US011119803B2

a2 United States Patent

Krasner et al.

US 11,119,803 B2
Sep. 14, 2021

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR OFFLOADING
PARITY PROCESSING

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

Applicant: EMC IP Holding Company LLC,

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Hopkinton, MA (US)

Jonathan I. Krasner, Coventry, RI

(US); Steven R. Chalmer, Redwood
City, CA (US); Chakib Ourraoui,
Watertown, MA (US); Sweetesh Singh,

Benares (IN)

Hopkinton, MA (US)

EMC IP Holding Company LLC,

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 132 days.
16/400,937
May 1, 2019

Prior Publication Data

US 2020/0348958 A1 Nov. 5, 2020
Int. C.

GO6F 9/455 (2018.01)

GOG6F 9/445 (2018.01)

GO6T 1/20 (2006.01)

GO6F 9/50 (2006.01)

GOGF 11/30 (2006.01)

U.S. CL.

CPC ...

. GO6F 9/45558 (2013.01); GO6F 9/44563
(2013.01); GOGF 9/44594 (2013.01); GO6F
9/505 (2013.01); GO6T 1/20 (2013.01); GO6F
1173051 (2013.01); GOGF 11/3055 (2013.01);
GOGF 2009/45583 (2013.01); GOGF

2009/45591 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,284,119 B2* 10/2007 Hyderc....... GOG6F 9/5027
709/203
7,656,894 B2* 2/2010 Dube GOG6F 9/5044
370/463
9,477,466 B2* 10/2016 Nishimoto GOG6F 9/3001
9,529,620 B1* 12/2016 DOW ..ccooovrvvrecnnns GOGF 9/455
10,353,722 B2* 7/2019 Karino HO4L 63/0485
2003/0084435 Al* 5/2003 MeSSerocceuee. GOGF 9/505
717/174

2006/0098018 Al 5/2006 Tarditi, Jr.
2011/0154334 Al1* 6/2011 Bealec........ GOG6F 9/5027
718/100

2012/0110346 Al 5/2012 Resch
2014/0189039 Al* 7/2014 Dalton GOG6F 15/17331
709/213
2015/0154111 Al* 6/2015 D’Abreu GOGF 12/0246
714/6.11
(Continued)

Primary Examiner — Abu Zar Ghaffari
(74) Attorney, Agent, or Firm — Chamberlain, Hrdlicka,
White, Williams & Aughtry

(57) ABSTRACT

A method for processing data includes monitoring, by a
virtual machine (VM), a plurality of computing resources,
receiving an offload request by the VM, selecting, based on
the monitoring, a computing resource from the plurality of
computing resources, issuing, by the VM and in response to
the offload request, the processing request to the computing
resource, and servicing, by the computing resource, the
processing request to obtain a result, wherein the VM and
the computing resource are executing on a computing
device.

7 Claims, 5 Drawing Sheets

Chient Vs 102

Host Computing Device

190

Special VMs 104

i

! S

; Client Vistual
; Machine (VM) &
|

Client VM N

Specialized VMA] 29 8

|
!
Spocialized VM M}y
i
|

Hosi Operating Sysies

m 110

3
Offload Component }12
|

Hardware Layer 120

.1 Shared Memory

Processor 122

RBackup Storage Device 130

US 11,119,803 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2016/0164962 Al* 6/2016 Ghosh HO4L 67/1008

709/223
2016/0344844 Al* 11/2016 Lin ... HO4L 67/10
2017/0085636 Al* 3/2017 Lin HO4L 67/1031
2017/0289059 Al* 10/2017 WU .cccovvvvicvecnnne HO4L 67/2838
2018/0046385 Al 2/2018 Altaparmakov
2018/0341549 Al* 11/2018 Bolkhovitin GOGF 11/1068
2019/0098367 Al* 3/2019 Jung HO4N 21/6131
2019/0171485 Al* 6/2019 Bolkhovitin . GOGF 9/50
2020/0334184 Al* 10/2020 Suresh GOGF 13/4282

* cited by examiner

US 11,119,803 B2

Sheet 1 of 5

Sep. 14, 2021

U.S. Patent

I 'DI4

T oo1aaqg 98uiog drojoeg

RO WROUG KCOR TOD 0000 RUGUK GUGUURH WOGKOY WO0000 SUOUON AUGO0C TNGUO0 GUUGU KOUUKGE SRR

P

d {15y &8 YV (1dD

GCT (81145 s1un) Suissanold sowdein

¥

AJOWBN PRIBUS

TZT A aJempivy

A Guen GAGUVE RO ANRNR RV GANGAR WA ANAANY GOWANR GOUIA SUGUD ANV GAGENN WONUIGR WOWSNE GAAMGL DU NV UMW IO ARGOR WANNG SAGAN RAURD e

7T J0SS30044

Beno GOGEOO eheaen WeNNOC NOOGOS SOGGON WOOM OGNS WNOO

A WA Pozieioodg] ® @ @ |V JAA Pozieedg

1 g
oo |
i i , ¥ (NA) SUTOEIN
o A E prasia oy |)

m
oo - |
(L ZOT SIA 192110 !

P01 SINA [2109d8

WSS SSNSE GKENSK NANANS SASKK) GSNNNK SENENR GSNANR GWSERR RNRNNS OO WKKAKN NKNKNR GRSKRRN AAASOS

00T

aoias(q Sunndwoy; 150

U.S. Patent Sep. 14, 2021 Sheet 2 of 5 US 11,119,803 B2

Obtain a backup stripe request L@ Step 200
from a client VM

v

Store the data associated with //”” Step 202
backup stripe request in shared
memory

Step 204

................................... Offload parity processing?

