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(54) Title of the Invention: Biometric user authentication
Abstract Title: Authenticating a device user with motion data and a convolutional neural network

(57) Methods are disclosed of authenticating a device user. A motion sensor 126, such as an accelerometer or 
gyroscope, captures data during user-induced device motion. A feature vector obtained from the data, possibly by 
obtaining ceptral coefficients 202, is inputted to a - possibly convolutional - neural network 204 trained to 
distinguish between feature vectors from different users. A network vector output is used to determine whether the 
motion matches an expected authorized user motion pattern. In one embodiment (fig. 6), the network is trained 
based on feature vectors captured from a group of training users not including the authorized user. The vector 
output may be inputted to a one-class support vector machine (SVM) or binary classifier 206. In another 
embodiment (fig. 7), the network is trained based on earlier captured authorized user vectors. It reproduces 
inputted authorized user vectors as vector outputs, and authentication includes determining whether there is a 
discrepancy between network input and output vectors. Another method comprises capturing both device motion 
data and image capture device data during user-induced motion of the device, and authenticating the user by 
comparing the motion data to an expected pattern, and analysing the image data to determine whether three- 
dimensional facial structure is present.

126 201 202 203 204 205 206

FIG. 2

G
B 

2569794 
A



GB 2569794 A continuation

(56) Documents Cited:
Sensors, Vol. 17(3), March 2017, Y. Zhao and S. Zhou, 
Wearable device-based gait recognition using angle 
embedded gait dynamic images and a convolutional 
neural network, page 478ff. Available from: https:// 
www.mdpi.com/1424-8220/17/3/478. INSPEC AN: 
17568630.
"2017 15th Annual Conference on Privacy, Security and 
Trust (PST)", 28-30 August 2017, IEEE, pp 147-155, M 
Centeno et al, "Smartphone continuous authentication 
using deep learning autoencoders"
"2017 IEEE International Conference on Robotics and 
Biomimetics (ROBIO)", 5-8 December 2017, IEEE, pp 
2439-2443, C Xie et al, "Walking recognition method for 
physical activity analysis system of child based on 
wearable accelerometer"
"2017 IEEE/ACM International Conference on Connected 
Health: Applications, Systems and Engineering 
Technologies (CHASE)", 17-19 July 2017, IEEE, pp 
290-291,1 Papavasileiou et al, "Gait-based continuous 
authentication using multimodal learning"

(58) Field of Search:
INT CL G06C, G06F, G06K, G06N, G06Q, H04L, H04W 
Other: EPODOC, WPI, INSPEC, Patent Fulltext, XPESP, 
XPI3E, XPIOP, XPSPRNG

http://www.mdpi.com/1424-8220/17/3/478


126 124

FIG. 1
126 201 202 203 204 205 206

FIG. 2
202

FIG. 3
302 304

402 412 404 414 406 408 418 410 306

FIG. 4A



2/7

ΐ ί ΐ ΐ

FI
G

.4
B



3/7

FIG. 5



4/7

FI
G

. 6



5/7
Tr

ai
n 

on
 U

se
r X

FI
G

. 7



6/7

FIG. 8



7/7

FI
G

. 9



Biometric User Authentication

Field

This disclosure relates to biometric user authentication.

There are many situations in which a user of a device may be authenticated. For example, a 
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ocal authentication may be performed in order io ’'unlock” the device, to ensure that only an 

authorized user can access the device’s core functions and data. Another example is “online’' 

authentication, in which a user is authenticated with a remote authentication server in order to 

gain access to data or services etc.

Traditional authentication is based on usernames, passwords, PINs and the like, where the 

user is authenticated based on secret knowledge, which it is assumed is only known to that

user.

Increasingly, biometric ai.ithentication is being used in various contexts. With biometric 

authentication, users arc authenticated based on their human characteristics, such as their

'he invention provides various authenticate 

particular on a user’s ability to replicate, by moving a user device, an expected device motion 

pattern that is uniquely associated with an authorized user. The characteristics of the device 

motion pattern that make it unique are referred to herein as “behavioural biometrics”, and the 

authentication process is ultimately checking for the presence or absence of matching

A first aspect of the invention provides a method of authenticating a user of a user device, the 

method comprising: receiving a time series of device motion values captured using a motion

the user device during an interval of motion of the user device induced by the use 



applying a domain transform to at least a portion of the time series to determine at least one

device motion spectrum in the frequency domain; and authenticating the user of the user 

device by analysing the said at least one de vice motion spectrum to determine whether the 

user-induced device motion matches an expected device motion pattern uniquely associated 
5 with an authorized user.

the authentication. These are not necessarily measured directly from the spectrum (though 

that is not excluded), and in preferred embodiments cepstral coefficients are extracted from
.0 the spectrum and used to perform the authentication.

In embodiments, the analysing step may comprise determining a set of logarithmic values 

from die said at least one device motion spectrum, the set of logarithmic values being used to 

determine whether the. user-induced device motion matches the expected device motion
1.5

spectral coefficient of the said at least one device motion spectrum.

The analysing step may comprise determining a set of cepstral coefficients by applying a

second domain transform to the set of logarithmic values, the set of cepstral coefficients
20 being used to determine whether the user-induced motion matches the expected device

The analysing step may comprise inputting to a neural network a device motion feature

vector comprising the cepstral coefficients, and using a resulting vector output of the neural
«’b f-
ZU network to determine whether the user-induced motion matches the expected device motion

pattern, the neural network having been trained to distinguish between such device motion

feature vectors captured from different users.

Accordingly, the device motion spectrum may, in embodiments, be subject to a quite
30 extensive series of transformations before the final result is arrived at. Each transformation

stage is performed in a way that retains enough information about the behavioural biometrics

captured in the original device motion data, with the aim of placing that information in a form.

that makes it possible to reliably determine whether the captured behavioural biometrics

match those of the authorised user.
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More generally, the analysing step may comprise inputting to a neural network a device 

motion feature vector comprising coefficients of the said at least one device motion spectrum 

or values derived from coefficients of the said at least, one device motion spectrum, ror 

example, the spectrum or parts of the spectrum (directly), or values derived from the

V’

spectrum in some other way could be inputted to the neural network as the device motion

feature vector.

More generally still, a second aspect of the invention provides a method of authentical .iga
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user of a user device, the method comprising: receiving motion data captured using a motion

sensor of the user de vice during an interval of motion of the user device induced by the user;

processing the motion data to generate a device motion feature vector; inputting the device

motion feature vector io a neural network, the neural network having been trained to

distinguish between device motion feature vectors captured from different users; and

authenticating the user of the user device, by using a resulting vector output of the neural

network to determine whether the user-induced device motion matches an expected device

motion pattern uniquely associated with an authorized user.

