
(12) 
(19)

PATENT 
AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199918030 B2 
(10) Patent No. 760125

(54) Title
Cross-platform server clustering using a network flow switch

(51)7 International Patent Classification(s)
H04L 012/28 H04L 012/56

(21) Application No: 199918030 (22) Application Date: 1998.12.04

(87) WIPO No: WO99/33227

(30) Priority Data

(31) Number (32) Date (33) Country
08/994709 1997.12.19 US

(43) Publication Date : 1999.07.12
(43) Publication Journal Date 1999.09.16
(44) Accepted Journal Date : 2003.05.08

(71) Applicant(s) 
Holontech Corporation

(72) Inventor(s)
Sajit Bhaskaran

(74) Agent/Attorney
SPRUSON and FERGUSON,GPO Box 3898,SYDNEY NSW 2001

(56) Related Art 
US 5612897
US 5586121



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

/

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION 
International Bureau

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/33227
H04L 12/28, 12/56 Al

(43) International Publication Date: 1 July 1999 (01.07.99)

(21) International Application Number: PCT/US98/25688

(22) International Filing Date: 4 December 1998 (04.12.98)

(30) Priority Data:
08/994,709 19 December 1997 (19.12.97) US

(71) Applicant: HOLONTECH CORPORATION [US/USJ; 2039
Samaritan Drive, San Jose, CA 95124 (US).

(72) Inventor: BHASKARAN, Sajit; 1336 Avoset Terrace, Sunny
vale, CA 94087 (US).

(74) Agent: MACPHERSON, Alan, H.; Skjerven, Morrill, 
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro 
Drive, San Jose, CA 95110 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, 
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, 
GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, 
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, 
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, 
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent 
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent 
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent 
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, 
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, 
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the 
claims and to be republished in the event of the receipt of 
amendments.

(54) Title: CROSS-PLATFORM SERVER CLUSTERING USING A NETWORK FLOW SWITCH

(57) Abstract

A network flow 
switch (205) is provided 
for connecting a pool of IP 
routers (260, 270, 280) to 
a cluster of IP servers (200) 
sharing a single IP address 
(IP 192.31.65.1) without 
requiring translation of the 
IP address. Rather, all IP 
servers (210, 220, 230,
240, 250) have the same 
IP address (IP 192.31.65.1). 
The network flow switch 
(205) routes packets to 
individual servers by writing 
the data link layer address 
of the destination IP server 
in the destination data link 
layer address field of the 
packet. However, no data 
link layer address translation 
is required for packets 
transmitted from the IP 
servers (210, 220, 230, 240, 
250) to the IP routers. Since 
in a typical client-server 
environment, the number of
packets sent from the server to the client is much greater than the number of packets sent from the client to the server, the data link layer 
address translation requires very little overall processing time. The network flow switch (205) also performs load balancing and fault 
tolerance functions. When the network flow switch (205) receives a packet destined to the cluster of IP servers (200), the packet is routed 
to the IP server with an optimal workload, so as to ensure that the workload is evenly distributed among the IP servers (210, 220, 230, 
240, 250).

δo 0
Network Flow Switch

0
IP 192.31.65.2

0
IP 19231.65.3 IP 192.31.65.4 

MAC 126.8

Network Router Network RouterNetwork Router



WO 99/33227 PCT/US98/25688

CROSS-PLATFORM SERVER CLUSTERING USING A NETWORK FLOW 

SWITCH

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to computer 

networks and more specifically, to high-bandwidth network 

switches.

Description of the Related Art

The increasing traffic over computer networks such as the 

Internet, as well as corporate intranets, WANs and LANs, often 

requires the use of multiple servers to accommodate the needs 

of a single service provider or MIS department. For example, 

a company that provides a search engine for the Internet may 

handle over 80 million hits (i.e., accesses to the company's 

web page) every day. A single server cannot handle such a 

large volume of service requests within an acceptable response 

time. Therefore, it is desirable for high-volume service 

providers to be able to use multiple servers to satisfy 

service requests.

For example, the Internet Protocol (IP), which is used to

identify computers connected to the Internet and other global,

wide or local area networks, assigns a unique IP address to

each computer connected to the network. Thus, when multiple

servers are used, each server must be accessed using the

server's own IP address.

-1-



WO 99/33227 PCT/US98/25688

On the other hand, it is desirable for users to be able 

to access all servers of a service provider using a unique IP 

address. Otherwise, the users would have to keep track of the 

servers maintained by the service provider and their relative 

workloads in order to obtain faster response times. By using 

a single "virtual" IP address (i.e., an IP address that does 

not correspond to any one of the IP servers, but rather 

designates the entire group of IP servers), service providers 

are able to divide service requests among the servers. By 

using this scheme, IP servers may even be added or removed 

from the group of IP servers corresponding to the virtual IP 

address to compensate for varying traffic volumes. Multiple 

servers used in this fashion are sometimes referred to as a 

"cluster."

Fig. 1 illustrates a prior art cluster of IP servers. A 

server load balancer 100 routes packets among IP servers 110, 

120, 130, 140 and 150 and network routers 160, 170 and 180. 

Each of IP servers 110, 120, 130, 140 and 150 and network 

routes 160, 170 and 180 has a distinct IP address; however, 

any of IP servers 110, 120, 130, 140 and 150 can be accessed 

via a virtual IP address (not shown) from networks connected 

to network routers 160, 170 and 180. When a packet addressed 

to the virtual IP address is received by server load balancer 

100, the virtual IP address is translated into the individual 

IP addresses of one of the IP servers and the packet is routed 

to that IP server. The translation, however, involves 

generating a new checksum for the packet and re-writing the 

source/destination IP address and the checksum fields of the 

IP header field, as well as of the TCP and UDP header fields. 