Step 210 me

f Step 206
Perform parity processing on the Send an oftload requestto a
data using a processor of the host specialized VM using an offload
computing device to generate a component
parity value(s)
Step 212 =, %
e Step 208 Obtain notification of a completed
Send the backup stripe(s)to a panity processing

backup storage device

Step 214 “"'\\ Send the backup stripe(s)to a

backup storage device

FIG. 2A

U.S. Patent Sep. 14, 2021 Sheet 3 of 5 US 11,119,803 B2

Monitor characteristics of o~ Step 220
et oraphics processing units (GPUs)
of the host

Wait

- Step 224

o Step 222

Step 226
i

Obtain data associated with the
o——YES-#{ offload request from shared
' memory

Oftfload request "
obtained?

Step 228 wm, i

Perform parity processing using
one or more graphics processing
units (GPUs) based on the

|
E
E
E
|
|

monitoring
Step 230 . i
o e o] Motify the host 08 of completion

of parity calculations

FI1G. 2B

US 11,119,803 B2

Sheet 4 of 5

Sep. 14, 2021

U.S. Patent

e
O

OCT sman o8ri01g drojoryg

8

N [1d5

Y (1d5

9Z¢ (301dDy) s} Suissa00ig sotgderr

®

SULIOHUON

¥t
AIOUWSA poIByg

FET I0SS0001]

71T wouodwo]y proiO

0T% S0 180y

WrOL
N A pozieadg

L K N

Vot
Y NA paziRLedy

FOT SINA [erosdy

NGt
N NA R

@8

ao1a2¢] Sunndwo;y 1805

VIOt
v (NA) sutgoepy
[ENLITA TUSH])

Z0€ SNA 131D

U.S. Patent

Sep. 14, 2021

Sheet 5 of 5 US 11,119,803 B2

Output
Device
408

E

400

Non-Persistent
Storage
404

Persistent Storage
406

Processor(s)
402

Communication
interface
412

I

Input Device
410

FiG. 4

US 11,119,803 B2

1
METHOD AND SYSTEM FOR OFFLOADING
PARITY PROCESSING

BACKGROUND

Computing devices may include any number of internal
components such as processors, memory, and persistent
storage. As the number of internal components in a com-
puting device increases, the complexity of efficiently using
all of the internal components also increases. As a result, the
internal components in a computing device are often not
utilized in the most efficient manner, e.g., to maximize the
performance of the computing device.

SUMMARY

In general, in one aspect, the invention relates to a method
for processing data. The method includes monitoring, by a
virtual machine (VM), a plurality of computing resources,
receiving an offload request by the VM, selecting, based on
the monitoring, a computing resource from the plurality of
computing resources, issuing, by the VM and in response to
the offload request, the processing request to the computing
resource, and servicing, by the computing resource, the
processing request to obtain a result, wherein the VM and
the computing resource are executing on a computing
device.

In one aspect, a non-transitory computer readable medium
in accordance with one or more embodiments of the inven-
tion includes computer readable program code, which when
executed by a computer processor enables the computer
processor to perform a method for processing data. The
method includes monitoring, by a virtual machine (VM), a
plurality of computing resources, receiving an offload
request by the VM, selecting, based on the monitoring, a
computing resource from the plurality of computing
resources, issuing, by the VM and in response to the offload
request, the processing request to the computing resource,
and servicing, by the computing resource, the processing
request to obtain a result, wherein the VM and the comput-
ing resource are executing on a computing device.

In one aspect, a system in accordance with one or more
embodiments of the invention includes a processor, a plu-
rality of computing resources, and memory which includes
instructions, which when executed by the processor, perform
a method for processing data. The method includes moni-
toring, by a virtual machine (VM), a plurality of computing
resources, receiving an offload request by the VM, selecting,
based on the monitoring, a computing resource from the
plurality of computing resources, issuing, by the VM and in
response to the offload request, the processing request to the
computing resource, and servicing, by the computing
resource, the processing request to obtain a result, wherein
the VM and the computing resource are executing on a
computing device.

BRIEF DESCRIPTION OF DRAWINGS

Certain embodiments of the invention will be described
with reference to the accompanying drawings. However, the
accompanying drawings illustrate only certain aspects or
implementations of the invention by way of example and are
not meant to limit the scope of the claims.

FIG. 1 shows a diagram of a system in accordance with
one or more embodiments of the invention.

15

25

40

45

60

65

2

FIG. 2A shows a flowchart for generating backup stripes
in accordance with one or more embodiments of the inven-
tion.

FIG. 2B shows a flowchart for generating backup stripe
parity calculations in accordance with one or more embodi-
ments of the invention.

FIG. 3 shows an example in accordance with one or more
embodiments of the invention.

FIG. 4 shows a diagram of a computing device in accor-
dance with one or more embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments will now be described with refer-
ence to the accompanying figures. In the following descrip-
tion, numerous details are set forth as examples of the
invention. It will be understood by those skilled in the art
that one or more embodiments of the present invention may
be practiced without these specific details and that numerous
variations or modifications may be possible without depart-
ing from the scope of the invention. Certain details known
to those of ordinary skill in the art are omitted to avoid
obscuring the description.

