(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 108227140 B (45)授权公告日 2020.05.29

GO2B 13/18(2006.01)

审查员 刘洋成

(21)申请号 201711475783.9

(22)申请日 2017.12.29

(65)同一申请的已公布的文献号 申请公布号 CN 108227140 A

(43)申请公布日 2018.06.29

(73)专利权人 瑞声光学解决方案私人有限公司 地址 新加坡卡文迪什科技园大道85号2楼8 号

(72)发明人 生沼健司 张磊 王燕妹 张扬

(74)专利代理机构 深圳中细软知识产权代理有限公司 44528

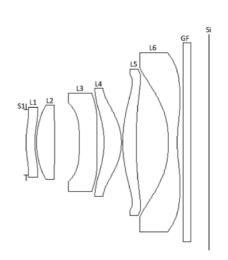
代理人 仉玉新

(51) Int.CI.

GO2B 13/00(2006.01)

GO2B 13/06(2006.01)

权利要求书3页 说明书16页 附图9页


(54)发明名称

摄像光学镜头

(57)摘要

本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第二透镜具有正屈折力,所述第三透镜具有负屈折力;且满足下列关系式: $-3 \le f1/f \le -1$; $v2 \ge 60$; $1.7 \le n4 \le 2.2$ 。该摄像光学镜头能获得高成像性能的同时,获得低TTL。

1.一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第一透镜具有负屈折力,所述第二透镜具有正屈折力,所述第三透镜具有负屈折力,所述第四透镜具有正屈折力,所述第六透镜具有负屈折力;

所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的阿贝数为v2,所述第四透镜的折射率为n4,所述第五透镜的焦距为f5,满足下列关系式:

- $-3 \le f1/f \le -1$:
- $2.05 \le f5/f \le 98.69$:

 $v2 \ge 60$:

- 1.7≤n4≤2∘
- 2.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $-3 \le f1/f \le -1.3$;

 $v2 \ge 61$:

- $1.713 \le n4 \le 1.8513$
- 3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜其物侧面于近轴为 凸面,其像侧面于近轴为凹面:

所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,且满足下列关系式:

- $2.17 \le (R1+R2) / (R1-R2) \le 8.47$:
- $0.12 \text{mm} \le d1 \le 0.36 \text{mm}$.
- 4.根据权利要求3所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $3.47 \le (R1+R2) / (R1-R2) \le 6.78$;
 - $0.19 \text{mm} \leq d1 \leq 0.29 \text{mm}$
- 5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面于近轴为 凸面,像侧面于近轴为凸面:

所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:

- $0.31 \le f2/f \le 1.14$;
- $-1.93 \le (R3+R4) / (R3-R4) \le -0.5$;
- $0.26 \text{mm} \leq d3 \leq 0.87 \text{mm}_{\odot}$
- 6.根据权利要求5所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $0.49 \le f2/f \le 0.92$:
 - $-1.2 \le (R3+R4) / (R3-R4) \le -0.63$;
 - $0.41 \text{mm} \le d3 \le 0.69 \text{mm}$.
 - 7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的像侧面于近轴处

为凹面;

所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:

- $-11.34 \le f3/f \le -1.05$;
- $0.15 \le (R5+R6) / (R5-R6) \le 10.53$;
- $0.12 \text{mm} \le d5 \le 0.72 \text{mm}$.
- 8.根据权利要求7所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $-7.09 \le f3/f \le -1.32$;
 - $0.24 \le (R5+R6) / (R5-R6) \le 8.43$:
 - $0.18 \text{mm} \le d5 \le 0.58 \text{mm}$.
- 9.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜其物侧面于近轴为凹面,其像侧面于近轴为凸面;

所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:

- $0.53 \le f4/f \le 2.99$;
- $1.98 \le (R7+R8) / (R7-R8) \le 14.24$;
- $0.15 \text{mm} \leq d7 \leq 0.72 \text{mm}$
- 10.根据权利要求9所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $0.84 \le f4/f \le 2.39$;
 - $3.16 \le (R7+R8) / (R7-R8) \le 11.39$;
 - $0.24 \text{mm} \leq d7 \leq 0.58 \text{mm}$.
- 11.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜其物侧面于近轴 为凸面,其像侧面于近轴为凹面;

所述摄像光学镜头的焦距为f,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:

- $-14.75 \le (R9+R10) / (R9-R10) \le 1357.19$;
- $0.19 \text{mm} \leq d9 \leq 0.83 \text{mm}$.
- 12.根据权利要求11所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $-9.22 \le (R9+R10) / (R9-R10) \le 1085.75;$
 - $0.30 \text{mm} \le d9 \le 0.66 \text{mm}$
- 13.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜其物侧面于近轴为凹面,其像侧面于近轴为凹面;

所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满

足下列关系式:

- $-1.98 \le f6/f \le -0.58$;
- $-0.11 \le (R11+R12) / (R11-R12) \le 0.70;$
- $0.12 \text{mm} \leq d11 \leq 0.45 \text{mm}$.
- 14.根据权利要求13所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $-1.24 \le f6/f \le -0.73$;
 - $-0.07 \le (R11+R12) / (R11-R12) \le 0.56$;
 - $0.19 \text{mm} \leq d11 \leq 0.36 \text{mm}$.
- 15.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f, 所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:
 - $0.51 \le f12/f \le 1.63$.
- 16.根据权利要求15所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
 - $0.82 \le f12/f \le 1.31$.
- 17.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于5.60毫米。
- 18.根据权利要求17所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于5.35毫米。
- 19.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.16。
- 20.根据权利要求19所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.12。

摄像光学镜头

技术领域

[0001] 本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。

背景技术

[0002] 近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。

发明内容

[0003] 针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。

[0004] 为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第二透镜具有正屈折力,所述第三透镜具有负屈折力;

[0005] 所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的阿贝数为v2,所述第四透镜的折射率为n4,满足下列关系式:

[0006] $-3 \le f1/f \le -1$:

[0007] $v2 \ge 60$;

[0008] $1.7 \le n4 \le 2.2$.

