wo 2024/013578 A1 |0 00000 KOO0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 January 2024 (18.01.2024)

(10) International Publication Number

WO 2024/013578 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(71)

(72)

International Patent Classification:
GO6F 9/54 (2006.01) H041L 67/10 (2022.01)
HO04L 67/02 (2022.01)

International Application Number:
PCT/IB2023/054634

International Filing Date:
04 May 2023 (04.05.2023)

Filing Language: English
Publication Language: English
Priority Data:

17/865,214 14 July 2022 (14.07.2022) UsS
Applicant: INTERNATIONAL BUSINESS

MACHINES CORPORATION [US/US]; New Orchard
Road, Armonk, New York, New York 10504 (US).

Applicant (for MG only): IBM ISRAEL SCIENCE AND
TECHNOLOGY LTD. [IL/IL]; Haifa University Campus,
165 Aba Khoushy Ave, Mount Carmel, 3498825 Haifa (IL).

Inventors: CHAMARTHY, Ravi Chandra; IBM India,
MINDSPACE, HI-TECH CITY, MADHAPUR, HYDER-
ABAD 500081 (IN). GOYAL, Prateek; IBM India, Many-
ata Embassy Business Park, G2 Block, Nagawara Out-
er Ring Road, BENGALURU, KARNATAKA 560045

(74)

@81)

84

(IN). BHIDE, Manish; IBM India, MINDSPACE, HI-
TECH CITY, MADHAPUR, HYDERABAD 500081 (IN).
KATARI, Madhavi; IBM India, MINDSPACE, HI-TECH
CITY, MADHAPUR, HYDERABAD 500081 (IN).

Agent: GILBOA, Eyal;, IBM ISRAEL SCIENCE AND
TECHNOLOGY LTD., Haifa University Campus, 165 Aba
Khoushy Ave, Mount Carmel, 3498825 Haifa (IL).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM,KE, LR,LS, MW, MZ, NA, RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,

4

Title: APl MANAGEMENT FOR BATCH PROCESSING

(57) Abstract: An example operation may include one or more of storing a batch

Uset 8

HG. 3E

scoring engine and an application programming interface (API) for the batch scoring
engine, receiving a trigger to perform a batch prediction process, reading input data
from a source data store and executing, via the batch scoring engine, one or more
predictive models on the input data to generate a predictive output and metadata as-
sociated with the predictive output, storing the predictive output and the metadata ina
target data store, and updating the API with a location of the predictive output within
the target data store and a location of the metadata within the target data store

[Continued on next page]

WO 2024/013578 A | [I 1000000000 0 0O

DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
S, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))
— in black and white; the international application as filed

contained color or greyscale and is available for download
Jrom PATENTSCOPE

WO 2024/013578 PCT/IB2023/054634

API MANAGEMENT FOR BATCH PROCESSING

BACKGROUND

[0001] Broadly speaking there are two types of scoring (predicting) processes based on artificial
intelligence (AI) models and machine learning (ML) models. Online scoring refers to a process
in which the predictive model generates a prediction based on a small data set in a synchronous
manner. Meanwhile, batch scoring is performed asynchronously on large data sets. In this
process, a batch scoring engine receives a source data location, with feature data to be input to
the model, and a target data location where the prediction is to be stored.

[0002] As an example, a batch scoring process may be used to predict a likelihood of a customer
to churn (e.g., leave a service / subscription, etc.) The scoring process may be periodically run
(e.g., at the end of every month, etc.) based on updated customer data stored in the source data
store. When a software application desires to consume the predictive results of the customer, the
application must find where the results of the latest batch run are stored in the target data store.
This can be a challenging task because the format and location of the model output may change
over time. For example, results may be stored across different nodes of a distributed storage,
different storage locations, different databases, and the like. Another challenge that exists is that

metadata with respect to the predictive results is also stored in a different location.

SUMMARY
[0003] One example embodiment provides an apparatus that includes a memory configured to
store a batch scoring engine and an application programming interface (API) for the batch

scoring engine, and a processor configured to one or more of receive a trigger to perform a batch

WO 2024/013578 PCT/IB2023/054634

prediction process, read input data from a source data store and iteratively execute, via the batch
scoring engine, one or more predictive models on the input data to generate a predictive output
and metadata associated with the predictive output, store the predictive output and the metadata
in a target data store, and update the API with a location of the predictive output within the target
data store and a location of the metadata within the target data store.

[0004] Another example embodiment provides a method that includes one or more of storing a
batch scoring engine and an application programming interface (API) for the batch scoring
engine, receiving a trigger to perform a batch prediction process, reading input data from a
source data store and executing, via the batch scoring engine, one or more predictive models on
the input data to generate a predictive output and metadata associated with the predictive output,
storing the predictive output and the metadata in a target data store, and updating the API with a
location of the predictive output within the target data store and a location of the metadata within
the target data store.

[0005] A further example embodiment provides a computer-readable medium comprising
instructions, that when read by a processor, cause the processor to perform one or more of
storing a batch scoring engine and an application programming interface (API) for the batch
scoring engine, receiving a trigger to perform a batch prediction process, reading input data from
a source data store and executing, via the batch scoring engine, one or more predictive models on
the input data to generate a predictive output and metadata associated with the predictive output,
storing the predictive output and the metadata in a target data store, and updating the API with a
location of the predictive output within the target data store and a location of the metadata within

the target data store.

WO 2024/013578 PCT/IB2023/054634

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The patent or application file contains at least one drawing executed in color. Copies of
this patent or patent application publication with color drawing(s) will be provided by the Office
upon request and payment of the necessary fee.

[0007] FIG. 1 is a diagram illustrating a cloud computing environment that interacts with various
devices according to an example embodiment.

[0008] FIG. 2A is a diagram illustrating abstraction model layers of a cloud computing
environment according to an example embodiment.

[0009] FIG. 2B is a diagram illustrating a batch processing platform for API management
according to an example embodiment.

[0010] FIGS. 3A-3C are diagrams 1illustrating examples of a permissioned network according to
example embodiments.

[0011] FIG. 3D is a diagram illustrating machine learning process via a cloud computing
platform according to an example embodiment.

[0012] FIG. 3E is a diagram illustrating a quantum computing environment associated with a
cloud computing platform according to an example embodiment.

[0013] FIGS. 4A-4B are diagrams illustrating batch scoring processes which update an API with
schema changes according to example embodiments.

[0014] FIG. 4C is a diagram illustrating a process of fetching results of a batch scoring process
via the API, according to example embodiments.

[0015] FIG. 5 is a diagram illustrating a method of managing an API for batch scoring models

according to an example embodiment.

WO 2024/013578 PCT/IB2023/054634

[0016] FIG. 6 1s a diagram illustrating an example of a computing system that supports one or

more of the example embodiments.

DETAILED DESCRIPTION

[0017] It is to be understood that although this disclosure includes a detailed description of cloud
computing, implementation of the teachings recited herein is not limited to a cloud computing
environment. Rather, embodiments of the present invention are capable of being implemented in
conjunction with any other type of computing environment now known or later developed.
[0018] The example embodiments are directed to a model training environment, such as a cloud
platform, web server, or other host, that may train and even use a machine learning model to
compare the content of different documents (e.g., paper documents that have been scanned into
an electronic document format, electronic documents, etc.) In particular, the machine learning
model may convert bounding boxes into vector space (BBox2Vector Model). In some
embodiments, the two document being compared may be directed to the same thing or may even
be the same document, but the documents themselves may have different formats, colors, shades,
data values, etc. This is common when organizations have multiple different document
processing systems such as an accounting software, invoicing software, ordering software,
enterprise data management (EDM) systems, and the like.

