UK Patent Application .. GB «,2 389 204 .. A

(43) Date of A Publication 03.12.2003

(21) Application No: 0212843.7
(22) Date of Filing: 01.06.2002
(71) Applicant(s):

(72)

(74)

Hew lett-Packard Company

(Incorporated in USA - Delaware)

3000 Hanover Street, Palo Alto,

California 94304, United States of America

Inventor(s):
Stuart Mark Wheater

Agent and/or Address for Service:
Chris Harrison

Hew lett-Packard Ltd IP Section,
Filton Road, Stoke Gifford, BRISTOL,
BS34 8QZ, United Kingdom

(61)

(52)

(56)

(58)

INT CL7:
GO6F 1/00 12/14 // GO6F 17/60 19/00 161:00

UK CL (Edition V):
G4A AAP AUXB AUXS A23A

Documents Cited:
EP 1168165 A2
EP 0709760 A2

EP 0717353 A2
US 6298445 B1

Field of Search:

UK CL (Edition T) G4A

INT CL” GO6F

Other: Online: JAPIO, EPODOC, WPI

(54)

(57)

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Abstract Title: Updating a trusted information state

in a computer system comprising a first and second
computer entity 110, 120 having program-accessible
information, the second computer entity is arranged
to modify the second computer entity’s
program-accessible information in accordance with a
received change to the first computer entity’s
program-accessible information if the second
computer entity determines that the received change
to the first computer entity’'s program-accessibie
information complies with a first predetermined
criterion and irrefutably establishes that the received
change is associated with the first computer entity.

Fig. 1

V 70C68€ ¢ dO

1/5

0z}

4} 1zl
D L/
i o

pd _ _/
azl /
.@\.ﬁl{
)

0G1

4

0cl

81,/

0bl

el

L]

" Al

gLl

%

141

2/3

203

202

201

Fig. 2a

3/5

Inter-organisation calls

AN

\ 204

)

[{e]
&
Inter-organisation
object invocation /
mechanism
xQ
R 5
B2B Objects

209
_

T~
pplication

Aoplicati
object logic

wsiueyoaw
uofeosoAul J0alqo
uoljesiuebio-euu)

205

N

sjleo uoiesiueBio-equ|

Fig. 2b

4/5

€0€

£ 81

[ones || peon |

poie; uonepea Jasy .aaeg

0

X| X

O

X|4] 80)2el x| owdq

SS0I)
90

0

_vﬁm__uao.__

ajens [0y jasyeiows 136 oy

0

WBnoN

X[201 3l owsg

X| X

P

0
POPBULOD JAAIDS I

POPDAICT JOARIS SS01)

S TR) -

X[#] 001 %] %1 owsg SO ﬁ

|

c0¢

10€

00¢

S/8

p S

£0y
N aneg peo oeg peo
¢y
PaYE} UOUEPIE 125 9AES FUSSIONS 24 \\
0s 001 2 1obpw 0 ok Z 126pm
ot Z 1 1oBp o z 1 vobpum
0ud kun Aengy auweN 3 kN Apuenp auwen
Jaddng Jxuosny
X|+]| <>wenesmyung oweq sweitosza [&] X|+| W) seung ‘ouRq SPA0Z8 |[&]
J% ﬁ

L0y 00¥

10

15

20

25

30

2389204

300205009

300205009
METHOD AND APPARATUS FOR UPDATING AN INFORMATION STATE

The present invention relates to a method and system for updating an

information state.

Organisations are increasingly using the Internet to offer their services and to

utilise the services of others.

However, even though the Internet provides tremendous potential for allowing
parties to interact it can prove difficult, when using the Internet, to provide

assurances that parties to an agreement are acting in a trusted manner.

In particular, the provision of services require that all associated parties
mutually agree certain conditions, where a party needs confidence that once a
condition has been agreed another party can not repudiate what has already
been agreed.

One solution to this problem has been the use of trusted third parties, where
each party to an agreement interacts with a trusted third party, thereby
allowing the trusted third party to maintain a master copy of an information
state that defines the terms agreed between the parties and, as such, prevent

the repudiation by any party of any of the agreed terms.

However, due to the nature of the relationship with a trusted third party such
relationships can take a long time to establish.

It is desirable to improve this situation.