For example, in embodiments of the second aspect, the device motion feature vector may

comprise temporal motion values (motion values in the time domain) of or derived from, the

device motion data (without requiri

All of the following applies equally io any of the above-mentioned neural networks in

embodiments of the first and second aspect, whatever the form of the device motion feature

The neural network may be a convolutional neural network (CNN)

The analysing step may comprise classifying, by a classifier, the vector output of the neutral

network as matching or not matching the expected device motion pattern (as a means of

analysing the input device motion feature vector and thus the motion data from which .it is

obtained).

3



The neural network may have been trained based on device motion feature vectors captured

from a group of training users, which does not include the authorized user.

The classifier may have been trained based on one or more earlier device motion feature 

vectors captured irom the aut.nori.zed user and corresponding to the expected device motion 

pattern.

The classifier may be a one-class classifier trained without using any data, captured from any
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Alternatively, the classifier may be a binary classifier trained using one or more earlier device 

motion feature vectors captured from at least one unauthorised user.

The classifier may be a support vector machine (SVM).

Alternatively, the neural network has been trained based on one or more earlier device 

motion feature vectors captured from the authorized user and corresponding to the expected 

device motion pattern; wherein the analysing step may comprise determining whether the 

vector output exhibits a significant discrepancy from an expected vector otnpu

The neural network may have been trained to reproduce, as vector outputs, inputted device 

motion feature vectors captured from the authorized user and corresponding to the expected 

device motion patterm wherein the analysing step may comprise determining whether the 

vector output exhibits a significant discrepancy from the device motion feature vector 

inputted to the neural network.

The second domain transform may be a discrete cosine transform CDCT) or an inverse

Fourier transform (IFT) applied to the set of logarithmic values.

The domain transform may be a Fourier transform. For example, the device motion spectrum 

may be a power spectrum, which is determined by determining a power of each spectral 

coefficient of a Fourier spectrum determined by the Fourier transform.



Multiple device motion spectra may be determined, each by applying a domain transform to a

respective portion of the time series of device motion values, and analysed to determine 

whether the user-induced motion of the user device matches the exnected device motionΛ

5

The or each device motion spectrum may be filtered by a bank of filters, wherein each of the 

ogarithmic values is a logarithm of an energy of a respective filtered version of the device 

motion spectrum determined by a respective one of those filters.
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In embodiments, the method of the first or second aspect comprise: receiving image data 

captured using an image capture device of the user device during the interval of user-induced 

device motion; wherein the authentication step may comprise analysing the image data to 

determine whether three-dimensional facial structure is present therein.

The authentication step may comprise comparing the image data with at. least, some of the

:o verify that movement of the three-dimensional facial structure, ifit

Note that in embodiments of the first aspect, a neural network may not be needed at all. For 

above-mentioned type of feature vectors, so that the classifier can classify the user based on 

the feature vector directly.

Another aspect of the invention provides a user authentication system for authenticating

user of a user device, the user authentication system comprising; an input configured to 

receive motion data captured using a motion sensor of the user device during an interva _£·ΛΤ

motion of the user device induced by the user; a one or more processors configured to 

execute computer readable instructions, and thereby implement the steps of the first or second 

aspect or any embodiment thereof.

Another aspect of the invention provides a computer program product for authenticating a 

user of a user device, the computer program product comprising computer-readable 

instructions stored on a non-transitory computer-readable storage medium and configured, 

when executed, to implement the steps of the first or second aspect or any embodiment

5
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thereof.

Brief Description of Figures

For a better understanding of the invention, and to show how embodiments of the same may

be carried into effect, reference is made by way of example only to the following figures, in

which:

Figure 1 shows a schematic block diagram of a system for authen treating a user

of a user authentication system;

of a cepstrum determination component

Figure 4A shows the functions of an example user authentication system in greater detail;

Figure 4B provides a graphical illustration of some of the functions of Figure 4A:J. .·

5 shows a schematic block diagram of a first neural network in a training phase;

□

Figure 6 shows a schematic block diagram of the first neural network when used to 

authenticate a user;

Figure 7 shows a schematic biock diagram of a second neural network for use in 

authenticating a user;

Figures 8 and 9 illustrate one example mechanism for detecting the presence of 3D facial
structure on a moving image based on facial landmarks.

30 pi ϊ E

Figure I shows a schematic block diagram of a system 100 for authenticating a user 102. The 

user 102 is a user of a moveable user device 104, which is a mobile device such as a 

smartphone. In general, the mobile device 104 can be a hand-held or wearable device or any 

6



otlier device which can be easily moved by the user 102. In accordance with the invention,

the user 102 is authenticated based at least m part on his ability ίο replicate, with sufficient 

accuracy, an expected device motion pattern that is uniquely associated with an authorised

user of the device 104, in ordier to determine whether or not the user 102 is the authorised 
5 u ser (too ti on-based an then tica don).

As described below, characteristics of the device motion pattern that make it unique, io the 

authorized user are learned from the authorized user by training a classifier, it may be that 

any user, when setting-up the motion-based authentication, is asked to perform a specific type
10 of de vice motion as part, of the process in which that user becomes associated with a unique 

device motion pattern. This could for example be moving a device from side to side or up

Azlclland down a predetermined number of times. In that event, multiple users may be associated 

with broadly similar device motion patterns (e.g. tip down-up-down, left-right-left-right etc.) 

but which exhibit subtle but measurable variations that are unique to the user in question.

Alternatively, a user may be given more freedom in setting their own device motion pattern.'ά>

(e.g. the user may be more or less free to move the device however he sees fit), in which case 

device motion patterns can be expected to have more pronounced differences between 

different users. Whatever constraints are placed on the form of the device motion pattern.

characteristics that make it unique to a particular user, and that are consistently exhibited by
2.0 that user such that they can be used as a basis for identifying that user, constitute that user’s 

behavioural biometrics as that term is used herein. The motion-based authentication can be 

seen as a form of biometric authentication based on such behavioural biometrics.

In an extension of the core concept, the motion-based authentication can be combined with an
25 image-based “Iiveness test”. For the liveness test, image data is recorded simultaneously 

with the motion data, preferably using a front-facing camera of the user device so as to 

capture a video image of the user’s face. As the device is moved, the user’s face -- assuming 

it is a real three-dimensional face -- exhibits a form of parallax due to its 3D structure, 

whereby features appear to move at different speeds and by different amounts in the plane of
30 the image in dependence on their depth within the image capture device’s field of view (i.e.

their distance away from the image capture device along its optical axis). Not only can this 

be used to verify the presence of actual three-dimensional facial structure (as opposed to a 

two-dimensional image held in front of the image capture device in an attempt to spoof the 

system - a form of “replay attack”), but by comparing the movement exhibited by the facial

7



structure in the image with the same motion data that is used to authenticate the user to check.

those data match, it. can be determined with a high level of confidence whether the device 

motion has been induced by an actual living human holding the user device 104, in addition 

o authenticating the user 102. This is described in further detail later.
5

The user device 104 is shown to comprise at least one processor 122, comprising one or more

