenotype is that the virus in the attenuated vaccine can replicate in the nasopharynx to induce protective immunity in a typical human patient but 40 does not cause disease i.e. it is safe for general administration to the target human population. A live attenuated vaccine of the invention may be tested (e.g. at the bulk stage or at the individual dose stage) for one or more (preferably all) of the ca, ts and att phenotypes.

The influenza virus strain maybe resistant to antiviral therapy (e.g. resistant to oseltamivir [1] and/or zanamivir).

In some embodiments, strains used with the invention will thus have hemagglutinin with a binding preference for oligosaccharides with a Sia($\alpha 2, 6$)Gal terminal disaccharide 50 compared to oligosaceharides with a Sia($\alpha 2,3$)Gal terminal disaccharide. Human influenza viruses bind to receptor oligosaccharides having a Sia($\alpha 2, 6$)Gal terminal disaccharide (sialic acid linked α -2,6 to galactose), but eggs and Vero cells have receptor oligosaccharides with a Sia($\alpha 2,3$)Gal ter- 55 minal disaccharide. Growth of human influenza viruses in cells such as MDCK provides selection pressure on hemagglutinin to maintain the native $Sia(\alpha 2, 6)$ Gal binding, unlike egg passaging. To determine if a virus has a binding preference for oligosaccharides with a Sia($\alpha 2, 6$)Gal terminal dis- 60 accharide compared to oligosaccharides with a Sia($\alpha 2,3$)Gal terminal disaccharide, various assays can be used. For instance, reference 2 describes a solid-phase enzyme-linked assay for influenza virus receptor-binding activity which gives sensitive and quantitative measurements of affinity 65 constants. Reference 3 used a solid-phase assay in which binding of viruses to two different sialylglycoproteins was

assessed (ovomucoid, with Sia($\alpha 2,3$)Gal determinants; and pig α_2 -macroglobulin, which Sia($\alpha 2,6$)Gal determinants), and also describes an assay in which the binding of virus was assessed against two receptor analogs: free sialic acid (Neu5Ac) and 3'-sialyllactosc (Neu5Ac $\alpha 2$ -3Gal β 1-4Glc). Reference 4 reports an assay using a glycan array which was able to clearly differentiate receptor preferences for $\alpha 2,3$ or $\alpha 2,6$ linkages. Reference 5 reports an assay based on agglutination of human erythrocytes enzymatically modified to contain either Sia($\alpha 2,6$)Gal or Sia($\alpha 2,3$)Gal. Depending on the type of assay, it may be performed directly with the virus itself, or can be performed indirectly with hemagglutinin purified from the virus.

In some embodiments the H1 hemagglutinin has a different glycosylation pattern from the patterns seen in eggderived viruses. Thus the HA (and other glycoproteins) in the virus may include glycoforms that are not seen in chicken eggs. Useful HA includes canine glycoforms.

The live attenuated virus also encodes a neuraminidase protein. The strain may express one or more of influenza A virus NA subtypes N1, N2, N3, N4, N5, N6, N7, N8 or N9, but it will usually be a N1 strain (e.g. a H1N1 virus) or N2 (e.g. a H1N2 virus). The neuraminidase may have at least j % sequence identity to SEQ ID NO: 4, where j is 75 or more 25 e.g. 75, 80, 85, 88, 90, 92, 94, 95, 96, 97, 98, 99 or more (e.g. 100). Many such sequences are available. In some embodiments, the neuraminidase is more closely related to SEQ ID NO: 4 than to SEQ ID NO: 5. SEQ ID NOs: 4 and 5 are 82% identical.

A live attenuated influenza A virus strain can have a genome encoding a hemagglutinin with amino acid sequence SEQ ID NO: 6. Compared to SEQ ID NO: 1 this sequence has Pro-200 instead of Ser-200. This hemagglutinin may include a HA1 sequence with at least 90% (e.g \geq 91%, \geq 92%, \geq 93%, \geq 94%, \geq 95%, \geq 96%, \geq 97%, \geq 98%, \geq 99%) identity to SEQ ID NO: 2, provided that it includes the Pro-200 residue.

A live attenuated influenza A virus strain can have a genome encoding a hemagglutinin with amino acid sequence SEQ ID NO: 7 or comprising SEQ ID NO: 8. Compared to SEQ ID NO: 1 this sequence has Glu-204 instead of Asp-204 and has a deletion of Lys-147.

A live attenuated influenza A virus strain can have a genome encoding a hemagglutinin with amino acid 45 sequence SEQ ID NO: 9 or comprising SEQ ID NO: 10. Compared to SEQ ID NO: 7 this sequence has Ser-159 instead of Lys-159, Ser-206 instead of Gln-206, Ala-241 instead of Glu-241, and Glu-170 instead of Lys-170.

A live attenuated influenza A virus strain can have a genome encoding a hemagglutinin with amino acid sequence SEQ ID NO: 13. Compared to SEQ ID NO: 1 this sequence has Ile-208 instead of Leu-208. This hemagglutinin may include a HA1 sequence with at least 90% (e.g \geq 91%, \geq 92%, \geq 93%, \geq 94%, \geq 95%, \geq 96%, \geq 97%, \geq 98%, \geq 99%) identity to SEQ ID NO: 2, provided that it includes the Ile-208 residue.

A live attenuated influenza A virus strain can have a genome encoding a hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3, and which has one or more of (i) a proline residue at the position corresponding to Ser-200 in SEQ ID NO: 1, (ii) a glutamate residue at the position corresponding to Asp-204 in SEQ ID NO: 1, (iii) a serine residue at the position corresponding to Lys-159 in SEQ ID NO: 1, (iv) a serine residue at the position corresponding to Gln-206 in SEQ ID NO: 1, (v) an alanine residue at the position corresponding to Gln-206 in SEQ ID NO: 1, (v) and an alanine residue at the position corresponding to Gln-206 in SEQ ID NO: 1, (v) and alanine residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corresponding to Gln-241 in SEQ ID NO: 1, (vi) a glutamate residue at the position corre

to Lys-170 in SEQ ID NO: 1, (vii) an isoleucine residue at the position corresponding to Leu-208 in SEQ ID NO: 1, and/or (viii) an aspartate residue at the position corresponding to Asn-173 in SEQ ID NO: 1.

Additional strains

A live attenuated influenza vaccine of the invention may be a monovalent vaccine (i.e. it includes a single live attenuated influenza virus strain) or it may include at least two (e.g. 2, 3, 4, or more) different live attenuated strains. In a multivalent live attenuated vaccine of the invention, at least one of 10 the strains has a hemagglutinin genome segment which encodes a H1 hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3.

A process of the invention can include steps of separately growing different attenuated influenza virus strains, harvesting the different viruses, diluting the different harvested viruses, and formulating the different diluted viruses as a multivalent live attenuated influenza virus vaccine for intranasal administration. One of the strains has a hemagglutinin genome segment which encodes a H1 hemagglutinin which 20 is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3.

In addition to including a live attenuated H1* strain, compositions of the invention may include one or more (e.g. 1, 2, 3, 4 or more) additional live attenuated influenza virus 25 strains, which may be influenza A and/or influenza B virus strain(s). Thus a composition may include one or more strains with HA characteristic of a normal seasonal vaccine plus at least one H1* strain e.g. a 4-valent vaccine with two H1 strains (one strain with a H1* hemagglutinin, one H1 30 strain with a non-H1* hemagglutinin), a H3N2 strain, and one influenza B strain, or a 5-valent vaccine with two H1 strains (one a H1* strain, one not a H1* strain), a H3N2 strain, and two influenza B virus strains (a B/Victoria/2/87like strain and a B/Yamagata/16/88-like strain). 35

The invention also provides a 2-valent vaccine comprising a live attenuated H1* strain and a live attenuated H5 strain.

The invention also provides a trivalent vaccine comprising a live attenuated H1* strain, a live attenuated H3N2 influenza A virus strain and a live attenuated influenza B virus 40 strain.

The invention also provides an immunogenic composition comprising two different live attenuated H1 influenza A virus strains, wherein (i) the first H1 subtype influenza A virus strain encodes a hemagglutinin which is more closely 45 related to SEQ ID NO: 1 than to SEQ ID NO: 3 and (ii) the second H1 subtype influenza A virus strain encodes a hemagglutinin which is more closely related to SEQ ID NO: 3 than to SEQ ID NO: 1. This mixture of H1 hemagglutinins offers a broader spectrum of protection against H1 influenza 50 A virus strains than currently available. This composition may also include (iii) a H3N2 and/or (iv) an influenza B live attenuated strain(s). In some embodiments, the composition includes (iii) a H3N2 live attenuated influenza A virus strain, (iv) a B/Victoria/2/87-like live attenuated influenza B virus 55 strain; and (v) a B/Yamagata/16/88-like live attenuated influenza B virus strain.

Where a vaccine of the invention includes two influenza B strains, one B/Victoria/2/87-like strain and one B/Yamagata/ 16/88-like strain will be included. These strains are usually 60 distinguished antigenically, but differences in amino acid sequences have also been described for distinguishing the two lineages e.g. B/Yamagata/16/88-like strains often (but not always) have HA proteins with deletions at amino acid residue 164, numbered relative to the 'Lee40' HA sequence 65 [6]. In some embodiments of the invention where two or more influenza B virus strains are present, at least two of the

6

influenza B virus strains may have distinct hemagglutinins but related neuraminidases. For instance, they may both have a B/Victoria/2/87-like neuraminidase [7] or may both have a B/Yamagata/16/88-like neuraminidase. For instance, two B/Victoria/2/87-like encoded neuraminidases may both have one or more of the following sequence characteristics: (1) not a serine at residue 27, but preferably a leucine; (2) not a glutamate at residue 44, but preferably a lysine; (3) not a threonine at residue 46, but preferably an isoleucine; (4) not a proline at residue 51, but preferably a serine; (5) not an arginine at residue 65, but preferably a histidine; (6) not a glycine at residue 70, but preferably a glutamate; (7) not a leucine at residue 73, but preferably a phenylalanine; and/or (8) not a proline at residue 88, but preferably a glutamine. Similarly, in some embodiments the encoded neuraminidase may have a deletion at residue 43, or it may have a threonine; a deletion at residue 43, arising from a trinucleotide deletion in the NA gene, has been reported as a characteristic of B/Victoria/2/87-like strains, although recent strains have regained Thr-43 [7]. Conversely, of course, the opposite characteristics may be shared by two B/Yamagata/16/88-like neuraminidases e.g. S27, E44, T46, P51, R65, G70, L73, and/or P88. These amino acids are numbered relative to the 'Lee40' neuraminidase sequence [8].

Where a vaccine includes more than one strain of influenza, the different strains are typically grown separately and are mixed after the viruses have been harvested and prepared. Thus a process of the invention may include the step of mixing from more than one live attenuated influenza strain. The different strains may be harvested separately, diluted separately, and mixed to give a multivalent live attenuated influenza virus vaccine.

A monovalent live attenuated vaccine of the invention may be administered in conjunction with a trivalent A/H1N1-A/H3N2-B seasonal influenza vaccine, and in particular with a trivalent live attenuated vaccine. The monovalent live attenuated vaccine includes a H1 subtype influenza A virus hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3; the trivalent vaccine includes a H1 subtype influenza A virus hemagglutinin which is more closely related to SEQ ID NO: 3 than to SEQ ID NO: 1. The monovalent live attenuated vaccine may be administered before the trivalent vaccine, after the trivalent vaccine, or at the same time. Where the two vaccines are administered separately, there may be from 2-26 weeks between the administrations.

Reassortants and reverse genetics

The invention can use a reassortant influenza virus strain, and suitable reassortants can be made using reverse genetics. Suitable strains can include at least one other viral gene segment from the AA/6/60 (A/Ann Arbor/6/60) influenza virus strain. Thus the virus may include at least one of segments NP, M, NS, PA, PB1 and/or PB2 from AA/6/60. Viral segments from the AA/6/60 strains, and their sequences, are widely available.

A reassortant virus may include at least one of segments NP, M, NS, PA, PB1 and/or PB2 from AA/6/60. The AA/6/ 60 strain may be a cold-adapted AA/6/60 strain e.g. its PB1 may include one or more of K391E, E581G &/or A661T mutations in PB1, a N265S mutation in PB2, and/or a D34G mutation in NP [9].

In these reassortant viruses the viral neuraminidase gene may encode a neuraminidase protein which has at least j % sequence identity to SEQ ID NO: 4, where j is 75 or more e.g. 75, 80, 85, 88, 90, 92, 94, 95, 96, 97, 98, 99 or more (e.g. 100). In some embodiments, the neuraminidase is more closely related to SEQ ID NO: 4 than to SEQ ID NO: 5.