10

15

20

25

30

300205009

2
In accordance with a first aspect of the present invention there is provided a

computer system comprising a first and second computer entity having
program-accessible information; wherein the second computer entity is
arranged to modify the second computer entity's program-accessible
information in accordance with a received change to the first computer entity's
program-accessible information if the second computer entity determines that
the received change to the first computer entity’s program-accessible
information complies with a first predetermined criterion and irrefutably
establishes that the received change is associated with the first computer
entity.

This provides the advantage of allowing a party to modify an electronic
agreement within specified rules and to allow parties to the electronic
agreement to maintain irrefutable evidence of any changes initiated by other

parties to the agreement.

Suitably irrefutability is determined based upon a second predetermined

criterion.

Preferably the second predetermined criteria is the electronic signing of the
received change or representation of the change with a private key of the first
computer entity.

Preferably the second computer entity further comprises a memory for storing
a copy of a certificate associated with the first computer entity to allow the
second computer entity to authenticate the first computer entity’s electronic
signature.

Preferably the first computer entity is arranged to provide to the second
computer entity the change to the first computer entities program-accessible

information.

10

15

20

25

30

300205009

3
Preferably first predetermined criteria determine the rules for allowing the first

computer entity to implement a change to the first computer entities program-
accessible information.

Suitably the second computer entity is arranged to provide a confirmation of
acceptance of change to the second computer entities program-accessible

information to the first computer entities.
Preferably the program-accessible information is an object state.

In accordance with a second aspect of the present invention there is provided
a computer system comprising a first and second computer entity having
program-accessible information; wherein the second computer entity is
arranged to modify the second computer entities program-accessible
information in accordance with a received change to the first computer entities
program-accessible information if the second computer entity determines that
the received change to the first computer entities program-accessible
information complies with a first predetermined criteria and establishes that
the received change is associated with the first computer entity based upon
trusted third party data associated with the first computer entity.

Preferably the received change or representation of the change is signed with
the trusted third party data.

Preferably the second computer entity further comprises a memory for storing
a copy of a certificate associated with the trusted third party to allow the
second computer entity to authenticate the signed change or representation
of the change signed with the trusted third party data.

In accordance with a third aspect of the present invention there is provided a
method comprising receiving by a second computer entity a change to

program-accessible information of a first computer entity and modifying

10

15

20

25

30

300205009
4

program-accessible information of the second computer entity in accordance
with the received change to program-accessible information of the first
computer entity if the second computer entity determines that the received
change to the first computer entities program-accessible complies with a first
predetermined criteria and irrefutably establishes that the received change is
associated with the first computer entity.

Suitably irrefutability is determined based upon second predetermined criteria.

In accordance with a fourth aspect of the present invention there is provided a
computer apparatus comprising a processor arranged to modify program-
accessible information in accordance with a received change to program-
accessible information of another computer apparatus if the processor
determines that the received change to the program-accessible information of
the another computer apparatus complies with predetermined criteria and
irrefutably establishes that the received change is associated with the another

computer apparatus.

Suitably irrefutability is determined based upon a second predetermined
criteria.

Preferably the second predetermined criteria is the electronic signing of the
received change or representation of the change with a private key of the

another computer apparatus.

Preferably the computer apparatus further comprises a memory for storing a
copy of a certificate associated with the another computer apparatus to aliow
the processor to authenticate the another computer apparatus electronic

signature.

In accordance with a fifth aspect of the present invention there is provided a

computer apparatus comprising a processor arranged to modify program-

10

15

20

25

30

300205009
5

accessible information in accordance with a received change to program-
accessible information of another computer apparatus if the processor
determines that the received change to the program-accessible of the another
computer apparatus complies with a first predetermined criteria and
establishes that the received change is associated with the another computer
apparatus based upon trusted third party data associated with the another
computer apparatus.

In accordance with a sixth aspect of the present invention there is provided a
computer system comprising a plurality of computer entities, wherein each
computer entity includes program-accessible information; and wherein a
computer entity is arranged to modify their respective program-accessible
information in accordance with a received change to another computer
entities program-accessible information if the computer entity determines that
the change to the another computer entities program-accessible information
complies with first predetermined criteria of the respective computer entity and
irrefutably establishes that the received change is associated with the another

computer entity.