[0019] Traditionally, a batch scoring process (i.e., a prediction process) is performed by a
scoring engine of a host platform such as a cloud platform. During the batch scoring process,
records are asynchronously read by the scoring engine and input to one or more predictive
models (e.g., Al models, ML models, etc.) which output predictions based thereon. Typically,

the scoring engine creates a new table, stores the output predictions in the new table, and stores

WO 2024/013578 PCT/IB2023/054634

the new table somewhere in a target data store. However, when a software application desires to
consume the output predictions, the software application faces a challenge in trying to find the
new table. The software application must add logic to find/retrieve such data from the target
data store. Furthermore, metadata of the batch scoring process (e.g., exhibitions of bias detected,
concept drift, etc.) must be accessed from a separate monitoring service or the like which
requires additional logic.

[0020] In the example embodiments, an application programming interface (API) is built on top
of a scoring engine (e.g., predictive AI/ML models) and is updated by the scoring engine with
details of the storage locations of input features, output predictions, confidence values, metadata,
and the like, which are associated with a batch scoring process. It should be appreciated that any
kind of predictive model may be used including a neural network, a classification model, a
regression model, a time-series model, and the like. The API also exposes an endpoint which
may be fixed (i.e., a fixed location for fetching predictive outputs of the batch scoring process).
The fixed location essentially fixes a location for receiving API calls for fetching data from the
target data store and for returning fetched data to the requesting software application.
Accordingly, the software application need not worry about the underlying intricacies of where
the input feature values are located, where the AI/ML output predictions are located, and how to
obtain the metadata associated with such predictions. Instead, the software application can
simply query the API, via the endpoint, and in response, receive the attributes of the output
predictions and the metadata from the target data store.

[0021] Cloud computing is a model of service delivery for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, network

bandwidth, servers, processing, memory, storage, applications, virtual machines, and services)

WO 2024/013578 PCT/IB2023/054634

that can be rapidly provisioned and released with minimal management effort or interaction with
a provider of the service. This cloud model may include at least five characteristics, at least three
service models, and at least four deployment models.

[0022] Examples of cloud computing characteristics that may be associated with the example
embodiments include the following.

[0023] On-demand self-service: a cloud consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically without requiring
human interaction with the service’s provider.

[0024] Broad network access: capabilities are available over a network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

[0025] Resource pooling: the provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over the exact location of the provided
resources but may be able to specify location at a higher level of abstraction (e.g., country, state,
or datacenter).

[0026] Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases
automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be unlimited and can be purchased in any
quantity at any time.

[0027] Measured service: cloud systems automatically control and optimize resource use by

leveraging a metering capability at some level of abstraction appropriate to the type of service

WO 2024/013578 PCT/IB2023/054634

(e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be
monitored, controlled, and reported, providing transparency for both the provider and consumer
of the utilized service.

[0028] Examples of service models that may be associated with the example embodiments
include the following:

[0029] Software as a Service (SaaS): the capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a web browser (e.g., web-based e-
mail). The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, storage, or even individual application capabilities, with the
possible exception of limited user-specific application configuration settings.

[0030] Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto
the cloud infrastructure consumer-created or acquired applications created using programming
languages and tools supported by the provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers, operating systems, or storage, but
has control over the deployed applications and possibly application hosting environment
configurations.

[0031] Infrastructure as a Service (IaaS): the capability provided to the consumer is to provision
processing, storage, networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud infrastructure but
has control over operating systems, storage, deployed applications, and possibly limited control

of select networking components (e.g., host firewalls).

WO 2024/013578 PCT/IB2023/054634

[0032] Examples of deployment models that may be associated with the example embodiments
include the following:

[0033] Private cloud: the cloud infrastructure is operated solely for an organization. It may be
managed by the organization or a third party and may exist on-premises or off-premises.

[0034] Community cloud: the cloud infrastructure is shared by several organizations and
supports a specific community that has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed by the organizations or a third party
and may exist on-premises or off-premises.

[0035] Public cloud: the cloud infrastructure is made available to the general public or a large
industry group and is owned by an organization selling cloud services.

[0036] Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private,
community, or public) that remain unique entities but are bound together by standardized or
proprietary technology that enables data and application portability (e.g., cloud bursting for load-
balancing between clouds).

[0037] A cloud computing environment is service-oriented with a focus on statelessness, low
coupling, modularity, and semantic interoperability. At the heart of cloud computing is an
infrastructure that includes a network of interconnected nodes.

[0038] Referring now to FIG. 1, illustrative cloud computing environment 50 is depicted. As
shown, cloud computing environment 50 includes one or more cloud computing nodes 10 with
which local computing devices used by cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 54A, desktop computer 54B, laptop computer 54C, and/or
automobile computer system 54N may communicate. Cloud computing nodes 10 may

communicate with one another. They may be grouped (not shown) physically or virtually, in one

WO 2024/013578 PCT/IB2023/054634

or more networks, such as Private, Community, Public, or Hybrid clouds as described
hereinabove, or a combination thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for which a cloud consumer does not need to
maintain resources on a local computing device. It is understood that the types of computing
devices 54A-N shown in Fig. 1 are intended to be illustrative only and that cloud computing
nodes 10 and cloud computing environment 50 can communicate with any type of computerized
device over any type of network and/or network addressable connection (e.g., using a web
browser).

[0039] Referring now to FIG. 2A, a set of functional abstraction layers provided by cloud
computing environment 50 FIG. 1) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 2A are intended to be illustrative only and
embodiments of the invention are not limited thereto. As depicted, the following layers and
corresponding functions are provided: Hardware and software layer 60 include hardware and
software components. Examples of hardware components include: mainframes 61; RISC
(Reduced Instruction Set Computer) architecture based servers 62; servers 63; blade servers 64;
storage devices 65; and networks and networking components 66. In some embodiments,
software components include network application server software 67 and database software 68.
Virtualization layer 70 provides an abstraction layer from which the following examples of
virtual entities may be provided: virtual servers 71; virtual storage 72; virtual networks 73,
including virtual private networks; virtual applications and operating systems 74; and virtual
clients 75. In one example, management layer 80 may provide the functions described below.
[0040] Resource provisioning 81 provides dynamic procurement of computing resources and

other resources that are utilized to perform tasks within the cloud computing environment.

WO 2024/013578 PCT/IB2023/054634

Metering and Pricing 82 provide cost tracking as resources are utilized within the cloud
computing environment, and billing or invoicing for consumption of these resources. In one
example, these resources may include application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protection for data and other resources.
User portal 83 provides access to the cloud computing environment for consumers and system
administrators. Service level management 84 provides cloud computing resource allocation and
management such that required service levels are met. Service Level Agreement (SLA) planning
and fulfillment 85 provide pre-arrangement for, and procurement of, cloud computing resources
for which a future requirement is anticipated in accordance with an SLA.

[0041] Workload layer 90 provides examples of functionality for which the cloud computing
environment may be utilized. Examples of workloads and functions which may be provided from
this layer include: mapping and navigation 91; software development and lifecycle management
92; virtual classroom education delivery 93; data analytics processing 94; transaction processing
95; and batch scoring 96.

[0042] FIG. 2B illustrates a host platform 200 for performing the batch scoring 96 shown in the
example of FIG. 2A, in accordance with example embodiments.

