
US010248785B2

(12) United States Patent
Tsirkin

(10) Patent No . : US 10 , 248 , 785 B2
(45) Date of Patent : Apr . 2 , 2019

(54) APPLICATION MEMORY PROTECTION
USING A HOST PAGE TABLE SWITCHING
VIRTUAL MACHINE FUNCTION

2014 / 0173600 A1 6 / 2014 Ramakrishnan
2014 / 0283056 AL 9 / 2014 Bachwani et al .
2014 / 0380009 A112 / 2014 Lemay et al .
2015 / 0199514 A1 7 / 2015 Tosa et al .
2015 / 0288659 Al 10 / 2015 Lukacs et al .

(71) Applicant : Red Hat Israel , Ltd . , Ra ' anana (IL)
OTHER PUBLICATIONS (72) Inventor : Michael Tsirkin , Yokneam Illit (IL)

(73) Assignee : Red Hat Israel , Ltd . , Ra ' anana (IL)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 243 days .

How to Implement a Software - Based SMEP (Supervisor Mode
Execution Protection) with Virtualization / Hypervisor Technology
published Nov . 12 , 2014 (4 pages) .
Zero - Footprint Guest Memory Introspection from Xen published
Aug . 18 , 2014 ; Mihai Dontu , Ravi Sahita (39 pages) .
Extending KVM Models Toward High - Performance NFV published
Oct . 14 , 2014 ; Jun Nakajima , James Tsai , Mesut Ergin , Yang Zhang ,
Wei Wang (28 pages) . (21) Appl . No . : 15 / 055 , 904

(22) Filed : Feb . 29 , 2016 * cited by examiner

(65) Prior Publication Data
US 2017 / 0249458 A1 Aug . 31 , 2017

Primary Examiner — Joseph P Hirl
Assistant Examiner — Hassan Saadoun
(74) Attorney , Agent , or Firm — K & L Gates LLP (51) Int . CI .

G06F 9 / 455 (2018 . 01)
G06F 21 / 52 (2013 . 01)

(52) U . S . CI .
CPC GO6F 21 / 52 (2013 . 01) ; G06F 9 / 45558

(2013 . 01) ; G06F 2009 / 45583 (2013 . 01) ; G06F
2009 / 45587 (2013 . 01) ; G06F 2221 / 033

(2013 . 01)
(58) Field of Classification Search

None
See application file for complete search history .

(57) ABSTRACT
A hypervisor generates first and second page views , where
a guest physical address points to a first page of the first page
view and a second page of the second page view . A first
pointer value is written to the first page and a second pointer
value is written to the second page . A guest operating system
executes a first task and if a determination to switch to the
second task is made , the guest operating system reads a
current pointer value and determines what the current page
view is . If the guest operating system determines that the
current page view is the first page view , the guest operating
system saves the first pointer value in a first memory of the
first task , loads the second pointer value from a second
memory of the second task , and executes a virtual machine
function to switch to the second page view .

(56) References Cited
U . S . PATENT DOCUMENTS

9 , 117 , 081 B2
9 , 400 , 885 B2 *

2008 / 0155168 A1 *

8 / 2015 Lukacs et al .
7 / 2016 Tosa G06F 21 / 554
6 / 2008 Sheu GO6F 12 / 1027

711 / 6
10 / 2013 Smith et al . 2013 / 0276057 Al 19 Claims , 6 Drawing Sheets

First HPTP 240 - Protected HPT 181

Page Entry
200A 210A

x0001
220A

No Access
230A App 198A Address 1

XO3FF

Page Entry
200B 210B

x0002

220B
Executable

Only
230B App 198A Address 2

x040F

Page Entry
200C

2100
x0003

220C
Read Only

230C App 198A Address 3
X041F

Page Entry
200D 210D

x0004
2200

Read Only
230D App 198A Address 4

X042F

Second HPTP 290 Unprotected HPT 182

Page Entry
250A 260A

x0001
270A

Read - Write
280A App 198A Address 1

x01AF

Page Entry
250B 260B

x0002
270B

Read - Write
280B App 198A Address 2

XO1FF

Page Entry
250C

2600
x0003

2700
Read - Write

280C App 198A Address 3
x024F

Page Entry
250D 260D

X0004
270D

Read - Write
280D App 198A Address 4

x029F

100

VM 170A -

VM 170B

VM 170C

VM 170D

App 198A | App 1984

App 1983

U . S . Patent

App 1980

App 1988 | | App 1980 157 | | | | | | Guest os 196

App 1980 Apo 1980 197 1920

Guest OS 1964

GPA 197A

GPA 197B

Guest OS 196B

GPA 1970

GPA 1970

Virtual Device 172A

Virtual Device 172B

VCPU 190A
VCPU 190B
VMD 192A

VI / O 194A

VI / O 194B

VCPU 190C
VCPU 190D
VMD 192B

VI / O 1940

VI / O 1940

Apr . 2 , 2019

Host OS 186

Hypervisor 180

Protected HPT 181

Unprotected HPT 182

VM Function 183

Sheet 1 of 6

Node 110A

Node 110B

Node 110C

Node 110D

CPU 120A

CPU 120B

CPU 120C

Hardware Device 150A

Hardware Device 150B

MD 130A

MD 130B

1 / 0 140A

MD 130C

1 / 0 140B

US 10 , 248 , 785 B2

FIG . 1

atent Apr . 2 , 2019 Sheet 2 of 6 US 10 , 248 , 785 B2

First HPTP 240 - Protected HPT 181

Page Entry
200A 210A

x0001
220A

No Access
230A App 198A Address 1

XO3FF .

Page Entry
200B 230B App 198A Address 2 210B

x0002
220B

Executable
Only X040F

Page Entry
200C 210C

x0003
220C

Read Only
230C App 198A Address 3

X041F

Page Entry
200D 210D

X0004
220D

Read Only
230D App 198A Address 4

X042F

Second HPTP 290 Unprotected HPT 182

Page Entry
250A 260A

x0001
270A

Read - Write
280A App 198A Address 1

XO1AF

Page Entry
250B 260B

x0002
270B

Read - Write
280B App 198A Address 2

X01FF

Page Entry
250C 260C

x0003
270C

Read - Write
280C App 198A Address 3

X024F

Page Entry
250D 260D

X0004
270D

Read - Write
280D App 198A Address 4

X029F

FIG . 2

Protected Page View 300

Unprotected Page View 350

310A App 198A Memory Block 1 No Access

360A App 198A Memory Block 1 Read - Write

atent

310B App 198A Memory Block 2 Executable Only

360B App 198A Memory Block 2 Read - Write

Apr . 2 , 2019

310C App 198A Memory Block 3 First Pointer Value Read Only

360C App 198A Memory Block 3 Second Pointer Value Read - Write

Sheet 3 of 6

310D App 198A Memory Block 4 Read Only

360D App 198A Memory Block 4 Read - Write

US 10 , 248 , 785 B2

FIG . 3

atent Apr . 2 , 2019 Sheet 4 of 6 US 10 , 248 , 785 B2

400

Generate a first host page table and a second host page table
410

Responsive to generating the first host page table , generate first host page
table pointer and a second host page table pointer , where the first host page
table pointer is initialized to point to the first host page table and the second
host page table pointer is initialized to point to the second host page table

Receive a first request to protect a first page view corresponding to the first
host page table 430

Responsive to receiving the first request , determine whether to grant the first
request 440