For a better understanding of the present invention and to understand how
the same may be brought into effect reference will now be made, by way of

example only, to the accompanying drawings, in which:-

Figure 1 illustrates a computer system according to an embodiment of the
present invention;

Figure 2a illustrates a software protocol stack according to an embodiment of
the present invention;

Figure 2b illustrates components of an object coordination program according

to an embodiment of the present invention;

10

15

20

25

30

300205009
6

Figure 3 illustrates an example of a transaction according to an embodiment

of the present invention;

Figure 4 illustrates an example of a transaction according to an embodiment
of the present invention.

The present embodiment describes a computer system that represents a
number of interacting organisations, through respective computer entities, in
which application programs of the organisations use distributed program-
accessible information (e.g. distributed object states) to allow all relevant
organisations (i.e. all organisations involved in a given transaction) to validate
any changes to an object state, thereby preventing any one organisation
determining the status of an object state.

The use of distributed object states allows a relevant object state, which
corresponds to the state of a transaction, to be replicated within each
organisation involved in the transaction. This allows all proposed changes to
the object state to be evaluated locally by the respective computer entity
based upon predetermined rules, where an attempt to implement a change
contrary to the specified rules will result in the rejection of the change by the

other organisations involved in the transaction.

Additionally, proposed changes to an object state are electronically signed by
the proposing organisation and are, therefore, attributable to that organisation,
therefore ensuring that the proposing organisation can not refute the change
at a later period.

Further, organisations sharing the same object state can show their
acceptance of proposed changes by counter-signing the proposal and

returning this to the proposing organisation.

10

156

20

25

30

300205009
7

A non-repudiation log can be used by each organisation to record the

evidence associated with any of the object state changes.

Additionally, it is preferable that any change to an object state is only held
valid if all organisations that share the object state have validated the

proposed change to the object state.

Figure 1 shows a computer system 150 having a first computer apparatus 110
and a second computer apparatus 120 connected via a network 130, for
example the Internet, where the first computer apparatus 110 represents a
first organisation and the second computer apparatus 120 represents a
second organisation.

To allow a user to interact with the first computer apparatus 110 and second
computer apparatus 120 respectively the first computer apparatus 110 and
second computer apparatus 120 typically include the features of a keyboard
111, 121, mouse 112, 122 and visual display unit 113, 123, which provide the
physical ‘user interface’ of the computer apparatuses 110, 120. Additionally,
the first computer apparatus 110 and second computer apparatus 120 include
a motherboard 114, 124 and a plurality of modules115, 125, where the
modules 115, 125 are other functional elements of the computer apparatuses
110, 120 of essentially any kind appropriate to the relevant computer
apparatus (the functional significance of such elements is not relevant to the

present invention and will not be discussed further herein).

The motherboards 114, 124 of the first computer apparatus 110 and second
computer apparatus 120 includes (among other standard components) a main
processor 116, 126, main memory 117, 127, and an Input/Output (I0) device
118, 128 that is used to couple the first computer apparatus 110 and second
computer apparatus 120 to the network 130.

10

15

20

25

30

300205009
8

As shown in figure 2a, the processors 116, 126 are arranged to execute an
operating system 201, object coordination program 202 and an application
program 203. The application program 203 is arranged to run on top of the
object coordination program 202, with the object coordination program 202
arranged to run on top of the operating system 201, in practice there will
typically be a plurality of application programs loaded on top of the object
coordination program 202. The operating system 201, object coordination
program 202 and application program software 203 are typically stored in
memory 117, 127 for access by the processor 116, 126 on execution.

Each respective application program 203 is arranged to control the execution
of a transaction between the first computer apparatus 110 and second
computer apparatus 120, as described below. The object coordination
program 202 includes an augmented object application 204, as shown in
figure 2b. Each augmented object application 204 maintains a copy of
transaction information (i.e. object state) accessible by the application
program, through an application program interface AP| as described below,

computer apparatus 110 and second computer apparatus 120.

Each augmented object application 204 includes an intra-enterprise object
invocation mechanism 205, an inter-enterprise object invocation mechanism
206, a certificate store 207, a non-repudiation log 208 and application object
logic 209.

The intra-enterprise object invocation mechanism 205 provides the respective
organisations with an internal interface to their respective object state that
guarantees that state changes (i.e. changes to the program accessible
information) are coordinated with partner organisations (i.e. companies that
form part of the same organisation, that may, for example, be connected by

an intranet (not shown)).

10

15

20

25

30

300205009
9

The inter-enterprise object invocation mechanism 206 provides the external
computer apparatus with an interfface to the internal object state that
guarantees that any state changes are coordinated with the external computer
apparatus.