[0043] Referring to FIG. 2B, the host platform 200 may include a cloud platform and/or other
environment that includes one or more computing machines that provide one or more runtime
environments for batch scoring. In some embodiments, the host platform 200 may be a central
architecture or it may include a distributed architecture. In the example of FIG. 2B, the host
platform 200 includes a source data store 202 and a target data store 204, which may be different
data stores, the same data store, and the like. It should also be appreciated that the source data

store 202 and/or the target data store 204 may be external to the host platform 200 and accessed

10

WO 2024/013578 PCT/IB2023/054634

over a network connection between the host platform the respective data store. An example of
the data store is a database or other storage device that may be accessed via a network. The data
stores may include tables of data with columns and rows, etc. In some examples, the data stores
may include OLAP cubes or other multi-dimensional data (i.e., more than two dimension, etc.)
[0044] The host platform 200 may include a batch management system 212 which manages
operations of a scoring engine 210. For example, the batch management system 212 may trigger
the scoring engine to perform the batch processing. The trigger may be an internal trigger
initiated by the batch management system 212 or an external trigger that is received from a
software application, web service, or other program. One example of a trigger is a time-based
trigger that can be iteratively performed (e.g., the 5 day of every month, etc.) The trigger signal
may be sent from the batch management system 212 to the scoring engine 210. The trigger
signal may identify a batch job by its unique ID, a type of model(s), a source data location, a
target data location, and the like.

[0045] The scoring engine 210 may be any known scoring engine that is available today or that
becomes available. The scoring engine 210 may transmit a request for input data for the batch
scoring process from the source data source 202. For example, the scoring engine 210 may
transmit an API call or the like with a request for data stored at the source data location identified
by the trigger. In response, the source data store 202 may return the corresponding data which
can be used as an input to the model or models being executed by the scoring engine 210.

[0046] Next, the scoring engine 210 may execute a batch scoring process on the input data to
create output data that is stored in the target data store 204. The scoring engine 210 may
asynchronously read data into the model/models and perform executions in small jobs until the

entire input data set has been read and analyzed. For example, the scoring engine 210 may read

11

WO 2024/013578 PCT/IB2023/054634

in one record at a time (e.g., by file, by column, by row, by data value, by field, etc.) and execute
a predictive model on the record to generate a predictive result. Each new record can be used by
the scoring engine to create a new predictive result which may be output by the scoring engine
210 and stored in a file such as a table. The resulting output data may be stored in the target data
store 204.

[0047] According to various embodiments, the host platform 200 also include an application
programming interface (API) 220 which enables access to the batch processing content that is
input to the scoring engine 210, batch processing content that is output by the scoring engine
210, metadata associated with the batch scoring process and the like. The API 220 enables
software applications 230, 232, and 234 to access both the target data store 204 with the output
scoring content and the metadata and the source data store 202 with the input data for the scoring
process. For example, the applications 230, 232, and 234 may submit API calls to the API 220
with an identifier of a record (e.g., a record ID) associated with the batch processing. In
response, the API 220 may find the batch processing content including input data, output
predictions, prediction confidence, metadata (e.g., concept drift attributes of the model, bias
attributes of the model, etc.), and the like.

[0048] However, the scoring engine 210 may often create new tables for output data from a
batch processing job. It may also move the stored data from one data store to another such as
between two types of databases, etc. To ensure that the batch processing data can be found at all
times, the scoring engine 210 may update the API 220 with schema information of the batch
processing job including a location within the target data store where the output data for that
particular batch / record is stored, a location within the source data store where the input data

was pulled from, and a location of metadata associated with the batch scoring process. The

12

WO 2024/013578 PCT/IB2023/054634

update may be performed simultaneously with the batch scoring process to ensure that the
software applications and the API remain updated in real-time.

[0049] As noted above, one of the challenges of batch processing is accessing the results
afterwards. The challenge arises because the source of the data and the target location for storing
predictions can change over time for various reasons. The example embodiments address this
challenge and make it possible for different types of software applications to have shared and
continuous access to the batch processing content in real-time and without a need for any
additional logic being added to the software applications. That is, different software applications
may access the batch processing content in a common manner via the APIL.

[0050] In addition, the API may expose an endpoint that is configured to receive API calls or the
like from the software applications. The API thus provides a fixed location (endpoint) for batch
processing data requests from the software application and for responses from the API to the
software application as a result. Accordingly, the consuming applications need not worry about
the varying source/target of the batch models, and also, the consuming application need not
worry about, if customer changes from one model monitoring product to another model
monitoring product. For example, an API call from a software application can provide an
identifier of a data record, a batch job, a batch process, or the like, which is associated with the
batch processing that is of interest to the software application. This information can be used by
the API to identify the locations of the input data, the output data, the metadata, and the like,
retrieve the data, and return the data to the software application via the endpoint.

[0051] FIGS. 3A-3E provide various examples of additional features that may be used in
association with the cloud computing environment described herein. These examples should be

considered as additional extensions or additional examples of the embodiments described herein.

13

WO 2024/013578 PCT/IB2023/054634

[0052] FIG. 3A illustrates an example of a permissioned blockchain network 300, which features
a distributed, decentralized peer-to-peer architecture. The blockchain network may interact with
the cloud computing environment 50, allowing additional functionality such as peer-to-peer
authentication for data written to a distributed ledger. In this example, a blockchain user 302 may
initiate a transaction to the permissioned blockchain 304. In this example, the transaction can be
a deploy, invoke, or query, and may be issued through a client-side application leveraging an
SDK, directly through an API, etc. Networks may provide access to a regulator 306, such as an
auditor. A blockchain network operator 308 manages member permissions, such as enrolling the
regulator 306 as an "auditor" and the blockchain user 302 as a "client". An auditor could be
restricted only to querying the ledger whereas a client could be authorized to deploy, invoke, and
query certain types of chaincode.

[0053] A blockchain developer 310 can write chaincode and client-side applications. The
blockchain developer 310 can deploy chaincode directly to the network through an interface. To
include credentials from a traditional data source 312 in chaincode, the developer 310 could use
an out-of-band connection to access the data. In this example, the blockchain user 302 connects
to the permissioned blockchain 304 through a peer node 314. Before proceeding with any
transactions, the peer node 314 retrieves the user's enrollment and transaction certificates from a
certificate authority 316, which manages user roles and permissions. In some cases, blockchain
users must possess these digital certificates in order to transact on the permissioned blockchain
304. Meanwhile, a user attempting to utilize chaincode may be required to verify their
credentials on the traditional data source 312. To confirm the user's authorization, chaincode can

use an out-of-band connection to this data through a traditional processing platform 318.

14

WO 2024/013578 PCT/IB2023/054634

[0054] FIG. 3B illustrates another example of a permissioned blockchain network 320, which
features a distributed, decentralized peer-to-peer architecture. In this example, a blockchain user
322 may submit a transaction to the permissioned blockchain 324. In this example, the
transaction can be a deploy, invoke, or query, and may be issued through a client-side application
leveraging an SDK, directly through an API, etc. Networks may provide access to a regulator
326, such as an auditor. A blockchain network operator 328 manages member permissions, such
as enrolling the regulator 326 as an "auditor" and the blockchain user 322 as a "client". An
auditor could be restricted only to querying the ledger whereas a client could be authorized to
deploy, invoke, and query certain types of chaincode.

[0055] A blockchain developer 330 writes chaincode and client-side applications. The
blockchain developer 330 can deploy chaincode directly to the network through an interface. To
include credentials from a traditional data source 332 in chaincode, the developer 330 could use
an out-of-band connection to access the data. In this example, the blockchain user 322 connects
to the network through a peer node 334. Before proceeding with any transactions, the peer node
334 retrieves the user's enrollment and transaction certificates from the certificate authority 336.
In some cases, blockchain users must possess these digital certificates in order to transact on the
permissioned blockchain 324. Meanwhile, a user attempting to utilize chaincode may be required
to verify their credentials on the traditional data source 332. To confirm the user's authorization,
chaincode can use an out-of-band connection to this data through a traditional processing
platform 338.