Both the IP header checksum, which is the ISO Layer 3 or

-2-



WO 99/33227 PCT/US98/25688

Network Layer header, and the TCP or UDP header checksums, 

which are the ISO Layer 4 or Transport Layer header checksums, 

need to be recalculated for each packet. Typically, these 

operations require intervention by a processor of the server 

load balancer .

When a high volume of requests is processed, the overhead 

imposed by the translation has a significant impact on the 

response time of the IP servers. In addition, if a large 

number of IP servers are used, the time required to perform 

the translation creates a bottleneck in the performance of the 

server load balancer, since the IP address of each packet 

transmitted to and from the IP servers must be translated by 

the switch. Therefore, there is a need for a faster method 

for sharing a single IP address among multiple IP servers.

In other cases, when multiple IP addresses are used and a 

client typically tries to access a primary IP server. If the 

primary IP server does not respond within a fixed time period, 

the client tries to access backup IP servers, until a response 

is received. Thus, when the primary IP server is unavailable, 

the client experiences poor response time. Current server 

replication systems such as those used in DNS and RADIUS 

servers are affected by this problem. There is thus a need 

for a method of accessing multiple IP servers which does not 

experience poor response time when the primary IP server is 

unavailable.

Another potential drawback of the prior art is that each 

replicated server requires a unique IP address physically 

configured on the server. Since all IP networks are subject to 

subnet masking rules (which are often determined by an 

external administrator) the scalability of the replication is

-3-



WO 99/33227 PCT/US98/25688

severely limited. For example, if the subnet prefix is 28 

bits of a 32-bit IP address, the maximum number of replicated 

servers is 16 (2(32’28)) . There is a need for a method of 

replicating servers that allows replication of IP servers 

independent of subnet masking rules.

IP version 4 addresses are currently scarce on the 

Internet, so any method of IP server replication that requires 

a proportional consumption of these scarce IP addresses is 

inherently wasteful. For example, an example of prior art is 

Domain Name Service (DNS) based load balancing. DNS servers 

are used for resolving a server name (e.g., 

www.companyname.com) to a globally unique IP address (e.g., 

192.45.54.23). In DNS based server load balancing, many 

unique IP addresses per server name are kept and doled out to 

allow load balancing. However, this reduces the number of 

available IP version 4 addresses. There is thus a need for a 

method of clustering IP servers that minimizes consumption of 

the scarce IP address space.

Furthermore, when the IP payload of a packet is encrypted 

to provide secure transmissions over the Internet, IP address 

translation cannot be performed without first decrypting the 

IP payload (which contains the TCP or UDP header checksums). 

In the current framework for IP Security, referred to as 

IPSEC, the transport layer is part of the network layer 

payload which will be completely encrypted in a network 

application that implements IPSEC. IPSEC is described in RFCs 

1825-1827 published by the Internet Engineering Taskforce. 

Encryption is performed by the client, and decryption is 

performed by the server, using secret crypto-keys which are 

unique to each client-server link. Therefore when such

-4-

http://www.companyname.com


WO 99/33227 PCT/US98/25688

encryption is performed in client-server communications, as in 

IPSEC, prior art server load balancers will not be able to 

perform load balancing operations without violating IPSEC 

rules. This is because server load balancers cannot access 

the transport layer information (encrypted as part of the IP 

payload) without first decrypting the IP payload. Since, the 

crypto-keys set up between client and server are by definition 

not public, the IP payload cannot be decrypted by the server 

load balancer in compliance with IPSEC (indeed, for all 

practical purposes, the server load balancer will not work at 

all for encrypted packets).

There is thus a need for a system that not only allows 

for transmissions of encrypted data packets according to the 

IPSEC model, but also allows network administrators to perform 

both server load balancing and IPSEC in their networks.

Furthermore, current server load balancers typically 

operate on TCP packets only. By contrast, IP headers have an 

8-bit protocol field, theoretically supporting up to 256 

transport protocols at ISO layer 4. There is thus a need for 

a server load balancing system that supports transport 

protocols at ISO layer 4 other than TCP (e.g., UDP, IP_in_IP, 

etc.).

Prior art systems allow for load balancing and, 

sometimes, fault tolerance of network traffic only in the 

inbound direction (i.e., client-router-server). Load 

balancing and fault tolerance in the reverse (outbound) 

direction (i.e., server-router-client) is not supported. 

Specifically if multiple router links are provided for the 

server to return information to clients, no attempt is made to 

load balance traffic flow through the router links. Also,

-5-



WO 99/33227 PCT/US98/25688

when a specific IP server is configured to use a specific 

default router IP address in the outbound transmissions, no 

fault tolerance or transparent re-routing of packets is 

performed when the router fails. There is thus a need for a 

system that allows for traffic flow clustering services, in 

both the inbound and the outbound directions.

The prior art solutions are hardware devices configured 

to appear as IP routers to the cluster of servers being load 

balanced. As a result, one more classes of IP router devices 

are added to the router administrator's domain of managed IP 

routers. This constrains future evolution of the router 

network, both in terms of adding new vendors' routers in the 

future and adding new and more sophisticated routing features. 

Debugging and troubleshooting of routing problems also becomes 

more difficult. It would thus be preferable to employ a 

completely transparent piece of hardware, such as a LAN switch 

or hub, as a load balancing device. In the related art, the 

servers and any external routers are connected to the load 

balancing device using shared media Ethernet, (i.e., a 

broadcast media network). There is a need for a better 

solution that allows use of switched circuits (e.g., switched 

Ethernet, SONET), as switched circuits inherently provide (a) 

dedicated bandwidth and (b) full-duplex (i.e., simultaneous 

transmit and receive operations) to call connected devices.