An interface to a certificate store 207 is provided to authenticate
organisational access and to verify signatures on the actions of the
organisations involved in a transaction where the certificate store 207

maintains copies of certificates associated with external organisations.

The non-repudiation log 208 stores evidence of actions on the relevant object
state, as described below.

The application object logic 209 defines the rules/criteria for allowing a
change to an object state.

As stated above, to allow the object coordination program 202 to interface
with the application program 203 running on top of the object coordination
program 202 the object coordination program 202 is arranged to include an
AP that facilitates easy incorporation of calls required to perform object state
coordination.

Examples of possible operations provided by the AP1 include:

Connection management: Operations ‘connect’ and ‘disconnect’ allow an
object state to be added to and removed from the set of object states that are
coordinated by the object coordination program 202. Operations
‘validateConnect’ and ‘validateDisconnect’ are used to veto the connection to
and disconnection of object states.

Groups of changes: Operations ‘enter’ and ‘leave’ are used to demarcate the
scope of accesses that need to be coordinated. Not all the intermediate

10

15

20

25

30

300205009
10

accesses between calling ‘enter’ then ‘leave’ require coordination; only the
state when ‘leave’ is called need be coordinated. It is not necessary to call
‘enter’ and ‘leave’ from the same method call on the object states. This allows
the application program 203 to make a series of method invocations on the
object state and only after the last of these invocations will coordination be

performed.

Access type indication: Operations ‘examine’, ‘update’ and ‘overwrite’ are
used to indicate what form of object state coordination is required by the
application program 203. The ‘examine’ operation is used to indicate that,
within a particular scope, the object state will not be modified only examined.
This means that the object's state will be up-to-date immediately after
‘examine’ is called but will not require coordination when ‘leave’ is called. The
‘update’ operation is used to indicate that, within a particular scope, the object
state will be examined and modified. This means that the object's state will
require being up-to-date immediately after ‘update’ is called and will require
coordination when ‘leave’ is called. The ‘overwrite’ operation is used to
indicate that, within a particular scope, the object state will be modified but not
examined. This means that the object's state is not required to be up-to-date
immediately after ‘overwrite’ is called but will require coordination when ‘leave’

is called.

State change validation and update: Two call-back operations, ‘validState’
and ‘validUpdate’ can be used to determine if proposed object state changes
are acceptable to the application objects, where the relevant application
program determines if the object state is valid, with the object coordination
program determining if the request is valid (e.g. the object coordination
program checks whether a signature is valid). For example: an object state
corresponding to an order between a customer and supplier could have an
associated rule that only customers can add and remove items, and set item

quantity, and that only the supplier can set the prices of items. If the object

10

15

20

25

30

300205009
11

state changes are acceptable then the operations ‘setState’ or ‘applyUpdate’
are used to replace the complete state of the object or to apply an update to
the state, respectively.

To ensure that changes to an object state are coordinated and validated
between the first computer apparatus 110 and second computer apparatus
120 a validation protocol is implemented, where for the purposes of this

embodiment the following notation is used.

S, is the state of organisations i's copy of an object;
PS, is new object state proposed by organisation i;
h(x) is a one-way, collision-resistant hash of x;

sig,(x) is organisations i’'s signature of x.

A process for performing a change to an object state distributed between two
organisations (e.g. the first computer apparatus and the second computer
apparatus) will now be described.

For the purposes of this embodiment organisation A, associated with the first
computer apparatus 110, makes a changes to their local copy of an object
state maintained in their augmented object application 204 where this change
needs to be coordinated and validated with organisation B, associated with
the second computer apparatus 120. That is to say organisation A has
created PSa for an object and wishes to update organisation B's copy of the
corresponding object with this proposed new state. To allow this object state
change to be validated and incorporated in organisation B's version of the

object state the validation process proceeds as follows:

Organisation A generates siga(h(PSa));
Organisation A sends to organisation B, over the network 130: {siga(h(PSa)),
PSa};

10

15

20

25

30

300205009
12

Organisation B verifies the signature on siga(h(PSa)), using organisation A’s
certificate that is stored in organisation B’s certificate store, and that h(PSa)
agrees with the signed hash value provided by organisation A;

Organisation B attempts to validate PS, via an application program upcall.

