

(19) 대한민국특허청(KR)

(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

G11C 11/4076 (2006.01) *G11C* 7/22 (2015.01) *H03L* 7/081 (2006.01) *H03L* 7/085 (2006.01)

(52) CPC특허분류 G11C 11/4076 (2013.01) G11C 7/22 (2018.05)

(21) 출원번호 **10-2020-0118435**

(22) 출원일자 **2020년09월15일**

심사청구일자 **없음**

(11) 공개번호 10-2022-0036175

 (43) 공개일자

 (71) 출원인

삼성전자주식회사

경기도 수원시 영통구 삼성로 129 (매탄동)

2022년03월22일

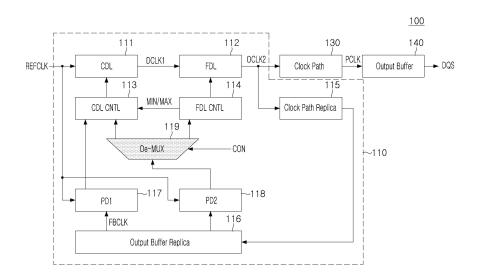
(72) 발명자

최훈대

경기도 화성시 동탄순환대로21길 53 (청계동, 롯 데캐슬 알바트로스) 1306동 1701호

(74) 대리인

특허법인씨엔에스


전체 청구항 수 : 총 10 항

(54) 발명의 명칭 메모리 장치 및 그것의 클록 라킹 방법

(57) 요 약

본 발명의 메모리 장치의 클록 라킹 방법은, 내부 전압이 안정화 되기 전에, 지연 고정 루프 회로에서 이니셜 락동작을 수행하는 단계, 상기 내부 전압이 안정화 된 후에, 윈도우 검출 회로를 이용하여 기준 클록과 피드백 클록 사이의 클록 스큐를 모니터링 하는 단계, 및 상기 지연 고정 루프 회로에서 상기 클록 스큐에 대응하는 다이나믹 지연 제어를 이용하여 리-락 동작을 수행하는 단계를 포함할 수 있다.

대표도

(52) CPC특허분류

HO3L 7/0814 (2013.01) **HO3L** 7/085 (2013.01)

명 세 서

청구범위

청구항 1

제 1 코드값에 따라 기준 클록을 지연시킴으로써 제 1 지연 클록을 출력하는 제 1 지연 라인; 제 2 코드값에 따라 제 1 지연 클록을 지연시킴으로써 제 2 지연 클록을 출력하는 제 2 지연 라인; 제 1 위상 차이값에 따라 상기 제 1 코드값을 생성하거나, 제 2 위상 차이값에 따라 상기 제 1 코드값을 생성하는 제 1 지연 라인 제어기; 상기 제 2 위상 차이값에 따라 상기 제 2 지연 라인 제어기;

상기 기준 클록과 피드백 클록의 클록 스큐에 대응하는 모니터 검출 신호에 응답하여 상기 제 2 위상 차이값을 상기 제 1 지연 라인 제어기 및 상기 제 2 지연 라인 제어기 중에서 어느 하나로 출력하는 디-멀티플렉서;

상기 기준 클록과 상기 피드백 클록 사이의 상기 제 1 위상 차이값을 검출하는 제 1 위상 검출기; 상기 기준 클록과 상기 피드백 클록 사이의 상기 제 2 위상 차이값을 검출하는 제 2 위상 검출기; 상기 제 2 지연 클록을 수신하고 내부 클록을 발생하는 클록 패스; 상기 내부 클록에 동기하여 데이터 스트로브 신호를 출력하는 출력 버퍼; 상기 클록 패스의 지연량만큼 상기 제 2 지연 클록을 지연시키는 클록 패스 레플리카; 및 상기 클록 패스 레플리카로부터 출력하는 클록을 상기 출력 버퍼의 지연량만큼 지연시킴으로써 상기 피드백 클록을 발생하는 출력 버퍼 레플리카를 포함하는 메모리 장치.

청구항 2

제 1 항에 있어서,

상기 제 1 위상 검출기를 활성화 하기 위한 제 1 활성화 신호 및 상기 제 2 위상 검출기를 활성화 하기 위한 제 2 활성화 신호를 발생하는 지연 고정 루프 제어기를 더 포함하는 메모리 장치.

청구항 3

제 1 항에 있어서,

이니셜 락 구간에서.

상기 제 1 위상 검출기를 활성화시킴으로써 코어스 락 동작이 수행되고.

상기 코어스 락 동작 이후에 상기 제 2 위상 검출기를 활성화시킴으로써 파인 락 동작이 수행되는 것을 특징으로 하는 메모리 장치.

청구항 4

제 3 항에 있어서,

상기 파인 락 동작이 수행된 후에, 상기 제 2 위상 검출기는 활성화 상태를 유지하는 것을 특징으로 하는 메모리 장치.

청구항 5

제 1 항에 있어서,

상기 기준 클록과 상기 피드백 클록의 클록 스큐를 감지함으로써 상기 모니터 검출 신호를 발생하는 윈도우 검출 회로를 더 포함하는 메모리 장치.

청구항 6

제 5 항에 있어서,

상기 윈도우 검출 회로는 내부 전압 안정화 신호에 응답하여 활성화되는 것을 특징으로 하는 메모리 장치.

청구항 7

제 5 항에 있어서,

상기 윈도우 검출 회로는,

상기 기준 클록과 상기 피드백 클록의 클록 스큐에 대응하는 위상 검출 신호를 발생하는 클록 스큐 모니터;

상기 위상 검출 신호를 내부 클록에 동기화시킴으로써 동기화된 위상 검출 신호를 발생하는 클록 동기 회로; 및

상기 동기화된 위상 검출 신호에 응답하여 상기 모니터 검출 신호를 발생하는 모니터 검출 신호 발생기를 포함하는 메모리 장치.

청구항 8

제 7 항에 있어서,

상기 클록 스큐 모니터는 내부 전압 안정화 신호에 응답하여 활성화 되는 것을 특징으로 하는 메모리 장치.

청구항 9

제 7 항에 있어서,

상기 클록 스큐 모니터는 TMRS(Test Mode Register Set)에 의해 강제적으로 비활성화 되는 것을 특징으로 하는 메모리 장치.

청구항 10

메모리 장치의 클록 라킹 방법에 있어서,

내부 전압이 안정화 되기 전에, 지연 고정 루프 회로에서 이니셜 락 동작을 수행하는 단계;

상기 내부 전압이 안정화 된 후에, 윈도우 검출 회로를 이용하여 기준 클록과 피드백 클록 사이의 클록 스큐를 모니터링 하는 단계; 및

상기 지연 고정 루프 회로에서 상기 클록 스큐에 대응하는 다이나믹 지연 제어를 이용하여 리-락 동작을 수행하는 단계를 포함하는 방법.

발명의 설명

기술분야

[0001] 본 발명은 메모리 장치 및 그것의 클록 라킹 방법에 관한 것이다.

배경기술

[0002] 일반적으로, DRAM(dynamic random access memory) 등의 반도체 소자가 고속화됨에 따라, DLL(delay locked loop) 회로는 지연 분해능(delay resolution)이 큰 코어스 지연 라인(coarse delay line)과 지연 분해능이 작은 파인 지연 라인(fine delay line)으로 나누어 동작하고 있다.

발명의 내용

해결하려는 과제

[0003] 본 발명의 목적은, 파워 노이즈 상황에서 보다 빠르게 클록 라킹을 수행하는 메모리 장치 및 그것의 클록 라킹 방법을 제공하는데 있다.

과제의 해결 수단

[0004] 본 발명의 실시 예에 따른 메모리 장치는, 제 1 코드값에 따라 기준 클록을 지연시킴으로써 제 1 지연 클록을 출력하는 제 1 지연 라인; 제 2 코드값에 따라 제 1 지연 클록을 지연시킴으로써 제 2 지연 클록을 출력하는 제 2 지연 라인; 제 1 위상 차이값에 따라 상기 제 1 코드값을 생성하거나, 제 2 위상 차이값에 따라 상기 제 1 코드값을 생성하는 제 2 지연 라인 제어기; 상기 제 2 위상 차이값에 따라 상기 제 2 코드값을 생성하는 제 2 지

연 라인 제어기; 상기 기준 클록과 피드백 클록의 클록 스큐에 대응하는 모니터 검출 신호에 응답하여 상기 제 2 위상 차이값을 상기 제 1 지연 라인 제어기 및 상기 제 2 지연 라인 제어기 중에서 어느 하나로 출력하는 디므티플렉서; 상기 기준 클록과 상기 피드백 클록 사이의 상기 제 1 위상 차이값을 검출하는 제 1 위상 검출기; 상기 기준 클록과 상기 피드백 클록 사이의 상기 제 2 위상 차이값을 검출하는 제 2 위상 검출기; 상기 제 2 지연 클록을 수신하고 내부 클록을 발생하는 클록 패스; 상기 내부 클록에 동기하여 데이터 스트로브 신호를 출력하는 출력 버퍼; 상기 클록 패스의 지연량만큼 상기 제 2 지연 클록을 지연시키는 클록 패스 레플리카; 및 상기 클록 패스 레플리카로부터 출력하는 클록을 상기 출력 버퍼의 지연량만큼 지연시킴으로써 상기 피드백 클록을 발생하는 출력 버퍼 레플리카를 포함할 수 있다.

