(12) 特許公報(B2)

(11) 特許番号

特許第5955914号

(P5955914)

(45) 発行日 平成28年7月20日(2016.7.20)

(19) **日本国特許庁(JP)**

(24) 登録日 平成28年6月24日 (2016.6.24)

続く
≧社
≧社
A
<u>.</u>

(54) 【発明の名称】発光装置の作製方法

- (57)【特許請求の範囲】
- 【請求項1】

第1固定基板と素子形成基板とを第1接着層で貼り合わせ、

- 前記素子形成基板上に絶縁膜を形成し、
- 前記絶縁膜上に発光素子を形成し、
- 前記発光素子上に第2接着層で第2固定基板を貼り合わせ、
- レーザー光を照射して前記第1接着層を除去し、前記第1固定基板を分離し、
- 前記第1固定基板は、ガラス基板であり、

```
前記素子形成基板は、プラスチック支持体または厚さが10~200µmの金属基板で
あることを特徴とする発光装置の作製方法。
```

【請求項2】

- 第1固定基板と素子形性基板とを第1接着層で貼り合せ、
- 前記素子形性基板上に絶縁膜を形成し、
- 前記絶縁膜上に発光素子を形成し、
- 前記発光素子上に第2接着層で第2固定基板を貼り合せ、
- 前記第1固定基板の裏面側からレーザー光を照射して前記第1接着層を除去し、前記第 1固定基板を分離し、
 - 前記第1固定基板は、ガラス基板であり、

前記素子形成基板は、プラスチック支持体または厚さが10~200µmの金属基板で あることを特徴とする発光装置の作製方法。

【請求項3】

請求項1又は請求項2において、

前記絶縁膜は、酸化窒化シリコンを有することを特徴する発光装置の作製方法。

【発明の詳細な説明】

【技術分野】

[0001]

本願発明は、電極間に発光性材料を挟んだ素子(以下、発光素子という)を有する装置 (以下、発光装置という)の作製方法に関する。特に、EL(Electro Luminescence)が 得られる発光性材料(以下、EL材料という)を用いた発光装置、即ちEL表示パネルに 代表される電気光学装置およびその様な電気光学装置を部品として搭載した電子機器に関 する。

(2)

[0002]

なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装 置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。

【背景技術】

[0003]

近年、発光性材料のEL現象を利用した発光素子(以下、EL素子という)を用いた発 光装置(以下、EL表示装置という)の開発が進んでいる。EL表示装置は、陽極と陰極 との間にEL材料を挟んだ構造のEL素子を有した構造からなる。この陽極と陰極との間 に電圧を加えてEL材料中に電流を流すことによりキャリアを再結合させて発光させる。 即ち、EL表示装置は発光素子自体に発光能力があるため、液晶表示装置に用いるような バックライトが不要である。さらに視野角が広く、軽量であり、且つ、低消費電力という 利点をもつ。

[0004]

このようなEL表示装置を利用したアプリケーションは様々なものが期待されているが 、特にEL表示装置の厚みが薄いこと、従って軽量化が可能であることにより携帯機器へ の利用が注目されている。そのため、フレキシブルなプラスチックフィルムの上に発光素 子を形成することが試みられている。

[0005]

しかしながら、プラスチックフィルムの耐熱性が低いためプロセスの最高温度を低くせ ざるを得ず、結果的にガラス基板上に形成する時ほど良好な電気特性のTFTを形成でき ないのが現状である。そのため、プラスチックフィルムを用いた高性能な発光装置は実現 されていない。

[0006]

また、特開平8-288522号公報では、ガラス基板上に薄膜トランジスタを形成し 、封止層を介して樹脂基板を接着した後、ガラス基板を剥離する技術が記載されている。 この技術を用いた場合、TFTの活性層が下地絶縁膜で保護されるのみとなっており、T FTが劣化しやすいという問題が生じていた。

[0007]

また、特開平11-243209号公報では、分離層を設け、レーザー光によって分離 40 層において剥離を生じせしめた後、接着層を介して一次転写体に接合し、さらに接着層を 介して二次転写体を接合した後、一次転写体を除去する技術が記載されている。この技術 を用いた場合においても、TFTの活性層が下地絶縁膜のみで保護される状態が作製工程 中に存在するため、傷つきやすくなっており、TFTが劣化しやすいという問題が生じて いた。

【発明の概要】

【発明が解決しようとする課題】

[0008]

本願発明はプラスチック支持体(可撓性のプラスチックフィルムもしくはプラスチック 基板を含む。)を用いて高性能な電気光学装置を作製するための技術を提供することを課 50

10

題とする。

【課題を解決するための手段】

【0009】

本願発明は、プラスチックに比べて耐熱性のある第1固定基板の上にプラスチック支持 体からなる素子形成基板を第1接着層で接着した後、該素子形成基板上に必要な素子を形 成した後に第1固定基板を分離することを特徴とする。

[0010]

また、第1固定基板の上に素子形成基板を第1接着層で貼り合わせた後、該素子形成基 板上に必要な素子を形成し、該素子上に第2固定基板を第2接着層で貼り合わせた後に第 1固定基板を分離してもよい。第2固定基板及び第2接着層を設けることによって、必要 な素子を保護するとともに外部からの水分や酸素等のEL層の酸化による劣化を促す物質 が侵入することを防ぐことができる。

[0011]

なお、前記必要な素子とは、アクティブマトリクス型の電気光学装置ならば画素のスイ ッチング素子として用いる半導体素子(典型的にはTFT)もしくはMIM素子並びに発 光素子を指す。また、パッシブ型の電気光学装置ならば発光素子を指す。

【0012】

また、第1固定基板と素子形成基板との貼り合わせ方法は、特に限定されないが、図1 に示したように、第1固定基板に第1接着層を形成した後で素子形成基板を貼り合わせる 方法、あるいは素子形成基板に第1接着層を形成した後で第1固定基板を貼り合わせる方 20 法を用いればよい。

【0013】

また、プラスチック支持体からなる素子形成基板及び第2固定基板としては厚さ10μ m以上の樹脂基板、例えばΡΕS(ポリエチレンサルファイル)、ΡC(ポリカーボネー ト)、ΡΕT(ポリエチレンテレフタレート)もしくはΡΕΝ(ポリエチレンナフタレー ト)を用いることができる。なお、第1の固定基板上に接着層を形成した後、その上に有 機樹脂層(ポリイミド層、ポリアミド層、ポリイミドアミド層ΒCB(ベンゾシクロブテ ン)層等)を成膜したものを素子形成基板と呼んでもよい。

【0014】

また、素子形成基板としては、金属基板、例えばステンレス基板を用いることもできる ³⁰ 。その場合は金属基板上に下地絶縁膜を形成して必要な素子を形成すればよい。薄い金属 基板(厚さ10~200μm)を用いることによって軽量化、薄型化が図れるとともに可 撓性を有する発光装置を得ることできる。

【0015】

また、第1固定基板を分離するのは、素子形成基板上に必要な素子を形成した後に行う が、その代表的な手段としてレーザー光の照射により第1接着層の全部または一部を気化 させる方法を用いる。また、レーザー光の照射に代えて、例えば、特開平8 - 2 8 8 5 2 2号公報に記載されたエッチングで第1固定基板を分離する方法や、第1接着層に対して 流体(圧力が加えられた液体もしくは気体)

を噴射することにより第1固定基板を分離する方法(代表的にはウォータージェット法) ⁴⁰ を用いてもよいし、これらを組み合わせて用いてもよい。

【0016】

レーザー光としては、パルス発振型または連続発光型のエキシマレーザーやYAGレー ザー、YVO₄レーザーを用いることができる。図3(D)に示すようにレーザー光を裏 面側から第1固定基板を通過させて第1接着層を照射して第1接着層のみを気化させて第 1固定基板を分離もしくは剥離する。従って、第1固定基板としては少なくとも照射する レーザー光が通過する基板、代表的には透光性を有する基板、例えばガラス基板、石英基 板等を用い、さらに素子形成基板よりも厚さの厚いものが好ましい。

【 0 0 1 7 】

本発明においては、レーザー光が第1固定基板を通過させるため、レーザー光の種類と 50

第1固定基板を適宜選択する必要がある。例えば、第1固定基板として石英基板を用いるのであれば、YAGレーザー(基本波(1064nm)、第2高調波(532nm)、第 3高調波(355nm)、第4高調波(266nm)

あるいはエキシマレーザー(波長308nm)を用い、線状ビームを形成し、石英基板を 通過させればよい。なお、エキシマレーザーはガラス基板を通過しない。従って、第1固 定基板としてガラス基板を用いるのであればYAGレーザーの基本波、第2高調波、また は第3高調波を用い、好ましくは第2高調波(波長532nm)を用いて線状ビームを形 成し、ガラス基板を通過させればよい。

【0018】

また、第1接着層としては有機物を用い、好ましくは照射するレーザー光で全部または 10 一部が気化するものを用いる。また、効率よく第1接着層のみにレーザー光を吸収させる ために、第1接着層がレーザー光を吸収する特性を有するもの、例えば、YAGレーザー の第2高調波を用いる場合、有色、あるいは黒色(例えば、黒色着色剤を含む樹脂材料) のものを用いることが望ましい。ただし、第1接着層は素子形成工程における熱処理によ って気化しないものを用いる。また、第1接着層は単層であっても積層であってもよく、 図2に示したように第1接着層と素子形成基板の間にアモルファスシリコン膜またはDL C膜を設ける構成としてもよい。

【0019】

このような構成とすることによって、素子形成基板の厚さが非常に薄い、具体的には5 0µm~300µm、好ましくは150µm~200µmの厚さの基板を用いても、信頼 20 性の高い発光装置を得ることができる。また、従来ある公知の製造装置を用いて、このように厚さの薄い基板上に素子形成を行うことは困難であったが、本発明は第1固定基板に 貼り合わせて素子形成を行うため、装置の改造を行うことなく厚さの厚い基板を用いた製 造装置を使用することができる。また、素子形成工程中において、素子形成基板を素子形 成基板上に形成される絶縁膜と、第1固定基板とで挟まれた状態とすることで素子形成基 板の耐熱性を向上させることができる。