The eight segments of the influenza A virus genome encode (i) the PA subunit of the viral polymerase (ii) the PB1 subunit of the viral polymerase (iii) the PB2 subunit of the viral polymerase (iv) the viral nucleoprotein (v) the viral matrix proteins (vi) the viral NS1 and NS2 proteins (vii) 5 hemagglutinin and (viii) neuraminidase. Preferred reassortants of the invention are 6:2 reassortants i.e. they include 6 segments from one strain (e.g. from AA/6/60) but the HA and NA segments from a different strain (e.g. as defined above by reference to SEQ ID NOs 1 and 4). In other 10 embodiments there is a 7:1 reassortant with HA as defined above. In other embodiments the virus includes genes with three different origins, but with at least one segment (e.g. 1, 2, 3, 4, 5, 6) being from AA/6/60.

Reassortant viruses of the invention may have a H1* 15 hemagglutinin with a binding preference for oligosaccharides with a Sia($\alpha 2,6$)Gal terminal disaccharide compared to oligosaccharides with a Sia($\alpha 2,3$)Gal terminal disaccharide.

A reassortant virus of the invention may have amino acid proline at residue 200 (numbered according to SEO ID NO: 20 1) of its hemagglutinin. For example, it may encode hemagglutinin having sequence SEQ ID NO: 6. Other reassortants may encode hemagglutinin having sequence SEQ ID NO: 7 or SEQ ID NO: 9.

Useful reassortant viruses of the invention can grow in 25 MDCK cells, and the invention provides a method of preparing a virus, comprising steps of: (i) infecting a cell culture with a reassortant virus of the invention; (ii) culturing the cell culture from step (i) to produce further virus; and (iii) purifying virus obtained in step (ii). The method may com- 30 prise a further step (iv) processing virus purified in step (iii) to prepare a vaccine, and so the invention provides a method for preparing a vaccine comprising steps (i) to (iv). The vaccine may be a bulk vaccine. It may be used to produce a monovalent final vaccine product or may be used as a com- 35 ponent to make a multivalent final vaccine product. The cell culture in step (i) is preferably a MDCK cell culture, but other cells (ideally mammalian cells, such as PER.C6 cells) may be used as an alternative.

The influenza virus may be a reassortant strain obtained 40 by reverse genetics techniques. Reverse genetics techniques [e.g. 10-14] allow influenza viruses with desired genome segments to be prepared in vitro using plasmids, or by plasmid-free systems. Typically, the technique involves expressing (a) DNA molecules that encode desired viral 45 RNA molecules e.g. from poll promoters, and (b) DNA molecules that encode viral proteins e.g. from polII promoters, such that expression of both types of DNA in a cell leads to assembly of a complete intact infectious virion. The DNA preferably provides all of the viral RNA and proteins, but it 50 is also possible to use a helper virus to provide some of the RNA and proteins. Plasmid-based methods using separate plasmids for producing each viral RNA are preferred [15-17], and these methods will also involve the use of plasmids to express all or some (e.g. just the PB1, PB2, PA and NP 55 proteins) of the viral proteins, with up to 12 plasmids being used in some methods. If canine cells are used, a canine polI promoter may be used [18].

To reduce the number of plasmids needed, one approach [19] combines a plurality of RNA polymerase I transcription 60 cassettes (for viral RNA synthesis) on the same plasmid (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or all 8 influenza A vRNA segments), and a plurality of protein-coding regions with RNA polymerase II promoters on another plasmid (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or all 8 influenza A 65 mRNA transcripts). The method may involve: (a) PB1, PB2 and PA mRNA-encoding regions on a single plasmid; and

(b) all 8 vRNA-encoding segments on a single plasmid. Including the NA and HA segments on one plasmid and the six other segments on another plasmid can also facilitate matters

As an alternative to using poll promoters to encode the viral RNA segments, it is possible to use bacteriophage polymerase promoters [20]. For instance, promoters for the SP6, T3 or T7 polymerases can conveniently be used. Because of the species-specificity of poll promoters, bacteriophage polymerase promoters can be more convenient for many cell types (e.g. MDCK), although a cell must also be transfected with a plasmid encoding the exogenous polymerase enzyme.

In other techniques it is possible to use dual polI and polII promoters to simultaneously code for the viral RNAs and for expressible mRNAs from a single template [21,22].

A live attenuated influenza A virus may include one or more RNA segments from a A/PR/8/34 virus (typically 6 segments from A/PR/8/34, with the HA and N segments being from a vaccine strain, i.e. a 6:2 reassortant), particularly when viruses are grown in eggs. It may also include one or more RNA segments from a A/WSN/33 virus, or from any other virus strain useful for generating reassortant viruses for vaccine preparation. The inclusion of at least one A/Ann Arbor backbone segment(s) is preferred in live attenuated vaccines. Typically, the invention protects against a strain that is capable of human-to-human transmission, and so the strain's genome will usually include at least one RNA segment that originated in a mammalian (e.g. in a human) influenza virus.

The invention also provides a host cell comprising one or more expression construct(s) for providing the reassortant live attenuated strains described herein. Thus the construct (s) encode a viral hemagglutinin gene with a hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3. The construct(s) will additionally encode the other viral segments for the functional influenza genome, including at least one other viral segment from the AA/6/60 influenza virus strain. The neuraminidase segment may encode a neuraminidase protein which has at least j % sequence identity to SEQ ID NO: 4, etc.

The invention also provides a construct or set of constructs encoding these reassortant strains e.g. when introduced into a host cell. Use of the construct(s) will provide an infectious live attenuated influenza virus in a suitable reverse genetics host system. The constructs may be plasmids or non-plasmid vectors.

The invention also provides a process for RNA expression in a host cell, comprising the use of such construct(s). The invention also provides a method for producing a reassortant live attenuated virus from such construct(s) and/or host cell (s).

The invention also provides a process for preparing a live attenuated influenza vaccine comprising steps of: (i) preparing a reassortant live attenuated influenza virus of the invention by using reverse genetics, wherein the virus has a viral hemagglutinin gene encoding a hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3; (ii) using the reassortant strain to make a vaccine. Step (ii) may involve: culturing a virus (e.g. in eggs or in cell culture); and preparing vaccine from the cultured virus. The cultured virus may be used as an active ingredient in the vaccine.

The invention also provides a process for preparing a live attenuated vaccine comprising a step of using a reassortant influenza virus of the invention which was prepared by using reverse genetics.

Virus growth

The viruses can be grown either on eggs or on cell culture. The current standard method for influenza virus growth uses

specific pathogen-free (SPF) embryonated hen eggs, with virus being purified from the egg contents (allantoic fluid). More recently, however, viruses have been grown in animal cell culture and, for reasons of speed and patient allergies, this growth method is preferred. If egg-based viral growth is 5 used then one or more amino acids may be introduced into the allantoid fluid of the egg together with the virus.

When cell culture is used, the viral growth substrate will typically be a cell line of mammalian origin. Suitable mammalian cells of origin include, but are not limited to, hamster, 10 cattle, primate (including humans and monkeys) and dog cells. Various cell types may be used, such as kidney cells, fibroblasts, retinal cells, lung cells, etc. Examples of suitable hamster cells are the cell lines having the names BHK21 or HKCC. Suitable monkey cells are e.g. African green mon- 15 key cells, such as kidney cells as in the Vero cell line. Suitable dog cells are e.g. kidney cells, as in the MDCK cell line. Thus suitable cell lines include, but are not limited to: MDCK; CHO; 293T; BHK; Vero; MRC-5; PER.C6; WI-38; etc.. Preferred mammalian cell lines for growing influenza 20 viruses include: MDCK cells [23-26], derived from Madin Darby canine kidney; Vero cells [27-29], derived from African green monkey (Cercopithecus aethiops) kidney; or PER.C6 cells [30], derived from human embryonic retinoblasts. These cell lines are widely available e.g. from the 25 American Type Cell Culture (ATCC) collection, from the Coriell Cell Repositories, or from the European Collection of Cell Cultures (ECACC). For example, the ATCC supplies various different Vero cells under catalog numbers CCL-81, CCL-81.2, CRL-1586 and CRL-1587, and it supplies 30 MDCK cells under catalog number CCL-34. PER.C6 is available from the ECACC under deposit number 96022940. As a less-preferred alternative to mammalian cell lines, virus can be grown on avian cell lines [e.g. refs. 31-33], including cell lines derived from ducks (e.g. duck retina) or hens. 35 Examples of avian cell lines include avian embryonic stem cells [31,34] and duck retina cells [32]. Suitable avian embryonic stem cells, include the EBx cell line derived from chicken embryonic stem cells, EB45, EB14, and EB14-074 [35]. Chicken embryo fibroblasts (CEF) may also be used. 40

The most preferred cell lines for growing influenza viruses are MDCK cell lines. The original MDCK cell line is available from the ATCC as CCL-34, but derivatives of this cell line may also be used. For instance, reference 23 discloses a MDCK cell line that was adapted for growth in 45 suspension culture ('MDCK 33016', deposited as DSM ACC 2219). Similarly, reference 36 discloses a MDCKderived cell line that grows in suspension in serum-free culture ('B-702', deposited as FERM BP-7449). Reference 37 discloses non-tumorigenic MDCK cells, including 'MDCK- 50 S' (ATCC PTA-6500), 'MDCK-SF101' (ATCC PTA-6501), 'MDCK-SF102' (ATCC PTA-6502) and 'MDCK-SF103' (PTA-6503). Reference 38 discloses MDCK cell lines with high susceptibility to infection, including 'MDCK.5F1' cells (ATCC CRL-12042). Any of these MDCK cell lines can be 55 used. MDCK cells are useful for preparing live attenuated vaccines [39, 40].

Where virus has been grown on a mammalian cell line then the composition will advantageously be free from egg proteins (e.g. ovalbumin and ovomucoid) and from chicken 60 DNA, thereby reducing allergenicity.

Where virus has been grown on a cell line then the culture for growth, and also the viral inoculum used to start the culture, will preferably be free from (i.e. will have been tested for and given a negative result for contamination by) 65 herpes simplex virus, respiratory syncytial virus, parainfluenza virus 3, SARS coronavirus, adenovirus, rhinovirus,

reoviruses, polyomaviruses, birnaviruses, circoviruses, and/ or parvoviruses [41]. Absence of herpes simplex viruses is particularly preferred.

For growth on a cell line, such as on MDCK cells, virus may be grown on cells in suspension [23, 42, 43] or in adherent culture. One suitable MDCK cell line for suspension culture is MDCK 33016 (deposited as DSM ACC 2219). As an alternative, microcarrier culture can be used.

Cell lines supporting influenza virus replication are preferably grown in serum-free culture media and/or protein free media. A medium is referred to as a serum-free medium in the context of the present invention in which there are no additives from serum of human or animal origin. Proteinfree is understood to mean cultures in which multiplication of the cells occurs with exclusion of proteins, growth factors, other protein additives and non-serum proteins, but can optionally include proteins such as trypsin or other proteases that may be necessary for viral growth. The cells growing in such cultures naturally contain proteins themselves.

Cell lines supporting influenza virus replication are preferably grown below 37° C. [44] during viral replication e.g. $30-36^{\circ}$ C., at $31-35^{\circ}$ C., or at $33\pm1^{\circ}$ C.

The method for propagating virus in cultured cells generally includes the steps of inoculating the cultured cells with the strain to be cultured, cultivating the infected cells for a desired time period for virus propagation, such as for example as determined by virus titer or antigen expression (e.g. between 24 and 168 hours after inoculation) and collecting the propagated virus. The cultured cells are inoculated with a virus (measured by PFU or $TCID_{50}$) to cell ratio of 1:500 to 1:1, preferably 1:100 to 1:5, more preferably 1:50 to 1:10. The virus is added to a suspension of the cells or is applied to a monolayer of the cells, and the virus is absorbed on the cells for at least 60 minutes but usually less than 300 minutes, preferably between 90 and 240 minutes at 25° C. to 40° C., preferably 28° C. to 37° C. The infected cell culture (e.g. monolayers) may be removed either by freezethawing or by enzymatic action to increase the viral content of the harvested culture supernatants. The harvested fluids may then be stored frozen. Cultured cells may be infected at a multiplicity of infection ("m.o.i.") of about 0.0001 to 10, preferably 0.002 to 5, more preferably to 0.001 to 2. Still more preferably, the cells are infected at a m.o.i of about 0.01. Infected cells may be harvested 30 to 60 hours post infection. Preferably, the cells are harvested 34 to 48 hours post infection. Still more preferably, the cells are harvested 38 to 40 hours post infection. Proteases (typically trypsin) are generally added during cell culture to allow viral release, and the proteases can be added at any suitable stage during the culture.

Virions can be harvested from virus-containing fluids by various methods. For example, a purification process may involve zonal centrifugation using a linear sucrose gradient solution.