- [0005] 본 발명의 실시 예에 따른 메모리 장치의 클록 라킹 방법은, 내부 전압이 안정화 되기 전에, 지연 고정 루프 회로에서 이니셜 락 동작을 수행하는 단계; 상기 내부 전압이 안정화 된 후에, 윈도우 검출 회로를 이용하여 기준 클록과 피드백 클록 사이의 클록 스큐를 모니터링 하는 단계; 및 상기 지연 고정 루프 회로에서 상기 클록 스큐에 대응하는 다이나믹 지연 제어를 이용하여 리-락 동작을 수행하는 단계를 포함할 수 있다.
- [0006] 본 발명의 실시 예에 따른 메모리 장치는, 복수의 워드라인들과 복수의 비트라인들이 교차하는 곳에 배치되는 복수의 메모리 셀들을 갖는 메모리 셀 어레이; 로우 어드레스에 응답하여 상기 복수의 워드라인들 중에서 어느하나를 선택하는 로우 디코더; 읽기 동작시 상기 복수의 비트라인들 중에서 선택된 비트라인들에 연결된 메모리 셀들로부터 데이터를 감지 및 증폭하는 비트라인 감지 증폭 회로; 컬럼 어드레스에 응답하여 상기 복수의 비트라인들 중에서 상기 선택된 비트라인들을 선택하는 컬럼 디코더; 상기 읽기 동작시 상기 비트라인 감지 증폭 회로부터 데이터를 수신하고, 내부 클록에 동기화된 데이터 스트로브 신호에 응답하여 상기 수신된 데이터를 외부 장치로 출력하는 데이터 입출력 장치; 기준 클록을 수신하여 상기 내부 클록을 발생하는 지연 고정 루프 회로; 및 상기 기준 클록과 피드백 클록 사이의 클록 스큐에 대응하는 모니터 검출 신호를 발생하는 윈도우 검출 회로를 포함할 수 있다.

발명의 효과

[0007] 본 발명의 실시 예에 따른 메모리 장치 및 그것의 클록 라킹 방법은, 파워 노이즈에 따른 클록 스큐의 변화를 모니터링하고, 모니터링 결과에 따라 다이나믹하게 지연 라인을 제어함으로써, 보다 빠르게 클록 락-동작을 수 행할 수 있다.

도면의 간단한 설명

[0008] 이하에 첨부되는 도면들은 본 실시 예에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 실시 예들을 제공한다.

도 1은 본 발명의 실시 예에 따른 DLL(Delayed Locked Loop)를 갖는 메모리 장치(100)를 예시적으로 보여주는 도면이다.

도 2a, 및 도 2b는 본 발명의 실시 예에 따른 DLL 제어기(120)의 위상 검출기들(PD1, PD2)을 제어하는 방식을 예시적으로 보여주는 도면들이다.

도 3은 본 발명의 실시 예에 따른 윈도우 검출 회로(125)를 예시적으로 보여주는 도면이다.

도 4는 본 발명의 실시 예에 따른 DLL(110)은 라킹 동작을 예시적으로 보여주는 도면이다.

도 5는 본 발명의 실시 예에 따른 윈도우 검출 회로(125)의 내부 구성을 예시적으로 보여주는 도면이다.

도 6 및 도 7은 본 발명의 실시 예에 따른 클록 스큐 모니터(125-1)의 동작을 설명하기 위한 도면들이다.

도 8 및 도 9는 본 발명의 실시 예에 따른 클록 동기화 회로(125-2)의 동작을 설명하기 위한 도면들이다.

도 10 및 도 11은 본 발명의 실시 예에 따른 모니터 검출 신호 발생기(125-3)의 동작을 설명하기 위한 도면들이다.

도 12는 본 발명의 실시 예에 따른 메모리 장치(100)의 동작 방법을 예시적으로 보여주는 흐름도이다.

도 13은 본 발명의 실시 예에 따른 메모리 장치(700)를 예시적으로 보여주는 도면이다.

도 14는 본 발명의 실시 예에 따른 적어도 하나의 커맨드/어드레스 캘리브레이션을 수행하는 메모리 시스템을 예시적으로 보여주는 도면이다.

도 15는 본 발명의 실시 예에 따른 차량용 전자 시스템(3000)을 예시적으로 보여주는 도면이다.

도 16은 본 발명의 실시 예에 따른 메모리 장치가 적용된 데이터 센터를 예시적으로 보여주는 도면이다.

발명을 실시하기 위한 구체적인 내용

- [0009] 아래에서는 도면들을 이용하여 본 발명의 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시 할 수 있을 정도로 본 발명의 내용을 명확하고 상세하게 기재할 것이다.
- [0010] 일반적으로, 메모리 장치의 DLL(delay locked loop, 지연 고정 루프)은 초기 락(initial lock) 구간에서 코어스 락(coarse lock) 동작을 수행한 후에 파인 락(fine lock) 동작을 수행하고 있다. 이후에 파워 드랍(power drop)에 따른 언-락(un-lock)이 발생할 때, DLL은 이러한 언-락을 다시 리-락(re-lock)하기 위하여 파인 락 동작을 수행하고 있다. 이는 DLL의 라킹 시간을 증가시키고, tDV(Data Valid Window) 감소시키고 있다.
- [0011] 본 발명의 실시 예에 따른 메모리 장치의 DLL은 초기 락 구간 이후에 윈도우 검출 회로를 동작시킴으로써, 기준 클록과 피드백 클록 사이의 지연 차이를 모니터링하고, 모니터링 결과값에 따라 코어스 락 동작을 활성화 시킬 수 있다. 그 결과로써, 본 발명의 실시 예에 따른 메모리 장치는 다이나믹 파워 노이즈에 대응하는 딜레이 스큐 (delay skew)를 모니터링 함으로써, 빠르게 클록을 동기화 시킬 수 있으며, 그에 따라 tDV 감소를 해결할 수 있다.
- [0012] 도 1은 본 발명의 실시 예에 따른 DLL(Delayed Locked Loop)를 갖는 메모리 장치(100)를 예시적으로 보여주는 도면이다. 도 1을 참조하면, 메모리 장치(100)는, DLL(110), 클록 패스(130), 및 출력 버퍼(140)를 포함할 수 있다.
- [0013] 메모리 장치(100)는 외부의 제어기로부터 수신된 데이터를 저장하거나, 읽혀진 데이터를 제어기로 출력하도록 구현될 수 있다. 메모리 장치(100)는, 컴퓨팅 시스템에서 연산 메모리(operation memory), 워킹 메모리(working memory) 혹은 버퍼 메모리(buffer memory)로써 이용될 수 있다. 실시 예에 있어서, 메모리 장치(100)는 SIMM(Single In-line Memory Module), DIMM(Dual In-line Memory Module), SODIMM(Small-Outline DIMM), UDIMM(Unbuffered DIMM), FBDIMM(Fully-Buffered DIMM), RBDIMM(Rank-Buffered DIMM), mini-DIMM, micro-DIMM, RDIMM(Registered DIMM) 혹은 LRDIMM(Load-Reduced DIMM)으로 구현될 수 있다.
- [0014] 실시 예에 있어서, 메모리 장치(100)는 휘발성 메모리로 구현될 수 있다. 예를 들어, 휘발성 메모리는, DRAM(Dynamic Random Access Memory), SDRAM(Synchronous DRAM), DDR SDRAM(Double Data Rate SDRAM), LPDDR SDRAM(Low Power Double Data Rate SDRAM), GDDR SDRAM(Graphics Double Data Rate SDRAM), RDRAM(Rambus DRAM) 및 SRAM(Static RAM)에서 적어도 하나를 포함할 수 있다. 다른 실시 예에 있어서, 메모리 장치(100)는 비휘발성 메모리로 구현될 수 있다. 예를 들어, 비휘발성 메모리는, 낸드 플래시 메모리, PRAM(Phase-change RAM), MRAM(Magneto-resistive RAM), ReRAM(Resistive RAM), FRAM(Ferro-electric RAM), 및 노아 플래시 메모리 중에서 어느 하나를 포함할 수 있다.
- [0015] DLL(110)은 제 1 지연 라인(코어스 지연 라인, 111), 제 2 지연 라인(파인 지연 라인, 112), 제 1 지연 라인 제 어기(CDL CNTL, 113), 제 2 지연 라인 제어기(FDL CNTL, 114), 클록 패스 레플리카(115), 출력 버퍼 레플리카(116), 제 1 위상 검출기(PD1, 117), 제 2 위상 검출기(PD2, 118), 및 디-멀티플렉서(De-MUX, 119)를 포함할 수 있다.
- [0016] 도시되지 않았지만, 메모리 장치(100)는 외부로부터 클록(CK)를 버퍼링 함으로써 기준 클록(REFCLK)을 생성하는 클록 버퍼를 더 포함할 수 있다.
- [0017] 제 1 지연 라인(코어스 지연 라인, 111)은 기준 클록(REFCK)을 수신하고, 기준 클록(REFCK)을 제 1 코드값에 따라 지연시킴으로써 제 1 지연 클록(DCLK1)을 발생하도록 구현될 수 있다. 실시 예에 있어서, 제 1 지연 라인은 직렬 연결된 제 1 지연 셀들을 포함할 수 있다. 실시 예에 있어서, 제 1 지연 셀들의 각각은 제 1 지연량을 가질 수 있다.
- [0018] 제 2 지연 라인(파인 지연 라인, 112)은 제 1 지연 클록(DCLK1)을 수신하고, 제 1 지연 클록(DCLK1)을 제 2 코 드값에 따라 지연시킴으로써 제 2 지연 클록(DCLK2)을 발생하도록 구현될 수 있다. 실시 예에 있어서, 제 2 지연 연 라인은 직렬 연결된 제 2 지연 셀들을 포함할 수 있다. 실시 예에 있어서, 제 2 지연 셀들의 각각은 제 2 지연량을 가질 수 있다. 여기서 제 2 지연량은 제 1 지연량보다 작을 수 있다.
- [0019] 제 1 지연 라인 제어기(CDL CNTL, 113)는 제 1 위상 차이값 혹은 제 2 위상에 차이값에 대응하는 제 1 코드값을

발생하도록 구현될 수 있다.