[0020]

本明細書で開示する発明の構成は、 第1固定基板と素子形成基板とを該素子形成基板に 設けられた第1接着層で貼り合わせ、該素子形成基板を貼り合わせた後に絶縁膜を形成し 、該絶縁膜の上に発光素子を形成し、該発光素子の上に第2接着層で第2固定基板を貼り 合わせた後、レーザー光の照射により前記第1接着層を除去して前記第1固定基板を分離 することを特徴とする半導体装置の作製方法である。

【0021】

また、他の発明の構成は、 第1固定基板と素子形成基板とを前記固定基板に設けられ た第1接着層で貼り合わせ、該素子形成基板を貼り合わせた後に絶縁膜を形成し、該絶縁 膜の上に発光素子を形成し、該発光素子の上に第2接着層で第2固定基板を貼り合わせた 後、レーザー光の照射により前記第1接着層を除去して前記第1固定基板を分離すること を特徴とする半導体装置の作製方法である。

[0022]

上記各構成において、前記素子形成基板及び前記第2固定基板は有機樹脂からなる支持 40 体(可撓性のプラスチックフィルムもしくはプラスチック基板を含む)

であることを特徴としている。また、前記素子形成基板及び前記第2固定基板としては、 第1固定基板と比べて厚さの薄いものを用いる。

【 0 0 2 3 】

また、上記各構成において、前記素子形成基板と第1接着層の間には、非晶質シリコン 薄膜を形成してもよい。また、前記素子形成基板と第1接着層の間には、ダイヤモンド状 炭素薄膜を形成してもよい。

【0024】

また、上記各構成において、前記第1接着層は、顔料や染料を用いて有色または黒色と してレーザー光を吸収するようにしてもよい。

(4)

50

[0025]

また、上記各構成において、前記レーザー光の照射は、線状ビームを形成して走査させ て照射することを特徴としており、前記レーザー光は、パルス発振型または連続発光型の エキシマレーザーや、YAGレーザーや、YVO₄レーザーを用いることができる。 [0026]

(5)

また、上記各構成において、前記レーザー光の照射は、前記第1固定基板の裏面側から 前記第1固定基板を通過させて、前記第1固定基板の表面側に設けられた前記第1接着層 に前記レーザー光を照射することを特徴としている。従って、前記第1固定基板は、使用 するレーザー光を透過することが好ましい。

- 【発明の効果】
- [0027]

10

本発明により樹脂基板である素子形成基板と樹脂基板である第2固定基板とで素子形成 層(EL素子含む)を挟んだ発光装置は、多少の応力が発生しても破損しない柔軟性(フ レキシビリティ)を有している。

[0028]

また、素子形成基板の厚さが非常に薄い、具体的には50μm~300μm、好ましくは 150µm~200µmの厚さの基板を用いても、信頼性の高い発光装置を得ることがで きる。

- 【図面の簡単な説明】
- [0029]
- 【図1】基板貼り合わせ工程を示す図。
- 【図2】貼り合わせた基板の状態を示す図。
- 【図3】作製工程を示す図。
- 【図4】pチャネル型TFTの作製工程を示す図。
- 【図 5 】 n チャネル型 T F T の作製工程を示す図。
- 【図6】СМОS回路を作製する工程を説明する図。
- 【図7】CMOS回路を作製する工程を説明する図。
- 【図8】NMOS回路の構成を示す図。
- 【図9】シフトレジスタの構成を示す図。
- 【図10】EL表示装置の駆動回路及び画素部の断面構造図。
- 【図11】EL表示装置の上面図及び断面図。
- 【図12】EL表示装置の画素の上面図及び回路図。
- 【図13】デジタル駆動のEL表示装置の回路ブロック図。
- 【図14】EL表示装置の駆動回路及び画素部の断面構造図。
- 【図15】EL表示装置の駆動回路及び画素部の断面構造図。
- 【図16】EL表示装置の駆動回路及び画素部の断面構造図。
- 【図17】ゲート側駆動回路の構成を示す図。
- 【図18】デコーダ入力信号のタイミングチャートを説明する図。
- 【図19】ソース側駆動回路の構成を示す図。
- 【図20】ゲート側駆動回路の構成を示す図。
- 【図21】デコーダ入力信号のタイミングチャートを説明する図。
- 【図22】ソース側駆動回路の構成を示す図。
- 【図23】曲率を与えた状態を示す図。
- 【図24】電子機器の一例を示す図。
- 【図25】電子機器の一例を示す図。
- 【発明を実施するための形態】
- $\begin{bmatrix} 0 & 0 & 3 & 0 \end{bmatrix}$
- 本願発明の実施形態について、以下に説明する。

[0031]

まず、第1固定基板101と素子形成基板103とを貼り合わせるが、図1に示したよ

30

うに2通りの貼り合わせ方法がある。

【0032】

一つ目の方法は、第1固定基板101上に第1接着層102を設けた後、第1固定基板
 101と素子形成基板103とを貼り合わせる方法である。(図1(A1))なお、貼り
 合わせ後の状態を図1(B1)に示した。

[0033]

また、二つ目の方法は、素子形成基板103に第1接着層102を設けた後、第1固定 基板101と素子形成基板103とを貼り合わせる方法である。(図1(A2))なお、 貼り合わせ後の状態を図1(B2)に示した。

【0034】

10

また、ここでは図示しないが、第1固定基板上に第1接着層を形成した後、その上に有機樹脂層(ポリイミド層、ポリアミド層、ポリイミドアミド層等)を成膜したものを素子 形成基板と同等なものとしてもよい。

【0035】

また、図2(A)に示したように、第1接着層202Bと素子形成基板203の間にa Si(アモルファスシリコン)層202Aを設ける構成としてもよい。後の工程で、こ のa Si層にレーザー光を照射することにより第1固定基板201を剥離させてもよい 。第1固定基板201が分離または剥離しやすいようにするため水素を多く含むa Si 層を用いることが好ましい。レーザー光を照射することによりa Si層に含まれる水素 を気化させて第1固定基板を分離または剥離する。

[0036]

また、図2(B)に示したように、第1接着層205Bと素子形成基板206の間に、 素子形成基板206を保護するためのDLC膜(具体的にはダイヤモンドライクカーボン 膜)を設けてもよい。なお、第1固定基板204は、図1中に示した第1固定基板101 と同一である。

[0037]

この場合、素子形成基板の片面もしくは両面に保護膜としてDLC膜を膜厚2~50 n mでコーティングしたものを用いてもよい。なお、DLC膜の成膜はスパッタ法もしくは ECRプラズマCVD法を用いればよい。DLC膜の特徴としては、1550 cm⁻¹くら いに非対称のピークを有し、1300 cm⁻¹くらいに肩をもつラマンスペクトル分布を有 する。また、微小硬度計で測定した時に15~25GPaの硬度を示すという特徴をもつ 。このような炭素膜は、酸素および水の侵入を防ぐとともに樹脂基板の表面を保護する役 割を持つ。こうして、外部からの水分や酸素等のEL層の酸化による劣化を促す物質が侵 入することを防ぐことができる。従って、信頼性の高いEL発光装置が得られる。 【0038】

また、図2(C)に示したように、第1接着層208Cと素子形成基板209の間に、 素子形成基板を保護するための第1DLC膜208Aと、第1固定基板207が分離また は剥離しやすいようにするための第2DLC膜208Bを設けてもよい。このような第1 DLC膜208Aとしては水素を含まない成膜条件で成膜したものを用い、第2DLC膜 208Bとしては水素を含む成膜条件で成膜したものを用いればよい。また、第2DLC 膜208Bにレーザー光を照射することにより膜中に含まれる水素を気化させて第1固定 基板207を分離または剥離させてもよい。

【 0 0 3 9 】

上記各方法によって得られる貼り合わせ後の状態を図3(A)に示した。ここでは、図1(B1)及び図1(B2)と同一のものを例示する。なお、符号は図1(B1)及び図1(B2)と同じ符号を用いた。

【0040】

次いで、素子形成基板103上に下地絶縁膜を形成した後、その下地絶縁膜上に必要な 素子を形成する。ここでは、駆動回路104とEL素子を有する画素部105を形成した 例を示す。(図3(B))

20

[0041]

次いで、第2固定基板106を第2接着層107で貼り合わせる。(図3(C))なお 、ここではEL素子を外部からの水分や酸素等の侵入から保護するために第2固定基板1 06を用いたが、特に必要がなければ用いなくともよい。第2固定基板106としては、 樹脂基板を用いればよく、片面もしくは両面に保護膜としてDLC膜を設けたものを用い てもよい。

【0042】

次いで、裏面側からレーザー光を照射して第1接着層102の全部または一部を気化さ せて第1固定基板101を分離する。(図3(D))従って、第1接着層102はレーザ ー光によって層内または界面において剥離現象が生じる物質を用いる。また、レーザー光 は第1固定基板として石英基板を用いるのであれば、YAGレーザー(基本波(1064nm))、第2高調波(532nm)、第3高調波(355nm)、第4高調波(266nm) あるいはエキシマレーザー(波長308nm)を用い、線状ビームを形成し、石英基板を 通過させればよい。なお、エキシマレーザーはガラス基板を通過しない。従って、第1固 定基板としてガラス基板を用いるのであればYAGレーザーの基本波、第2高調波、第3 高調波を用いることができ、好ましくは第2高調波(波長532nm)を用いて線状ビー ムを形成し、ガラス基板を通過させればよい。

【0043】

そして、最終的には、樹脂基板である素子形成基板と樹脂基板である第2固定基板とで ²⁰ 挟まれた発光装置が完成する。

[0044]