[0009] 本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,利用在焦距、折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径的数据上有特定关系的透镜的共同配合,使摄像光学镜头能在获得高成像性能的同时,满足超薄化和广角化的要求。

[0010] 优选的,所述摄像光学镜头满足下列关系式: $-3 \le f1/f \le -1.3$; $v2 \ge 61$; $1.7 \le n4 \le 2.0$ 。

[0011] 优选的,所述第一透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,且满足下列关系式: $2.17 \le (R1+R2)/(R1-R2) \le 8.47$; $0.12 \le d1 \le 0.36$ 。

[0012] 优选的,所述摄像光学镜头满足下列关系式: $3.47 \le (R1+R2)/(R1-R2) \le 6.78$; $0.19 \le d1 \le 0.29$ 。

[0013] 优选的,所述第二透镜的物侧面于近轴为凸面,像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:0.31 $\leq f2/f \leq 1.14$; $-1.93 \leq (R3+R4)/(R3-R4) \leq -0.5$; $0.26 \leq d3 \leq 0.87$ 。

[0014] 优选的,所述摄像光学镜头满足下列关系式: $0.49 \le f2/f \le 0.92$; $-1.2 \le (R3+R4)/(R3-R4) \le -0.63$; $0.41 \le d3 \le 0.69$ 。

[0015] 优选的,所述第三透镜的像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式: $-11.34 \le f3/f \le -1.05$; $0.15 \le (R5+R6)/(R5-R6) \le 10.53$; $0.12 \le d5 \le 0.72$ 。

[0016] 优选的,所述摄像光学镜头满足下列关系式: $-7.09 \le f3/f \le -1.32$;0.24 \le (R5+R6)/(R5-R6) \le 8.43;0.18 \le d5 \le 0.58。

[0017] 优选的,所述第四透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式: $0.53 \le f4/f \le 2.99$; $1.98 \le (R7+R8)/(R7-R8) \le 14.24$; $0.15 \le d7 \le 0.72$ 。

[0018] 优选的,所述摄像光学镜头满足下列关系式: $0.84 \le f4/f \le 2.39$; $3.16 \le (R7+R8)/(R7-R8) \le 11.39$; $0.24 \le d7 \le 0.58$ 。

[0019] 优选的,所述第五透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式: $1.28 \le f5/f \le 123.36$; $-14.75 \le (R9+R10)/(R9-R10) \le 1357.19$; $0.19 \le d9 \le 0.83$ 。

[0020] 优选的,所述摄像光学镜头满足下列关系式: $2.05 \le f5/f \le 98.69$; $-9.22 \le (R9+R10)/(R9-R10) \le 1085.75$; $0.30 \le d9 \le 0.66$ 。

[0021] 优选的,所述第六透镜具有负屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式: $-1.98 \le f6/f \le -0.58$; $-0.11 \le (R11+R12)/(R11-R12) \le 0.70$; $0.12 \le d11 \le 0.45$ 。

[0022] 优选的,所述摄像光学镜头满足下列关系式: $-1.24 \le f6/f \le -0.73$; $-0.07 \le (R11+R12)/(R11-R12) \le 0.56$; $0.19 \le d11 \le 0.36$ 。

[0023] 优选的,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式: $0.51 \le f$ 12/ $f \le 1.63$ 。

[0024] 优选的,所述摄像光学镜头满足下列关系式:0.82 < f12/f < 1.31。

[0025] 优选的,所述摄像光学镜头的光学总长TTL小于或等于5.60毫米。

[0026] 优选的,所述摄像光学镜头的光学总长TTL小于或等于5.35毫米。

[0027] 优选的,所述摄像光学镜头的光圈F数小于或等于2.16。

[0028] 优选的,所述摄像光学镜头的光圈F数小于或等于2.12。

[0029] 本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。

附图说明

[0030] 图1是本发明第一实施方式的摄像光学镜头的结构示意图:

[0031] 图2是图1所示摄像光学镜头的轴向像差示意图;

[0032] 图3是图1所示摄像光学镜头的倍率色差示意图;

[0033] 图4是图1所示摄像光学镜头的场曲及畸变示意图;

[0034] 图5是本发明第二实施方式的摄像光学镜头的结构示意图;

[0035] 图6是图5所示摄像光学镜头的轴向像差示意图;

[0036] 图7是图5所示摄像光学镜头的倍率色差示意图;

[0037] 图8是图5所示摄像光学镜头的场曲及畸变示意图:

[0038] 图9是本发明第三实施方式的摄像光学镜头的结构示意图;

[0039] 图10是图9所示摄像光学镜头的轴向像差示意图;

[0040] 图11是图9所示摄像光学镜头的倍率色差示意图:

[0041] 图12是图9所示摄像光学镜头的场曲及畸变示意图。

具体实施方式

[0042] 为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。

[0043] (第一实施方式)

[0044] 参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。第六透镜L6和像面Si之间可设置有光学过滤片(filter)GF等光学元件。

[0045] 第一透镜L1为塑料材质,第二透镜L2为玻璃材质,第三透镜L3为塑料材质,第四透镜L4为玻璃材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。

[0046] 在此,定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,-3 \leq f1/f \leq -1,规定了第一透镜L1的负屈折力。超过上限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的负屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过下限规定值时,第一透镜的负屈折力会变过弱,镜头难以向超薄化发展。优选的,满足-3 \leq f1/f \leq -1.3。