- [0020] 제 2 지연 라인 제어기(FDL CNTL, 114)는 제 2 위상 차이값에 대응하는 제 2 코드값을 발생하도록 구현될 수 있다.
- [0021] 클록 패스 레플리카(115)는 제 1 지연 클록(DCLK2)를 수신하고, 클록 패스(130)에 실질적으로 동일한 지연량을 갖도록 구현될 수 있다.
- [0022] 출력 버퍼 레플리카(116)는 클록 패스 레플리카(115)로부터 출력하는 클록을 출력 버퍼(140)에 실질적으로 동일 한 지연량만큼 지연시킴으로써 피드백 클록(FBCLK)을 갖도록 구현될 수 있다.
- [0023] 제 1 위상 검출기(PD1, 117)는 피드백 클록(FBCLK)에 따라 제 1 위상 차이값을 발생하도록 구현될 수 있다.
- [0024] 제 2 위상 검출기(PD2, 118)는 피드백 클록(FBCLK)에 따라 제 2 위상 차이값을 발생하도록 구현될 수 있다.
- [0025] 디-멀티플렉서(De-MUX, 119)는 모니터 검출 신호(CON)에 응답하여 제 2 위상 차이값을 제 1 지연 라인 제어기 (121) 및 제 2 지연 라인 제어기(122) 중에서 어느 하나로 출력하도록 구현될 수 있다. 여기서 모니터 검출 신호(CON)는 다이나믹 파워 노이즈에 따른 딜레이 스큐를 모니터링 한 신호일 수 있다.
- [0026] 클록 패스(Clock Path, 130)는, DLL(110)로부터 출력하는 클록을 내부 경로들을 통하여 메모리 장치(100)의 내 부로 전송하도록 구현될 수 있다.
- [0027] 출력 버퍼(140)는 클록 패스(130)로부터 출력하는 클록(PCLK)을 이용하여 데이터를 출력하는 데이터 스트로브 신호(DQS)를 출력하도록 구현될 수 있다.
- [0028] 본 발명의 실시 예에 따른 메모리 장치(100)는, 딜레이 스큐를 모니터링 한 모니터 검출 신호(CON)에 응답하여 코어스 라킹 동작을 수행하는 DLL(110)를 구비함으로써, 파워 노이즈에 따른 딜레이 스큐를 보다 빠르게 보상할 수 있다.
- [0029] 도 2a, 및 도 2b는 본 발명의 실시 예에 따른 DLL 제어기(120)의 위상 검출기들(PD1, PD2)을 제어하는 방식을 예시적으로 보여주는 도면들이다.
- [0030] 도 2a에 도시된 바와 같이, DLL 제어기(120)는 DLL(110)의 제 1 위상 검출기(PD1,117) 및 제 2 위상 검출기(PD2, 118)은 상보적으로 동작하도록, 제 1 활성화 신호(PD1_EN) 및 제 2 활성화 신호(PD2_EN)을 출력할 수 있다. 제 1 위상 검출기(117)는 제 1 활성화 신호(PD1_EN)에 응답하여 활성화 될 수 있다. 제 2 위상 검출기(118)는 제 2 활성화 신호(PD2_EN)에 응답하여 활성화 될 수 있다.
- [0031] 도 2b에 도시된 바와 같이, 메모리 장치(100)가 내부 전압이 안정화 될 때까지(PICC2D 이용하여 판단), 제 1 활성화 신호(PD1_EN)가 먼저 하이 레벨 상태로써 코어스 라킹 동작이 수행되고, 이후에 제 2 활성화 신호(PD2_EN)가 하이 레벨 상태로써 파인 라킹 동작이 수행될 수 있다. 이후에 메모리 장치(100)는 내부 전압 안정화 이후에 제 2 활성화 신호(PD2_EN)를 하이 레벨 상태를 유지하고, 제 1 활성화 신호(PD1_EN)은 로우 레벨 상태를 유지할 수 있다. 다른 실시 예에 있어서, DLL 제어기(120)는 내부 전압 안정화 이후에 모니터 검출 신호(CON)에 응답하여 제 2 활성화 신호(PD2_EN)를 로우 레벨 상태로 변경하고, 제 1 활성화 신호(PD1_EN)은 하이 레벨 상태로 변경할 수 있다.
- [0032] 도 3은 본 발명의 실시 예에 따른 윈도우 검출 회로(125)를 예시적으로 보여주는 도면이다. 도 3을 참조하면, 윈도우 검출 회로(125)는, 내부 전압 안정화 신호(PICC2D)을 수신하고, 기준 클록(REFCLK)과 피드백 클록 (FBCLK)의 사이의 딜레이 스큐가 사전에 결정된 값을 초과할 때 모니터 검출 신호(CON)를 발생하도록 구현될 수 있다.
- [0033] 도 4는 본 발명의 실시 예에 따른 DLL(110)은 라킹 동작을 예시적으로 보여주는 도면이다. 도 4를 참조하면, DLL(110)은 초기화 구간에서 코어스 락 동작과 파인 락 동작을 수행하고, 이후 파워 노이즈에 따라 언-락이 발생할 때 코어스 락 동작을 수행할 수 있다. 이는, 기존의 파인 락 동작으로 언-락을 리-락 할 때보다 보다 빠르게 클록 라킹을 달성하게 한다.
- [0034] 도 5는 본 발명의 실시 예에 따른 윈도우 검출 회로(125)의 내부 구성을 예시적으로 보여주는 도면이다. 도 5 를 참조하면, 윈도우 검출 회로(125)는 클록 스큐 모니터(125-1), 클록 동기화 회로(125-2), 모니터 검출 신호 발생기(125-3)를 포함할 수 있다.
- [0035] 클록 스큐 모니터(125-1)는, 기준 클록(REFCLK)과 피드백 클록(FBCLK) 사이의 클록 스큐를 모니터링 하고, 대응

하는 위상 검출 신호(PD_LH_B)를 출력하도록 구현될 수 있다.

- [0036] 실시 예에 있어서, 클록 스큐 모니터(125-1)는 내부 전압 안정화 신호(PICC2D)에 응답하여 활성화 될 수 있다. 제 8 항에 있어서, 실시 예에 있어서, 클록 스큐 모니터(125-1)는 TMRS(Test Mode Register Set)에 의해 강제 적으로 비활성화 될 수 있다.
- [0037] 클록 동기화 회로(125-2)는 위상 검출 신호(PD_LH_B) 수신하고, 내부 클록에 동기화시킨 위상 검출 신호 (PD_LH_BD)를 출력하도록 구현될 수 있다.
- [0038] 모니터 검출 신호 발생기(125-3)는 동기화된 위상 검출 신호(PD_LH_BD)를 수신하고, 기준 클록(REFCLK)과 피드 백 클록(FBCLK) 사이의 클록 스큐에 대응하는 모니터 검출 신호(CON)를 발생하도록 구현될 수 있다.
- [0039] 도 6 및 도 7은 본 발명의 실시 예에 따른 클록 스큐 모니터(125-1)의 동작을 설명하기 위한 도면들이다. 도 6 및 도 7을 참조하면, 클록 스큐 모니터(125-1)는, 기준 클록(REFCLK)과 피드백 클록(FBCLK) 사이의 클록 스큐를 모니터링 하고, 대응하는 위상 검출 신호(PD_LH_B)를 출력할 수 있다.
- [0040] 도 6에 도시된 바와 같이, 클록 스큐 모니터(125-1)는 기준 클록(REFCLK), 피드백 클록(FBCLK), 다이나믹 스큐 모니터 신호(DYNSKEW_SCR_ON), 내부 전압 안정화 신호(PICC2D), 로우 오픈 신호(ROW_OPEN)를 수신할 수 있다. 여기서 다이나믹 스큐 모니터 신호(DYNSKEW_SCR_ON)는 다이나믹 스큐를 모니터링 하는 신호이다. 로우 오픈 신호(ROW_OPEN)는 TMRS로 강제 디스에이블(L; 로우 레벨 상태)로 만들 수 있다.
- [0041] 실시 예에 있어서, 클록 비활성화 신호(CLKDIS)는 내부 전압 안정화 신호(PICC2D), 로우 오픈 신호(ROW_OPEN), 및 위상 검출 신호(PD_LJ)을 연산함으로써 발생될 수 있다. 모니터 활성화 신호(SCR_EN)는 제 1 위상 검출기 (PD1)가 동작 하는 구간을 정의하는 신호이다.
- [0042] 실시 예에 있어서, 모니터 활성화 신호(SCR_EN)는 다이나믹 스큐 모니터 신호(DYNSKEW_SCR_ON)과 클록 비활성 신호(CLKDIS)의 연산 동작에 의해 발생될 수 있다. 실시 예에 있어서, 내부 전압 안정화 신호(PICC2D)와 클록 비활성화 신호(CLKDIS)의 연산 결과에 따라 센스 앰프의 플립플롭에 제공되는 내부 전압 신호(PICC2DD)가 발생될 수 있다. 실시 예에 있어서, 지연 기준 클록(REFCLKD)은 기준 클록(REFCLK)과 모니터 활성화 신호(SCR_EN)의 연산 동작에 의해 발생될 수 있다.
- [0043] 실시 예에 있어서, 지연 피드백 클록(FBCLKD)은 기준 클록(REFCLK)과 모니터 활성화 신호(SCR_EN)의 연산 동작에 의해 발생될 수 있다. 실시 예에 있어서, 위상 검출 신호(PD_LH)는 대응하는 지연 셀(DCELL1. DCELL2)과 플립플롭(SAFF)을 경유한 지연 기준 클록(REFCLKD)과 지연 피드백 클록(FBCLKD)의 연산 동작에 의해 발생될 수 있다. 멀티 플렉서는 모니터 활성화 신호(SCR_EN)에 응답하여 위상 검출 신호(PD_LH) 및 접지 신호(VSSIO) 중에서 어느 하나를 선택할 수 있다.
- [0044] 클록 스큐 모니터(125-1)는 멀티 플렉서의 출력 신호를 인버팅함으로써, 위상 검출 신호(PD_LH_B)를 출력할 수 있다.
- [0045] 도 8 및 도 9는 본 발명의 실시 예에 따른 클록 동기화 회로(125-2)의 동작을 설명하기 위한 도면들이다. 도 8 및 도9를 참조하면, 클록 동기화 회로(125-2)는 위상 검출 신호(PD_LH_B) 수신하고, 내부 클록에 동기화시킨 위상 검출 신호(PD_LH_BD)를 출력할 수 있다.
- [0046] 업다운 신호들(UPDOWN, UPDOWNB)은 업 신호(UP)와 다운 신호(DOWN)을 연산함으로써 발생될 수 있다.
- [0047] 플립플롭(F/F)은 위상 검출 신호(PD_LH_B)를 업다운 신호(UPDOWN)에 응답하여 신호(A)를 출력할 수 있다. 또한, 플립플롭(F/F)은 위상 검출 신호(PD_LH_B)를 상보 업다운 신호(UPDOWNB)에 응답하여 신호(B)를 출력할 수 있다. 신호(C)는 신호 (A)와 신호(B)의 연산 동작에 의해 발생될 수 있다.
- [0048] 플립플롭(F/F)은 신호(C) 및 신호(D)의 연산 결과 신호와 내부 클록(CLKN2)의 연산 결과 신호(CLKN2B)에 응답하여 위상 검출 신호(PD_LH_BD)를 입출력 할 수 있다. 여기서 신호(D)는 플립플롭(F/F)의 위상 검출 신호(PD_LH_BD)를 지연시킨 신호이다.
- [0049] 도 10 및 도 11은 본 발명의 실시 예에 따른 모니터 검출 신호 발생기(125-3)의 동작을 설명하기 위한 도면들이다. 도 10 및 도 11을 참조하면, 모니터 검출 신호 발생기(125-3)는 위상 검출 신호(PD_LH_BD)를 수신하고, 모니터 검출 신호(CON)를 발생할 수 있다.
- [0050] 초기화 로드 완료 신호(INIT_LOAD_DONE)는 제 1 위상 검출기(PD1)가 TDC(Time-to-Digital Converter)에 의한