また、図23に示したように、樹脂基板である素子形成基板103と樹脂基板である第2固定基板106とで素子形成層(EL素子含む)を挟んだ発光装置は、多少の応力が発生しても破損しない柔軟性(フレキシビリティ)を有している。図23(A)は曲率を与えていないときの状態を示し、図23(B)は曲率を与えたときの状態を示す。図23(B)において、素子形成基板には圧縮応力が働き、第2固定基板には引張応力が働くが、素子形成層においては、応力がほとんど働かず、中央部における伸び縮みを±1µm以下とすることができる。なお、曲率半径が10cmまでの曲率を与えても問題ない。

【0045】

以上の構成でなる本願発明について、以下に示す実施例でもってさらに詳細な説明を行 うこととする。

【実施例1】

[0046]

本実施例は、樹脂基板である素子形成基板と樹脂基板である第2固定基板とで挟まれた 発光装置の作製方法の一例を図3を用いて示す。なお、ここでは、全ての工程を350 以下、好ましくは200 以下で行うこととする。ただし、本発明が本実施例に限定され ないことはいうまでもない。

[0047]

まず、第1固定基板101としてガラス基板を用いる。そして、実施の形態に示したい 40 ずれかの方法を用いて、第1固定基板101と樹脂基板である素子形成基板103とを第 1接着層102で貼り合わせた。(図3(A))

【0048】

次いで、素子形成基板103上に下地絶縁膜を形成した後、その下地絶縁膜上に必要な 素子を形成する。ここでは、駆動回路104とEL素子を有する画素部105を形成した 例を示す。(図3(B))

【0049】

下地絶縁膜としては、低温で成膜が可能なスパッタ法を用いて、 膜組成において酸素元 素より窒素元素を多く含む酸化窒化シリコン膜と、 膜組成において窒素元素より酸素元素 を多く含む酸化窒化シリコン膜を積層形成した。

10

[0050]

次いで、下地絶縁膜上に半導体層を形成する。半導体層の材料に限定はないが、好まし くはシリコンまたはシリコンゲルマニウム(Si_×Ge_{1-×}(0 < X < 1))合金などで形 成すると良い。本実施例では、低温で成膜が可能なスパッタ法を用いて非晶質シリコン膜 を形成し、レーザー結晶化法により結晶質シリコン膜を形成した。レーザー結晶化法で結 晶質半導体膜を作製する場合には、パルス発振型または連続発光型のエキシマレーザーや YAGレーザー、YVO4レーザーを用いることができる。

[0051]

次いで、半導体層を覆うゲート絶縁膜を形成する。本実施例では、低温で成膜が可能な スパッタ法を用いて酸化シリコン膜を形成した。

[0052]

次いで、ゲート絶縁膜上に導電層を形成する。導電層は、導電膜を公知の手段(熱CVD 法、プラズマCVD法、減圧熱CVD法、蒸着法、またはスパッタ法等)により成膜した 後、マスクを用いて所望の形状にパターニングして形成する。

【0053】

次いで、イオン注入法またはイオンドーピング法を用い、半導体層にn型を付与する不 純物元素またはp型を付与する不純物元素を適宜、添加してLDD領域やソース領域やド レイン領域を形成する不純物領域を形成する。

【0054】

その後、スパッタ法により作製される窒化シリコン膜、窒化酸化シリコン膜、または酸 ²⁰ 化シリコン膜により層間絶縁膜を形成する。また、添加された不純物元素は活性化処理を 行う。ここでは、レーザー光の照射を行った。レーザー光の照射に代えて、350 以下 の加熱処理で活性化を行ってもよい。

【 0 0 5 5 】

次いで、公知の技術を用いてソース領域またはドレイン領域に達するコンタクトホール を形成した後、ソース電極またはドレイン電極を形成しTFTを得る。

【 0 0 5 6 】

次いで、公知の技術を用いて水素化処理を行い、全体を水素化して n チャネル型 T F T または p チャネル型 T F T が完成する。本実施例では比較的低温で行うことが可能な水素 プラズマを用いて水素化処理を行った。

【0057】

次いで、スパッタ法により作製される窒化シリコン膜、窒化酸化シリコン膜、または酸 化シリコン膜により層間絶縁膜を形成する。次いで、公知の技術を用いて画素部のドレイ ン電極に達するコンタクトホールを形成した後、画素電極を形成する。次いで、画素電極 の両端にバンクを形成し、画素電極上にEL層およびEL素子の陽極(あるいは陰極)を 形成する。

【0058】

次いで、画素部及び駆動回路に含まれる素子は全て絶縁膜で覆う。

【0059】

次いで、素子形成基板に形成された素子を全て覆う絶縁膜と第2固定基板106とを第 40 2接着層107で貼り合わせる。(図3(C))なお、ここではEL素子を外部からの水 分や酸素等の侵入から保護するために第2固定基板106を用いたが、特に必要がなけれ ば用いなくともよい。第2固定基板106としては、樹脂基板を用いればよく、片面もし くは両面に保護膜としてDLC膜を設けたものを用いてもよい。

[0060]

次いで、裏面側からレーザー光を照射して第1接着層102の全部または一部を気化さ せて第1固定基板101を分離する。(図3(D))本実施例では、第1固定基板として ガラス基板を用いるため、YAGレーザーの基本波、第2高調波、第3高調波を用いる。 ここでは第2高調波(波長532nm)を用いて線状ビームを形成し、第1固定基板10 1であるガラス基板を通過させて第1接着層を照射した。 30

[0061]

そして、最終的には、樹脂基板である素子形成基板と樹脂基板である第2固定基板とで 挟まれた発光装置が完成した。スパッタ法を用いて各膜(絶縁膜、半導体膜、導電膜等) を形成し、全てのプロセスを350 以下、好ましくは200 以下で行うことができる

【実施例2】

[0062]

本実施例は、pチャネル型TFTを作製する例であり、図4を用いて説明する。

【0063】

まず、第1固定基板401と第1接着層402(分離層)で貼りつけた素子形成基板4 1003上に下地絶縁膜404を形成する。下地絶縁膜404としては、酸化シリコン膜、窒化シリコン膜(SiOxNy)、またはこれらの積層膜等を100~500nmの膜厚範囲で用いることができ、形成手段としては熱CVD法、プラズマCVD法、蒸着法、スパッタ法、減圧熱CVD法等の形成方法を用いることができる。
【0064】

本実施例では、低温で成膜が可能なスパッタ法を用いて、 膜組成において酸素元素より 窒素元素を多く含む酸化窒化シリコン膜と、 膜組成において窒素元素より酸素元素を多く 含む酸化窒化シリコン膜を積層形成した。

【0065】

なお、第1固定基板401と第1接着層402(分離層)で貼りつけた素子形成基板4 ²⁰ 03は上記実施形態で示した方法により作製されるいずれのものも適用可能である。 【0066】

次いで、下地絶縁膜上に半導体層405を形成する。半導体層405は、非晶質構造を 有する半導体膜を公知の手段(熱CVD法、プラズマCVD法、減圧熱CVD法、蒸着法 、またはスパッタ法等)により成膜した後、公知の結晶化処理(レーザー結晶化法、熱結 晶化法、またはニッケルなどの触媒を用いた熱結晶化法等)を行って得られた結晶質半導 体膜を所望の形状にパターニングして形成する。この半導体層405の厚さは20~10 0nm(好ましくは30~60nm)の厚さで形成する。結晶質半導体膜の材料に限定は ないが、好ましくはシリコンまたはシリコンゲルマニウム(Si_xGe_{1-x}(0<X<1)))合金などで形成すると良い。本実施例では、低温で成膜が可能なスパッタ法を用いて非 晶質シリコン膜を形成し、レーザー結晶化法により結晶質シリコン膜を形成した。レーザ ー結晶化法で結晶質半導体膜を作製する場合には、パルス発振型または連続発光型のエキ シマレーザーやYAGレーザー、YVO4レーザーを用いることができる。

[0067]

また、半導体層405を形成した後、TFTのしきい値を制御するために微量な不純物 元素(ボロンまたはリン)のドーピングを行ってもよい。

【0068】

次いで、半導体層405を覆うゲート絶縁膜406を形成する。ゲート絶縁膜406は プラズマCVD法またはスパッタ法を用い、厚さを40~150nmとしてシリコンを含 む絶縁膜で形成する。本実施例では、低温で成膜が可能なスパッタ法を用いて酸化シリコ ン膜を形成した。(図4(A))

【 0 0 6 9 】

次いで、ゲート絶縁膜406上に導電層408を形成する。導電層408は、導電膜を公 知の手段(熱CVD法、プラズマCVD法、減圧熱CVD法、蒸着法、またはスパッタ法 等)により成膜した後、マスク407を用いて所望の形状にパターニングして形成する。 導電層408の材料としては、Ta、W、Ti、Mo、A1、Cu、Cr、Ndから選ば れた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい 。また、リン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜を 用いてもよい。また、AgPdCu合金を用いてもよい。本実施例では、低温で成膜が可 能なスパッタ法を用いてW膜を成膜し、パターニングした。導電層408の端部はテーパ

(9)

40

ー状に形成する。エッチング条件は適宣決定すれば良いが、例えば、Wの場合にはCF₄ とCl₂の混合ガスを用い、基板を負にバイアスすることにより良好にエッチングするこ とができる。

【 0 0 7 0 】

次いで、図4(B)に示すように、自己整合的にソース及びドレイン領域を形成する不 純物領域(p+領域)409を形成する。この不純物領域(p+領域)

4 0 9 はイオンドープ法により形成し、ボロンに代表される周期律表第13族の元素をド ーピングする。不純物領域(p+領域)409の不純物濃度は、1×10²⁰~2×10²¹ / cm³の範囲となるようにする。

[0071]

10

次に、図4(C)に示すように導電層408の端部が後退するようにエッチングして導 電層410を形成する。本実施例の構造ではこれをゲート電極とする。

ゲート電極の形成には2回のエッチング工程を用いるが、そのエッチング条件は適宣決定 されるものである。例えば、Wの場合にはCF₄とCl₂の混合ガスを用い、基板を負にバ イアスすることにより良好に端部がテーパー形状に加工することができる。また、CF₄ とCl₂に酸素を混合させることにより、下地と選択性良く、Wの異方性エッチングエッ チングをすることができる。

