
US008387015B2

(12) United States Patent (10) Patent No.: US 8,387,015 B2
Christensen et al. (45) Date of Patent: Feb. 26, 2013

(54) SCALABLE AUTOMATED EMPIRICAL 2005/0021687 A1* 1/2005 Anastassopoulos et al. .. 709/220
TESTING OF MEDIA FILES ON MEDIA 2005.0034103 A1 2/2005 Volkov 717/124
PLAYERS 2006/0069795 A1* 3/2006 Tierney et al. ... TO9,231

2006/0107121 A1* 5/2006 Mendrala et al. T14? 38
2006, O136578 A1 6/2006 Cowell TO9,223

(75) Inventors: Russell D. Christensen, Redmond, WA 2006/0253741 A1* 11/2006 Garakani T14? 38
(US); Jun Ma, Bellevue, WA (US); 2006, O2596.29 A1* 11, 2006 USmani et al. . 709/227
Thomas M. Soemo, Redmond, WA (US) 2007/0028220 A1* 2, 2007 Miller et al. ... T17,124

s s 2007/0113225 A1* 5, 2007 Felts 717/172
2007. O1572.74 A1* 7, 2007 Chiu ... 725, 107

(73) Assignee: Mision Corporation, Redmond, WA 2007/01691 15 A1 7/2007 Ko et al. 717/174

(Continued)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 1185 days. Daniel Schonberg et al., “Fingerprinting and Forensic Analysis of

21) Appl. No.: 12/O23,330 Multimedia', 2004 ACM, pp. 788-795, <http://dl.acm.org/citation.
(21) Appl. No.: 9 cfm?id=1027712>.

(22) Filed: Jan. 31, 2008 (Continued)

(65) Prior Publication Data Primary Examiner — Thuy Dao
US 2009/O198484A1 Aug. 6, 2009 Assistant Examiner — Cuong V Luu

(74) Attorney, Agent, or Firm — Woodcock Washburn LLP
(51) Int. Cl.

G06F 9/44 (2006.01) (57) ABSTRACT
(52) U.S. Cl. 717/124; 717/127; 717/128 Scalable empirical testing of media file playback utilizes test
(58) Field of Classification Search None hooks in each media player to support simulated human inter

See application file for complete search history. action and playback monitoring. A media crawler catalogs
media files accumulated in a media file database to create a

(56) References Cited wordlist. One or more scalable instances of media tester
accesses the wordlist to select items of work linked to media

U.S. PATENT DOCUMENTS files. Work items and/or operating modes of media tester
5,428,730 A * 6/1995 Baker et al. 715,740 specify test parameters such as performance profiles or fur
S. A f E. S. et al." 39,li ther define testing Such as specifying repetitious playback on
ww- alle C al.

6,789,123 B2 9/2004 Li TO9,231 I sy media E. Melis tally
6,948,153 B2 * 9/2005 Bowers 717/124 played by a scalable number of media players. Playbac
7,010,598 B2 3/2006 Sitaraman TO9,224 performance is monitored, analyzed and reported. Failure
7,151,749 B2 12/2006 Vega-Garcia et al. ... 370,240.1 reports are accompanied by instructions to reproduce failures
7,197.557 B1 ck 3/2007 Asar TO9,224 and cross-references to content or source code in media files.
76. R: ck 3. sistant r 56. Failures can be audited by additional work items for follow
7.958,497 B1 * 6/2011 Lindo et al. 717/128 up testing.

2003, OO61305 A1 3/2003 Copley et al. 709/217
2004/0268319 A1* 12/2004 Tousignant 717 131 20 Claims, 6 Drawing Sheets

2OO

20 22

Media Runner f Media Player Y

U Location Test Hook
241 222

UNavigator
212

User input Testhook
242 223

Performance Monitor Performance Test Hoak
214 243 , 224

s Crash Monitor debugger
216 - 228

US 8,387,015 B2
Page 2

U.S. PATENT DOCUMENTS

2007/0282559 A1* 12, 2007 Liu TO2,124
2008/014 1221 A1* 6/2008 Benesovska et al. . 717,124
2008/0256394 A1* 10/2008 Rashevsky et al. 714,38
2009,0265692 A1* 10, 2009 Godefroid et al. 717/128

OTHER PUBLICATIONS

T. N. Niranjanetal, “Implementation and Evaluation of a Multimedia
File System”, 1997 IEEE, pp. 269-276, <http://ieeexplore.ieee.org/
stampfstamp.jsp?tp=&arnumber=609602>.*
Liu Wenyin et al. "Ubiquitous media agents: a framework for man
aging personally accumulated multimedia files', 2003 Springer, pp.
144-156, <http://www.springerlink.com/content/
dgbpmó38.a6balvwy/>.*

Ling Chen et al., “EmoPlayer: A media player for video clips with
affective annotations', 2007 Elsevier B.V., pp. 17-28, <http://www.
sciencedirect.com/science/article?pii/SO953543807000355>.*
Boris Rogge etal, “Timing Issues in Multimedia Formats: Review of
the Principles and Comparison of Existing Formats', 2004 IEEE, pp.
910-924, <http://ieeexplore.ieee.org/stampfstamp.jsp?tp
&arnumber=135987OD.
M. G. Kienzle et al., “Multimedia file serving with the OS/390 LAN
Server', 1997 IBM system journal, pp. 374-392. <http://ieeexplore.
ieee.org/stamp? stamp.jsp?tp=&arnumber=5387161 >.*
Berger, S., “Measuring and Monitoring Streaming Media Quality”.
Sep. 8, 2004. http://www.streamingmedia.com, 1 page.
"Optimizing Video Quality for Windows XP Media Center Edition'.
Windows Platform Design Notes, Draft Feb. 8, 2005, 44 pages.

* cited by examiner

U.S. Patent Feb. 26, 2013 Sheet 1 of 6 US 8,387,015 B2

100

138

Media Crawler
125

Test Database
135

Media File Database
130

137

Media Tester
110

Media Players
120

FIGURE 1

U.S. Patent Feb. 26, 2013 Sheet 2 of 6 US 8,387,015 B2

200

U Location Test Hook
222

UI Navigator
212

User input Test Hook
223

Performance Monitor K Performance Test Hook
214 224

Crash Monitor Debugger
216 226

FIGURE 2

387,015 B2 Sheet 3 of 6 US 8, 2013 Feb. 26 U.S. Patent

ZZ9

009

U.S. Patent Feb. 26, 2013 Sheet 4 of 6 US 8,387,015 B2

DASHBOARD N
A NOT
(ACTIVE 400

PROGRAM /

\ - - -
451

- XBOXLIVE (GAMES
(BLADE BLADE

415

VIDEO FILE \
SELECTION
SCREEN

440

...)
FIGURE 4

U.S. Patent Feb. 26, 2013 Sheet 5 of 6 US 8,387,015 B2

Game Console 500

VIDEO
ENCODER

VIDEO CODEC

CENTRAL PROCESSING UNIT 501

LEVEL 1 CACHE LEVEL 2 CACHE GRAPHICS
PROCESSING

502 504 UNIT

ROM 508

506

MEMORY
CONTROLLER

SYSTEM POWER
SUPPLY MODULE

536 510

SYSTEM

IO
CONTROLLER

520

USB
CONTROLLER

526

MANAGEMENT
CONTROLLER

522

FRONT PANEL
I/O

SUBASSEMBLY
530

USB
CONTROLLER

528

FIGURE 5

US 8,387,015 B2
1.

SCALABLE AUTOMATED EMPIRICAL
TESTING OF MEDA FLES ON MEDIA

PLAYERS

TECHNICAL FIELD

The technical field relates generally to automated testing
and, more specifically, to Scalable automated empirical test
ing of media files on media players.

BACKGROUND

Media players such as game consoles, computers, video
players, and cellular telephones are usually capable of play
ing a number of media files such as movies, music and pic
tures stored in multiple formats. Media players and media
files are usually created independent of one another, although
with generic compatibility in mind. However, compliance
with standards and specifications is not always Sufficient to
guarantee compatibility or the absence of defects. To guaran
tee accurate playback of media files on media players, some
form of empirical testing may be necessary to detect any
incompatibilities or defects in the media files and/or media
players.