코드값을 코어스 지연 라인(CDL)에 설정하도록 로딩하는 신호이다. 즉, 초기화 로드 완료 신호 (INIT_LOAD_DONE)는 제 1 위상 검출기(PD1) 이 동작 끝나면, 로우 레벨에서 하이 레벨로 발생할 수 있다.

- [0051] 리셋 신호(RESETB), 초기화 로드 완료 신호(INIT_LOAD_DONE), 위상 검출 신호(PD_LH_BD), 및 내부 전압 안정화 신호(PICC2D)을 연산함으로써, 완료 단계 리셋 신호(END_STATE_RSTB)가 발생될 수 있다.
- [0052] 다운 신호(DOWN)와 내부 클록(CLKN2)을 연산함으로써 지연된 다운 신호(DOWMD)가 발생될 수 있다. 업 신호(UP)와 내부 클록(CLKN2)을 연산함으로써 지연된 업 신호(UPD)가 발생될 수 있다.
- [0053] 직렬 연결된 제 1 플립플롭들은 완료 단계 리셋 신호(END_STATE_RSTB)을 지연된 업 신호(UPD)에 응답하여 출력할 수 있다. 직렬 연결된 제 2 플립플롭들은 완료 단계 리셋 신호(END_STATE_RSTB)을 지연된 다운 신호(DOWND)에 응답하여 출력할 수 있다.
- [0054] 제 1 플립플롭들의 출력 신호와 제 2 플립플롭들의 출력 신호를 연산함으로써, 완료 단계 신호(END_STAGE)가 발생될 수 있다. 여기서 완료 단계 신호(END_STAGE)는 완료 신호(END_STAGE)는 제 2 위상 검출기(PD2) 동작 하도록 알려주는 신호이다.
- [0056] 기준 클록(REFCLK)과 피드백 클록(FBCLK)의 사이의 클록 스큐에 응답하여 위상 검출 신호(PD_LH_BD)가 발생될 수 있다. 도 11에 도시된 바와 같이, 업 신호(UP)의 로우 레벨 상태와 다운 신호(DOWN)의 라이징 엣지에 응답하여 위상 검출 신호(PD_LH_BD)에 대응하는 새로운 완료 단계 신호가 발생할 수 있다. 이렇게 새롭게 발생된 완료 단계 신호(NEW_END_STAGE)는 모니터 검출 회로(125)의 모니터 검출 신호(CON)로써 출력될 수 있다.
- [0057] 도 12는 본 발명의 실시 예에 따른 메모리 장치(100)의 동작 방법을 예시적으로 보여주는 흐름도이다. 도 1 내지 도 12을 참조하면, 메모리 장치(100)는 다음과 같이 동작할 수 있다.
- [0058] 메모리 장치(100)의 파워-업 시, 메모리 장치(100)는 이니셜 락 동작을 수행할 수 있다. 여기서 이니셜 락 동작은 코어스 락 동작과 파인 락 동작을 포함할 수 있다. 내부 전압이 안정화되면, 기본적으로 파인 락 동작이 수행될 수 있다(S110).
- [0059] 메모리 장치(100)의 윈도우 검출 회로(125)는 DLL의 입력 클록(REFCLK)과 출력 클록(FBCLK) 사이의 지연 스큐를 모니터링 할 수 있다(S120). 만일, 지연 스큐가 사전에 결정된 값을 초과할 때, 모니터 검출 신호(CON) 가 발생될 수 있다.
- [0060] DLL(110)는 모니터 검출 신호(CON)에 응답하여 코어스 락 동작을 수행함으로써 언-락 상태를 락 상태로 만들도 록 리-락 동작을 수행할 수 있다(S130).
- [0061] 한편, 본 발명의 실시 예에 따른 DLL은 메모리 장치에 적용 가능하다.
- [0062] 도 13은 본 발명의 실시 예에 따른 메모리 장치(700)를 예시적으로 보여주는 도면이다. 도 13을 참조하면, 메모리 장치(700)는, DLL(701), 윈도우 검출 회로(702), 메모리 셀 어레이(710), 로우 디코더(720), 컬럼 디코더(730), 감지 증폭 회로(740), 어드레스 레지스터(750), 뱅크 제어 로직(752), 리프레쉬 카운터(754), 로우 어드 레스 멀티플렉서(756), 컬럼 어드레스 래치(758), 제어 로직(760), 리페어 제어회로(766), 타이밍 제어 회로 (764), 입출력 게이팅 회로(770), 에러 정정 회로(780), 및 데이터 입출력 버퍼(782)를 포함할 수 있다.
- [0063] DLL(701)는 도 1 내지 도 12에서 설명된 바와 같이, 모니터 검출 신호(CON)에 응답하여 신속하게 코어스 락 동작을 수행할 수 있다. 또한, 모니터 검출 회로(702)는 도 1 내지 도 12에서 설명된 바와 같이 기준 클록 (REFCLK)과 피드백 클록(FBCLK) 사이의 딜레이 스큐를 모니터링 하고, 그 결과에 따른 모니터 검출 신호(CON)를 출력할 수 있다.
- [0064] 메모리 셀 어레이(710)는 제 1 내지 제 8 뱅크들(711 ~ 718)을 포함할 수 있다. 한편, 메모리 셀 어레이(710)의 뱅크의 개수는 여기에 제한되지 않는다고 이해되어야 할 것이다. 로우 디코더(720)는 제 1 내지 제 8 뱅크들 (711 ~ 718)에 각각 연결된 제 1 내지 제 8 뱅크 로우 디코더들(721 ~ 728)을 포함할 수 있다. 컬럼 디코더 (730)는 제 1 내지 제 8 뱅크들(711 ~ 718)에 각각 연결된 제 1 내지 제 8 뱅크 컬럼 디코더들(731 ~ 738)을 포함할 수 있다. 감지 증폭 회로(740)는 제 1 내지 제 8 뱅크들(711 ~ 718)에 각각 연결된 제 1 내지 제 8 뱅크센스 앰프들(741 ~ 748)을 포함할 수 있다.
- [0065] 한편, 제 1 내지 제 8 뱅크들(711 ~ 718), 제 1 내지 제8 뱅크 로우 디코더들(721 ~ 728), 제 1 내지 제 8 뱅

크 컬럼 디코더들(731 ~ 738), 제 1 내지 제 8 뱅크 센스 앰프들(741 ~ 748)은 제 1 내지 제 8 뱅크들을 각각 구성할 수 있다. 제 1 내지 제 8 뱅크들(711 ~ 718)의 각각은 워드라인(WL)들과 비트라인(BL)들이 교차하는 지점에 형성되는 복수의 메모리 셀(MC)들을 포함할 수 있다.