【0072】

その後、図4(D)に示すように、導電層410をマスクとしてp型の不純物(アクセプ タ)をドーピングし、自己整合的に不純物領域(p-領域)411を形成する。不純物領 ²⁰ 域(p-領域)411の不純物濃度は、1×10¹⁷~2×10¹⁹/cm³の範囲となるよ うにする。

【0073】

その後、スパッタ法またはプラズマCVD法により作製される窒化シリコン膜、窒化酸 化シリコン膜により層間絶縁膜413を形成する。また、添加された不純物元素は活性化 のために350~500 の加熱処理またはレーザー光の照射を行う。さらに、公知の技 術を用いて不純物領域(p+領域)に達するコンタクトホールを形成した後、ソース電極 またはドレイン電極414を形成しTFTを得る。

【0074】

最後に公知の技術を用いて水素化処理を行い、全体を水素化してpチャネル型TFTが ³⁰ 完成する。(図4(E))

【 0 0 7 5 】

半導体層にはチャネル形成領域412、不純物領域(p-領域)で形成されるLDD(Lightly Doped Drain)領域411、不純物領域(p+領域)で形成されるソースまたは ドレイン領域409が形成されている。ここでは、pチャネル型TFTをLDD構造で示 したが、勿論シングルドレインや、或いはLDDがゲート電極とオーバーラップした構造 で作製することもできる。本実施例で示すpチャネル型TFTを用いて基本論理回路を構 成したり、さらに複雑なロジック回路(信号分割回路、D/Aコンバータ、オペアンプ、

補正回路など)をも構成することができ、さらにはメモリやマイクロプロセッサをも形成しうる。例えば、EL表示装置の駆動回路を全てpチャネル型TFTで構成することも 40 可能である。

[0076]

また、本実施例は実施例1と組み合わせることが可能である。

【実施例3】

[0077]

本実施例は、 n チャネル型 T F T を作製する例であり、図 5 を用いて説明する。なお、 図 4 (A)と図 5 (A)は同一であるため、同じ符号を用い、ここでは作製工程の説明を 省略する。

【0078】

実施例2に従って図5(A)の状態を得た後、光露光プロセスによりレジストによるマ 50

スク415を形成し、半導体膜405にイオン注入またはイオンドープ法によりn型の不 純物(ドナー)をドーピングする。(図5(B))作製される不純物領域(n-領域)4 16において、ドーピングされる濃度は1×10¹⁷~2×10¹⁹/cm³の範囲となるよ うにする。

(11)

【0079】

次いで、絶縁膜406上には、タンタル、タングステン、チタン、アルミニウム、モリ ブデンから選ばれた一種または複数種の元素を成分とする導電性材料でゲート電極417 を形成する。(図5(C))ゲート電極417の一部は不純物領域(n-領域)416と ゲート絶縁膜を介して一部が重なるように形成する。

 $\begin{bmatrix} 0 & 0 & 8 & 0 \end{bmatrix}$

その後、図5(D)に示すように、ゲート電極417をマスクとしてn型の不純物(ド ナー)をドーピングし、自己整合的に不純物領域(n+領域)418を形成する。不純物 領域(n+領域)418の不純物濃度は、1×10¹⁷~2×10¹⁹/cm³の範囲となる ようにする。

【0081】

その後、プラズマCVD法により作製される窒化シリコン膜、窒化酸化シリコン膜によ り層間絶縁膜419を形成する。また、添加された不純物元素は活性化のために350~ 500 の加熱処理またはレーザー光の照射を行う。さらに、公知の技術を用いて不純物 領域(n+領域)に達するコンタクトホールを形成した後、ソース電極またはドレイン電 極420を形成しTFTを得る。

20

30

10

【0082】

最後に公知の技術を用いて水素化処理を行い、全体を水素化してnチャネル型TFTが 完成する。(図5(E))

【0083】

半導体層にはチャネル形成領域419、不純物領域(n-領域)で形成されるLDD(Lightly Doped Drain)領域416、不純物領域(n+領域)で形成されるソースまたは ドレイン領域418が形成されている。また、LDD領域416はゲート電極417とオ ーバーラップして形成され、ドレイン端における電界の集中を緩和して、ホットキャリア による劣化を防いでいる。勿論シングルドレインや、LDD構造でnチャネル型TFTを 作製することもできる。本実施例で示すnチャネル型TFTを用いて基本論理回路を構成 したり、さらに複雑なロジック回路(信号分割回路、D/Aコンバータ、オペアンプ、 補正回路など)をも構成することができ、さらにはメモリやマイクロプロセッサをも形成 しうる。

例えば、EL表示装置の駆動回路を全てnチャネル型TFTで構成することも可能である

【0084】

また、本実施例は実施例1と組み合わせることが可能である。

【実施例4】

[0085]

本実施例は、 n チャネル型 T F T と p チャネル型 T F T とを相補的に組み合わせた C M ⁴⁰ O S 回路を作製する例であり、図 6 、図 7 を用いて説明する。

【0086】

実施例2に従って、第1固定基板と第1接着層(分離層)で貼りつけた素子形成基板上 に下地絶縁膜を形成した後、半導体層501、502を形成する。(図6(A)) 【0087】

次いで、スパッタ法によりゲート絶縁膜503と第1導電膜504と第2導電膜505 を形成する。(図6(B))本実施例では、第1導電膜504を窒化タンタルまたはチタ ンで50~100nmの厚さに形成し、第2導電膜505をタングステンで100~30 0nmの厚さに形成する。

[0088]

次に図6(C)に示すように、レジストによるマスク506を形成し、ゲート電極を形 成するための第1のエッチング処理を行う。エッチング方法に限定はないが、好適にはI CP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いる。エッ チング用ガスにCF₄とCl₂を混合し、0.5~2Pa、好ましくは1Paの圧力でコイ ル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して行 う。基板側(試料ステージ)にも100WのRF(13.56MHz)電力を投入し、実 質的に負の自己バイアス電圧を印加する。CF₄とCl₂を混合した場合にはタングステン 膜、窒化タンタル膜及びチタン膜の場合でも、それぞれ同程度の速度でエッチングするこ とができる。

【0089】

上記エッチング条件では、レジストによるマスクの形状と、基板側に印加するバイアス電 圧の効果により端部をテーパー形状とすることができる。テーパー部の角度は15~45 。となるようにする。また、ゲート絶縁膜上に残渣を残すことなくエッチングするために は、10~20%程度の割合でエッチング時間を増加させると良い。W膜に対する酸化窒 化シリコン膜の選択比は2~4(代表的には3)であるので、オーバーエッチング処理に より、酸化窒化シリコン膜が露出した面は20~50nm程度エッチングされる。こうし て、第1のエッチング処理により第1導電膜と第2導電膜から成る第1形状の導電層50 7、508(第1の導電層507a、508aと第2導電層507b、508b)を形成 する。509はゲート絶縁膜であり、第1の形状の導電層で覆われない領域は20~50 nm程度エッチングされ薄くなる。

【0090】

そして、第1のドーピング処理を行いn型の不純物(ドナー)をドーピングする。(図6 (D))その方法はイオンドープ法若しくはイオン注入法で行う。イオンドープ法の条件 はドーズ量を1×10¹³~5×10¹⁴/cm²として行う。n型を付与する不純物元素と して15族に属する元素、典型的にはリン(P)または砒素(As)を用いる。この場合 、第1形状の導電層507、508はドーピングする元素に対してマスクとなり、加速電 圧を適宣調節(例えば、20~60keV)して、ゲート絶縁膜509を通過した不純物 元素により不純物領域(n+領域)520、521を形成する。例えば、不純物領域(n +領域)におけるリン(P)濃度は1×10²⁰~1×10²¹/cm³の範囲となるように する。

【0091】

さらに図7(A)に示すように第2のエッチング処理を行う。エッチングはICPエッチ ング法を用い、エッチングガスにCF₄とC1₂とO₂を混合して、1Paの圧力でコイル 型の電極に500WのRF電力(13.56MHz)を供給してプラズマを生成する。基板 側(試料ステージ)には50WのRF(13.56MHz)電力を投入し、第1のエッチ ング処理に比べ低い自己バイアス電圧を印加する。このような条件によりタングステン膜 を異方性エッチングし、第1の導電層である窒化タンタル膜またはチタン膜を残存させる ようにする。こうして、第2形状の導電層512、513(第1の導電膜512a、51 3aと第2の導電膜512b、513b)を形成する。516はゲート絶縁膜であり、第 2の形状の導電層512、513で覆われない領域はさらに20~50nm程度エッチン グされて膜厚が薄くなる。

【0092】

そして、図7(B)に示すように第2のドーピング処理を行う。第1のドーピング処理 よりもドーズ量を下げ高加速電圧の条件でn型の不純物(ドナー)をドーピングする。例 えば、加速電圧を70~120keVとし、1×10¹³/cm²のドーズ量で行い、図6 (D)で島状半導体膜に形成された第1の不純物領域の内側に不純物領域を形成する。ド ーピングは、第2の導電膜512b、513bを不純物元素に対するマスクとして用い、 第1の導電膜512a、512aの下側の領域に不純物元素が添加されるようにドーピン グする。こうして、第1の導電膜512a、513aと重なる不純物領域(n-領域)5 14、515が形成される。この不純物領域は、第2の導電層512a、513aがほぼ

