(19) 日本国特許**厅(JP)**

(12)特許公報(B2)

(11) 特許番号

特許第4382884号

(P4382884)

(45) 発行日 平成21年12月16日 (2009.12.16)

- (24) 登録日 平成21年10月2日 (2009.10.2)
- (51) Int.Cl. F I A 6 1 B 8/00 (2006.01) A 6 1 B 8/00

請求項の数	14	(全	19	百)
	14	(<u></u>	TO.	- 見 /

 (21) 出願番号 (22) 出願日 (65) 公開番号 (43) 公開日 	特願平9-321970 平成9年11月10日 (1997.11.10) 特開平10-179589 平成10年7月7日 (1998.7.7)	(73)特許権者	〒 590000248 コーニンクレッカ フィリップス エレク トロニクス エヌ ヴィ オランダ国 5621 ベーアー アイン
普查請水口 (31)優先権主張番号	平成16年11月9日 (2004.11.9) 60/032,771		トーフェン フルーネワアワックェッハ 1
(32) 優先日	平成8年11月26日 (1996.11.26)	(74)代理人	100087789
(33) 優先権主張国	米国 (US)		弁理士 津軽 進
		(72)発明者	ミハラキス・アベルキオ
			アメリカ合衆国98033ワシントン州、
			カークランド、第115コート・ノースイ
			ースト、イー106 11023番
			最終頁に続く

- (54) 【発明の名称】高調波による超音波画像処理方法および装置
- (57)【特許請求の範囲】
- 【請求項1】

超音波造影剤の非存在下で多経路散乱を減少させた、体内の組織の高調波応答の超音波 画像を作成するための超音波診断画像処理装置であって、前記装置は、

基本周波数で体内に超音波エネルギーを発信し、近接領域における基本信号よりも強度の低い組織高調波信号を近接領域において生成するアレー変換器と、

<u>前記アレー変換器の変換器素子からのエコー信号を処理して位相のそろったエコー信号</u> を形成するビーム形成器と、

前記基本周波数の信号を前記組織高調波信号よりも大きく減衰させる回路と、

前記回路により通過させられた前記組織高調波エコー信号に応じて、前記基本周波数の ¹⁰ 信号による散乱が減少するように超音波組織高調波画像を生成する画像プロセッサと、

を有し、

前記装置は更に、前記アレー変換器により受信された高調波超音波エコー信号を処理し、 該エコー信号の少なくとも部分的に非相関化されたレプリカを形成する手段;該非相関化 されたレプリカを結合させて、虚像を減少させた高調波エコー信号を作成する手段;およ び、該虚像を減少させた高調波エコー信号を利用して、超音波画像を作成する手段を有す る超音波診断画像処理装置。

【請求項2】

該虚像が、脱落虚像からなる請求項<u>1</u>の超音波診断画像処理装置。 【請求項3】 該虚像が、さらにスペックル虚像からなる請求項<u>2</u>の超音波診断画像処理装置。 【請求項4】

該処理するための手段が、該高調波超音波エコー信号の成分を、異なる中心周波数を有 する2つの通過帯域に分割する帯域通過フィルタからなる請求項<u>1</u>の超音波診断画像処理 装置。

【請求項5】

該処理するための手段が、さらに、該通過帯域のそれぞれに、高調波超音波エコー信号 を検知する検知器を有する請求項4の超音波診断画像処理装置。

【請求項6】

該処理するための手段がさらに、検知された高調波超音波エコー信号を対数圧縮する対 ¹⁰ 数圧縮プロセッサからなる請求項<u>5</u>の超音波診断画像処理装置。

【請求項7】

該処理する手段が、高調波超音波エコー信号を受信するために接続する入力と、該結合 手段に接続する出力をそれぞれが有する二平行チャネルを有し、ここに該チャネルのそれ ぞれが、他方のチャネルのフイルタ特性と異なるフィルタ特性を持つ帯域通過フィルタを 有する請求項1の超音波診断画像処理装置。

【請求項8】

該フィルタ特性が、フィルタのピーク応答周波数である請求項<u>7</u>の超音波診断画像処理 装置。

【請求項9】

20

該フィルタ特性が、フィルタの中心周波数である請求項<u>7</u>の超音波診断画像処理装置。 【請求項10】

該チャネルのそれぞれがさらに検知器を有する請求項<u>7</u>の超音波診断画像処理装置。

【請求項11】

該チャネルのそれぞれがさらに、対数圧縮プロセッサを有する請求項<u>10</u>の超音波診断 画像処理装置。

【請求項12】

該処理する手段が、該高調波超音波エコーを、等しくないダイナミックレンジの2つの 通過帯域に分割する手段からなる請求項1の超音波診断画像処理装置。

【請求項13】

30

該2つの通過帯域が、低周波通過帯域と高周波通過帯域からなり、そしてここに、該低 周波数通過帯域のダイナミックレンジが、該高周波数通過帯域のダイナミックレンジより も小さい請求項12の超音波診断画像処理装置。

【請求項14】

該処理する手段がさらに、該通過帯域のそれぞれのダイナミックレンジを異なってマッ ピングする手段からなる請求項13の超音波診断画像処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、超音波診断方法および身体の画像処理方法に関し、特に、発信周波数と異な 40 る応答周波数を用いた超音波診断画像処理の新規な方法および装置に関し、1996年9 月27日に出願された「造影剤を用いた超音波診断画像処理方法」なる米国特許出願シリ アル数08/723,483の一部継続出願に基くものである。

[0002]

【従来の技術】

超音波診断画像処理装置は、超音波造影剤による画質向上により、身体の画像処理に使用されてきた。造影剤は生体適合性であって、そして音波照射に応えて容易に識別可能な エコー信号を戻す特別に選択された音響特性を有する物質である。造影剤は、超音波画像 の画質改良を可能にするいくつかの特性を持っている。その1つは、多くの造影剤の非線 型特性である。一つの周波数の超音波を照射した場合、造影剤は他の周波数、特に高調波 周波数の、エネルギーを返す共鳴モードを示すよう製造されている。基本周波数で照射された場合には、高調波造影剤は、その周波数の第2の、第3の、第4の、そしてさらによ り高次の高調波を返す。

【 0 0 0 3 】

組織および体液も、本来的に非線型特性を持つことは長く知られていた。組織および体液は、造影剤の不存在下においてさえも、基本周波数の高調波信号を含むそれら自身の基本周波数でない周波数のエコー応答信号を作成し、送り返す。ミュイル(Muir)とカーステンセン(Carstensen)は1980年初に水のこのような性質について検討し、スターリット等(Starritt et al.)は、ヒトふくらはぎの筋肉内でのこれらの性質を見出し、切り取られた牛肝臓で検討した。

【0004】

【発明が解決しようとする課題】

組織および体液のこれら基本周波数でない周波数エコー成分は、通常高調波造影剤によって戻される高調波成分ほどには振幅が大きくないのであるが、それらは、超音波画像処理において有益に使用することができる多数の特徴を示す。本発明者の1人(M.Averkiou)は、博士学位論文で述べた研究において、これらの性質について広汎な調査を実施している。この研究成果およびその他の調査で、本発明者等は、高調波ビームの主ロープは、その基本周波数ローブよりも狭いことを見て、彼らが見出したのは肋骨などの狭い口を通しての画像処理のときの散乱減少の可能性である。高調波ビームのサイドローブレベルが、基本ビームの対応するサイドローブレベルよりも低いことを彼らは見て、軸外散乱低減の可能性を見出した。彼らはまた、近接領域からの高調波の戻りが基本周波数での戻りエネルギーよりも相対的に小さいことも見出し、近接領域散乱防止の可能性を見出した。以下説明するように、これら特性が本発明方法および構成具体例において利用されている。