In the following description of the figures, any component
described with regard to a figure, in various embodiments of
the invention, may be equivalent to one or more like-named
components described with regard to any other figure. For
brevity, descriptions of these components will not be
repeated with regard to each figure. Thus, each and every
embodiment of the components of each figure is incorpo-
rated by reference and assumed to be optionally present
within every other figure having one or more like-named
components. Additionally, in accordance with various
embodiments of the invention, any description of the com-
ponents of a figure is to be interpreted as an optional
embodiment, which may be implemented in addition to, in
conjunction with, or in place of the embodiments described
with regard to a corresponding like-named component in
any other figure.

In general, embodiments of the invention relate to a
method and system for managing data storage. More spe-
cifically, embodiments of the invention relate to a method
for a host operating system of a host computing device to
offload the calculation of parity values to graphics process-
ing units (GPUs). The GPUs, by having a larger number of
cores than a processor used by the host operating system,
may be better equipped to efficiently handle the large
amount of computation required to perform the parity cal-
culations. Embodiments of the invention may determine
whether to offload the request to perform the calculations
and allow a specialized VM with direct communication to
the GPU(s) to perform the parity calculations.

FIG. 1 shows an example system in accordance with one
or more embodiments of the invention. The system includes
a host computing device (100) and a backup storage device
(150). The system may include additional, fewer, and/or
different components without departing from the invention.
Each component may be operably connected via any com-
bination of wired and/or wireless connections. Each com-
ponent illustrated in FIG. 1 is discussed below.

In one or more embodiments of the invention, the host
computing device (100) hosts any number of client virtual
machines (VMs) (102). The client VMs (102) may be logical
entities executed using computing resources (e.g., compo-
nents of a hardware layer (120)) of the host computing
device (100). Each of the virtual machines may be perform-
ing similar or different processes. In one or more embodi-

US 11,119,803 B2

3

ments of the invention, the virtual machines provide services
to users, e.g., clients (not shown). For example, the virtual
machines may host instances of databases, email servers,
and/or other applications. The virtual machines may host
other types of applications without departing from the
invention.

In one or more embodiments of the invention, the host
computing device (100) hosts specialized VMs (104). The
specialized VMs (104) include functionality to interact with
the graphical processing units (GPUs) (126). More specifi-
cally, the specialized VMs (104) include computer readable
code (e.g., the GPU drivers and other related software
components) that enables the specialized VMs to interact
with the GPUs based on the Application Program Interfaces
(APIs) or communication specifications of the GPUs. The
specialized VMs (104) may interact with the components of
the hardware layer (120) without using the host OS (110);
rather, the specialized VMs may interact with the compo-
nents of the hardware layer (120) using a communication
protocol such as a peripheral component interconnect (PCI)
pass-through. In one or more embodiments of the invention,
the specialized VMs (104) each include their own operating
system (OS) that allows the specialized VMs (104) to
perform the aforementioned functionality. The OSes execut-
ing in the specialized VMs (104) may be equipped to
communicate with an offload component (112) of the host
OS (110).

In one or more embodiments of the invention, instead of
communicating directly with the GPUs, the specialized VMs
(104) may communicate with the GPUs using a hypervisor
(not shown). The hypervisor may be an entity that is
interposed between the specialized VMs (104) and the
offload component (112) of the host OS (110). Further, the
hypervisor may be equipped to facilitate communication
between the specialized VMs and the GPUs (126) and
interface with the specialized VMs (104). Such that each of
the specialized VMs (104) may communicate with the GPUs
(126) through the hypervisor. Other protocols or communi-
cation mechanisms may be used without departing from the
invention.

In one embodiment of the invention, the host computing
device may include different types of GPUs, where each of
the different types of GPUs use different communication
protocols and/or have different functionality. In this sce-
nario, the host computing device may include different types
of specialized VMs, each type of specialized VMs is able to
interact with a specific type of GPU. In such scenarios, the
different types of the specialized VMs may be optimized to
work with particular types of GPUs. Further, if a new
GPU(s) is added to the host computing device, a new or
modified specialized VM may be added to the host com-
puting device such that the host computing device can utilize
the new GPU.

In one embodiment of the invention, the specialized VMs
include functionality to service offload requests (discussed
below in FIGS. 2A-2B) in a manner that most efficiently
utilizes the GPUs processing capabilities, such as parallel
processing.

In one or more of embodiments of the invention, the
virtual machines (102, 104) are implemented as computer
instructions, e.g., computer code, stored on a persistent
storage that when executed by a processor(s) (e.g., 122) of
the host computing device (100) cause the host computing
device (100) to provide the functionality of the virtual
machines (102, 104) described throughout this application
and/or all, or a portion thereof, of the methods illustrated in
FIGS. 2A-2B.

25

40

45

50

4

In one or more embodiments of the invention, the hard-
ware layer (120) includes computing resources utilized by
components (e.g., the host OS (110), client VMs (102), the
specialized VMs (104), and/or the offload component (112))
of the host computing device (100) to perform the function-
alities specified by each respective component (or comput-
ing resource). The computing resources (or components)
may include a processor(s) (122), shared memory (124), and
one or more graphics processing units (GPUs) (126). Each
computing resource of the hardware layer (120) may be
operably connected via any combination of wired connec-
tions. Each computing resource of the hardware layer (120)
is discussed below.

The processor (122) may be a computing resource that
processes information (e.g., data) as requested by a compo-
nent and sends the processed data to the requested entity.
Processing data may include arithmetic calculations, logic
processing, and/or other input/output operations without
departing from the invention. In one or more embodiments
of the invention, the processor (122) is implemented as a
central processing unit (CPU) with single-core or multi-core
processing capabilities. The processor (122) may be other
types of processors without departing from the invention.