For quality assurance purposes, it is desirable for Volumi
nous content service providers such as Microsoft Corporation
to ensure that the many media files it serves to customers, e.g.,
through Internet accessible XBOX LIVE and XBOX LIVE
Marketplace located at http://www.xbox.com, will playback
properly on Microsoft's XBOX 360 gaming console or other
supported media player. XBOX, XBOX 360, and XBOX
LIVE are registered trademarks of Microsoft Corporation,
One Microsoft Way, Redmond, Wash. 98052-6399. XBOX
LIVE is a full spectrum online gaming and entertainment
service. Besides providing online multiplayer gaming,
through XBOX LIVE and XBOX LIVE Marketplace, cus
tomers can download purchased and promotional content to
their XBOX 360 hard drive, computer or other media player,
including high definition and standard definition television
shows, movies, gaming videos, music videos, short feature
films, video games, dashboard themes, slideshows, gamer
pictures, game trailers/demos, movies, game content Such as
new maps, weapons, levels, characters, challenges, expan
sions, arcade games, demos and trailers. The thousands of
media files available on XBOX LIVE may be produced by
Microsoft and many other companies.

While human screeners may review playback of media
files on various playback devices such as the XBOX 360,
reliance on humans has inherent limitations, including physi
cal and mental fatigue, forgetfulness, and inconsistency. For
example, a human screener may doze off or otherwise fail to
pay attention periodically during playback or may forget to
pause playback during a break. Humans may also suffer eye
strain while critically reviewing media file playback hours on
end. Further, perceptions of playback may vary from one
human to the next. Further still, time and budgetary con
straints make it nearly impossible to review all media files,
especially after every hardware, firmware or software
improvement to playback devices. In short, as the Volume of
media content grows, it becomes more and more infeasible to
manage content validity. Thus, at present, too much reliance
on quality assurance is left to customer reporting.

SUMMARY

This Summary is provided to introduce a selection of con
cepts in a simplified form that are further described below in

10

15

25

30

35

40

45

50

55

60

65

2
the Detailed Description Of Illustrative Embodiments. This
Summary is not intended to identify key features or essential
features of the claimed subject matter, nor is it intended to be
used to limit the scope of the claimed subject matter.

Scalable empirical automated testing of voluminous media
files on media players is accomplished by utilizing test hooks
in each media player and/or in accessory devices such as
game controllers or remote controls communicatively
coupled to each media player to Support simulated human
interaction and playback monitoring. The Scalable test envi
ronment may be centralized or distributed. Media files requir
ing testing may be accumulated in a media file database. A
media crawler may catalog media files stored in the media file
database to create a wordlist. A scalable number of instances
of a media tester program may access the wordlist to select
items of work linked to media files. Selection of work items
may be done randomly or by checkout to avoid collisions with
other instances of the media tester program. Work items and/
or operating modes of media tester may specify test param
eters such as performance profiles or further define testing
Such as by specifying repetitious playback on one or more
media players. Media files are downloaded to and played by
a scalable number of media players. Simulated human inter
action with media players to play media files may involve
simulating human inputs necessary to load media files and
navigate menus. Media applications such as games may be
accompanied by Supporting information used during testing
to simulate human interaction with an input device such as a
game controller or remote control in order to simulate, for
example, a human playing a movie or video game. Media file
playback or media application execution performance may be
monitored, analyzed and reported. Failure reports may be
accompanied by instructions to reproduce failures and cross
references to content and/or source code. Failures may be
audited by follow-up testing.

Empirical testing offers very useful real-world feedback
because testing closely follows scenarios that customers fol
low while playing media files or media applications. Auto
mated empirical testing navigates the same user interface,
triggers the same code paths on the same hardware and results
in the same memory footprints experienced by media players
used by customers. As such, empirical test results are more
realistic and useful than emulation test results. A Scalable
empirical testing system with ones, tens, hundreds or more
media players operating 24 hours per day 365 days per year
permits content providers to process large Volumes of media
files in short periods of time, which permits greater flexibility
in making Software improvements to media players. A scal
able empirical testing system permits testing throughout
development and production of hardware and software builds
of media players. A scalable empirical testing system also
removes the burden of testing from customers, increases the
level of confidence customers have in downloaded content
and, ultimately, improves the quality reputation of content
service providers having Such a system.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following detailed
description, is better understood when read in conjunction
with the appended drawings. For the purpose of illustrating
Scalable automated empirical testing of media files on media
players, there is shown in the drawings exemplary construc
tions thereof; however, Scalable automated empirical testing
of media files on media players is not limited to the specific
methods and instrumentalities disclosed.

US 8,387,015 B2
3

FIG. 1 is a block diagram of an exemplary system in which
Scalable automated empirical testing of media files on media
players can be implemented.

FIG. 2 illustrates exemplary configurations of and interface
between a media player and media tester

FIG. 3 illustrates an exemplary communication between
media player and media tester.

FIG. 4 illustrates an exemplary navigation through a menu
system.

FIG. 5 is a block diagram of an exemplary game console in
which various aspects of scalable automated empirical testing
of media files on media players can be implemented.

FIG. 6 is a block diagram of an exemplary computing
environment in which various aspects of Scalable automated
empirical testing of media files on media players can be
implemented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Reference will now be made in detail to embodiments of
the present technology for Scalable automated empirical test
ing of media files on media players, examples of which are
illustrated in the accompanying drawings. While the technol
ogy for Scalable automated empirical testing of media files on
media players will be described in conjunction with various
embodiments, it will be understood that they are not intended
to limit the present technology for Scalable automated empiri
cal testing of media files on media players to these embodi
ments. On the contrary, the presented technology for Scalable
automated empirical testing of media files on media players is
intended to cover alternatives, modifications, and equiva
lents, which may be included within the spirit and scope the
various embodiments as defined by the appended claims.
Furthermore, in the following detailed description, numerous
specific details are set forth in order to provide a thorough
understanding of the present technology for scalable auto
mated empirical testing of media files on media players.
However, the present technology for scalable automated
empirical testing of media files on media players may be
practiced without these specific details. In other instances,
well known methods, procedures, components, and circuits
have not been described in detail as not to unnecessarily
obscure aspects of the present embodiments.

Unless specifically stated otherwise as apparent from the
following discussions, it is appreciated that throughout the
present detailed description, discussions utilizing terms such
as "opening”, “determining”, “sequencing”, “reading.
“loading”, “overriding”, “writing”, “creating”, “including,
“comparing”, “receiving”, “providing', 'generating”, “asso
ciating, and “arranging, or the like, refer to the actions and
processes of a computer system or similar electronic comput
ing device. The computer system or similar electronic com
puting device manipulates and transforms data represented as
physical (electronic) quantities within the computer systems
registers and memories into other data similarly represented
as physical quantities within the computer system memories
or registers or other such information storage, transmission,
or display devices. The present technology for Scalable auto
mated empirical testing of media files on media players is also
well Suited to the use of other computer systems such as, for
example, optical and mechanical computers. Additionally, it
should be understood that in embodiments of the present
technology for Scalable automated empirical testing of media
files on media players, one or more of the steps can be per
formed manually.

10

15

25

30

35

40

45

50

55

60

65

4
Overview of Terminology
The following terms should be considered in light of the

following overviews provided for them as well as the context
in which they appear.
Media file: computerized information accessible by one or

more media players or software programs running thereon
that is used by a media player to generate audible, visual or
other sensory information.
Media content: a media file or media application/program

Such as a video game.
Media player: any device capable of accessing one or more

media files and having at least one integrated audible, visual
or other sensory presentation device or at least one output
thereto. Media Player includes, but is not limited to, fixed or
portable game consoles, computers, audio and/or video play
ers, cellular telephones. Some media players, such as XBOX
360, are able to access media content, e.g., play media files
and execute media applications.

Failure: Any unintended sensory presentation or other per
formance flaw falling outside a desired performance profile
relating to access to a media file by a media player. A failure
may occur in media player hardware, firmware, operating
system, application, etc. or in media file or media application.