20

10

同じ膜厚で残存していることから、第2の導電層に沿った方向における濃度差は小さく、 1 × 1 0¹⁷~ 1 × 1 0¹⁹ / c m³の濃度で形成する。 [0093]そして、図7(B)に示すように、第3のエッチング処理を行い、ゲート絶縁膜346 のエッチング処理を行う。その結果、第2の導電膜もエッチングされ、端部が後退して小 さくなり、第3形状の導電層517、518が形成される。図中で519は残存するゲー ト絶縁膜である。 [0094]そして、図7(C)に示すように、レジストによるマスク520を形成し、pチャネル 10 型TFTを形成する島状半導体層501にp型の不純物(アクセプタ) をドーピングする。典型的にはボロン(B)を用いる。不純物領域(p+領域) 521、522の不純物濃度は2×10²⁰~2×10²¹/cm³となるようにし、含有す るリン濃度の1.5~3倍のボロンを添加して導電型を反転させる。 [0095]以上までの工程でそれぞれの島状半導体層に不純物領域が形成される。第3形状の導電層 517、518はゲート電極となる。その後、図7(D)に示すように、窒化シリコン膜 または酸化窒化シリコン膜から成る保護絶縁膜523をプラズマCVD法で形成する。そ して導電型の制御を目的としてそれぞれの島状半導体層に添加された不純物元素を活性化 する工程を行う。 20 [0096]さらに、窒化シリコン膜524を形成し、水素化処理を行う。その結果、窒化シリコン膜 524中の水素が島状半導体層中に拡散させることで水素化を達成することができる。 [0097]層間絶縁膜525は、ポリイミド、アクリルなどの有機絶縁物材料で形成する。勿論、 プラズマCVD法でTEOS(Tetraethyl Ortho silicate)を用いて形成される酸化シ リコン膜を適用しても良いが、平坦性を高める観点からは前記有機物材料を用いることが 望ましい。 [0098]次いで、コンタクトホールを形成し、アルミニウム(A1)、チタン(Ti) 30 、タンタル(Ta)などを用いて、ソース配線またはドレイン配線526~528を形成 する。 [0099]以上の工程で、nチャネル型TFTとpチャネル型TFTとを相補的に組み合わせたC MOS回路を得ることができる。 [0100]p チャネル型 T F T にはチャネル形成領域 5 3 0、ソース領域またはドレイン領域とし て機能する不純物領域521、522を有している。 [0101]n チャネル型 T F T にはチャネル形成領域 5 3 1、第 3 形状の導電層から成るゲート電 40 極 5 1 8 と重なる不純物領域 5 1 5 a (Gate Overlapped Drain:G O L D 領域)、ゲー ト電極の外側に形成される不純物領域515b(LDD領域) とソース領域またはドレイン領域として機能する不純物領域516を有している。 [0102]このようなCMOS回路は、アクティブマトリクス型のEL表示装置の駆動回路を形成

このようなCMOS回路は、アクティブマトリクス型のEL表示装置の駆動回路を形成 することを可能とする。それ以外にも、このようなnチャネル型TFTまたはpチャネル 型TFTは、画素部を形成するトランジスタに応用することができる。

【0103】

このようなCMOS回路を組み合わせることで基本論理回路を構成したり、さらに複雑 なロジック回路(信号分割回路、D/Aコンバータ、オペアンプ、 補正回路など)をも 構成することができ、さらにはメモリやマイクロプロセッサをも形成することが可能であ

る。

[0104]

また、本実施例は実施例1と組み合わせることが可能である。

【実施例5】

[0105]

実施例3に示すnチャネル型TFTは、チャネル形成領域となる半導体に周期表の15 族に属する元素(好ましくはリン)もしくは周期表の13族に属する元素(好ましくはボ ロン)を添加することによりエンハンスメント型とデプレッション型とを作り分けること ができる。

[0106]

10

20

30

また、 n チャネル型 T F T を組み合わせて N M O S 回路を形成する場合、エンハンスメ ント型 T F T 同士で形成する場合(以下、 E E M O S 回路という)と、エンハンスメント 型とデプレッション型とを組み合わせて形成する場合(以下、 E D M O S 回路という)が ある。

【0107】

ここでEEMOS回路の例を図8(A)に、EDMOS回路の例を図8(B)に示す。図 8(A)において、31、32はどちらもエンハンスメント型のnチャネル型TFT(以 下、E型NTFTという)である。また、図8(B)において、33はE型NTFT、3 4はデプレッション型のnチャネル型TFT(以下、D型NTFTという)である。 【0108】

なお、図8(A)、(B)において、VDHは正の電圧が印加される電源線(正電源線) であり、VDLは負の電圧が印加される電源線(負電源線)である。負電源線は接地電位の 電源線(接地電源線)としても良い。

【0109】

さらに、図8(A)に示したEEMOS回路もしくは図8(B)に示したEDMOS回 路を用いてシフトレジスタを作製した例を図9に示す。図9において、40、41はフリ ップフロップ回路である。また、42、43はE型NTFTであり、E型NTFT42の ゲートにはクロック信号(CL)が入力され、E型NTFT43のゲートには極性の反転 したクロック信号(CLバー)が入力される。また、44で示される記号はインバータ回 路であり、図9(B)に示すように、図8(A)に示したEEMOS回路もしくは図8(B)に示したEDMOS回路が用いられる。従って、EL表示装置の駆動回路を全てnチ ャネル型TFTで構成することも可能である。

[0110]

また、本実施例は実施例1または実施例3と組み合わせることが可能である。

【実施例6】

[0111]

ここでは、上記実施例2~5で得られるTFTを用いてEL(エレクトロルミネセンス)表示装置を作製した例について図10~図13を用い、以下に説明する。

【0112】

同一の絶縁体上に画素部とそれを駆動する駆動回路を有した発光装置の例(但し封止前 40 の状態)を図10に示す。なお、駆動回路には基本単位となるCMOS回路を示し、画素 部には一つの画素を示す。このCMOS回路は実施例4に従えば得ることができる。 【0113】

図10において、601は第1固定基板、602は第1接着層、603は素子形成基板 であり、その上にはnチャネル型TFTとpチャネル型TFTからなる駆動回路604、 pチャネル型TFTからなるスイッチングTFTおよびnチャネル型TFTからなる電流 制御TFTとが形成されている。また、本実施例では、TFTはすべてトップゲート型T FTで形成されている。

[0114]

nチャネル型TFTおよびpチャネル型TFTの説明は実施例4を参照すれば良いので 50

(14)

10

20

省略する。また、スイッチングTFTはソース領域およびドレイン領域の間に二つのチャ ネル形成領域を有した構造(ダブルゲート構造)となっているが、実施例2でのpチャネ ル型TFTの構造の説明を参照すれば容易に理解できるので説明は省略する。なお、本実 施例はダブルゲート構造に限定されることなく、チャネル形成領域が一つ形成されるシン グルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。 【0115】

また、電流制御TFTのドレイン領域606の上には第2層間絶縁膜608が設けられる 前に、第1層間絶縁膜607にコンタクトホールが設けられている。これは第2層間絶縁 膜608にコンタクトホールを形成する際に、エッチング工程を簡単にするためである。 第2層間絶縁膜608にはドレイン領域606に到達するようにコンタクトホールが形成 され、ドレイン領域606に接続された画素電極609が設けられている。画素電極60 9はEL素子の陰極として機能する電極であり、周期表の1族もしくは2族に属する元素 を含む導電膜を用いて形成されている。本実施例では、リチウムとアルミニウムとの化合 物からなる導電膜を用いる。

【0116】

次に、613は画素電極609の端部を覆うように設けられた絶縁膜であり、本明細書 中ではバンクと呼ぶ。バンク613は珪素を含む絶縁膜もしくは樹脂膜で形成すれば良い 。樹脂膜を用いる場合、樹脂膜の比抵抗が1×10⁶~1×10¹² m(好ましくは1× 10⁸~1×10¹⁰ m)となるようにカーボン粒子もしくは金属粒子を添加すると、成 膜時の絶縁破壊を抑えることができる。

【0117】

また、EL素子610は画素電極(陰極)609、EL層611および陽極612から なる。陽極612は、仕事関数の大きい導電膜、代表的には酸化物導電膜が用いられる。 酸化物導電膜としては、酸化インジウム、酸化スズ、酸化亜鉛もしくはそれらの化合物を 用いれば良い。

【0118】

なお、本明細書中では発光層に対して正孔注入層、正孔輸送層、正孔阻止層、電子輸送層 、電子注入層もしくは電子阻止層を組み合わせた積層体をEL層と定義する。

【0119】

なお、ここでは図示しないが陽極612を形成した後、EL素子610を完全に覆うよう ³⁰ にしてパッシベーション膜を設けることは有効である。パッシベーション膜としては、炭 素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしく は組み合わせた積層で用いる。

【0120】

次いで、EL素子を保護するための封止(または封入)工程まで行った後、実施の形態 および実施例1に示したようにレーザー照射により第1固定基板601を分離した。その 後のEL表示装置について図11(A)、(B)を用いて説明する。

【0121】

図11(A)は、EL素子の封止までを行った状態を示す上面図、図11(B)は図1 1(A)をA-A'で切断した断面図である。点線で示された701は画素部、702は ⁴⁰ ソース側駆動回路、703はゲート側駆動回路である。また、704はカバー材、705 は第1シール材、706は第2シール材である。

【0122】

なお、708はソース側駆動回路702及びゲート側駆動回路703に入力される信号を 伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)708からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示さ れていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い

【0123】

次に、断面構造について図11(B)を用いて説明する。絶縁体700(素子形成基板6 50

10

30

40

03に相当)の上方には画素部、ソース側駆動回路709が形成されており、画素部は電 流制御TFT710とそのドレインに電気的に接続された画素電極711を含む複数の画 素により形成される。また、ソース側駆動回路709はnチャネル型TFTとpチャネル 型TFTとを組み合わせたCMOS回路を用いて形成される。なお、絶縁体700には偏 光板(代表的には円偏光板)を貼り付けても良い。

【0124】

また、画素電極711の両端にはバンク712が形成され、画素電極711上にはEL層 713およびEL素子の陽極714が形成される。陽極714は全画素に共通の配線とし ても機能し、接続配線715を経由してFPC716に電気的に接続されている。さらに 、画素部及びソース側駆動回路709に含まれる素子は全てパッシベーション膜(図示し ない)で覆われている。