[0056] In some embodiments, the blockchain herein may be a permissionless blockchain. In
contrast with permissioned blockchains which require permission to join, anyone can join a

permissionless blockchain. For example, to join a permissionless blockchain a user may create a

15

WO 2024/013578 PCT/IB2023/054634

personal address and begin interacting with the network, by submitting transactions, and hence
adding entries to the ledger. Additionally, all parties have the choice of running a node on the
system and employing the mining protocols to help verify transactions.

[0057] FIG. 3C illustrates a process 350 of a transaction being processed by a permissionless
blockchain 352 including a plurality of nodes 354. A sender 356 desires to send payment or
some other form of value (e.g., a deed, medical records, a contract, a good, a service, or any
other asset that can be encapsulated in a digital record) to a recipient 358 via the permissionless
blockchain 352. In one embodiment, each of the sender device 356 and the recipient device 358
may have digital wallets (associated with the blockchain 352) that provide user interface controls
and a display of transaction parameters. In response, the transaction is broadcast throughout the
blockchain 352 to the nodes 354. Depending on the blockchain’s 352 network parameters the
nodes verify 360 the transaction based on rules (which may be pre-defined or dynamically
allocated) established by the permissionless blockchain 352 creators. For example, this may
include verifying identities of the parties involved, etc. The transaction may be verified
immediately or it may be placed in a queue with other transactions and the nodes 354 determine
if the transactions are valid based on a set of network rules.

[0058] In structure 362, valid transactions are formed into a block and sealed with a lock (hash).
This process may be performed by mining nodes among the nodes 354. Mining nodes may
utilize additional software specifically for mining and creating blocks for the permissionless
blockchain 352. Each block may be identified by a hash (e.g., 256 bit number, etc.) created
using an algorithm agreed upon by the network. Each block may include a header, a pointer or

reference to a hash of a previous block’s header in the chain, and a group of valid transactions.

16

WO 2024/013578 PCT/IB2023/054634

The reference to the previous block’s hash is associated with the creation of the secure
independent chain of blocks.

[0059] Before blocks can be added to the blockchain, the blocks must be validated. Validation
for the permissionless blockchain 352 may include a proof-of-work (PoW) which is a solution to
a puzzle derived from the block’s header. Although not shown in the example of FIG. 3C,
another process for validating a block 1s proof-of-stake. Unlike the proof-of-work, where the
algorithm rewards miners who solve mathematical problems, with the proof of stake, a creator of
a new block is chosen in a deterministic way, depending on its wealth, also defined as “stake.”
Then, a similar proof is performed by the selected/chosen node.

[0060] With mining 364, nodes try to solve the block by making incremental changes to one
variable until the solution satisfies a network-wide target. This creates the PoW thereby ensuring
correct answers. In other words, a potential solution must prove that computing resources were
drained in solving the problem. In some types of permissionless blockchains, miners may be
rewarded with value (e.g., coins, etc.) for correctly mining a block.

[0061] Here, the POW process, alongside the chaining of blocks, makes modifications of the
blockchain extremely difficult, as an attacker must modify all subsequent blocks in order for the
modifications of one block to be accepted. Furthermore, as new blocks are mined, the difficulty
of modifying a block increases, and the number of subsequent blocks increases. With
distribution, the successfully validated block is distributed through the permissionless blockchain
352 and all nodes 354 add the block to a majority chain which is the permissionless blockchain’s
352 auditable ledger. Furthermore, the value in the transaction submitted by the sender 356 is

deposited or otherwise transferred to the digital wallet of the recipient device 358.

17

WO 2024/013578 PCT/IB2023/054634

[0062] FIGS. 3D and 3E illustrate additional examples of use cases for cloud computing that
may be incorporated and used herein. FIG. 3D illustrates an example 370 of a cloud computing
environment 50 which stores machine learning (artificial intelligence) data. Machine learning
relies on vast quantities of historical data (or training data) to build predictive models for
accurate prediction on new data. Machine learning software (e.g., neural networks, etc.) can
often sift through millions of records to unearth non-intuitive patterns.

[0063] In the example of FIG. 3D, a host platform 376 builds and deploys a machine learning
model for predictive monitoring of assets 378. Here, the host platform 366 may be a cloud
platform, an industrial server, a web server, a personal computer, a user device, and the like.
Assets 378 can be any type of asset (e.g., machine or equipment, etc.) such as an aircraft,
locomotive, turbine, medical machinery and equipment, oil and gas equipment, boats, ships,
vehicles, and the like. As another example, assets 378 may be non-tangible assets such as stocks,
currency, digital coins, insurance, or the like.

[0064] The cloud computing environment 50 can be used to significantly improve both a training
process 372 of the machine learning model and a predictive process 374 based on a trained
machine learning model. For example, in 372, rather than requiring a data scientist/engineer or
another user to collect the data, historical data may be stored by the assets 378 themselves (or
through an intermediary, not shown) on the cloud computing environment 50. This can
significantly reduce the collection time needed by the host platform 376 when performing
predictive model training. For example, data can be directly and reliably transferred straight
from its place of origin to the cloud computing environment 50. By using the cloud computing

environment 50 to ensure the security and ownership of the collected data, smart contracts may

18

WO 2024/013578 PCT/IB2023/054634

directly send the data from the assets to the individuals that use the data for building a machine
learning model. This allows for sharing of data among the assets 378.

[0065] Furthermore, training of the machine learning model on the collected data may take
rounds of refinement and testing by the host platform 376. Each round may be based on
additional data or data that was not previously considered to help expand the knowledge of the
machine learning model. In 372, the different training and testing steps (and the data associated
therewith) may be stored on the cloud computing environment 50 by the host platform 376.

Each refinement of the machine learning model (e.g., changes in variables, weights, etc.) may be
stored in the cloud computing environment 50 to provide verifiable proof of how the model was
trained and what data was used to train the model. For example, the machine learning model may
be stored on a blockchain to provide verifiable proof. Furthermore, when the host platform 376
has achieved a trained model, the resulting model may be stored on the cloud computing
environment 50.

[0066] After the model has been trained, it may be deployed to a live environment where it can
make predictions/decisions based on the execution of the final trained machine learning model.
For example, in 374, the machine learning model may be used for condition-based maintenance
(CBM) for an asset such as an aircraft, a wind turbine, a healthcare machine, and the like. In this
example, data fed back from asset 378 may be input into the machine learning model and used to
make event predictions such as failure events, error codes, and the like. Determinations made by
the execution of the machine learning model at the host platform 376 may be stored on the cloud
computing environment 50 to provide auditable/verifiable proof. As one non-limiting example,
the machine learning model may predict a future breakdown/failure to a part of the asset 378 and

create an alert or a notification to replace the part. The data behind this decision may be stored

19

WO 2024/013578 PCT/IB2023/054634

by the host platform 376 and/or on the cloud computing environment 50. In one embodiment the
features and/or the actions described and/or depicted herein can occur on or with respect to the
cloud computing environment 50.

[0067] FIG. 3E illustrates an example 380 of a quantum-secure cloud computing environment
382, which implements quantum key distribution (QKD) to protect against a quantum computing
attack. In this example, cloud computing users can verify each other’s identities using QKD.
This sends information using quantum particles such as photons, which cannot be copied by an
eavesdropper without destroying them. In this way, a sender, and a receiver through the cloud
computing environment can be sure of each other’s identity.