[0047] 定义所述第二透镜L2的阿贝数为v2,v2≥60,规定了第二透镜L2的阿贝数,在此范围内更有利于修正色差。优选的,满足v2≥61。

[0048] 定义所述第四透镜L4的折射率为n4,1.7 $\leq n4\leq 2.2$,规定了第四透镜L4的折射率,在此范围内更有利于向超薄化发展,同时利于修正像差。优选的,满足1.7 $\leq n4\leq 2.0$ 。

[0049] 当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。

[0050] 本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力。

[0051] 第一透镜L1物侧面的曲率半径为R1,第一透镜L1像侧面的曲率半径为R2,满足下列关系式: $2.17 \le (R1+R2)/(R1-R2) \le 8.47$,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差;优选的, $3.47 \le (R1+R2)/(R1-R2) \le 6.78$ 。

[0052] 第一透镜L1的轴上厚度为d1,满足下列关系式: $0.12 \le d1 \le 0.36$,有利于实现超薄化。优选的, $0.19 \le d1 \le 0.29$ 。

[0053] 本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凸面,具有正屈折力。

[0054] 整体摄像光学镜头10的焦距为f,第二透镜L2焦距为f2,满足下列关系式: $0.31 \le f2/f \le 1.14$,通过将第二透镜L2的正光焦度控制在合理范围,以合理而有效地平衡由具有负光焦度的第一透镜L1产生的球差以及系统的场曲量。优选的, $0.49 \le f2/f \le 0.92$ 。

[0055] 第二透镜L2物侧面的曲率半径为R3,第二透镜L2像侧面的曲率半径为R4,满足下列关系式: $-1.93 \le (R3+R4)/(R3-R4) \le -0.5$,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正轴上色像差问题。优选的, $-1.2 \le (R3+R4)/(R3-R4) \le -0.63$ 。

[0056] 第二透镜L2的轴上厚度为d3,满足下列关系式: $0.26 \le d3 \le 0.87$,有利于实现超薄化。优选的, $0.41 \le d3 \le 0.69$ 。

[0057] 本实施方式中,第三透镜L3的像侧面于近轴处为凹面,具有负屈折力。

[0058] 整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,满足下列关系式:-11.34 \le f3/f \le -1.05,有利于系统获得良好的平衡场曲的能力,以有效地提升像质。优选的,-7.09 \le f3/f \le -1.32。

[0059] 第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式: $0.15 \le (R5+R6)/(R5-R6) \le 10.53$,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选的, $0.24 \le (R5+R6)/(R5-R6) \le 8.43$ 。

[0060] 第三透镜L3的轴上厚度为d5,满足下列关系式: $0.12 \le d5 \le 0.72$,有利于实现超薄化。优选的, $0.18 \le d5 \le 0.58$ 。

[0061] 本实施方式中,第四透镜L4的物侧面于近轴处为凹面,像侧面于近轴处为凸面,具有正屈折力。

[0062] 整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式: $0.53 \le f4/f \le 2.99$,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的, $0.84 \le f4/f \le 2.39$ 。

[0063] 第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关

系式: $1.98 \le (R7+R8) / (R7-R8) \le 14.24$,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。优选的, $3.16 \le (R7+R8) / (R7-R8) \le 11.39$ 。

[0064] 第四透镜L4的轴上厚度为d7,满足下列关系式: $0.15 \le d7 \le 0.72$,有利于实现超薄化。优选的, $0.24 \le d7 \le 0.58$ 。

[0065] 本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。

[0066] 整体摄像光学镜头10的焦距为f,第五透镜L5焦距为f5,满足下列关系式:1.28 \le f5/f \le 123.36,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的,2.05 \le f5/f \le 98.69。

[0067] 第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,满足下列关系式: $-14.75 \le (R9+R10)/(R9-R10) \le 1357.19$,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的, $-9.22 \le (R9+R10)/(R9-R10) \le 1085.75$ 。

[0068] 第五透镜L5的轴上厚度为d9,满足下列关系式: $0.19 \le d9 \le 0.83$,有利于实现超薄化。优选的, $0.30 \le d9 \le 0.66$ 。

[0069] 本实施方式中,第六透镜L6的物侧面于近轴处为凹面,像侧面于近轴处为凹面,具有负屈折力。

[0070] 整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,满足下列关系式: $-1.98 \le f6/f \le -0.58$,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的, $-1.24 \le f6/f \le -0.73$ 。

[0071] 第六透镜L6物侧面的曲率半径为R11,第六透镜L6像侧面的曲率半径为R12,满足下列关系式: $-0.11 \le (R11+R12)/(R11-R12) \le 0.70$,规定的是第六透镜L6的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的, $-0.07 \le (R11+R12)/(R11-R12) \le 0.56$ 。

[0072] 第六透镜L6的轴上厚度为d11,满足下列关系式: $0.12 \le d11 \le 0.45$,有利于实现超薄化。优选的, $0.19 \le d11 \le 0.36$ 。

[0073] 本实施方式中,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式: $0.51 \le f$ 12/ $f \le 1.63$ 。借此,可消除摄像光学镜头的像差与歪曲,且可压制摄像光学镜头后焦距,维持影像镜片系统组小型化。优选的, $0.82 \le f$ 12/ $f \le 1.31$ 。

[0074] 本实施方式中,摄像光学镜头10的光学总长TTL小于或等于5.60毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于5.35毫米。

[0075] 本实施方式中,摄像光学镜头10的光圈F数小于或等于2.16。大光圈,成像性能好。 优选的,摄像光学镜头10的光圈F数小于或等于2.12。

[0076] 如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。

[0077] 下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。距离、半径与中心厚度的单位为mm。

[0078] TTL: 光学长度(第1透镜L1的物侧面到成像面的轴上距离);

[0079] 优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满 足高品质的成像需求,具体的可实施方案,参下所述。