SUMMARY OF THE INVENTION

The present invention provides a network flow switch (and 

a method of operation thereof)for connecting a pool of IP 

routers to a cluster of IP servers sharing a single IP 

address, without requiring translation of the IP address, and

-6-



WO 99/33227 PCT/US98/25688

providing bi-directional clustering. The network flow switch, 

by operating transparently at the 150 layers 2 and 3, enables 

cross-platform clustering of servers and routers, these 

routers being the so-called "first-hop" routers used by the 

servers to communicate with the outside world. This means the 

servers within any single cluster can come from any 

manufacturer of computer hardware and run any operating system 

(e.g., Microsoft WINDOWS NT, Unix, MACOS). WINDOWS NT is a 

registered trademark of Microsoft Corp, of Redmond, 

Washington; MACOS is a registered trademark of Apple Computer, 

Inc. of Cupertino, California. It also means the routers can 

come from any vendor of routing equipment. The network flow 

switch therefore, allows customers freedom of choice in server 

operating systems as well as router systems in designing their 

server clustering schemes. The only requirements on these 

servers and routers is that they all implement standard TCP/IP 

communications protocols, or some other protocol stack in 

conformance with the ISO/OSI 7-layer model for computer 

communications. The network flow switch routes packets to 

individual servers by writing the Data Link Layer address of 

the destination IP server in the destination Data Link Layer 

address field of the packet. Packets transmitted from the IP 

servers to the IP routers, on the other hand, do not require 

modification of the Data Link Layer address field.

Since in a typical client-server environment the majority 

of the packets flowing through the network flow control switch 

are transferred from the server to the client, eliminating 

processor intervention in routing outbound packets allows for 

significant performance enhancements. As a result, the

-7-



WO 99/33227 PCT/US98/25688

likelihood of the network flow switch becoming a bottleneck is 

greatly reduced.

Multiple clusters (one or more PI servers sharing a 

single IP address) are supported in a single network flow 

switch. On any single link attached to each of the IP 

servers, multiple clusters can be supported if the IP server's 

operating system supports multiple IP addresses on a physical 

link.

In some embodiments, the network flow switch, in addition 

to routing of the packets, performs load balancing and fault 

tolerance functions. In these embodiments, a processor of the 

network flow switch periodically executes a load balancing 

routine to determine the relative workload of each of the IP 

servers. When the network flow switch receives a packet 

destined to the cluster of IP servers, the packet is routed to 

the IP server with an optimal workload, so as to ensure that 

the workload is evenly distributed among the IP servers. In 

addition, if a failure of a network router is detected, a 

packet addressed to that network router is re-routed to a 

different network router by re-writing the Data Link Layer 

destination address of the packet. Since the network flow 

switch continuously monitors the status of the IP servers, no 

lengthy time delay is introduced in client-server 

communications when an IP server is disabled.

Since the IP header is not modified, the network flow

switch of the present invention operates on packets encoded

according to any ISO layer 4 protocol and, unlike prior art

server load balancers, is not limited to TCP encoded packets.

In addition, the network flow switch can also handle re-

-8-



WO 99/33227 PCT/US98/25688

routing, load balancing and fault tolerance of encrypted

packets transparently to both server and client.

In some embodiments, load balancing is also performed for 

outbound packets so as to route packets to the router with an 

optimal workload.

Thus, a method and apparatus are provided to allow bi

directional clustering for load balancing and fault tolerance 

in the inbound direction (i.e., client-router-server) , as well 

as in the outbound direction (i.e., server-router-client).

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates a prior art cluster of IP servers, 

each having a distinct IP address, and a prior art network 

flow switch for translating a virtual IP addressed shared by 

all IP servers in the cluster into the individual IP addresses 

of the IP servers.

Fig. 2 illustrates a cluster of IP servers and a network 

flow switch, according to an embodiment of the invention. 

Each IP server has a same IP address. A Data Link Layer 

address is used to identify each IP server within the cluster.

Fig. 3A illustrates the format of a packet routed to/from 

the cluster of IP servers by the network flow switch 205 of 

Fig. 2.

Fig. 3B shows the format of link field 320 of Fig. 3A.

Fig. 4A illustrates the structure of the network flow 

switch 205 of Fig. 2.

Fig. 4B is a flow diagram of the process of routing 

packets from one of the network clients to one of the IP 

servers of Fig. 2 via the network flow switch 205 of Fig. 4A, 

according to an embodiment of the invention.

-9-



WO 99/33227 PCT/US98/25688

Fig. 4C is a flow diagram of the process of routing 

packets from one of the IP servers to one of the network 

clients of Fig. 2 via the network flow switch 205 of Fig. 4A, 

according to an embodiment of the invention.

Fig. 5A is a block diagram of a network flow switch 

implemented using multiple general-purpose circuit boards, 

according to an embodiment of the invention.

Fig. 5B is a block diagram of a network flow switch 

implemented using a general-purpose CPU board and a special- 

purpose network board, according to an embodiment of the 

invention.

Fig. 5C is a block diagram of a network flow switch 

implemented using two special-purpose circuit boards, 

according to an embodiment of the invention.

Fig. 5D is a block diagram of a network flow switch 

implemented using a single special-purpose circuit board, 

according to an embodiment of the invention.

Fig. 5E is a block diagram of a network flow switch 

implemented using a combination of special-purpose and general 

purpose circuit boards, according to an embodiment of the 

invention.