【0125】

また、第1シール材705によりカバー材704が貼り合わされている。なお、カバー材 704とEL素子との間隔を確保するためにスペーサを設けても良い。

そして、第1シール材705の内側には空隙717が形成されている。なお、第1シール 材705は水分や酸素を透過しない材料であることが望ましい。さらに、空隙717の内 部に吸湿効果をもつ物質や酸化防止効果をもつ物質を設けることは有効である。

【0126】

なお、カバー材704の表面および裏面には保護膜として炭素膜(具体的にはダイヤモン ドライクカーボン膜)を2~30nmの厚さに設けると良い。このような炭素膜(ここで ²⁰ は図示しない)は、酸素および水の侵入を防ぐとともにカバー材704の表面を機械的に 保護する役割をもつ。

【0127】

また、カバー材704を接着した後、第1シール材705の露呈面を覆うように第2シー ル材706を設けている。第2シール材706は第1シール材705と同じ材料を用いる ことができる。

【0128】

以上のような構造でEL素子を封入することにより、EL素子を外部から完全に遮断す ることができ、外部から水分や酸素等のEL層の酸化による劣化を促す物質が侵入するこ とを防ぐことができる。従って、信頼性の高いEL表示装置が得られる。

【0129】

また、本実施例は実施例1と組み合わせることが可能である。

- 【実施例7】
- [0130]

本実施例では、実施例6で得られるEL表示装置において、画素部のさらに詳細な上面 構造を図12(A)に、回路図を図12(B)に示す。図12(A)及び図12(B)で は共通の符号を用いるので互いに参照すれば良い。

【0131】

スイッチング用TFT802のソースはソース配線815に接続され、ドレインはドレイン配線805に接続される。また、ドレイン配線805は電流制御用TFT806のゲート電極807に電気的に接続される。また、電流制御用TFT806のソースは電流供給線816に電気的に接続される、ドレイン配線817に電気的に接続される。また、ドレイン配線817は点線で示される画素電極(陰極)818に電気的に接続される

【0132】

このとき、819で示される領域には保持容量が形成される。保持容量819は、電流供 給線816と電気的に接続された半導体膜820、ゲート絶縁膜と同一層の絶縁膜(図示 せず)及びゲート電極807との間で形成される。また、ゲート電極807、第1層間絶 縁膜と同一の層(図示せず)及び電流供給線816で形成される容量も保持容量として用 いることが可能である。 [0133]

また、本実施例は実施例1または実施例6と組み合わせることが可能である。

【実施例8】

【0134】

本実施例では実施例6または実施例7に示したEL表示装置の回路構成例を図13に示 す。なお、本実施例ではデジタル駆動を行うための回路構成を示す。本実施例では、ソー ス側駆動回路901、画素部906及びゲート側駆動回路907を有している。なお、本 明細書中において、駆動回路とはソース側処理回路およびゲート側駆動回路を含めた総称 である。

【0135】

10

ソース側駆動回路901は、シフトレジスタ902、ラッチ(A)903、ラッチ(B) 904、バッファ905を設けている。なお、アナログ駆動の場合はラッチ(A)、(B) の代わりにサンプリング回路(トランスファゲート)を設ければ良い。また、ゲート側 駆動回路907は、シフトレジスタ908、バッファ909を設けている。

[0136]

また、本実施例において、画素部906は複数の画素を含み、その複数の画素にEL素子 が設けられている。このとき、EL素子の陰極は電流制御TFTのドレインに電気的に接 続されていることが好ましい。

[0137]

これらソース側駆動回路901およびゲート側駆動回路907は実施例2~4で得られる ²⁰ nチャネル型TFTまたはpチャネル型TFTで形成されている。

【0138】

なお、図示していないが、画素部906を挟んでゲート側駆動回路907の反対側にさら にゲート側駆動回路を設けても良い。この場合、双方は同じ構造でゲート配線を共有して おり、片方が壊れても残った方からゲート信号を送って画素部を正常に動作させるような 構成とする。

[0139]

また、本実施例は実施例1、実施例6または実施例7と組み合わせることが可能である

【実施例9】

[0140]

本実施例では、画素部及び駆動回路に使用するTFTを全て逆スタガ型TFTで構成したEL表示装置の例を図14に示す。

[0141]

図14において、1001は第1固定基板、1002は第1接着層、1003は素子形 成基板であり、まず、実施の形態に従い、第1固定基板1001と第1接着層1002(分離層)で貼りつけた素子形成基板1003を用意する。なお、必要があれば素子形成基 板上に下地絶縁膜を形成してもよい。

[0142]

次いで、素子形成基板1003上に単層構造または積層構造を有するゲート配線(ゲー 40 ト電極含む)1004を形成する。ゲート配線12の形成手段としては熱CVD法、プラ ズマCVD法、減圧熱CVD法、蒸着法、スパッタ法等を用いて10~1000nm、好 ましくは30~300nmの膜厚範囲の導電膜を形成した後、公知のパターニング技術で 形成する。また、ゲート配線12の材料としては、導電性材料または半導体材料を主成分 とする材料、例えばTa(タンタル)、Mo(モリブデン)、Ti(チタン)、W(タン グステン)、クロム(Cr)等の高融点金属材料、これら金属材料とシリコンとの化合物 であるシリサイド、N型又はP型の導電性を有するポリシリコン等の材料、低抵抗金属材 料Cu(銅)、A1(アルミニウム)等を主成分とする材料層を少なくとも一層有する構 造であれば特に限定されることなく用いることができる。

(18)

次いで、ゲート絶縁膜1005を形成する。

(0144**)**

次いで、非晶質半導体膜を成膜する。次いで、非晶質半導体膜のレーザー結晶化処理を 行い、結晶質半導体膜を形成した後、得られた結晶質半導体膜を所望の形状にパターニン グして半導体層を形成する。次いで、半導体層上に絶縁層1006を形成する。この絶縁 層1006は不純物元素の添加工程時にチャネル形成領域を保護する。

【0145】

次いで、イオン注入法またはイオンドーピング法を用い、半導体層にn型を付与する不 純物元素またはp型を付与する不純物元素を適宜、添加してLDD領域やソース領域やド レイン領域を形成する不純物領域を形成する。

[0146]

その後、スパッタ法により作製される窒化シリコン膜、窒化酸化シリコン膜、または酸 化シリコン膜により層間絶縁膜を形成する。また、添加された不純物元素は活性化処理を 行う。ここでは、レーザー光の照射を行った。レーザー光の照射に代えて、350 以下 の加熱処理で活性化を行ってもよい。

【0147】

次いで、公知の技術を用いてソース領域またはドレイン領域に達するコンタクトホール を形成した後、ソース電極またはドレイン電極を形成して逆スタガ型のTFTを得る。 【0148】

次いで、公知の技術を用いて水素化処理を行い、全体を水素化してnチャネル型TFT 20 及びpチャネル型TFTが完成する。本実施例では比較的低温で行うことが可能な水素プ ラズマを用いて水素化処理を行った。

【0149】

次いで、スパッタ法により作製される窒化シリコン膜、窒化酸化シリコン膜、または酸 化シリコン膜により第1層間絶縁膜1007を形成する。次いで、公知の技術を用いて画 素部のドレイン領域1000に達するコンタクトホールを形成した後、第2層間絶縁膜1 008を形成する。次いで、公知の技術を用いて画素部のドレイン領域1000に達する コンタクトホールを形成した後、画素電極1009を形成する。次いで、画素電極の両端 にバンク1010を形成し、画素電極上にEL層1011およびEL素子1012の陽極 1013を形成する。

[0150]

図14において、素子形成基板上にはNチャネル型TFT1014、Pチャネル型TF T1015からなる駆動回路、Pチャネル型TFTからなるスイッチングTFT1016 およびNチャネル型TFTからなる電流制御TFT1017が形成されている。また、本 実施例では、TFTはすべて逆スタガ型TFTで形成されている。

【 0 1 5 1 】

また、スイッチングTFT1016はソース領域およびドレイン領域の間に二つのチャネル形成領域を有した構造(ダブルゲート構造)となっているが、実施例2でのPチャネル型TFTの構造の説明を参照すれば容易に理解できるので説明は省略する。なお、本実施例はダブルゲート構造に限定されることなく、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。

40

30

【 0 1 5 2 】

さらに、画素部及び駆動回路に含まれる素子は全てパッシベーション膜(図示しない) で覆うことが好ましい。

[0153**]**

以降の工程は、実施例6の工程に従って、第2接着層で第2固定基板を貼り合わせた後 、第1接着層1002にレーザーを照射して第1固定基板1001を分離して、発光装置 が完成する。

【0154】

なお、本実施例は、実施例1、実施例7、または実施例8と自由に組み合わせることが 50

可能である。

【実施例10】

【0155】

本実施例では、画素部及び駆動回路に使用するTFTを全てNチャネル型TFTで構成 したEL表示装置の例を図15に示す。

[0156]

図15において、1101は第1固定基板、1102は第1接着層、1103は素子形 成基板であり、まず、実施の形態に従い、第1固定基板1101と第1接着層1102(分離層)で貼りつけた素子形成基板1103上に下地絶縁膜を形成する。

【0157】

下地絶縁膜上にはNチャネル型TFT1104、Nチャネル型TFT1105からなる 駆動回路、Nチャネル型TFTからなるスイッチングTFT1106およびNチャネル型 TFTからなる電流制御TFT1107が形成されている。なお、Nチャネル型TFTの 説明は実施例3を参照すれば良いので省略する。また、EL素子1108の説明は実施例 6を参照すれば良いので省略する。

[0158]

さらに、画素部及び駆動回路に含まれる素子は全てパッシベーション膜(図示しない) で覆うことが好ましい。

【0159】

また、図15の状態を得た後、実施例6の工程に従って、第2接着層で第2固定基板を ²⁰ 貼り合わせた後、第1接着層1102にレーザーを照射して第1固定基板1101を分離 して、発光装置が完成すればよい。