[0800] 以下示出了依据本发明第一实施方式的摄像光学镜头10的设计数据,焦距、距离、 半径与中心厚度的单位为mm。

[0081] 表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。

[0082] 【表1】

		R		d		nd		v d
	S1	00	d0=	0.000				
	R1	2.784	d1=	0. 240	nd1	1. 6355	v 1	23. 97
[0083]	R2	1. 947	d2=	0.048	liu1	1.0333	V 1	20.01
	R3	1.894	d3=	0. 514	nd2	1. 5935	v 2	67. 00
	R4	-17. 449	d4=	0. 685	IIdZ	1.0000	, 2	01.00
	R5	-11. 354	d5=	0. 482	nd3	1. 6510	v 3	21. 51
	1	I	1	1	ı	I	1	
	R6	6. 132	d6=	0. 207				
	R7	-2. 517	d7=	0. 483	nd4	1. 7130	v 4	53. 94
	R8	-1.501	d8=	0. 035	iid i	1.7100		
	R9	3. 591	d9=	0. 378	nd5	1. 5352	v 5	56. 09
[0084]	R10	11. 035	d10=	0. 900	1140	1.0002		00.00
	R11	-3. 412	d11=	0. 240	nd6	1. 5352	v 6	56. 09
	R12	3. 817	d12=	0. 172	ndo	1.0002		00.00
	R13	∞	d13=	0. 210	ndg	1. 5168	v g	64. 17
	R14	∞	d14=	0. 500	nug	1.0100	. 8	01.11

[0085] 其中,各符号的含义如下。

[0086] S1:光圈;

[0087] R: 光学面的曲率半径、透镜时为中心曲率半径;

[8800] R1:第一透镜L1的物侧面的曲率半径;

[0089] R2:第一透镜L1的像侧面的曲率半径;

[0090] R3: 第二透镜L2的物侧面的曲率半径:

R4: 第二透镜L2的像侧面的曲率半径; [0091]

[0092] R5: 第三透镜L3的物侧面的曲率半径;

[0093] R6: 第三透镜L3的像侧面的曲率半径:

R7: 第四透镜L4的物侧面的曲率半径; [0094]

[0095] R8: 第四透镜L4的像侧面的曲率半径;

- [0096] R9:第五透镜L5的物侧面的曲率半径;
- [0097] R10:第五透镜L5的像侧面的曲率半径;
- [0098] R11:第六透镜L6的物侧面的曲率半径;
- [0099] R12:第六透镜L6的像侧面的曲率半径;
- [0100] R13:光学过滤片GF的物侧面的曲率半径;
- [0101] R14:光学过滤片GF的像侧面的曲率半径;
- [0102] d:透镜的轴上厚度与透镜之间的轴上距离;
- [0103] d0:光圈S1到第一透镜L1的物侧面的轴上距离;
- [0104] d1:第一透镜L1的轴上厚度;
- [0105] d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
- [0106] d3:第二透镜L2的轴上厚度;
- [0107] d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
- [0108] d5:第三透镜L3的轴上厚度;
- [0109] d6: 第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
- [0110] d7:第四透镜L4的轴上厚度;
- [0111] d8: 第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
- [0112] d9:第五透镜L5的轴上厚度;
- [0113] d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
- [0114] d11:第六透镜L6的轴上厚度;
- [0115] d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
- [0116] d13:光学过滤片GF的轴上厚度;
- [0117] d14:光学过滤片GF的像侧面到像面的轴上距离;
- [0118] nd:d线的折射率;
- [0119] nd1:第一透镜L1的d线的折射率;
- [0120] nd2:第二透镜L2的d线的折射率;
- [0121] nd3:第三透镜L3的d线的折射率;
- [0122] nd4: 第四透镜L4的d线的折射率;
- [0123] nd5:第五透镜L5的d线的折射率;
- [0124] nd6:第六透镜L6的d线的折射率;
- [0125] ndg:光学过滤片GF的d线的折射率;
- [0126] vd:阿贝数;
- [0127] v1:第一透镜L1的阿贝数;
- [0128] v2:第二透镜L2的阿贝数;
- [0129] v3:第三透镜L3的阿贝数;
- [0130] v4: 第四透镜L4的阿贝数;
- [0131] v5:第五透镜L5的阿贝数;
- [0132] v6:第六透镜L6的阿贝数:
- [0133] vg:光学过滤片GF的阿贝数。
- [0134] 表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。

[0135] 【表2】

[0136]

	圆锥系数		非球面系数					
	k	A4	A6	A8	A10	A12	A14	A16
R1	-2. 1759E+01	-1.7538E-02	-6. 1263E-02	-3. 2545E-02	7. 3643E-02	2.8112E-02	-1. 0927E-01	5. 6196E-02
R2	-1. 2721E+01	-8. 2210E-02	-1.0484E-02	-3. 0290E-02	9. 5054E-02	-5. 9283E-02	-1. 4430E-02	2. 0418E-02
R3	-8. 4865E+00	1. 8393E-02	4. 7572E-02	-1. 5200E-02	1. 6320E-02	-1.3759E-02	1. 9541E-03	1. 1315E-03
R4	0. 0000E+00	-1.6084E-02	3. 0992E-02	-4. 8639E-03	-1.4276E-02	1. 9829E-02	-1. 6693E-02	4. 4913E-03
R5	0. 0000E+00	-1.8343E-01	4. 5216E-03	5. 4096E-02	-8.5606E-02	1.1488E-03	7. 6788E-02	-4. 1816E-02
R6	0. 0000E+00	-1.5321E-01	4. 8501E-02	-1. 6788E-02	6. 5740E-03	2. 3141E-03	-2. 0820E-03	3. 3761E-04
						,		

[0137]