Responsive to a determination to grant the first request , at least one access
status parameter of the first page view corresponding to the first host page

table and at least one access status parameter of the second page view
corresponding to the second host page table 450

FIG . 4 .

atent Apr . 2 , 2019 Sheet 5 of 6 US 10 , 248 , 785 B2

VM 170A VM 170A - Hypervisor 180
505

Generate a first HPT
500

510
Generate a first HPTP
and a second HPTP ,

where the first and the
second HPTPs are

initialized to point to a
first and second HPT 515

525
Transmit a first

request to protect a
first page view

corresponding to a
first HPT

Request
Receive and determine
whether to grant the

first request

TL 520
550 - 545

Receive the values 1st and 2nd Values

- 530 Execute application in
first page view

Responsive to
determining to grant

the first request ,
generate a second HPT
and modify at least
one access status

parameter of the first
page view

corresponding to the
first HPT , where

modifying renders the
pages of the first page

view read - only

5601 Attempt to write to
first page view

565 |
Detect a page fault

570

Select the second
page view by
executing a VM

function , with the
second pointer value

as a parameter 535

Write a first pointer
value corresponding to
the first HPTP into a
first page of the first
page view and a

second pointer value
corresponding to the
second HPTP into a
second page of the
second page view

Write to second page r5751
view

580 | 540
Select the first page
view by executing a

VM function , with the
first pointer value as a

parameter

Provide the first and
second pointer values

FIG . 5

atent Apr . 2 , 2019 Sheet 6 of 6 US 10 , 248 , 785 B2
600

Generate a first page view and a second page view , where a guest physical
address of the virtual machine points to a first page of the first page view and a

second page of the second page view 610

Write a first pointer value to the first page of the first page view and a second
pointer value to the second page of the second page view 620

Execute a first task 630

Determine whether to switch to a second task 6406

Responsive to a determination to switch from the first task to the second task ,
read a current pointer value pointed to by the guest physical address , where
the current pointer value is one of the first pointer value and the second

pointer value 650

Responsive to reading the current pointer value , determine a current page
view based on the current pointer value , where the current page view is one of

the first page view and the second page view 660

Responsive to determining that the current page view is the first page view
save the first pointer value in a first memory of the first task , load the second
pointer value from a second memory of the second task , and execute a virtual
machine function , where the virtual machine function receives the second

pointer value as a parameter and , when executed , switches to the second page
view 670

FIG . 6

US 10 , 248 , 785 B2

APPLICATION MEMORY PROTECTION receives the second pointer value as a parameter and , when
USING A HOST PAGE TABLE SWITCHING executed , switches to the second page view .

VIRTUAL MACHINE FUNCTION A system includes a memory , one or more processors , in
communication with the memory , a virtual machine , includ

BACKGROUND 5 ing a guest operating system , executing on the one or more
processors , and a hypervisor executing on the one or more

Virtualization may be used to provide some physical processors . The hypervisor generates a first host page table
components as logical objects in order to allow running and a second host page table . Responsive to generating the
various software modules , for example , multiple operating first host page table , the hypervisor generates a first host
systems , concurrently and in isolation from other software 10 page table pointer and a second host page table pointer ,
modules , on one or more interconnected physical computer where the first and the second host page table pointers are
systems . Virtualization allows , for example , consolidating initialized to point to the first host page table . A first request
multiple physical servers into one physical server running to protect a first page view corresponding to the first host

page table is received from a first application running on the multiple virtual machines in order to improve the hardware 15 virtual machine . Responsive to receiving the first request , utilization rate . the hypervisor determines whether to grant the first request . Virtualization may be achieved by running a software If the hypervisor makes a determination to grant the first layer , often referred to as a hypervisor , above the hardware request , the hypervisor modifies at least one access status and below the virtual machines . A hypervisor may run parameter of the first page view corresponding to the first
directly on the server hardware without an operating system 20 host page table . Responsive to modifying the at least one
beneath it or as an application running on a traditional access status parameter , the hypervisor modifies the second
operating system . A hypervisor may virtualize the physical host page table pointer to point to the second host page table ,
layer and provide interfaces between the underlying hard where a second page view corresponds to the second host
ware and virtual machines . Processor virtualization may be page table . Then the hypervisor provides to the guest oper
implemented by the hypervisor scheduling time slots on one 25 ating system a first pointer value corresponding to the first
or more physical processors for a virtual machine , rather host page table pointer and a second pointer value corre
than a virtual machine actually having a dedicated physical sponding to the second host page table pointer .
processor . Additional features and advantages of the disclosed

One vulnerability in virtualized systems is due to malware method and apparatus are described in , and will be apparent
attacks that attempt to discover and exploit application 30 from , the following Detailed Description and the Figures .
memory . For example , this may occur when application
pointers are exposed in the course of execution . The present BRIEF DESCRIPTION OF THE FIGURES
disclosure seeks to increase the robustness of virtualized
systems to such malware attacks . FIG . 1 is a block diagram of an example multiprocessor

35 computer system according to an example embodiment of
SUMMARY the present disclosure .

FIG . 2 a block diagram of example protected and unpro
The present disclosure provides a new and innovative tected host page tables according to an example embodiment

system , methods and apparatus for application memory of the present disclosure .
protection using a host page table switching virtual machine 40 FIG . 3 is a block diagram of example protected and
function . unprotected page views according to an example embodi

A system includes a memory , one or more processors , in ment of the present disclosure .
communication with the memory , a virtual machine , includ - FIG . 4 is a flowchart illustrating an example process for
ing a guest operating system , executing on the one or more application memory protection using a host page table
processors , and a hypervisor executing on the one or more 45 switching virtual machine function according to an example
processors . The hypervisor generates a first page view and a embodiment of the present disclosure .
second page view , where a guest physical address of the FIG . 5 is a flow diagram illustrating an example process
virtual machine points to a first page of the first page view for application memory protection using a host page table
and a second page of the second page view . The first page switching virtual machine function according to an example
of the first page view is initialized with a first pointer value 50 embodiment of the present disclosure .
and the second page of the second page view is initialized FIG . 6 is a flowchart illustrating an example process for
with a second pointer value . The guest operating system application memory protection using a host page table
executes a first task and then determines whether to switch switching virtual machine function according to an example
to a second task . If the guest operating system makes a embodiment of the present disclosure .
determination to switch from the first task to the second task , 55
the guest operating system reads a current pointer value DETAILED DESCRIPTION OF EXAMPLE
pointed to by the guest physical address , where the current EMBODIMENTS
pointer value is either the first pointer value or the second
pointer value . The guest operating system then determines FIG . 1 depicts a high - level component diagram of an
what the current page view is based on the current pointer 60 example multiprocessor computer system 100 for applica
value , where the current page view is either the first page tion memory protection using a host page table switching
view or the second page view . If the guest operating system virtual machine function according to an example embodi
determines that the current page view is the first page view , ment of the present disclosure .
the guest operating system saves the first pointer value in a Corruption of application memory in virtualized systems
first memory of the first task , loads the second pointer value 65 may occur as a result of malware attacks . Specifically ,
from a second memory of the second task , and executes a malicious software may exploit vulnerabilities in which host
virtual machine function , where the virtual machine function page table pointers are exposed in the course of executing