A vaccine may be prepared from harvested virus by formulation steps comprising one or more of the following steps: filtration; concentration e.g. by ultracentrifugation; addition of stabilizing buffer; sterile filtration; and/or dilution to a desired potency e.g. to between $10^{6.5}$ and $10^{7.5}$ FFU. When more than one of these formulation steps is used, they are preferably performed in the stated order. Host cell DNA

Where virus has been grown on a cell line then it is standard practice to minimize the amount of residual cell line DNA in the final vaccine, in order to minimize any oncogenic activity of the DNA. Thus the composition preferably contains less than 10 ng (preferably less than 1 ng, and more preferably less than 100 pg) of residual host cell DNA per dose, although trace amounts of host cell DNA may be present. In general, the host cell DNA that it is desirable to exclude from compositions of the invention is DNA that is longer than 100 bp.

Measurement of residual host cell DNA is now a routine regulatory requirement for biologicals and is within the normal capabilities of the skilled person. The assay used to measure DNA will typically be a validated assay [45,46]. The performance characteristics of a validated assay can be 10 described in mathematical and quantifiable terms, and its possible sources of error will have been identified. The assay will generally have been tested for characteristics such as accuracy, precision, specificity. Once an assay has been calibrated (e.g. against known standard quantities of host cell 15 DNA) and tested then quantitative DNA measurements can be routinely performed. Three principle techniques for DNA quantification can be used: hybridization methods, such as Southern blots or slot blots [47]; immunoassay methods, such as the Threshold[™] System [48]; and quantitative PCR 20 [49]. These methods are all familiar to the skilled person, although the precise characteristics of each method may depend on the host cell in question e.g. the choice of probes for hybridization, the choice of primers and/or probes for amplification, etc. The ThresholdTM system from Molecular 25 Devices is a quantitative assay for picogram levels of total DNA, and has been used for monitoring levels of contaminating DNA in biopharmaceuticals [48]. A typical assay involves non-sequence-specific formation of a reaction complex between a biotinylated ssDNA binding protein, a 30 urease-conjugated anti-ssDNA antibody, and DNA. All assay components are included in the complete Total DNA Assay Kit available from the manufacturer. Various commercial manufacturers offer quantitative PCR assays for detecting residual host cell DNA e.g. AppTec[™] Laboratory 35 Services, BioReliance[™], Althea Technologies, etc. A comparison of a chemiluminescent hybridisation assay and the total DNA Threshold[™] system for measuring host cell DNA contamination of a human viral vaccine can be found in reference 50. 40

Contaminating DNA can be removed during vaccine preparation using standard purification procedures e.g. chromatography, etc. Removal of residual host cell DNA can be enhanced by nuclease treatment e.g. by using a DNase.

Vaccines containing <10 ng (e.g. <1 ng, <100 pg) host cell 45 DNA per dose are preferred, as are vaccines containing <10 ng (e.g. <1 ng, <100 pg) host cell DNA per dose. Vaccines containing <10 ng (e.g. <1 ng, <100 pg) host cell DNA per dose are more preferred, as are vaccines containing <10 ng (e.g. <1 ng, <100 pg) host cell DNA per dose. 50 Pharmaceutical compositions

Compositions of the invention are pharmaceutically acceptable. They usually include components in addition to the virus strains e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion of such components is available in reference 51.

Compositions will generally be in aqueous form.

The composition may include preservatives such as thiomersal (e.g at 10 μ g/ml) or 2-phenoxyethanol. It is preferred, however, that the vaccine should be free from 60 mercurial material.

To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml. Other salts that may be present include potassium chloride, 65 potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.

Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [52], but keeping osmolality in this range is nevertheless preferred.

Compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included in the 5-20 mM range.

The vaccine may include one or more of the following pharmaceutical components e.g. as part of a buffer: monosodium glutamate (e.g. at a final concentration 0.09% w/v, or about 0.19 mg/dose); hydrolyzed porcine gelatin (e.g. at a final concentration 1.00% w/v, or about 2 mg/dose); arginine (e.g. at a final concentration 1.21% w/v, or about 2.4 mg/dose); sucrose (e.g. at a final concentration 6.84% w/v, or about 13.7 mg/dose); and phosphate (e.g. at a final concentration 1.61% w/v).

The pH of a composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 e.g. 6.5 and 7.5, or between 7.0 and 7.8. A process of the invention may therefore include a step of adjusting the pH of the bulk vaccine prior to packaging.

The composition is preferably sterile. The composition is preferably gluten free.

Preferred vaccines have a low endotoxin content e.g. less than 1 IU/ml, and preferably less than 0.5 IU/ml. The international unit for endotoxin measurement is well known and can be calculated for a sample by, for instance, comparison to an international standard [53,54], such as the 2nd International Standard (Code 94/580-IS) available from the NIBSC. Current vaccines prepared from virus grown in eggs have endotoxin levels in the region of 0.5-5 IU/ml.

The vaccine may be preferably free from antibiotics (e.g. neomycin, kanamycin, polymyxin B).

The composition may include material for a single immunisation, or may include material for multiple immunisations. Single immunization compositions are more typical.

The vaccine may be prepared for intranasal use and may have a unit dose volume of 0.2 ml dose, which may be administered as 0.1 ml per nostril.

For live vaccines dosing is measured by median tissue culture infectious dose (TCID₅₀) or fluorescent focus units (FFU). The vaccine can include a TCID₅₀ of between 10^6 and 10^8 (preferably between $10^{6.5}$ - $10^{7.5}$) per viral strain. The vaccine may have between $10^{6.5}$ and $10^{7.5}$ FFU of each live attenuated virus strain per dose.

50 Packaging of compositions or kit components

Processes of the invention can include a step in which vaccine is placed into a container, and in particular into a container for distribution for use by physicians.

Suitable containers for the vaccines include vials, nasal sprays, etc., which should be sterile. For intranasal delivery a vaccine can be packaged into a sprayer. The sprayer may be supplied with a tip having a nozzle to produce a mist when activated in the nose.

A composition may be combined (e.g. in the same box) with a leaflet including details of the vaccine e.g. instructions for administration, details of the antigens within the vaccine, etc. The instructions may also contain warnings e.g. to keep a solution of adrenaline readily available in case of anaphylactic reaction following vaccination, etc.

Methods of treatment, and administration of the vaccine

Compositions of the invention are suitable for administration to human patients, and the invention provides a method of raising an immune response in a patient, comprising the step of administering a composition of the invention to the patient.

The immune response raised by the methods and uses of the invention will generally include an antibody response, 5 preferably a protective antibody response. Methods for assessing antibody responses, neutralising capability and protection after influenza virus vaccination are well known in the art. Human studies have shown that antibody titers against hemagglutinin of human influenza virus are corre- 10 lated with protection (a serum sample hemagglutinationinhibition titer of about 30-40 gives around 50% protection from infection by a homologous virus) [55]. Antibody responses are typically measured by hemagglutination inhibition, by microneutralisation, by single radial immun- 15 odiffusion (SRID), and/or by single radial hemolysis (SRH). These assay techniques are well known in the art.

Compositions of the invention can be administered in various ways. The most preferred immunisation route is intranasal, as in the FLUMISTTM product. A sprayer may 20 produce a mist when activated in the nose. The mist may be deposited primarily in the nose and nasopharynx.

Vaccines prepared according to the invention may be used to treat both children and adults. Influenza vaccines are currently recommended for use in pediatric and adult 25 to patients at substantially the same time as (e.g. during the immunization, from the age of 6 months. Thus the patient may be less than 1 year old (e.g. <6 months old), 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old. Preferred patients for receiving the vaccines are the elderly (e.g. ≥ 50 years old, ≥ 60 years old, and preferably ≥ 65 30 years), the young (e.g. <5 years old, or those aged between 6 months and 24 years, or between 6 months and 4 years, or between 5-18 years), middle aged (25-64 years old), hospitalised patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, immu- 35 nodeficient patients, patients who have taken an antiviral compound (e.g. an oseltamivir or zanamivir compound; see below) in the 7 days prior to receiving the vaccine, people with egg allergies and people travelling abroad. The vaccines are not suitable solely for these groups, however, and 40 may be used more generally in a population.

Live attenuated vaccines of the invention are particularly useful for subjects who are 2-49 years old.

Some older adults (about a third of those older than 60 years) but few young adults and essentially no children have 45 pre-existing serum antibody against the pandemic A/CA/04/ 09 strain. Seasonal immunization of young people does not elicit antibodies against this strain [56]. A useful group of subjects to receive compositions of the invention is those subjects who have no existing serum antibody against the 50 pandemic A/CA/04/09 strain e.g. patients born after 1960, after 1970, after 1980, after 1990, or after 2000.

Preferred compositions of the invention satisfy 1, 2 or 3 of the CPMP criteria for efficacy. In adults (18-60 years), these criteria are: (1) \geq 70% seroprotection; (2) \geq 40% serocon- 55 version; and/or (3) a GMT increase of ≥ 2.5 -fold. In elderly (>60 years), these criteria are: (1) \geq 60% seroprotection; (2) \geq 30% seroconversion; and/or (3) a GMT increase of \geq 2-fold. These criteria are based on open label studies with at least 50 patients. The criteria apply for each strain in a 60 vaccine.

Treatment can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may 65 be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral

boost, etc. Administration of more than one dose (typically two doses) is particularly useful in immunologically naïve patients e.g. for people who have never received an influenza vaccine before, or for vaccinating against a new HA subtype. Multiple doses will typically be administered at least 1 week apart (e.g. about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 12 weeks, about 16 weeks, etc.).

Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H. influenzae type b vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A-C-W135-Y vaccine), a respiratory syncytial virus vaccine, a pneumococcal conjugate vaccine, etc. Administration at substantially the same time as a pneumococcal vaccine and/or a meningococcal vaccine is particularly useful in elderly patients.

Similarly, vaccines of the invention may be administered same medical consultation or visit to a healthcare professional) an antiviral compound, and in particular an antiviral compound active against influenza virus (e.g. oseltamivir and/or zanamivir). These antivirals include neuraminidase inhibitors, such as a (3R,4R,5S)-4acetylamino-5-amino-3(1-ethylpropoxy)-1-cyclohexene-1carboxylic acid or 5-(acetylamino)-4-[(aminoiminomethyl)amino]-2,6-anhydro-3,4,5-trideoxy-D-glycero-Dgalactonon-2-enonic acid, including esters thereof (e.g. the ethyl esters) and salts thereof (e.g. the phosphate salts). A preferred antiviral is (3R,4R,5S)-4-acetylamino-5-amino-3 (1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid, ethyl ester, phosphate (1:1), also known as oseltamivir phosphate (TAMIFLUTM). Another antiviral which can be administered is thymosin alpha 1 (e.g. thymalfasin, a 28 amino acid synthetic peptide, available as ZADAXINTM).

Combination vaccines

In addition to the strain and vaccine combinations discussed above, the invention provides a multivalent immunogenic composition comprising (i) a live attenuated influenza A virus with a H1 type hemagglutinin, wherein its hemagglutinin is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3 and (ii) live attenuated influenza A viruses from 1, 2, 3 or 4 of hemagglutinin subtypes H2, H5, H7 and/or H9. Thus the composition may be H1-H2 bivalent, H1-H7 bivalent, H1-H2-H5 trivalent, H1-H5-H7-H9 tetravalent, H1-H2-H5-H7-H9 pentavalent, etc. At least two strains in the vaccine may share a common neuraminidase subtype e.g. a H1N1-H2N1 bivalent, H1N1-H2N2-H5N1 trivalent, etc.

Mixed-source live attenuated vaccines

Some embodiments of the invention mentioned above are multivalent i.e. they include live attenuated strains for more than one HA type of influenza A virus. The viruses used to prepare a multivalent vaccine may all be grown using the same substrate (e.g. all grown in eggs, or all grown in MDCK culture, etc.) or they may be grown in different substrates (e.g. one strain grown in eggs, another strain grown in cell culture; or one strain grown in MDCK culture or another strain grown in Vero culture).

For example, growth substrates can be chosen according to the growth preferences of a particular strain e.g. if a H1N1

strain grows better in cell culture than in eggs, but an influenza B virus shows the opposite preference, they may be grown on the different substrates and then mixed.

In one embodiment, a live attenuated H1* strain (e.g. H1N1) is grown in cell culture (e.g. in MDCK culture, such 5 as a suspension culture) and another live attenuated strain (e.g. a H3N2 strain, an influenza B strain, etc.) is grown in eggs. Live attenuated viruses are then mixed to provide a multivalent live attenuated influenza vaccine. This process is particularly suitable for preparing a 4-valent live attenuated 10 vaccine with two H1 strains (one a H1* hemagglutinin, one not a H1* hemagglutinin), a H3N2 strain, and one influenza B strain.

Thus the invention provides a live attenuated vaccine comprising at least two different strains of live attenuated ¹⁵ influenza virus, wherein a first live attenuated strain is prepared from influenza viruses grown in eggs and a second live attenuated strain is prepared from influenza viruses grown in cell culture. Thus two different strains of live attenuated influenza virus are grown, one in cell culture and one in ²⁰ eggs. Virus is purified from both sources and then mixed to give a vaccine.