R7	1. 8750E+00	2. 6376E-02	3. 2749E-03	2. 1041E-02	7. 7683E-04	-2. 9904E-03	-5. 4233E-04	4. 6415E-04
R8	-2. 8606E+00	-6. 0706E-02	2. 0600E-02	9. 7415E-03	-1.7873E-03	-1.4872E-04	3. 1143E-04	-1.6361E-04
R9	0. 0000E+00	-1.4318E-02	1. 0526E-03	-8. 1482E-04	-1.3633E-04	4. 6664E-05	9. 2890E-06	-5. 5436E-06
R10	0. 0000E+00	-8. 7765E-03	5. 7475E-03	-8. 7856E-04	-1.4301E-06	-2. 7698E-05	-3. 9416E-06	1. 0071E-06
R11	-1. 6581E-01	-4. 7500E-02	1. 0982E-02	6. 9933E-04	-1.7493E-04	-2. 8324E-05	-2. 0005E-06	1. 2420E-06
R12	-1. 9737E+01	-3.8297E-02	7. 4590E-03	-5. 6031E-04	-3. 9910E-05	9. 5031E-08	5. 2721E-07	1. 5604E-08

[0138] 其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。

[0139] IH:像高

[0140] $y = (x^2/R) / [1 + \{1 - (k+1) (x^2/R^2)\}^{1/2}] + A4x^4 + A6x^6 + A8x^8 + A10x^{10} + A12x^{12} + A14x^{14} + A16x^{16}$ (1)

[0141] 为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。

[0142] 表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。"反曲点位置"栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。"驻点位置"栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。

[0143] 【表3】

[0144]

	反曲点个数	反曲点位置1	反曲点位置2
P1R1	1	0. 505	
P1R2	1	0. 475	
P2R1	0		

P2R2 2 0.695 0.905 0 P3R1 P3R2 2 0.315 1.265 2 0.885 1.315 P4R1 2 1.005 P4R2 1.455 P5R1 1 1.205 P5R2 1 1.455 P6R1 1 1.625 0.625 P6R2 2 2.505

[0145]

CN 108227140 B

[0146] 【表4】

[0147]

R-7C-12		
	驻点个数	驻点位置1
P1R1	1	0.865
P1R2	1	0.935
P2R1	0	
P2R2	0	
P3R1	0	
P3R2	1	0.555
P4R1	0	
P4R2	0	
P5R1	1	1.695
P5R2	1	1.765
P6R1	0	
P6R2	1	1.255

[0148] 图2、图3分别示出了波长为470nm、555nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。

[0149] 后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。

[0150] 如表13所示,第一实施方式满足各条件式。

[0151] 在本实施方式中,所述摄像光学镜头的入瞳直径为1.810mm,全视场像高为2.994mm,对角线方向的视场角为76.44°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。

[0152] (第二实施方式)

[0153] 第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只

列出不同点。

[0154] 表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。

[0155] 【表5】

	R		d	nd		v d	
S1	∞	d0=	0.000				
R1	2. 785	d1=	0. 240	nd1	1. 6355	v 1	23. 97
R2	1.742	d2=	0.048	l liui		,,	20. 51
R3	1. 699	d3=	0. 564	nd2	1. 5891	v 2	61. 25
R4	-12. 112	d4=	0. 636	liuz	1.0001	. 2	01. 20
R5	28. 475	d5=	0. 230	nd3	1. 6510	v 3	21. 51
R6	4. 773	d6=	0. 385	lido	1.0010		
R7	-2. 501	d7=	0. 396	nd4	1. 8014	v 4	45. 45
R8	-1.505	d8=	0. 035	ild i	1.0014	. 1	
R9	5. 518	d9=	0. 553	nd5	1. 5352	v 5	56. 09
R10	5. 506	d10=	0. 633	ndo	1.0002	. 0	
R11	-7. 439	d11=	0.300	nd6	1. 5352	v 6	56. 09
R12	2. 700	d12=	0. 197				
R13	∞	d13=	0. 210	ndg	1.5168	v g	64. 17
R14	∞	d14=	0. 500		2.0100		

[0157]

[0156]

[0158] 表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。

[0159] 【表6】

[0160]

	圆锥系数		非球面系数						
	k	A4	A6	A8	A10	A12	A14	A16	
R1	-2. 1790E+01	-2.8011E-02	-5. 0947E-02	-1. 5976E-02	5. 9971E-02	8. 9523E-03	-8. 1304E-02	4. 6243E-02	
R2	-9. 9535E+00	-7. 7485E-02	1. 9176E-02	-3. 2872E-02	5. 6497E-02	-6. 8030E-02	3. 8661E-02	-3. 3948E-03	
R3	-6. 8925E+00	3. 0968E-02	6. 0266E-02	-2. 9913E-02	1. 2754E-03	-7. 4376E-03	1. 3337E-02	-4. 6172E-03	
R4	0. 0000E+00	-2.0311E-02	2. 8288E-02	-7. 9247E-04	-2.2397E-03	5. 2069E-03	-2. 3537E-02	1. 2677E-02	
R5	0. 0000E+00	-2. 7995E-01	3. 8729E-02	5. 7718E-02	-6. 2941E-02	1.8407E-04	4. 5035E-02	-2.1557E-02	
R6	0. 0000E+00	-2.4124E-01	7. 5119E-02	-1. 1618E-02	5. 9760E-03	3. 1369E-04	-1. 7482E-03	1. 8864E-03	
R7	2. 0843E+00	5. 6299E-02	-6. 5466E-03	1. 9221E-02	1. 2983E-03	-3. 0522E-03	-4. 5484E-04	5. 5778E-04	
R8	-3. 2869E+00	-4.8046E-02	2. 9931E-02	9. 7134E-03	-2.7398E-03	-3. 9445E-04	1.8684E-04	-1.3826E-04	
R9	0. 0000E+00	-2. 3746E-02	2. 9509E-03	-4. 7974E-03	5. 2465E-04	1. 5225E-04	-7. 0656E-07	-1.5703E-05	
R10	0. 0000E+00	-2. 6912E-02	5. 6093E-03	-8. 3789E-04	9. 7116E-05	6. 4311E-06	-6. 3301E-06	3. 0719E-07	
R11	6. 8119E+00	-7. 1604E-02	1.8894E-02	1. 0523E-03	-3. 2459E-04	-3. 4895E-05	-1.6986E-06	1. 1001E-06	
R12	-1. 4262E+01	-4. 9752E-02	9. 7815E-03	-8. 6134E-04	-4. 6309E-05	3. 0196E-06	1. 0221E-06	-3. 6360E-08	