US 10 , 248 , 785 B2

applications 198A - D running on virtual machines 170A - D . host OS 186 (or " host device ”) may refer to CPU 120A - C ,
For example , the malware may acquire access to sensitive MD 130A - C , I / O 140A - B , a software device , and / or hard
application data through these exposed pointers . The present ware device 150A - B .
disclosure seeks to reduce these risks in a manner that As noted above , computer system 100 may run multiple
reduces performance overhead . For example , the hypervisor 5 virtual machines (e . g . , VM 170A - D) , by executing a soft
180 may set up multiple host page table pointers that are ware layer (e . g . , hypervisor 180) above the hardware and
initialized to point to a first host page table 181 . If an below the virtual machines 170A - D , as schematically shown
application 198A makes a request for access to a first page in FIG . 1 In an example embodiment the hypervisor 180
view corresponding to the host page table 181 to be may be a component of the host operating system 186 restricted , the hypervisor 180 may grant this request to 10 executed by the computer system 100 . In another example protect the first page view upon determining that the request embodiment , the hypervisor 180 may be provided by an should be granted . In an example embodiment , a second application running on the operating system 186 , or may run unprotected page view corresponding to a second host page
table 182 is provided . Then , if the application 198A deter directly on the computer system 100 without an operating
mines that access to the second unprotected page is required , 15 Sys ge is required . is system beneath it . The hypervisor 180 may virtualize the
for example , to process a different task , the application 1984 physical layer , including processors , memory , and I / O
may execute a virtual machine function 183 that selects the devices , and present this virtualization to virtual machines
second unprotected page view . In this manner , an unpro 170A - D as devices , including virtual processors (e . g . ,
tected page view is only accessible when required . Addi - VCPU 190A - D) , virtual memory devices (e . g . , VIVID
tional features and advantages of the disclosed method , 20 192A - B) , and / or virtual I / O devices (e . g . , VI / O 194A - D) .
system , and apparatus are described below . In an example embodiment , a virtual machine 170A - B

The computer system 100 may include one or more may execute a guest operating system 196A - B which may
interconnected nodes 110A - D . Each node 110A - B may in utilize the underlying VCPU 190A - D , VIVID 192A - B , and
turn include one or more physical processors (e . g . , CPU VI / O devices 194A - D . One or more applications 198A - D
120A - C) communicatively coupled to memory devices (e . g . , 25 may be running on a virtual machine 170A - B under the
MD 130A - C) and input / output devices (e . g . , I / O 140A - B) . guest operating system 196A - B . The virtual machine
Each node 110C - D may include a hardware device 150A - B . 170A - B may include a device register 197A - B . As used
In an example embodiment , a hardware device (e . g . , 150A - herein , a device register 197A - B refers to a configuration
B) may include a network device (e . g . , a network interface space of a device . In an example embodiment , a device may
controller (NIC) , a network adapter , or any other component 30 be a device (e . g . , VCPU 190A - D , VIVID 192A - B , VI / O
that connects a computer to a computer network) , a periph - devices 194A - D , virtual device 172A - B , etc .) of a guest
eral component interconnect (PCI) device , storage devices , operating system 196A - B (that is , a " guest device ”) . In an
sound or video adaptors , photo / video cameras , printer example embodiment , the guest operating system 196A - B
devices , keyboards , displays , etc . may include a set of guest physical addresses (“ GPA ”)

As used herein , physical processor or processor 120A - C 35 197A - D .
refers to a device capable of executing instructions encoding A virtual machine 170A - B may run any type of depen
arithmetic , logical , and / or I / O operations . In one illustrative dent , independent , compatible , and / or incompatible appli
example , a processor may follow Von Neumann architec - cations on the underlying hardware and OS 186 . In an
tural model and may include an arithmetic logic unit (ALU) , example embodiment , applications (e . g . , App 198A - D)
a control unit , and a plurality of registers . In a further aspect , 40 executing on a virtual machine 170A - B may be dependent
a processor may be a single core processor which is typically on the underlying hardware and / or OS 186 . In another
capable of executing one instruction at a time (or process a example embodiment , applications 198A - D executing on a
single pipeline of instructions) , or a multi - core processor virtual machine 170A - B may be independent of the under
which may simultaneously execute multiple instructions . In lying hardware and / or OS 186 . For example , applications
another aspect , a processor may be implemented as a single 45 198A - B executing on a first virtual machine 170 A may be
integrated circuit , two or more integrated circuits , or may be dependent on the underlying hardware and / or OS 186 while
a component of a multi - chip module (e . g . , in which indi - applications 198C - D executing on a second virtual machine
vidual microprocessor dies are included in a single inte 170B are independent of the underlying hardware and / or OS
grated circuit package and hence share a single socket) . A 186 . Additionally , applications 198A - D executing on a vir
processor may also be referred to as a central processing unit 50 tual machine 170A - B may be compatible with the underly
(CPU) . ing hardware and / or OS 186 . In an example embodiment ,

As discussed herein , a memory device 130A - C refers to applications 198A - D executing on a virtual machine
a volatile or non - volatile memory device , such as RAM , 170A - B may be incompatible with the underlying hardware
ROM , EEPROM , or any other device capable of storing and / or OS 186 . For example , applications 198A - B executing
data . As discussed herein , I / O device 140A - B refers to a 55 on one virtual machine 170 A may be compatible with the
device capable of providing an interface between one or underlying hardware and / or OS 186 while applications
more processor pins and an external device capable of 198C - D executing on another virtual machine 170B may be
inputting and / or outputting binary data . incompatible with the underlying hardware and / or OS 186 .

Processors 120A - C may be interconnected using a variety In an example embodiment , a device may be implemented
of techniques , including a point - to - point processor intercon - 60 as a virtual machine 170 .
nect , and a system area network , such as an Ethernet - based In an example embodiment , a virtual machine 170A - B
network . Local connections within each node 110A - D , may include multiple virtual processors (VCPU) 190A - D .
including the connections between a processor 120A and a Processor virtualization may be implemented by the hyper
memory device 130A - B and between a processor 120A and visor 180 scheduling time slots on one or more physical
an I / O device 140A may be provided by one or more local 65 processors 120A - C such that from the guest operating
buses of suitable architecture , for example , peripheral com system ' s perspective those time slots are scheduled on a
ponent interconnect (PCI) . As used herein , a device of the virtual processor 190A - D .

US 10 , 248 , 785 B2

In another example embodiment , a virtual machine the same application 198A . In an example embodiment , host
170C - D may include virtual devices 172A - B . A virtual page table pointers (e . g . , 240 and / or 290) may be associated
device 172A - B may provide the functionality of traditional with each host page table 181 - 182 . For example , host page
hardware devices such as network devices , PCI devices , table pointer 240 corresponds to protected host page table
storage devices , sound or video adaptors , photo / video cam - 5 181 and host page table pointer 290 corresponds to unpro
eras , printer devices , keyboards , displays , etc . tected host page table 182 .