【課題を解決するための手段】

本発明により、組織または体液から戻る発信周波数と異なる応答周波数、特に発信基本 周波数の高調波エコーから、組織および体液の画像処理をする超音波画像処理装置および 方法が提供される。この画像処理装置は、基本周波数の超音波を発信する手段、高調波周 波数のエコーを受信する手段、および高調波周波数エコーから超音波画像を作成するため の画像プロセッサからなっている。本発明の好適例においては、発信および受信手段は、 単一の超音波プローブからなっている。本発明の他の特徴は、プローブが発信と受信の両 方に広帯域超音波変換器を利用していることである。

[0006]

本発明のさらなる特徴は、受信高調波エコーの部分的に非相関(decorrelated)成分が作 成され、高調波画像からの虚像の除去に利用され、心内膜の画像などの組織境界の明瞭に 識別可能な画像を提供することである。好適例では部分的非相関成分が、異なる通過帯域 での高調波エコーから作成される。本発明方法には、例えば、肋骨などの狭い音響窓を通 しての画像処理時に作成される画像などの、超音波画像中の近接領域または多経路散乱を 減少するための高調波エコーの使用が含まれる。本発明のさらなる特徴には、高調波と基 本周波数エコーを共通画像中にブレンドしての雑音の減少、相当な深さでの画像処理、そ して深さ依存減衰効果の克服がある。

[0007]

図1は、本発明の超音波診断画像処理装置をブロックダイヤグラムにより説明している。図2、3、4、および5は、超音波画像処理用途に有益に適用可能な高調波エコーのいくつかの特性を説明する。そして、図6および7は、図1の例の挙動を説明するのに使用された通過帯域特性曲線である。図8は、本発明例の典型的な基本および高調波周波数通過帯域を説明する。図9は、図1の例における使用に適当なFIRフィルタ構造を説明する。図10は、本発明好適例の一部のブロックダイヤグラムによる説明である。図11は、図10の例の正規化段階の操作を説明する。図12は、図10の例のフィルタで使われた乗算器累算器の1つのブロックダイヤグラムである。図13は、図10の例の典型的な

10

20

基本および高調波周波数通過帯域を説明する。図14は、1つの超音波画像への基本およ び高調波信号成分のブレンドを説明する。そして、図15は、ブレンドされた画像形成に 使用された時間変化フィルタの通過帯域を説明する。

(4)

【 0 0 0 8 】

【発明の実施の態様】

最初に図1を参照すると、本発明により構成された超音波診断画像処理装置が、ブロッ クダイヤグラム方式で示されている。中央制御器120は、発信周波数制御117に命令 し、所望の発信周波数帯域を発信させる。発信周波数帯域の変数、f_{tr}、は、発信周波数 制御117に送られ、超音波プローブ110の変換器112に、基本周波数帯域の超音波 を発信させる。構成例においては、ほぼ1.67MHzの中心周波数を持つ周波数帯域が 、発信される。これは、通常 2.5 M H z からそれ以上の範囲であった従来の発信画像処 理周波数よりも低い。しかしながら、3あるいは5MHzの典型的な発信周波数の使用は 、6および10MHzの高調波を作成する。高周波数は、低周数よりも身体を通る間によ り大きく減衰されるので、これらの高周波数の高調波は、それらがプローブに戻る間に、 相当な減衰を経験するであろう。高調波信号は発信波が組織中を進行する間に発生するの で、変換器からの往復による減衰を経験する基本周波数信号が減衰するほどは衰退しない のではあるが、これが侵入深さを減じ、そしてより大きな画像処理深さでの画像の質を劣 化させる。この問題を克服するために、説明例における中心発信周波数は、5MHz 以 下、好ましくは2.5MHz以下であり、これによって深さ依存減衰の影響を受けにくい 、より低い周波数の高調波を形成させ、そしてより深い場所での高調波画像処理を可能と する。1.67MHzの発信基本周波数は、説明例において、3.34MHzの第二高調波 の戻り信号を作成する。勿論、希望する侵入深さ、変換器および超音波装置の感度に十分 な考慮を払うことにより、いかなる周波数の超音波でも使用することができることは理解 されるであろう。

【 0 0 0 9 】

プローブ110のアレー変換器112は、超音波エネルギーを発信し、この発信に応答 して戻ったエコーを受信する。変換器の応答特性は、一つは基本発信周波数周辺、もう一 つは受信通過帯域における高調波周波数付近のものという、2つの通過帯域を示す。高調 波画像処理のためには、発信基本周波数および受信高調波通過帯域の両方を含む通過帯域 を持つ広帯域変換器が好ましい。変換器は、図6に示すような応答特性を示すように製造 され調整され、そこでは応答特性曲線の低い方のこぶ60は、発信基本周波数f,付近に 中心があり、そして高い方のこぶ62は、応答通過帯域の受信高調波周波数f,付近に中 心がある。しかしながら、単一主要特性曲線64は、プローブを、高調波画像処理および 従来の広帯域画像処理の両方に適することを可能にするので、図7の変換器応答特性曲線 の方が好ましい。特性曲線64は、発信基本周波数f,を包含し、そして周波数f, 0間に含まれ、そして周波数f,の付近に中心がある高調波の受信通過帯域をも包含する 。上述したように、1.67MHzの低い基本発信周波数は、3.34MHzの周波数の高 調波の戻りエコー信号を形成する。おおよそ2MHzの応答特性曲線64は、これらの基 本および高調波周波数にとって適当である。

[0010]

身体の組織および細胞は進行中に発信された基本周波数信号を変化させ、そして、戻り エコーは、本来発信された基本周波数の高調波成分を含む。図1において、これらのエコ ーは、変換器アレー112により受信され、T/Rスイッチ114を通じて転送され、そし てアナログ・ディジタル変換器115によってディジタル化される。A/Dコンバーター1 15のサンプリング周波数f_sは、中央制御器によって制御される。サンプリング理論に よって示された望ましいサンプリング速度(rate)は、受信通過帯域の最も高い周波数f_。 の少なくとも2倍であって、先の例における周波数においては、少なくとも8MHz程度 となる。最小限要求されるものよりも高いサンプリング速度も好ましい。 【0011】

個々の変換器素子からのエコー信号試料は、遅延され、ビーム形成器116によって合 50

10

20

30

計されて、位相のそろった(coherent)エコー信号を形成する。位相のそろったディジタル エコー信号は次いで、ディジタルフィルタ118によってろ過される。この例において、 発信周波数f,は、受信器に関係が無く、従って受信器は、発信された帯域と違う周波数 帯域を自由に受信することができる。ディジタルフィルタ118は、図7の周波数f╷と f。で区切られた通過帯域中の信号を帯域通過ろ過し、そしてまた、周波数帯域をより低 いもしくはベース帯域周波数範囲に移動することができる。ディジタルフィルタは、上記 の例において、1MHz通過帯域を有し、そして3.34MHzの中心周波数のフィルタ とすることができる。 好ましいディジタルフィルタは、図9に示すような、一連の乗算 器 7 0 - 7 3 と累算器 8 0 - 8 3 である。この配置は、中央制御器 1 2 0 によって制御され 、ディジタルフィルタの特性曲線を制御する乗数の重み付けとデシメーション(decimati on)の制御を行う。好ましくは、この配置は、有限インパルス応答(FIR)フィルタとし て働くよう制御され、フィルタリングとデシメーションの両方を実施する。例えば、第一 段階出力1のみが、4:1デシメーション割合の4タップFIRフィルタとして働くよう 制御することができる。時間的に不連続なエコー試料Sが第一段階の乗算器70に転送さ れる。試料Sが転送されると、それらに中央制御器120によって与えられた重みが乗算 される。これらの積のそれぞれは、4個のこのような積が累積(加算)されるまで、累算 器80に保存される。次に出力信号が、第一段階出力1で作成される。累積された合計は 4つの重み付けされた試料からなるので、この出力信号は、4タップFIRフィルタによ ってろ過される。4 試料分の時間が出力信号を作成するのに必要なので、4:1 デシメー ション比が実現する。1つの出力信号が、4つの入力試料毎に形成される。累算器は清算 され、このプロセスが繰り返される。デシメーション比が高く(出力信号間の間隔が長く) なると、フィルタの有効なタップ数は多くなることが分る。