[0161] 表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。

[0162] 【表7】

反曲点位置1 反曲点个数 反曲点位置2 P1R1 1 0.495 P1R2 1 0.535 P2R1 0 P2R2 0 1 P3R1 0.105 P3R2 2 0.285 1.045

[0164]

[0163]

P4R1	2	0.875	1. 235
P4R2	2	0.895	1. 375
P5R1	1	0. 775	
P5R2	1	0. 995	
P6R1	2	1. 325	1. 965
P6R2	2	0. 595	2. 405

[0165] 【表8】

[0166]

	驻点个数	驻点位置1
P1R1	1	0.875

CN 108227140 B

		•
P1R2	0	
P2R1	0	
P2R2	0	
P3R1	1	0.175
P3R2	1	0.495
P4R1	0	
P4R2	0	
P5R1	1	1.205
P5R2	1	1.865
P6R1	0	
P6R2	1	1.225

[0167] 图6、图7分别示出了波长为470nm、555nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。

[0168] 如表13所示,第二实施方式满足各条件式。

[0169] 在本实施方式中,所述摄像光学镜头的入瞳直径为1.809mm,全视场像高为2.994mm,对角线方向的视场角为76.45°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。

[0170] (第三实施方式)

[0171] 第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。

[0172] 表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。

[0173] 【表9】

[0174]

	R	d		nd		v d	
	K		u		nu		v u
S1	∞	d0=	0.000				
R1	1. 948	d1=	0. 240	nd1	1. 6355	v 1	23. 97
R2	1. 223	d2=	0.049	, idi	1.0000	. 1	20.01
R3	1. 316	d3=	0. 578	nd2	1. 5533	v 2	71. 68
R4	-71. 123	d4=	0. 521	1102	1.0000	. 2	11.00
R5	4. 277	d5=	0. 240	nd3	1. 6510	v 3	21.51
R6	3. 211	d6=	0. 394	ndo			21.01
R7	-2.062	d7=	0.300	nd4	1. 8513	v 4	40. 10
R8	-1.669	d8=	0.030	114.1	1.0010		20.20
R9	2. 580	d9=	0.398	nd5	1. 5352	v 5	56. 09
R10	3. 389	d10=	0. 718	, indo	1.0002		00.00
R11	-6.826	d11=	0.300	nd6	1. 5352	v 6	56. 09
R12	2. 907	d12=	0. 169	1140	1.0002		33.00
R13	∞	d13=	0. 210	ndg	1. 5168	v g	64. 17
R14	∞	d14=	0.500	1146	1.0100		

[0175] 表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。

[0176] 【表10】

[0177]

	圆锥系数				非球面系数			
	k	A4	A6	A8	A10	A12	A14	A16
R1	-1. 3864E+01	4. 5370E-02	-1.0280E-01	-2. 4314E-03	1. 0306E-01	-5. 0436E-02	-6. 7682E-02	5. 7544E-02
R2	-6. 6502E+00	-3.3899E-02	1.3145E-02	-7. 1451E-02	6. 9944E-02	-1.9857E-02	-2. 2431E-02	2. 9779E-02
R3	-5. 9731E+00	3. 5477E-02	5. 2551E-02	-5. 1370E-02	5. 3666E-04	7. 2391E-03	1. 3254E-02	-1.2771E-02
R4	0. 0000E+00	-3.8771E-02	1. 9919E-02	1. 4537E-02	-3.3866E-02	4. 0407E-03	-8. 3297E-03	2. 9134E-03
R5	0. 0000E+00	-2.0079E-01	6. 9203E-03	4. 9861E-02	-3.8136E-02	8. 4982E-03	3. 3331E-02	-2.4794E-02
R6	0. 0000E+00	-1.7358E-01	1.5773E-02	-1. 2341E-02	1. 3134E-02	7. 9337E-03	1.6644E-03	-1.2684E-03
R7	1. 6230E+00	1. 6391E-01	-5. 0185E-02	-4. 7733E-03	-1.5175E-03	4. 9965E-03	3. 8444E-03	-1.3449E-03
R8	-3. 5138E+00	1. 9334E-02	1.6050E-02	-3. 9887E-03	-3.5117E-03	9. 0509E-04	7. 4778E-04	-4.3111E-04
R9	0. 0000E+00	-7. 3902E-02	1.2366E-02	-3. 7568E-03	-3. 2131E-04	2. 2973E-04	-9. 0097E-06	-1.4123E-05
R10	0. 0000E+00	-3.5519E-02	3. 9982E-03	-8. 7719E-04	1. 5767E-04	1.3808E-05	-7. 2138E-06	-3. 3723E-09
R11	7. 2583E+00	-8. 5458E-02	2. 4920E-02	9. 9501E-04	-4.3134E-04	-4. 2577E-05	-1.5332E-06	1. 4865E-06
R12	-1. 8822E+01	-5. 4151E-02	9. 1240E-03	-7. 5261E-04	-4. 5774E-05	1.7150E-06	2. 0186E-07	8. 2404E-08