[0068] In the example of FIG. 3E, four users are present 384, 386, 388, and 390. Each pair of
users may share a secret key 392 (i.e., a QKD) between themselves. Since there are four nodes
in this example, six pairs of nodes exist, and therefore six different secret keys 392 are used
including QKDas, QKDac, QKDap, QKDsc, QKDsp, and QKDc¢p. Each pair can create a QKD
by sending information using quantum particles such as photons, which cannot be copied by an
eavesdropper without destroying them. In this way, a pair of users can be sure of each other’s
identity.

[0069] The operation of the cloud computing environment 382 is based on two procedures (1)
creation of transactions, and (i1) construction of blocks that aggregate the new transactions. New
transactions may be created similar to a traditional network, such as a blockchain network. Each
transaction may contain information about a sender, a receiver, a time of creation, an amount (or
value) to be transferred, a list of reference transactions that justifies the sender has funds for the
operation, and the like. This transaction record is then sent to all other nodes where it is entered

into a pool of unconfirmed transactions. Here, two parties (i.e., a pair of users from among 384-

20

WO 2024/013578 PCT/IB2023/054634

390) authenticate the transaction by providing their shared secret key 392 (QKD). This quantum
signature can be attached to every transaction making it exceedingly difficult to be tampered
with. Each node checks its entries with respect to a local copy of the cloud computing
environment 382 to verify that each transaction has sufficient funds.

[0070] FIGS. 4A-4B illustrate batch scoring processes which update an API with schema
changes according to example embodiments. Referring to FIG. 4A, a batch scoring process
400A 1s shown and includes a plurality of data records 411, 412, 413, and 414 from a source data
store 410 being ingested by a scoring engine 420. In this example, the ingesting may include
reading a table or other data structure which includes the plurality of data records 411, 412, 413,
and 414, and then executing each of the data records in sequence. As one example, the records
may correspond to rows or columns in a table. Thus, each iterative execution of the scoring
process may score one record. It should also be appreciated that multiple models (e.g., AI/ML,
etc.) may be initiated simultaneously and used to simultaneously score the data records being
ingested by a scoring engine 420 for faster processing.

[0071] The predictive outputs generated by the scoring engine 420, including any predictions
such as classifications, identifications, text outputs, and the like, may be stored within a table 432
or other data record. In addition, metadata associated with the predictions and the scoring
process such as concept drift that is identified by the scoring engine 420 or bias that is identified
by the scoring engine 420. The scoring engine 420 may store the table 432 in a target data store
430 that 1s separate from the source data store 410 (or is integrated in the same data store, etc.)
[0072] FIG. 4B illustrates an API update process 400B for updating an API 440 of the host
platform based on the batch scoring process 400A performed in FIG. 4A, in accordance with

example embodiments. In some embodiments, the API 440 may be logically positioned over any

21

WO 2024/013578 PCT/IB2023/054634

of a source data store (not shown), the scoring engine 420, and the target data store 430. In some
embodiments, the process 400B may be performed simultaneously with the process 400A shown
in FIG. 4A. For example, the scoring engine 420 may transmit the table 432 to the target data
store 430 and transmit an update to the API 440 shown in FIG. 4B, at the same time. It should
also be appreciated that the process 400A.

[0073] In this example, the scoring engine 420 may update a schema of the batch scoring process
which may include updates to one or more of a location of the input data in the source database,
a location of the output data stored in the target database 430, a location of metadata from the
batch scoring process stored in the target database 430, and the like. For example, the schema
update may include information about which features of input data are stored in which column(s)
of a table (of the input data), which column(s) include the predicted output, which column(s)
include the transaction IDs/ record IDs of the input data, and the like. As an example, the
schema update may be an API call or a request message that is sent to an API management
system 442 of the API 440. The API management system 442 may manage a local file or table
with the particular schema details of each batch processing job performed by the scoring engine
420. The API management system 442 may update a local file 446 of the schema for the batch
processing job (e.g., identified by processing ID, etc.) that was just run by the scoring engine 420
based on the updated schema data from the scoring engine 420.

[0074] FIG. 4C illustrates a process 400C of fetching results from a batch scoring process via the
API 440 according to example embodiments. A majority of the steps performed by the API 440
may be performed after the batch scoring process shown in FIG. 4A. However, as part of the

batch scoring process shown in FIG. 4A, the API 440 may validate whether the source data store

22

WO 2024/013578 PCT/IB2023/054634

410 and the target data store 430 are available or not. Furthermore, the API 440 may also check
for the availability of the configured model monitoring solution.

[0075] After the batch scoring process is performed, the API 440 may read the data from the
data stores which are used by the batch scoring model and return information such as model
prediction, confidence and optionally the feature values for a specific record id. In the example
of FIG. 4C, the API 440 reads data from the target data store 430, however, it should be
appreciated that the API 440 may read data from the source data store 410 as well, such as if the
input feature data used by the scoring engine 420 is not available in the target data store 430, to
double check the input feature data in the target data store 430, or any other reason.

[0076] According to various embodiments, the API 440 may expose an endpoint 448 to a REST
interface 444 of the API 440. The endpoint 448 is configured to receive API calls or other
messages from different software applications including application 450. As an example, the
REST interface 444 may receive an API call from the software application 450 with an identifier
of a batch processing job or a record of a batch processing job. In response, the REST interface
444 may query the API management system 442 of the API 440 for the schema data associated
with the batch processing job such as a location of the target data store 430 where the predicted
output and metadata are stored.

[0077] The schema data may also provide a location of the target data store 430 where the input
feature data is stored. In response, the REST interface 444 or other component of the API 440
may fetch the target data from the locations identified by the schema in the API management
system 442, and return the target data to the software application 450. This same process may be
repeated for software applications that are written in different programming languages because

they each share the common API 440. For example, the target data fetched by the API 440 may

23

WO 2024/013578 PCT/IB2023/054634

include feature values for a given predicted output (and the output itself), metadata associated
with the prediction such as bias detected or concept drift detected, the input data itself, and the
like.

[0078] FIG. 5 illustrates a method 500 of a method of managing an API for batch scoring models
according to an example embodiment. For example, the method 500 may be performed by a
computer system such as a cloud platform, a web server, a personal computer or other user
device, and the like. Referring to FIG. 5, in 510 the method may include storing a batch scoring
engine and an application programming interface (API) for the batch scoring engine.

[0079] In 520, the method may include receiving a trigger to perform a batch prediction process.
In 530, the method may include reading input data from a source data store and executing, via
the batch scoring engine, one or more predictive models on the input data to generate a
predictive output and metadata associated with the predictive output. In 540, the method may
include storing the predictive output and the metadata in a target data store. In 550, the method
may include updating the API with a location of the predictive output within the target data store
and a location of the metadata within the target data store.

[0080] In some embodiments, the API may include a representational state transfer (REST)
interface disposed over one or more predictive models embodied within the batch scoring engine.
In some embodiments, the method may further include exposing an endpoint for the API which
1s configured to receive API calls from one or more software applications and return the
predictive output and the metadata from the target data store to the one or more software
applications.

[0081] In some embodiments, the method may further include receiving an API call from a

software application with a record identifier of the predictive output, and in response to the API

24

WO 2024/013578 PCT/IB2023/054634

call, fetching one or more of a model prediction, a confidence of the model prediction, and input
feature values, from the location of the predictive output which is included in the updated API
and transmitting the one or more of the model prediction, the confidence of the model prediction,
and input feature values to the software application. In some embodiments, the method may
further include detecting that the input feature values are not present in the target data store, and
in response, retrieving the input feature values from the source data store based on a location of
the input feature values included in the updated APIL

[0082] In some embodiments, the method may further include receiving an API call from a
software application with a record identifier of the predictive output, and in response to the API
call, fetching one or more of concept drift attributes and bias attributes of the batch scoring
process from the location of the metadata which is included in the updated API and transmitting
the one or more of the concept drift attributes and the bias attributes to the software application.
In some embodiments, the updating may include updating an API management system of the
API with schema attributes of a table in the target data store which stores the predictive output.
In some embodiments, the schema attributes may include an identifier of a column within the
target data store which contains the input data, an identifier of a column that contains a record
identifier, and an identifier of a column that contains the predictive output.