Scalable empirical automated testing of voluminous media
files on media players is accomplished by utilizing test hooks
in each media player and/or in accessory devices such as
game controllers or remote controls communicatively
coupled to each media player to Support simulated human
interaction and playback monitoring. The Scalable test envi
ronment may be centralized or distributed. Media files requir
ing testing may be accumulated in a media file database. A
media crawler may catalog media files stored in the media file
database to create a work item list. A work item list can
comprise list of test cases that can be stored in a database or
the like (e.g., SQL database) for query access. One or more
instances of a mediatesterprogram may access the wordlist to
select items of work linked to media files. Selection of work
items may be done randomly or by checkout to avoid colli
sions with other instances of the media tester program. Work
items and/or operating modes of mediatester may specify test
parameters such as performance profiles or further define
testing Such as by specifying repetitious playback on one or
more media players. Media files are downloaded to and
played by one or more media players. Simulated human inter
action with media players to play media files may involve
simulating human inputs necessary to load media files and
navigate menus. Media applications such as games may be
accompanied by Supporting information used during testing
to simulate human interaction with an input device such as a
game controller or remote control in order to simulate, for
example, a human playing a video game. Media file playback
or media application execution performance may be moni
tored, analyzed and reported. Failure reports may be accom
panied by instructions to reproduce failures and cross-refer
ences to content and/or source code. Failures may be audited
by follow-up testing.

FIG. 1 is a block diagram of an exemplary system in which
Scalable automated empirical testing of media files on media
players can be implemented. Numerous components have
been simplified or omitted from FIG. 1 in order to focus on
selected features of Scalable automated empirical testing of
media files on media players. In the embodiment shown in
FIG. 1, empirical testing system 100 comprises at least one
instance of media tester 110, a scalable number of media
players 120, media crawler 125, media file store 130 and test
database 135. Media players 120 is referenced in the singular,
as in media player 120 as well as in the plural media players
120. It is to be understood that the configuration of the scal

US 8,387,015 B2
5

able empirical testing system 100 depicted in FIG. 1 is not
limited thereto. For example, each of the components of the
Scalable empirical testing system 100 can comprise a single
processor or multiple processors. And, each of the compo
nents can be configured as a centralized component and/or a 5
distributed component. Further, the scalable empirical testing
system 100 can be configured as a centralized computing
environment and/or a distributed computing environment.

Media tester 110 comprises at least one instance of a media
tester program executed by one or more computer systems 10
such as the generic computing system 600 shown in FIG. 6.
Media crawler 125 comprises at least one instance of a media
crawler program executed by one or more computer systems
such as the generic computing system 600 shown in FIG. 6. In
some embodiments media crawler 125 may be merged with 15
media tester 110 in a single computer system. Media players
120 comprises a Scalable number of computer systems, such
as the generic computing system 600 shown in FIG. 6, or
other media players capable of playing media files used for
testing. For example, as shown in FIG. 1, media players 120 20
comprises a plurality of XBOX360 game consoles, each with
an accompanying game controller as a user interface, which is
described in greater detail with regard to the exemplary game
console 500 shown in FIG. 5. Media players 120 may com
prise any number of media players, each of which may be the 25
same or different. For example, in some embodiments there
may be multiple banks of media players, each comprising a
different version of a similar media player or entirely differ
ent media players. Accordingly, each instance of mediatester
110 may be configured to communicate with a particular 30
media player 120. Although not required, in Some embodi
ments each media player 120 is communicatively coupled to
at least one accessory input device Such as a keyboard, mouse,
game controller, or remote control. As will be discussed in
greater detail, in some embodiments media tester 110 may 35
utilize test hooks in Such input devices in addition to or in lieu
of test hooks in a base unit of media players 120 in order to
simulate human interaction. Test database 135 and media file
database 130 may be centralized or distributed among one or
more memory devices internal or external to media crawler 40
125 and media tester 110.

Although interconnectivity may vary greatly among
embodiments of Scalable automated empirical testing of
media files on media players, in the embodiment shown in
FIG. 1, media tester 110 is communicatively coupled to 45
media players 120 by communication link 136, media tester
110 is communicatively coupled to media file database 130
by communication link 137, media file database 130 is com
municatively coupled to media crawler 125 by communica
tion link 138, media crawler 125 is communicatively coupled 50
to test database 135 by communication link 139 and test
database 135 is communicatively coupled to mediatester 110
by communication link 140. Each communication link 136
140 may comprise any one or a combination of the well
known communication links such as an internal bus, localized 55
bus, private network or public network (e.g., Internet). Com
munication links 136-140 may comprise a single network or
a combination of networks. Similarly, the type of communi
cation on communication links 136-140 may be any of the
well-known wired or wireless protocols. Those of ordinary 60
skill in the art will recognize many interconnectivity alterna
tives to the one shown in FIG. 1. For example, in some
embodiments communication links 138 and 140 may com
prise local bus connections, communication links 137 and
139 may not exist and, instead, media tester 110 and media 65
crawler 125 may be communicatively coupled by a commu
nication link (not shown). Further still, the components

6
shown in FIG.1 may be rearranged in various embodiments
of Scalable automated empirical testing of media files on
media players which, in turn, would rearrange or eliminate
communication links 136-140. For example, in some
embodiments media crawler 125 may be merged with media
tester 110 in a single computer system.
Media files used for testing playback on media players 120

may be stored in media file database 130. Media files stored in
media file database 130 may number in the tens, hundreds,
thousands, tens of thousands or more. Media crawler 125 may
catalog media files stored in media file database 130 in order
to create a test wordlist. Media crawler 125 may run periodi
cally or upon request to catalog new media files added to
media file database 130. Each work item in the wordlist may
contain a link to a media file in media file database 130. Each
work item may also specify test parameters such as which
parameters to monitor and an acceptable performance profile
for one or more monitored parameters. Each work item may
also further define testing such as by specifying repetitious
playback on one or another specific number of media players
120.
One or more instances of media tester 110 may access the

wordlist to select an item of work. The ratio of instances of
mediatester 110 to media players 120 may be 1:1 or any other
ratio. Therefore, multiple instances of media tester 110 may
be simultaneously accessing a wordlist stored intest database
135. In some embodiments, items of work may be checked
out (e.g., registered) and/or randomly selected in order to
avoid collisions with other instances of media tester 110 that
may also be attempting to select work items. For tests requir
ing repetitive playback on one or more media players 120, in
some embodiments there may be one work item perplayback
in the wordlist while other embodiments may operate in a
different manner. For example, in some embodiments, work
items may specify playback testing details. In some embodi
ments, with a single instance or multiple instances of media
tester 110, media tester(s) 110 may interact with the number
of media players 120 called for in the work item. In embodi
ments with multiple instances of mediatester 110 that are able
to communicate with one another, a work item requiring
multiple media testers 120 may be handled by a first instance
of media tester 110 queuing work items with other instances
of media tester. In other embodiments, an instance of media
tester 110 may generate multiple work items from a single
work item, thereby updating a wordlist. In Such a case, an
instance of media tester 110 may assign a priority that other
instances of media tester 110 are required to process in
advance of other work items.
Media tester 110 may have multiple test modes. For

example, a first mode may test a media file once while a
second test mode may test a media file multiple times. In
Some embodiments, test modes may define the ratio of media
testers 110 to media players 120. In one test mode the ratio
may be 1:1 while in other modes it may be different. In some
embodiments test modes may be modified by work items,
e.g., the ratio may change in response to a work item requiring
repetitive play on multiple media players 120. Multiple test
modes is one way to permit dynamic scaling of the testing
system. Each instance of media tester 110 may have multiple
operating modes independent of other instances. In addition
to or in lieu of specification in each work item, each operating
mode of each instance of media tester 110 may specify test
parameters and their acceptable performance profiles or fur
ther define testing Such as by specifying repetitious playback
on one or more media players. As further examples, in one test
mode mediatester 110 may randomly select work items while
in others it may check out work items. In some embodiments

US 8,387,015 B2
7

media tester 110 may register with test database 135 when is
starts testing a media file. Thus, test modes may be used for
many reasons including, but not limited to, avoiding colli
sions, maximizing processing of work items, avoiding Satu
ration of instances of media tester 110, avoiding unnecessary
duplicative testing, etc.