The hypervisor may also include one or more host page In an example embodiment , host page tables 181 - 182 may
tables such as a protected host page table 181 and an include an access status parameter (e . g . , 220A - D and / or
unprotected host page table 182 . In an example embodiment , 270A - D) . The access status parameter (e . g . , 220A - D and / or
the host page table may be an extended page table (“ EPT ”) , 10 270A - D) indicates the access status of a page (e . g . , 310A - D
translating guest physical addresses to host physical and / or 360A - D) corresponding to the page entry (e . g . ,
addresses . In another embodiment , the host page table may 200A - D and / or 250A - D) of the page table 181 - 182 . For
be the shadow page table translating the guest virtual example , an access status parameter (e . g . , 220A - D and / or
addresses to host physical addresses . In another embodi - 270A - D) may be used to define that a given page (e . g . ,
ment , the host page table may be the hypervisor page table , 15 310A - D and / or 360A - D) is inaccessible (or no access) ,
translating the guest physical addresses to hypervisor virtual writable (or read - write) , write - protected (or read - only) ,
addresses . Example embodiments of these data structures executable (or executable and readable) , executable only ,
are described in greater detail below and as shown in FIG . etc . For example , as illustrated in the example embodiment

in FIG . 2 , the page 310A corresponding to page entry 200A ,
FIG . 2 illustrates a protected host page table (otherwise 20 PFN 210A address (x0001) , address 230A (x03FF) , and

referred to as a page table) 181 and an unprotected host page access status parameter 220A has been defined in protected
table 182 according to an example embodiment of the host page table 181 as ‘ No Access ' . The hypervisor 180 may
present disclosure . In general , the hypervisor 180 manages be used to modify an access status parameter (e . g . , 220A - D
the memory usage of the VMs 170A - D . Both virtual and / or 270A - D) of pages (e . g . , 310A - D and / or 360A - D) . In
memory and physical memory may be divided into pages 25 an example embodiment , a virtual machine 170A - D , guest
310A - D which are identified with a unique number (e . g . , OS 196A - B , and / or application 198A - D may use the mpro
Page Frame Number (PFN) 210A - D and / or 260A - D) . tect () function to request that the hypervisor 180 modify the
Example embodiments of pages (e . g . , 310A - D and / or 360A access status parameter of a page view or a set of pages .
D) and page views (e . g . , 300 and / or 350) are described in In the illustrated example embodiment , the protected host
greater detail below and as shown in FIG . 3 . 30 page table 181 includes a variety of access protections

A host page table 181 - 182 is a data structure used by the corresponding to the protected page view 300 including ‘ No
hypervisor 180 to store a mapping of addresses of the guest Access , ' ' Executable Only , ' and ' Read Only . ' In an example
OS 196A - B to addresses of the host OS 186 (e . g . , physical embodiment , the access protections may all the be same . In
resources of the computer system 100) . Accordingly , address an example embodiment , only a subset of the page entries
translation is handled using the host page tables 181 - 182 . 35 200A - D of the protected host page table 181 have an access
For example , the guest OS 196A - B operating within the protection such as ' No Access , ' ' Executable Only , ' and
VMs 170A - D may be given the impression that there is a ‘ Read Only . ' In this manner , only a subset of pages 310A - D
contiguous section of guest memory available , when in of the protected page view 300 are protected . In the illus
reality , the available guest memory may be spread across trated example embodiment , the unprotected host page table
various memory devices 130A - C . In an example embodi - 40 182 permits every page in the corresponding unprotected
ment , a host page table 181 - 182 may be an extended page page view 350 to be both read and written to . In an example
table that translates guest physical addresses to host physical embodiment , only a subset of the page entries 250A - D of the
addresses . In another embodiment , a host page table 181 - unprotected host page table 182 are writable (e . g . , provided
182 may be a shadow page table that translates guest virtual the access status ‘ Read - Write ') . In this manner , only a subset
addresses to host physical addresses . In an example embodi - 45 of pages 360A - D of the unprotected page view 350 are
ment , a host page table 181 - 182 may be a hypervisor page writable .
table , translating the guest physical addresses to hypervisor In an example embodiment , a page table 181 - 182 may
virtual addresses . include additional information not shown in FIG . 2 includ

A host page table 181 - 182 comprises page entries (e . g . , ing a presence identifier , statistics information , background
200A - D and / or 250A - D) that map PFN (e . g . , 210A - D and / or 50 information , dirty identifiers which indicate that modifica
260A - D) , for example an address of the guest OS 196A - B , tions to a page must be written back to disk , etc .
with an address (e . g . , 230A - D and / or 280A - D) , for example In an example embodiment , one or more page tables
an address of the host OS 186 . Host page tables 181 - 182 181 - 182 may be maintained by the hypervisor 180 which
may be used together with any paging data structure used by map guest OS 196A - B addresses to host OS 186 addresses
the VMs 170A - D to support translation from guest OS 55 that are accessible by the hypervisor 180 , VMs 170 , guest
196A - B to host OS 186 addresses (e . g . , 32 - bit linear address OS 196A - B , Host OS 186 , Host OS 186 resources , and / or
space using a two - level hierarchical paging structure , Physi - VM Functions 183 . The sizes of different page tables may
cal Address Extension mode , INTEL Extended Memory 64 vary and may include more or fewer entries than are
Technology mode , etc .) . In an example embodiment , host illustrated in FIG . 2 .
page tables 181 - 182 may include access status parameters 60 FIG . 3 illustrates protected page view 300 (and corre
(e . g . , 220A - D and / or 270A - D) that indicate an access status sponding pages 310A - D) and unprotected page view 350
for each of the pages (e . g . , 310A - D and / or 360A - D) . In the (and corresponding pages 360A - D) in accordance with an
illustrated example embodiment , the addresses (230A - D and example embodiment of the present disclosure . As noted
280A - D) correspond to addresses of an application 198A . In above , a page (e . g . , 310A - D and / or 360A - D) may be a
accordance with this , the pages in the illustrated embodi - 65 portion of physical or virtual memory designated for storing
ment in FIG . 3 correspond to pages (otherwise referred to as data . As used herein , a page view (e . g . , 300 and / or 350)
memory block or memory ranges) 310A - D and 360A - D of denotes a mapping from addresses designated for use by VM

US 10 , 248 , 785 B2

170A - D to host OS 186 addresses . In an example embodi page table 182 is not populated with any data until infor
ment , the page view (e . g . , 300 and / or 350) may denote the mation is requested from the page view 350 (and / or pages
mapping from PFNs of a VM 170A - D to host OS 186 360A - D) at which time it is populated with the same data as
addresses , as used during normal execution of the VM page view 300 (and / or pages 310A - D) . In an example
170A - D . As illustrated in FIG . 3 , pages 310A - D may be 5 embodiment , page view 350 (and / or pages 360A - D) corre
defined by access status parameters in accordance with their sponding to the second host page table 182 is not populated
respective page table 181 - 182 access status parameters (e . g . , with any data until a page fault occurs at which time the page
220A - D and / or 270A - D) . view 350 (and / or pages 360A - D) is populated with the same

In an example embodiment , the hypervisor 180 may data as page view 300 (and / or pages 310A - D) .
provide one or more virtual machine functions (VM Func - 10 Responsive to generating the first host page table 181 , the
tions) 183 to a virtual machine 170A - D . In an example hypervisor 180 generates a first host page table pointer 240
embodiment , the VM Function 183 may be invoked for a and a second host page table pointer 290 , where the first host
VM 170A , by the guest OS 196A that is running on the VM page table pointer 240 is initialized to point to the first host
170A . In an example embodiment , a VM Function 183 may page table 181 and the second host page table pointers 290
only be invoked if hypervisor 180 provides access or grants 15 is initialized to point to the second host page table 182
a request . In an example embodiment , the VM Function may (block 420) .
be provided by the host CPU on which the hypervisor is The hypervisor 180 receives from a first application 198A
executing . In an example embodiment , the VM Function is running on a virtual machine 170A , a first request to protect
a host page table switching VM function 183 . For example , a first page view 300 corresponding to the first host page
a VM 170A or guest OS 196A may invoke a VM Function 20 table 181 (block 430) . In an example embodiment , the first
183 to cause the hypervisor to translate the guest addresses application 198A running on the virtual machine 170A
according to the protected host page table or the unprotected generates the first request to protect the first page view 300
host page table . In an example embodiment , a hypervisor corresponding to the first host page table 181 using the
180 may grant a VM 170A or guest OS 196A access to a VM mprotect () function . In an example embodiment , the mpro
Function 183 to allow the VM 170A or guest OS 196A to 25 tect (function takes as its parameters a memory address
switch host page tables without requiring an exit to the range and a protection status that is desired . For example , the
hypervisor . In an example embodiment , the hypervisor 180 first application 198 A may request that the access status
may also deny the request by causing an undefined opcode parameter 220A - D corresponding to page entries 200A - D or
exception or a general protection fault exception whenever addresses 230A - D be modified to be read - only . In this
the VM Function 183 is invoked . 30 example embodiment , if the request is granted by the