CPU(s) and/or GPU(s) or other specialized processing hardware, such as FPGA(s) etc. In 

addition, the user device 104 is shown to comprise at least one motion sensor 124, an imaee 

capture device 126, a display 128 and a network interface 130 via which the user device 104
10 can connect to a computer network. 106, such as the Internet. The processor(s) 122 fetches

computer-readable instructions from a memory (not shown) and execute: those instructions

in order to carry out the functionality of the user device 104 that is described herein. The

mot on sensor .124. image-capture device 126, display 128 and network interface 130 are

shown connected to the processor 122, which allows the process 122 to use these components 
1 ϊ. to carry out the functions described later. In some implementations, the user 102 is 

authenticated at a remote authentication server 108 (or other back-end authentication system) 

by way of a remote user authentication process between the user device 102 and the 

processing units 109, such as CPU(s) and/or GPU(s) or other specialized processing
20 hardware, such as FPGA(s) etc. The processing unit(s) 109 fetch computer-readable 

instructions from a memory (not shown) and execute those instructions in order to carry out 

the functionality of the authentication server 108 that is described herein. The user device 

104 communicates with the remote authentication server 108 via the computer network 106 

in order to carry out the user authentication process. In other implementations, the
25 a local user authentication that is carried out at the user device 104

itself. In this case, the user authentication functions can be executed by the at least one 

processor 122 of the user device 104.

1 he motion sensor 124 is used to capture device motion data, in the form of a time series of 

device velocity or acceleration values, motion values. The motion sensor .124 can be any 

type of sensor that can be used to measure or estimate the instantaneous velocity and/or 

acceleration of the user device 104 at. a particular time instant, either on its own or in 

combination with, another sensor(s). Here, velocity refers to angular velocity, i.e. the rate 

with which the device rotates about up to three axes (linear velocity could be estimated by

«3
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mtegrati. g acceleration if desired). That is. a single motion sensor, such as an accelerometer,

can be used for this purpose, or alternatively the user device 104 may comprise multiple 

sensors which can be used in conjunction with each other to achieve the same outcome. For 

example, a combination of an accelerometer and a gyroscope could be used to generate the &

5
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device motion data. Each device motion value can be a vector of up to six values (three

Figure 2 shows a high-level schematic function block, diagram showing functional 

components of a user authentication system, which co-operate to perform the user 

authentication. In particular, Figure 2 shows a cepstrum determination component 202, a 

neural network. 204 and a classifier 206. In the case of a remote authentication, thf

components 202 .04 and 206 represent respective parts of the functionality of the 

authentication service 108. That is, functionality implemented by computer-readable 

instructions when executed at the back-end authentication system 108. However, in other 

implementations some or all of this functionality could be imprinted at the user device 104 

instead, for example. Accordingly the authentication system of Figure 2 can be implemented 

at the back-end system 108. the user device 104 or as a. distributed, system formed of the user

1fThe cepstrum determination component 202 is shown having an input connected to receive 

the device motion data (labelled 201) as generated using the at least one motion sensor 126 of 

the user device 104. The cepstrum determination component 202 determines, from the 

device motion data 201, a set of cepstral coefficients 203. With vector motion values, this 

can be done for each dimension separately or the vectors can be converted to scalar (e.g.

spectrum of a time-varying signal. This is described in further detail later but for now suffice

it to say that, in order to determine the cepstral coefficients 203, the device motion data 201, 
•t £{■■ HUAwhich as noted is in the form of a time series of motion values, is transformed into a set of 

short-term spectra in. the frequency domain, from which the cepstral coefficients are then

There are various ways of defining cepstral coefficients and the manner in which they are 

computed depends on how they are defined. However, with reference to Figure 3, what these 

have in common is that a time-varying signal (in this case the time series of device motion

9



values 201) or a portion thereof is transformed into a spectrum in the frequency domain, at

block 302 in Figure 3, by applying a first domain transform such as a Fourier transform, e.g.

Fast Fourier Transform (FFT). A set of logarithmic values is determined from spectral

coefficients of the frequency-domain spectrum, at block 304, and a second domain, transform.
5
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is applied to the logarithmic values, at block 306, in order to determine the cepstral

coefficients 203. Theoretically, an Inverse Fourier Transform (IFF) would be appropriate

where the first domain transform is a Fourier transform, however in practice it may be

equally viable to implement the second domain transform, as a Discrete Cosine Transform

’£5 ■&1
input to the neural network 204. The feature vector is denoted t?in and is also referred to as

the input vector. The dimension of the input vector vjn (the number of components it has) is

denoted D; n. Each component of the feature vector v-m may simply be one c

coefficients, or additional processing may be applied to the cepstral coefficients to form the

feature vector £Λη. The input vector vin embodies device motion information, in a form

suitable for interpretation by the neural network 204. That information has ultimately been

derived from the captured motion data 201. Such a feature vector is referred to as a device

motion feature vector herein.

A resulting vector output 205 of the neural network 204 is then used, by the classifier 206, to

classify the user 102 as authorised or not authorised. To achieve this, the vector output 205

needs to capture sufficient information about the motion of the user device 104 as induced by

be interpreted by the classifier 206, so that classified 206 can

determine whether the user-induced motion of the device 104 matches the expected device

motion pattern that is uniquely associated with the authorised user. In other words, the vector

output 205 must adequately capture the behavioural biometrics of the user 102. Various

example architectures which can achieve this are described later.

generated in one embodiment. To aid illustration, Figure 4B provides a graphical illustration

of some of the functions performed by the components of Figure 4A.

10



5

With reference to Figures 4A and 4B. at block. 402 a Discrete Fourier Transform (DFT). 

which is implemented as a Fast Fourier Transform (FFT), is applied to the device motion data 

201. In ibis example, a FFT is in fact applied on a per-frarne basis. That is. the device 

motion data 201 is divided into short temporal frames 412 and a FFT is applied to each frame 

412 in order io generate a spectrum for that frame 412 (short-term spectrum). The output of 

the FFT block 402 is a set of (complex) spectral coefficients which are converted to a power 

spectrum. 414 for the frame in question, at block 404, for example by taking the magnitude or 

(in this example) the magnitude2 of each of these spectral coefficients. Block 402 together 

with block 404 corresponds to block 302 in Figure 3, in that they transform the time-domain 
10

15

20

25

30

device motion data 201 into a power spectrum in the frequency domain (device motion

After dividing the signal into frames and before calculating FFT windowing can be< < «»y <<<<<<<<<<< ξϊ\ \ \ \

performed. Simply cutting the frames out introduces discontinuities at the beginning and the 

end of the frame which in turn can result in. undesirable artefacts in the frame spectrum. In 

order to avoid that, the frame can be multiplied element-wise by a specially designed window 

which effectively fades in and fades out the signal. An example of a suitable window is the

Hann window. Windowing in the context of digital signal processing is known per sc, and it 

is not described in fuller detail for that reason.

in order to determine the logarithmic values, in ibis example. the device motion spectrum 414 *>»· ’ i. ' X

(406A to 406D) each of which is tuned to a different frequency band and is designed to filterx J. J ·../

out the parts of the power spectrum 414 outside of that band. Four individual filters are 

shown but in practice there may be more filters than this. In this example, each of the filters 

406A to 408.D is a triangular filter, whose output is a multiplication of the power spectrum 

414 with a triangular function centred on a particular frequency. The output of each of the 

individual fillers 406A to 4060 is a respective filtered version of the device motion spectrum 

4.14, denoted 416A to 416D for filters 406A to 406D respectively.