While processing a work item in preparation for testing, an
instance of media tester 110 may acquire and download the
associated media file to one or more media players 120 in
accordance with test directives specified in the work item, an
operating mode, or elsewhere. One reason for repetitive test
ing of a media file on one or more media players 120 may be
to audit previously identified failures, which may provide
further insight to the cause of failures, e.g., by determining
whether a failure is intermittent. In some embodiments,
downloads may be performed by simulating human interac
tion with media players 120. For example, through test hooks
in media player 120, media tester 110 may communicate the
information to media player 120 that would occur if a USB
memory device or other media type had been inserted into
media player 120 and a media file on the USB memory device
had been selected to copy and play or simply to play from the
USB memory device. Similarly, media tester 110 may com
municate the information to media player 120 that would
occur if a user had accessed XBOX LIVE, selected the media
file and downloaded it.

Following download to one or more media players 120, a
media file may be played by media players 120 using simu
lated human interaction with media players 120. The simu
lated human interaction may utilize test hooks in a base unit
(e.g., game console) and/or accessory unit (e.g., game con
troller, remote control) of media players 120. As such, simu
lated human interaction may be provided by media tester 110
to the base unit and/or accessory unit of media players 120.
Just as a person using media players 120 to play media files
would be, and in some embodiments, mediatester 110 is able
to control media players 120. In some embodiments, simu
lated human interaction with media players 120 to play media
files may involve providing to media player 120 the com
mands and data that it would receive if a user had actually
pressed a button or otherwise interacted with a user interface
to media player 120 such as a game controller or remote
control. For example, if a user is required to navigate a menu
using an input device in order to play a media file then each
step a user must take is simulated by providing commands
and/or data to media player 120. In some embodiments, it
may be necessary to first determine the existing State of media
player 120 in order to determine how to interact with media
player 120 to reach a desired state of media player 120. Once
the existing and desired states are known, media tester 110
may provide information, i.e., commands and/or data, to
media player 120 to navigate from the existing state to the
desired state. Repetitious play may involve other variations of
simulated human interaction in order to test aspects of media
players 120 and/or media file that may not be tested by other
simulated human interaction.

While a media file is being played by media player 120,
playback performance may be monitored, analyzed and
reported in accordance with test directives specified in the
work item, operating mode, or elsewhere. As well, in some
embodiments, parameters and performance profiles may be
fixed in media tester 110. However defined, the specific
parameters to be monitored and their acceptable performance
profiles are used to define the scope of monitoring and to
identify failures. Utilizing test hooks in media players 120,
media players 120 provide information about monitored
parameters. The information is tested against performance

10

15

25

30

35

40

45

50

55

60

65

8
profiles to identify failures. Some examples of failures may
include: (a) dropped frames, such as when samples in a media
file are being discarded because media player 120 cannot
keep up; (b) graphics completion events, e.g., Direct3DSwap
or D3D Present, exceeding frame rate, e.g., 16.67 mS at 60
Hz; (c) CPU core saturation; (d) playback exceeds length of
media file, which may indicate a playback slowdown, tem
porary lockup/soft hang or a permanent lock up/crash. Such
failures may be listed in a test report.

Test reports reporting the results of playback performance
monitoring may be stored, for example, in test database 135.
Test reports may be accompanied by instructions to repro
duce failures. They may also cross-reference each failure to
content in media files as well as the source code of the appli
cation running on media player 120 that played the media file
when the failure occurred. Information about a failure may be
reported based on whether a failure is known. New failures
may be treated differently from known failures in terms of the
amount of information provided in a report and whether and
to what extent to any files should accompany the report Such
as a call stack, debug spew and/or dump file providing the
contents of memory when the failure was encountered. Such
additional files may be most useful to debug crashes.

Failures may be analyzed before and/or after generation of
test reports. If analyzed prior to the generation of a report then
analyses may be incorporated therein. Failures may be ana
lyzed to categorize, rank, prioritize or assign them to a review
team or otherwise render a judgment pertaining to the fail
ures. Such analyses may also access additional information
from test database 135 concerning, for example, previous test
results in order to determine whether a failure is known or
new. Combining previous test results with new test results
may allow additional analyses. As previously noted, known
failures may lead to less data logging. Additionally, as previ
ously noted, failures may be audited by additional work items
for follow-up testing. In some embodiments, failures may
automatically generate additional work items for auditing. In
Some embodiments, the type of failure (e.g., its category, rank
or priority) may dictate the details of automated follow-up
testing such as the test parameters, performance profiles,
number of tests and the number of media players involved in
the follow-up testing. Such follow-up testing may help deter
mine whether a failure is persistent, intermittent or an
anomaly. Upon completing a test, an instance of media tester
110 may continue with Such follow-up testing or may recon
tact a test database 135 to select a new work item.

Irrespective of the timing of a failure audit immediately
after the test identifying the failure or at Subsequent time, as
where additional work item(s) is (are) automatically gener
ated from the failure or manually generated upon review and
routinely selected from the wordlist by media tester 110, a
failure audit may comprise running the same media file mul
tiple times on one or more media players 120 using the same
or different testing parameters, performance profiles and
simulated human interaction relative to the original test. The
auditing tests may be carried out in a similar procedure, e.g.,
providing the media file to one or more media players 120,
simulating human interaction with each media player 120,
playing the media file on each media player 120, monitoring
each media player 120 during playback of the media file,
reporting playback performance, including any failures that
occur, during playback of the media file on each media player
120 and perhaps analyzing and/or auditing any failures. To
avoid using the same media player(s) 120 for auditing, media
players 120 used to audit a failure may be randomly selected.

Test reports may be reviewed by one or more people or
teams. In embodiments where a list of review teams and logic

US 8,387,015 B2
9

to assign failures to them are known, media tester 110 may
assign failures to particular review teams. For example,
review teams may be selected by failure priority, failure cat
egory, software build of media player 120, and/or other facts.
For example, a crash failure may be assigned directly to a
development team without first involving a quality assurance
team, which may avoid unnecessary delay and expense.
Media tester 110 may be distributed to media player 110 and
media file developers to see failures reproduced firsthand.

In addition to media files, Scalable automated empirical
testing of media files on media players applies equally well to
media applications such as video games. However, media
applications may require more extensive simulated human
interaction with media players 120 to empirically test play
back. Work items for media applications such as games
requiring constant interaction to play may be accompanied by
Supporting files used during testing to simulate human inter
action with an input device Such as a game controller or
remote control. Performance monitoring of media applica
tions may be carried out in the same manner as with media
files, although failure reports may cross-reference failures to
Source code in media applications.

FIG. 2 illustrates exemplary configurations of and interface
between a media player and media tester in accordance with
an aspect of Scalable automated empirical testing of media
files on media players. As indicated in FIG. 2, numerous
components have been simplified or omitted from FIG. 2 in
order to focus on selected features of scalable automated
empirical testing of media files on media players. For
example, a controller portion of media tester 210 utilized to
select work items and acquire media files is not shown in
order to focus on exemplary communication between media
tester 210 and media player 220. Further, exemplary compo
nents in FIG. 2 may be merged or otherwise rearranged in
other embodiments of scalable automated empirical testing of
media files on media players. In the embodiment shown in
FIG. 2, exemplary test configuration 200 comprises media
tester 210 and media tester 220 as generally described in the
discussion of FIG. 1. Influencing the design of various
embodiments of Scalable automated empirical testing of
media files on media players is a primary objective of empiri
cal testing to closely approximate actual use of media player
220. Media tester 210 comprises user interface (“UI) navi
gator 212, performance monitor 214 and crash monitor 216.
Media player 220 comprises UI location test hook 222, user
input test hook 223, performance test hook 224 and debugger
226. UI navigator 212 is communicatively coupled to UI
location test hook 222 by communication link 241. UI navi
gator 212 is also communicatively coupled to at least one user
input test hook 223 by communication link 242. Performance
monitor 214 is communicatively coupled to performance test
hook 224 by communication link 243. Crash monitor 216 is
communicatively coupled to debugger 226 by communica
tion link 244.