[0012]

必要に応じ、時間分割された試料は、遅延要素 によって遅延され、4つの乗算器70 - 73に適用され、乗算され、そして累算器80-83に累積される。それぞれの累算器 が2つの積を累積した後、4つの出力信号は、一つの出力信号に結合される。即ちフィル タは、2:1 デシメーション比を有する8タップフィルタとして動作している。デシメー ションなしならばこの配置は、4タップFIRフィルタとして動作することができる。フ ィルタはまた、エコー信号を全ての乗算器に同時に転送することにより、そして重み付け 係数を選択的に時間順にすることにより動作させることもできる。中央制御器の制御下で 、フィルタの重み付けとデシメーション比のプログラミングにより、フィルタ特性曲線の 全範囲が可能である。ディジタルフィルタの使用は、異なるフィルタ特性曲線を提供する よう、す速く容易に変化が可能であるという利点がある。ディジタルフィルタは、まず受 信基本周波数を通過させ、次に高調波周波数を通過させるようにプログラムすることがで きる。従って、ディジタルフィルタは、基本そして高調波ディジタル信号の画像または走 査線を交互に作成するように操作することができ、信号処理の間にフィルタ係数を単に変 化させることによって、時間交互配置されたシーケンスで異なる高調波の走査線を交互に 作成するように動作させることができる。

[0013]

40 図1に戻って、基本周波数でない周波数のみを画像処理するために、ディジタルフィル タ118を中央制御器120によって制御し、基本周波数を除外して、高調波周波数のエ コー信号を通過させて処理する。組織からの高調波エコー信号は、ディスプレイ50で二 次元超音波画像として表示するために、 B モードプロセッサ37 またはコントラスト信号 検知器128のいずれかによって検知され、処理される。ディジタルフィルタ118から のろ過されたエコー信号は、従来のドップラー処理のためにドップラープロセッサ130 にも転送され、速度およびパワードップラー信号を形成する。これらのプロセッサの出力 は、三次元画像作成のために3D画像作成プロセッサ162に転送され、それらは3D画 像メモリ164に保存される。これらの三次元表現は、米国特許「出願シリアル番号08/ 638,710]、および米国特許5,474,073および5,485,842に記載された ようにして実施することができ、後の2つの特許は三次元パワードップラー超音波画像処 50

10

20

理技術を説明している。コントラスト信号検知器128、プロセッサ37および130か らの信号、および三次元画像信号は、ビデオプロセッサ140に転送され、そこで信号は 、使用者が選択した指示に従って、画像表示50上に二次元あるいは三次元表示用に選択 される。

【0014】

組織および血液の高調波画像処理は、超音波画像中の近接領域の散乱を減少させうるこ とが見出された。組織の高調波応答効果は、発信波のエネルギー準位に依存すると信じら れている。より深い場所に焦点を合わせられたアレー変換器の近くに、発信波成分は焦点 を結ばず、近接領域組織で検知可能な高調波応答を発生させるにはエネルギーは不十分と なる。しかし、発信波が身体への侵入を続けるので、<u>発信</u>波成分が焦点が合い始めるにつ れて、より高強度のエネルギーが高調波効果を発生させる。近接および遠隔の両方の領域 が、基本周波数応答を返す一方、これらの信号からの散乱は、高調波周波数帯域に設定さ れているディジタルフィルタ118の通過帯域によって削除される。組織からの高調波応 答が次いで、検知され、表示されるが,一方で近接領域基本周波数応答からの散乱は、表 示画像から削除される。

【0015】

図2、3、4 および5 は、超音波画像処理に有益に使用することができる高調波戻り信 号のいくつかの特性を説明する。これらの特性と、それらの相互作用のいくつかは、まだ 科学者の間で充分にそして一般に理解されていないで、まだ研究および議論の対象である と考えられる。図2 は、変換器アレー112によって受信された基本周波数と高調波信号 の空間的応答、特に主ローブおよびサイドローブを説明する。この例において、アレーは 、心臓などの、肋骨の後ろの身体領域を画像処理するように指示されており、そして主ロ ーブは、肋骨10と10'の間に広がって見えている。肋骨の上に横たわっているのは、 皮膚と肋骨との間の脂肪層などの組織境界12である。図は、基本信号FL1の主ローブ を示し、そして主ローブの両側にはサイドローブ FL2FL3がある。図はまた、基本 周波数の高調波の主ローブHL1および高調波主ローブのサイドローブHL2およびHL 3を示す。

[0016]

この例において、基本エコーの主ローブは、肋骨10,10'の部分を包含するほど、大 きく広がっていることが分る。それゆえに、基本周波数の音響エネルギーは、矢印9によ って示されたように、変換器112に反射して戻る。一方この反射のエネルギーのいくら かは、変換器に戻り、直接受信されるが、この例において、反射エネルギーのいくらかは 矢印9'に示されるように、組織境界12によって再度反射される。この第2のエネルギ ー反射は、他の肋骨10'に達し、そこで矢印9"に示されるように再度反射し、変換器1 12に戻り、受信される。

【 0 0 1 7 】

この画像処理手法の意図は、肋骨の後ろの心臓を映像化することにあるので、肋骨によって反射されたこれらのエコーは、超音波画像を汚染する不要の虚像である。矢印9,9'9"の経路をたどるエコーなど、変換器に達する前に、何回も反射された不要のエコーは、多経路虚像(multipath artifact)と呼ばれる。同時にこれらの虚像は、画像「散乱」と呼ばれ、近接領域を、ある場合には全画像を不明瞭にしてしまう。この近接領域の曇りあるいは散乱は、変換器の近くの注目している構造を不明瞭にする場合がある。さらに、多経路虚像は、これらの虚像がたどる長々とした多数の経路のためにより深い部分の画像中に再生成され、より深い場所の関心ある領域に雑音を生じさせ、不明瞭にする場合がある。しかし、超音波画像を作成するのに、高調波戻り信号のみを用いる場合には、この基本周波数からの散乱はろ過され、除去される。受信高調波エコーの主ローブHし1は、基本周波数のローブよりも狭いので、この例において、肋骨10,10'の間を、それらと交差することなしに通過する。 肋骨からの高調波の戻りはなく、肋骨からのいかなる多経路虚像もない。従って、高調波画像は、この例において特に近接領域で、基本周波数画像よりも際だって散乱のないまた曇りのない画像となる。

10

20

[0018]

図3は、基本周波数および高調波の戻りの両方の主ローブが肋骨と交差せず、図2で議論した問題が発生しない第二の例を示す。しかしこの例において、肋骨10、10'は、 皮膚表面および変換器112に、より近い。主ローブは肋骨と交差しないが、基本周波数 のサイドロープ FL2は肋骨に達し、サイドローブエネルギーを、反射経路9に示すよ うに、反射し変換器に戻す。再度これが基本周波数画像に散乱を生じさせる。しかし受信 高調波エネルギーの、より小さくより狭いサイドローブHL2は、肋骨に達しない。再度 、高調波画像は、基本周波数画像に比べて少ない散乱で表示される。