If the proposed change PSa complies with the appropriate rules associated
with the transaction between organisation A and organisation B, organisation
B validates the change:

Organisation B updates his local object state: Sg = PS, ;

Organisation B generates sigs(siga(h(PSa)));

Organisation B sends to organisation A: sigs(siga(h(PSa))) as confirmation of
validation and state update, where organisation A uses a copy of organisation
B's certificate stored in organisation A’s certificate store 207 to decrypt the
data;

Organisation B stores evidence relating to the object state update (e.g.
siga(h(PSa))) in non-repudiation log 208, thereby allowing organisation B to
provide irrefutable evidence that organisation A had proposed the change.

If the proposed change PSa does not comply with the appropriate rules
associated with the transaction between organisation A and organisation B,
organisation B is unable to validate the change:

Organisation B rejects PSa and an exception is raised.

The result of this process is that either organisation A and organisation B
have countersigned evidence of a new agreed object state and have installed
this new object state; or the proposed new state is known to have been

rejected by organisation B.

A process for performing a change to an object state distributed between

more than two organisations will now be described.

10

15

20

25

30

300205009
13

For the purposes of this embodiment organisation 0 makes a changes to their
local copy of an object state maintained in their augmented object application
204 where this change, to be valid, needs to be coordinated with the other n-1
organisations. That is to say organisation 0 has created PS, for an object
state and wishes to update the other n-1 organisation’s copies of the
corresponding object with this proposed new state. To allow this object state
change to be validated and incorporated in the n-1 organisation’s versions of
the object state the validation process proceeds as follows:

For organisationsi=1 .. n-1:

Organisation 0 sends organisations i: {sigo(h(PSo)), PSo};

For organisations i = 1 ..n-1 organisations i verify the signature on
sigo(h(PSo)), using organisation 0's certificate that is stored in organisation i's
certificate store 207, and that h(PS,) agrees with the signed hash value
provided by organisation O;

Organisation 0 attempts to validate PS, via an application program upcall

If the proposed change PS, complies with the appropriate rules associated
with the transaction between the n organisations, organisationi=1 ... n-1 are

able to validate the change:

For organisations i =1 ...n-1:

Organisation i generates sig(sigo(h(PSo))).

For organisationsi=1...n-1:

Organisations i sends organisation 0: sigi(sigo(h(PSo))) as confirmation of
validation and state update;

For organisationsi=1 .. n-1:

For organisations j =1 .. n-1:

if (j != i) organisation 0 sends organisation j: sig,(sigo(h(PSo))).

10

15

20

25

30

300205009
14

For organisations i = 1 ... n-1 organisation i stores evidence relating to the
object state update (e.g. sigo(h(PSp))) in non-repudiation log 208, thereby
allowing the organisations to provide irrefutable evidence that organisation 0
had proposed the change and that all other organisations find this change
acceptable.

Organisation i updates their local object state: S, = PSy ;

If the proposed change PSp, does not comply with the appropriate rules
associated with the transaction between the organisation i = 1 ... n-1,
organisation i is unable to validate the change:

Organisation i rejects PSg and an exception is raised.

If any organisation’s validation of proposed state PS, fails then any
organisations that have installed a now invalidated state may recover to a
previously valid state.

The result of this process is that either the i = 1 ... n-1 organisations have
countersigned evidence of a new agreed object state and have installed this
new object state; or the proposed new state is known to have been rejected

by one or more of the i = 1 ... n-1 organisations.

Described below are two illustrative examples of transactions between
organisations in which coordinated distributed object states, as described
above, are utilised. The first example, Tic-Tac-Toe, is a two-party game in
which the players take turns to modify the shared state of the game according
to well defined symmetrically applied rules. Turn-taking access to shared state
is characteristic of other applications such as shared white boards. The
second, an order-processing example, demonstrates sharing between two

parties, the customer and supplier, according to asymmetric rules. However,

10

15

20

25

30

300205009
15

the order-processing example could be extended to involve more than two

parties based upon, for example, the above multi-party protocol.

The aim of a game of Tic-Tac-Toe is to claim a horizontal, vertical or diagonal
line of squares before your opponent where players take turns to play. The
rules of the game are symmetric. For a player using Nought, a vacant square
is claimed by marking it with a zero with the rules that Nought cannot mark
any square with a cross and Nought cannot overwrite an already claimed

square.

Computer apparatuses (not shown) representing each player share an object
state that represents the state of the game, as shown in figure 3, and
coordinates the object state, where the rules of the game are encapsulated in

the application object logic.