Having downloaded a media file to media player 220,
mediatester 210 begins by finding out the existing state of the
menu system of media player 220. This may be done, for
example, through communication between UI navigator 212
and UI location test hook 222, which will be discussed in
greater detail with regard to FIG. 3. After the existing state of
the menu system of media player 220 has been determined,
UI navigator 212 can begin to move through the menu system
to a desired state to play the media file, an example of which
is shown in FIG. 4. This may be done, for example, through
communication between UI navigator 212 and user input test
hook 223 that simulates human interaction with at least one
user input to media player 220. As previously noted, there

5

10

15

25

30

35

40

45

50

55

60

65

10
may be one or more user input test hooks 223 in the base unit
(e.g., game console) or accessory (e.g., game controller,
remote control) of media player 220. User input test hooks
223 permit simulated human interaction with one or more
user inputs. User inputs may comprise, for example, any one
or more of the wide variety of ways that a human can interact
with the base unit or accessory to media player 220 through
human interface elements. Such as buttons, pads, paddles,
pedals and directional devices including, but not limited to,
directional pads, joysticks and wheels.

During playback of the media file, performance monitor
214 monitors selected information provided through perfor
mance test hook 224. Selected information provided through
performance test hook 224 may include, for example, video
frame processing, graphics completion events, CPU satura
tion and playback time. The information is tested against
performance profiles to identify failures. Some examples of
failures may include: (a) dropped frames, such as when
samples in a media file are being discarded because media
player 120 cannot keep up; (b) graphics completion events,
e.g., Direct3D Swap or D3D Present, exceeding frame rate,
e.g., 16.67 mSat 60Hz; (c) CPU core saturation; (d) playback
exceeds length of media file, which may indicate a playback
slowdown, temporary lockup/soft hang or a permanent lock
up/crash. As previously discussed, such failures may be listed
in a test report. Failures logged in the test report may include
instructions on how to reproduce the failures accompanied by
the locations in the media file where the failures were encoun
tered during playback. Performance monitor 214 may also
analyze failures, assign one or more review teams and insti
gate auditing of the failures, as previously discussed with
regard to FIG. 1. Basic failures may first be processed by a
quality assurance team to further rank or prioritize failures
depending on their impact on customers. A development team
may be assigned more serious priority failures without delay.

Crash monitor 216 watches for catastrophic type failures
by monitoring information provided through debugger 226.
Upon a crash, in Some embodiments crash monitor 216 may
log all information logged by performance monitor 214 plus
pertinent information useful to developers to diagnose and
Solve such catastrophic failures. In some embodiments, crash
monitor 216 may consult test database 135 to determine
whether a crash failure is known or not. If the crash failure is
new then, in some embodiments, the full contents of memory
in media player 220 are saved into a full dump file that can be
available along with the test report on test database 135. A
developer may load the dump file into Visual Studio or a
similar debugging tool to help diagnose the crash failure.
Crash monitor 216 may also cross reference a crash failure the
Source code of the application running on media player 220
that was playing the media file. Crash monitor 216 may also
log in the test report where the crash occurred in the media file
along with the call Stack of the crash and pertinent contents of
debugger 226. In situations where a crash failure is known,
reduced failure logging may be performed by crash monitor
216 So long as the results can be audited and reproduced.
Reduced logging for known failures may comprise saving a
mini-dump file instead of a full dump file. Crash failures may
be logged as code defect bugs and automatically assigned to
a development team without quality assurance team review,
which saves time and expense.
As shown, monitoring happens in the same end-to-end

environment used by consumers rather than in a disjointed or
separate test harness. An example of why this is a Superior
method of testing pertains to the interaction between media
playback and the user interface of media player 220. There are
failure situations where performance monitor 214 and crash

US 8,387,015 B2
11

monitor 216 report Success because a media file played back
fine even though information was not properly communicated
to the user interface causing media player 220 to lock up. In
embodiments of Scalable automated empirical testing of
media files on media players, UI navigator 212 can accurately
log this scenario as a failure.

FIG. 3 illustrates an exemplary communication between
media player and mediatester in accordance with an aspect of
Scalable automated empirical testing of media files on media
players. Unless always beginning from a known location,
Such as following a reset, in order to navigate the menu
system in media player 320, UI navigator 312 must identify
the menu system its existing State in media player 320. In
order to determine the existing state of the menu system, UI
navigator 316 may send a command to UI location test hook
326 requiring media player 320 to identify the existing state
of the menu system. Command inquiry 345 may beformatted
as shown in FIG. 3, “dash! WhereAm I.” The portion of the
command “dash, as in the XBOXgraphical user interface
known as Dashboard, identifies the menu system process or
program. The portion of the command “WhereAm I' identi
fies the inquiry made to the menu system process or program.
UI location test hook 326 issues a response 346 to command
inquiry 345, which is provided to UI navigator 316. Response
346 may be formatted as in shown FIG. 3, 200-section://
30000F08,
gamesblaiigamesSignedOut.xurnavCreateProfile.” The por
tion of response 346 “200-section://30000F08,
gamesblaiigamesSignedOut.Xur comprises a string
identifying the active menu screen output by media player
320 to a display viewed by a user. The portion of response
346, “navCreateProfile” identifiestheuser input (e.g., button)
currently highlighted in the user interface (e.g., game control
ler, remote control). Although response 346 is shown as one
string, a response by UI location test hook 322 may comprise
one or more strings. UI navigator 312 compares response 346
to a map of the menu system of media player 320 in order to
determine how to proceed to a desired State in the menu
system to play the media file downloaded to media player
320. UI navigator 312 navigates to a desired state by issuing
commands to user input test hook 223 and issuing command
inquiries to UI location test hook 222 to ensure that media
player 220 responds appropriately to the simulated user
inputs.

FIG. 4 illustrates an exemplary navigation through a menu
system in accordance with an aspect of Scalable automated
empirical testing of media files on media players. In the
embodiment shown in FIG.4, menu system 400 illustrates a
portion of the XBOX 360 Dashboard, which is the graphical
user interface of the XBOX 360. The Dashboard serves as the
control center for the XBOX 360 video game and entertain
ment system. The Dashboard comprises five “blades” or tabs
that can be selected by users to flip between menu screens.
The five menu screens are XBOX LIVE, Games, Media,
Marketplace (not shown) and System (not shown). If inactive,
the Dashboard can be activated in various ways, including by
selecting an XBOX Guide button on a game pad, also known
as a D-pad (i.e. directional pad), or the left Stick of a game
controller. The XBOX LIVE Blade menu allows users to,
among other things, enter XBOX LIVE. The Games Blade
menu allows users to, among other things, access their col
lection of games. The Media Blade menu allows users to,
among other things, download and play live and recorded
music, videos, movies, television shows, view pictures and
slideshows, and create play lists from many sources internal
and external to the XBOX360. The Marketplace Blade menu
allows users to, among other things, download movies, tele

10

15

25

30

35

40

45

50

55

60

65

12
vision shows, trailers, demonstrations, short films, game
themes and pictures. The System Blade menu allows users to,
among other things, edit XBOX 360 console playback set
tings, manage a connection to a computer, network or XBOX
LIVE, and manage memory such as an XBOX360hard drive.
The portion of the XBOX360 Dashboard shown in FIG. 4

illustrates an exemplary navigation path, i.e., from existing
state dashboard not active program 405 through XBOXLIVE
blade 410, games blade 415, media blade 420, music button
425, pictures button 430 and video button 435 to desired state
video file selection screen 440. Each bubble represents a state
of menu system 400. As shown in FIG. 4, the existing state is
dashboard not active program 405. With knowledge of menu
system 400 and its existing state acquired as shown in FIG.3,
for example, UI navigator 312 may issue state to state transi
tion commands to user input test hook 223 to navigate to the
desired State, e.g., video file selection screen 440. As shown in
FIG. 4, UI navigator 212 issues seven transition commands
450-456 to navigate from dashboard not active program 405
to video file selection screen 440. Transition commands may
be extendable. Each transition 450-456 may simulate one or
more simulated human inputs. For example, transition com
mand 450 from dashboard not active program 405 to XBOX
LIVE blade 410 may simulate a user pressing a sequence of
buttons to bring up the system blade menu (not shown) and
load the Dashboard program. Other transitions, e.g., transi
tions 451-456, may simulate a user pressing the Right, Down
or “A” buttons on an XBOX 360 game pad (not shown). In
Some embodiments, UI navigator 212 may inquire after each
transition command 450-456 about the existing state of menu
system 400 by, for example, issuing command inquiry 345 to
UI location test hook 322. In some embodiments, if response
346 indicates the existing state is as expected or further along
in the path then navigation continues without logging any
failure. If response 346 indicates the existing state is not on
the expected path then UI navigator 212 may log a failure and
derive a new path to the desired State. In some embodiments,
following a failure, mediatester 210 may increase monitoring
or testing, which may mean more slowly traversing menu
system 400 or navigating multiple paths through menu sys
tem 400. Deriving new paths through menu system 400 per
mits media tester 210 to overcome obstacles such as the
presence or absence of optional states, response to userbutton
presses/holds, atomicity of menu navigation and connectivity
issues with media player 220.
UI Navigator 212 manipulates media player 220 just as a

user is able to do. Where a media file being tested is a video,
for example, UI navigator 212 navigates to a state to select
and play the video, e.g., video file selection screen 440. UI
navigator 312 may issue other commands in accordance with
test specifications. For example, in addition to issuing com
mands to play a media file, UI navigator 312 may also issue
commands to pause, stop, forward, rewind, etc. to exercise all
or selected portions of media file content and code paths in
media player 220.