- [0066] 어드레스 레지스터(750)는 외부의 메모리 제어기로부터 뱅크 어드레스(BANK_ADDR), 로우 어드레스(ROW_ADDR) 및 컬럼 어드레스(COL_ADDR)를 갖는 어드레스(ADDR)를 수신 및 저장할 수 있다. 어드레스 레지스터(750)는 수신된 뱅크 어드레스(BANK_ADDR)를 뱅크 제어 로직(752)에 제공하고, 수신된 로우 어드레스(ROW_ADDR)를 로우 어드레스 멀티플렉서(756)에 제공하며, 수신된 컬럼 어드레스(COL_ADDR)를 컬럼 어드레스 래치(758)에 제공할 수 있다.
- [0067] 뱅크 제어 로직(752)은 뱅크 어드레스(BANK_ADDR)에 응답하여 뱅크 제어 신호들을 생성할 수 있다. 뱅크 제어 신호들에 응답하여 제 1 내지 제 8 뱅크 로우 디코더들(721 ~ 728) 중에서 뱅크 어드레스(BANK_ADDR)에 대응하는 뱅크 로우 디코더가 활성화될 수 있다. 뱅크 제어 신호들에 응답하여 제 1 내지 제 8 뱅크 컬럼 디코더들 (731 ~ 738) 중에서 뱅크 어드레스(BANK_ADDR)에 대응하는 뱅크 컬럼 디코더가 활성화될 수 있다.
- [0068] 로우 어드레스 멀티플렉서(756)는 어드레스 레지스터(750)로부터 로우 어드레스(ROW_ADDR)를 수신하고, 리프레 쉬 카운터(754)로부터 리프레쉬 로우 어드레스(REF_ADDR)를 수신할 수 있다. 로우 어드레스 멀티플렉서(756)는 로우 어드레스(ROW_ADDR) 혹은 리프레쉬 로우 어드레스(REF_ADDR)를 로우 어드레스(RA)로서 선택적으로 출력할 수 있다. 로우 어드레스 멀티플렉서(756)로부터 출력된 로우 어드레스(RA)는 제 1 내지 제 8 뱅크 로우 디코더들(721 ~ 728)에 각각 인가될 수 있다.
- [0069] 제 1 내지 제 8 뱅크 로우 디코더들(721 ~ 728) 중에서 뱅크 제어 로직(752)에 의해 활성화된 뱅크 로우 디코더는 로우 어드레스 멀티플렉서(756)로부터 출력된 로우 어드레스(RA)를 디코딩하여 로우 어드레스에 대응하는 워드라인을 활성화할 수 있다. 예를 들어, 활성화된 뱅크 로우 디코더는 로우 어드레스에 대응하는 워드라인에 워드라인 구동 전압을 인가할 수 있다. 또한, 활성화된 뱅크 로우 디코더는 로우 어드레스에 대응하는 워드라인을 활성화하는 것과 동시에 리페어 제어회로(766)로부터 출력되는 리던던시 로우 어드레스에 대응하는 리던던시 워드라인을 활성화할 수 있다.
- [0070] 컬럼 어드레스 래치(758)는 어드레스 레지스터(750)로부터 컬럼 어드레스(COL_ADDR)를 수신하고, 수신된 컬럼 어드레스(COL_ADDR)를 일시적으로 저장할 수 있다. 또한, 컬럼 어드레스 래치(758)는, 버스트(burst) 모드에서, 수신된 컬럼 어드레스(COL_ADDR)를 점진적으로 증가시킬 수 있다. 컬럼 어드레스 래치(758)는 일시적으로 저장 된 혹은 점진적으로 증가한 컬럼 어드레스(COL_ADDR)를 제 1 내지 제 8 뱅크 컬럼 디코더들(731 ~ 738)에 각각 인가할 수 있다.
- [0071] 제 1 내지 제 8 뱅크 컬럼 디코더들(731 ~ 738) 중에서 뱅크 제어 로직(752)에 의해 활성화된 뱅크 컬럼 디코더는 입출력 게이팅 회로(770)를 통하여 뱅크 어드레스(BANK_ADDR) 및 컬럼 어드레스(COL_ADDR)에 대응하는 센스 앰프를 활성화할 수 있다. 또한, 활성화된 뱅크 컬럼 디코더는 리페어 제어회로(766)로부터 출력되는 컬럼 리페어 신호(CRP)에 응답하여 컬럼 리페어 동작을 수행할 수 있다.
- [0072] 제어 로직(760)은 메모리 장치(700)의 동작을 제어하도록 구현될 수 있다. 예를 들어, 제어 로직(760)은 반도체 메모리 장치(700)가 쓰기 동작 혹은 읽기 동작을 수행하도록 제어 신호들을 생성할 수 있다. 제어 로직(760)은 메모리 제어기로부터 수신되는 명령(CMD)을 디코딩하는 커맨드 디코더(761) 및 메모리 장치(700)의 동작 모드를 설정하기 위한 모드 레지스터 셋(762)를 포함할 수 있다.
- [0073] 예를 들어, 커맨드 디코더(761)는 라이트 인에이블 신호(/WE), 로우 어드레스 스트로브 신호(/RAS), 컬럼 어드레스 스트로브 신호(/CAS), 칩 선택 신호(/CS) 등을 디코딩함으로써 명령(CMD)에 대응하는 동작 제어 신호들(ACT, PCH, WE, RD)을 생성할 수 있다. 제어 로직(760)은 동작 제어 신호들(ACT, PCH, WE, RD)을 타이밍 제어 회로(764)에 제공할 수 있다. 제어 신호들(ACT, PCH, WR, RD)은 액티브 신호(ACT), 프리차지 신호(PCH), 쓰기신호(WR) 및 읽기 신호(RD)를 포함할 수 있다.
- [0074] 입출력 게이팅 회로(770)의 입출력 게이팅 회로들 각각은 입출력 데이터를 게이팅하는 회로들과 함께, 입력 데이터 마스크 로직, 제 1 내지 제 8 뱅크들(711 ~ 718)로부터 출력된 데이터를 저장하기 위한 읽기 데이터 래치들, 및 제 1 내지 제 8 뱅크들(711 ~ 718)에 데이터를 쓰기 위한 쓰기 드라이버들을 포함할 수 있다.
- [0075] 제 1 내지 제 8 뱅크들(711 ~ 718) 중에서 하나의 뱅크에서 읽혀질 코드워드(CW; codeword)는 하나의 뱅크에 대응하는 센스 앰프에 의해 감지되고, 읽기 데이터 래치들에 저장될 수 있다. 읽기 데이터 래치들에 저장된 코드워드(CW)는 에러 정정 회로(780)에 의하여 ECC 디코딩이 수행된 후, 데이터 입출력 버퍼(782)를 통하여 메모리

제어기에 제공될 수 있다. 제 1 내지 제 8 뱅크들(210 ~ 218) 중에서 하나의 뱅크에 쓰여질 데이터(DQ)는 에러 정정 회로(780)에서 ECC 인코딩을 수행한 후 쓰기 드라이버들을 통하여 하나의 뱅크에 쓰여 질 수 있다.

- [0076] 데이터 입출력 버퍼(782)는 쓰기 동작에서 메모리 제어기로부터 제공되는 클록 신호(CLK)에 근거로 하여 데이터 (DQ)를 에러 정정 회로(780)에 제공하고, 읽기 동작에서 에러 정정 회로(780)로부터 제공되는 데이터(DQ)를 메모리 제어기에 제공할 수 있다.
- [0077] 에러 정정 회로(ECC, 780)는 쓰기 동작에서 데이터 입출력 버퍼(782)로부터 제공되는 데이터(DQ)의 데이터 비트들에 근거로 하여 패리티 비트들을 생성하고, 데이터(DQ)와 패리티 비트들을 포함하는 코드워드(code word)를 입출력 게이팅 회로(770)에 제공하고, 입출력 게이팅 회로(770)은 코드워드를 뱅크에 쓸 수 있다. 또한, 에러 정정 회로(780)는 읽기 동작에서 하나의 뱅크에서 읽혀진 코드워드(CW)를 입출력 게이팅 회로(770)로부터 제공받을 수 있다. 에러 정정 회로(780)는 읽혀진 코드워드(CW)에 포함되는 패리티 비트들을 이용하여 데이터(DQ)에 대한 ECC 디코딩을 수행하여 데이터(DQ)에 포함되는 적어도 하나의 에러 비트를 정정하여 데이터 입출력 버퍼 (782)에 제공할 수 있다.
- [0078] 본 발명의 실시 예에 따른 메모리 장치(700)는, 내부 전압 안정화 상태에서 파워 노이즈에 따른 지터를 신속하 게 제거할 수 있다.
- [0079] 도 14는 본 발명의 실시 예에 따른 적어도 하나의 커맨드/어드레스 캘리브레이션을 수행하는 메모리 시스템을 예시적으로 보여주는 도면이다.
- [0080] 도 14를 참조하면, 메모리 시스템(1000)은 제어기(1800)와 메모리 장치(1900)를 포함할 수 있다. 제어기(180 0)는 클록 발생기(1801), 커맨드/어드레스(CA) 발생기(1802), 커맨드/어드레스 레퍼런스 발생기(1803), 레지스터(1804), 비교기(1806), 위상/타이밍 제어기(1808), 및 데이터 입출력기(1810, 1812)를 포함할 수 있다. 제어기(1800)는 클록 발생기(1801)에서 생성되는 클록 신호(CK)를 클록 신호 라인을 통해 메모리 장치(1900)로 제공할 수 있다.
- [0081] 실시 예에 있어서, 메모리 시스템(1000)은 인터페이스에 별도로 커맨드/어드레스의 레퍼런스 신호(CA_Ref) 라인을 포함하고 있다. 커맨드/어드레스의 레퍼런스 신호(CA_Ref) 라인은 캘리브레이션 모드에서 커맨드/어드레스의 기준값인 커맨드/어드레스의 레퍼런스 신호(CA_Ref)를 송수신 하는 역할을 수행할 수 있다.
- [0082] 이러한 커맨드/어드레스의 기준값을 이용한 캘리브레이션 결과값을 위상/타이밍 제어기(1808)에 제공해서 커맨드/어드레스 신호(CA)의 위상/타이밍을 조정할 수 있다. 별도의 커맨드/어드레스의 레퍼런스 신호(CA_Ref) 라인이 있으므로 커맨드/어드레스(CA) 신호를 전송하는 동작을 하면서 동시에 커맨드/어드레스(CA) 신호의 위상/타이밍을 조정할 수 있는 캘리브레이션 동작을 수행할 수 있는 장점이 있다.
- [0083] CA 발생기(1802)는 위상/타이밍 제어기(1808)의 제어 신호(CTR)에 응답하여 위상 혹은 타이밍을 조정된 커맨드/어드레스 신호(CA)를 발생하고, CA 버스를 통해 메모리 장치(1900)로 전송할 수 있다.
- [0084] 커맨드/어드레스 레퍼런스 발생기(1803)는 커맨드/어드레스 발생기(1802)와 동일하게 구성되며, 커맨드/어드레스 발생기(1802)에서 발생되는 커맨드/어드레스 신호(CA)와 동일한 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 발생할 수 있다.
- [0085] 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)는 레지스터(1804)로 제공된다. 또한, 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)는 데이터 출력기(1812)를 통해 CA 레퍼런스 버스(12)로 전송되고, CA 레퍼런스 버스(16)를 통해 메모리 장치(1900)로 제공된다.
- [0086] 레지스터(1804)는 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 저장할 수 있다. 비교기(1806)는 레지스터 (1804)에 저장된 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)와 데이터 입력기(1810)로부터 출력되는 제3 커맨드/어드레스 레퍼런스 신호(CA_Ref3)를 비교할 수 있다. 비교기(1804)는 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref3)의 데이터를 비교하여 패스 혹은 페일 신호(P/F)를 발생할 수 있다.
- [0087] 위상/타이밍 제어기(1808)는 비교기(1806)의 패스 혹은 페일 신호(P/F)에 따라 커맨드/어드레스 신호(CA)의 위상 변이(shift)를 지시하는 제어 신호(CTR)를 발생할 수 있다. 제어 신호(CTR)는 커맨드/어드레스 신호(CA)의 위상 혹은 타이밍을 조정하여, 위상 조정된 커맨드/어드레스 신호(CA)를 발생시킬 수 있다.
- [0088] 데이터 입력기(1810)는, 메모리 장치(1900)로부터 CA 레퍼런스 버스를 통해 전달되는 제 2 커맨드/어드레스 레

퍼런스 신호(CA_Ref2)를 수신하여 제3 커맨드/어드레스 레퍼런스 신호(CA_Ref3)로서 비교기(1806)로 전달할 수 있다.