A player communicates a move to their coordination object program loaded
on their computer apparatus using their local Tic-Tac-Toe application program
(not shown) via an API cail. At each proposed move (i.e. change in object
state) the coordination object program execute the logic via the ‘validstate’
upcall. The coordination object program validates each proposed move (i.e.
object state change) via the upcall, as described above. A validated move is
retrieved by the appropriate Tic-Tac-Toe application program using an API
call.

Figure 3 shows an example of the Tic-Tac-Toe game in progress after the
following sequence of moves: Cross 301 claims middle row, centre square,
Nought 300 claims top row, left square; Cross 301 claims middle row, right
square, which is reflected in Nought's 300 object state 302. if Cross 301
attempts to mark bottom row, centre square with a zero, which is reflected in
Cross's object state 303, in an attempt by Cross 301 to gain advantage by
pre-empting Nought's 300 next move, Nought 300 will identify that this change
is invalid and will not update Nought's 300 object state 304. As such, the

10

15

20

25

300205009
16

agreed state of the game will not been updated and Nought 300 will have
evidence of the attempt by Cross 301 to cheat.

In the second example, a customer 400 and supplier 401 share an object
state corresponding to an order where asymmetric validation rules apply to

object state changes.

The rules, as defined in the application object logic, stipulate that the
customer 400 is allowed to add items and the quantity required to an order but
is not allowed to price the items. The supplier 401 can price items but cannot
amend the order in any other way.

The customer 400 and supplier 401 each has a replica of an object state 402,
403 that corresponds to the order, which in the example shown in figure 4
show that the customer 400 orders two widget1’s. This is a valid entry and, so,
the supplier 401 prices widget1 at 10 per unit. Utilising the above described
protocol the supplier's 401 action is validated and reflected in the customer’'s
400 copy of the order (i.e. object state). The customer 400 then amends the
order for the supply of ten widget2’'s. This entry is validated and reflected in
the supplier's 401 copy of the order. The supplier 401 then attempts to price
widget2, a valid action, and change the quantity required to one hundred, an
invalid action. As this action is invalid the order is rejected and is not reflected
in the customer's 400 copy of the object state 402, thereby allowing the
customer 400 to refute the order, using, if necessary, the supplier's 401
irrefutable evidence that the supplier 401 invalidly changed the order.

10

15

20

25

30

300205009

17

CLAIMS

. A computer system comprising a first and second computer entity

having program-accessible information; wherein the second computer
entity is arranged to modify the second computer entity’'s program-
accessible information in accordance with a received change to the first
computer entity’s program-accessible information if the second
computer entity determines that the received change to the first
computer entity’s program-accessible information complies with a first
predetermined criteria énd irrefutably establishes that the received

change is associated with the first computer entity.

. A computer system according to claim 1, wherein irrefutability is

determined based upon a second predetermined criterion.

. A computer system according to claim 2, wherein the second

predetermined criteria is the electronic signing of the received change
or representation of the change with a private key of the first computer

entity.

. A computer system according to claim 3, wherein the second computer

entity further comprises a memory for storing a copy of a certificate
associated with the first computer entity to allow the second computer

entity to authenticate the first computer entity’s electronic signature.

. A computer system according to any preceding claim, wherein the first

computer entity is arranged to provide to the second computer entity
the change to the first computer entity’s program-accessible

information.

10

15

20

25

30

300205009

6.

18
A computer system according to any preceding claim, wherein the first
predetermined criteria determine the rules for allowing the first
computer entity to implement a change to the first computer entity’s

program-accessible information.

. A computer system according to any preceding claim, wherein the

second computer entity is arranged to provide a confirmation of
acceptance of change to the second computer entity's program-

accessible information to the first computer entities.

A computer system according to any preceding claim, wherein the

program-accessible information is an object state.

A computer system comprising a first and second computer entity
having program-accessible information; wherein the second computer
entity is arranged to modify the second computer entity’s program-
accessible information in accordance with a received change to the first
computer entity's program-accessible information if the second
computer entity determines that the received change to the first
computer entity’s program-accessible information complies with a first
predetermined criteria and establishes that the received change is
associated with the first computer entity based upon trusted third party

data associated with the first computer entity.

10. A computer system according to claim 9, wherein the received change

or representation of the change is signed with the trusted third party
data.