[0019]

図4は、図2および3のローブを横切る、即ち変換器の軸を横断する、透視図中の基本 10 周波数および高調波のビームパターンを説明する。この図は、基本周波数と第二高調波ビ ーム形状の相対的な振幅応答を説明する。音響ビームの基本成分の主ローブ(FL1)と第 ーサイドローブ (FL2)の間の動的応答DRF、および第二高調波成分の主ローブ(H L1)と第一サイドローブ (HL2)との間の動的応答DRHを説明している。もし主ロ ーブによる応答を、所望の信号応答とみなし、サイドローブによる応答を散乱あるいはノ イズとするならば、高調波の信号対ノイズ比の方が基本周波数のものよりも大きい。即ち 、同じ発信の対応する基本周波数画像中よりも、高調波画像中の方が相対的にサイドロー ブ散乱は小さい、あるいは DRH>DRF である。

【0020】

図5は、基本および高調波信号の特性の別の比較を説明しており、それは基本および第 20 二高調波の周波数における身体中の、より深い場所 Z から出るエネルギー(音響圧力 P の 単位で)の相対的な量である。Fund.で表示された曲線は、基本周波数における進行した 音響エネルギーが増強(buildup)されたことを示す。曲線はアレー変換器の焦点で頂点 に達することが分るが、焦点領域の前の浅い部分に、感知されるほどの量の基本エネルギ ーがそれでもなお存在することが分る。比較すると、これらの浅い領域に進行した高調波 周波数では、相対的にずっと小さいエネルギーと小さいエネルギー増強が存在する。従っ て、多経路反響および他の異常に使用されたエネルギーが小さいので、同じ発信からの基 本周波数エコーの戻りの画像処理よりも、高調波の画像処理の方が、近接領域散乱は小さ い。

【0021】

図8が1.67MHzの音波の4サイクルの発信信号における本発明の典型的な図1の 例のディジタルフィルタおよび受信信号帯域を説明する。多数サイクル発信は、発信信号 の帯域幅を狭くする;サイクルの数が多いほど、帯域幅は狭くなる。この発信に応答して 、変換器112は、帯域幅90で基本信号を受信し、それは1.67MHzの発信周波数 で頂点に達するのが分る。基本周波数帯域が低下するにつれて、高調波帯域92が立ち上 がり、3.34MHzの高調波周波数で再びピークを示すのが分る。受信信号は、通過帯 域特性曲線94でディジタルフィルタに転送され、それは3.34MHzの高調波周波数 の周辺に中心があるのが分る。図8が示すように、この通過帯域は本質的に、高調波信号 をさらなる処理と画像形成のために通過させる一方、基本周波数の信号を抑制する。この ようにして心臓を画像処理するとき、心臓の心臓内組織の高調波応答は、非常に実質があ り、そして心臓の高調波組織画像は明瞭に識別された心臓内の境界を示すことが見出され た。

[0022]

広帯域信号中の基本周波数を分離し高調波周波数のみを残すなど、受信エコー情報から 高調波信号を分離抽出するのに、ろ過以外の他の信号処理技術を用いることもできる。例 えば、米国特許[出願SN08/728,318]は、2パルス技術を開示し、これにより、 それぞれの走査線に、急速に連続して反対位相の連続基本周波数パルスが照射される。結 果として生じるエコーが2つのパルスから受信され、空間基準で結合されるとき、基本周 波数は除去され、そして非線型のあるいは高調波周波数が残る。従って、高調波周波数は 、フィルタ回路の必要なしで広帯域エコー信号から分離される。 30

10

20

30

40

[0023]

図10は本発明の好適例の一部、ビーム形成器出力から画像表示装置までを、ブロック ダイヤグラムにより示している。この例は、組織および血流の高調波画像を作成するばか りでなく、病状の画像化が困難な患者を画像処理するときに生じる従来の画像処理装置の 信号脱落の欠点をも克服する。その上、この例においては、スペックルとして知られてい る位相のそろった超音波画像の虚像を減少させる。図10において、説明例のプロセッサ が完全にディジタルなので、ブロックダイヤグラムのプロックに接続する全ての信号およ びデータ・ラインは、多導体ディジタルデータ経路を表している。ビーム形成器116か らの走査線エコーデータは、並列で図10において説明したプロセッサの2つのチャネル 30a、30bに送られ、その一つが高周波数チャネル、そしてもう一方が低周波数チャ ネルである。プロセッサのそれぞれのチャネルは、正規化(normalization)段階32,13 2を有し、走査線データにそれぞれの試料毎にスケール因子を積算し、それぞれの試料が 戻る身体の深さによって異なる利得あるいは減衰を形成する。各チャネルのスケール因子 は、好適例においてはディジタルメモリである係数回路32、132により作成されるか 、保存されていた正規化係数により与えられる。積算係数は、一連の走査線エコーに沿っ て変化するので、深さ依存利得あるいは減衰が作成される。

【0024】

正規化段階の機能は、2つある。一つは、走査深さにより拡張される変換器開口の効果 を補償することである。増加する数の変換器からの信号が、深さが増加すると共に使われ るので、合計されたビーム形成された信号の大きさは、増加する。この増加はビーム形成 プロセスに、回路が加えられる比率と比例する正規化段階における利得の減少(減衰の増 大)によって相殺され、結果として生じるエコーシーケンスは、変化する開口によって影 響されないこととなる。

【0025】

正規化段階の第2の機能は、2つのチャネル30a、30bの公称(nominal)信号振幅を 等しくすることである。2つのチャネルの通過帯域の公称信号振幅は、好ましくは等しく 、通過帯域が合計され全高調波通過帯域が作成された後に、当初の相対的信号レベルが保 たれる。しかし超音波信号には、周波数によって変化する深さ依存減衰があるので、高周 波数信号は低周波数よりも深さによる減衰が大きい。この深さ依存減衰を考慮して、正規 化段階の係数は、深さと共に増加する信号利得を与える。2つのチャネルが異なる周波数 通過帯域を使うので、2つのチャネルの深さ依存利得は互いに相違する。特に、高周波数 通過帯域チャネル用の利得増加の割合は、低周波数通過帯域チャネルのものよりも大きい 。これを図11で説明するが、説明のために、2つの成分に分けられた、高周波数通過帯 域チャネルの正規化利得特性曲線が示されている。深さ依存特性曲線200は、チャネル における増加開口の効果を相殺し、そして深さ依存特性曲線202は、深さ依存信号減衰 を補償する。低周波数通過帯域チャネルも、深さ依存利得特性を有するが、より低い周波 数の異なる減衰割合のために異なる特性曲線202となる。高周波数通過帯域チャネルは 、より高い周波数によるより急速な減衰割合のために、同様の、しかしより急速に増加す る深さ依存利得特性曲線を有する。それぞれの深さ依存利得特性曲線202が、そのチャ ネルが使用する特定の周波数通過帯域用の深さ依存利得効果を相殺するように選択される

[0026]

好適例において、係数回路の係数は、2つの特性曲線200,202を組み合わせた利 得または減衰特性曲線を適用する。好ましくは、係数メモリ32,132は、走査ヘッド 特性、あるいは処理される信号の種類(2D、あるいはドップラー)に適合するように、メ モリアドレッシングと共に変化する多結合利得曲線を記憶する。利得変化の割合は、係数 がそれぞれの正規化段階30,130の乗算器のために変化する割合によって制御するこ とができる。