The first and second live attenuated strains may both be influenza A virus strains, both influenza B virus strains, or one may be an influenza A virus strain and the other an 25 influenza B virus strain. Preferably at least one of the first and second strains is an influenza A virus strain. Where both the first and second strains is an influenza A virus, these will typically be a H1 and a H3 type strains e.g. from a H1N1 strain and from a H3N2 strain. 30

Where the first and second strains are influenza A virus strains, one of these can be a H1* strain. It is preferred that the two influenza A strains are not both H1* hemagglutinins, and it is more preferred that the two influenza A strains are not both H1 type. Where a vaccine includes a H1* strain this 35 is preferably the second strain i.e. the H1* strain is grown in cell culture and H1* vaccine strain is then combined with a non-H1* vaccine strain is the first hemagglutinin i.e. the H1* strain is grown in cell culture at H1* strain is grown in the first hemagglutinin i.e. the H1* strain is grown in cell with a non-H1* vaccine strain is the first hemagglutinin i.e. the H1* strain is grown in eggs and a H1* strain is then 40 combined with a non-H1* vaccine strain prepared from cell culture.

This mixed-source approach is particularly useful for making a live attenuated vaccine comprising a H1* strain, a non-H1* H1 strain, a H3 strain and an influenza B strain. 45 The H1* strain can be grown in cell culture, and the other three strains (i.e. the usual trivalent mixture for recent seasonal vaccines) can be grown in eggs in the usual manner. General

The term "comprising" encompasses "including" as well 50 as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X+Y.

The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may 55 be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.

The term "about" in relation to a numerical value x is optional and means, for example, $x \pm 10\%$.

"GI" numbering is used above. A GI number, or "GenInfo Identifier", is a series of digits assigned consecutively to each sequence record processed by NCBI when sequences are added to its databases. The GI number bears no resemblance to the accession number of the sequence record. 65 When a sequence is updated (e.g. for correction, or to add more annotation or information) then it receives a new GI

number. Thus the sequence associated with a given GI number is never changed.

Unless specifically stated, a process comprising a step of mixing two or more components does not require any specific order of mixing. Thus components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.

Where animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encaphalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE). Overall, it is preferred to culture cells in the total absence of animal-derived materials.

Where a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.

Where a cell substrate is used for reassortment or reverse genetics procedures, it is preferably one that has been approved for use in human vaccine production e.g. as in Ph Eur general chapter 5.2.3.

Identity between polypeptide sequences is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

MODES FOR CARRYING OUT THE INVENTION Reassortant strain

Mammalian cells were transfected with all 6 backbone segments of influenza A virus strain A/PR/8/34 and the two surface glycoprotein segments from an A/California/04/09 H1N1 strain in a reverse genetics system. An initial assay of culture fluid recovered from the transfected cells showed five positive results for rescued virus (FIG. 1A) and passaging of this material gave many more positive results (FIG. 1B).

To confirm that the observed viruses were true reassortants, strain-specific PCR primers were used to detect the HA, NA and PB1 genes. As shown in FIG. **2**, the rescued virus (lanes '1') and the plasmid DNA used in the reverse genetics system (lanes '2') had the same size for all three genes, whereas PCR performed on water (lanes '3') showed no amplification.

A restriction digest was then performed on the PCR products. The PB1 gene in PR/8/34 includes a SalI site, whereas the PB1 gene in A/CA/04/09 does not. The HA gene in A/CA/04/09 includes a KpnI site, whereas the HA gene in PR/8/34 does not. The NA gene in A/CA/04/09 includes a EcoRVsite, whereas the NA gene in PR/8/34 does not. Thus these three restriction enzymes can distinguish between the two strains. As shown in FIG. **3** the PCR products (lanes 'A') were digested in all three cases, and the digestion products for the rescued reassortant (lanes 'B') and the original plasmid DNA (lanes 'C') were identical. Thus the virus produced by the reverse genetics system included the HA and NA genes from A/CA/04/09 and PB1 from A/PR/8/34, showing that it has been possible to produce an infectious reassortant virus.

The A/PR/8/34 sequences can easily be replaced by 60 A/AA/6/60 sequences to provide a live attenuated strain suitable for vaccination.

Sequence variations

As discussed above, reverse genetics was used to prepare reassortants of A/CA/04/2009 with a A/PR/8/34 backbone. During this work three different HA sequences were observed: a wild-type sequence, matching the database sequence for A/CA/04/2009 (referred to as F8); a sequence

with a Ser200Pro mutation (F9); and a sequence with a Leu208Ile mutation (F10). NB: residue numbering by H3N2 standards is 14 less than given here.

Transfection of either 293T or MDCK cells with plasmid cocktails containing any of the HA variants produced viable 5 reassortant viruses. No infectious virus was recovered from any simultaneous control transfections with plasmid mixtures lacking a HA gene. Growth of the three reassortants (vF8, vF9, and vF10) was compared to the growth of wild type A/CA/04/2009 and A/PR/8/34 in MDCK cells and in 10 embryonated chicken eggs. Virus titer was assayed by formation of infectious foci on MDCK cells (focus formation assay-FFA) and guinea pig red blood cell agglutination (hemagglutination assay-HA). The wild-type A/CA/04/ 2009 used for these studies was the same virus used to pro-15 duce the cloned plasmid DNAs, and it had been passaged only once or twice in MDCK cells.

The three reverse genetics reassortants rescued with different HA variants had reproducibly different growth characteristics when grown in MDCK cells and eggs. The F10 20 102:16825-9. variant was significantly less productive by both infectious and HA assays in MDCK cells and in eggs (FIGS. 9-12). The F8 variant grew to approximately 10-fold higher infectious titer and produced more than 4-fold greater HA activity than the other reverse genetics reassortants in MDCK cells 25 (FIGS. 9 & 10), although its performance was comparable to that of the F9 variant in eggs (FIGS. 11 & 12).

To determine if the HA mutations at positions 200 and 208 altered HA antigenicity the hemagglutination inhibition assay (HAI) was assessed with ferret antisera against A/CA/ 30 04/2009, A/CA/07/2009, or RG-15 (a reverse geneticsderived A/TX/05/2009-like strain). Databases give identical amino acid sequences from residues 101 to 213 for these three strains. The HAI of all of these antisera with each of the F8-F10 reverse genetics variants were greater than or 35 equivalent to those obtained with A/CA/04/2009, whereas reaction of these variants with normal ferret sera or reaction of A/PR/8/34 virus with these test sera were undetectable. Furthermore, a reverse genetics virus equivalent to F8 with an additional N173D mutation had 8-fold lower HAI titer 40 than A/CA/04. Thus, all of the reverse genetics viruses were antigenically similar to the parental A/CA/04/2009 and A/CA/07/2009 viruses despite the presence of point mutations that improved growth.

Because the variants can increase the growth of reassor- 45 tants in mammalian cells and eggs, these results demonstrate that sampling viral quasispecies during the rescue of reassortant viruses by reverse genetics can identify useful isolates for vaccine manufacture.

The variable residues at positions 200 and 208 are imme- 50 diately adjacent to the expected sialic acid binding site. Thus they could affect cell attachment, substrate specificity, growth characteristics, and red blood cell agglutination. These two variations were not reported in two studies that have examined variation in residues near the receptor bind- 55 chemistry 34:195-197. ing pocket of many H1N1sw isolates [57,58].

It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

REFERENCES

[1] Herlocher et al. (2004) J Infect Dis 190(9):1627-30.

[2] Gambaryan & Matrosovich (1992) J Virol Methods 39(1-2):111-23.

[3] Mastrosovich et al. (1999) J Virol 73: 1146-55.

[4] Stevens et al. (2006) J Mol Biol 355:1143-55.

[5] Couceiro & Baum (1994) Mem Inst Oswaldo Cruz 89(4):587-91.

[6] GenBank sequence GI:325176.

- [7] McCullers et al. (1999) J Virol 73:7343-8.
- [8] GenBank sequence GI:325237.
- [9] Jin et al. (2003) Virology 306:18-24.
- [10] Hoffmann et al. (2002) Vaccine 20:3165-3170.
- [11] Subbarao et al. (2003) Virology 305:192-200.
- [12] Liu et al. (2003) Virology 314:580-590.
- [13] Ozaki et al. (2004) J. Virol. 78:1851-1857.
- [14] Webby et al. (2004) Lancet 363:1099-1103.
- [15] WO00/60050.
- [16] WO01/04333.
- [17] US 6649372.
- [18] WO2007/002008.
- [19] Neumann et al. (2005) Proc Natl Acad Sci USA
 - [20] WO2006/067211.
 - [21] WO01/83794.
 - [22] Hoffmann et al. (2000) Virology 267(2):310-7.
 - [23] WO97/37000.
 - [24] Brands et al. (1999) Dev Biol Stand 98:93-100.
 - [25] Halperin et al. (2002) Vaccine 20:1240-7.
 - [26] Tree et al. (2001) Vaccine 19:3444-50.
 - [27] Kistner et al. (1998) Vaccine 16:960-8.
 - [28] Kistner et al. (1999) Dev Biol Stand 98:101-110.
 - [29] Bruhl et al. (2000) Vaccine 19:1149-58.
 - [30] Pau et al. (2001) Vaccine 19:2716-21.
 - [31] WO03/076601.
 - [32] WO2005/042728.
 - [33] WO03/043415.
 - [34] WO01/85938.
 - [35] WO2006/108846.
 - [36] EP-A-1260581 (WO01/64846).
 - [37] WO2006/071563.
 - [38] WO2005/113758.

[39] Hussain et al. (2010) Vaccine Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: In vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.

- [40] Yang et al. (2010) Vaccine. 28(19):3308-11.
- [41] WO2006/027698.
- [42] WO03/023021
- [43] WO03/023025
- [44] WO97/37001.

[45] Lundblad (2001) Biotechnology and Applied Bio-

[46] Guidance for Industry: Bioanalytical Method Validation. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM). ⁶⁰ May 2001.

- [47] Ji et al. (2002) Biotechniques. 32:1162-7.
- [48] Briggs (1991) J Parenter Sci Technol. 45:7-12.
- [49] Lahijani et al. (1998) Hum Gene Ther. 9:1173-80.
- [50] Lokteff et al. (2001) Biologicals. 29:123-32. 65
 - [51] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.

[52] Nony et al. (2001) Vaccine 27:3645-51.

[53] Poole & Mussett (1989) J Biol Stand 17:161-71.

[54] Poole et al. (1997) J. Endotoxin Res 4:221-31

[55] Potter & Oxford (1979) Br Med Bull 35: 69-75.

[56] Centers for Diseases Control and Prevention. (2009) MMWR 58:521.

[57] Garten et al. (2009) Science 325:197-201.

[58] Smith et al. (2009) Nature 459:1122-5.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 13 <210> SEQ ID NO 1 <211> LENGTH: 566 <212> TYPE: PRT <213> ORGANISM: Influenza A virus <400> SEQUENCE: 1 Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp Ser Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln Ser Leu Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys

Pro	Lys	Tyr	Val	Lys 325	Ser	Thr	Lys	Leu	Arg 330	Leu	Ala	Thr	Gly	Leu 335	Arg
Asn	Ile	Pro	Ser 340	Ile	Gln	Ser	Arg	Gly 345	Leu	Phe	Gly	Ala	Ile 350	Ala	Gly
Phe	Ile	Glu 355	Gly	Gly	Trp	Thr	Gly 360	Met	Val	Asp	Gly	Trp 365	Tyr	Gly	Tyr
His	His 370	Gln	Asn	Glu	Gln	Gly 375	Ser	Gly	Tyr	Ala	Ala 380	Asp	Leu	Lys	Ser
Thr 385	Gln	Asn	Ala	Ile	Aap 390	Glu	Ile	Thr	Asn	Lys 395	Val	Asn	Ser	Val	Ile 400
Glu	Lys	Met	Asn	Thr 405	Gln	Phe	Thr	Ala	Val 410	Gly	ГÀа	Glu	Phe	Asn 415	His
Leu	Glu	Lys	Arg 420	Ile	Glu	Asn	Leu	Asn 425	Гла	Lys	Val	Asp	Asp 430	Gly	Phe
Leu	Asp	Ile 435	Trp	Thr	Tyr	Asn	Ala 440	Glu	Leu	Leu	Val	Leu 445	Leu	Glu	Asn
Glu	Arg 450	Thr	Leu	Asp	Tyr	His 455	Asp	Ser	Asn	Val	Lys 460	Asn	Leu	Tyr	Glu
Lys 465	Val	Arg	Ser	Gln	Leu 470	Lys	Asn	Asn	Ala	Lys 475	Glu	Ile	Gly	Asn	Gly 480
Суз	Phe	Glu	Phe	Tyr 485	His	Lys	Сүз	Asp	Asn 490	Thr	Суз	Met	Glu	Ser 495	Val
Lys	Asn	Gly	Thr 500	Tyr	Asp	Tyr	Pro	Lys 505	Tyr	Ser	Glu	Glu	Ala 510	ГЛЗ	Leu
Asn	Arg	Glu 515	Glu	Ile	Asp	Gly	Val 520	Lys	Leu	Glu	Ser	Thr 525	Arg	Ile	Tyr
Gln	Ile 530	Leu	Ala	Ile	Tyr	Ser 535	Thr	Val	Ala	Ser	Ser 540	Leu	Val	Leu	Val
Val 545	Ser	Leu	Gly	Ala	Ile 550	Ser	Phe	Trp	Met	Суз 555	Ser	Asn	Gly	Ser	Leu 560
Gln	Суз	Arg	Ile	Cys 565	Ile										
)> SE L> LE														
	2> T) 3> OF			Influ	ienza	۱A٦	virus	3							
<400)> SI	EQUE1	ICE :	2											
Asp 1	Thr	Leu	Сүз	Ile 5	Gly	Tyr	His	Ala	Asn 10	Asn	Ser	Thr	Asp	Thr 15	Val
Asp	Thr	Val	Leu 20	Glu	Lys	Asn	Val	Thr 25	Val	Thr	His	Ser	Val 30	Asn	Leu
Leu	Glu	Asp 35	Lys	His	Asn	Gly	Lys 40	Leu	Суз	Гла	Leu	Arg 45	Gly	Val	Ala
Pro	Leu 50	His	Leu	Gly	Lys	Сув 55	Asn	Ile	Ala	Gly	Trp 60	Ile	Leu	Gly	Asn
Pro 65	Glu	Суз	Glu	Ser	Leu 70	Ser	Thr	Ala	Ser	Ser 75	Trp	Ser	Tyr	Ile	Val 80
Glu	Thr	Pro	Ser	Ser 85	Asp	Asn	Gly	Thr	Суз 90	Tyr	Pro	Gly	Asp	Phe 95	Ile
Asp	Tyr	Glu	Glu 100	Leu	Arg	Glu	Gln	Leu 105	Ser	Ser	Val	Ser	Ser 110	Phe	Glu
Arg	Phe	Glu 115	Ile	Phe	Pro	ГЛа	Thr 120	Ser	Ser	Trp	Pro	Asn 125	His	Asp	Ser

Asn	Lys 130	Gly	Val	Thr	Ala	Ala 135	Суа	Pro	His	Ala	Gly 140	Ala	Гла	Ser	Phe
Tyr 145	Гла	Asn	Leu	Ile	Trp 150	Leu	Val	Lys	Lys	Gly 155	Asn	Ser	Tyr	Pro	Lys 160
Leu	Ser	Lys	Ser	Tyr 165	Ile	Asn	Asp	Lys	Gly 170	Гла	Glu	Val	Leu	Val 175	Leu
Trp	Gly	Ile	His 180	His	Pro	Ser	Thr	Ser 185	Ala	Asp	Gln	Gln	Ser 190	Leu	Tyr
Gln	Asn	Ala 195	Asp	Thr	Tyr	Val	Phe 200	Val	Gly	Ser	Ser	Arg 205	Tyr	Ser	Гла
Lys	Phe 210	Lys	Pro	Glu	Ile	Ala 215	Ile	Arg	Pro	Lys	Val 220	Arg	Asp	Gln	Glu
Gly 225	Arg	Met	Asn	Tyr	Tyr 230	Trp	Thr	Leu	Val	Glu 235	Pro	Gly	Asp	Lys	Ile 240
Thr	Phe	Glu	Ala	Thr 245	Gly	Asn	Leu	Val	Val 250	Pro	Arg	Tyr	Ala	Phe 255	Ala
Met	Glu	Arg	Asn 260	Ala	Gly	Ser	Gly	Ile 265	Ile	Ile	Ser	Asp	Thr 270	Pro	Val
His	Asp	Cys 275	Asn	Thr	Thr	Суз	Gln 280	Thr	Pro	Lys	Gly	Ala 285	Ile	Asn	Thr
Ser	Leu 290	Pro	Phe	Gln	Asn	Ile 295	His	Pro	Ile	Thr	Ile 300	Gly	Lys	Суз	Pro
Lys 305	Tyr	Val	Lys	Ser	Thr 310	Lys	Leu	Arg	Leu	Ala 315	Thr	Gly	Leu	Arg	Asn 320
Ile	Pro	Ser	Ile	Gln 325	Ser										
<213 <212	0> SE L> LE 2> TY 3> OF	NGTH PE :	I: 56 PRT	56	ienza	a A t	virus	:							
<211 <212 <213	L> LE 2> TY	NGTH PE : QANI	I: 56 PRT SM:	i6 Influ	ienz <i>a</i>	аАч	virus	ŧ							
<213 <212 <213 <400	L> LE 2> TY 3> OF	INGTH PE : IGANJ	I: 56 PRT SM: ICE:	i6 Influ 3					Сув 10	Ala	Leu	Ser	Ala	Thr 15	Азр
<21: <212 <213 <400 Met 1	L> LE 2> TY 3> OF 0> SE	ENGTH PE: CGANI CQUEN Ala	I: 56 PRT ISM: ICE: Lys	i6 Influ 3 Leu 5	Leu	Val	Leu	Leu	10					15	_
<211 <212 <213 <400 Met 1 Ala	L> LE 2> TY 3> OF 0> SE Lys	ENGTH PE: CGANJ CQUEN Ala Thr	I: 56 PRT SM: NCE: Lys Ile 20	i6 Influ 3 Leu 5 Cys	Leu Ile	Val Gly	Leu Tyr	Leu His 25	10 Ala	Asn	Asn	Ser	Thr 30	15 Asp	Thr
<211 <212 <213 <400 Met 1 Ala Val	L> LE 2> TY 3> OF D> SE Lys Asp	NGTH PE: CGANJ QUEN Ala Thr Thr 35	I: 56 PRT SM: ICE: Lys Ile 20 Val	56 Influ 3 Leu 5 Cys Leu	Leu Ile Glu	Val Gly Lys	Leu Tyr Asn 40	Leu His 25 Val	10 Ala Thr	Asn Val	Asn Thr	Ser His 45	Thr 30 Ser	15 Asp Val	Thr Asn
<211 <212 <213 <400 Met 1 Ala Val Leu	L> LE 2> TY 3> OF D> SE Lys Asp Asp Leu	NGTH PE: CGANJ CQUEN Ala Thr Thr 35 Glu	I: 56 PRT SM: ICE: Lys Ile 20 Val Asp	56 Influ 3 Leu 5 Cys Leu Asn	Leu Ile Glu His	Val Gly Lys Asn 55	Leu Tyr Asn 40 Gly	Leu His 25 Val Lys	10 Ala Thr Leu	Asn Val Cys	Asn Thr Lys 60	Ser His 45 Leu	Thr 30 Ser Lys	15 Asp Val Gly	Thr Asn Ile
<211 <212 <213 <400 Met 1 Ala Val Leu Ala 65	L> LE 2> TY 3> OF D> SE Lys Asp Asp Leu 50	NGTH PE: QQUEN Ala Thr Thr 35 Glu Leu	H: 56 PRT SM: ICE: Lys Ile 20 Val Asp Gln	i6 Influ 3 Leu 5 Cys Leu Asn Leu	Leu Ile Glu His Gly 70	Val Gly Lys Asn 55 Lys	Leu Tyr Asn 40 Gly Cys	Leu His 25 Val Lys Ser	10 Ala Thr Leu Ile	Asn Val Cys Ala 75	Asn Thr Lys 60 Gly	Ser His 45 Leu Trp	Thr 30 Ser Lys Ile	15 Asp Val Gly Leu	Thr Asn Ile Gly 80
<211 <211 <211 <400 Met 1 Ala Val Leu Ala 65 Asn	L> LE L> TY J> OF Lys Asp Leu 50 Pro	CNGTH (PE: CQUEN Ala Thr Thr 35 Glu Leu Glu	I: 56 PRT .SM: ICE: Lys Ile 20 Val Asp Gln Cys	i Influ 3 Leu 5 Cys Leu Asn Leu Glu 85	Leu Ile Glu His Gly 70 Ser	Val Gly Lys Asn 55 Lys Leu	Leu Tyr Asn 40 Gly Cys Phe	Leu His 25 Val Lys Ser Ser	10 Ala Thr Leu Ile Lys 90	Asn Val Cys Ala 75 Lys	Asn Thr Lys 60 Gly Ser	Ser His 45 Leu Trp Trp	Thr 30 Ser Lys Ile Ser	15 Asp Val Gly Leu Tyr 95	Thr Asn Ile Gly 80 Ile
<211 <211 <211 <400 Met 1 Ala Val Leu Ala 65 Asn Ala	L> LE L> TY J> OF Lys Asp Leu 50 Pro	NGTH PE: QQUEN Ala Thr 35 Glu Leu Glu Thr	H: 56 PRT CSM: UCE: Lys Val Asp Gln Cys Pro 100	i Influ 3 Leu 5 Cys Leu Asn Leu 85 Asn	Leu Ile Glu His Gly 70 Ser Ser	Val Gly Lys Asn 55 Lys Leu Glu	Leu Tyr Asn 40 Gly Cys Phe Asn	Leu His 25 Val Lys Ser Ser Gly 105	10 Ala Thr Leu Ile Lys 90 Thr	Asn Val Cys Ala 75 Lys Cys	Asn Thr Lys 60 Gly Ser Tyr	Ser His 45 Leu Trp Trp Pro	Thr 30 Ser Lys Ile Ser Gly 110	15 Asp Val Gly Leu Tyr 95 Tyr	Thr Asn Ile Gly 80 Ile Phe
<211 <212 <212 <400 Met 1 Ala Val Leu Ala 65 Asn Ala Ala	<pre>L> LE >> TY >> OF Lys Asp Leu 50 Pro Glu</pre>	NGTH (PE:) (QUEN Ala Thr Thr Glu Leu Glu Thr Tyr 115	<pre>H: 56 PRT :SM: ICE: Lys Ile 20 Val Asp Gln Cys Gln Cys Glu Glu</pre>	ie Influ 3 Leu 5 Cys Leu Asn Leu 85 Asn Glu	Leu Ile Glu His Gly 70 Ser Ser Leu	Val Gly Lys Asn 55 Lys Leu Glu Arg	Leu Tyr Asn 40 Gly Cys Phe Asn Glu 120	Leu His 25 Val Lys Ser Ser Gly 105 Gln	10 Ala Thr Leu Ile Lys 90 Thr Leu	Asn Val Cys Ala 75 Lys Cys Ser	Asn Thr Lys 60 Gly Ser Tyr Ser	Ser His 45 Leu Trp Trp Pro Val 125	Thr 30 Ser Lys Ile Ser Gly 110 Ser	15 Asp Val Gly Leu Tyr Tyr Ser	Thr Asn Ile Gly 80 Ile Phe Phe
<211 <2113 <200 Met 1 Ala Val Leu Ala 65 Asn Ala Ala Glu	<pre>L> LE >> TY >> TY >> OF Lys Asp Asp Leu 50 Pro Glu Asp Asp Arg</pre>	NGTH PE: cQUEN Ala Thr Thr Thr Glu Glu Glu Thr Tyr 115 Phe	H: 56 PRT SM: Lys Lys Val Asp Gln Cys Pro 100 Glu Glu	ie Influ 3 Leu 5 Cys Leu Asn Leu 6 S Asn Glu 85 Ile	Leu Ile Glu His Gly 70 Ser Ser Leu Phe	Val Gly Lys Lys Leu Glu Arg Pro 135	Leu Tyr Asn Gly Cys Phe Asn Glu 120 Lys	Leu His 25 Val Lys Ser Ser Gly 105 Gln Glu	10 Ala Thr Leu Ile Lys 90 Thr Leu Ser	Asn Val Cys Ala 75 Lys Cys Ser Ser	Asn Thr Lys 60 Gly Ser Tyr Ser Tyr Ser Trp 140	Ser His 45 Leu Trp Pro Val 125 Pro	Thr 30 Ser Lys Ile Ser Gly 110 Ser Lys	15 Asp Val Gly Leu Tyr Ssr His	Thr Asn Ile Gly 80 Ile Phe Phe Asn