[0083] The above embodiments may be implemented in hardware, in a computer program
executed by a processor, in firmware, or in a combination of the above. A computer program
may be embodied on a computer readable medium, such as a storage medium. For example, a
computer program may reside in random access memory (“RAM”), flash memory, read-only
memory (“ROM?”), erasable programmable read-only memory (“EPROM”), electrically erasable

programmable read-only memory (“EEPROM”), registers, hard disk, a removable disk, a

25

WO 2024/013578 PCT/IB2023/054634

compact disk read-only memory (“CD-ROM”), or any other form of storage medium known in
the art.

[0084] An exemplary storage medium may be coupled to the processor such that the processor
may read information from, and write information to, the storage medium. In the alternative, the
storage medium may be integral to the processor. The processor and the storage medium may
reside in an application specific integrated circuit (“ASIC”). In the alternative, the processor and
the storage medium may reside as discrete components. For example, FIG. 6 illustrates an
example computer system architecture 600, which may represent or be integrated in any of the
above-described components, etc.

[0085] FIG. 6 illustrates an example system 600 that supports one or more of the example
embodiments described and/or depicted herein. The system 600 comprises a computer
system/server 602, which is operational with numerous other general purpose or special purpose
computing system environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for use with computer system/server
602 include, but are not limited to, personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs, minicomputer
systems, mainframe computer systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

[0086] Computer system/server 602 may be described in the general context of computer
system-executable instructions, such as program modules, being executed by a computer system.
Generally, program modules may include routines, programs, objects, components, logic, data

structures, and so on that perform particular tasks or implement particular abstract data types.

26

WO 2024/013578 PCT/IB2023/054634

Computer system/server 602 may be practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that are linked through a
communications network. In a distributed cloud computing environment, program modules may
be located in both local and remote computer system storage media including memory storage
devices.

[0087] As shown in FIG. 6, computer system/server 602 in cloud computing node 600 is shown
in the form of a general-purpose computing device. The components of computer system/server
602 may include, but are not limited to, one or more processors or processing units 604, a system
memory 606, and a bus that couples various system components including system memory 606
to processor 604.

[0088] The bus represents one or more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects (PCI) bus.

[0089] Computer system/server 602 typically includes a variety of computer system readable
media. Such media may be any available media that is accessible by computer system/server
602, and 1t includes both volatile and non-volatile media, removable and non-removable media.
System memory 606, in one embodiment, implements the flow diagrams of the other figures.
The system memory 606 can include computer system readable media in the form of volatile
memory, such as random-access memory (RAM) 610 and/or cache memory 612. Computer

system/server 602 may further include other removable/non-removable, volatile/non-volatile

27

WO 2024/013578 PCT/IB2023/054634

computer system storage media. By way of example only, storage system 614 can be provided
for reading from and writing to a non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a magnetic disk drive for reading from and
writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk™), and an optical disk
drive for reading from or writing to a removable, non-volatile optical disk such as a CD-ROM,
DVD-ROM or other optical media can be provided. In such instances, each can be connected to
the bus by one or more data media interfaces. As will be further depicted and described below,
memory 606 may include at least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the functions of various embodiments of the
application.

[0090] Program/utility 616, having a set (at least one) of program modules 618, may be stored in
memory 606 by way of example, and not limitation, as well as an operating system, one or more
application programs, other program modules, and program data. Each of the operating system,
one or more application programs, other program modules, and program data or some
combination thereof, may include an implementation of a networking environment. Program
modules 618 generally carry out the functions and/or methodologies of various embodiments of
the application as described herein.

[0091] As will be appreciated by one skilled in the art, aspects of the present application may be
embodied as a system, method, or computer program product. Accordingly, aspects of the
present application may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

2 ¢

“circuit,” “module” or “system.” Furthermore, aspects of the present application may take the

28

WO 2024/013578 PCT/IB2023/054634

form of a computer program product embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

[0092] Computer system/server 602 may also communicate with one or more external devices
620 such as a keyboard, a pointing device, a display 622, etc.; one or more devices that enable a
user to interact with computer system/server 602; and/or any devices (e.g., network card,
modem, etc.) that enable computer system/server 602 to communicate with one or more other
computing devices. Such communication can occur via I/O interfaces 624. Still yet, computer
system/server 602 can communicate with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via
network adapter 626. As depicted, network adapter 626 communicates with the other
components of computer system/server 602 via a bus. It should be understood that although not
shown, other hardware and/or software components could be used in conjunction with computer
system/server 602. Examples, include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID systems, tape drives, and data
archival storage systems, etc.

[0093] Although an exemplary embodiment of at least one of a system, method, and non-
transitory computer readable medium has been illustrated in the accompanied drawings and
described in the foregoing detailed description, it will be understood that the application is not
limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications,
and substitutions as set forth and defined by the following claims. For example, the capabilities
of the system of the various figures can be performed by one or more of the modules or
components described herein or in a distributed architecture and may include a transmitter,

receiver or pair of both. For example, all or part of the functionality performed by the individual

29

WO 2024/013578 PCT/IB2023/054634

modules, may be performed by one or more of these modules. Further, the functionality
described herein may be performed at various times and in relation to various events, internal or
external to the modules or components. Also, the information sent between various modules can
be sent between the modules via at least one of: a data network, the Internet, a voice network, an
Internet Protocol network, a wireless device, a wired device and/or via plurality of protocols.
Also, the messages sent or received by any of the modules may be sent or received directly
and/or via one or more of the other modules.

[0094] One skilled in the art will appreciate that a “system” could be embodied as a personal
computer, a server, a console, a personal digital assistant (PDA), a cell phone, a tablet computing
device, a smartphone or any other suitable computing device, or combination of devices.
Presenting the above-described functions as being performed by a “system” is not intended to
limit the scope of the present application in any way but is intended to provide one example of
many embodiments. Indeed, methods, systems and apparatuses disclosed herein may be
implemented in localized and distributed forms consistent with computing technology.

[0095] It should be noted that some of the system features described in this specification have
been presented as modules, in order to more particularly emphasize their implementation
independence. For example, a module may be implemented as a hardware circuit comprising
custom very large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors
such as logic chips, transistors, or other discrete components. A module may also be
implemented in programmable hardware devices such as field programmable gate arrays,
programmable array logic, programmable logic devices, graphics processing units, or the like.
[0096] A module may also be at least partially implemented in software for execution by various

types of processors. An identified unit of executable code may, for instance, comprise one or

30

WO 2024/013578 PCT/IB2023/054634

more physical or logical blocks of computer instructions that may, for instance, be organized as
an object, procedure, or function. Nevertheless, the executables of an identified module need not
be physically located together but may comprise disparate instructions stored in different
locations which, when joined logically together, comprise the module and achieve the stated
purpose for the module. Further, modules may be stored on a computer-readable medium, which
may be, for instance, a hard disk drive, flash device, random access memory (RAM), tape, or any
other such medium used to store data.

[0097] Indeed, a module of executable code could be a single instruction, or many instructions,
and may even be distributed over several different code segments, among different programs,
and across several memory devices. Similarly, operational data may be identified and illustrated
herein within modules and may be embodied in any suitable form and organized within any
suitable type of data structure. The operational data may be collected as a single data set or may
be distributed over different locations including over different storage devices, and may exist, at
least partially, merely as electronic signals on a system or network.