Exemplary Consumer Devices and Platform for Media
Tester and Media Crawler

Without limitation, FIG. 5 is a block diagram of an exem
plary game console in which various aspects of scalable auto
mated empirical testing of media files on media players can be
implemented. An exemplary consumer device comprises, for
example, a game console. Such as an XBOX 360 game con
sole, desktop, laptop, handheld or other computer, cellular
telephone or any other media playback device. FIG. 6 pro
vides a block diagram of an exemplary computing environ

US 8,387,015 B2
13

ment as a representative consumer device and as a Suitable
platform on which media tester and/or media crawler may
operate.

FIG.5 is a block diagram of an exemplary consumer device
that can playback media files. Consumer device, i.e., game
console, 500 comprises hardware, firmware and software.
Game console 500 executes game applications and plays
media files (not shown). For purposes of simplicity, not all
components or interconnectivity are shown and some com
ponents have been merged in exemplary game console 500.
Game console 500 comprises central processing unit

(CPU) 501, which has level 1 (L1) cache 502, level 2 (L2)
cache 504, and ROM (Read-Only Memory) 506. Level 1 and
Level 2 cache 502,504 temporarily store executable instruc
tions and/or data, thereby improving processing speed and
throughput. ROM 506 may store basic executable instruc
tions (i.e. firmware) that are loaded during an initial phase of
a boot process when the game console 500 is initially pow
ered. Alternatively, the executable code that is loaded during
the initial boot phase can be stored in another type of non
volatile memory. ROM 506, or the alternative non-volatile
memory need not be embedded within CPU 501. Game con
sole 500 may optionally be a multi-processor system. For
example, game console 500 may have three processors 501,
503, and 505, where processors 503 and 505, which may be
similar or dissimilar to processor 501. CPU's 501, 503 and
503 may share cache memory (not shown).
Game console 500 further comprises graphics processing

unit (GPU) 508, which is coupled to CPU 501, and any
additional processors such as CPUs 503, 505, by a bus. GPU
508 is also coupled by one or more busses each to memory
controller 510, I/O (input/output) hub 518 and video codec
(coder/decoder) 514. Memory controller 510 and video codec
514 may form part of GPU508. GPU508, in addition to video
processing functionality, may comprise functionality com
monly referred to as Northbridge. Northbridge functionality
generally comprises a high speed memory and video hub
having a memory controller and a video controller. In exem
plary game console 500, both CPU 501 and I/O hub (South
bridge) 518 access memory 512 through Northbridge func
tionality in GPU 508. Memory controller 510 facilitates
access to various types of memory 512, which may be RAM
(Random Access Memory) or other variety of memory.
GPU 508 and video codec 514 together form a video pro

cessing pipeline for high speed, high resolution graphics pro
cessing required by many game applications. Data is carried
from GPU 508 to/from video codec 514 via a bi-directional
bus. This video processing pipeline outputs data to A/V (au
dio/video) port 540 for transmission to a television or other
video display device (not shown). Game console 500 may
have its own integrated display. Not shown is a digital to
analog converter (DAC) that may be coupled between video
codec 514 and A/V port 540.
Game console 500 further comprises I/O hub 518, which

may comprise, among other functionality, functionality com
monly referred to as Southbridge. Southbridge functionality
generally performs and controls functions that are relatively
slow compared to functions performed and controlled by
Northbridge. I/O hub 518 comprises I/O controller 520, sys
tem management controller 522, audio processing unit 523,
network interface controller 524, USB host controllers 526,
528 and front panel I/O subassembly 530. USB controllers
526, 528 serve as hosts for peripheral controllers 542(1),
542(2), wireless adapter 548, and memory unit 546 (e.g., flash
memory, CD/DVD ROM, hard drive, other removable
media). Network interface 524 and/or wireless adapter 548
provide access to a network (e.g., local area network (LAN),

10

15

25

30

35

40

45

50

55

60

65

14
Internet) and may be any of a wide variety of various wired or
wireless interface components including an Ethernet card,
modem, Bluetooth module, and the like.
System memory 543 may store application data that is

loaded during the boot process. Media drive 544 may com
prise, for example, a DVD/CD drive, hard drive or other fixed
or removable media reader and/or writer. Game application
data may be read from and/or written to media via media drive
544 for execution, playback, etc. by game console 500. Media
drive 544 is connected to I/O controller 520 via abus, such as
a Serial ATA bus or other high speed connection (e.g., IEEE
5394). Game console 500 may include hard disk 552, which
may be used, for example, to store an operating system, game
applications, game data or other types of data.

System management controller 522 provides a variety of
service functions for game console 500. Audio processing
unit 523 and audio codec 532 form a corresponding audio
processing pipeline that may provide, for example, high fidel
ity, 5.1 Dolby Digital, 3D, and stereo audio processing of
Sounds produced by, for example, a game application. Audio
data is carried between audio processing unit 523 and audio
codec 532 via a communication link. The audio processing
pipeline outputs audio data to A/V port 540 for implementa
tion by a device having audio capabilities.

Front panel I/O subassembly 530 supports the functional
ity of various controls such as power button 550 and eject
button 552, as well as any LEDs (light emitting diodes) or
other indicators exposed on the outer Surface of game console
500. System power supply module 536 provides power to
components of game console 500 while fan 538 cools them.
CPU 501, GPU 508, memory controller 510, and various

other components within game console 500 are intercon
nected via one or more buses, including serial and parallel
buses, a memory bus, a peripheral bus, and a processor or
local bus using any of a variety of bus architectures. As
previously noted, not all buses or other connections are shown
in FIG. 4.
When game console 500 is powered on or rebooted, appli

cation data and/or instructions can be loaded from system
memory 543, media drive 544, hard disc 553 or other memory
into memory 512 and/or caches 502,504 and executed on the
CPU 501. The game application being executed may present
a graphical user interface that provides a consistent user expe
rience when navigating to different media types available on
or to game console 500. Instructions and/or data accessible
via media drive 544, system memory 543, hard disk 553 or
other memory may be launched, played or otherwise accessed
from these various sources to provide additional functionality
to game console 500.
Game console 500 may be operated as a standalone system

by connecting the system to a television or other display. As
previously noted, game console 500 may have an integrated
display. In this stand alone mode, game console 500 may
allow one or more users to interact with the system, watch
movies, listen to music, play games and the like. Network
interface 524 or wireless adapter 548 may allow game con
sole 500 to be operated as a participant in a local or wide area
network community.