【0160】

N チャネル型TFTのみでゲート側駆動回路およびソース側駆動回路を形成することに より画素部および駆動回路をすべてN チャネル型TFTで形成することが可能となる。従って、アクティブマトリクス型の電気光学装置を作製する上でTFT工程の歩留まりおよ びスループットを大幅に向上させることができ、製造コストを低減することが可能となる

【0161】

なお、ソース側駆動回路もしくはゲート側駆動回路のいずれか片方を外付けのICチッ ³⁰ プとする場合にも本実施例は実施できる。

【0162】

また、本実施例では、E型NTFTのみを用いて駆動回路を構成したがE型NTFTお よびD型NTFTを組み合わせて形成してもよい。

【0163】

なお、本実施例は、実施例1、実施例3、実施例5、実施例7、または実施例8と自由 に組み合わせることが可能である。また、本実施例ではトップゲート型TFTを用いたが 特に限定されず、実施例9に示したような逆スタガ型TFTを用いることもできる。

【実施例11】

【0164】

40

10

本実施例では、画素部及び駆動回路に使用するTFTを全てPチャネル型TFTで構成 したEL表示装置の例を図16に示す。

【0165】

図16において、1201は第1固定基板、1202は第1接着層、1203は素子形成 基板であり、まず、実施の形態に従い、第1固定基板1201と第1接着層1202(分 離層)で貼りつけた素子形成基板1203上に下地絶縁膜を形成する。

【0166】

その上にはNチャネル型TFT1204、Nチャネル型TFT1205からなる駆動回 路、Nチャネル型TFTからなるスイッチングTFT1206およびNチャネル型TFT からなる電流制御TFT1207が形成されている。なお、Nチャネル型TFTの説明は 実施例2を参照すれば良いので省略する。

[0167]

本実施例では、電流制御TFT1207の上には層間絶縁膜1208、1209が形成 され、その上に電流制御TFT1207のドレインと電気的に接続する画素電極1210 が形成される。本実施例では、仕事関数の大きい透明導電膜からなる画素電極1210が EL素子の陽極として機能する。

そして、実施例6と同様に画素電極1210の上にはバンク1211が形成される。 **[**0169**]**

10 次ぎに、画素電極1210の上にはEL層1212が形成される。そのEL層1212 の上には周期表の1族または2族に属する元素を含む導電膜からなる陰極1213が設け られる。こうして、画素電極(陽極)1210、EL層1212及び陰極1213からな る E L 素子 1 2 1 4 が形成される。

[0170**]**

さらに、画素部及び駆動回路に含まれる素子は全てパッシベーション膜(図示しない) で覆うことが好ましい。

[0171]

但し、本実施例は実施例6、実施例9及び実施例10とはEL素子からの光の放射方向 が異なり、素子形成基板は透明でなければならない。

[0172]

以降の工程は、実施例6の工程に従って、第2接着層で第2固定基板を貼り合わせた後 、第1接着層1202にレーザーを照射して第1固定基板1201を分離して、発光装置 が完成する。

[0173]

なお、本実施例は、実施例1、実施例2、実施例6、実施例7、または実施例8と自由 に組み合わせることが可能である。また、本実施例ではトップゲート型TFTを用いたが 特に限定されず、実施例9に示したような逆スタガ型TFTを用いることもできる。

【実施例12】 [0174]

30 本実施例では、一般的なシフトレジスタの代わりに図4に示すようなPチャネル型TF Tを用いたデコーダを用いて駆動回路を形成した例を示す。なお、図17はゲート側駆動 回路の例である。

[0175]

図17において、1300がゲート側駆動回路のデコーダ、1301がゲート側駆動回 路のバッファ部である。

[0176]

まずゲート側デコーダ1300を説明する。まず1302はデコーダ1300の入力信 号線(以下、選択線という)であり、ここではA1、A1バー(A1の極性が反転した信 号)、A2、A2バー(A2の極性が反転した信号)、…An、Anバー(Anの極性が 反転した信号)を示している。

[0177**]**

選択線1302は図18のタイミングチャートに示す信号を伝送する。図18に示すよ うに、 A 1 の周波数を 1 とすると、 A 2 の周波数は 2⁻¹倍、 A 3 の周波数は 2⁻²倍、 A n の周波数は2⁻⁽ⁿ⁻¹⁾倍となる。

[0178]

また、1303aは第1段のNAND回路(NANDセルともいう)、1303bは第2 段のNAND回路、1303cは第n段のNANDである。

[0179]

また、 N A N D 回 路 1 3 0 3 a ~ 1 3 0 3 c は、 P チャネル型 T F T 1 3 0 4 ~ 1 3 0 9 が組み合わされてNAND回路を形成している。

20

【0180】

また、NAND回路1303aにおいて、A1、A2…An(これらを正の選択線と呼ぶ)のいずれかに接続されたゲートを有するPチャネル型TFT1304~1306は、 互いに並列に接続されており、共通のソースとして正電源線(V_{DH})1310に接続され 、共通のドレインとして出力線1311に接続されている。

(21)

[0181]

次に、バッファ1301はNAND回路1303a~1303cの各々に対応して複数の バッファ1313a~1313cにより形成されている。但しバッファ1313a~131 3cはいずれも同一構造で良い。また、バッファ1313a~1313cは一導電型TFT としてPチャネル型TFT1314~1316を用いて形成される。

【0182】

また、 P チャネル型 T F T 1 3 1 6 はリセット信号線(Reset)をゲートとし、正電源 線 1 3 1 9 をソースとし、ゲート配線 1 3 1 8 をドレインとする。なお、接地電源線 1 3 1 7 は負電源線(但し画素のスイッチング素子として用いる P チャネル型 T F T がオン状 態になるような電圧を与える電源線)としても構わない。

【0183】

次に、ソース側駆動回路の構成を図19に示す。図19に示すソース側駆動回路はデコ ーダ1401、ラッチ1402およびバッファ1403を含む。なお、デコーダ1401 およびバッファ1403の構成はゲート側駆動回路と同様であるので、ここでの説明は省 略する。

[0184]

図19に示すソース側駆動回路の場合、ラッチ1402は第1段目のラッチ1404お よび第2段目のラッチ1405からなる。また、第1段目のラッチ1404および第2段 目のラッチ1405は、各々m個のPチャネル型TFT1406a~1406cで形成され る複数の単位ユニット1407を有する。

【0185】

そして、 P チャネル型 T F T 1 4 0 6a~ 1 4 0 6 cのソースは各々ビデオ信号線(V1 、V2…Vk)1409に接続される。出力線1408に負電圧が加えられると一斉にP チャネル型 T F T 1 4 0 6a~ 1 4 0 6 cがオン状態となり、各々に対応するビデオ信号が 取り込まれる。また、こうして取り込まれたビデオ信号は、 P チャネル型 T F T 1 4 0 6 a~ 1 4 0 6 cの各々に接続されたコンデンサ1410a~ 1410cに保持される。 【0186】

30

10

20

また、第2段目のラッチ1405も複数の単位ユニット1407bを有し、単位ユニット1407bはm個のPチャネル型TFT1411a~1411cで形成される。Pチャネル型TFT1411a~1411cで形成される。Pチャネル型TFT1411a~1411cのゲートはすべてラッチ信号線1412に接続され、ラッチ信号線1412に負電圧が加えられると一斉にPチャネル型TFT1411a~14 11cがオン状態となる。

【0187】

その結果、コンデンサ1410a~1410cに保持されていた信号が、Pチャネル型T FT1411a~1411cの各々に接続されたコンデンサ1413a~1413cに保持さ 40 れると同時にバッファ303へと出力される。そして、バッファを介してソース配線14 14に出力される。以上のような動作のソース側駆動回路によりソース配線が順番に選択 されることになる。

【0188】

以上のように、 P チャネル型 T F T のみでゲート側駆動回路およびソース側駆動回路を 形成することにより画素部および駆動回路をすべて P チャネル型 T F T で形成することが 可能となる。従って、アクティブマトリクス型の電気光学装置を作製する上で T F T 工程 の歩留まりおよびスループットを大幅に向上させることができ、製造コストを低減するこ とが可能となる。

【0189】

なお、本実施例は、実施例1、実施例2、実施例6、実施例7、または実施例8、実施 例11と自由に組み合わせることが可能である。また、本実施例ではトップゲート型TF Tを用いたが特に限定されず、実施例9に示したような逆スタガ型TFTを用いることも できる。

(22)

【実施例13】

【0190】

本実施例では、一般的なシフトレジスタの代わりに図5に示すようなNチャネル型TF Tを用いたデコーダを用いて駆動回路を形成した例を示す。なお、図20はゲート側駆動 回路の例である。

【0191】

10

図20において、1500がゲート側駆動回路のデコーダ、1501がゲート側駆動回路のバッファ部である。なお、バッファ部とは複数のバッファ(緩衝増幅器)が集積化された部分を指す。また、バッファとは後段の影響を前段に与えずに駆動を行う回路を指す

【0192】

まずゲート側デコーダ1500を説明する。まず1502はデコーダ1500の入力信 号線(以下、選択線という)であり、ここではA1、A1バー(A1の極性が反転した信 号)、A2、A2バー(A2の極性が反転した信号)、…An、Anバー(Anの極性が 反転した信号)を示している。即ち、2n本の選択線が並んでいると考えれば良い。 【0193】

20

選択線1502は図21のタイミングチャートに示す信号を伝送する。図21に示すように、A1の周波数を1とすると、A2の周波数は2⁻¹倍、A3の周波数は2⁻²倍、Anの周波数は2⁻⁽ⁿ⁻¹⁾倍となる。

【0194】

また、1503aは第1段のNAND回路(NANDセルともいう)、1503bは第2 段のNAND回路、1503cは第n段のNANDである。NAND回路はゲート配線の 本数分が必要であり、ここではn個が必要となる。即ち、本実施例ではデコーダ1500 が複数のNAND回路からなる。

【0195】

また、NAND回路1503a~1503cは、Nチャネル型TFT1504~1509 ³⁰ が組み合わされてNAND回路を形成している。また、Nチャネル型TFT1504~1 509の各々のゲートは選択線1502(A1、A1バー、A2、A2バー…An、An バー)のいずれかに接続されている。