FIG . 4 illustrates a flowchart of an example method 400 hypervisor 180 , pages 310A - D will be read only . In an
for application memory protection using a host page table example embodiment , the mprotect () function may take as
switching virtual machine function . Although the example its parameters a protection status that is desired and a current
method 400 is described with reference to the flowchart page view parameter . In an example embodiment , the cur
illustrated in FIG . 4 , it will be appreciated that many other 35 rent page view parameter indicates to the hypervisor 180
methods of performing the acts associated with the method that the currently accessed page view 300 as defined by the
400 may be used . For example , the order of some of the current host page table pointer 240 is requested to be
blocks may be changed , certain blocks may be combined protected . In an example embodiment , the current page view
with other blocks , and some of the blocks described are parameter is the VM Function 183 parameter called “ PRO
optional . The method 400 may be performed by processing 40 T _ VMFUNC ' .
logic that may comprise hardware (circuitry , dedicated logic , Responsive to receiving the first request , the hypervisor
etc .) , software , or a combination of both . In an example 180 determines whether to grant the first request (block
embodiment , the method is performed by a hypervisor 180 . 440) . In an example embodiment , the hypervisor 180 may

The example method 400 starts and the hypervisor 180 grant the first request if it determines that the application
generates a first host page table 181 and a second host page 45 198A is requesting protection of an address space that
table 182 (block 410) . In an example embodiment , the first belongs exclusively to the application 198A . In an example
host page table 181 is associated with a first page view 300 embodiment , the hypervisor 180A may deny the first request
which is used by an application 198 A executing on a virtual if it determines that the address space for which protection
machine 170A . In an example embodiment , the first host is requested belongs to a different application 198B . In an
page table 181 is initialized such that at least one page entry 50 example embodiment , the hypervisor 180A may deny the
200A - D (and correspondingly at least one page 310A - D of first request if it determines that the address space for which
page view 300) is writable . In an example embodiment , the protection is requested is shared among multiple applica
first host page table 181 is initialized such that all the page tions 198A and 198B . In an example embodiment , the
entries 200A - D (and correspondingly all the pages 310A - D hypervisor 180A may deny the first request if it determines
of page view 300) are writable . In an example embodiment , 55 that the address space for which protection is requested is
the second host page table 182 is generated at the same time shared memory .
as the first host page table . In another example embodiment , Responsive to a determination to grant the first request ,
the second host page table 182 is generated subsequent to the the hypervisor 180 modifies at least one access status
generation of the first host page table 181 . parameter 220A - D of the first page view 300 corresponding

In an example embodiment , the second host page table 60 to the first host page table 181 and at least one access status
182 is initialized to be accessible to the same application parameter 270A - D of the second page view 350 correspond
198A as the first host page table 181 . In an example ing to the second host page table 182 (block 450) . In an
embodiment , the page view 350 (and / or pages 360A - D) example embodiment , the hypervisor 180 modifies the at
corresponding to the second host page table 182 is initialized least one access status parameter 270A - D to be writable . In
to be populated with the same data as page view 300 (and / or 65 an example embodiment , the hypervisor 180 modifies the at
pages 310A - D) . In an example embodiment , page view 350 least one access status parameter 220A - D to be at least one
(and / or pages 360A - D) corresponding to the second host of Read Only , ' “ Executable Only , ' and ‘ No Access ' in

US 10 , 248 , 785 B2
10

accordance with the parameters passed in the first request . In page table pointer index values corresponding to the host
this manner , at least one of the pages 310A - D corresponding page table pointers 240 and 290 . In this manner , the host
to the now protected host page table 181 may be at least one page table pointers 240 and 290 are kept hidden from the
of ‘ Read Only , ' ' Executable Only , ' and inaccessible . In an application 198A (and / or the guest OS 196A / virtual machine
example embodiment , the hypervisor 180 modifies every 5 170A) to preserve the security and integrity of the system .
access status parameter 220A - D to be at least one of ' Read In an example embodiment , the hypervisor 180 maintains a
Only , ' ' Executable Only , ' and ' No Access ' in accordance mapping between the host page table pointer index values
with the parameters passed in the first request . In this and the real host page table pointers 240 and 290 using a host
manner , every one of the pages 310A - D corresponding to the page table pointer data structure .
now protected host page table 181 may be at least one of 10 In an example embodiment , the virtual machine 170A
“ Read Only , ' ' Executable Only , ' and inaccessible . In an (and / or application 198B / guest OS 196A) may write the first
example embodiment , in granting the first request , the pointer value into a first page of the first page view 300 and
hypervisor 180 sets a flag that triggers a page fault within the the second pointer value into a second page of the second
guest OS 196A of the virtual machine 170A (which corre - page view 350 . A guest physical address 197A points to the
spondingly detects the page fault) if the page view 300 15 first page of the first page view 300 and the second page of
corresponding to the now protected host page table 181 is the second page view 350 .
attempted to be accessed in violation of the access status In an example embodiment , the application 198A (and / or
parameters 220A - D . For example , the hypervisor 180 grants the guest OS 196A / virtual machine 170A) may execute a
the first request and sets the access status parameter 220A to virtual machine function 183 , where the virtual machine
‘ Read Only ' and an application 198A - D subsequently 20 function 183 receives the second pointer value as a param
attempts to write to page 310A , the flag set by the hypervisor eter and , when executed , selects or switches to the second
180 will trigger and cause a page fault within the guest OS page view 350 . In an example embodiment , the virtual
196A of the virtual machine 170A (which will correspond machine function 183 is the VMFUNC EPTP switching
ingly detect the page fault) . In this manner , performance instruction . In this manner , the present disclosure permits an
overhead is reduced by triggering a page fault rather than 25 application 198A (and / or the guest OS 196A / virtual machine
causing an exit to the hypervisor 180 . 170A) to control (i . e . access and switch as desired) current

In an example embodiment , rather than triggering a page page view (300 or 350) without exiting to the hypervisor
fault , if the page view 300 corresponding to the now 180 . This thereby reduces performance overhead while
protected host page table 181 is accessed in violation of the improving system security by reducing the risk of applica
access status parameters 220A - D , an exit to the hypervisor 30 tion memory corruption .
180 is triggered . The hypervisor 180 may then send an In an example embodiment , the application 198A (and / or
interrupt to the guest OS 196A of the virtual machine 170A the guest OS 196A / virtual machine 170A) may execute the
to trigger the page fault . virtual machine function 183 responsive to determining that