[0098] It will be readily understood that the components of the application, as generally
described and illustrated in the figures herein, may be arranged and designed in a wide variety of
different configurations. Thus, the detailed description of the embodiments is not intended to
limit the scope of the application as claimed but is merely representative of selected
embodiments of the application.

[0099] One having ordinary skill in the art will readily understand that the above may be
practiced with steps in a different order, and/or with hardware elements in configurations that are

different than those which are disclosed. Therefore, although the application has been described

31

WO 2024/013578 PCT/IB2023/054634

based upon these preferred embodiments, it would be apparent to those of skill in the art that
certain modifications, variations, and alternative constructions would be apparent.

[00100] While preferred embodiments of the present application have been described, it is to be
understood that the embodiments described are illustrative only and the scope of the application
is to be defined solely by the appended claims when considered with a full range of equivalents

and modifications (e.g., protocols, hardware devices, software platforms etc.) thereto.

32

WO 2024/013578 PCT/IB2023/054634

WHAT IS CLAIMED IS:

1. An apparatus comprising:
a memory configured to store a batch scoring engine and an application programming
interface (API) for the batch scoring engine; and
a processor configured to
receive a trigger to perform a batch prediction process,
read input data from a source data store and iteratively execute, via the batch
scoring engine, one or more predictive models on the input data to generate a predictive output
and metadata associated with the predictive output,
store the predictive output and the metadata in a target data store, and
update the API with a location of the predictive output within the target data store

and a location of the metadata within the target data store.

2. The apparatus of claim 1, wherein the API comprises a representational state
transfer (REST) interface disposed over one or more predictive models embodied within the

batch scoring engine.

3. The apparatus of claim 1, wherein the processor is further configured to expose an
endpoint for the API which is configured to receive API calls from one or more software
applications and return the predictive output and the metadata from the target data store to the

one or more software applications.

33

WO 2024/013578 PCT/IB2023/054634

4. The apparatus of claim 1, wherein the processor is configured to receive an API
call from a software application with a record identifier of the predictive output, and in response
to the API call, fetch one or more of a model prediction, a confidence of the model prediction,
and input feature values, from the location of the predictive output which is included in the
updated API and transmit the one or more of the model prediction, the confidence of the model

prediction, and input feature values to the software application.

5. The apparatus of claim 4, wherein the processor is configured to detect that the
input feature values are not present in the target data store, and in response, retrieve the input
feature values from the source data store based on a location of the input feature values included

in the updated API.

6. The apparatus of claim 1, wherein the processor is further configured to receive
an API call from a software application with a record identifier of the predictive output, and in
response to the API call, fetch one or more of concept drift attributes and bias attributes of the
batch scoring process from the location of the metadata which is included in the updated API and
transmit the one or more of the concept drift attributes and the bias attributes to the software

application.

7. The apparatus of claim 1, wherein the processor is configured to update an API

management system of the API with schema attributes of a table in the target data store which

stores the predictive output.

34

WO 2024/013578 PCT/IB2023/054634

8. The apparatus of claim 7, wherein the schema attributes comprise an identifier of
a column within the target data store which contains the input data, an identifier of a column that

contains a record identifier, and an identifier of a column that contains the predictive output.

9. A method comprising:

storing a batch scoring engine and an application programming interface (API) for the
batch scoring engine;

receiving a trigger to perform a batch prediction process;

reading input data from a source data store and executing, via the batch scoring engine,
one or more predictive models on the input data to generate a predictive output and metadata
associated with the predictive output;

storing the predictive output and the metadata in a target data store; and

updating the API with a location of the predictive output within the target data store and a

location of the metadata within the target data store.

10. The method of claim 9, wherein the API comprises a representational state
transfer (REST) interface disposed over one or more predictive models embodied within the

batch scoring engine.

11. The method of claim 9, wherein the method further comprises exposing an
endpoint for the API which is configured to receive API calls from one or more software
applications and return the predictive output and the metadata from the target data store to the

one or more software applications.

35

WO 2024/013578 PCT/IB2023/054634

12. The method of claim 9, wherein the method further comprises receiving an API
call from a software application with a record identifier of the predictive output, and in response
to the API call, fetching one or more of a model prediction, a confidence of the model prediction,
and input feature values, from the location of the predictive output which is included in the
updated API and transmitting the one or more of the model prediction, the confidence of the

model prediction, and input feature values to the software application.

13. The method of claim 12, wherein the method further comprises detecting that the
input feature values are not present in the target data store, and in response, retrieving the input
feature values from the source data store based on a location of the input feature values included

in the updated API.

14. The method of claim 9, wherein the method further comprises receiving an API
call from a software application with a record identifier of the predictive output, and in response
to the API call, fetching one or more of concept drift attributes and bias attributes of the batch
scoring process from the location of the metadata which is included in the updated API and
transmitting the one or more of the concept drift attributes and the bias attributes to the software

application.

15. The method of claim 9, wherein the updating comprises updating an API

management system of the API with schema attributes of a table in the target data store which

stores the predictive output.

36

WO 2024/013578 PCT/IB2023/054634

16. The method of claim 15, wherein the schema attributes comprise an identifier of a
column within the target data store which contains the input data, an identifier of a column that

contains a record identifier, and an identifier of a column that contains the predictive output.

17. A computer-readable storage medium comprising instructions, that when read by
a processor, cause the processor to perform a method comprising:

storing a batch scoring engine and an application programming interface (API) for the
batch scoring engine;

receiving a trigger to perform a batch prediction process;

reading input data from a source data store and executing, via the batch scoring engine,
one or more predictive models on the input data to generate a predictive output and metadata
associated with the predictive output;

storing the predictive output and the metadata in a target data store; and

updating the API with a location of the predictive output within the target data store and a

location of the metadata within the target data store

18. The computer-readable storage medium of claim 17, wherein the method further
comprises exposing an endpoint for the API which is configured to receive API calls from one or
more software applications and return the predictive output and the metadata from the target data

store to the one or more software applications.

37

WO 2024/013578 PCT/IB2023/054634

19. The computer-readable storage medium of claim 17, wherein the updating
comprises updating an API management system of the API with schema attributes of a table in

the target data store which stores the predictive output.

20. The computer-readable storage medium of claim 19, wherein the schema
attributes comprise an identifier of a column within the target data store which contains the input
data, an identifier of a column that contains a record identifier, and an identifier of a column that

contains the predictive output.

38

PCT/IB2023/054634

WO 2024/013578

1/13

WO 2024/013578 PCT/IB2023/054634

200
LLLL 4
/v v iy v iy
@ ik

ﬁl)

2/13

PCT/IB2023/054634

WO 2024/013578

e :
o,]
‘ -,
yonenidchy ,f./.f “
180 iy “
;
~ 1
o i
A4) ru
het 1~
J 1
1
1
»
]
o i
0ee e iy ;
1
uonesyddy 1
(474

0cc

dV

2414

BI0IS BIBCY

by
T T

gjeq
bty

h

_,‘

BLIBYOS
syepdn

1%

{s1epow TNAY)
subuy Buucog

.