[0178] 表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。

[0179] 【表11】

	反曲点个数	反曲点位置1	反曲点位置2
P1R1	1	0. 635	
P1R2	2	0. 625	0. 885
P2R1	1	0. 965	
P2R2	0		
P3R1	1	0. 325	
P3R2	2	0. 405	0. 975
P4R1	0		
P4R2	2	0. 855	1. 135
P5R1	1	0. 785	
P5R2	1	0. 995	
P6R1	2	1. 295	1. 935
P6R2	1	0. 545	
P4R2 P5R1 P5R2 P6R1	2 1 1 2	0. 785 0. 995 1. 295	

[0181]

[0180]

[0182] 【表12】

[0183]

		<u></u>	
	驻点个数	驻点位置1	驻点位置2
P1R1	0		
P1R2	0		
P2R1	0		
P2R2	0		
P3R1	1	0.555	
P3R2	2	0.705	1.105
P4R1	0		
P4R2	0		
P5R1	1	1.325	
P5R2	1	1.845	
P6R1	0		
P6R2	1	1.075	

[0184] 图10、图11分别示出了波长为470nm、555nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。

[0185] 以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。

[0186] 在本实施方式中,所述摄像光学镜头的入瞳直径为1.809mm,全视场像高为

2.994mm,对角线方向的视场角为76.48°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。

[0187] 【表13】

[0188]

[0189]

参数及条件式	实施例1	实施例 2	实施例3
f	3. 800	3. 799	3. 798
f1	-11.382	-7. 977	-5. 888
f2	2. 900	2. 561	2. 336
f3	-6. 000	-8. 768	-21.541
f4	4. 336	3. 991	7. 574
f5	9. 742	312. 413	17. 169
f6	-3. 317	-3. 652	-3. 756
f12	4. 035	3. 898	4. 138
(R1+R2)/(R1-R2)	5. 649	4. 339	4. 371
(R3+R4)/(R3-R4)	-0. 804	-0. 754	-0. 964
(R5+R6) / (R5-R6)	0. 299	1. 403	7. 023
(R7+R8) / (R7-R8)	3. 954	4. 023	9. 494
(R9+R10) / (R9-R10)	-1. 965	904. 793	-7. 375
(R11+R12)/(R11-R12)	-0.056	0. 467	0. 403
f1/f	-2. 995	-2. 100	-1.550
f2/f	0. 763	0. 674	0. 615
f3/f	-1. 579	-2. 308	-5. 671
f4/f	1. 141	1. 051	1. 994
f5/f	2. 564	82. 242	4. 520
f6/f	-0. 873	-0.961	-0. 989
f12/f	1.062	1. 026	1. 089
d1	0. 240	0. 240	0. 240
d3	0. 514	0. 564	0. 578
d5	0. 482	0. 230	0. 240
d7	0. 483	0. 396	0. 300
d9	0. 378	0. 553	0. 398
d11	0. 240	0.300	0. 300
Fno	2. 100	2. 100	2. 100
TTL	5. 093	4. 927	4. 647

[0190]

d1/TTL	0. 047	0.049	0. 052
d3/TTL	0. 101	0. 114	0. 124
d5/TTL	0. 095	0. 047	0.052
d7/TTL	0. 095	0.080	0.065
d9/TTL	0.074	0. 112	0. 086
d11/TTL	0. 047	0. 061	0.065
n1	1. 6355	1. 6355	1. 6355
n2	1. 5935	1. 5891	1. 5533
n3	1. 6510	1. 6510	1. 6510
n4	1. 7130	1.8014	1. 8513
n5	1. 5352	1. 5352	1. 5352
n6	1. 5352	1. 5352	1. 5352
v1	23. 9718	23. 9718	23. 9718
v2	67. 0018	61. 2526	71. 6846
v3	21. 5136	21. 5136	21. 5136
v4	53. 9383	45. 4497	40. 1045
v5	56. 0934	56. 0934	56. 0934
v6	56. 0934	56. 0934	56. 0934