Fig. 5F is a block diagram of a network flow switch 

implemented using a crossbar switch, according to an 

embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The method and apparatus of the present invention allow 

multiple IP servers to share a same IP address and use a 

network flow switch to route packets among the IP servers 

based on the Data Link Layer address of the IP servers (e.g.,

-10-



WO 99/33227 PCT/US98/25688

the destination address of the packets is translated into the 

Data Link Layer address of one of the IP servers). Since IP 

networks ignore the source Data Link Layer address field of 

packets transmitted over the network, Data Link Layer address 

translation is performed only for packets flowing from an IP 

client to an IP server. In the reverse flow direction, that 

is, from an IP server to an IP client, no Data Link Layer 

address translation is required, thus allowing for very fast 

throughput through the network flow switch.

A cluster of IP servers 200 and a network flow switch

205, according to an embodiment of the invention, are shown in 

Fig. 2. Network flow switch 205 routes packets among IP 

servers 210, 220, 230,240 and 250 and network routers 260, 270 

and 280. IP servers 210, 220, 230,240 and 250 are configured 

identically and have a virtual IP address 290. In addition, 

each of IP servers 210, 220, 230, 240 and 250 has a distinct 

Data Link Layer address, and a distinct link name. The link 

name is used to identify the unique server within the cluster 

of servers sharing a same IP address. As explained below, the 

Data Link Layer address is used to translate a virtual Data 

Link Layer address to a physical Data Link Layer address, 

after an IP server is selected by network flow switch 205 to 

receive the packet. IP address 290 is visible to devices 

communicating with the cluster 200, while the individual Data 

Link Layer addresses of each of the IP servers are not.

Network flow switch 205, in fact, performs a proxy Address 

Resolution Protocol (ARP) function that returns a "virtual" 

Data Link Layer address (not shown) to a network connected 

device in response to a standard ARP query. As a result, 

network connected devices see the cluster 200 as having a

-11-



WO 99/33227 PCT/US98/25688

single IP address 290 and a single Data Link Layer address

(not shown).

Network routers 260, 270 and 280, on the other hand, each 

have a distinct IP address and a distinct Data Link Layer 

address. The routers are used to connect cluster 200 to 

external networks (not shown) via network flow switch 205. 

Thus, in order to transmit packets of information to cluster 

200, a device connected to one of the external networks (e.g., 

a router) issues a standard ARP query to network flow switch 

205 to obtain the virtual Data Link Layer address of cluster 

200; network flow switch 205 returns a Data Link Layer address 

of the selected receiving device (e.g., one of the IP servers) 

to the requesting device (e.g., the router). The network 

connected device then transmits a series of packets to network 

flow switch 205 (e.g., through one of network routers 260, 270 

or 280 connected to the external network). The packets are 

then re-routed by network flow switch 205 to exactly one of IP 

servers 210, 220, 230, 240 and 250.

Since all embodiments of the network flowswitch ensure 

that no two servers in the same cluster are on the same 

flowswitch part, broadcast isolation of the replicated servers 

is enabled. Therefore, IP address conflicts are avoided by 

the active intervention of the flowswitch in the event of ARP 

query packets being received by the network flowswitch, as 

described above.

The format of a packet 300 transmitted over the external 

network is illustrated in Fig. 3A. Packet 300 has a header 

field 310, a link field 320, an IP header 330, a TCP header 

340, a data payload 350, a CRC field 360 and a trailer 370. 

Header 310 and trailer 370 are 8-bit wide private tag-fields:

-12-



WO 99/33227 PCT/US98/25688

these are not transmitted over the external network but used 

only inside the network flow switch. IP header 330 and TCP 

header 340 are standard IP and TCP headers. IP header 330 

includes, among other information, a destination IP address 

and a source IP address for packet 300. CRC field 360 

contains a checksum correction code used to verify that packet 

300 has been transmitted without error. If IP header 330 were 

modified, as required by prior art methods for sharing a 

single IP address among multiple IP servers, the checksum for 

CRC field 360 would have to be recalculated, an operation 

requiring processor intervention. In addition, if encrypted 

information is transmitted according to the IPSEC security 

framework, decryption of the IP payload is required. Thus, by 

eliminating the need to recompute the checksum for each 

packet, the network flow switch of the present invention 

achieves better throughput than prior art devices. Network 

owners can further deploy IPSEC security mechanisms 

transparently and without fear of communications being broken.

Fig. 3B illustrates the format of link field 320. Link 

field 320 has a Data Link Layer source address field 380, a 

Data Link Layer destination address field 390 and type field 

395. Since link field 320 is not part of the IP protocol, 

there is no need to recalculate the checksum for CRC field 360 

when link field 320 is modified. Accordingly, re-routing of 

packets according to the present invention is accomplished by 

re-writing the Data Link Layer destination address in Data 

Link Layer destination address field 390 of packet 300. 

Neither IP header 330 nor CRC field 360 are modified, reducing 

the processing time required to route packets to and from the 

cluster of IP servers.

-13-



WO 99/33227 PCT/US98/25688

An embodiment of network flow switch 205 (Fig. 2) is 

illustrated by the block diagram of Fig. 4A. Network flow 

switch 205 has a CPU board 400 and four ethernet cards 415, 

416, 417 and 418 connected by a PCI bus 410. CPU board 400, 

in turn, has a CPU 402, a memory 404, and a memory controller 

406 for controlling access to the memory 404. Each of 

ethernet cards 415, 416, 417 and 418 has an ethernet 

controller and two input/output ports 411 and 413.