FIG. 6 is a block diagram of an exemplary computing
environment in which various aspects of scalable automated
empirical testing of media files on media players can be
implemented. For example, the exemplary computing envi
ronment shown in FIG. 6 illustrates and exemplary media
player as well as a suitable computing environment in which
Scalable automated empirical testing of media files on media
players or portion of it such as media tester program and/or
media crawler program can be implemented. Although not

US 8,387,015 B2
15

required, various aspects of media tester and media crawler
can be described in the general context of computer execut
able instructions, such as program modules, being executed
by a computer, such as a personal computer, client worksta
tion or a server. Generally, program modules include routines,
programs, objects, components, data structures and the like
that perform particular tasks or implement particular abstract
data types. Moreover, implementation of media tester and
media crawler can be practiced with other computer system
configurations, including hand held devices, multiprocessor
systems, microprocessor based or programmable consumer
electronics, network PCs, minicomputers, mainframe com
puters, and the like. Further, media tester and media crawler
also can be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted computing environment, program modules can be
located in both local and remote memory storage devices.
A computer system can be roughly divided into three com

ponent groups: the hardware component, the hardware/soft
ware interface system component, and the application pro
grams component (also referred to as the “user component'
or “software component'). In various embodiments of a com
puter system the hardware component may comprise central
processing unit (CPU) 621, memory (both ROM 664 and
RAM 625), basic input/output system (BIOS) 666, and vari
ous input/output (I/O) devices such as keyboard 640, mouse
662, display 645, and/or printer (not shown), among other
components. The hardware component comprises the basic
physical infrastructure for the computer system.
The application programs component comprises various

software programs including but not limited to compilers,
database systems, word processors, business programs, video
games, and so forth. Application programs provide the means
by which computer resources are utilized to solve problems,
provide Solutions, and process data for various users (ma
chines, other computer systems, and/or end-users). In an
example embodiment, application programs perform the
functions associated with media tester and media crawler as
described above.
The hardware/software interface system component com

prises (and, in Some embodiments, may solely consist of) an
operating system that itself comprises, in most cases, a shell
and a kernel. An "operating system” (OS) is a special program
that acts as an intermediary between application programs
and computer hardware. The hardware/software interface
system component may also comprise a virtual machine man
ager (VMM), a Common Language Runtime (CLR) or its
functional equivalent, a Java Virtual Machine (JVM) or its
functional equivalent, or other Such software components in
the place of or in addition to the operating system in a com
puter system. A purpose of a hardware/software interface
system is to provide an environment in which a user can
execute application programs.
The hardware/software interface system is generally

loaded into a computer system at startup and thereafter man
ages all of the application programs in the computer system.
The application programs interact with the hardware/soft
ware interface system by requesting services via an applica
tion program interface (API). Some application programs
enable end-users to interact with the hardware/software inter
face system via a user interface such as a command language
or a graphical user interface (GUI).
A hardware/software interface system traditionally per

forms a variety of services for applications. In a multitasking
hardware/software interface system where multiple programs
may be running at the same time, the hardware/software

10

15

25

30

35

40

45

50

55

60

65

16
interface system determines which applications should run in
what order and how much time should be allowed for each
application before Switching to another application for a turn.
The hardware/software interface system also manages the
sharing of internal memory among multiple applications, and
handles input and output to and from attached hardware
devices such as hard disks, printers, and dial-up ports. The
hardware/software interface system also sends messages to
each application (and, in certain case, to the end-user) regard
ing the status of operations and any errors that may have
occurred. The hardware/software interface system can also
offload the management of batch jobs (e.g., printing) so that
the initiating application is freed from this work and can
resume other processing and/or operations. On computers
that can provide parallel processing, a hardware/software
interface system also manages dividing a program So that it
runs on more than one processor at a time.
A hardware/software interface system shell (referred to as

a “shell’) is an interactive end-user interface to a hardware/
software interface system. (A shell may also be referred to as
a “command interpreter” or, in an operating system, as an
“operating system shell’). A shell is the outer layer of a
hardware/software interface system that is directly accessible
by application programs and/or end-users. In contrast to a
shell, a kernel is a hardware/software interface systems
innermost layer that interacts directly with the hardware com
ponents.
As shown in FIG. 6, an exemplary general purpose com

puting system in which scalable automated empirical testing
of media files on media players may be implemented includes
a conventional computing device 660 or the like, including a
processing unit 621, a system memory 662, and a system bus
623 that couples various system components including the
system memory to the processing unit 621. Processing unit
621 may comprise, for example, a CPU, Northbridge and
Southbridge chipset, among other components. The system
bus 623 may be any of several types of bus structures includ
ing a memory bus or memory controller, a peripheral bus, and
a local bus using any of a variety of bus architectures. The
system memory includes read only memory (ROM) 664 and
random access memory (RAM) 625. A basic input/output
system 666 (BIOS), containing basic routines that help to
transfer information between elements within the computing
device 660, such as during startup, is stored in ROM 664. The
computing device 660 may further include a hard disk drive
625 for reading from and writing to a hard disk (not shown),
a magnetic disk drive 628 (e.g., floppy drive) for reading from
or writing to a removable magnetic disk 629 (e.g., floppy
disk), and an optical disk drive 630 for reading from or writ
ing to a removable optical disk 631 such as a CD ROM or
other optical media. The hard disk drive 625, magnetic disk
drive 628, and optical disk drive 630 are connected to the
system bus 623 by a hard disk drive interface 632, a magnetic
disk drive interface 633, and an optical drive interface 634,
respectively. The drives and their associated computer read
able media provide non Volatile storage of computer execut
able instructions, data structures, program modules and other
data for the computing device 660. Although the exemplary
environment described herein employs a hard disk, a remov
able magnetic disk 629, and a removable optical disk 631, it
should be appreciated by those skilled in the art that other
types of computer readable media which can store data that is
accessible by a computer. Such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, ran
dom access memories (RAMs), read only memories (ROMs),
and the like may also be used in the exemplary operating
environment. Likewise, the exemplary environment may also

US 8,387,015 B2
17

include many types of monitoring devices such as heat sen
sors and security or fire alarm systems, and other sources of
information.
A number of program modules comprising computer-ex

ecutable instructions can be stored on any one or more com
puter-readable mediums such as the hard disk, magnetic disk
629, optical disk 631, ROM 664, or RAM 625, including an
operating system 635, one or more application programs 636,
other program modules 635, and program data 638. A user
may enter commands and information into the computing
device 660 through input devices such as a keyboard 640 and
pointing device 662 (e.g., mouse). Other input devices (not
shown) may include a microphone, joystick, game pad, sat
ellite disk, scanner, or the like. These and other input devices
are often connected to the processing unit 621 through a serial
port interface 646 that is coupled to the system bus, but may
be connected by other interfaces. Such as a parallel port, game
port, or universal serial bus (USB). Aside from mouse 642,
keyboard 640 and modem 654, serial port I/F 646 may also be
connected to a wireless communications device (not shown).
A display 645 or other type of display device is also con
nected to the system bus 623 via an interface, such as a video
adapter 648. In addition to display 645, computing devices
typically include other peripheral output devices (not shown),
Such as speakers and printers. The exemplary environment of
FIG. 6 also includes a host adapter 655, Small Computer
System Interface (SCSI) bus 656, and an external storage
device 662 connected to the SCSI bus 656.
The computing device 660 may operate in a networked

environment using logical connections to one or more remote
computers, such as a remote computer 649. The remote com
puter 649 may be another computing device (e.g., personal
computer), a server, a router, a network PC, a peer device, or
other common network node, and typically includes many or
all of the elements described above relative to the computing
device 660, although only a memory storage device 650
(floppy drive) has been illustrated in FIG. 6. The logical
connections depicted in FIG. 6 include a local area network
(LAN) 651 and a wide area network (WAN) 652. Such net
working environments are commonplace in offices, enter
prise wide computer networks, intranets and the Internet.
When used in a LAN networking environment, the com

puting device 660 is connected to the LAN 651 through a
network interface or adapter 653. When used in a WAN net
working environment, the computing device 660 can include
a modem 654 or other means for establishing communica
tions over the wide area network 652, such as the Internet. The
modem 654, which may be internal or external, is connected
to the system bus 623 via the serial port interface 646. In a
networked environment, program modules depicted relative
to the computing device 660, or portions thereof, may be
stored in the remote memory storage device. It will be appre
ciated that the network connections shown are exemplary and
other means of establishing a communications link between
the computers may be used.

While it is envisioned that numerous embodiments of scal
able automated empirical testing of media files on media
players are particularly well-suited for computerized sys
tems, nothing in this document is intended to limit Scalable
automated empirical testing of media files on media players
to such embodiments. On the contrary, as used herein the term
“computer system’ is intended to encompass any and all
devices capable of storing and processing information and/or
capable of using the stored information to control the behav
ior or execution of the device itself, regardless of whether
Such devices are electronic, mechanical, logical, or virtual in
nature.