[0027]

チャネルの正規化されたエコー信号は、各チャネルの直角位相帯域通過フィルタ(QB ⁵⁰

P) に転送される。直角位相帯域通過フィルタは、3つの機能を行う: R F 走査線データ の帯域制限、走査線データの同相のそして直角位相の対の作成、およびディジタル試料速 度の削減である。各QBPは、2つの別々のフィルタからなっており、一つは同相試料(I)を作成し、そして他方は直角位相試料(Q)を作成し、それぞれのフィルタは、FIR フィルタを実行する複数の乗算器 - 累算器(MAC)によって構成されている。1台のこの ようなMACが、図12に示されている。走査線データのエコー試料がディジタル乗算器 210の1つの入力に送られると、係数が別の乗算器入力に送られる。エコー試料と重み 付け係数の積は累算器212に保存され、前の積と累積される。他のMACは、異なる位 相のエコー試料を受け取って、同様に重み付けされたエコー試料を累積する。いくつかの MACが累積した出力は結合され、そして最終的に累積された積は、ろ過されたエコーデ ータからなっている。累積された出力が採取される割合が、フィルタのデシメーション比 を設定する。フィルタの長さは、デシメーション比とフィルタを形成するのに使用された MACの数の積であり、累積された出力信号を作成するのに使用される入力エコー試料の 数を決定する。フィルタ特性は、乗算の係数値によって決定される。異なるフィルタ機能 のための異なる係数の組は、係数メモリ38,138に保存され、MACの乗算器に転送 され、選択された係数が適用される。MACは、サインおよびコサインで表示される係数 で、受信エコー信号を効率的に巻回し(convolve)、直角位相関係にある出力試料を作成す る。

[0028]

20 Iフィルタを形成するMAC用の係数は、サイン機能を実行し,一方Qフィルタ用の係 数は、コサイン機能を実行する。帯域通過フィルタリングのために、活性QBPsの係数 は、さらに周波数シフトされて、サイン(Iについて)とコサイン(Qについて)関数によっ て、直角位相試料の帯域通過フィルタを形成する低帯域通過フィルタ機能を実行する。こ の例において、チャネル30aのQBP1は、第一の、低周波数通過帯域の走査線データの IおよびQ試料を作成し、チャネル30bのQBP。は、第二の、高周波数通過帯域の走査 線データのIおよびQ試料を作成する。従って、当初の広帯域エコー信号のスペクトルは 、高周波数帯域と低周波数帯域に分割される。脱落およびスペックル除去工程を完結する ために、チャネル30aのQBP₁によって作成された通過帯域中のエコーデータは、検知 器40↓により検知され、検知された信号は合計器48の1つの入力に転送される。好適 例において、検知は、下記アルゴリズム

[0029]

 $(||^2 + ||^2)^{1/2}$

[0030]

を計算することによってディジタル方式で実行される。チャネル30bのQBP。によって 作成された補足的通過帯域中のエコーデータは、検知器40。によって検知され、これら の検知された信号は合計器48の第二の入力に転送される。2つの通過帯域の信号が合計 器48によって結合されるとき、2つの通過帯域の非相関信号脱落およびスペックル効果 が少なくとも部分的に除去され、信号から作成された2D画像中の信号脱落およびスペッ クル虚像を減少させる。

[0031]

各サブチャネル中の検知器に続いて、係数メモリ42₁,42₂から重み付け係数を受け る乗算器44,,44,によって形成される利得段階がある。この利得段階の目的は、最良 のシステム性能となるよう超音波装置におけるアナログおよびディジタル利得のバランス を取ることである。エコー信号経路中のいくつかの利得は超音波装置によって自動的に実 行されるが,他方その他の手動利得制御およびTGC利得などは、使用者によって制御す ることができる。装置はこれらの利得を配分し、ビーム形成器のADCs(アナログから ディジタルへの変換器)の前のアナログ利得を、 A D C s の動的入力範囲が最適になるよ うに調整する。ディジタル利得は、画像の明度が最適となるよう調整される。2つの利得 は共に、使用者によって行われた利得調整の変更を実行する。 [0032]

10

30

好適例において、乗算器441,442によって走査線信号に付与された利得は、チャネ ル中の先の正規化段階34,134の利得と協調するよう選択される。各正規化段階の利 得は、造影剤あるいは高調波画像処理からの強信号が受信されたときに生じるような、Q BPsでの飽和水準の達成を阻止するように選択される。飽和水準を避けるために、正規 化段階の最大利得が制御され、そしてこの制御のために課されたいかなる減少も、続く乗 算器441,442の利得によって回復される。これらの乗算器によって実施される利得機 能は、ディジタル信号処理経路に沿ったどこにおいても実行できる。それは以下に論じる 圧縮曲線の傾きを変化させることによって実行することができる。それは以下に論じる 圧縮曲線の傾きを変化させることによって実行することもできる。しかしこの後者の実施は、上記 した飽和制御を実施する能力を削除してしまう。本発明者らは、この利得機能の実行能力 が、検知の後に与えられるときに、好適例では検知後の乗算器の使用によって、消去され ることを見いだした。

【0033】

利得段階44₁,44₂により作成された信号は、ディスプレイ50によって与えられる よりも一般に大きいダイナミックレンジを示す。その結果、乗算器の走査線信号は、ルッ クアップテーブルによって適当なダイナミックレンジに圧縮される。一般に、対数圧縮プ ロセッサ46₁,46₂によって示されるように、圧縮は対数圧縮である。それぞれのルッ クアップテーブルの出力は、信号入力値の対数に比例する。これらのルックアップテーブ ルは、圧縮曲線および表示装置に送られる走査線信号の明度およびダイナミックレンジを 変化させられるようにプログラム可能である。

[0034]

エコー信号の基準化に対数圧縮を使用することが、黒レベル成分のエコーの程度および 数の劣化により、信号ダイナミックレンジの基線(黒)レベル近くの低レベル信号に悪影響 を及ぼしうること、即ちそのコヒーレント超音波エネルギーのスペックル効果から生じる 破壊的障害の顕在化、を本発明者らは見いだした。エコー信号が表示されるとき、それら の多くは黒レベルにあり、そして画像からは検知されないか欠落してしまうであろう。図 10の例はこの問題を2つのチャネル30a、30b中に、エコー信号であって分離され、 部分的に非相関化(decorrelate)されたものを作成することにより軽減している。この 例では、図13に示すように、2つの異なる通過帯域にエコー信号成分を分割することに よってエコー信号形状(version)を部分的に非相関化する。2つの通過帯域は完全に分離 することができ、またはこの例に示すように、重なってもよい。この例において、低通過 帯域300aは、3.1MHzの周波数付近に中心があり、高通過帯域300bは3.3MH zの周波数付近に中心があり、中心周波数の隔たりは200kHZにすぎない。この小さ い分離でさえも、1つの通過帯域の黒レベル信号脱落が、しばしば他の通過帯域でその対 応する成分と、周波数について整列しないように、2つの通過帯域の信号成分を十分に非 相関化するのに十分であることが分かった。従って、同じエコー信号のこれら非相関化さ れたレプリカが、合計器48により結合されるとき、信号脱落およびスペックル虚像は、 著しく減少するであろう。心内膜などの、身体の深い部位の微細構造を画像化しようと試 みるとき、これは特に重要である。心内幕の高調波画像は、図10の例の虚像除去効果に よって著しく改良される。

[0035]