【0196】

また、NAND回路1503aにおいて、A1、A2…An(これらを正の選択線と呼ぶ)のいずれかに接続されたゲートを有するNチャネル型TFT1504~1506は、 互いに並列に接続されており、共通のソースとして負電源線(V_{DL})1510に接続され 、共通のドレインとして出力線1511に接続されている。

[0197**]**

本実施例において、NAND回路は直列に接続されたn個のNチャネル型TFTおよび ⁴⁰ 並列に接続されたn個のNチャネル型TFTを含む。

【0198】

次に、バッファ部1501はNAND回路1503a~1503cの各々に対応して複数のバッファ1513a~1513cにより形成されている。但しバッファ1513a~15 13cはいずれも同一構造で良い。

【0199】

また、バッファ1513a~1513cはNチャネル型TFT1514~1516を用い て形成される。

【 0 2 0 0 】

本実施例において、バッファ1513a~1513cは第1のNチャネル型TFT(Nチ 50

ャネル型TFT1514)および第1のNチャネル型TFTに直列に接続され、且つ、第 1のNチャネル型TFTのドレインをゲートとする第2のNチャネル型TFT(Nチャネ ル型TFT1515)を含む。

【0201】

また、Nチャネル型TFT1516(第3のNチャネル型TFT)はリセット信号線(Reset)をゲートとし、負電源線(V_{DL})1519をソースとし、ゲート配線1518を ドレインとする。なお、負電源線(V_{DL})1519は接地電源線(GND)としても構わ ない。

[0202]

なお、Nチャネル型TFT1516は正電圧が加えられたゲート配線1518を強制的 ¹⁰ に負電圧に引き下げるリセットスイッチとして用いられる。即ち、ゲート配線1518の 選択期間が終了したら。リセット信号を入力してゲート配線1518に負電圧を加える。 但しNチャネル型TFT1516は省略することもできる。

【0203】

次に、ソース側駆動回路の構成を図22に示す。図22に示すソース側駆動回路はデコ ーダ1521、ラッチ1522およびバッファ部1523を含む。

【0204】

図22に示すソース側駆動回路の場合、ラッチ1522は第1段目のラッチ1524お よび第2段目のラッチ1525からなる。また、第1段目のラッチ1524および第2段 目のラッチ1525は、各々m個のNチャネル型TFT1526a~1526cで形成され る複数の単位ユニット1527を有する。デコーダ1521からの出力線1528は単位 ユニット1527を形成するm個のNチャネル型TFT1526a~1526cのゲートに 入力される。なお、mは任意の整数である。

【0205】

そして、Nチャネル型TFT1526a~1526cのソースは各々ビデオ信号線(V1 、V2…Vk)1529に接続される。即ち、出力線1528に正電圧が加えられると一 斉にNチャネル型TFT1526a~1526cがオン状態となり、各々に対応するビデオ 信号が取り込まれる。また、こうして取り込まれたビデオ信号は、Nチャネル型TFT1 526a~1526cの各々に接続されたコンデンサ1530a~1530cに保持される。 【0206】

また、第2段目のラッチ1525も複数の単位ユニット1527bを有し、単位ユニット1527bはm個のNチャネル型TFT1531a~1531cで形成される。Nチャネル型TFT1531a~1531cで形成される。Nチャネル型TFT1531a~1531cのゲートはすべてラッチ信号線1532に接続され、ラッチ信号線1532に負電圧が加えられると一斉にNチャネル型TFT1531a~1531cがオン状態となる。

【0207】

その結果、コンデンサ1530a~1530cに保持されていた信号が、Nチャネル型T FT1531a~1531cの各々に接続されたコンデンサ1533a~1533cに保持さ れると同時にバッファ1523へと出力される。そして、バッファを介してソース配線1 534に出力される。以上のような動作のソース側駆動回路によりソース配線が順番に選 択されることになる。

【0208】

以上のように、Nチャネル型TFTのみでゲート側駆動回路およびソース側駆動回路を 形成することにより画素部および駆動回路をすべてNチャネル型TFTで形成することが 可能となる。従って、アクティブマトリクス型の電気光学装置を作製する上でTFT工程 の歩留まりおよびスループットを大幅に向上させることができ、製造コストを低減するこ とが可能となる。

【0209】

なお、ソース側駆動回路もしくはゲート側駆動回路のいずれか片方を外付けのICチッ プとする場合にも本実施例は実施できる。 20

(24)

[0210]

また、本実施例では、E型NTFTのみを用いて駆動回路を構成したがE型NTFTお よびD型NTFTを組み合わせて形成してもよい。

【0211】

なお、本実施例は、実施例1、実施例3、実施例5、実施例7、または実施例8と自由 に組み合わせることが可能である。また、本実施例ではトップゲート型TFTを用いたが 特に限定されず、実施例9に示したような逆スタガ型TFTを用いることもできる。 【実施例14】

[0212**]**

素子形成基板としては、金属基板、例えばステンレス基板を用いることもできる。本実 ¹⁰ 施例は、その場合の例を以下に示す。

【0213】

本実施例では、実施例1の素子形成基板として、ステンレス基板(厚さ10~200µ m)を用いる。まず、実施の形態に従って第1固定基板とステンレス基板とを第1接着層 で貼り合わせる。

【0214】

以降は、実施例1に従って、ステンレス基板からなる素子形成基板上に下地絶縁膜を形成して必要な素子を形成すればよい。なお、実施例1とは異なり、耐熱性が高いステンレス基板を用いているため、実施例1よりも高い温度(約500 以下)でのプロセスを使用してTFTを作製することができる。

[0215]

そして、第1固定基板を分離する際、ステンレス基板を用いているため、レーザー光を 照射しても素子形成基板上に形成された素子に全く影響を与えることなく第1固定基板分 離することができる。

[0216]

また、ステンレス基板は遮光性を有しているため、本実施例の発光装置は、上方出射の発 光装置となる。

【0217】

[0218]

薄い金属基板(厚さ10~200μm)を用いることによって軽量化、薄型化が図れる とともに可撓性を有する発光装置を得ることができる。また、金属基板を用いているため 、素子基板上に形成されたTFT素子の放熱効果が得られる。

30

20

また、本実施例は、実施例1乃至13のいずれか一と自由に組み合わせることが可能で ある。

【実施例15】

[0219]

本願発明を実施して形成された駆動回路や画素部は様々な電気光学装置(アクティブマトリクス型液晶ディスプレイ、アクティブマトリクス型 ELディスプレイ、アクティブマトリクス型 ECディスプレイ)に用いることができる。即ち、それら電気光学装置を表示部に組み込んだ電子機器全てに本願発明を実施できる。

【0220】

その様な電子機器としては、ビデオカメラ、デジタルカメラ、ヘッドマウントディスプレ イ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピ ュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げ られる。それらの一例を図24及び図25に示す。

[0221]

図24(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。本発明を画像入力部2002、表示部20 03やその他の駆動回路に適用することができる。

【0222】

図 2 4 (B) はビデオカメラであり、本体 2 1 0 1、表示部 2 1 0 2、音声入力部 2 1 0 3、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明を表 示部2102やその他の駆動回路に適用することができる。 [0223]図24(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、 カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む。 本発明は表示部2205やその他の駆動回路に適用できる。 [0224]図24(D)はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム 10 部2303等を含む。本発明は表示部2302やその他の駆動回路に適用することができ る。 [0225]図24(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレー ヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404、 操作スイッチ2405等を含む。なお、このプレーヤーは記録媒体としてDVD(Dig tial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲー ムやインターネットを行うことができる。本発明は表示部2402やその他の駆動回路に 適用することができる。 [0226]20 図 2 4 (F) はデジタルカメラであり、本体 2 5 0 1、表示部 2 5 0 2、接眼部 2 5 0 3 、操作スイッチ2504、受像部(図示しない)等を含む。本願発明を表示部2502や その他の駆動回路に適用することができる。 [0227]図25(A)は携帯電話であり、本体2901、音声出力部2902、音声入力部29 03、表示部2904、操作スイッチ2905、アンテナ2906等を含む。本願発明を 音声出力部2902、音声入力部2903、表示部2904やその他の駆動回路に適用す ることができる。 [0228]図 2 5 (B) は携帯書籍(電子書籍)であり、本体 3 0 0 1 、表示部 3 0 0 2 、 3 0 0 30 3、記憶媒体3004、操作スイッチ3005、アンテナ3006等を含む。本発明は表 示部3002、3003やその他の駆動回路に適用することができる。 [0229]図 2 5 (C) はディスプレイであり、本体 3 1 0 1 、支持台 3 1 0 2 、表示部 3 1 0 3

図25(C)はディスクレイでのり、本体3101、支持占5102、表示部3105 等を含む。本発明は表示部3103に適用することができる。本発明のディスプレイは特 に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)の ディスプレイには有利である。

【0230】

以上の様に、本願発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1~14のどのような組み合わせからなる構成を用いても実現することができる。

207第1固定基板

401 402

(26)

【図1】

Û

(A2) 基板貼り合わせ工程

Ł

【図3】

2	÷ *	،
	,	
2	÷ م	،

.103素子形成基板(樹脂基板)

Û

₹

、 102第1接着原 ≩

_____ 101第1固定基板

【図8】 VD _Iンハンスメント型TFT32

(B) EDMOS回路

V DL-(A) EEMOS回路

IN

【図9】

OUT

【図11】

【図12】

816

(в) —

【図13】

【図20】

【図21】

フロントページの続き

(51)Int.CI.			FΙ		
H 0 5 B	33/22	(2006.01)	H 0 5 B	33/22	Z
H 0 5 B	33/04	(2006.01)	H 0 5 B	33/04	
H 0 5 B	33/02	(2006.01)	H 0 5 B	33/02	

(58)調査した分野(Int.Cl., DB名)
G09F9/00-9/46
H01L27/32、51/50
H05B33/00-33/28