The shared memory (124) is volatile memory that may be
accessed by two or more components of the host computing
device (100). In one or more embodiments of the invention,
the shared memory (124) is implemented as, for example,
static random access memory (SRAM), dynamic random
access memory (DRAM), and/or other types of memory
without departing from the invention.

In one or more embodiments of the invention, the pro-
cessor (122) includes additional memory (not shown) that
may be used by the processor when processing data. The
additional memory may be separate from the shared memory
(124). The additional memory and the shared memory (124)
may be operatively connected via a PCI express (PCI-E) bus
that facilitates data transfer between the additional memory
and the shared memory (124). Other communication mecha-
nisms may be used to transfer data between the various
shared memories without departing from the invention.

The GPUs (126) are a type of processor that includes a
significantly larger number of cores than the processor
(122). The GPUs (126) may utilize the multiple cores to
perform a large number of processes in parallel. The pro-
cesses performed by the GPUs (126) may include basic
arithmetic operations. The GPUs may perform additional
types of processes without departing from the invention.

In one or more embodiments of the invention, the GPUs
(126) include computing resources that allow the GPUs to
perform the functions described throughout this application.
The computing resources (not shown) within the GPUs may
include cache, local memory (e.g., dynamic random access
memory (DRAM)), and the cores. The cores may be capable
of processing one or more threads (e.g., processes performed
on data by a core of the GPU) at a time and temporarily
storing data in the cache and/or local memory during the
processing.

In one or more embodiments of the invention, the host
computing device (100) operates using a host operating
system (OS) (110). The host OS (110) is an operating system
that manages the operation of the client VMs (102), the
specialized VMs (104), and the hardware layer (120). The
host OS (110) may service requests obtained from one or
more of the client VMs (102). In one or more embodiments
of the invention, the host OS (110) services the requests by
assigning tasks to the specialized VMs (104) based on the

US 11,119,803 B2

5

requests. In one or more embodiments of the invention, the
host OS (110) services the requests via the method illus-
trated in FIGS. 2A-2B.

In one or more embodiments of the invention, the host OS
(110) is implemented as computer instructions, e.g., com-
puter code, stored on a persistent storage that when executed
by a processor(s) (e.g., 122) of the host computing device
(100) cause the host computing device (100) to provide the
functionality of the host OS (110) described throughout this
application.

In one or more embodiments of the invention, the host OS
(110) includes an offload component (112) that serves as an
interface between the host OS (112) and the specialized VMs
(104). The offload component (112) may send requests to
one or more of the specialized VMs (104) as specified by the
host OS (110). In one or more embodiments of the invention,
the offload component is implemented as, for example, an
application programming interface (API). The offload com-
ponent (112) may include functionality that allows the
offload component (112) to communicate with operating
systems of each of the specialized VMs (104).

In one or more embodiments of the invention, the offload
component (112) is implemented as computer instructions,
e.g., computer code, stored on a persistent storage that when
executed by a processor(s) (e.g., 122) of the host computing
device (100) cause the host computing device (100) to
provide the functionality of the offload component (112)
described throughout this application.

In one or more embodiments of the invention, the backup
storage device (150) stores data. The data may be backups,
which is protected using parity data. In such cases, the
backups may correspond to a set of backup stripes, where
each stripe includes a combination of data chunks and parity
chunks. The backup storage device may include multiple
disks (e.g., hard disk drives, solid state drives, etc.). Each
disk may store a portion of the backup stripe. For example,
each disk of the backup storage device may store one or
more data chunks and/or parity chunks. Additional detail
about the backup stripes is provided below.

In one or more embodiments of the invention, the backup
storage device (150) is implemented as a computing device
(see e.g., FIG. 4). The computing device may be, for
example, a laptop computer, a desktop computer, a server, a
distributed computing system, or a cloud resource (e.g., a
third-party storage system accessible via a wired or wireless
connection). The computing device may include one or more
processors, memory (e.g., random access memory), and
persistent storage (e.g., disk drives, solid state drives, etc.).
The computing device may include instructions, stored on
the persistent storage, that when executed by the
processor(s) of the computing device cause the computing
device to perform the functionality of the backup storage
device (150) described throughout this application.

In one or more embodiments of the invention, the backup
storage device (150) is implemented as a logical device. The
logical device may utilize the computing resources of any
number of computing devices and thereby provide the
functionality of the backup storage device (150) described
throughout this application.

In one or more embodiments of the invention, the clients
(not shown) that interact with the host computing device
may be a computing device (see e.g., FIG. 4). The comput-
ing device may be, for example, a laptop computer, a
desktop computer, a server, a distributed computing system,
or a cloud resource (e.g., a third-party storage system
accessible via a wired or wireless connection). The comput-
ing device may include one or more processors, memory

5

10

15

20

25

30

40

45

50

55

60

65

6

(e.g., random access memory), and persistent storage (e.g.,
disk drives, solid state drives, etc.). The computing device
may include instructions, stored on the persistent storage,
that when executed by the processor(s) of the computing
device cause the computing device to perform the function-
ality of the client described throughout this application.

In one or more embodiments of the invention, the client
is implemented as a logical device. The logical device may
utilize the computing resources of any number of computing
devices and thereby provide the functionality of the client
described throughout this application.

While FIG. 1 shows the architecture of the host comput-
ing device, the invention is not limited to the architecture
shown in FIG. 1.