In an example embodiment , the hypervisor 180 generates switching to the second page view 350 is either required or
the unprotected second host page table 182 and unprotected 35 desirable . In an example embodiment , the application 198A
page view 350 upon granting the first request . In an example (and / or the guest OS 196A / virtual machine 170A) may
embodiment , at least one of the access status parameters determine that switching to the second page view 350 is
270A - D corresponding to the unprotected second host page either required or desirable responsive to determining that
table 182 are initialized to be writable (Read - Write ') . In this the first page view 300 is inappropriate for a first task . For
manner , at least one of the pages 360A - D corresponding to 40 example , the application 198A (and / or the guest OS 196A /
the unprotected second host page table may be writable . In virtual machine 170A) may determine that the first task
an example embodiment , every one of access status param - requires writing to memory of the application 198A and that
eters 270A - D corresponding to the second host page table writing to the current protected first page view 300 would
182 are initialized to be writable (Read - Write ”) . In this generate a page fault ; accordingly , the application 198A
manner , every one of the pages 360A - D corresponding to the 45 (and / or the guest OS 196A / virtual machine 170A) may
unprotected second host page table may be writable . switch to a different unprotected second page view 350 to

In an example embodiment , the hypervisor 180 populates facilitate writing to the memory of the application 198A . In
the unprotected page view 350 with the same data as the an example embodiment , the application 198A (and / or the
protected page view 300 upon granting the first request . In guest OS 196A / virtual machine 170A) may determine that
an example embodiment , the hypervisor 180 populates at 50 the first task does not require writing to memory of the
least one page 360A - D of the unprotected page view 350 application 198A and continuing to use the current unpro
corresponding to the application 198A with the same data as tected second page view 350 would be undesirable or leave
at least one page 310A - D of the protected page view 300 the system vulnerable ; accordingly , the application 198A
corresponding to the application 198A upon granting the (and / or the guest OS 196A / virtual machine 170A) may
first request . 55 switch to a different protected second page view 300 to

In an example embodiment , the hypervisor 180 then preclude writing to the memory of the application 198A .
writes the first pointer value corresponding to the first host In an example embodiment , the application 198A (and / or
page table pointer 240 into a first page of the first page view the guest OS 196A / virtual machine 170A) may determine
300 and the second pointer value corresponding to the that switching to the unprotected second page view 350 is
second host page table pointer 290 into a second page of the 60 required responsive to determining that the unprotected
second page view 350 and provides to the virtual machine second page view 350 is appropriate for a second task . For
170A (and / or the application 198A / guest OS 196A) the first example , the application 198A (and / or the guest OS 196A /
pointer value and the second pointer value . In an example virtual machine 170A) may determine during execution of a
embodiment , the first pointer value provided is not the first first task that a second task requires writing to memory of the
host page table pointer 240 and the second pointer value 65 application 198A and that writing to the current protected
provided is not the second host page table pointer 290 . For first page view 300 would generate a page fault ; accordingly ,
example , the first and second pointer values may be host prior to or upon commencing execution of the second task

US 10 , 248 , 785 B2
11 12

the application 198A (and / or the guest OS 196A / virtual pointer value corresponding to the first host page table
machine 170A) may switch to a different unprotected second pointer 240 from the task context of the second (or new)
page view 350 to facilitate writing to the memory of the task , and (d) determining that the second (or expected)
application 198A . In an example embodiment , the applica pointer value is different from the first pointer value .
tion 198A (and / or the guest OS 196A / virtual machine 170A) 5 In an example embodiment , the application 198A (and / or
may determine during execution of a first task that a second the guest OS 196A / virtual machine 170A) may determine
task does not require writing to memory of the application that switching to the second unprotected page view 350 is
198A and continuing to use the current unprotected second required responsive to receiving a page fault . For example ,
page view 350 upon execution of the second task would be the application 198A (and / or the guest OS 196A / virtual
undesirable or leave the system vulnerable ; accordingly , 10 machine 170A) may detect an interrupt from the hypervisor
prior to or upon commencing execution of the second task 180 or a page fault caused by the application 198A ' s attempt
the application 198A (and / or the guest OS 196A / virtual to write to the protected page view 300 and indicate to the
machine 170A) may switch to a different protected second current task that switching to a different unprotected page
page view 300 to preclude writing to the memory of the view 350 is required .
application 198A . 15 FIG . 5 illustrates a flow diagram of an example method

In an example embodiment , the application 198A (and / or 500 for application memory protection using a host page
the guest OS 196A / virtual machine 170A) may include a table switching virtual machine function in accordance with
guest physical address 197A that points to a page 310A of an example embodiment of the present disclosure . Although
the current protected first page view 300 and a guest physical the example method 500 is described with reference to the
address 197B that points to a page 360A of a different 20 flowchart illustrated in FIG . 5 , it will be appreciated that
unprotected second page view 350 . In an example embodi many other methods of performing the acts associated with
ment , exactly one guest physical address 197A points to two the method 500 may be used . For example , the order of some
different pages (e . g . , 310A and 360A) of two different page of the blocks may be changed , certain blocks may be
views (e . g . , 300 and 350) . In an example embodiment , the combined with other blocks , and some of the blocks
hypervisor 180 or the application 198A (and / or the guest OS 25 described are optional . The method 500 may be performed
196A / virtual machine 170A) writes the first pointer value by processing logic that may comprise hardware (circuitry ,
corresponding to the first host page table pointer 240 to the dedicated logic , etc .) , software , or a combination of both .
page 310A of the current protected first page view 300 . In an In the illustrated example embodiment , a hypervisor 180
example embodiment , the hypervisor 180 or the application generates a first host page table 181 (block 505) . The
198A (and / or the guest OS 196A / virtual machine 170A) 30 hypervisor 180 then generates a first host page table pointer
writes the second pointer value corresponding to the second 240 and a second host page table pointer 290 , where the first
host page table pointer 290 to the page 360A of the different host page table pointer 240 is initialized to point to the first
unprotected second page view 350 . host page table 181 and the second host page table pointer

In an example embodiment , the application 198A (and / or 290 is initialized to point to the second host page table 182
the guest OS 196A / virtual machine 170A) may provide the 35 (block 510) . A virtual machine 170A (and / or application
virtual machine function 183 with the first pointer value to 198B / guest OS 196A) transmits a first request to protect a
select or switch to the first page view 300 responsive to first page view 300 corresponding to the first host page table
retrieving the first pointer value from the page 310A of the 181 (blocks 515 and 520) . The hypervisor 180 receives the
current protected first page view 300 . In an example embodi - first request and determines whether to grant the first request
ment , the application 198A (and / or the guest OS 196A) 40 (block 525) . Responsive to a determination to grant the first
virtual machine 170A) may provide the virtual machine request , the hypervisor 180 generates a second host page
function 183 with the second pointer value to select or table 182 and modifies the access status parameters of the
switch to the second page view 350 responsive to retrieving first page view 300 corresponding to the first host page table
the second pointer value from the page 360A of the different 181 to render the pages of the first page view 300 read - only
unprotected second page view 350 . 45 (block 530) . The hypervisor 180 then writes a first pointer