- [0089] 데이터 출력기(1812)는 커맨드/어드레스 레퍼런스 발생기(1803)에서 발생된 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 수신하여 CA 레퍼런스 버스(12)로 전송할 수 있다.
- [0090] 메모리 장치(1900)는 클록 버퍼(1902), 커맨드/어드레스(CA) 수신기(1904), 커맨드/어드레스 레퍼런스 수신기 (1906), 및 데이터 입출력기(1908, 910)를 포함할 수 있다. 클록 버퍼(1902)는 클록 신호 라인을 통해 전달되는 클록 신호(CK)를 수신하여 내부 클록 신호(ICK)를 발생할 수 있다. CA 수신기(1904)는 내부 클록 신호(ICK)에 응답하여 칩 선택 신호(/CS), 클록 인에이블 신호(CKE) 및 CA 버스를 통해 전달되는 커맨드/어드레스 신호(CA)를 수신할 수 있다.
- [0091] 클록 인에이블 신호(CKE)는 CA 버스를 통해 전달되는 커맨드/어드레스 신호(CA)의 리드 커맨드로 작용하는 의사 커맨드(pseudo command)로 사용될 수 있다. CA 수신기(1904)는 클록 인에이블 신호(CKE)가 활성화일 때에 커맨 드/어드레스 신호(CA)를 수신할 수 있다.
- [0092] 데이터 입력기(1908)는 제어기(1800)로부터 CA 레퍼런스 버스를 통해 전달되는 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 수신하여 커맨드/어드레스 레퍼런스 수신기(1906)로 전달할 수 있다. 커맨드/어드레스 레퍼런스 수신기(1906)는 CA 수신기(1904)와 동일하게 구성될 수 있다. 커맨드/어드레스 레퍼런스 수신기(1906)는 내부 클록 신호(ICK)에 응답하여 칩 선택 신호(/CS), 클록 인에이블 신호(CKE) 및 CA 레퍼런스 버스를 통해 전달되는 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 수신하여 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)를 발생할 수 있다.
- [0093] 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)는, CA 수신기(1904)에서 내부 클록 신호(ICK)에 응답하여 칩 선택 신호(/CS), 클록 인에이블 신호(CKE) 및 CA 버스를 통해 전달되는 커맨드/어드레스 신호(CA)를 수신하여 출력하는 신호와 동일할 수 있다. 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)는 데이터 출력기(1910)를 통해 CA 레퍼런스 버스로 전달될 수 있다.
- [0094] 메모리 시스템(1000)에서 이루어지는 CA 캘리브레이션은 다음과 같다. 제어기(1800)의 CA 발생기(1802)는 위상/타이밍 제어기(1808)의 제어 신호(CTR)에 응답하여 커맨드/어드레스 신호(CA)의 위상 혹은 타이밍을 조정하여 커맨드/어드레스 신호(CA)를 CA 버스로 전송할 수 있다. 커맨드/어드레스 레퍼런스 발생기(1803)는 커맨드/어드레스 겐스 신호(CA)와 동일한 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 발생하여 CA 레퍼런스 버스로 전달할수 있다.
- [0095] 메모리 장치(1900)의 CA 레퍼런스 수신기(1906)는 내부 클록 신호(ICK)와 클록 인에이블 신호(CKE)에 따라 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)를 수신하여 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)를 발생할 수 있다. 메모리 장치(1900)의 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)는 CA 레퍼런스 버스로 전송될 수 있다.
- [0096] 제어기(1800)는 CA 레퍼런스 버스를 통해 전송되는 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)를 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)로써 비교기(1806)로 전송할 수 있다. 비교기(1806)는 제 1 커맨드/어드레스 레퍼런스 신호(CA_Ref1)와 제 2 커맨드/어드레스 레퍼런스 신호(CA_Ref2)의 데이터를 비교하여 패스 혹은 페일 신호(P/F)를 발생할 수 있다. 위상/타이밍 제어기(1808)는 비교기(1806)의 패스 혹은 페일 신호(P/F)에 따라 커맨드/어드레스 신호(CA)의 위상 변이(shift)를 지시하는 제어 신호(CTR)를 발생할 수 있다. CA 발생기(1802)는 제어 신호(CTR)에 따라 위상 조정된 커맨드/어드레스 신호(CA)를 발생시킬 수 있다.
- [0097] 이러한 CA 캘리브레이션 동작의 반복으로, 제어기(1800)의 위상/타이밍 제어기(1808)는 패스(P)된 위치들의 중간을 커맨드/어드레스 신호(CA) 윈도우의 중간으로 판별하고, 클록 신호(CK)의 엣지에 커맨드/어드레스 신호(CA) 윈도우의 중간이 오도록 커맨드/어드레스 신호(CA)를 발생하여 메모리 장치(1900)로 제공할 수 있다. 이에따라, 메모리 장치(1900)는 클록 신호(CK)의 상승/하강 엣지에서 클록 신호 쌍(CK, CKB)의 상승/하강 엣지에 유효 윈도우의 중간이 위치하는 커맨드/어드레스 신호(CA)를 수신할 수 있다.
- [0098] 도 14에 도시된 바와 같이, 메모리 시스템(1000)의 제어기(1800) 및 메모리 장치(1900)는 각각 대응하는 트랜시 버들(1820, 1920)을 포함할 수 있다. 특히, 메모리 장치(1900)는 DQS 신호를 생성하는 DLL(1930)과 윈도우 검출 회로(1932)를 포함할 수 있다. 메모리 장치(1900)는 도 1 내지도 12에서 설명된 바와 같이, 파워 노이즈에 따라 야기되는 언-락 상태를 빠르게 리-락 상태로 만들기 위한 DLL 동작을 수행할 수 있다.

- [0099] 한편, 본 발명의 실시 예에 따른 메모리 장치는 전장(automotive) 시스템에 적용 가능하다.
- [0100] 도 15는 본 발명의 실시 예에 따른 차량용 전자 시스템(3000)을 예시적으로 보여주는 도면이다. 도 15를 참조하면, 차량용 전자 시스템(3000)은, 적어도 하나의 ECU(s)(electronic control unit, 3100), 메모리 장치(3200), DVS(dynamic range sensor; 3300), 디스플레이 장치(3400) 및 통신 프로세서(3500)를 포함할 수 있다.
- [0101] ECU(electronic control unit, 3100)는 전반적인 동작을 제어하도록 구현될 수 있다. ECU(3100)는 DVS(3300)로 부터 수신된 이미지 데이터를 처리할 수 있다. ECU(3100)는 NPU(neural processing unit)을 포함할 수 있다. NPU는 DVS(3300)로부터 수신된 이미지를 학습 모델과 비교하여 주행을 위한 최적의 이미지를 빠르게 도출할 수 있다.
- [0102] 메모리 장치(3200)는 NPU의 동작 관련된 학습 모델을 저장하도록 구현될 수 있다. 메모리 장치(3200)는 휘발성 혹은 비휘발성 메모리 장치를 포함할 수 있다. 예를 들어, 메모리 장치(3200)는 DRAM 혹은 PRAM 일 수 있다. 특히, 메모리 장치(3200)는 도 1 내지 도 13에서 설명된 바와 같이 DLL 동작을 수행하도록 구현될 수 있다.
- [0103] DVS(dynamic range sensor; 3300)는 차량 외부의 환경을 감지하도록 구현될 수 있다. DVS(3300)는 상대적인 빛의 강도(intensity) 변화에 응답하여 이벤트 신호를 출력할 수 있다. DVS(3300)는 복수의 DVS 픽셀들을 포함하는 픽셀 어레이와, 어드레스 이벤트 처리기들을 포함할 수 있다.
- [0104] 디스플레이 장치(3400)는 ECU(3100)에서 처리된 이미지 혹은 통신 프로세서(3500)에 의해 전송된 이미지를 디스 플레이 하도록 구현될 수 있다.
- [0105] 통신 프로세서(3500)는 처리된 이미지를 외부장치, 예를 들어 외부 차량으로 전송하거나, 외부 차량으로부터 이미지를 수신하도록 구현될 수 있다. 즉, 통신 프로세서(3500)는 외부 장치와 유선 혹은 무선 통신하도록 구현될 수 있다.
- [0106] 한편, 본 발명의 실시 예에 따른 데이터 통신 방식은 데이터 센터에 적용 가능하다.
- [0107] 도 16은 본 발명의 실시 예에 따른 메모리 장치가 적용된 데이터 센터를 예시적으로 보여주는 도면이다. 도 16을 참조하면, 데이터 센터(7000)는 각종 데이터를 모아두고 서비스를 제공하는 시설로서, 데이터 저장 센터라고 지칭될 수도 있다. 데이터 센터(7000)는 검색 엔진 및 데이터 베이스 운용을 위한 시스템일 수 있으며, 은행 등의 기업 혹은 정부기관에서 사용되는 컴퓨팅 시스템일 수 있다. 데이터 센터(7000)는 어플리케이션 서버들(7100 내지 7100n) 및 저장 서버들(7200 내지 7200m)을 포함할 수 있다. 어플리케이션 서버들(7100 내지 7100n)의 개수 및 저장 서버들(7200 내지 7200m)의 개수는 실시 예에 따라 다양하게 선택될 수 있고, 어플리케이션 서버들 (7100 내지 7100n)의 개수 및 저장 서버들(7200 내지 7200m)의 개수는 서로 다를 수 있다.
- [0108] 어플리케이션 서버(7100) 혹은 저장 서버(7200)는 프로세서(7110, 7210) 및 메모리(7120, 7220) 중 적어도 하나를 포함할 수 있다. 저장 서버(7200)를 예시로 설명하면, 프로세서(7210)는 저장 서버(7200)의 전반적인 동작을 제어할 수 있고, 메모리(7220)에 액세스하여 메모리(7220)에 로딩된 커맨드 혹은 데이터를 실행할 수 있다. 메모리(7220)는 DDR SDRAM(Double Data Rate Synchronous DRAM), HBM(High Bandwidth Memory), HMC(Hybrid Memory Cube), DIMM(Dual In-line Memory Module), Optane DIMM 혹은 NVMDIMM(Non-Volatile DIMM)일 수 있다. 실시 예에 따라, 저장 서버(7200)에 포함되는 프로세서(7210)의 개수 및 메모리(7220)의 개수는 다양하게 선택될 수 있다.
- [0109] 실시 예에 있어서, 프로세서(7210)와 메모리(7220)는 프로세서-메모리 페어를 제공할 수 있다. 실시 예에 있어서, 프로세서(7210)와 메모리(7220)의 개수는 서로 다를 수도 있다. 프로세서(7210)는 단일 코어 프로세서 혹은 다중 코어 프로세서를 포함할 수 있다. 저장 서버(7200)에 대한 상기 설명은, 어플리케이션 서버(7100)에도 유사하게 적용될 수 있다. 실시 예에 따라, 어플리케이션 서버(7100)는 저장 장치(7150)를 포함하지 않을 수도 있다. 저장 서버(7200)는 적어도 하나 이상의 저장 장치(7250)를 포함할 수 있다. 저장 장치(7250)는 도 1 내지도 15에 설명된 바와 같이 파워 노이즈 환경에서 다이나믹 딜레이 제어하도록 클록 라킹을 수행하도록 구현될수 있다.
- [0110] 어플리케이션 서버들(7100 내지 7100n) 및 저장 서버들(7200 내지 7200m)은 네트워크(7300)를 통해 서로 통신할 수 있다. 네트워크(7300)는 FC(Fiber Channel) 혹은 Ethernet 등을 이용하여 구현될 수 있다. 이 때, FC는 상 대적으로 고속의 데이터 전송에 사용되는 매체이며, 고성능/고가용성을 제공하는 광 스위치를 사용할 수 있다. 네트워크(7300)의 액세스 방식에 따라 저장 서버들(7200 내지 7200m)은 파일 저장, 블록 저장, 혹은 오브젝트 저장으로서 제공될 수 있다.