FIGS. 2A-2B show flowcharts in accordance with one or
more embodiments of the invention. While the various steps
in the flowcharts are presented and described sequentially,
one of ordinary skill in the relevant art will appreciate that
some or all of the steps may be executed in different orders,
may be combined or omitted, and some or all steps may be
executed in parallel. In one embodiment of the invention, the
steps shown in FIGS. 2A-2B may be performed in parallel
with any other steps shown in FIGS. 2A-2B without depart-
ing from the scope of the invention.

FIG. 2A shows a flowchart for generating backup stripes
in accordance with one or more embodiments of the inven-
tion. The method shown in FIG. 2A may be performed by,
for example, a host OS (110, FIG. 1). Other components of
the system illustrated in FIG. 1 may perform the method of
FIG. 2A without departing from the invention.

Turning to FIG. 2A, in step 200, a backup stripe request
is obtained. In one or more embodiments of the invention,
the backup stripe request is obtained from a client VM. The
backup stripe request specifies data that is to be stored in
persistent storage using Redundant Array of Independent
Disks (RAID) striping. The process of RAID striping may
include performing parity calculations (also referred to as
parity processing) on all or a portion of the backup stripes to
obtain parity values.

In step 202, the data associated with the backup stripe
request is stored in shared memory. In one or more embodi-
ments of the invention, the host OS obtains the data from
persistent storage and stores the data in shared memory.
Once stored, the data may be accessed from the shared
memory using one or more references. The references may
correspond to a physical or logical address(es) in the shared
memory in which the data is stored. In this manner, the data
may be accessed by the host OS, by a specialized VM,
and/or other components of the host computing device for
performing parity processing.

In step 204, a determination is made about whether to
offload parity processing. If the host OS offloads parity
processing, the method proceeds to step 210; otherwise, the
method proceeds to step 206. In one or more embodiments
of the invention, the host OS may determine whether to
offload the parity processing by identifying an amount of
computing resources (e.g., processing and memory) required
to complete the parity processing and comparing that
amount to an amount of computing resources available to
the host OS. If the host OS determines that the amount
needed to perform parity processing is greater than the
amount available to the host OS, the host OS may determine
to offload the parity processing. In one or more embodiments
of the invention, the host OS uses other methods to deter-
mine whether to offload the parity processing without
departing from the invention.

US 11,119,803 B2

7

In step 206, parity processing is performed on the data
(i.e., the data stored in the shared memory) using a processor
of the host computing device to generate a parity value(s).
In one or more embodiments of the invention, the parity
processing includes dividing the obtained data into portions,
referred to as data chunks. The data chunks may then be
grouped into subsets of data chunks. One or more parity
values are then calculated for each group (or subset) of the
data chunks. The number data chunks in a group as well as
the number of parity values may vary based on the erasure
coding algorithm that is being used as part of the parity
processing. Non-limiting examples of erasure coding algo-
rithms are RAID-4, RAID-5, RAID-6, and RAID-7. Other
erasing coding algorithms may be used without departing
from the invention. For example, if the parity processing
being implemented is RAID-4, then a single parity value
may be calculated for every three data chunks in a stripe.
Continuing with the discussion of FIG. 2A, the resulting
parity value is then stored in a parity chunk. The combina-
tion of the data chunks and the corresponding parity chunk
may be referred to as a backup stripe. If an erasure coding
algorithm requires multiple parity values to be calculated,
then the multiple parity values are calculated with each
parity value being stored in a separate parity chunk.

As discussed above, the data chunks are used to generate
parity chunks in accordance with the parity processing.
More specifically, the parity chunks may be generated by
applying a predetermined function (e.g., P Parity function, Q
Parity Function, etc.), operation, or calculation to at least
one of the data chunks. Depending on the erasure coding
algorithm used, the parity chunks may include, but are not
limited to, P parity values and/or Q parity values.

In one embodiment of the invention, the P parity value is
a Reed-Solomon syndrome and, as such, the P Parity func-
tion may correspond to any function that can generate a
Reed-Solomon syndrome. In one embodiment of the inven-
tion, the P parity function is an XOR function.

In one embodiment of the invention, the Q parity value is
a Reed-Solomon syndrome and, as such, the Q Parity
function may correspond to any function that can generate a
Reed-Solomon syndrome. In one embodiment of the inven-
tion, a Q parity value is a Reed-Solomon code. In one
embodiment of the invention, Q=g,Dy+g, D +g,
D,+...+g, D, ;, where Q corresponds to the Q parity, g
is a generator of the field, and the value of D corresponds to
the data in the data chunks.

In one or more embodiments of the invention, the number
of data chunks and parity chunks generated is determined by
the erasure coding algorithm, which may be specified by the
host OS, by the specialized VM, and/or by another entity.
The parity chunks may be combined (or otherwise grouped)
to create backup stripes.

In step 208, the backup stripe(s), which includes the data
chunks and the one or more parity chunks, is sent to a
backup storage device. In one or more embodiments of the
invention, the backup storage device includes a number of
disks. The data chunks and the parity chunk(s) are stored in
a separate predetermined disk of the backup storage device.
The disks in which to store the data chunks and/or parity
chunks may be determined by the erasure coding algorithm
implemented by the host OS.

Returning to step 204, if a determination is made to
offload the parity processing, then in step 210 the host OS
sends an offload request to a specialized VM using an offload
component. In one or more embodiments of the invention,
the offload component obtains the request to offload the
parity processing and converts the request to a format

30

40

45

55

8

readable to the specialized VM. The converted request (i.e.,
the offload request) may be subsequently sent to the spe-
cialized VM. In one or more embodiments of the invention,
the specialized VM performs the parity processing via the
method illustrated in FIG. 2B. The specialized VM may
perform the parity processing via other methods without
departing from the invention.