In an example embodiment , the application 198A (and / or value corresponding to the first host page table pointer 240
the guest OS 196A / virtual machine 170A) may determine into a first page of the first page view 300 and a second
that the first page view 300 is inappropriate for a first task pointer value corresponding to the second host page table
(and / or the second page view 350 is appropriate for a second pointer 290 into a second page of the second page view 350
task) responsive to (a) retrieving the first pointer value 50 (block 535) . The hypervisor 180 provides to the virtual
corresponding to the first host page table pointer 240 from machine 170A (and / or application 198B / guest OS 196A) the
the page 310A of the current protected first page view 300 , first pointer value and the second pointer value (blocks 540
(b) storing the first pointer value into the task context of the and 545) . The virtual machine 170A (and / or application
first (or previous) task , (c) retrieving the second pointer 198B / guest OS 196A) receives the first and second pointer
value corresponding to the second host page table pointer 55 values (block 550) . In an example embodiment , the virtual
290 from the task context of the second (or new) task , and machine 170A (and / or application 198B / guest OS 196A)
(d) determining that the second (or expected) pointer value writes the first pointer value into a first page of the first page
is different from the first pointer value . view 300 and the second pointer value into a second page of

In an example embodiment , the application 198A (and / or the second page view 350 . A guest physical address 197A
the guest OS 196A / virtual machine 170A) may determine 60 points to the first page of the first page view 300 and the
that the second page view 350 is inappropriate for a first task second page of the second page view 350 . In an example
(and / or the first page view 300 is appropriate for a second embodiment , in lieu of providing the first and second pointer
task) responsive to (a) retrieving the second pointer value values to the the virtual machine 170A (and / or application
corresponding to the second host page table pointer 290 198B / guest OS 196A) , the hypervisor 180 writes the first
from the page 360A of the current unprotected second page 65 pointer value into a first page of the first page view 300 and
view 350 , (b) storing the second pointer value into the task the second pointer value into a second page of the second
context of the first (or previous) task , (c) retrieving the first page view 350 .

14
US 10 , 248 , 785 B2

13
The virtual machine 170A (and / or guest OS 196A) second pointer value (block 650) . Responsive to reading the

executes the application 198B with the now protected first current pointer value , determine a current page view based
page view 300 as the current page view (block 555) . The on the current pointer value , where the current page view is
virtual machine 170A (and / or application 198B / guest OS one of the first page view and the second page view (block
196A) attempts to write first data to the now protected first 5 660) . In an example embodiment , the current page view is
page view 300 (block 560) . The virtual machine 170A the page view presently being used by the virtual machine
(and / or application 198B / guest OS 196A) detects a page 170 A (and / or application 198B / guest OS 196A) .
fault due to attempting to write to the protected first page Responsive to determining that the current page view is
view 300 (block 565) . The virtual machine 170A (and / or the first page view 300 , virtual machine 170A (and / or application 198B / guest OS 196A) selects the second page 10 application 198B / guest OS 196A) saves the first pointer view 350 by executing a VM function 183 , where the VM value in a first memory 310C of the first task , load the function 183 receives the second pointer value as a param
eter (block 570) . The virtual machine 170A (and / or appli second pointer value from a second memory 360C of the
cation 198B / guest OS 196A) writes the first data to the second task , and execute a virtual machine function 183 ,
unprotected second page view 350 (block 575) . The virtual 15 where the virtual machine function 183 receives the second
machine 170A (and / or application 198B / guest OS 196A) pointer value as a parameter and , when executed , selects or
then selects the protected first page view 300 by executing switches to the second page view 350 (block 670) . In an
a VM function 183 , where the VM function 183 receives the example embodiment , once the virtual machine 170A (and /
first pointer value as a parameter . or application 198B / guest OS 196A) switches to the second

FIG . 6 illustrates a flowchart of an example method 600 20 page view 350 , the second page view 350 is the current page
for application memory protection using a host page table view .
switching virtual machine function . Although the example It will be appreciated that all of the disclosed methods and
method 600 is described with reference to the flowchart procedures described herein can be implemented using one
illustrated in FIG . 6 , it will be appreciated that many other or more computer programs or components . These compo
methods of performing the acts associated with the method 25 nents may be provided as a series of computer instructions
600 may be used . For example , the order of some of the on any conventional computer readable medium or machine
blocks may be changed , certain blocks may be combined readable medium , including volatile or non - volatile
with other blocks , and some of the blocks described are memory , such as RAM , ROM , flash memory , magnetic or optional . The method 600 may be performed by processing optical disks , optical memory , or other storage media . The logic that may comprise hardware (circuitry , dedicated logic , 30 instructions may be provided as software or firmware , etc .) , software , or a combination of both . In an example and / or may be implemented in whole or in part in hardware embodiment , the method is performed by one or more of a components such as ASICS , FPGAs , DSPs or any other hypervisor 180 , a virtual machine 170A , a guest OS 196A ,
and an application 198A . similar devices . The instructions may be configured to be

The example method 600 starts and the hypervisor 180 35 exe the hypervisor 180 35 executed by one or more processors , which when executing
generates a first page view 300 and a second page view 350 . the series of computer instructions , performs or facilitates
where a guest physical address 197A of the virtual machine the performance of all or part of the disclosed methods and
170A points to a first page 310C of the first page view 300 procedures .
and a second page 360C of the second page view 350 (block The example embodiments may be embodied in the form
610) . A first pointer value is then written to the first page 40 of computer - implemented processes and apparatuses for
310C of the first page view 300 and a second pointer value practicing those processes . An embodiment may also be
is written to the second page 360C of the second page view embodied in the form of a computer program code contain
350 (block 620) . In an example embodiment , the hypervisor ing instructions embodied in tangible media , such as floppy
180 writes the first pointer value to the first page 310C of the diskettes , CD - ROMs , DVD - ROMs , hard drives , or any other
first page view 300 and writes the second pointer value to the 45 computer readable non - transitory storage medium , wherein ,
second page 360C of the second page view 350 . In an when the computer program code is loaded into and
example embodiment , the virtual machine 170A (and / or executed by a computer , the computer becomes an apparatus
application 198B / guest OS 196A) writes the first pointer for carrying out the method . An embodiment may also be
value to the first page 310C of the first page view 300 and embodied in the form of computer program code , for
writes the second pointer value to the second page 360C of 50 example , whether stored in a storage medium , loaded into
the second page view 350 . In an example embodiment , the and / or executed by a computer , or transmitted over some
first pointer value corresponds to the first host page table transmission medium , such as over electrical wiring or
pointer 240 and a second pointer value corresponds to the cabling , through fiber optics , or via electromagnetic radia
second host page table pointer 290 . tion , wherein when the computer program code is loaded

The virtual machine 170A (and / or application 198B / guest 55 into and executed by a computer , the computer becomes an
OS 196A) executes a first task (block 630) . In an example apparatus for carrying out the method . When implemented
embodiment , the first task is part of a first application 198A . on a general - purpose microprocessor , the computer program
The virtual machine 170A (and / or application 198B / guest code segments configure the microprocessor to create spe
OS 196A) determines whether to switch to a second task cific logic circuits .
(block 640) . In an example embodiment , the second task is 60 It should be understood that various changes and modi
part of the first application 198A . In an example embodi - fications to the example embodiments described herein will
ment , the second task is part of a second application 198A . be apparent to those skilled in the art . Such changes and

Responsive to a determination to switch from the first task modifications can be made without departing from the spirit
to the second task , the virtual machine 170A (and / or appli - and scope of the present subject matter and without dimin
cation 198B / guest OS 196A) reads a current pointer value 65 ishing its intended advantages . It is therefore intended that
pointed to by the guest physical address 197A , where the such changes and modifications be covered by the appended
current pointer value is one of the first pointer value and the claims .