- [0111] 실시 예에 있어서, 네트워크(7300)는 SAN(Storage Area Network)와 같은 저장 전용 네트워크일 수 있다. 예를 들어, SAN은 FC 네트워크를 이용하고 FCP(FC Protocol)에 따라 구현된 FC-SAN일 수 있다. 또 다른 예를 들어, SAN은 TCP/IP 네트워크를 이용하고 iSCSI(SCSI over TCP/IP 혹은 Internet SCSI) 프로토콜에 따라 구현된 IP-SAN일 수 있다. 다른 실시 예에 있어서, 네트워크(7300)는 TCP/IP 네트워크와 같은 일반 네트워크일 수 있다. 예를 들어, 네트워크(7300)는 FCoE(FC over Ethernet), NAS(Network Attached Storage), NVMe-oF(NVMe over Fabrics) 등의 프로토콜에 따라 구현될 수 있다.
- [0112] 아래에서는, 어플리케이션 서버(7100) 및 저장 서버(7200)를 중심으로 설명하기로 한다. 어플리케이션 서버 (7100)에 대한 설명은 다른 어플리케이션 서버(7100n)에도 적용될 수 있고, 저장 서버(7200)에 대한 설명은 다른 저장 서버(7200m)에도 적용될 수 있다.
- [0113] 어플리케이션 서버(7100)는 사용자 혹은 클라이언트가 저장 요청한 데이터를 네트워크(7300)를 통해 저장 서버 들(7200 내지 7200m) 중 하나에 저장할 수 있다. 또한, 어플리케이션 서버(7100)는 사용자 혹은 클라이언트가리드 요청한 데이터를 저장 서버들(7200 내지 7200m) 중 하나로부터 네트워크(7300)를 통해 획득할 수 있다. 예를 들어, 어플리케이션 서버(7100)는 웹 서버 혹은 DBMS(Database Management System) 등으로 구현될 수 있다.
- [0114] 어플리케이션 서버(7100)는 네트워크(7300)를 통해 다른 어플리케이션 서버(7100n)에 포함된 메모리(7120n) 혹은 저장 장치(7150n)에 액세스할 수 있고, 혹은 네트워크(7300)를 통해 저장 서버(7200 ~ 7200m)에 포함된 메모리(7220 ~ 7220m) 혹은 저장 장치(7250 ~ 7250m)에 액세스할 수 있다. 이로써, 어플리케이션 서버(7100)는 어플리케이션 서버들(7100 ~ 7100n) 혹은 저장 서버들(7200 ~ 7200m)에 저장된 데이터에 대해 다양한 동작들을 수행할 수 있다. 예를 들어, 어플리케이션 서버(7100)는 어플리케이션 서버들(7100 ~ 7100n) 혹은 저장 서버들(7200 ~ 7200m) 사이에서 데이터를 이동 혹은 카피(copy)하기 위한 커맨드를 실행할 수 있다. 이 때 데이터는 저장 서버들(7200 ~ 7200m)의 저장 장치로(7250 ~ 7250m)부터 저장 서버들(7200 ~ 7200m)의 메모리들(7220 ~ 7220m)을 거쳐서, 혹은 바로 어플리케이션 서버들(7100 ~ 7100n)의 메모리(7120 ~ 7120n)로 이동될 수 있다. 네트워크(7300)를 통해 이동하는 데이터는 보안 혹은 프라이버시를 위해 암호화된 데이터일 수 있다.
- [0115] 저장 서버(7200)를 예시로 설명하면, 인터페이스(7254)는 프로세서(7210)와 제어기(7251)의 물리적 연결 및 NIC(7240)와 제어기(7251)의 물리적 연결을 제공할 수 있다. 예를 들어, 인터페이스(7254)는 저장 장치(7250)를 전용 케이블로 직접 접속하는 DAS(Direct Attached Storage) 방식으로 구현될 수 있다. 또한, 예를 들어, 인터페이스(1254)는 ATA(Advanced Technology Attachment), SATA(Serial ATA), e-SATA(external SATA), SCSI(Small Computer Small Interface), SAS(Serial Attached SCSI), PCI(Peripheral Component Interconnection), PCIe(PCI express), NVMe(NVM express), IEEE 1394, USB(universal serial bus), SD(secure digital) 카드, MMC(multi-media card), eMMC(embedded multi-media card), UFS(Universal Flash Storage), eUFS(embedded Universal Flash Storage), CF(compact flash) 카드 인터페이스 등과 같은 다양한 인터페이스 방식으로 구현될 수 있다.
- [0116] 저장 서버(7200)는 스위치(7230) 및 NIC(7240)을 더 포함할 수 있다. 스위치(7230)는 프로세서(7210)의 제어에 따라 프로세서(7210)와 저장 장치(7250)를 선택적으로 연결시키거나, NIC(7240)과 저장 장치(7250)를 선택적으로 연결시킬 수 있다.
- [0117] 실시 예에 있어서, NIC(7240)는 네트워크 인터페이스 카드, 네트워크 어댑터 등을 포함할 수 있다. NIC(7240)는 유선 인터페이스, 무선 인터페이스, 블루투스 인터페이스, 광학 인터페이스 등에 의해 네트워크(7300)에 연결될 수 있다. NIC(7240)는 내부 메모리, DSP, 호스트 버스 인터페이스 등을 포함할 수 있으며, 호스트 버스 인터페이스를 통해 프로세서(7210) 혹은 스위치(7230) 등과 연결될 수 있다. 호스트 버스 인터페이스는, 앞서 설명한 인터페이스(7254)의 예시들 중 하나로 구현될 수도 있다. 실시 예에 있어서, NIC(7240)는 프로세서(7210), 스위치(7230), 저장 장치(7250) 중 적어도 하나와 통합될 수도 있다.
- [0118] 저장 서버(7200 ~ 7200m) 혹은 어플리케이션 서버(7100 ~ 7100n)에서 프로세서는 저장 장치(7130 ~ 7130n, 7250 ~ 7250m) 혹은 메모리(7120 ~ 7120n, 7220 ~ 7220m)로 커맨드를 전송하여 데이터를 프로그램 하거나 리드할 수 있다. 이 때 데이터는 ECC(Error Correction Code) 엔진을 통해 에러 정정된 데이터일 수 있다. 데이터는 데이터 버스 변경(Data Bus Inversion: DBI) 혹은 데이터 마스킹(Data Masking: DM) 처리된 데이터로서, CRC(Cyclic Redundancy Code) 정보를 포함할 수 있다. 데이터는 보안 혹은 프라이버시를 위해 암호화된 데이터일 수 있다.
- [0119] 저장 장치(7150 ~ 7150m, 7250 ~ 7250m)는 프로세서로부터 수신된 리드 커맨드에 응답하여, 제어 신호 및 커맨

드/어드레스 신호를 NAND 플래시 메모리 장치(7252-7252m)로 전송할 수 있다. 이에 따라 NAND 플래시 메모리 장치(7252-7252m)로부터 데이터를 리드하는 경우, RE(Read Enable) 신호는 데이터 출력 제어 신호로 입력되어, 데이터를 DQ 버스로 출력하는 역할을 할 수 있다. RE 신호를 이용하여 DQS(Data Strobe)를 생성할 수 있다. 커맨드와 어드레스 신호는 WE(Write Enable) 신호의 상승 엣지 혹은 하강 엣지에 따라 페이지 버퍼에 래치 될 수 있다.