In step 212, after the specialized VM has serviced the
offload request, a notification of the completed parity pro-
cessing is obtained. In one or more embodiments of the
invention, the notification is obtained from the specialized
VM. The offload component may convert the notification to
a readable format for the host OS. The notification may
include a reference (e.g., a logical or physical address) for
each data chunk and parity value that is associated with
parity processing stored in the shared memory. The refer-
ences may be used by the host OS when retrieving the
corresponding data chunks and backup chunks.

In step 214, the backup stripe(s) is sent to a backup
storage device. In one or more embodiments of the inven-
tion, the host OS utilizes computing resources (e.g., a
processor) of the hardware layer of the host computing
device to generate and send the backup stripe(s) to the
backup storage device. For example, the host OS identifies
which data chunks and parity chunks to include in each
backup stripe and then retrieves the identified chunks (data
and parity) to generate a backup stripe, the backup stripe is
then transmitted to the backup storage device.

In one or more embodiments of the invention, the backup
storage device includes a number of disks. The backup
stripes are divided into the data chunks and parity chunks,
with each data chunk and/or parity chunk stored in a separate
predetermined disk of the backup storage device. The disks
in which to store the data chunks and/or parity chunks may
be determined by the erasure coding algorithm implemented
by the specialized VM.

FIG. 2B shows a flowchart for generating backup stripe
parity calculations in accordance with one or more embodi-
ments of the invention. The method shown in FIG. 2B may
be performed by, for example, a specialized VM (104, FIG.
1). Other components of the system illustrated in FIG. 1 may
perform the method of FIG. 2B without departing from the
invention.

In step 220, characteristics of graphics processing units
(GPUs) of the host computing device are monitored. In one
or more embodiments of the invention, the characteristics
are monitored using performance information of each iden-
tified processing core of the GPUs. The performance infor-
mation may specify parameters of the GPUs. The parameters
may include hardware parameters and operating parameters.

In one or more embodiments of the invention, a hardware
parameter specifies a physical characteristic of a GPU. A
hardware parameter of a GPU may include, for example, a
number of functional processing cores, GPU-local memory,
and any interfaces between the processing cores and other
physical components of the host computing device (i.e., the
shared memory). The hardware parameters may include
additional and/or different information without departing
from the invention. The hardware parameters are stored by
the specialized VM.

In one or more embodiments of the invention, an oper-
ating parameter of a GPU may be a parameter that specifies
a processing capability of the physical components of the
GPU. The processing capability may be specified by, for
example, a processing speed, the current availability of the
identified processing cores (i.e., the use of the identified
processing cores), clock cycles, and/or other characteristics

US 11,119,803 B2

9

without departing from the invention. The operating param-
eters are stored by the specialized VM.

In one or more embodiments of the invention, the spe-
cialized VM may periodically perform tests on the GPUs to
update the operating parameters. The tests may include, for
example, sending a request to process a predetermined
amount of data and recording the time taken to perform the
requested task. The GPUs may also be periodically polled to
determine the current processing load on the GPU.

Continuing with the discussion of FIG. 2B. in step 222, a
determination is made about whether an offload request is
obtained. If an offload request is obtained, the method
proceeds to step 226; otherwise, the method proceeds to step
224.

In step 224, the specialized VM waits for a period to time.
The specialized VM may wait until the period of time
expires and then proceed back to step 220. However, if an
offload request is received during the aforementioned period
of time, then the process may proceed to step 226. Further,
in the scenario, while step 220 is shown as being performed
sequentially prior to steps 222, 226, 228, and 230, steps 222,
226, 228, and 230 may be performed in parallel to step 220
such that the specialized VMs are continuously/periodically
obtaining updated operating parameters from the GPUs
while at the same time processing the received offload
requests.

Continuing with the discussion of FIG. 2B. in step 226,
data associated with the offload request is obtained from
shared memory. In one or more embodiments of the inven-
tion, the data is obtained using references specified in the
offload request.

In step 228, parity processing is performed using one or
more graphics processing units (GPUs). In one or more
embodiments of the invention, the parity processing
includes the specialized VM sending instructions to the
GPUs for processing data stored in shared memory. The
instructions may each include a logical and/or physical
address(es) that specify a location(s) of the data in the shared
memory. The GPUs may use the logical and/or physical
address(es) to obtain the data.

The GPUs, following the instructions, may group the data
chunks associated with the backup request into groups and
perform a parity processing on the grouped data chunks to
obtain a result. The result may be one or more parity values.
As discussed above, the grouping of the data chunks and the
number of parity values obtained may be based on the
erasure coding algorithm that is being used as part of the
parity processing. The result (e.g., a parity value(s)) may be
stored in shared memory.

In one or more embodiments of the invention, the instruc-
tions for performing the parity processing are based on the
monitoring performed on the GPUs. See e.g., FIG. 2B, Step
220. The specialized VMs use the information obtained from
the monitoring to determine which GPU(s) to use to perform
the parity processing. The processing requests may be sent
to one or more specific GPUs based on the analysis of the
monitored characteristics. For example, a GPU with a larger
number of functional processing cores that are not currently
being used may perform a larger portion of the parity
processing than a GPU with fewer functional processing
cores. In another example, a GPU supports a greater level of
parallelization may be used over a GPU that supports a
relatively lower level of parallelization.