A network flow switch according to one embodiment of the 

invention can be constructed entirely from off-the-shelf ASICs 

(Application Specific Integrated Circuits), controlled by a 

general purpose CPU executing a software program. Since many 

commercially available Ethernet switches provide general 

purpose CPUs for switch management (e.g., for executing SNMP 

and IEEE 802.ID Spanning Tree Protocols) a network switch 

according to an embodiment of the invention can be easily 

implemented on such hardware platforms. The only requirement 

is that the ASIC be able to support some form of "CPU 

intervention" triggered when a packet with a particular 

destination Data Link Layer address is routed through the 

network flow switch. ASICs that support this form of CPU 

intervention are available from, among others, Galileo 

Technology Ltd. of Kormiel, Israel, MMC Networks, Inc. of 

Sunnyvale, Calif, and I-Cube, Inc. of Campbell, Calif.

The process of routing a packet 300 (Fig. 3A) received by 

one of network routers 260, 270 or 280 to one of IP servers 

210, 220, 230, 240 or 250 of Fig. 2 is illustrated by the flow 

diagram of Fig. 4B. Initially, a packet is received on a port 

of one of ethernet cards 415, 416, 417 or 418, in stage 420. 

In stage 425, ethernet controller 412 then checks a CPU

-14-



WO 99/33227 PCT/US98/25688

intervention bit to determine whether the packet needs to be 

sent to the CPU board 400 for further processing. In such a 

case the packet is transferred to CPU board 400 over PCI bus 

410 and stored in memory 404 by memory controller 406, in 

stage 430. If the CPU intervention bit is not set, however, 

the processing proceeds to stage 445. Stage 435 performs an 

optional load balancing operation to determine which of IP 

servers 210, 220, 230, 240 or 250 packet 300 is to be routed 

to. The load balancing operation of stage 435 attempts to 

divide packets to be processed among the IP servers according 

to the capacity and the current utilization of each server. A 

load balancing scheme suitable for use in the present 

invention is described in a related application titled 

"DYNAMIC LOAD BALANCER FOR MULTIPLE NETWORK SERVERS" by Sa jit 

Bhaskaran and Abraham Matthews, having Serial No. 08/992,038 

and attorney docket number M-4969_US, which is herein 

incorporated by reference in its entirety. Stage 440 then re

writes the Data Link Layer destination address field of packet 

300 to indicate which of IP servers 210, 220, 230, 240 or 250 

packet 300 is to be routed to. Finally, the packet is 

transferred the one of ethernet cards 415, 416, 417 or 418 to 

which the IP server specified by the Data Link Layer 

destination address field of packet 300 is connected, in stage 

445.

The process of routing a packet 300 (Fig. 3A) from one of 

IP servers 210, 220, 230, 240 or 250 to one of network routers 

260, 270 or 280 (Fig. 2) is illustrated by the flow diagram of 

Fig. 4C. Initially, a packet is received on a port of/one of 

ethernet cards 415, 416, 417 or 418 connected to one of IP 

servers 210, 220, 230, 240 or 250, in stage 450. Optional

-15-



WO 99/33227 PCT/US98/25688

stage 455 then checks whether the network router to which the 

packet 300 is to be routed is in service, in which case 

processing proceeds with stage 465. A fault tolerance scheme 

suitable for use in the present invention is described in a 

related patent application titled "ROUTER POOLING IN A NETWORK 

FLOWSWITCH" by Sajit Bhaskaran, having Serial No. 08/994,405 

and attorney docket number M-4971_US, which is herein 

incorporated by reference in its entirety. Otherwise, in 

optional stage 460, ethernet controller 412 transfers packet 

300 over PCI bus 410 to CPU board 400 and memory controller 

406 stores packet 300 in memory 404. Still in stage 460, CPU 

402 re-writes Data Link Layer destination address field 390 of 

packet 300 to indicate which of network routers 260, 270 or 

280 packet 300 is to be routed to. Finally, memory controller 

406 transfers packet 300 over PCI bus 410 to one of ethernet 

cards 415, 416, 417 or 418, depending on the contents of Data 

Link Layer destination address field 390 of packet 300, in 

stage 465.

In some embodiments, the network flow switch provides 

load balancing and clustering for outbound packets. In such 

case, the network routers are grouped in "router pools," just 

as IP servers were grouped in clusters for inbound processing. 

Traffic from IP servers going to IP clients is load balanced 

if multiple network routers and/or multiple network router 

links are present. For example, if four network routers each 

with a 100 Mbps Ethernet port are connected to the network 

flow switch traffic is approximately load balanced on the four 

links, allowing a throughput of nearly 400 Mbps, even if all 

the IP servers are each configured with a single and identical 

default router IP address.

-16-



WO 99/33227 PCT/US98/25688

This is achieved by programming the network flow switch 

to respond to ARP requests from the IP servers for a 

particular network router's IP address as follows. The 

network flow switch keeps track of the load going to all 

network routers in a router pool (e.g., by keeping track of 

<in packets, out packets, in bytes, out bytes> vectors). The 

IP servers maintain ARP caches of the IP address of the 

network routers. The ARP cache is updated by periodically 

issuing an ARP request for a network router's IP address. The 

network flow switch intercepts the request, examines the IP 

server's IP address, and responds to the request by assigning 

the Data Link Layer address of the network router in the pool 

that is best able to service the load coming from this 

particular server ("best" is determined by measures of real 

time traffic load or using a simple round robin scheme based 

on server source IP addresses).

For purposes of outbound load balancing, unlike for 

inbound load balancing, network routers are configured with 

unique IP addresses, rather than a single IP address.

In some embodiments, the network flow switch can be 

configured to perform only "availability clustering." In 

availability clustering, one server is serves as the primary 

IP server, while all other IP servers in the cluster act as 

secondary IP servers- at any given time (secondary - 

operational or secondary - failed). Traffic is always routed 

to the primary IP server. If the primary IP server fails, the 

failure is automatically detected by the network flow switch 

and the failed IP server's status is converted to "secondary - 

failed." One of the available IP servers in state "secondary 

- operational" is then converted to state "primary". The

-17-



WO 99/33227 PCT/US98/25688

network flow switch continues to monitor the state of servers 

in "secondary-failed" state and automatically detects when 

they becomes operational again. When this happens, their 

status is changed to "secondary - operational". Therefore, a 

failed primary IP server which is restored after being in 

"secondary - failed" state for some time never pre-empts the 

current primary, but rather goes into "secondary - 

operational" state.