At block 408, the energy of each of the filtered spectra 416A to 416D is computed. The result 

is a set of energy values 418, one for each filtered spectrum 416A to 416d, denoted El to E4 

in Figure 4B. Each of the energy values El to E4 represents an. overall energy of the filtered 

spectrum 416A to 4.16D from which it is computed. Each can be computed by summing at 

11
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the spectral coefficients of the filtered spectrum in question, or some other computation to 

determine an overall value representative of the spectrum energy (or magnitude).

At block 410 in Figure 4A, a logarithm of each of the energy values El to E4 is computed, 

denoted log(El) to log(E4).

Blocks 406, 408 and 410 in conjunction correspond to block 304 in Figure 3.

Finally, in order to compute the cepstral coefficients 203, in this example a OCT transform is 

applied, at block 306, to the set of logarithmic values to obtain the set of cepstral coefficients 

203.

A viable option is to compute the so-called Mel-frequency cepstral coefficients (MFCCs). 

These are used in audio processing, and a characteristic of MFCCs is that the filter-bank is 

chosen so as to transform the power spectrum to the so-called Mei scale. This has the effect 

of weighting different frequencies according to how responsive the human earls to those 

frequencies. There is no particular need to do this in the present context. However, in 

practice it has been found that the device motion spectrum, is confined to a relatively narrow 

part of the spectrum, such that the effect of the Mel transformation is negligible. 

Accordingly, although in principle there is no particular benefit to using MFCCs, they arc 

nonetheless a viable choice, and a practical benefit is that, due to their adoption in audio 

processing, they can be computed using existing library functions and the like.

These, operations are performed for each frame 412 of the time series of device motion values 

201 to obtain a set of cepstral coefficients 203 for each frame 412. As indicated above, it is 

these cepstral coefficients that arc used to form the input vector v5n that can be understood by 

the neural network 204. The input vector v-m can for example comprise cepstral coefficients 

determined for multiple frames of the device motion data 201 as predetermined dimensions 

of the input vector vin, and could potentially have a large number of values (high 

dimensionality).

There are various viable neural network architectures that can provide a meaningful vector 

output 205 based on such an input vector

12



A first neural network. 204A, having a first architecture, will now be described with reference

ο

inΛ W

7 η

'■2Γ1 Ju

to Figures 5 and 6.

Figure 5 schematically illustrates some of the principles according to which the first neural

network 204A is trained. The· first neural network 204 A is shown to comprise an input layer

to receive outputs from the hidden layer 504. Example arrangements of these connections are

described below. For a neural network with multiple hidden layers, the first of the hidden

layers connects to the input layer 502 and the last of the hidden layers connects ίο die output.

layer 506, with each but the first hidden layer connected to receive inputs from the previous

hidden layer. Accordingly, with three or more hidden layers, at least, one (intermediate)

hidden layer is connected to both receive input from the previous hidden layer and to provide

The neural network layers 502, 504 and 506 are shown to comprise respective nodes, with

nodes of the input layer, and each node of the output layer 506 having an input connected to

an output of each of the nodes of the hidden layer 504. This is an example of a

“feedforward” arrangement, and alternative arrangements may be viable (see below). In this

example, there is only one hidden layer but as will be appreciated with multiple hidden layers

intermediate hidden layers may be connected to each other in a similar manner

504 three nodes and the output layer 506 five nodes, however is expected that in practice-0

each layer could have significantly more nodes than. this. As will become apparent, in this
particular example, it may be beneficial for the hidden layer 504 to have fewer nodes than theΡ

input layer 5()2 in order to achieve a level of dimensionality reduction, particular where the

dimension of the input vector is high.

13



where X; denotes the im component of the feature vector i?in and corresponds to one of die

cepstral coefficients. The dimension of the feature vector vin is denoted Din. Nodes within 

the neural network layers 502, 504, 506 are labelled as (/,/) - denoting the /th node in layer I

- with I ~ 0.1.. 2 respectively; henc·
5 node in the input layer 502 is labelled (0,j);

The /t! node in hidden layer 504 is labelled (1, /);

node m the output layer 506 labelled (2,j).

Further details of the specific architecture of Figure 5 are described below.
10

First, a more general point is made, which is that, ultimately, a neural network is a 

combination of an algorithm executed on one or more processing units and a set c 

electronically-stored weights, with the algorithm being configured to process input data, i.e.

the incut vector vin. based on the electronicallv-stored weights, in order to generate outnut
15 data, in the form of an output vector denoted:
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v{!U1: = (yo,-z ϊ[)αύ1 ,)
•A-y

of dimension Dout. The algorithm processes the input vector v·.^ in stages, which are

represented by the layers of the neural network. At each stage, the algorithm applies weights

in the matter described below to the data being processed at that stage. The weights are

stored in memory and selected during training in a recursive process performed with the

objective of minimizing a loss function applied to the input vector v-m and the output vector

vout and denoted:

where,/(*) is art objective (target) function such that, when L(t(Vjn), i?out) is sufficiently

minimized, ?zout ~ /'(Vjfi). That is, / Ci’in) is the desired output of the neural, network in

response to i?out, or to put it another way the function the neural network is trained to model,

which for conciseness is denoted:

I !·</·( I . 1 lA

= (y0> ->y»out;-i) - /Oin).
and which also has dimension Diiix,,

The training terminates when selected stopping criteria are met. The choice of stopping 

criteria is context-dependent, and they are chosen so as to minimise the loss function enough 

to achieve the objective but not so much as to cause, significant 

14



over-fitting means that the neural network has ‘'memorized” the training data very well, but

to the detriment of its ability to generalize that learning to data it has not seen before. At this 

point, the neural network can be said to have learned the target function f (*), and a key 

benefit of a properly-trained neural network is that it is able to approximate the objective 
5
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function f (*) for input vectors that exist in the same vector space as the training vectors but 

which the neural network has never encountered before; that is, the natural network is 

capable of generalizing from a relatively narrow set of training data when properly trained

.ted at the output layer, in that it is applied to the output of the

output layer vout (viewed the other way round, the output layer can be defined at the layer at 

which the loss function is evaluated in training). By contrast, the output of the hidden 

layer(s) is not considered explicitly during training and, unlike the output layer output 

layer vout, the output of the hidden layer(s) does not directly contribute to the loss function 

varies in dependence on the output of the hidden layer(s).