AT

44

e

BIOIG Bl
BOINOG

4oeg

d¢ old

(L

Bupoong

0oBbu

FAYA

LWeISAg
wawabeue

yoied

N
~—

3/13

PCT/IB2023/054634

WO 2024/013578

Ve Old

808 WO LVYHIJO
HHOMIEN

Yy o y0g
818 NHOLALY Td ‘ LRYOYO0IY

ONISS300dd , , DAUCISSILIS

NIvHOM00d

01€ H3d4013A30
NIVHOXOO0E

_.g

31€ ALIBOHLNY
ALYOI4ILHED

_mL 90€ HOLYND3Y

c0& "GN NIvHOMOO18

Y

4/13

PCT/IB2023/054634

WO 2024/013578

m m . .mu_“* 82¢€ HOLYHILO
MHOMLIN
NIVHOMOO

v

8 WHOA41LV d

DNISSA00Y

d

968 ALIBOHLOY
ALVoiiiEED

ay

o g,

G

)

s

o6
UFBUONO0IE

PBUCISSILLD Y 0ET H3L0T3AZ30

NIVHOMOO1d

97€ HOLYIND3Y

7

k 4

&Gt HASN NIVHOMOOd

eedB

5/13

PCT/IB2023/054634

WO 2024/013578

se . e w0
VORNGLISHT Suuispy o ampngg L uogeoRIss
) J . / ‘ J
B g e
J(-(f.).._l«.(u \\\
e, T
", e
)z). \.\
S s
;.,,../‘.a .\,\,\\.\\\\
«.(.f.(»f.f \.\\r\
3

2\

FAON \

1

P21 _w
UFBLIONO0IG
B ssouossBg { 790
e / JO0ON F
e Ry

= T
X1 payieh js00b84 X} h

95€ JapUBs

-
L3
2

6/13

WO 2024/013578 PCT/IB2023/054634

-
s
Gt

-
/ 3 f 2
o Buid
¢ v Model
{
}
}
L
Ts"as;s‘mg y
Data { R
Asset{s)
TYesting ! 378
fMaded AP
Environment
50
Host Platorm
376
i M 4
/ ok § ‘1
Live Data ey
CHE Action
Clotad Computing
Eovivoriment
Host Platform 50

378

HG. 3D

7/13

WO 2024/013578 PCT/IB2023/054634

et o]

380 ~a

Uisar {3

UKD

o L

| - 388

O¥Dsn

Quantum-Ssoure
Cloud Compusing
Environmsnt

8/13

PCT/IB2023/054634

WO 2024/013578

N

1137
21018 BIEQ
jafiie)

T

(eEpeIsp+}
SHNSSY
SAIPRI

T ewel)

[i14%

(s{epon WY
suibuz Buuoog

Bussa004d C

gojed

Cour onw oew L owy
I3 RIOdEY pi0dey \ piRay

AT

ot

IO BIEQ

Vv 'Ol

0UN0S

T T
e

9/13

PCT/IB2023/054634

10/13

WO 2024/013578

\\\m\u\l\’\"\‘!}/
M....:.:.....:.....:.:....:.:......:.m 1%
H .
i ' 24015 BIRQ
“ t yofiiey
i '
H ¥
u t T T
! soBIol]| :
! 183y :
772 “
deyy uwnjonyeInRe ' " (h
| g W" (erepeiap+)
LOREIOT “ i QNSoN
8J0}g eje() 1abie] i : BAIIPI
]] } T
uolesoy 1 weshs | SeE e
21015 Bjeqg somog ! JowBeue | ! \ CEp Gl J
Pl gy SN
(i} yonoesuel | i \ZP%] H ,/f;sz
aipiooey W. ~.
! &ww Mm “ msmaum///;f | (1747
veZii -Gl qop yojey ; ! sy ~
;o : peERan T (sepop W)
u - } | suBuy Buuoog
AN L OFF tav W“
g 2 TTTTTTTTEETEETETEE

hix v Busseonig
&oov dv Ol wored

PCT/IB2023/054634

WO 2024/013578

oo T ¥
: 1
: 1
! %7
¥4 “ g
) gjeq ebie t PR
7 - 1 BoBPBIY ey 2018 Bleg
: 189y g - yebie]
uoneoyddy - N £ Yo .
2J2M0S ‘ 01 pioasy : A M
— 1 oo |
. 05¥ Busps
} 01 piooay gor !
” |
$,
t Y i
: “
i Wweshg g —
” juswebeuep M Uey
i N : {SIPPON TWAY)
' vy " awbug Buuoag
: ;
b 1
~ “ @)
H: — i)
L Buissacnid
yojeg

11/13

WO 2024/013578 PCT/IB2023/054634

500 FIG. 5

516
L
k . Storing a Batch Scoring Engine and an
o API for the Batch Scoring Engine
526
.y
Receiving a Trigger o Perform a
e o=
Batch Prediction Process
530
-
Reading Input Data and Executing -
o » Predictive Model{s) on the Input Data to Generate a
Predictive Quiput and Metadata
; 540
_ Storing the Predictive Ouiput and the Metadata
e L ;
irt & Target Data Store
550
Updating the AP with a Location of the
) > Predictive Cutput and the Metadata within the
Target Data Slore

12/13

WO 2024/013578

33
{”

PCT/IB2023/054634

FIG. 6
COMPUTER
SYSTEMISERVER e
802 RAM L
,,,,,,,,,,,,,,,,,,,,,,,,, ™ 610
STORAGE §y%
SYSTEM |
514 ‘
[CAcHE |
> 812
MEMORY
606
—————————————————————————— 616
618
ngﬁisms NETWORK
oy L ADAPTER
¥ 626
yo
INTERFACES
624
3
¢ v
| EXTERNAL
D‘%Z;M DEVICES
620

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2023/054634

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06Fr9/54 H04L67/02

ADD.

H04L67/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HO4L GO6N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figures 1A, 1B, 1D, 3, 4, 6
page 15, line 20 - line 25

column 23, line 8 - line 20
column 25, line 30 — line 40
column 26, line 27 - line 35
column 27, line 1 - line 20
column 28, line 10 - line 18
column 41, line 10 - line 17

X US 11 182 695 Bl (KIRSCHE DANIEL DAVID
[US] ET AL) 23 November 2021 (2021-11-23)

column 18, line 65 - column 19,

1-20

line 4

-/—

|__x| Further documents are listed in the continuation of Box C.

‘zl See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified}

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

29 June 2023

Date of mailing of the international search report

07/07/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Suzic, Bojan

Form PCTASA/210 {second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2023/054634

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

ALVES JOSE M. ET AL: "ML4IoT: A Framework
to Orchestrate Machine Learning Workflows
on Internet of Things Data",

IEEE ACCESS, [Online]

vol. 7, no. 7, 1 January 2019 (2019-01-01)
, pages 152953-152967, XP093059354,

DOI: 10.1109/ACCESS.2019.2948160
Retrieved from the Internet:
URL:https://ieeexplore.ieee.org/ielx7/6287
639/8600701/08876834.pdf>

[retrieved on 2023-06-29]

figures 1,4,5,6

page 152954, right-hand column

page 152955, right-hand column

page 152958, left-hand column - right-hand
column

page 152959, left-hand column

page 152961, left-hand column

page 152962, left-hand column

US 9 508 083 B2 (ORACLE INT CORP [US])

29 November 2016 (2016-11-29)

figures 1, 2B, 2C, 4

column 3, line 65 — column 4, line 50
column 5, line 4 - column 6, line 15
column 10, line 45 - line 65

1-20

Form PCTASA/210 {continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2023/054634
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 11182695 Bl 23-11-2021 uUs 11182695 Bl 23-11-2021
us 2022180248 Al 09-06-2022
US 9508083 B2 29-11-2016 CN 104541297 A 22-04-2015
Us 2014006103 Al 02-01-2014
us 2017076305 Al 16-03-2017
WO 2014008304 A2 09-01-2014

Form PCTASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report
	Page 56 - wo-search-report