In addition, the status of every network router in a 

router pool is monitored. If the network router fails, all 

traffic directed to that network router is transparently re

directed to another network router in the router pool until 

the network router is restored. No intervention from the IP 

servers is necessary, as the re-direction is handled entirely 

by the network flow switch.

Figs. 5A-5C illustrate several possible hardware 

implementations of network flow switch 205 (Figs. 2 and 4A). 

Each of the hardware implementations of Figs. 5A-5C represents 

a different trade-off between ease of implementation and 

performance of the network flow switch. For example, the 

hardware implementation of Fig. 5A does not require any 

special purpose hardware and can be implemented using off-the- 

shelf components.

In Figs. 5A-5D, the CPU is a model R-4700 processor, 

available from Integrated Device Technology, Inc. of San Jose, 

Calif., the memory controller is a model GT-64010 controller, 

available from Galileo Technologies Ltd. of Karmiel, Israel 

and the ethernet controllers are model GT-48002 ethernet 

controllers, also available from Galileo Technologies. While 

this specific hardware components are described for clarity,

-18-



WO 99/33227 PCT/US98/25688

the invention is not limited to the specific components, 

manufacturers or model numbers. Other components made by 

different manufacturers and having different model numbers can 

be used in place of the components described in Figs. 5A-5C.

Fig. 5A shows a first hardware implementation of network 

flow switch 205 having a CPU board 500 and several ethernet 

cards 410, 420, 430 and 440. CPU board 500 has an R-4700 

processor connected to an 85C30 asynchronous I/O controller 

and to a GT-64010 memory controller. The asynchronous 

controller is in turn connected to a pair of RS232/DB-25 

input/output ports for interfacing with other devices. The 

memory controller, in addition to PCI bus 410, is connected to 

a 512 KB EPROM, an 8MB RAM and a 2MB FLASH memory. Ethernet 

cards 510, 520, 530 and 540 have a GT-48002 ethernet 

controller, a 1MB EDO RAM and a pair of input/output ports. 

CPU board 500 and ethernet cards 510, 520, 530 and 540 are 

general purpose circuit boards available from Galileo 

Technologies. As a result, network flow switch 205 can be 

implemented using only general-purpose components, as 

illustrated in Fig. 5A.

Fig. 5B illustrates a second hardware implementation of 

network flow switch 205 (Figs. 2 and 4A). In Fig. 5B, a 

special-purpose network card 560 is used in place of the 

general-purpose network cards of Fig. 5A. Thus, Ethernet 

cards 510, 520, 530 and 540 are replaced by a single network 

card 560. Network card 560, in turn, comprises several 

ethernet controllers each connected to a pair of input/output 

ports, as well as an on-board PCI bus. The external PCI bus 

of Fig. 5A is eliminated altogether. The hardware 

implementation of Fig. 5B provides improved performance and

-19-



WO 99/33227 PCT/US98/2S688

cost reduction over the hardware implementation of Fig. 5A, at 

the cost of adding special-purpose hardware.

Fig. 5C illustrates a third hardware implementation of 

network flow switch 205 (Figs. 2 and 4A). In Fig. 5C, two 

special-purpose circuit boards are used in place of the 

general-purpose circuit boards of Fig. 5A. CPU board 550 has 

the same components as CPU board 500 of Fig. 5A, except that a 

4MB FSRAM is added. In addition, a content addressable memory 

(CAM) and fast PLDs could be added to speed up the performance 

of CPU board 550. Ethernet cards 510, 520, 530 and 540, 

however, are replaced by a single network card 560, as 

explained with respect to Fig. 5B. The hardware 

implementation of Fig. 5C provides improved performance over 

the hardware implementation of Figs. 5A and 5B (i.e., support 

for 100 Mbps transfer rates and faster CPU performance), at 

the cost of adding special-purpose hardware.

Fig. 5D illustrates yet a third hardware implementation 

of network flow switch 205 (Figs. 2 and 4A) in which the 

entire switch is provided on a single circuit board 570. 

Circuit board 570 has all the components of CPU board 550 and 

network card 560 of Fig. 5C, except that the on-board PCI bus 

is replaced by a Buffer Memory Arbiter. Eliminating the PCI 

bus allows for further improved performance (transfer rates in 

excess of lGbps), at the cost of more expensive special

purpose hardware.

Fig. 5E illustrates a further hardware implementation of 

network flow switch 205 (Figs. 2 and 4A) using a special- 

purpose circuit board 575 in combination with ethernet cards 

510, 520, 530 and 540 (Fig. 5A). Circuit board 575 has the 

same components as circuit board 500 of Fig. 5A, except that a

-20-



WO 99/33227 PCT/US98/25688

CPLD 585 and a dual-port SRAM 580 are added. Circuit board 

575 is connected to ethernet cards 510, 520, 530 and 540 via 

PCI bus 410. In this embodiment, Data Link Layer address 

translations are performed by CPLD 585, rather than by CPU R- 

4700, allowing for faster processing of packets. CPU R-4700 

still performs management tasks, such as periodically checking 

the loads on each of the IP servers, detecting failures of IP 

servers and network routers, etc.