-continued

				165					170					175	
Asn	Leu	Ser	Lys 180	Ser	Tyr	Val	Asn	Asn 185	Lys	Glu	Lys	Glu	Val 190	Leu	Val
Leu	Trp	Gly 195	Val	His	His	Pro	Ser 200	Asn	Ile	Glu	Asp	Gln 205	ГЛа	Thr	Ile
Tyr	Arg 210	Lys	Glu	Asn	Ala	Tyr 215	Val	Ser	Val	Val	Ser 220	Ser	His	Tyr	Asn
Arg 225	Arg	Phe	Thr	Pro	Glu 230	Ile	Ala	ГЛа	Arg	Pro 235	ГÀа	Val	Arg	Asn	Gln 240
Glu	Gly	Arg	Ile	Asn 245	Tyr	Tyr	Trp	Thr	Leu 250	Leu	Glu	Pro	Gly	Asp 255	Thr
Ile	Ile	Phe	Glu 260	Ala	Asn	Gly	Asn	Leu 265	Ile	Ala	Pro	Trp	Tyr 270	Ala	Phe
Ala	Leu	Ser 275	Arg	Gly	Phe	Gly	Ser 280	Gly	Ile	Ile	Thr	Ser 285	Asn	Ala	Ser
Met	Asp 290	Glu	Суз	Asp	Ala	Lys 295	Сүз	Gln	Thr	Pro	Gln 300	Gly	Ala	Ile	Asn
305	Ser				310					315			1		320
	ГЛЗ	-		325			-		330				-	335	-
	Ile		340				Ū	345					350		-
	Ile	355	-	-	-		360			-	-	365	-	-	-
	His 370					375		-	-		380	-		-	
385	Gln				390	-				395					400
	Lys			405					410	-	-			415	-
	Glu	-	420					425	-	-		-	430	-	
	Asp	435			-		440					445			
	Arg 450			-		455	-				460			-	
465	Val				470					475					480
	Phe			485					490					495	
	Asn		500					505					510		
	Arg	515					520					525			
	Ile 530				-	535					540				
545	Ser				550	Ser	Phe	Τrp	Met	Суз 555	Ser	Asn	Gly	Ser	Leu 560
GIN	Сүз	Arg	цте	Сув 565	цте										

<211> LENG <212> TYPE	: PRT											
<213> ORGA		fluenza	ιΑv	virus	3							
<400> SEQU			T] -	T] =	mla ac	T] -	a 1	Com	Vel	0	Mat	mla as
Met Asn Pr 1	o Asn GI 5	-	IIe	шe	Inr	11e 10	GIY	ser	vai	сув	Met 15	Inr
Ile Gly Me	t Ala As 20	n Leu	Ile	Leu	Gln 25	Ile	Gly	Asn	Ile	Ile 30	Ser	Ile
Trp Ile Se 35		r Ile	Gln	Leu 40	Gly	Asn	Gln	Asn	Gln 45	Ile	Glu	Thr
Cys Asn Gl 50	n Ser Va	l Ile	Thr 55	Tyr	Glu	Asn	Asn	Thr 60	Trp	Val	Asn	Gln
Thr Tyr Va 65	l Asn Il	e Ser 70	Asn	Thr	Asn	Phe	Ala 75	Ala	Gly	Gln	Ser	Val 80
Val Ser Va	l Lys Le. 85	u Ala	Gly	Asn	Ser	Ser 90	Leu	Суз	Pro	Val	Ser 95	Gly
Trp Ala Il	e Tyr Se 100	r Lys	Asp	Asn	Ser 105	Val	Arg	Ile	Gly	Ser 110	Lys	Gly
Asp Val Ph 11		e Arg	Glu	Pro 120	Phe	Ile	Ser	Сүз	Ser 125	Pro	Leu	Glu
Cys Arg Th 130	r Phe Ph	e Leu	Thr 135	Gln	Gly	Ala	Leu	Leu 140	Asn	Asp	Lys	His
Ser Asn Gl 145	y Thr Il	e Lys 150	Asp	Arg	Ser	Pro	Tyr 155	Arg	Thr	Leu	Met	Ser 160
Cys Pro Il	e Gly Gl 16		Pro	Ser	Pro	Tyr 170	Asn	Ser	Arg	Phe	Glu 175	Ser
Val Ala Tr	p Ser Al 180	a Ser	Ala	Cys	His 185	Asp	Gly	Ile	Asn	Trp 190	Leu	Thr
Ile Gly Il 19		y Pro	Asp	Asn 200	Gly	Ala	Val	Ala	Val 205	Leu	Lys	Tyr
Asn Gly Il 210	e Ile Th	r Asp	Thr 215	Ile	Lys	Ser	Trp	Arg 220	Asn	Asn	Ile	Leu
Arg Thr Gl 225	n Glu Se	r Glu 230	Сув	Ala	Cys	Val	Asn 235	Gly	Ser	Суз	Phe	Thr 240
Val Met Th	r Asp Gl 24		Ser	Asn	Gly	Gln 250	Ala	Ser	Tyr	Lys	Ile 255	Phe
Arg Ile Gl	u Lys Gl 260			Val	-							Pro
Asn Tyr Hi 27	-	u Glu	Сув	Ser 280	Cys	Tyr	Pro	Asp	Ser 285	Ser	Glu	Ile
Thr Cys Va 290	l Cys Ar	g Asp	Asn 295	Trp	His	Gly	Ser	Asn 300	Arg	Pro	Trp	Val
Ser Phe As 305	n Gln As	n Leu 310	Glu	Tyr	Gln	Ile	Gly 315	Tyr	Ile	Суз	Ser	Gly 320
Ile Phe Gl	y Asp As 32		Arg	Pro	Asn	Asp 330	Lys	Thr	Gly	Ser	Сув 335	Gly
Pro Val Se	r Ser As 340	n Gly	Ala	Asn	Gly 345	Val	Lys	Gly	Phe	Ser 350	Phe	Lys
Tyr Gly As 35	_	l Trp	Ile	Gly 360	Arg	Thr	Lys	Ser	Ile 365	Ser	Ser	Arg
Asn Gly Ph 370	e Glu Me	t Ile	Trp 375	Asp	Pro	Asn	Gly	Trp 380	Thr	Gly	Thr	Asp
Asn Asn Ph	e Ser Il	e Lys	Gln	Asp	Ile	Val	Gly	Ile	Asn	Glu	Trp	Ser

-continued

Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Arg Pro Lys Glu Asn Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly Val Asn Ser Asp Thr Val Gly Trp Ser Trp Pro Asp Gly Ala Glu Leu Pro Phe Thr Ile Asp Lys <210> SEQ ID NO 5 <211> LENGTH: 470 <212> TYPE: PRT <213> ORGANISM: Influenza A virus <400> SEQUENCE: 5 Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Cys Met Thr Ile Gly Ile Ile Ser Leu Ile Leu Gln Ile Gly Asn Ile Ile Ser Ile Trp Val Ser His Ser Ile Gln Thr Gly Ser Gln Asn His Thr Gly Ile Cys Asn Gln Arg Ile Ile Thr Tyr Glu Asn Ser Thr Trp Val Asn Gln Thr Tyr Val Asn Ile Asn Asn Thr Asn Val Val Ala Gly Lys Asp Thr Thr Ser Val Thr Leu Ala Gly Asn Ser Ser Leu Cys Pro Ile Arg Gly Trp Ala Ile Tyr Ser Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys Gly Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu Glu Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His Ser Asn Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Ala Leu Met Ser Cys Pro Ile Gly Glu Ala Pro Ser Pro Tyr Asn Ser Arg Phe Glu Ser Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Met Gly Trp Leu Thr Ile Gly Ile Ser Gly Pro Asp Asp Gly Ala Val Ala Val Leu Lys Tyr Asn Gly Ile Ile Thr Glu Thr Ile Lys Ser Trp Arg Lys Arg Ile Leu Arg Thr Gln Glu Ser Glu Cys Val Cys Val Asn Gly Ser Cys Phe Thr Ile Met Thr Asp Gly Pro Ser Asn Gly Pro Ala Ser Tyr Arg Ile Phe Lys Ile Glu Lys Gly Lys Ile Thr Lys Ser Ile Glu Leu Asp Ala Pro Asn Ser His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Thr Gly Thr Val

	Cys 290	Val	Суз	Arg	Asp	Asn 295	Trp	His	Gly	Ser	Asn 300	Arg	Pro	Trp	Val
Ser 305	Phe	Asn	Gln	Asn	Leu 310	Asp	Tyr	Gln	Ile	Gly 315	Tyr	Ile	Суз	Ser	Gly 320
Val	Phe	Gly	Aab	Asn 325	Pro	Arg	Pro	Lys	Asp 330	Gly	Lys	Gly	Ser	Cys 335	Asp
Pro	Val	Thr	Val 340	Asp	Gly	Ala	Asp	Gly 345	Val	ГÀа	Gly	Phe	Ser 350	Tyr	Arg
Tyr	Gly	Asn 355	Gly	Val	Trp	Ile	Gly 360	Arg	Thr	ГÀа	Ser	Asn 365	Ser	Ser	Arg
Lys	Gly 370	Phe	Glu	Met	Ile	Trp 375	Asp	Pro	Asn	Gly	Trp 380	Thr	Asp	Thr	Asp
Ser 385	Asn	Phe	Leu	Val	Lys 390	Gln	Asp	Val	Val	Ala 395	Met	Thr	Asp	Trp	Ser 400
Gly	Tyr	Ser	Gly	Ser 405	Phe	Val	Gln	His	Pro 410	Glu	Leu	Thr	Gly	Leu 415	Asp
Сүз	Met	Arg	Pro 420	Сүз	Phe	Trp	Val	Glu 425	Leu	Val	Arg	Gly	Arg 430	Pro	Arg
Glu	Gly	Thr 435	Thr	Val	Trp	Thr	Ser 440	Gly	Ser	Ser	Ile	Ser 445	Phe	Суз	Gly
Val	Asn 450	Ser	Asp	Thr	Ala	Asn 455	Trp	Ser	Trp	Pro	Asp 460	Gly	Ala	Glu	Leu
Pro 465	Phe	Thr	Ile	Asp	Lys 470										
<21: <21:	0> SE L> LE 2> TY	NGTH	I: 56 PRT												
<21.		GANI	SM:	Influ	ienza	٩A٦	virus	3							
)> SE				ienza	аAъ	virus	3							
<400		QUEN	ICE :	6					Tyr 10	Thr	Phe	Ala	Thr	Ala 15	Asn
<400 Met 1)> SE	QUEN Ala	ICE: Ile	6 Leu 5	Val	Val	Leu	Leu	10					15	
<400 Met 1 Ala)> SE Lys	QUEN Ala Thr	ICE: Ile Leu 20	6 Leu 5 Cys	Val Ile	Val Gly	Leu Tyr	Leu His 25	10 Ala	Asn	Asn	Ser	Thr 30	15 Asp	Thr
<400 Met 1 Ala Val	D> SE Lys Asp	QUEN Ala Thr Thr 35	ICE: Ile Leu 20 Val	6 Leu 5 Cys Leu	Val Ile Glu	Val Gly Lys	Leu Tyr Asn 40	Leu His 25 Val	10 Ala Thr	Asn Val	Asn Thr	Ser His 45	Thr 30 Ser	15 Asp Val	Thr Asn
<400 Met 1 Ala Val Leu	D> SE Lys Asp Asp Leu	QUEN Ala Thr Thr 35 Glu	ICE: Ile Leu 20 Val Asp	6 Leu 5 Cys Leu Lys	Val Ile Glu His	Val Gly Lys Asn 55	Leu Tyr Asn 40 Gly	Leu His 25 Val Lys	10 Ala Thr Leu	Asn Val Cys	Asn Thr Lys 60	Ser His 45 Leu	Thr 30 Ser Arg	15 Asp Val Gly	Thr Asn Val
<400 Met 1 Ala Val Leu Ala 65	D> SE Lys Asp Asp Leu 50	QUEN Ala Thr Thr 35 Glu Leu	ICE: Ile Leu 20 Val Asp His	6 Leu Cys Leu Lys Leu	Val Ile Glu His Gly 70	Val Gly Lys Asn 55 Lys	Leu Tyr Asn 40 Gly Cys	Leu His 25 Val Lys Asn	10 Ala Thr Leu Ile	Asn Val Cys Ala 75	Asn Thr Lys 60 Gly	Ser His 45 Leu Trp	Thr 30 Ser Arg Ile	15 Asp Val Gly Leu	Thr Asn Val Gly 80
<400 Met 1 Ala Val Leu Ala 65 Asn)> SE Lys Asp Asp Leu 50 Pro	CQUEN Ala Thr Thr 35 Glu Leu Glu	ICE: Ile Leu 20 Val Asp His Cys	6 Leu 5 Leu Lys Leu Leu S 1 u 85	Val Ile Glu His Gly 70 Ser	Val Gly Lys Asn 55 Lys Leu	Leu Tyr Asn 40 Gly Cys Ser	Leu His 25 Val Lys Asn Thr	10 Ala Thr Leu Ile Ala 90	Asn Val Cys Ala 75 Ser	Asn Thr Lys 60 Gly Ser	Ser His 45 Leu Trp Trp	Thr 30 Ser Arg Ile Ser	15 Asp Val Gly Leu Tyr 95	Thr Asn Val Gly 80 Ile
<400 Met 1 Ala Val Leu Ala 65 Asn Val)> SE Lys Asp Asp Leu 50 Pro Pro	QUEN Ala Thr Thr 35 Glu Leu Glu Thr	ICE: Ile 20 Val Asp His Cys Pro 100	6 Leu Cys Leu Lys Leu Glu Ser	Val Ile Glu His Gly 70 Ser Ser	Val Gly Lys Asn 55 Lys Leu Asp	Leu Tyr Asn 40 Gly Cys Ser Asn	Leu His 25 Val Lys Asn Thr Gly 105	10 Ala Thr Leu Ile Ala 90 Thr	Asn Val Cys Ala 75 Ser Cys	Asn Thr Lys 60 Gly Ser Tyr	Ser His 45 Leu Trp Trp Pro	Thr 30 Ser Arg Ile Ser Gly 110	15 Asp Val Gly Leu Tyr 95 Asp	Thr Asn Val Gly 80 Ile Phe
<400 Met 1 Ala Val Leu Ala 65 Asn Val Ile	<pre>D> SE Lya Asp Leu 50 Pro Glu</pre>	QUEN Ala Thr Thr 35 Glu Leu Glu Thr Tyr 115	ICE: Ile Leu 20 Val Asp His Cys Pro 100 Glu	6 Leu 5 Leu Lys Leu Glu 85 Ser Glu	Val Ile Glu His Gly 70 Ser Ser Leu	Val Gly Lys Asn 55 Lys Leu Asp	Leu Tyr Asn 40 Gly Cys Ser Asn Glu 120	Leu His 25 Val Lys Asn Thr Gly 105 Gln	10 Ala Thr Leu Ile Ala 90 Thr Leu	Asn Val Cys Ala 75 Ser Cys Ser	Asn Thr Lys 60 Gly Ser Tyr Ser	Ser His 45 Leu Trp Trp Pro Val 125	Thr 30 Ser Arg Ile Ser Gly 110 Ser	15 Asp Val Gly Leu Tyr 95 Asp Ser	Thr Asn Val Gly 80 Ile Phe Phe
<400 Met 1 Ala Val Leu Ala 65 Asn Val Ile Glu	<pre>>> SE Lys Asp Asp Leu 50 Pro Glu Asp Arg</pre>	QUEN Ala Thr Thr 35 Glu Leu Glu Thr Tyr 115 Phe	ICE: Ile Leu 20 Val Asp His Cys Cys Glu Glu	6 Leu 5 Leu Lys Leu Glu 5 Ser Glu 11e	Val Ile Glu His Gly 70 Ser Ser Leu Phe	Val Gly Lys Lys Leu Asp Arg Pro 135	Leu Tyr Asn Gly Cys Ser Asn Glu 120 Lys	Leu His 25 Val Lys Asn Thr Gly 105 Gln Thr	10 Ala Thr Leu Ile Ala 90 Thr Leu Ser	Asn Val Cys Ala 75 Ser Cys Ser Ser	Asn Thr Lys 60 Gly Ser Tyr Ser Tyr Ser Trp 140	Ser His 45 Leu Trp Pro Val 125 Pro	Thr 30 Ser Arg Ile Ser Gly 110 Ser Asn	15 Asp Val Gly Leu Tyr 95 Asp Ser His	Thr Asn Val Gly 80 Ile Phe Asp
<400 Met 1 Nala Val Leu Ala 65 Asn Val Ile Glu Ser 145	<pre>>> SE Lys Asp Asp Leu Fro Glu Asp Asp 130</pre>	QUEN Ala Thr Thr 35 Glu Leu Glu Thr Tyr 115 Phe Lys	ICE: Ile 20 Val Asp His Cys Pro 100 Glu Glu	6 Leu 5 Leu Lys Leu Glu Ser Glu Ile Val	Val Ile Glu His Gly 70 Ser Ser Leu Phe Thr 150	Val Gly Lys Lys Leu Asp Arg Pro 135 Ala	Leu Tyr Asn 40 Cys Ser Asn Glu 120 Lys Ala	Leu His 25 Val Lys Asn Thr Gly 105 Gln Thr Cys	10 Ala Thr Leu Ile Ala 90 Thr Leu Ser Pro	Asn Val Cys Ala 75 Ser Cys Ser Ser Ser His 155	Asn Thr Lys 60 Gly Ser Tyr Ser Trp 140 Ala	Ser His 45 Leu Trp Pro Val 125 Pro Gly	Thr 30 Ser Arg Ile Ser Gly 110 Ser Asn Ala	15 Asp Val Gly Leu Tyr 95 Asp Ser His Lys	Thr Asn Val Gly 80 Ile Phe Asp Ser 160