Ultimately, & trained neural network means the algorithm in combination with a set of 

loss function evaluated at the output layer. Once the weights have been learned on a 

particular computing platform, they can be moved to or duplicated between different 

computing platforms in order to make use of those weights. Moreover, in some cases, a 

subset of the weights might be discarded altogether once training is complete; as will become..........  ...... .. <C5......... .....CP...................... .................... ... .... : : ........ . ..

apparent, this is viable in the following example, as it is a vector output of the hidden

layer that is used once training is complete to determine whether or not the user from which

A common choice for the loss function is mean squared error (MSE):

OU

However, as discussed below, there are viable alternative loss functions, and alternative loss 

functions may give a performance benefit in some cases in the present context.

Each node of the neural network represents a computation that is performed bv the algorithmx x 1 y
on a particular set of inputs using a particular set of weights. Each node can thus be seen as a
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functional module of a computer program embodying the algorithm.

Each hidden layer and output layer node (/,/) computes its respective output as:

O; ,J
/11

/ 
I /

y

in

■7 
/

+ Oj.
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it.j.2/ — ) received at that node (/, J), weighted according to that, node's set of weights

), and an (optional) bias term bjj. The activation function ,<?(*) is generally a

unusual in modern neural networks for the activation function to differ between layers, and 

even less usual for it to differ between nodes in the same layer because that can reduce the 

extent to which the neural network can be implemented efficiently using matrix 

computations: nevertheless, there is no requirement for the activation function to be fixed in 

this way and it can vary between layers and/or neurons within layers. Generally a 

differentiable activation function (or at least a function that is differentiable over a desired set 

of input values) is chosen to allow training based on back propagation, in which the loss 

function is minimized by iteratively computing partial differentials of the loss function with

respect to the weights and tuning the weights based on the results.

The bias erm bit for each node (/. Ϊ) can be zero or a non-zero value and which can. varyCi

Γ>·between different nodes. The bias term .¾ can be fixed or it can be adjusted during training 

along with the weights.

For the first hidden layer, the inputs are simply the (unweighted) components of the input 

vector vin. By convention, a neural network is often represented as having an input layer that 

transparently 'relays' the input vector i2jn to each node of the (first) hidden layer, and the first 

layer at which processing is actually performed; an equally viable perspective is to think of 

the input layer as the input vector vin itself: either way, the input layer represents the starting 

point for the algorithm. This is immaterial but, when it comes to terminology, what is 

material is that, herein, the first neural network layer at which the input vector vin is 

processed in accordance with equation (1) (corresponding to the first substantive stage of the
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algorithm) is referred to as the first hidden layer, or simply the hidden layer if there is only

-ΐ/3
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I --- 1 in the notation introduced above.

inputs to each node of the (first) hidden layer (I -- 1) are simply:
1}

where ,:η is the ith component of the input feature vector as noted above.

In a simple “feedforward” network, each node (/, i) of each layer I > 1 is connected io each

node of the previous layer I --- 1 (only). This is a viable arrangement in the present contex

but alternative arrangements, e.g. which incorporate feedback connections, may also be
viable, and for the avoidance, of doubt the term neural network is not restricted to a simple

feedforward arrangement but encompasses other arrangements loo.

For instance, a viable alternate is a convolutional neural network (CNN), and any of the

described technology can be implemented with a CNN. CNNs are known per sc and have

various distinguishing characteristics that are also known per sc. A CNN can be trained to

perform any of the neural network functions disclosed herein, as will be appreciated.A5

The first neural network 204A is trained based on training data captured from a group of N

training users 512 (user 0 to user N ■■■■ 1). In this example, the dimension of the output layer

(/ = 2) is Dout — N, i.e. one node per training user such that node (2,n) corresponds to the

The training data for each training user is device motion data (recording device motion

induced by that user) from which cepstral coefficients are derived, and used to form device

motion feature vectors to be inputted to the neural network 204A, in the manner described

The device motion feature vectors are inputted at the input layer 502 of the first neural

network. 204A, in a training phase, and the first neural network 2()4A is trained by adjusting

the weights applied at the hidden and input layers 504, 506 in a systematic way to minimise

the loss function £(/(-^), vout) until the stopping criteria are met. In this example, the

objective function is a “one-hot” categorisation function, i.e. such that:sue
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for any input vector captured from iser n (denoted v(j.). That is. /(ph ) is an N-dimensional

vector having all zero components, except for the nth component which is 1. In other words.
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Accordingly, when training is complete, for each of the N training users, any device motion 

feature vector captured for that user results in an output o2/W ~ 1 at the output layer node

(2.71.) corresponding to that user, and an output o2j*n « 0 at all other output layer nodes.

In this context, although MSB may be a viable loss function, it is expected that it may be 

possible to achieve a performance benefit, in some, cases, with a cross-entropy error (CEE) 

loss function. With a one-hot objective function /(*), the cross entropy loss function reduces

to:

UfCVinXlW)
'ΓΛι ut

i

As indicated, training can be performed using back propagation to reduc< Ό 5.

(however it is defined) until the stopping criteria are met. Any suitable backpropagation 

algorithm can be used, for example gradient descent. Backpropagation and gradient descent 

are well known per xe so further details are not discussed herein.

Regarding the architecture of Figure 5, it is important to note that there is no requirement for 

and in practice there will be far more end-users than there are training users 512. That is, in 

general any user being authenticated will not have provided any of the training data used to 

train the first neural network 204A. This exploits the ability of the first neural network 204A, 

once trained, to "understand" feature vectors from users it has never encountered before, i.t 

the ability of the first neural network 204A to generalize from a narrow set of training da.13.

For users it has not seen before, the output vector i?aut of the neural network 502A could be 

seen as a measure of how “similar” the unknown user is to each of the training users.

However, it is also important to note that, in the present example, the output vector need not 

be computed at all and the output layer can be discarded altogether after training, for reasons 

that will now be explained with reference to Figure 6.
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With reference to Figure 6, once the first neural network 204A has been trained in this

5

in

20

25

manner, the user 102 is actually classified as authonzed/unauthorized, by the classifier 206,

using the output of the hidden layer 504, which is a vector vh of dimension D-i} (the

normally form the input to the output layer 506, and which is denoted.