11. A computer system according to claim 10, wherein the second

computer entity further comprises a memory for storing a copy of a

certificate associated with the trusted third party to allow the second

10

15

20

25

30

300205009
19

computer entity to authenticate the signed change or representation of

the change signed with the trusted third party data.

12.A method comprising modifying program-accessible information of a
second computer entity in accordance with a received change to
program-accessible information of a first computer entity if the second
computer entity determines that the received change to the first
computer entity's program-accessible complies with a first
predetermined criteria and irrefutably establishes that the received

change is associated with the first computer entity.

13. A method according to claim 12, wherein irrefutability is determined

based upon a second predetermined criterion.

14.A computer apparatus comprising a processor arranged to modify
program-accessible information in accordance with a received change
to program-accessible information of another computer apparatus if the
processor determines that the received change to the program-
accessible information of the another computer apparatus complies
with predetermined criteria and irrefutably establishes that the received

change is associated with the another computer apparatus.

15.A computer apparatus according to claim 14, wherein irrefutability is

determined based upon second predetermined criteria.

16.A computer apparatus according to claim 15, wherein the second
predetermined criteria is the electronic signing of the received change
or representation of the change with a private key of the another
computer apparatus.

17.A computer apparatus according to claim 16, further comprises a

memory for storing a copy of a certificate associated with the another

10

15

20

25

30

300205009
20

computer apparatus to allow the processor to authenticate the first

computer entities electronic signature.

18.A computer apparatus comprising a processor arranged to modify
program-accessible information in accordance with a received change
to program-accessible information of another computer apparatus if the
processor determines that the received change to the program-
accessible of the another computer apparatus complies with a first
predetermined criteria and establishes that the received change is
associated with the another computer apparatus based upon trusted
third party data associated with the another computer apparatus.

19.A computer system comprising a plurality of computer entities, wherein
each computer entity includes program-accessible information; and
wherein a computer entity is arranged to accept a change to their
respective program-accessible information in accordance with a
received change to another computer entity's program-accessible
information if the computer entity determines that the change to the
another computer entity’s program-accessible information complies
with first predetermined criteria of the respective computer entity and
irrefutably establishes that the received change is associated with the

another computer entity.

20. A computer system according to claim 19, wherein irrefutability is

determined based upon a second predetermined criterion.

21.A computer system according to claim 20, wherein the second
predetermined criteria is the electronic signing of the received change
or representation of the change with a private key of the another

computer entity.

300205009
21

22.A computer system according to any preceding claim, wherein the first
predetermined criteria determines the rules for allowing the respective
computer entity to implement a change to the respective computer

entity’s program-accessible information.

23. A computer system according to claim 22, wherein a rule for allowing
the respective computer entity to implement a change to the respective
computer entities program-accessible information is that all other
computer entities of the computer system irrefutably validate the

10 change.

W I)/'S 12,
A Y

N The s g
R }ll(’l - { \E
> Olhee D
//V/ ——— INVESTOR IN PEOPLE
C,/ . o
Application No: GB 0212843.7 ¥ Examiner: Geoff Western
Claims searched: 1-23 Date of search: 18 December 2002

Patents Act 1977 : Search Report under Section 17

Documents considered to be relevant:

Category | Relevant to | Identity of document and passage or figure of particular relevance
claims
X 1-3,58,9, | EP 1168165 A2 (IBM) N.b. paras 3-13
12-16,18-21
X 1-3,5,8,9, | EP 0709760 A2 (MITSUBISHI) N.b. columns 4-5
12-16,18-21
X | 1258912, | EP0717353 A2 (A.T&T) N.b. abstract, page 2
14,15,18-20
X 1,2,5,8,9, | US 6298445 B1 (ALLOUCH et al) N.b. col 2 lines 30-47
12-15,18-20
Categories:
X Document indicating fack of novelty or tnventive step A Document mdicating technological background and/or state of the ant.
Y Document indicating lack of inventive step 1f combined P Document published on or after the declared prionity date but before the
with one or more other documents of same category filing date of this invention
& Member of the same patent famuly £ Patent document published on or after, but with pniority date earlier
than, the filing date of this applicaton
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™:
G4A

Worldwidc search of patent documents classified in the following areas of the IPC”:

GO6F

The following online and other databases have been used in the preparation of this search report:

Online: JAPIO, EPODOC, WPI

An Executive Agency of the Depantment of Trade and Industry