-continued

Leu Trp Gly Ile His His Pro Pro Thr Ser Ala Asp Gln Gln Ser Leu Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Glu Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn His Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile <210> SEQ ID NO 7

<210> SEQ 1D NO / <211> LENGTH: 565 <212> TYPE: PRT <213> ORGANISM: Influenza A virus

<400	0> SE	EQUEI	ICE :	7											
Met 1	Lys	Ala	Ile	Leu 5	Val	Val	Leu	Leu	Tyr 10	Thr	Phe	Ala	Thr	Ala 15	Asn
Ala	Asp	Thr	Leu 20	Сув	Ile	Gly	Tyr	His 25	Ala	Asn	Asn	Ser	Thr 30	Asp	Thr
Val	Asp	Thr 35	Val	Leu	Glu	Lys	Asn 40	Val	Thr	Val	Thr	His 45	Ser	Val	Asn
Leu	Leu 50	Glu	Asp	ГÀа	His	Asn 55	Gly	Lys	Leu	СЛа	Lys 60	Leu	Arg	Gly	Val
Ala 65	Pro	Leu	His	Leu	Gly 70	ГÀа	Суз	Asn	Ile	Ala 75	Gly	Trp	Ile	Leu	Gly 80
Asn	Pro	Glu	Сүз	Glu 85	Ser	Leu	Ser	Thr	Ala 90	Ser	Ser	Trp	Ser	Tyr 95	Ile
Val	Glu	Thr	Pro 100	Ser	Ser	Asp	Asn	Gly 105	Thr	Сүз	Tyr	Pro	Gly 110	Asp	Phe
Ile	Asp	Tyr 115	Glu	Glu	Leu	Arg	Glu 120	Gln	Leu	Ser	Ser	Val 125	Ser	Ser	Phe
Glu	Arg 130	Phe	Glu	Ile	Phe	Pro 135	Lys	Thr	Ser	Ser	Trp 140	Pro	Asn	His	Asp
Ser 145	Asn	Gly	Val	Thr	Ala 150	Ala	Суз	Pro	His	Ala 155	Gly	Ala	ГЛа	Ser	Phe 160
Tyr	ГЛЗ	Asn	Leu	Ile 165	Trp	Leu	Val	Lys	Lys 170	Gly	Asn	Ser	Tyr	Pro 175	Lys
Leu	Ser	LÀa	Ser 180	Tyr	Ile	Asn	Asp	Lys 185	Gly	ГÀа	Glu	Val	Leu 190	Val	Leu
Trp	Gly	Ile 195	His	His	Pro	Ser	Thr 200	Ser	Ala	Glu	Gln	Gln 205	Ser	Leu	Tyr
Gln	Asn 210	Ala	Asp	Thr	Tyr	Val 215	Phe	Val	Gly	Ser	Ser 220	Arg	Tyr	Ser	Lys
Lys 225	Phe	Lys	Pro	Glu	Ile 230	Ala	Ile	Arg	Pro	Lys 235	Val	Arg	Asp	Gln	Glu 240
Gly	Arg	Met	Asn	Tyr 245	Tyr	Trp	Thr	Leu	Val 250	Glu	Pro	Gly	Asp	Lys 255	Ile
Thr	Phe	Glu	Ala 260	Thr	Gly	Asn	Leu	Val 265	Val	Pro	Arg	Tyr	Ala 270	Phe	Ala
Met	Glu	Arg 275	Asn	Ala	Gly	Ser	Gly 280	Ile	Ile	Ile	Ser	Asp 285	Thr	Pro	Val
His	Asp 290	Суз	Asn	Thr	Thr	Сув 295	Gln	Thr	Pro	Lys	Gly 300	Ala	Ile	Asn	Thr
Ser 305	Leu	Pro	Phe	Gln	Asn 310	Ile	His	Pro	Ile	Thr 315	Ile	Gly	Lys	Сүз	Pro 320
ГЛЗ	Tyr	Val	Lys	Ser 325	Thr	ГЛа	Leu	Arg	Leu 330	Ala	Thr	Gly	Leu	Arg 335	Asn
Ile	Pro	Ser	Ile 340	Gln	Ser	Arg	Gly	Leu 345	Phe	Gly	Ala	Ile	Ala 350	Gly	Phe
Ile	Glu	Gly 355	Gly	Trp	Thr	Gly	Met 360	Val	Asp	Gly	Trp	Tyr 365	Gly	Tyr	His
His	Gln 370	Asn	Glu	Gln	Gly	Ser 375	Gly	Tyr	Ala	Ala	Asp 380	Leu	ГЛа	Ser	Thr
Gln 385	Asn	Ala	Ile	Asp	Glu 390	Ile	Thr	Asn	Lys	Val 395	Asn	Ser	Val	Ile	Glu 400
Lya	Met	Asn	Thr	Gln 405	Phe	Thr	Ala	Val	Gly 410	Lys	Glu	Phe	Asn	His 415	Leu

Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile <210> SEQ ID NO 8 <211> LENGTH: 325 <212> TYPE: PRT <213> ORGANISM: Influenza A virus <400> SEQUENCE: 8 Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile Val 65 70 75 80 Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp Ser Asn Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Glu Gln Gln Ser Leu Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln Glu Gly

			-0011	cinuea
210	215		220	
Arg Met Asn Tyr 225	Tyr Trp Thr 230	Leu Val Glu	I Pro Gly Asp 235	Lys Ile Thr 240
Phe Glu Ala Thr	Gly Asn Leu 245	Val Val Pro 250		Phe Ala Met 255
Glu Arg Asn Ala 260	Gly Ser Gly	Ile Ile Ile 265	e Ser Asp Thr	Pro Val His 270
Asp Cys Asn Thr 275	Thr Cys Gln	Thr Pro Lys 280	Gly Ala Ile 285	Asn Thr Ser
Leu Pro Phe Gln 290	Asn Ile His 295		TIE Gly Lys 300	Cys Pro Lys
Tyr Val Lys Ser 305	Thr Lys Leu 310	Arg Leu Ala	1 Thr Gly Leu 315	Arg Asn Ile 320
Pro Ser Ile Gln	Ser 325			
<210> SEQ ID NO <211> LENGTH: 50				
<212> TYPE: PRT <213> ORGANISM:	Influenza A	virue		
<400> SEQUENCE:		VIIUS		
			Thr Dho Mlo	Thr Ala Agn
Met Lys Ala Ile 1	5	Led Led Tyr 10	III PILE AIA	15
Ala Asp Thr Leu 20	Cys Ile Gly	Tyr His Ala 25	ı Asn Asn Ser	Thr Asp Thr 30
Val Asp Thr Val 35	Leu Glu Lys	Asn Val Thr 40	Val Thr His 45	Ser Val Asn
Leu Leu Glu Asp 50	Lys His Asn 55	Gly Lys Leu	ı Cys Lys Leu 60	Arg Gly Val
Ala Pro Leu His 65	Leu Gly Lys 70	Cys Asn Ile	e Ala Gly Trp 75	Ile Leu Gly 80
Asn Pro Glu Cys	Glu Ser Leu 85	Ser Thr Ala 90	ı Ser Ser Trp	Ser Tyr Ile 95
Val Glu Thr Pro 100	Ser Ser Asp	Asn Gly Thr 105	Cys Tyr Pro	Gly Asp Phe 110
Ile Asp Tyr Glu 115	Glu Leu Arg	Glu Gln Leu 120	ı Ser Ser Val 125	Ser Ser Phe
Glu Arg Phe Glu 130	Ile Phe Pro 135		Ser Trp Pro 140	Asn His Asp
Ser Asn Gly Val 145	Thr Ala Ala 150	Cys Pro His	Ala Gly Ala 155	Ser Ser Phe 160
Tyr Lys Asn Leu	Ile Trp Leu 165	Val Glu Lys 170	-	Tyr Pro Lys 175
Leu Ser Lys Ser 180	Tyr Ile Asn	Asp Lys Gly 185	y Lys Glu Val	Leu Val Leu 190
Trp Gly Ile His 195	His Pro Ser	Thr Ser Ala 200	ı Glu Gln Ser 205	Ser Leu Tyr
Gln Asn Ala Asp 210	Thr Tyr Val 215		Ser Ser Arg 220	Tyr Ser Lys
Lys Phe Lys Pro 225	Glu Ile Ala 230	Ile Arg Pro) Lys Val Arg 235	Asp Gln Ala 240
Gly Arg Met Asn	Tyr Tyr Trp 245	Thr Leu Val 250	-	Asp Lys Ile 255