5

10

15

25

30

35

40

45

50

55

60

65

18
The functionality described herein can be implemented in

connection with hardware or software or, where appropriate,
with a combination of both. Thus, the methods, apparatuses
and systems for Scalable automated empirical testing of
media files on media players, or certain aspects or portions
thereof such as media tester 110 and media crawler 125, can
take the form of program code (i.e., instructions) and/or data
embodied in tangible computer readable media, Such as
floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium, wherein, when the pro
gram code or data is loaded into and executed or read by a
machine, such as a computer, the machine becomes an appa
ratus for implementing scalable automated empirical testing
of media files on media players.
The program(s) can be implemented in assembly or

machine language, if desired. In any case, the language can be
a compiled or interpreted language, and combined with hard
ware implementations. The methods and apparatuses for
implementing scalable automated empirical testing of media
files on media players also can be practiced via communica
tions embodied in the form of program code that is transmit
ted over some transmission medium, Such as over electrical
wiring or cabling, through fiber optics, or via any other form
of transmission, wherein, when the program code is received
and loaded into and executed by a machine, such as an
EPROM, a gate array, a programmable logic device (PLD), a
client computer, or the like. When implemented on a general
purpose processor, the program code combines with the pro
cessor to provide a unique apparatus that operates to invoke
the functionality of mediatester and media crawler. Addition
ally, any storage techniques used in connection with media
tester and media crawler can invariably be a combination of
hardware and software.

Empirical testing offers very useful real-world feedback
because testing closely follows scenarios that customers fol
low while playing media files or media applications. Auto
mated empirical testing navigates the same user interface,
triggers the same code paths on the same hardware and results
in the same memory footprints experienced by media players
used by customers. As such, empirical test results are more
realistic and useful than emulation test results. A Scalable
empirical testing system with ones, tens, hundreds or more
media players operating 24 hours per day 365 days per year
permits content providers to process large Volumes of media
files in short periods of time, which permits greater flexibility
in making Software improvements to media players and offers
greater quality assurance in media files. A scalable empirical
testing system permits testing throughout development and
production of hardware and software builds of media players.
A Scalable empirical testing system also removes the burden
of testing from customers, increases the level of confidence
customers have in downloaded content and, ultimately,
improves the quality reputation of content service providers
having Such a system.

While scalable automated empirical testing of media files
on media players has been described in connection with the
example embodiments of the various figures, it is to be under
stood that other similar embodiments can be used or modifi
cations and additions can be made to the described embodi
ments for performing the same functions of Scalable
automated empirical testing of media files on media players
without deviating there from. Therefore, scalable automated
empirical testing of media files on media players as described
herein should not be limited to any single embodiment, but
rather should be construed in breadth and scope in accordance
with the appended claims.

US 8,387,015 B2
19

What is claimed:
1. A method, executable by a processor, of empirical auto

mated testing of media files that are playable in one or more
media players, comprising:

storing in a media file database, a first media file that is
playable in the one or more media players;

providing in a first media player a first test hook configured
to interact with a media tester via commands and
responses, the commands and responses comprising one
or more strings;

activating the media tester to retrieve the first media file
from the media file database;

downloading from the media tester to the first media
player, the first media file for testing accurate playback
of the first media file in the first media player;

performing automated testing of the first media file in the
first media player by simulating human interaction,
wherein simulating human interaction comprises:
sending from the media tester, via a communication

network, at least one command to the first media
player that simulates at least one human input, the at
least one command comprising a first string; and

transmitting from the first media player to the media
tester, via the communication network, a response to
the at least one command, the response comprising a
second string generated by the first test hook upon
monitoring of at least one state of the first media
player, the at least one state associated with a test
procedure directed at identifying defects during play
back of the first media file in the first media player.

2. The method in accordance with claim 1, further com
prising:

cataloging media files stored in the media file database to
create a wordlist; and

randomly selecting from the wordlist, a first work item
linked to the first media file.

3. The method in accordance with claim 2, the method
further comprising:

determining from the first work item how many media
players will test the first media file.

4. The method in accordance with claim 1, wherein moni
toring of the at least one state of the first media player com
prises evaluating failures by categorizing, ranking, prioritiz
ing, assigning or otherwise rendering a judgment pertaining
to the failures.

5. The method in accordance with claim 2, the method
further comprising:

generating a second work item based on a failure during
playback of the first media file.

6. The method in accordance with claim 1, the method
further comprising:

auditing a failure by providing the first media file to a
plurality of media players;

simulating human interaction with each of the plurality of
media players;

playing the first media file on each of the plurality of media
players;

monitoring each of the plurality of media players during
playback of the first media file; and

reporting performance, including any failures that occur,
during playback of the first media file on each of the
plurality of media players.

7. The method in accordance with claim 6, the method
further comprising:

randomly selecting the plurality of media players to audit
the failure.

10

15

25

30

35

40

45

50

55

60

65

20
8. The method in accordance with claim 1, the method

further comprising:
cross-referencing a failure to content or source code in the

first media file.
9. The method in accordance with claim 1, wherein the

response provides performance reporting, including any fail
ures that occur during playback of the first media file.

10. The method in accordance with claim 1, wherein the
first media file comprises one of a game application, movie,
Song, theme, picture, and accessory to a game application.

11. The method in accordance with claim 9, the method
further comprising:

storing information about a failure based on whether the
failure is known.

12. The method in accordance with claim 1, the method
further comprising:

registering the use of the first media file to avoid testing
collisions.

13. The method in accordance with claim 1, wherein:
retrieving comprises selecting a work item from a wordlist

stored in the media file database, the work item linked to
the first media file that is playable in the one or more
media players, and

the first string comprises a first portion identifying at least
one of a menu system or a process and a second portion
identifying an inquiry made to the at least one of a menu
system or a process; and further wherein the second
string identifies to the media tester, a user input that is
currently highlighted in a user interface of the first media
player.

14. A computer system comprising:
a processor for selecting a work item from a wordlist stored

in a media file database, the work item linked to a media
file playable in one or more media players, and for
loading the media file onto at least one media player,

a test hook located in a first media player, the test hook
configured to interact with a media tester via commands
and responses, the commands and response comprising
at least one string, the test hook operable to perform
automated testing of the first media file in the first media
player by simulating human interaction comprising:

sending from the media tester, via a communication net
work, at least one command to the first media player that
simulates at least one human input, the at least one
command comprising a first string; and

transmitting from the first media player to the mediatester,
via the communication network, a response to the at
least one command, the response comprising a second
string generated by the first test hook upon monitoring of
at least one state of the first media player, the at least one
state associated with a test procedure directed at identi
fying defects during playback of the first media file in the
first media player; and

a performance monitor communicatively coupled to the
test hook located in the first media player, the perfor
mance monitor operable to monitor playback of the
media file on the first media player and cross-referenc
ing any failures to content or source code in the media
file.

15. The computer system in accordance with claim 14,
further comprising:

at least one memory configured as the media files database
for storing media files to be tested and work items related
thereto; and

a media crawler for cataloging the media files and for
creating the work items.

US 8,387,015 B2
21

16. The computer system in accordance with claim 14.
wherein the processor is operable to execute a first test mode
to test one or more media files once and a second test mode to
test the one or more media files multiple times.

17. The computer system in accordance with claim 14,
further comprising:

an evaluator for evaluating failures by categorizing, rank
ing, prioritizing, assigning or otherwise rendering a
judgment pertaining to the failures.

18. The computer system in accordance with claim 14,
further comprising a catastrophic failure monitor, wherein the
performance monitor and catastrophic failure monitor report
failures and provide information to reproduce them.

19. The computer system in accordance with claim 14,
wherein the processor is configured to retest media files for at
least Some failures that occur during playback of the media
file.

20. A computer-readable storage medium that is not a
transient signal, the computer-readable storage medium com
prising computer-executable instructions that when executed
by a processor effectuate operations comprising:

10

15

22
retrieving a media file from a media file database;
providing the media file to a first media player,
simulating human interaction with the first media player,

wherein simulating human interaction comprises receiv
ing from a mediatester, via a communication network, a
command that simulates a human input, the command
comprising a first string;

playing the media file on the first media player;
monitoring the first media player during playback of the

media file; and
transmitting from the first media player to the mediatester,

a response to the command, the response comprising a
second string generated by a first test hook located in the
first media player upon monitoring of at least one state of
the first media player, the at least one state associated
with a test procedure directed at identifying defects dur
ing playback of the media file in the first media player.