Fig. 5F illustrates a further hardware implementation of 

network flow switch 205 (Figs. 2 and 4A) using a crossbar 

switch in place of PCI bus 410. In Fig. 5F, crossbar switch 

594 connects management processor cards 590 and 592 to 

ethernet cards 582 and 584, as well as circuit cards 586 and 

588. Each of circuit cards 586 and 588 includes an ASIC 596 

connecting a look-up table 598 with a Data Link Layer chip 

595. In this embodiment, management processor cards 590 and 

592 are used to perform management tasks as explained above 

with respect to Fig. 5E, ethernet cards 582 and 584 are used 

for outbound flow of packets as descried with respect to Fig. 

5A and circuit cards 586 and 588 are used to translate the 

Data Link Layer address fields of inbound packets. This is 

achieved by extracting the destination Data Link Layer address 

field of the packet in Data Link Layer chip 595 and performing 

a fast look-up of look-up table 598, in which the Data Link 

Layer address of the IP server with an optimal load is stored. 

Data Link Layer chips suitable for use in this invention are 

available, among others, from Galileo Technologies, I-Cube and 

MMC Networks. If network router fault tolerance is provided, 

circuit cards 586 and 588 are also used to translate the Data

-21-



WO 99/33227 PCT/US98/25688

Link Layer address field of outbound packets that are re

routed due to a network router failure.

To increase performance, each of IP servers 210, 220, 

230, 240 and 250 and crouters 260, 270 and 280 should be 

connected (either directly or via a network) to network flow 

switch 205 via a switched port with dedicated full duplex 

bandwidth. However, network flow switch 205 (Figs. 2 and 4A) 

functions properly even in case it is connected to one of the 

IP servers via a shared media port. Each of IP servers 210, 

220, 230, 240 and 250, thus, is configured differently 

depending on whether the server is connected to network flow 

switch 205 via a shared instead of a switched port. Each IP 

server is configured automatically at start-up time by 

executing a computer program on the server.

In one embodiment of the invention, all or some of the 

routers and servers are connected using switched circuits 

using switched circuits at the data link layer. This provides 

each device connected to the flowswitch (a) dedicated 

bandwidth and (b) full duplex operation. Those skilled in the 

art, however, will realize that the network flowswitch of the 

present inventions can also be applied to non-switched 

enviroments (e.g., shared media Ethernet hubs or shared ports 

using cascaded Ethernet switches).

Embodiments described above illustrate but do not limit 

the invention. In particular, the invention is not limited to 

any particular hardware used to implement the network flow 

control switch. The invention, however, is not limited to any 

particular number of ethernet cards or to any particular kind 

of processor, memory controller or bus. In particular, any 

number of ethernet cards, with an arbitrarily large numbers of

-22-



WO 99/33227 PCT/US98/25688

physical link ports, can be used in accordance to the present 

invention. Processors other than the R-4700 and the GT-64010 

can be used in accordance to the invention. Ethernet 

switching ASICs other than the Galilieo GT-48002A can be used, 

from Galileo or other vendors, such as I-Cube or MMC Networks. 

Furthermore, a single processor may be used in place of CPU 

402 and memory controller 406 (Fig. 4A). Buses other than a 

PCI bus (e.g. SCSI buses) or even crossbar switches can be 

used in place of a PCI bus 410 (Fig. 4A). Finally, network 

cards other than ethernet cards can be used in place of 

ethernet cards 415, 416, 417 and 418 (Fig. 4A) . Furthermore, 

the invention is not limited to any type or number of network 

cards. In fact, the invention can be applied to an arbitrary 

number of network cards connected to an arbitrary number of 

networks. Other embodiments and variations are within the 

scope of the invention, as defined by the following claims.

-23-



<1

PCT/US *7 8 / 2 5 6 8 8
IPEA/US 14 JAN 2000

CLAIMS
1. A network flow switch for routing packets to and from

a plurality of IP servers, wherein each df the IP servers has 
a same IP address and a unique Data Link Layer address, the 
switch comprising: .. .

a processor; .
a memory connected to.the processor; and ·
a plurality of network ports connected to a network; 
wherein a packet received on a first network port is 

routed toja second network port by writing a Data Link 
Layer address of one of the IP servers into the packet in 
the network flow switch.

2. The switch of claim 1, wherein the processor and the 
memory are part of a single circuit board.

3. The switch of claim 2, wherein the circuit board 
further comprises an I/O controller and a memory controller.

4. The switch of claim 1, wherein the network ports are 
part of a single circuit board.

5. The switch of claim.1, wherein the processor and the 
memory are part of a general-purpose circuit board.

6. The switch of claim 1, wherein the network ports are 
part of a general-purpose circuit board.

. ■ - )

. 7. The switch., of claim 1, wherein the processor and the
memory are part of a special-purpose circuit board.

-24-
WNOfo SHFFT



« .

8. The switch of claim 1, wherein the network ports are 
part of a special-purpose circuit board.

9. The switch of claim 1, wherein each network port 
further comprises a controller and a memory.

10. The switch of claim 1, further comprising one or 
more ASICs.

11. The switch of claim 1, wherein routing packets from 
one of the IP servers to a network destination does not 
require intervention by the processor.

12. The switch of claim 1, wherein an IP payload of the 
packet received on the first network port is encrypted.

13. The switch of claim 1, wherein the packet is encoded 
according to an ISO layer 4 transport protocol other than TCP.

14. A method for routing packets to and from a plurality 
of IP servers, wherein each of the servers has a same IP 
address and a unique Data Link Layer address, the method 
comprising:

receiving a packet in a network flow switch
corresponding to the IP address of the IP servers; and 

routing the packet to at least'one of the IP servers
by writing the destination Data Link Layer address of the 
IP server into the packet in the network flow switch.