-continued

Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn His Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu Asn 500 505 510 Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile <210> SEQ ID NO 10 <211> LENGTH: 325 <212> TYPE: PRT <213> ORGANISM: Influenza A virus <400> SEQUENCE: 10 Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val Ala Pro Leu His Leu Gly Lys Cys As
n Ile Ala Gly Trp Ile Leu Gly As
n505560

Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp Ser Asn Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Ser Ser Phe Tyr Lys Asn Leu Ile Trp Leu Val Glu Lys Gly Asn Ser Tyr Pro Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Glu Gln Ser Ser Leu Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln Ala Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg Asn Ile Pro Ser Ile Gln Ser <210> SEQ ID NO 11 <211> LENGTH: 566 <212> TYPE: PRT <213> ORGANISM: Influenza A virus <400> SEQUENCE: 11 Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe

-continued

-															
			100					105					110		
Ile	Asp	Tyr 115	Glu	Glu	Leu	Arg	Glu 120	Gln	Leu	Ser	Ser	Val 125	Ser	Ser	Phe
Glu	Arg 130	Phe	Glu	Ile	Phe	Pro 135	Lys	Thr	Ser	Ser	Trp 140	Pro	Asn	His	Asp
Ser 145	Asn	Lys	Gly	Val	Thr 150	Ala	Ala	Суз	Pro	His 155	Ala	Gly	Ala	Lys	Ser 160
Phe	Tyr	Lys	Asn	Leu 165	Ile	Trp	Leu	Val	Lys 170	Lys	Gly	Asn	Ser	Tyr 175	Pro
Lya	Leu	Ser	Lys 180	Ser	Tyr	Ile	Asn	Asp 185	Lys	Gly	Lys	Glu	Val 190	Leu	Val
Leu	Trp	Gly 195	Ile	His	His	Pro	Ser 200	Thr	Ser	Ala	Asp	Gln 205	Gln	Ser	Leu
Tyr	Gln 210	Asn	Ala	Asp	Ala	Tyr 215	Val	Phe	Val	Gly	Ser 220	Ser	Arg	Tyr	Ser
Lys 225	Thr	Phe	Lys	Pro	Glu 230	Ile	Ala	Ile	Arg	Pro 235	Lys	Val	Arg	Asp	Arg 240
Glu	Gly	Arg	Met	Asn 245	Tyr	Tyr	Trp	Thr	Leu 250	Val	Glu	Pro	Gly	Asp 255	Lys
Ile	Thr	Phe	Glu 260	Ala	Thr	Gly	Asn	Leu 265	Val	Val	Pro	Arg	Tyr 270	Ala	Phe
Ala	Met	Glu 275	Arg	Asn	Ala	Gly	Ser 280	Gly	Ile	Ile	Ile	Ser 285	Asp	Thr	Pro
Val	His 290	Asp	Суз	Asn	Thr	Thr 295	Сүз	Gln	Thr	Pro	Lуз 300	Gly	Ala	Ile	Asn
Thr 305	Ser	Leu	Pro	Phe	Gln 310	Asn	Ile	His	Pro	Ile 315	Thr	Ile	Gly	Lys	Суя 320
Pro	Lys	Tyr	Val	Lys 325	Ser	Thr	Lys	Leu	Arg 330	Leu	Ala	Thr	Gly	Leu 335	Arg
Asn	Ile	Pro	Ser 340	Ile	Gln	Ser	Arg	Gly 345	Leu	Phe	Gly	Ala	Ile 350	Ala	Gly
Phe	Ile	Glu 355	Gly	Gly	Trp	Thr	Gly 360	Met	Val	Asp	Gly	Trp 365	Tyr	Gly	Tyr
His	His 370	Gln	Asn	Glu	Gln	Gly 375	Ser	Gly	Tyr	Ala	Ala 380	Asp	Leu	Lys	Ser
Thr 385	Gln	Asn	Ala	Ile	Asp 390	Glu	Ile	Thr	Asn	Lys 395	Val	Asn	Ser	Val	Ile 400
Glu	Lys	Met	Asn	Thr 405	Gln	Phe	Thr	Ala	Val 410	Gly	Lys	Glu	Phe	Asn 415	His
Leu	Glu	Lys	Arg 420	Ile	Glu	Asn	Leu	Asn 425	Lys	Lys	Val	Asp	Asp 430	Gly	Phe
Leu	Asp	Ile 435	Trp	Thr	Tyr	Asn	Ala 440	Glu	Leu	Leu	Val	Leu 445	Leu	Glu	Asn
Glu	Arg 450	Thr	Leu	Aab	Tyr	His 455	Asp	Ser	Asn	Val	Lys 460	Asn	Leu	Tyr	Glu
Lys 465	Val	Arg	Ser	Gln	Leu 470	Lys	Asn	Asn	Ala	Lys 475	Glu	Ile	Gly	Asn	Gly 480
Сүз	Phe	Glu	Phe	Tyr 485	His	Lys	Сүз	Asp	Asn 490	Thr	Суз	Met	Glu	Ser 495	Val
ГЛа	Asn	Gly	Thr 500	Tyr	Asp	Tyr	Pro	Lys 505	Tyr	Ser	Glu	Glu	Ala 510	Lys	Leu
Asn	Arg	Glu 515	Glu	Ile	Asp	Gly	Val 520	Lys	Leu	Glu	Ser	Thr 525	Arg	Ile	Tyr

Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile <210> SEQ ID NO 12 <211> LENGTH: 326 <212> TYPE: PRT <213> ORGANISM: Influenza A virus <400> SEQUENCE: 12 Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn Leu Leu Glu Asp Lys His As
n Gly Lys Leu Cys Lys Leu Arg Gly Val Ala $_{35}$
 40 $_{45}$ Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly Asn 50 55 60 Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp Ser 115 120 125 Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln Ser Leu Tyr Gln Asn Ala Asp Ala Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser Lys Thr Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Arg Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg Asn Ile Pro Ser Ile Gln Ser

<210> SEQ ID NO 13 <211> LENGTH: 566 <212> TYPE: PRT <213> ORGANISM: Influenza A virus															
<400)> SE	EQUE1	ICE :	13											
Met 1	Lys	Ala	Ile	Leu 5	Val	Val	Leu	Leu	Tyr 10	Thr	Phe	Ala	Thr	Ala 15	Asn
Ala	Asp	Thr	Leu 20	Сув	Ile	Gly	Tyr	His 25	Ala	Asn	Asn	Ser	Thr 30	Asp	Thr
Val	Asp	Thr 35	Val	Leu	Glu	ГÀа	Asn 40	Val	Thr	Val	Thr	His 45	Ser	Val	Asn
Leu	Leu 50	Glu	Asp	Lys	His	Asn 55	Gly	Lys	Leu	Сүз	Lys 60	Leu	Arg	Gly	Val
Ala 65	Pro	Leu	His	Leu	Gly 70	Lys	Сүз	Asn	Ile	Ala 75	Gly	Trp	Ile	Leu	Gly 80
Asn	Pro	Glu	Сүз	Glu 85	Ser	Leu	Ser	Thr	Ala 90	Ser	Ser	Trp	Ser	Tyr 95	Ile
Val	Glu	Thr	Pro 100	Ser	Ser	Asp	Asn	Gly 105	Thr	Суз	Tyr	Pro	Gly 110	Asp	Phe
Ile	Asp	Tyr 115	Glu	Glu	Leu	Arg	Glu 120	Gln	Leu	Ser	Ser	Val 125	Ser	Ser	Phe
Glu	Arg 130	Phe	Glu	Ile	Phe	Pro 135	Гла	Thr	Ser	Ser	Trp 140	Pro	Asn	His	Asp
Ser 145	Asn	Lys	Gly	Val	Thr 150	Ala	Ala	САа	Pro	His 155	Ala	Gly	Ala	ГÀа	Ser 160
Phe	Tyr	Lys	Asn	Leu 165	Ile	Trp	Leu	Val	Lys 170	Lys	Gly	Asn	Ser	Tyr 175	Pro
Lys	Leu	Ser	Lys 180	Ser	Tyr	Ile	Asn	Asp 185	ГЛа	Gly	Lys	Glu	Val 190	Leu	Val
Leu	Trp	Gly 195	Ile	His	His	Pro	Ser 200	Thr	Ser	Ala	Asp	Gln 205	Gln	Ser	Ile
Tyr	Gln 210	Asn	Ala	Asp	Thr	Tyr 215	Val	Phe	Val	Gly	Ser 220	Ser	Arg	Tyr	Ser
Lys 225	Lys	Phe	Lys	Pro	Glu 230	Ile	Ala	Ile	Arg	Pro 235	Lys	Val	Arg	Asp	Gln 240
Glu	Gly	Arg	Met	Asn 245	Tyr	Tyr	Trp	Thr	Leu 250	Val	Glu	Pro	Gly	Asp 255	Lys
Ile	Thr	Phe	Glu 260	Ala	Thr	Gly	Asn	Leu 265	Val	Val	Pro	Arg	Tyr 270	Ala	Phe
Ala	Met	Glu 275	Arg	Asn	Ala	Gly	Ser 280	Gly	Ile	Ile	Ile	Ser 285	Asp	Thr	Pro
Val	His 290	Asp	Суз	Asn	Thr	Thr 295	Суз	Gln	Thr	Pro	Lуз 300	Gly	Ala	Ile	Asn
Thr 305	Ser	Leu	Pro	Phe	Gln 310	Asn	Ile	His	Pro	Ile 315	Thr	Ile	Gly	ГЛа	Cys 320
Pro	Lys	Tyr	Val	Lys 325	Ser	Thr	Lys	Leu	Arg 330	Leu	Ala	Thr	Gly	Leu 335	Arg
Asn	Ile	Pro	Ser 340	Ile	Gln	Ser	Arg	Gly 345	Leu	Phe	Gly	Ala	Ile 350	Ala	Gly
Phe	Ile	Glu 355	Gly	Gly	Trp	Thr	Gly 360	Met	Val	Asp	Gly	Trp 365	Tyr	Gly	Tyr

35

_															
His	His 370	Gln	Asn	Glu	Gln	Gly 375	Ser	Gly	Tyr	Ala	Ala 380	Asp	Leu	Lys	Ser
Thr 385	Gln	Asn	Ala	Ile	Asp 390	Glu	Ile	Thr	Asn	Lys 395	Val	Asn	Ser	Val	Ile 400
Glu	Lys	Met	Asn	Thr 405	Gln	Phe	Thr	Ala	Val 410	Gly	ГЛа	Glu	Phe	Asn 415	His
Leu	Glu	Lys	Arg 420	Ile	Glu	Asn	Leu	Asn 425	Lys	Lys	Val	Asp	Asp 430	Gly	Phe
Leu	Asp	Ile 435	Trp	Thr	Tyr	Asn	Ala 440	Glu	Leu	Leu	Val	Leu 445	Leu	Glu	Asn
Glu	Arg 450	Thr	Leu	Asp	Tyr	His 455	Asp	Ser	Asn	Val	Lys 460	Asn	Leu	Tyr	Glu
Lys 465	Val	Arg	Ser	Gln	Leu 470	Lys	Asn	Asn	Ala	Lys 475	Glu	Ile	Gly	Asn	Gly 480
Суз	Phe	Glu	Phe	Tyr 485	His	Lys	Суз	Asp	Asn 490	Thr	Суз	Met	Glu	Ser 495	Val
Lys	Asn	Gly	Thr 500	Tyr	Asp	Tyr	Pro	Lys 505	Tyr	Ser	Glu	Glu	Ala 510	Lys	Leu
Asn	Arg	Glu 515	Glu	Ile	Asp	Gly	Val 520	Lys	Leu	Glu	Ser	Thr 525	Arg	Ile	Tyr
Gln	Ile 530	Leu	Ala	Ile	Tyr	Ser 535	Thr	Val	Ala	Ser	Ser 540	Leu	Val	Leu	Val
Val 545	Ser	Leu	Gly	Ala	Ile 550	Ser	Phe	Trp	Met	Суя 555	Ser	Asn	Gly	Ser	Leu 560
Gln	Cys	Arg	Ile	Суя 565	Ile										

The invention claimed is:

1. An influenza A virus, wherein (a) the viral hemagglutinin gene encodes a hemagglutinin which is more closely related to SEQ ID NO: 1 than to SEQ ID NO: 3 and (b) at least one other viral gene is from the AA/6/60 influenza A⁴⁰ virus strain.

2. An influenza A virus, wherein (a) the viral hemagglutinin gene encodes a hemagglutinin protein which has at least 90% sequence identity to SEQ ID NO: 1, and (b) at least one other viral gene is from the AA/6/60 influenza A virus strain.

* * * * *