(4)

As indicated, preferably Dti < /).,, which has the effect of dimensionality reduction, i.e.

reducing the number of vector components that represent the device motion.

as aiThe classifier 206 classifies the user 102 as authorized or not authorized based on this output

The classifier 206 may be a “one-class" classifier. A one-class classifier refers to a classifier

that is trained to perform a binary classification (here: authorized/not authorized), using data

from a single class only (here: authorized). In other words, a one-class classifier in this

context can be trained using only device motion data from a user who is authorized to use the

user device 104, without any training data from any other (unauthorized) user. This means

that the classifier can recognize a user as unauthorized, even though it has only ever "seen"

training data from the authorized user and has never seen training data from an unauthorized

user. For example, the classifier 2.06 may be a one-class support vector machine (SVM)

Alternatively, the classifier 206 can be a binary classifier that is trained using data of other

users, who are unauthorised users in this context, and then fall into the second class. Where

data for a large number of users is available, a selection of the data can be selected for this

purpose, at. random or using some other suitable selection mechanism.

This classification based on the hidden layer vector output v,, is the means by which it is

determined whether or not the unique characteristics of the device motion match those of the

expected device motion pattern associated with the authorized user, using information about

that device motion captured in the hidden layer vector output 1¾.

Figure 6 shows a second neural network 204B having an alternative architecture. As before,

the neural network 204B has an input layer 702, at least one hidden layer 704 and an output.

30
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layer 706. All of the description above applies equally to the second neural network 204B,

but modified as described below.

The underlying training model is quite different in this example. Here, the neural network "a
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204B is trained using training data captured from the authorized user only. That is, a neural 

network is trained independently for each authorized user.

The objective function is this second example is an identity function:

f (viR) - vin

That is, a function which simply returns its input as its output for all values. .Accordingly, 

training is performed until the neutral network in able to reproduce each training input vector 

at the output layer 706, such that v()U!: « V;n.

Once trained, any time the authorized user provides an input vector subsequently, the output 

of the output layer 706 of the second neural network 204B is expected to approximately 

match that input vector. However, if some other unauthorized user provides an input vector, 

the output of the output layer 706 is expected to exhibit a discrepancy from that input vector

that is significantly greater than any discrepancy between the authorized user’s input and

output vectors, i.e. between pin and v{su By detecting the presence or absence of such

significant discrepancies in the output vector vout, it can determined whether or not. die user 

is question is the authorized user. It is the presence of absence of any significant discrepancy 

that indicates whether or not the device motion matches the expected device motion pattern 

associated with the authorized user.

Note that, in this example, the full neural network 204B, including the output layer 706, is

This could be a classification, by a suitably trained classifier 306, e.g. a one-class classifier 

(e.g. SVM) as in the above, but in this case trained based on the vector output vout of the 

output layer 706 for the authorized user. The principle here is essentially the same as the first

example, in that the classifier is used to classify vectors as matchi the authorized user or

not using only training data from the authorized. Here, the input to the classifier could 

simply be v0llt. on the assumption that. vcut alone is sufficient to convey such discrepancies.
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or the classifier could receive data of both vou! and vin as an input. For example, the input

could be v = v.out vin or some function thereof, or some other measure of the difference

between vOllt and vin.

5 An extension of the above techniques will now be described, in which the behavioural 

biometrics authentication is comomed with a form of liveness detection to provide a secure

to spooling, whilst minimizing die amount of input

needed from a user. This is because the data needed to perform the authentication and the 

liveness check (device motion data and image data) are captured simultaneously as the user 
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moved the device 104, and the device motion, data is used for both authentication and Jiveness 
detection. One benefit of the. technique is that it. can provide biometric authentication in

ΓΡΓcircumstances where it would not be possible to use facial recognition due to the motion of 

the face in the image data. However the technology is not limited in this respect, and could 

for example be combined with facial recognition where possible to provide an additional

As indicated, the motion-based authentication can be combined with what is referred to 

herein as "structure based face anti-spoofing", which refers to a set. of methods based on the 

observation that a 2-diraensional still picture of a face is the result of the projection of the 3D 

few as two video frame images from different angles of the same face, it is possible to 

distinguish robustly between a static print attack and genuine input. Additional techniques to 

solve problems that arise when trying to automate frame selection from a video stream are 

also described below. A different method is also introduced, appropriate for different types of 

malicious input, such as replay attacks, to be countered.

Consider two still pictures of an. individual's face where the camera is at a different, angle in 

both frames, for example as shown in Figure 9. A technique, referred to herein, as landmark 

detection., is used to robustly locate key points on the face. In this section, only the following 

set of points is exploited:

P2: Right eye centre

P3: Tip of the nose
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• Ρ4: Left lip commissure (i.e. left comer of the mouth)

* P5: Right lip commissure (i.e. right corner of the mouth)

An additional point P6 is defined, as the intersection between P1P5 and P2P4 (i.e. the line 

between points Pl to P5 and the line between points P2P4). This point P6 defines the centre
Γ~ 
□

A distance metric m the orm of a displacement vector P=P6P3 ("posture vector"), i.e. a 

vector separation between points P6 and P3, is determined. Vector P6P3 behaves very 

differently when drawn upon a static printed picture of a person's face.
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Figure 8 illustrates how vectors can be drawn between the various reference points previously 

discussed. Figure 9 illustrates these techniques applied to an image of a real face, shown 

along two different lines of sight, in side-by-side images. This allows a vector difference such 

as the posture vector P to be used to determine whether the captured movement of a face in a 

moving image is that of a 3-dimensional object or a flat 2-dimensiooal image of a face. The 

moving image is capturing user device camera 108.

Reference points on. either side of the eyes Rl, R2 (right eye) and LI, L2 (left eye) are 

identified and tracked as the face in the moving image exhibits motion, as are mouth 

reference points P4 and P5 on either side of the mouth (left and right respectively). Central

the mid-point between R l and R2, and LI

and L2 respectively. A point P6 is then determined as the intersection of the line P1-P5 and 

approximately on the opposite corner of the mouth.

The intersection point P6 lies near to point. P3, on the tip of the user's nose. A difference 

is determined and tracked. As noted, for a moving image of a 3-dimensional human face. i.e.

‘(λιa real face, this vector difference P is expected to vary in a certain way as a user moves their 
head from side-to-side or tilts it. up and down. This is because the point P6 corresponds to a

point on the nose in. 3-dimensional space that is forward of the point I along the user’s facing 

direction. However, if what is captured in the moving image is itself an image of a face, i.e. a 

2-dimensional representation of a face on a flat surface, any variations in the difference
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vector P will be measurable different from those of a 3-dimensional face. Thus, by looking
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in variations at the difference vector P as the user moves his head or (preferably) his device

as the moving image is captured it is possible to distinguish between a real 3-dimensional

face and a 2-dimensional facial image. As noted above, this can be natural movement that is

stednot explicitly requested, or the movement may be requested by outputting suitable

instructions at the user device 104.

Figure 9 shows two static images of the same face captured from different angles, which are

video frames F0 and Fl respectively. The points P1-P6 are shown in each of the images, and

the changes in their relative locations due to the rotation of (in this case) the user's camera is

evident.

The posture vector P in frames F0 and Fl is denoted P0 and Pl respectively.