先に議論したように、図13の2つの通過帯域300a、300bの信号利得は、合計 後の、当初の信号レベルを保存するように調整可能である。しかし好適例においては、低 周波数通過帯域は、図13に示すように、高周波数通過帯域よりも狭いダイナミックレン ジで処理される。これは、低周波数通過帯域(それは、高周波数帯域より多くの基本周波 数成分を含んでいる)の基本周波数の寄与を抑制する効果を持つ。これは、異なる圧縮特 性の成分として、広帯域信号の分割通過帯域への分離後に、対数圧縮プロセッサ46₁,4 6₂で、またはチャネル30a、30b中の他の行程で実施される。

[0036]

合計器48の出力の処理されたエコー信号は、低周波通過フィルタ52に転送される。 50

30

40

20

この低周波通過フィルタは、OBPsのように、FIRフィルタを実行するよう配置され た可変係数を有する乗算器-累算器の組み合わせによって構成され、フィルタ特性を制御 する。低周波通過フィルタは、2つの機能を実施する。ひとつはサンプリング周波数と処 理されたエコー信号からの他の不要な高周波数成分を除去することである。第二の機能は 、表示画像中のエイリアシングを防止するために、走査線データ速度をディスプレイ50 の垂直ライン密度に合わせることである。FIRフィルタは、選択的にデシメイトし、あ るいは走査線データを内挿することによってこの機能を実行する。ろ過されたエコー信号 は次に、画像メモリ54に保存される。もしも、走査線がまだ走査変換されていないなら ば、即ちそれらがr、 座標を有するならば、走査線は、走査変換器およびグレースケー ルマッピングプロセッサ56により直線(rectilinear)座標に走査変換される。もしも 、走査変換がその前の工程で実施されているならば、または走査変換が画像データにとっ て不要ならば、プロセッサ56は、ルックアップテーブルプロセスによって単にエコーデ ータを所望のグレースケールマップに変換する。画像データは次いで、最終画像メモリに 保存するか、あるいはディスプレイ50の駆動に適当な表示信号に変換するために、ビデ オディスプレイドライバー(示されていない)に送られる。 [0037]

ディジタルフィルタの迅速なプログラミング可能性によって、上記処理は、時間交互配 置方式により、二つの通過帯域のそれぞれについて一列の信号を交互に作成することで、 チャネル30a、30bのいずれか一つを利用して、走査線からのエコーデータを二度処 理する具体例において、実行することができると理解される。しかし、2つの平行チャネ ルの使用は、2倍の処理速度があるので、実時間で時間多重通信例の2倍のフレーム速度 での高調波画像の作成を可能にする。

[0038]

高周波数信号から作成された高調波画像は、エコー信号の戻る部位が身体中より深くな るにつれて、深さ依存減衰により劣化する場合がある。より低周波数の基本信号は、減衰 がより少ないので、より深い部位でより良好な信号対雑音比を示す場合がある。図14の 例は、1つの画像中に基本周波数と高調波画像データをブレンドすることによってこの特 性を利用している。例えば、基本周波数から心臓の通常の組織画像を作成することができ この基本周波数組織画像に心臓の高調波組織画像を重ね合わせ、この複合画像中に、心 臓内境界をより明瞭に識別することができる。2つの画像、即ち一つは基本周波数成分か らのもの、そしてもう一つは高調波周波数成分からのものは、基本および高調波周波数の 間でディジタル・フィルタ118を交互に切り替えることにより、基本および高調波画像 を別々に組み合わせて、または2つの通過帯域を有する図10の平行する二つのフィルタ 一組は基本周波数を通し、他の組は、高調波周波数を通す、を使うことによって形成す ることができる。図14で、チャネル30aのフィルタは、基本信号周波数を通すように 設定され、そしてこのチャネルを通過したエコー信号は、基本画像メモリ182に保存さ れる。それに対応して、高調波信号周波数は、チャネル30bを通り、高調波画像メモリ に保存される。基本および高調波画像は次いで、ブレンド制御192の制御のもとで、比 例結合器190によってブレンドされる。ブレンド制御192は自動的に、事前にプログ ラムされたブレンドアルゴリズムを実行するか、または使用者による指示を実行する。例 えば、比例結合器190は、浅い深さで高調波画像からのエコーデータのみを使用し、次 いで中間の深さでは両方の画像からのエコーデータを結合し、そして最後に深い部位では 基本画像のエコーデータのみを使用して混合画像を作成する。これは、中間深さにおいて 1つのデータの型からもう一方への滑らかな移り変わりを実現しつつ、浅い部位での高調 波エコーデータの散乱が少ない利益、深い部位から受信された基本周波数エコーのより大 きい貫通能力と信号対雑音比を結合するものである。例えば予め定められた深さで1つの データの型からもう一つのものに単に切り替えたり、または表示される画像領域の輪郭を −つのデータの型で描き、残りの画像を他方のデータの型を使用して表示するなどの、他 の結合アルゴリズムもまた可能である。

20

10

50

【0039】

2つの平行するフィルタを使って画像構成前に成分をブレンドし、それによって、高調 波エコー信号の制御可能成分を基本周波数信号に加え、結果として生じる画像の画質を改 良することも可能である。このような例では、基本および高調波画像を別個のメモリに保 存する必要性をなくすることができ、直接信号成分をプレンドされた画像メモリへと処理 する。

[0040]

ブレンド画像を作成する第3の手法は、深さ依存、時間変化フィルタを通して画像の各 走査線を受信することである。このようなフィルタは、例えば、米国特許第4,016,7 50に示されるように、深さ依存減衰の存在下において、受信エコー信号の信号対雑音比 を改良するものとして公知である。ブレンドされた基本および高調波画像作成のために、 時間変化フィルタの通過帯域210は、最初エコー信号は浅い部位から受信が始まるので 、図15に示すように、高調波周波数f。を通過させるよう設定される。より深い部位に おいて、基本信号成分で画像を補い始めるのが望ましくなったとき、通過帯域210はよ り低い周波数に移動し、図15の通過帯域212に示されるように、最終的に基本周波数 f,に移動する。図9に示すようなディジタルフィルタにおいては、通過帯域周波数の変 化は、フィルタ係数を時間と共に変化させることによって実行される。この移動をフィル タが実行するとき、所望により、通過帯域が、最終的に最深画像深度で基本周波数のみを 通過させるまで、通過帯域はわずかな高調波周波数と多くの基本周波数を通過させる。こ のような時間変化フィルタを通して各走査線を受信することによって、結果として生じる 画像の各ラインは、近接領域(浅い部位)では高調波周波数、遠隔領域(最も深い部位)では 基本周波数、そしてその中間では両者のブレンドからなることとなる。 [0041]

ブレンドされた画像を作成するための第4の手法は、各走査線に沿って2度発信し、受 信することである。1つの発信は、基本周波数のものであって、そして高調波周波数エコ ーの受信が次に続く。他の発信は、基本周波数のものであり、基本周波数の受信が次に続 く。2つの基本発信周波数は同じであるが、希望する場合には、異なる基本周波数でもよ い。高調波と基本周波数のエコーは次いで、所望の割合で走査線に沿って結合され、ブレ ンドされた走査線を形成し、このような走査線の画像領域が作成され、ブレンドされた画 像を形成する。「医療用超音波パワー運動画像処理方法」なる発明の名称の米国特許[出 願08/655,394]に記載された、プロセッサにより、受信高調波組織エコー信号を 処理することにより、運動している組織の高調波組織画像を形成することもできる。 【0042】

従って、本発明は、身体組織および体液の超音波への非線形応答を、基本周波数信号を 発信し、非基本、好ましくは高調波、周波数の組織からのエコー信号を受信して、非基本 周波数のエコー信号を検知し、非基本周波数エコー信号からの組織および体液の画像を形 成する事により画像処理する超音波画像処理装置を包含する。ここに述べられた本発明の 原則は、より高次のおよび分数調波の周波数にも等しく適用できるので、本明細書に使用 されている高調波なる語は、第二高調波よりもさらに高次の高調波周波数も、分数調波も 意味している。