- [0120] 제어기(7251)는 저장 장치(7250)의 동작을 전반적으로 제어할 수 있다. 실시 예에 있어서, 제어기(7251)는 SRAM(Static Random Access Memory)을 포함할 수 있다. 제어기(7251)는 라이트 커맨드에 응답하여 낸드 플래시(7252)에 데이터를 쓸 수 있고, 혹은 리드 커맨드에 응답하여 낸드 플래시(7252)로부터 데이터를 리드할 수 있다. 예를 들어, 라이트 커맨드 혹은 리드 커맨드는 저장 서버(7200) 내의 프로세서(7210), 다른 저장 서버(7200m) 내의 프로세서(7210m) 혹은 어플리케이션 서버(7100, 7100n) 내의 프로세서(7110, 7110n)로부터 제공될 수 있다. DRAM(7253)은 낸드 플래시(7252)에 쓰여질 데이터 혹은 낸드 플래시(7252)로부터 리드된 데이터를 임시 저장(버퍼링)할 수 있다. 또한, DRAM(7253)은 메타 데이터를 저장할 수 있다. 여기서, 메타 데이터는 사용자 데이터 혹은 낸드 플래시(7252)를 관리하기 위해 제어기(7251)에서 생성된 데이터이다. 저장 장치(7250)는 보안 혹은 프라이버시를 위해 SE(Secure Element)를 포함할 수 있다.
- [0121] 한편, 상술된 본 발명의 내용은 발명을 실시하기 위한 구체적인 실시 예들에 불과하다. 본 발명은 구체적이고 실제로 이용할 수 있는 수단 자체뿐 아니라, 장차 기술로 활용 할 수 있는 추상적이고 개념적인 아이디어인 기술적 사상을 포함 할 것이다.

부호의 설명

[0122] 100: 메모리 장치

110: 지연 고정 루프 회로

111: 제 1 지연 라인

112: 제 2 지연 라인

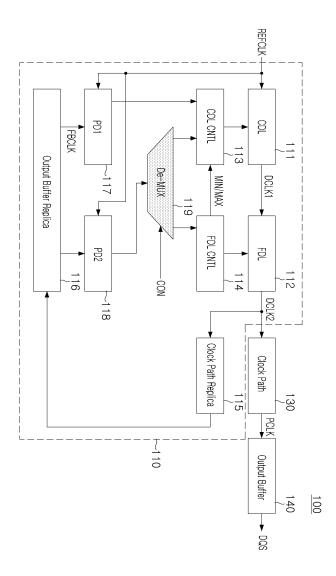
113: 제 1 지연 라인 제어기

114: 제 2 지연 라인 제어기

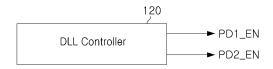
115: 클록 패스 레플리카

116: 출력 버퍼 레플리카

117: 제 1 위상 검출기

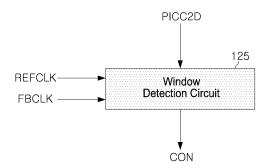

118: 제 2 위상 검출기

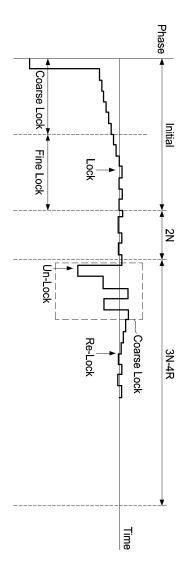
119: 디-멀티플렉서

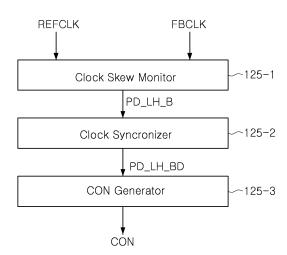

120: DLL 제어기

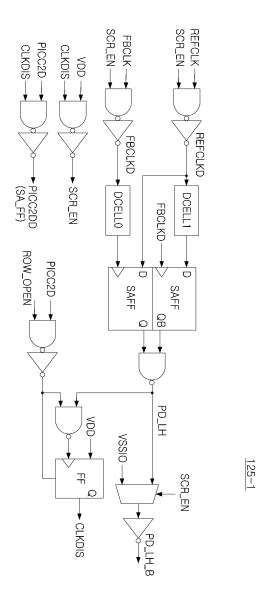
125: 윈도우 검출 회로

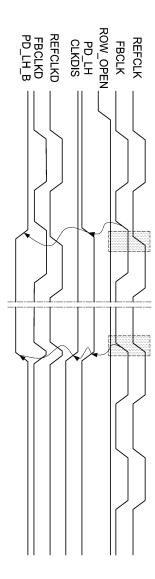

도면1

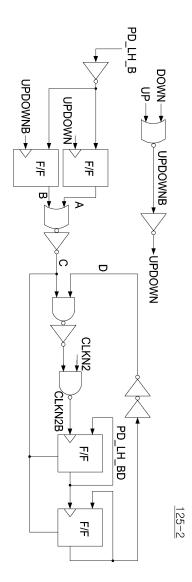


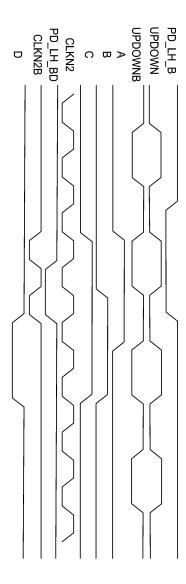

도면2a

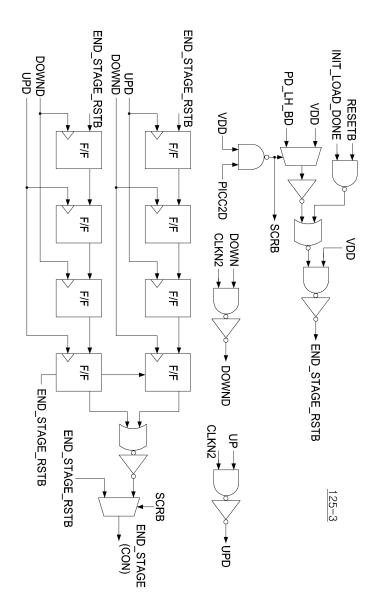

도면2b

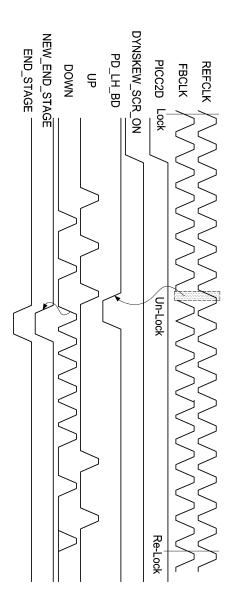


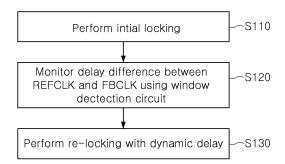


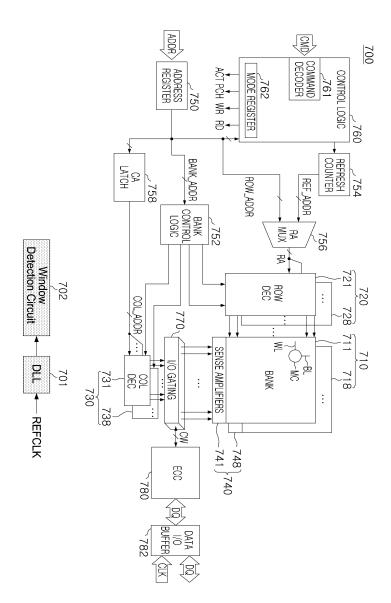


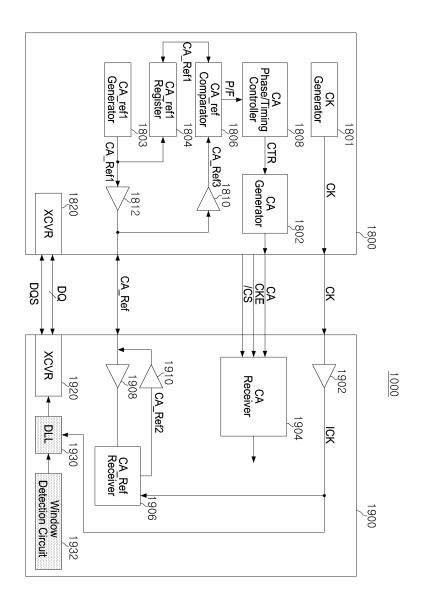

<u>125</u>

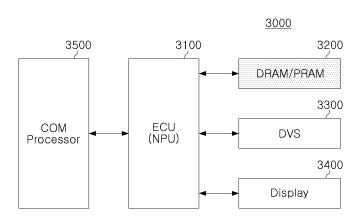


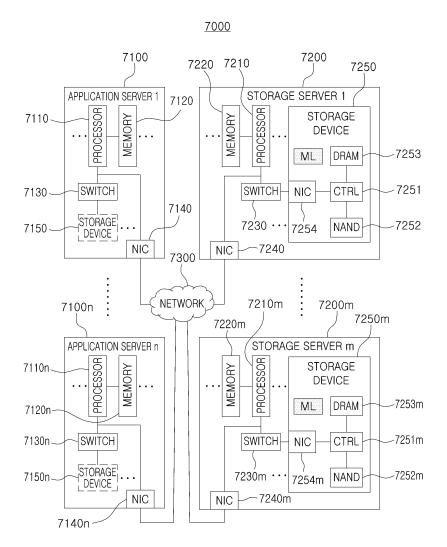











도면12