-25-

AMENDED SHEET



PCT/US 98/25 68 8
IPEA/US 14 JAN 2000

15. The method of claim 14, wherein the packet is routed 
to only one of the IP servers.

16. The method of claim 14, wherein if a first IP is
disabled, the packet is routed to a second IP server.

17. The method of claim 16, wherein routing the packet
to the second IP server further comprises writing the Data
Link Layer address of the second IP server into the packet.

18. The method of claim 14, wherein the packet is routed 
to -an IP server having an optimal workload.

19. The method of claim 18, wherein routing the packet 
to the IP server further comprises writing the Data Link Layer 
address of the IP server into the packet.

20. The method of claim 14, further comprising: 
receiving a packet in the network flow switch from

one of the IP servers;
extracting a destination address from the packet;

and
routing the packet to a network destination based on 

the destination address of the packet.

21. The method of claim 20, wherein routing the packet 
does not require intervention by a processor of the network 
flow switch.

-26-

AMENDED SHFF i



ά . PCT/US 9 8/25 68 8

22. The method of claim 14, wherein an IP payload of the 
packet is encrypted.

23. The method of claim 14, wherein the packet is 
encoded according to an ISO layer 4 transport protocol other 
than TCP.

24. A computer program for controlling a network flow 
switch, wherein the switch routes packets to and from a 
plurality of IP servers, each of the IP servers having a same 
IP address and a unique Data Link Layer address, the switch 
comprising:

a processor executing the computer program;
a memory connected to the processor; and
a plurality of network ports connected to a network;

the computer program comprising instructions for: 
receiving a packet on one of the network ports of

the network flow switch; and
routing the packet to at least one of the IP servers 

by writing the Data Link Layer address of the IP server 
into the packet in the network flow switch.

25. The computer program of claim 24, further comprising 
instructions for routing the packet to a second IP server if a 
first IP server is disabled.

26. The computer program of claim 24 wherein the 
instructions for routing the packet to a second IP server 
further comprise instructions for writing the Data Link Layer 
address of the second IP server into the packet.

AMENDED SHEET



PC.7US 98/25 68 8
IPEA/US 14 JAN 2000

27. The computer program of claim 24 further comprising 
instructions for routing the packet to an IP server having an 
optimal workload.

28. The computer program of claim 24 wherein the 
instructions for routing the packet to the IP server further 
comprise instructions for writing the Data Link Layer address 
of the IP server into the packet.

29. The computer program of claim 24 further comprising 
instructions for:

receiving a packet on one of the network ports of
the network flow switch from one of the IP servers; and 

routing the packet to a network destination based on 
a destination address of the packet.

30. The computer program of claim 24, wherein the packet 
is encrypted.

31. The computer program of claim 24, wherein the packet 
is encoded according to an ISO layer 4 transport protocol 
other than TCP.

32. A method for performing fault-tolerant routing of 
packets to and from one of a plurality of IP servers having a 
same IP address, the method comprising:

transmitting one or more packets from a client
connected to a network to a network router;

-28-

AMENDED SHr^T



pGi’/US 9 8 / 25 68 8
v“<*· , - - ■ ’ ‘7 Λ1 '

iF'LrvLL; Λ·± veilM uwvv

continuously monitoring a status of each of the 
plurality of IP servers in a network flow switch; and 

routing the packets through the network flow switch 
from the network router to one of the plurality of IP 
servers in an operational status.

33. The method of’ claim 32, wherein the plurality of IP 
servers are configured with a same IP address.

34. The method of claim 32, wherein IP payloads of the 
packets are encrypted.

35. The method of claim·32, wherein the packets are 
encoded according to an ISO layer 4 transport protocol other 
than TCP.

-29-



IP 192.31.65.1 IP 192.31.65.2 IP 192.31.65.3 IP 192.31.65.4 IP 192.31.65.5

IP Server IP Server IP Server IP Server IP Server

FIG. 1
(Prior Art)

IP 192.31.65.8
A

Network Router

W
O

 99/33227 
PC

T/U
S98/25688



IP 192.31.65.1 —290
MAC 126.3

200

IP 192.31.65.1 —290
MAC 126.1

IP 192.31.65.1 —290
MAC 126.2

IP 192.31.65.1 —290
MAC 126.4

IP 192.31.65.1
MAC 126.5

ro

205 ~

IP 192.31.65.2
MAC 126.6

A

Network Flow Switch

FIG, 2 Network Router

IP 192.31.65.3
MAC 126.7

IP 192.31.65.4
MAC 126.8

Network Router

A

Network Router

W
O

 99/33227 
PC

T/U
S98/2S688



1534 bytes

14 bytes 20 bytes 20 bytes

Header Link IP TCP • · · Data Payload CRC Trailer

/ 1 / / / 1 I
310 320 330 340 350 360 370

1518 bytes

FIG. 3A

MAC Source Address MAC Destination Address Type

/ / I
380 390 395

6 bytes 6 bytes 2 bytes

FIG. 3B

W
O 99/33227 

PC
T/U

S98/25688



WO 99/33227 PCT7US98/25688

4/11



WO 99/33227 PCT/US98/25688

5/11

FIG. 4B

FIG. 4C



510 520 530 540

FIG. 5A

W
O

 99/33227 
PC

T/U
S98/25688



FIG. 5B

w
o 99/33227 

PC
T/U

S98/25688



FIG. 5C “ο

W
O

 99/33227 
PC

T/U
S98/25688



205

FIG. 5D
570

W
O

 99/33227 
PC

T/U
S98/25688



512 KB EPROM

540530520510 FIG. 5E

W
O

 99/33227 
PC

T/U
S98/25688



582 584 586

FIG. 5F

7

ASIC — SDRAM

MAC

588

W
O

 99/33227 
PC

T/U
S98/25688