[0043]

本発明は、発信周波数と異なる応答周波数による超音波診断画像処理方法を開示するも ので、本発明は、発信基本周波数の高調波エコー成分から超音波画像を作成する超音波診 断画像処理装置および方法に関する。好ましくは、基本周波数信号を除去して画像処理す るために、高調波エコー成分を通過させるのに、プログラム可能なディジタルフィルタが 使用される。好適例においては、虚像が、高調波信号の非相関レプリカを作成することに より除去され、それは次いで結合されて画像処理に使用される。高周波数エコー信号の深 さ依存減衰の存在下で画像を作成するために、基本および高調波エコー信号の両方が処理 され、基本および高調波エコー信号の両方の成分からプレンドされた画像を作成するのに 使用される。

[0044]

10

20

30

本発明の態様は以下のとおりである。

1.体内構造の高調波応答を画像処理する超音波診断画像処理装置であって、基本周波数 で体内に超音波エネルギーを発信する手段;該発信超音波エネルギーに応答し、該基本周 波数の高調波周波数での超音波エコー信号を受信する手段;および、該高調波エコー信号 から超音波画像を作成する手段からなる超音波診断画像処理装置、2.該発信する手段お よび該受信する手段が、超音波変換器プローブからなる前記1の超音波診断画像処理装置 3.該超音波変換器プローブが、基本周波数の超音波エネルギーを発信し、該基本周波 数の高調波の超音波エコー信号を受信するための複数の変換器素子からなる前記2の超音 波診断画像処理装置、4.該変換器素子が、該基本周波数と、該基本周波数の高調波の両 方を包含する応答特性を示す前記3の超音波診断画像処理装置、5.該基本周波数の高調 波の超音波エコー信号を受信する該手段が、該基本周波数を除外した該高調波周波数を識 別する通過帯域を有するフィルタからなる前記1の超音波診断画像処理装置、6.該フィ ルタが、プログラム可能なディジタルフィルタからなる前記5の超音波診断画像処理装置 7.該超音波画像を作成する手段が、Bモードプロセッサを含む前記1の超音波診断画 像処理装置、8.該Bモードプロセッサが、該高調波エコー信号の包絡線 (envelope)を 検知するための振幅検知器を有する前記7の超音波診断画像処理装置、9.該構造が、身 体の生来存在する構造からなる前記1の超音波診断画像処理装置、10.該生来存在する 構造が、身体の組織および細胞からなる前記9の超音波診断画像処理装置、11.身体内 部の高調波応答から超音波画像を作成する方法であって:基本周波数で体内に超音波エネ ルギーを発信し;該基本周波数の高調波周波数の超音波エコー信号を受信し;そして、該 高調波エコー信号を処理して、超音波画像表示信号を作成し;そして、該超音波画像表示 信号を表示する、以上の段階からなる超音波画像を作成する方法、12.発信する段階お よび受信する段階が、変換器アレーを有する超音波プローブを使用して、基本周波数超音 波エネルギーを発信し、高調波エコーを受信することからなる前記11の方法、13.超 音波プローブを使用する段階が、同じ変換素子で、基本周波数超音波エネルギーを発信し 、高調波エコー信号を受信する段階からなる前記12の方法、14.該基本周波数の高調 波周波数の超音波エコー信号を受信する段階が、該基本周波数を除外して該基本周波数の 該高調波周波数の信号を通過させるフィルタにより、受信超音波エコー信号を通過させる ことからなる前記11の方法、15.該処理するステップが、該高調波エコー信号をBモ ード処理することからなる前記11の方法、16.該Bモード処理の段階が、該高調波エ コー信号を振幅検知する段階からなる前記15の方法、17.虚像を減少させた、体内構 造の高調波応答の超音波画像を作成するための超音波診断画像処理装置であって:基本周 波数で身体内に超音波エネルギーを発信する手段:該発信超音波エネルギーに応答して、 該基本周波数の高調波周波数の超音波エコー信号を受信する手段;該高調波超音波エコー 信号を処理し、該エコー信号の少なくとも部分的に非相関化されたレプリカを形成する手 段;該非相関化されたレプリカを結合させて、虚像を減少させた高調波エコー信号を作成 する手段;および、該虚像を減少させた高調波エコー信号を利用して、超音波画像を作成 する手段、からなる超音波診断画像処理装置、18.該虚像が、脱落虚像からなる前記1 7の超音波診断画像処理装置、19.該虚像が、さらにスペックル虚像からなる前記18 の超音波診断画像処理装置、20.該処理するための手段が、該高調波超音波エコー信号 の成分を、異なる中心周波数を有する2つの通過帯域に分割する帯域通過フィルタからな る前記17の超音波診断画像処理装置、21.該処理するための手段が、さらに、該通過 帯域のそれぞれに、高調波超音波エコー信号を検知する検知器を有する前記20の超音波 診断画像処理装置、22.該処理するための手段がさらに、検知された高調波超音波エコ ー信号を対数圧縮する対数圧縮プロセッサからなる前記21の超音波診断画像処理装置、 23.該処理する手段が、高調波超音波エコー信号を受信するために接続する入力と、該 結合手段に接続する出力をそれぞれが有する二平行チャネルを有し、ここに該チャネルの それぞれが、他方のチャネルのフイルタ特性と異なるフィルタ特性を持つ帯域通過フィル タを有する前記17の超音波診断画像処理装置、24.該フィルタ特性が、フィルタのピ ーク応答周波数である前記23の超音波診断画像処理装置、25.該フィルタ特性が、フ

(13)