[0191] 本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

10 ~~

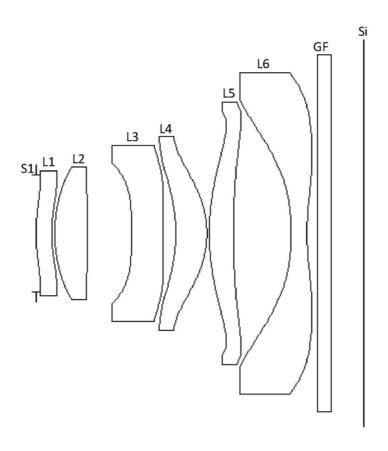


图1

轴向像差

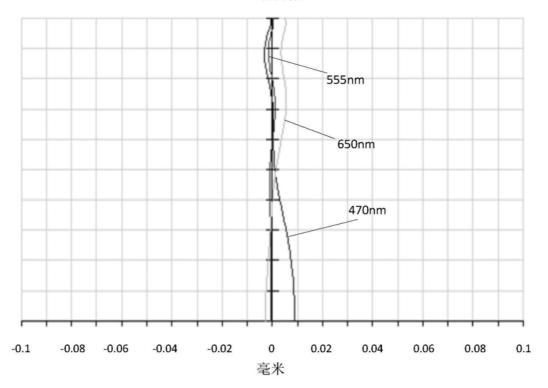


图2

倍率色差

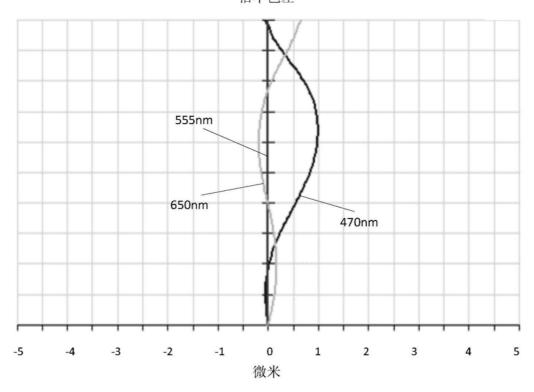


图3

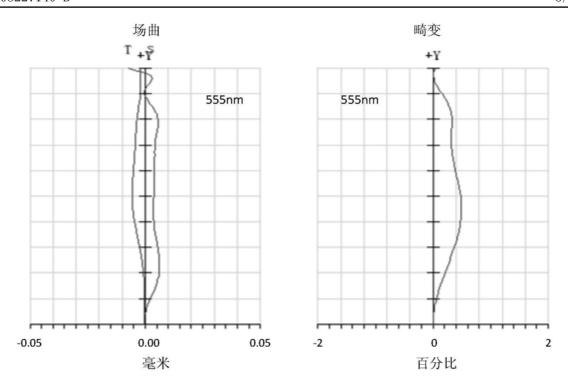


图4

20 ~

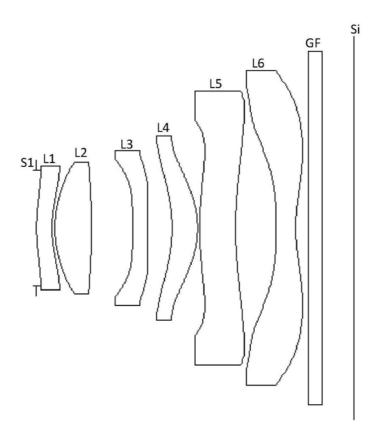


图5

轴向像差

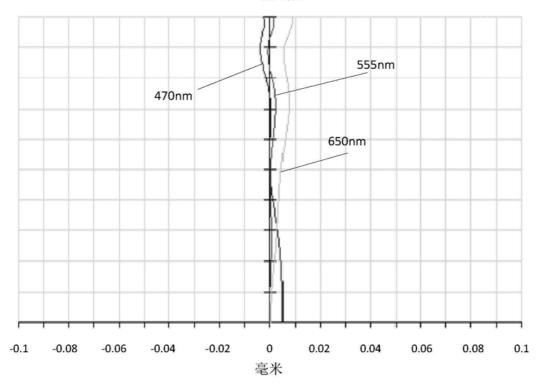


图6

倍率色差

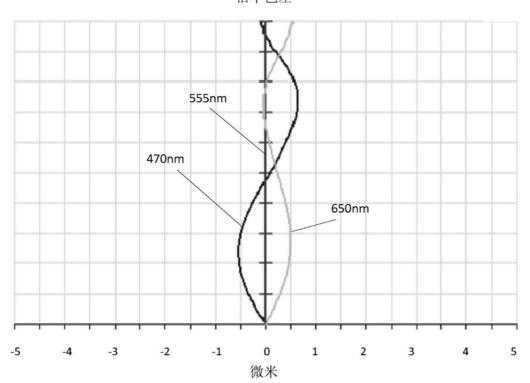


图7

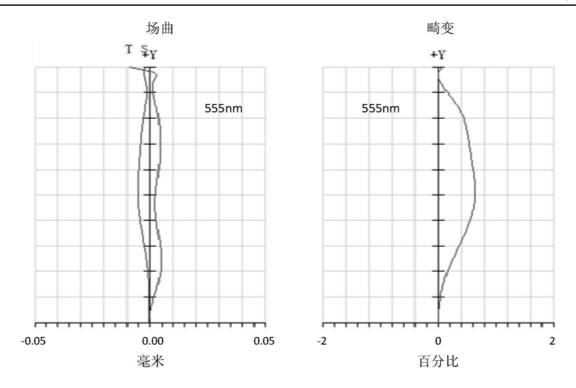


图8

30 ~>



图9

轴向像差

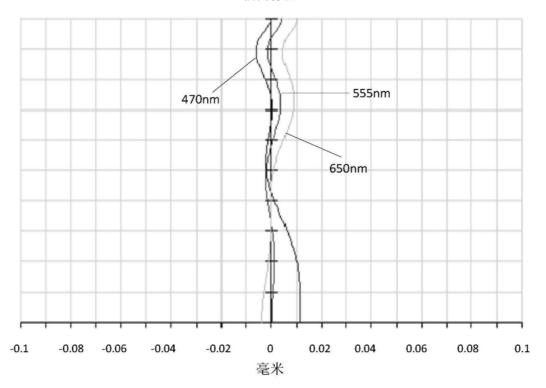


图10

倍率色差

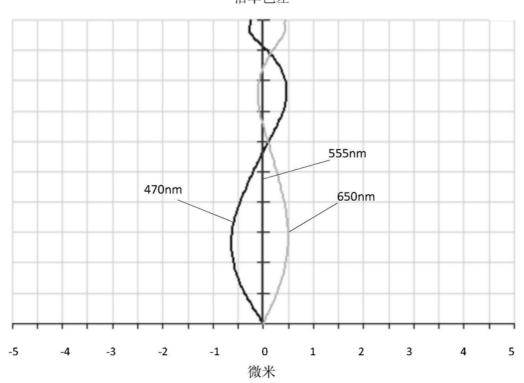
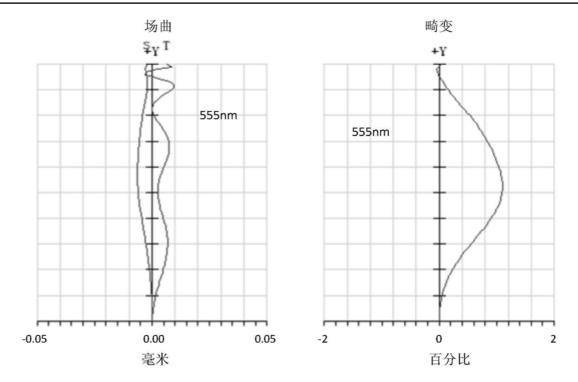



图11

冬

图12