In step 230, a notification is sent to the host OS of
completion of parity processing. In one or more embodi-
ments of the invention, the specialized VM store the calcu-
lated parity values (e.g., in the form of parity chunks) in the

10

15

20

25

30

35

40

45

50

55

60

65

10

shared memory. The specialized VM subsequently sends a
notification to the host that the parity processing is complete.
The notification may include addresses (logical or other-
wise) that specify the data chunks and related parity chunks
stored in the shared memory.

In one embodiment of the invention, the GPUs may also
be used to perform parity processing as part of regenerating
at least one data chunk in a corrupted backup stripe. In such
scenarios, a backup stripe (which includes data chunks and
a parity chunk(s)) is obtained from storage and temporarily
stored in the shared memory. A determination may then be
made, e.g., by the host OS that at least one data chunk in the
backup stripe is corrupted. This determination may be made
using, e.g., an error corroding code (ECC) or another
mechanism, which may be used to determine whether the
data chunk is corrupted. Once a determination is made that
a given data chunk is corrupted, a recovery request may be
sent (via the offload component) to a specialized VM. The
specialized VM may select a GPU(s) based on the monitored
characteristics (see e.g., FIG. 2B) and then issue a request to
the GPU to use the parity value(s) in the backup stripe to
regenerate the corrupted data chunk. The regenerated data
chunk (which is not corrupted) is stored in the shared
memory. The Host OS may obtain the regenerated data
chunk from the shared memory and then subsequently
provide it (along with the other data chunks from the backup
stripe) to the client VM.

Following step 230, the process may end, proceed to step
220, or proceed to step 222.

Example

The following section describes an example. The
example, illustrated in FIG. 3, is not intended to limit the
invention. Turning to the example, consider a scenario in
which a client VM (302A) requests a backup stored in the
backup storage (350) to be protected using RAID. The host
computing device (300) may perform actions (labeled in
FIG. 3 using numbered circles) based on the methods of
FIGS. 2A-2B. The actions are described below.

The client VM (302A) sends a backup stripe request to the
host OS (310) [1]. The host OS (310) stores data associated
with the backup stripe request in shared memory (324) [2].
The host OS (310), after obtaining the backup stripe request,
performs the method of FIG. 2A to determine that it should
offload the parity processing. The host OS (310) subse-
quently offloads the parity processing by using an offload
component (312) to send an offload request to a specialized
VM (304M) to perform parity processing [3].

At a prior point in time, the specialized VM monitors
characteristics of GPUs (326) to identify performance capa-
bilities of the GPUs (326). The specialized VM (304M) may
use the performance capabilities to identity the GPUs (326)
capable of performing the parity calculations after obtaining
the offload request. The specialized VM (304) may send
instructions to the GPUs (326) for performing the parity
calculations [4]. The instructions may include references to
the data that the GPUs (326) may use as input for the parity
processing. The GPUs (326) may obtain the aforementioned
data using the references and implement an erasure coding
algorithm (e.g., RAID-7) when calculating the parity values
[5]-

After completing the parity calculations, the GPUs (326)
store the parity values in the shared memory (324) [6]. The
GPUs may notify the specialized VM (304M) of the com-
pleted parity processing [7]. The specialized VM (304M)
may notify the host OS (310) of completed parity processing

US 11,119,803 B2

11

[8]. The notification may include logical addresses in which
the data (also referred to as data chunks) and the associated
parity value(s) (which may be referred to a parity chunks)
are stored in the shared memory (324). The host OS (310)
may use the addresses obtain the data chunks and parity
chunk(s), collectively referred to as a backup stripe [9]. The
host OS may store the backup stripe in the backup storage
device (350) based on the erasure coding algorithm imple-
mented [10]. More specifically, the erasure coding algorithm
may specify the disks of the backup storage device (350) in
which to store the data chunks and parity chunk(s).

End of Example

As discussed above, embodiments of the invention may
be implemented using computing devices. FIG. 4 shows a
diagram of a computing device in accordance with one or
more embodiments of the invention. The computing device
(400) may include one or more computer processors (402),
non-persistent storage (404) (e.g., volatile memory, such as
random access memory (RAM), cache memory), persistent
storage (406) (e.g., a hard disk, an optical drive such as a
compact disk (CD) drive or digital versatile disk (DVD)
drive, a flash memory, etc.), a communication interface
(412) (e.g., Bluetooth interface, infrared interface, network
interface, optical interface, etc.), input devices (410), output
devices (408), and numerous other elements (not shown)
and functionalities. Each of these components is described
below.

In one embodiment of the invention, the computer pro-
cessor(s) (402) may be an integrated circuit for processing
instructions. For example, the computer processor(s) may be
one or more cores or micro-cores of a processor. The
computing device (400) may also include one or more input
devices (410), such as a touchscreen, keyboard, mouse,
microphone, touchpad, electronic pen, or any other type of
input device. Further, the communication interface (412)
may include an integrated circuit for connecting the com-
puting device (400) to a network (not shown) (e.g., a local
area network (LAN), a wide area network (WAN) such as
the Internet, mobile network, or any other type of network)
and/or to another device, such as another computing device.

In one embodiment of the invention, the computing
device (400) may include one or more output devices (408),
such as a screen (e.g., a liquid crystal display (LCD), a
plasma display, touchscreen, cathode ray tube (CRT) moni-
tor, projector, or other display device), a printer, external
storage, or any other output device. One or more of the
output devices may be the same or different from the input
device(s). The input and output device(s) may be locally or
remotely connected to the computer processor(s) (402),
non-persistent storage (404), and persistent storage (406).
Many different types of computing devices exist, and the
aforementioned input and output device(s) may take other
forms.