10

20

ィルタの中心周波数である前記23の超音波診断画像処理装置、26.該チャネルのそれ ぞれがさらに検知器を有する前記23の超音波診断画像処理装置、27.該チャネルのそ れぞれがさらに、対数圧縮プロセッサを有する前記26の超音波診断画像処理装置、28 .該処理する手段が、該高調波超音波エコーを、等しくないダイナミックレンジの2つの 通過帯域に分割する手段からなる前記17の超音波診断画像処理装置、29.該2つの通 過帯域が、低周波通過帯域と高周波通過帯域からなり、そしてここに、該低周波数通過帯 域のダイナミックレンジが、該高周波数通過帯域のダイナミックレンジよりも小さい前記 28の超音波診断画像処理装置、30.該処理する手段がさらに、該通過帯域のそれぞれ のダイナミックレンジを異なってマッピングする手段からなる前記29の超音波診断画像 処理装置、31.虚像を減少させた高調波超音波画像を作成する方法であって:基本周波 数の超音波エネルギーを発信し;該基本周波数の高調波周波数の超音波エコー信号を受信 し:該信号の非相関化レプリカを作成するために、該高調波エコー信号を処理し:該非相 関化レプリカを結合させて、虚像を減少させた高調波エコー信号を作成し;そして、該虚 像を減少させた高調波エコー信号を利用して超音波画像を作成する、以上の段階からなる 高調波超音波画像を作成する該方法、32.該高調波エコー信号を処理する段階が、該高 調波エコー信号の成分を2つの異なる通過帯域に分割することからなる前記31の方法、 33.該高調波エコー信号を処理する段階が、該高調波エコー信号成分を、2つの等しく ないダイナミックレンジの二つの異なる通過帯域に分割することからなる前記32の方法 34.該高調波エコー信号を処理する段階が、該高調波エコー信号成分を、与えられた ダイナミックレンジの高周波数通過帯域と、該与えられたダイナミックレンジよりも小さ いダイナミックレンジの低周波数通過帯域に分割することからなる前記33の方法、35 .身体内構造の高調波超音波画像を作成する超音波診断画像処理装置であって:体内に基 本周波数の超音波エネルギーを発信する手段;該発信超音波エネルギーに応答し、該基本 周波数、および該基本周波数の高調波周波数の超音波エコー信号を受信する手段;および 、該受信基本周波数エコー信号および高調波周波数エコー信号を処理し、該基本周波数と 高調波周波数エコー信号の両成分から形成された超音波画像を作成する画像プロセッサか らなる超音波診断画像処理装置、36.該受信する手段が、分割された基本および高調波 周波数エコー信号を作成する手段を有する前記35の超音波診断画像処理装置、37.該 受信する手段が、高調波周波数エコー信号の少なくとも一部を除外した基本周波数エコー 信号を作成し、少なくとも一部の基本周波数エコー信号を除外した高調波周波数エコー信 号を作成するフィルタを含む前記36の超音波診断画像処理装置、38.該画像プロセッ サが、該画像の近接領域で高調波エコー信号をより多く、そして該画像の遠隔領域で基本 周波数エコー信号をより多く使用する手段からなる前記35の超音波診断画像処理装置、 39.超音波エネルギーの深さ依存減衰を示す体内構造の高調波応答を画像処理する超音 波診断画像処理装置であって:5MHzまたはそれ以下の基本周波数の超音波エネルギー を体内に発信する手段;該発信超音波エネルギーに応答して、10MHzまたはそれ以下 の、該基本周波数の高調波の超音波エコー信号を受信する手段;および、該高調波エコー 信号から超音波画像を作成する手段、からなる超音波診断画像処理装置、40.該発信手 段が、2.5MHzまたはそれ以下の基本周波数で体内に超音波エネルギーを発信し;そ して、該受信手段が、5 M H z またはそれ以下の該基本周波数の高調波周波数の超音波エ コー信号を受信する前記39の超音波診断画像処理装置、41.該発信手段が、2MHz 以下の基本周波数の超音波エネルギーを体内に発信し;そして、該受信手段が、4MHz 以下の該基本周波数の高調波周波数の超音波エコー信号を受信する前記39の超音波診断 画像処理装置、42.該受信手段が、該基本周波数を除外して該高調波エコー信号を通過 させるようにプログラムされたプログラム可能ディジタルフィルタを有する前記39の超 音波診断画像処理装置、43.組織の非線型応答を画像処理する超音波診断画像処理装置 であって:体内に基本周波数の超音波エネルギーを発信する発信器;超音波エネルギー発 信後に組織から戻ったエコーに応答して、組織の非線型応答を超音波で表す信号を分離す る受信器;および、該非線型応答信号から超音波画像を作成する画像プロセッサ、からな る超音波診断画像処理装置、44.該受信器が、組織の非線型応答を超音波で表す信号を

(14)

50

20

30

40

分離するフィルタ回路を有する前記43の超音波診断画像処理装置、45.該受信器が、 組織中の同じ空間位置からの多数のエコーの受信に応答して、該多数のエコー信号を結合 し、組織の非線型応答を超音波で表す信号を分離する信号プロセッサを有する前記43の 超音波診断画像処理装置、46.組織の非線型超音波応答が、該基本周波数の二次あるい はさらに高次の高調波からなる前記43の超音波診断画像処理装置、47.組織の非線型 超音波応答が、該基本周波数の分数調波を有する前記43の超音波診断画像処理装置。 【0045】

【発明の効果】

基本周波数でない高調波周波数エコー成分を超音波画像処理に有効に使用する方法および装置が提供される。高調波ビームを使用することにより、肋骨などの狭い口を通しての ¹⁰ 画像処理のときの散乱を減少させ、高調波ビームのサイドローブレベルが、基本ビームの対応するサイドローブレベルよりも低いことを利用して、軸外散乱を低減させる。また、近接領域からの高調波の戻りエネルギーは基本周波数の戻りエネルギーよりも相対的に小さいので、近接領域散乱を防止することができる。

【図面の簡単な説明】

【図1】 本発明の画像処理装置のブロックダイヤグラムによる説明である。

【図2】 高調波エコー信号の主ローブとサイドローブについての説明である。

【図3】 高調波エコー信号の主ローブとサイドローブについての別の条件での説明である。

- 【図4】 高調波エコーのビームパターンの説明である。
- 【図5】 高調波エコーの他のビームパターンの説明である。
- 【図6】 図1の例の挙動の説明に使用された通過帯域特性曲線である。
- 【図7】 図1に使用されたその他の通過帯域特性曲線である。
- 【図8】 典型的な基本および高調波周波数通過帯域の説明である。
- 【図9】 図1の例での使用に適当なFIRフィルタ構造の説明である。
- 【図10】本発明好適例の一部のブロックダイヤグラムによる説明である。
- 【図11】 図10の例の正規化段階の操作を説明する。
- 【図12】 図10で使用された乗算器累算器のブロックダイヤグラムである。
- 【図13】 図10の例の基本および高調波周波数通過帯域の説明である。
- 【図14】 基本周波数信号と高調波信号成分のブレンドを説明する。
- 【図15】 ブレンド画像形成用時間変化フィルタの通過帯域を説明する。
- 【符号の説明】

37・・・Bモードプロセッサ、50・・・表示装置、110・・・超音波プローブ、1 12・・・変換器、114・・・T/Rスイッチ、115・・・アナログ・ディジタル変 換器、116・・・ビーム形成器、117・・・発信周波数制御、118・・・ディジタ ルフィルタ、70-73・・・乗算器、80-83・・・累算器、120・・・中央制御 器、128・・・コントラスト信号検知器、130・・・ドップラープロセッサ、140 ・・・ビデオプロセッサ、162・・・3D画像作成プロセッサ、164・・・3D画像 メモリ。 20

【図2】

【図5】

【図8】

【図10】

【図11】

【図12】

【図13】

【図15】

フロントページの続き

- (72)発明者 ジェフリー・イー・パワーズ アメリカ合衆国98110ワシントン州、ベインブリッジアイランド、ウエスト・ブレイクリー・ アベニュー・エヌ・イー 4054番
- (72)発明者 ピーター・エヌ・バーンズ カナダ エム4ケー1ビー5 オンタリオ州、トロント、ラングレイ・アベニュ 22番
 (72)発明者 デイビッド・エヌ・ラウンドヒル アメリカ合衆国98012ワシントン州、ボゼル、第28ドライブ・エス・イー 16906 番
 (72)発明者 ジンジェット・ホワン
 - アメリカ合衆国98040ワシントン州、メーサーアイランド、イースト・メーサー・ウェイ 7 432番

審査官 右 高 孝幸

```
(56)参考文献 特開昭60-53133(JP,A)
特開平2-119850(JP,A)
特開平7-51270(JP,A)
```

特開平7 - 163569(J P , A) 特開平8 - 173420(J P , A) 特開平8 - 182680(J P , A) 国際公開第94 / 27402(W O , A 1) K. I. Morton et al , Subharmonic emission as an indicator of ultrasonically-induced bio logical damage , Ultrasound in medicine and biology , 1 9 8 3 年 1 1月 , vol.9, no.6 , 629 -633

Hokland, J.H et al, Harmonic imaging: a model for ultrasonic speckle reduction, Procee ding of IEEE 1993 Ultrasonic Symposium, 1 9 9 3 年 1 0 月, vol.2, pp.1005-1010

(58)調査した分野(Int.CI., DB名) A61B 8/00