An additional vector S ~ P0 - Pl is determined. A vector norm of the vector S is determined

as a score tor the inputs. By introducing an empirically calculated threshold T, is possible to

determine whether or not the input is genuine, where the entity only passes the test if norm(S)

> T. The value norm(S) is a measure of a scalar difference between vectors P0 and Pl.

This represents an extremely efficient anti- spoofing test, which can be implemented using as

few as two video frames F0, Fl and computationally efficient image processing.

Scale and Rotation Invariance

frames than the other, a printed static might fool the anti-spoofing detector. For this purpose.

concept of scale invariance is introduced.f·

To implement scale invariance, a respective distance between the centres of the eyes is

determined for each of the frames F0, Fl, and applied to the posture vector of that frame as a

scale factor. That is, the posture vector for that framee P is scaled by that factor to generate a

new vector P’ for that frame, that is insensitive o the distance between the subject and the

camera:

P' P / |P1P2
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So for frames F0 and Fl respectively, PO and PI are scaled by the distance between the eyes 

in that frame respectively.

Another problem that can arise is when the input is static printed picture where the subject 

has his head turned to the side by -30 degrees. Then an attacker could fool the anti-spoofing 

system by rotating the printed picture by 90 degrees between the two frames and get a score S 

greater than the threshold T. To address this, rotation invariance is introduced, where an 

angle of the line (PIP2) relative to a horizontal direction of the image is measured and the 

posture vector P rs rotated by that angle:

P' ~ rotate(angle(Pl P2), P)

The points Pl, P2 at the respective centres of the eyes are suitable reference points to provide 

both the scalar and rotational invariance because, although they may move as the user moves 

his head, their positions on the face are fixed (unlike, say, points P4 and P5 on the mouth 

corners, whose positions on the face may vary due to facial expressions). Other such points 

on the face (i.e. at fixed locations on the face) can also be used.

Orientation Normalisation

It might also be the case that if the angle between the two frames is too high then even a static 

printed input might get. a score S large enough to pass the anti-spoofing test.

This problem can be solved by normalizing depending on the actual change in the. orientation 

angle between the two frames before thresholding.

This requires an estimation of the orientation/posture of the users face in some w-ay, for 

example as described in the next section.

Frame Selection based on 3D face pose estimation

If the two frames F0, Fl are selected from a continuous input stream derived from a single 

camera, one, of the main problems that arises is how to select, the appropriate frames.
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This is important since if the orientation change between the two selected frames is too small

then all the inputs will be incorrectly classified as attacks instead of genuine faces. A robust 

pose estimation method allows an appropriate pair of frames to be selected.
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To estimate the 3D face posture from a single 2D image (video frame) a generic 3D face

shape model is used as a reference. Using this 3D reference shape model, a projection matrix ·&

that was used to capture the 2D image is estimated, by seeking the 2D-3D correspondences 

between the same landmark points in the 2D image and on the surface of the 3D face model

The 3D to 2D projection matrix, once determined, is exploited in order to compute the Euler 

angles that specify the 3D face pose on every video frame in terms of its roll, pitch and yaw 

angles. Euler angles are a known mathematical construct, which are also used to describe the 

orientation of one frame of reference relative to another e.g. as a triplet of angular values 

(such as pitch, roll and yaw).

Having obtained the 3D face pose on every video frame, two 2D images are selected as 

having an orientation change significant enough to facilitate the two-frame structure ant 

spoofing method. That is, the two frames that are selected are such that a difference between 

the respective orientations of the face in those frames exceeds a suitably threshold chosen io 

match the parameters of the test itself.

A potential attack against the anti-spoofing system might be to have two separate static 

photos of the same person from two different angles and substitute one for the other during 

video capture.

This can be prevented by introducing additional checks in the image processing, namely to 

make sure that the face-detection box position and landmarks are typical of a single object 

moving at reasonable speeds throughout the input. This means that the face can never be 

occluded, there can never be more than a single face at a time and it cannot "teleport" from 

one point to another during the input feed. To this end, a speed measure (e.g. scalar speed or 
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velocity vector) can be determined for the face across the video frames F, and compared with

a speed threshold. The entity fails the test if the speed threshold is exceeded at any time.

Η ««/

5

So far, a relatively cheap and simple attack whereby the attacker displays a video of a live 

subject from a device/screen in. front of the camera has not been addressed.

To address this type of attack, an additional requirement 
10 user’s head remains almost still while he is capturing his

is moving the hand held camera 108. That is, the user is required to rotate the camera 108

Thus it is possible to discriminate between a genuine login attempt and a replay attack by 

measuring a correlation between the face pose change (that is, changes in the posture vector

P) in time relative to the way die device is moving in the actual world by the user. In order to 

estimate the device location and orientation in the real world, available inertial sensor(s) 126 

on the user device 104 are exploited. The vast majority of modern mobile devices are 

equipped with such sensors (e.g. an accelerometer, gyroscope and magnetometer).C2

20

Advantageously, the same motion data 201 that is used to authenticate the user 102 can be 

used to detect reply attacks in this context.

The 3D face pose is estimated on every frame by the method described above. Thus it is 

time series similarity measurement problem where it is determined whether the input video 

stream shows a genuine login attempt (live face) it the similarity score is higher than an

30 Finally, in order to ensure that the change in the face pose is caused by the displacement of 

the capture device 108 and not due to head movement, a variance of the respective sensor 

data is determined, and a requirement can be introduced that the determined variance is above 

a specified threshold for the entity to pass the test.
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As will be appreciated, this is just one example and there are various ways in which the 

device motion data 201 can be used, both to authenticate the user 102 and to verify that the 

observed motion in a captured video correlates with the sensed device motion, sufficiently.

Although specific embodiments of the inventions have been described, variants of the 

described embodiments will be apparent. The scope is not defined by the described 

embodiments but only by the accompanying claims.
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Claims

1. method of authenticating a user of a user device, the method comprising:

receiving a time series of device motion values captured using a motion sensor of the

user device durins an interval of motion of the user device induced by the user;

applying a domain transform to at least a portion of the time series to determine a

least one device motion spectrum in the frequency domain; and

authenticating the user of the user device by analysing the said at least one device

motion spectrum to determine whether the user-induced device motion matches an expected

device motion pattern uniquely associated with an authorized user.

<·> A method according to claim I, wherein the analysing step comprises determining a

set of logarithmic values from the said at least one device motion spectrum, the set

logarithmic values being used to determine whether the user-induced device motion matchesCJ

the expected device motion pattern, each of the logarithmic values being determined as a

y

nn of a respective spectral coefficient of the said at least, one device motion spectrum.

A method according to claim 2, wherein the analysing step comprises determining a

set. of cepstral coefficients by applying a second domain transform to the sei of logarithmic

values, the set of cepstral coefficients being used to determine whether the user-induced

4, A method according to claim 3, wherein the analysing step comprises inputting to a

neural network a device motion feature vector comprising the cepstral coefficients, and using

a resulting vector output of the neural network to determine whether the user-induced motion

matches the expected device motion pattern, the neural network having been trained io

distinguish between such device motion feature vectors captured from different users. A

5. A method according to claim 4, wherein the vector output is an output of a hidden

layer of the neural network.