One or more embodiments of the invention may be
implemented using instructions executed by one or more
processors of the data management device. Further, such
instructions may correspond to computer readable instruc-
tions that are stored on one or more non-transitory computer
readable mediums.

One or more embodiments of the invention may improve
the operation of one or more computing devices. More
specifically, embodiments of the invention improve the
delegation of performing specific operations during a
backup procedure by a computing device with multiple
processors each with varying capabilities.

10

15

20

25

30

35

40

45

50

55

60

65

12

A computing device may include a processor (e.g., a
CPU) that may be suited to perform a portion of operations
of a backup procedure that involves a small number of
complex computations. The backup procedure may include
performing large numbers of simple, arithmetic calculations.
Embodiments of the invention may offload the large number
of simple calculations to graphics processing units. Because
the GPUs include a larger number of processing cores
compared to a CPU, the GPU may be suited to more
efficiently complete the larger number of simple calcula-
tions.

Thus, embodiments of the invention may address the
problem of inefficient use of computing resources. This
problem arises due to the technological nature of the envi-
ronment in which backup policies are implemented.

The problems discussed above should be understood as
being examples of problems solved by embodiments of the
invention disclosed herein and the invention should not be
limited to solving the same/similar problems. The disclosed
invention is broadly applicable to address a range of prob-
lems beyond those discussed herein.

While the invention has been described above with
respect to a limited number of embodiments, those skilled in
the art, having the benefit of this disclosure, will appreciate
that other embodiments can be devised which do not depart
from the scope of the invention as disclosed herein. Accord-
ingly, the scope of the invention should be limited only by
the attached claims.

What is claimed is:
1. A method for processing data, the method comprising:
monitoring, by a virtual machine (VM), a plurality of
computing resources;
receiving an offload request by the VM, wherein the
offload request is obtained from an offload component
executing in a host operating system;
selecting, based on the monitoring, a computing resource
from the plurality of computing resources;
issuing, by the VM and in response to the offload request,
a processing request to the computing resource,
wherein the processing request comprises a reference to
data;
servicing, by the computing resource, the processing
request,
wherein the computing resource is a graphics process-
ing unit (GPU) and servicing the processing request
comprises:
obtaining the data from shared memory using the
reference to the data;
generating a result using the data, wherein the result is
a parity value; and
storing the result in the shared memory;
obtaining, by the host operating system, the result from
the shared memory;
combining the result with the data to obtain an updated
result;
providing the updated result to an external computing
device,
wherein the VM, the host operating system, and the
plurality of computing resources are executing on a
computing device, and
wherein the VM interacts with the computing resources of
the computing device without using the host operating
system.
2. The method of claim 1, wherein the offload request is
issued in response to a client request issued by a second VM
executing on the host operating system.

US 11,119,803 B2

13

3. The method of claim 1, wherein monitoring comprises
obtaining a hardware parameter or an operating parameter
for each of the plurality of computing resources.

4. A system, comprising:

a processor;

a shared memory;

a plurality of computing resources;

memory comprising instructions, which when executed

by the processor, perform a method, the method com-

prising:

monitoring, by a virtual machine (VM) executing on
the processor, the plurality of computing resources;

receiving an offload request by the VM, wherein the
offload request is obtained from an offload compo-
nent executing in a host operating system;

selecting, based on the monitoring, a computing
resource from the plurality of computing resources;

issuing, by the VM and in response to the offload
request, a processing request to the computing
resource, wherein the processing request comprises a
reference to data;

servicing, by the computing resource, the processing
request, wherein the computing resource is a graph-
ics processing unit (GPU) and servicing the process-
ing request comprises:
obtaining the data from the shared memory using the

reference to the data;
generating a result using the data, wherein the result
is a parity value; and

storing the result in the shared memory;

obtaining, by the host operating system, the result from
the shared memory;

combining the result with the data to obtain an updated
result; and

providing the updated result to an external computing
device,

wherein the VM interacts with the computing resources
of the computing device without using the host
operating system.

5. The system of claim 4, wherein the offload request is
issued in response to a client request issued by a second VM
executing on the host operating system.

10

15

20

25

30

35

40

14

6. The system of claim 4, wherein monitoring comprises
obtaining a hardware parameter or an operating parameter
for each of the plurality of computing resources.

7. A non-transitory computer readable medium compris-
ing computer readable program code, which when executed
by a computer processor enables the computer processor to
perform a method, the method comprising:

monitoring, by a virtual machine (VM), a plurality of

computing resources;

receiving an offload request by the VM, wherein the

offload request is obtained from an offload component
executing in a host operating system;

selecting, based on the monitoring, a computing resource

from the plurality of computing resources;

issuing, by the VM and in response to the offload request,

a processing request to the computing resource,
wherein the processing request comprises a reference to
data;

servicing, by the computing resource, the processing

request,

wherein the computing resource is a graphics process-
ing unit (GPU) and servicing the processing request
comprises:

obtaining the data from a shared memory using the
reference to the data;

generating a result using the data, wherein the result is
a parity value; and

storing the result in the shared memory;

obtaining, by the host operating system, the result from

the shared memory;

combining the result with the data to obtain an updated

result;

providing the updated result to an external computing

device,

wherein the VM, the host operating system, and the

plurality of computing resources are executing on a
computing device, and

wherein the VM interacts with the computing resources of

the computing device without using the host operating
system.