US 10 , 248 , 785 B2
15 16

The invention is claimed as follows : sponding to the first host page table pointer and the second
1 . A system comprising : pointer value corresponding to the second host page table
a memory ; pointer .
one or more processors , in communication with the 4 . The system of claim 1 , wherein the guest OS executing
memory ; 5 on the one or more processors is further configured to write

a virtual machine , including a guest operating system the first pointer value into the first page of the first page view
(OS) , executing on the one or more processors ; and and the second pointer value into the second page of the a hypervisor executing on the one or more processors , second page view . wherein the one or more processors are configured to : 5 . A system comprising : generate , by the hypervisor , a first page view and a 10 a memory ; second page view , wherein a guest physical address one or more processors , in communication with the of the virtual machine points to a first page of the first memory ; page view , which is protected , and a second page of

the second page view , which is unprotected ; a virtual machine , including a guest operating system
write a first pointer value to the first page of the first 15 (OS) , executing on the one or more processors ; and

page view and a second pointer value to the second a hypervisor executing on the one or more processors ;
page of the second page view ; wherein the one or more processors are configured to :

execute , by the guest OS , a first task ; generate , by the hypervisor , a first host page table and
determine , by the guest OS , whether to switch to a a second host page table ;

second task ; 20 responsive to generating the first host page table , gen
responsive to a determination to switch from the first erate , by the hypervisor , a first host page table

task to the second task , read , by the guest OS , a pointer and a second host page table pointer , wherein
current pointer value pointed to by a guest physical the first host page table pointer is initialized to point
address , wherein the current pointer value is one of to the first host page table and the second host page
the first pointer value and the second pointer value ; 25 table pointer is initialized to point to the second host

responsive to reading the current pointer value , deter page table ;
mine , by the guest OS , a current page view based on receive , from a first application running on the guest
the current pointer value , wherein the current page OS , a first request to protect a first page view
view is one of the first page view and the second corresponding to the first host page table ;
page view ; and 30 responsive to receiving the first request , determine , by

responsive to determining that the current page view is the hypervisor , whether to grant the first request ; and
the first page view : responsive to a determination to grant the first request ,
save , by the guest OS , the first pointer value in a first modify , by the hypervisor , at least one access status
memory of the first task ; parameter of the first page view corresponding to the

load , by the guest OS , the second pointer value from 35 first host page table and at least one access status
a second memory of the second task ; and parameter of a second page view corresponding to

execute , by the guest OS , a virtual machine function , the second host page table ,
wherein the virtual machine function receives the wherein the first page view is protected based on the
second pointer value as a parameter and , when first request , and the second page view is unpro
executed , switches to the second page view . 40 tected .

2 . The system of claim 1 , wherein the hypervisor execut - 6 . The system of claim 5 , wherein the hypervisor execut
ing on the one or more processors is further configured to : ing on the one or more processors is further configured to

generate , by the hypervisor , a first host page table and a write a first pointer value corresponding to the first host page
second host page table ; table pointer into a first page of the first page view and a

responsive to generating the first host page table , gener - 45 second pointer value corresponding to the second host page
ate , by the hypervisor , a first host page table pointer and table pointer into a second page of the second page view , and
a second host page table pointer , wherein the first host wherein the hypervisor executing on the one or more pro
page table pointer is initialized to point to the first host cessors is further configured to provide to the guest OS the
page table and the second host page table pointer is first pointer value and the second pointer value .
initialized to point to the second host page table ; 507 . The system of claim 5 , wherein the guest OS executing

receive , from a first application running on the virtual on the one or more processors is further configured to write
machine , a first request to protect the first page view a first pointer value corresponding to the first host page table
corresponding to the first host page table ; pointer into a first page of the first page view and a second

responsive to receiving the first request , determine , by the pointer value corresponding to the second host page table
hypervisor , whether to grant the first request ; 55 pointer into a second page of the second page view .

responsive to a determination to grant the first request , 8 . The system of claim 6 , wherein the guest OS executing
modify , by the hypervisor , at least one access status on the one or more processors is further configured to
parameter of the first page view corresponding to the execute a virtual machine function , wherein the virtual
first host page table and the second page view corre - machine function receives the second pointer value as a
sponding to the second host page table . 60 parameter and , when executed , selects the second page view .

3 . The system of claim 1 , wherein the hypervisor execut - 9 . The system of claim 6 , wherein the guest OS is further
ing on the one or more processors is further configured to configured to :
write the first pointer value into the first page of the first page determine whether the first page view is inappropriate for
view and the second pointer value into the second page of a first task ;
the second page view , and wherein the hypervisor executing 65 responsive to determining that the first page view is
on the one or more processors is further configured to inappropriate for the first task , determine that switching
provide to the virtual machine the first pointer value corre to the second page view is required ; and

US 10 , 248 , 785 B2
17 18

responsive to determining that switching to the second and a second host page table pointer , wherein the first
page view is required , executing a virtual machine host page table pointer is initialized to point to the first
function , wherein the virtual machine function , when host page table and the second host page table pointer
executed , selects the second page view . is initialized to point to the second host page table ;

10 . The system of claim 6 , wherein the guest OS is further 5 receiving , from a first application running on the virtual
configured to : machine , a first request to protect a first page view
determine whether the second page view is appropriate corresponding to the first host page table ;

for a second task ; responsive to receiving the first request , determining , by responsive to determining that the second page view is the hypervisor , whether to grant the first request ; and appropriate for the second task , determine that switch - 10 responsive to a determination to grant the first request , ing to the second page view is required ; and modifying , by the hypervisor , at least one access status responsive to determining that switching to the second
page view is required , executing a virtual machine parameter of the first page view corresponding to the

first host page table and at least one access status function , wherein the virtual machine function , when
executed , selects the second page view . 15 parameter of the second page view corresponding to the

11 . The system of claim 5 , wherein the guest OS is further second host page table ,
configured to : wherein the first page view is protected based on the first

detect a page fault ; request , and the second page view is unprotected .
responsive to detecting the page fault , determine whether 16 . The method of claim 15 , further comprising writing ,

switching to the second page view is required ; and 20 by the hypervisor , a first pointer value corresponding to the
responsive to determining that switching to the second first host page table pointer into a first page of the first page

page view is required , executing a virtual machine view and a second pointer value corresponding to the second
function , wherein the virtual machine function , when host page table pointer into a second page of the second page
executed , selects the second page view . view , and providing , by the hypervisor , to a guest OS the first

12 . The system of claim 5 , wherein modifying the at least 25 pointer value and the second pointer value .
one access status parameter of the first page view renders at 17 . The method of claim 15 , further comprising writing ,
least one page of the first page view read - only . by a guest OS , a first pointer value corresponding to the first

13 . The system of claim 5 , wherein modifying the at least host page table pointer into a first page of the first page view
one access status parameter of the first page view renders at and a second pointer value corresponding to the second host
least one page of the second page view writable . page table pointer into a second page of the second page 14 . The system of claim 5 , wherein the second host page view . table is generated responsive to a determination to grant the 18 . The method of claim 15 , wherein modifying the at first request . least one access status parameter of the first page view 15 . A method , comprising :

generating , by a hypervisor executing on a computer 35 35 renders at least one page of the first page view read - only .
19 . The method of claim 15 , wherein modifying the at system , a first host page table and a second host page

table ; least one access status parameter of the second page view
responsive to generating the first host page table , gener renders at least one page of the second page view writable .

ating , by the hypervisor , a first host page table pointer