6. A method according to claim 4. wherein the neural network has been trained based on

device motion feature vectors captured from a group of training users, which does not include
the authorized user.



'~7
1 A method according to claim 4, wherein the analysing step comprises classifying, by

a classifier, the vector output of the neutral network as matching or not matching the expected

□

8, A method according ίο claim 7, wherein the classifier has been trained based on one

or more earlier device motion feature vectors captured from the authorized user and

corresponding to the expected device motion pattern.

.0 9 A method according to claim 8, wherein the classifier is a one-class classifier trained

without using any data captured from anv unauthorized useC? J Λ

10. A method according to claim 8. wherein the classifier is a binary classifier trained•.J · J

using one or more earlier device motion feature vectors captured from at least one
15 unauthorised user.

11 A method according to claim 8, wherein the classifier is a support vector machine 

(SVM).

20 12. A method according to claim 4, wherein the neural network has been trained based on 

one or more earlier device motion feature vectors captured from the authorized user and 

corresponding to the expected device motion pattern:

wherein the analysing step comprises determining whether the vector output exhibits 

a significant discrepancy from an expected vector output.
25

13. A method according to claim 11, wherein the neural network has been trained to 

reproduce, as vector outputs, inputted device motion, feature vectors captured from the 

authorized user and corresponding to the expected device motion pattern

wherein the analysing step comprises determining whether the vector output exhibits
30 a significant. discrepancy from the device motion feature vector inputted to the neural 

network. 
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14. A method according to claim 3, wherein the second domain transform is a discrete

cosine transform (DCT) or an inverse Fourier transform (IFF) applied to the set of 

logarithmic values.

5 15. A method according to claim 2, wherein the or each device motion spectrum is

Itered by a bank of filters, wherein each of the logarithmic values is a logarithm of an 

energy of a respective filtered version of the device motion spectrum determined by a

.0 16. A method according to claim 1, comprising:

receiving image data captured using an image capture device of the user device during 

the interval of user-induced device motion;

wherein the authentication step comprises analysing the image data to ds

15

ΐπ : ιΛ I A method according to claim 16, wherein the authentication step comprises 

comparing the image data with at least some of the device motion values, to verify that 

movement of the three-dimensional facial structure, if present, corresponds to the user­

induced device motior
20

18

19.

A method according to claim 1, wherein the domain transform is a Fourier transform.

A method according to claim 18, wherein the device motion spectrum is a power 

spectrum, which is determined by determining a power of each spectral coefficient of a

Fourier spectrum determined by the Fourier transform.

20. A method accordinc to claim 1. wherein multiple device motion spectra areX Γ

determined, each by applying a domain transform to a respective, portion of the time series of 

device motion values, and analysed to determine whether the user-induced motion of the user
□ η ._>U

21. A method according to claim 1. wherein the analysing step comprises inputting to a 

neural network a device motion feature vector comprising coefficients of the said at least one 
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device motion spectrum or values derived from coefficients of the said at least one device

motion spectru m.

A user authentication system for authenticating a user of a user device, the user 
5

10

15

20

25

30

authentication system comprising:

an input configured to receive motion data captured using a motion sensor of the user 

device during an interval of motion of the user device induced bv the user;

one or more processors configured to execute computer readable instructions, which, 

when executed, cause the one or more processors to

process the motion data io generate a device motion feature vector.

input the device .motion feature vector to a neural network, the neural network having

trained to distinguish between device motion feature vectors captured from different 

users; and

authenticate the user of the user device, by using a resulting vector output of the 

neural network to determine whether the user-induced device motion matches an expected 

device motion pattern uniquely associated with an authorized user.

23. A user authentication system according to claim 22, wherein the device motion 

feature vector comprises temporal motion values of or derived from the motion data.

24. A user authentication system according to claim 22, wherein the neural network is a 
convolutional neural network (CNN)

5, A user authentication system for authenticating a user of a user device, the user 

authentication system comprising:

an input configured to receive motion data captured using a motion sensor of the user 

device during an interval of motion of the user device induced by the user;

a computer system configured to execute computer readable instructions, and thereby

26. A computer program product, for authenticating a user of a user device, the computer 

program product, comprising computer-readable instructions stored on a non-transitory 

computer -readable storage medium and configured, when executed, implement the steps of

31



Amendments to the claims have been made as follows:
20

 03
 19

Claims

1. A method of authenticating a user of a user device, the method comprising:

receiving motion data captured using a motion sensor of the user device during an 

interval of motion of the user device induced by the user;

processing the motion data to generate a device motion feature vector,

inputting the device motion feature vector to a neural network, the neural network 

having been trained to distinguish between device motion feature vectors captured from 

different users; and

authenticating the user of the user device, by using a resulting vector output of the 

neural network to determine whether the user-induced device motion matches an expected 

device motion pattern uniquely associated with an authorized user, by determining whether 

that vector output exhibits a significant discrepancy from the device motion feature vector 

inputted to the neural network,

wherein the neural network has been trained, based on one or more earlier device 

motion feature vectors captured from the authorized user and corresponding to the expected 

device motion pattern, to reproduce, as vector outputs, inputted device motion feature vectors 

captured from the authorized user and corresponding to the expected device motion pattern.

2. A method according to claim 1, wherein if the user-induced device motion is 

determined to match the expected device motion pattern, the user of the user device is granted 

access to at least one of: a function of the user device, a service, and data to which the 

authorized user is permitted access.

3. A method according to any preceding claim, wherein the neural network is a 

convolutional neural network (CNN).

4. A method according to any preceding claim, wherein the device motion featui'e vector 

comprises temporal motion values of or derived from the motion data.

5. A method according to any preceding claim, wherein the motion data comprises a 

time series of device motion values, and the method comprises a step of applying a domain 

transform to at least a portion of the time series to determine at least one device motion
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spectrum in the frequency domain, wherein the device motion feature vector comprises

coefficients of the said at least one device motion spectrum.

6 A method according to claim 5, wherein the device motion feature vector comprises

Cifcu·logarithmic values and/or cepstral coefficients determined from the device motion spectrum.

ι i , A method according to claim 5 or 6, wherein multiple device motion spectra are 

device motion values, and analysed to determine whether the user-induced motion of the user

Rό.

authenticated based on the analysis of the motion data in combination ’with facial recognition.

20
 03

 19 9.

authentication system comprising:
an input configured to receive motion data captured using a motion sensor of the user

device during an interval of motion of the user device induced bv the user:

one or more processors configured to execute computer readable instructions, which,
&

claim.

program product comprising computer-readable instructions stored on a non-transitory 

computer-readable storage medium and configured, when executed, implement the steps of
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