UK Patent Application .,GB ,2607908

(13)A

(43)Date of A Publication 21.12.2022
(21) Application No: 2108502.2 (51) INT CL:
GO6F 8/76 (2018.01) GOG6F 8/36 (2018.01)
(22) Date of Filing: 15.06.2021

(71) Applicant(s):
Cristie Software Limited
New Mill, Chestnut Lane, Stroud, Gloucestershire,
GL5 3EH, United Kingdom

(72) Inventor(s):
Jordan Stopford
Sam Kendall
James Reynolds
lan Cameron

(74) Agent and/or Address for Service:
Albright IP Limited
County House, Bayshill Road, CHELTENHAM,
Gloucestershire, GL50 3BA, United Kingdom

(56) Documents Cited:
US 20190347127 A1 US 20160330277 A1
(58) Field of Search:
INT CL GO6F

(54) Title of the Invention: Application to container conversion and migration
Abstract Title: Application to container conversion and migration

(57) Amethod and system is disclosed for migrating an application on a source computer system, which may be a
legacy application running on an out-of-date operating system, to a container host running on a target computer
system. The system includes software products which analyse the source system to identify application
components, and which provision containers corresponding to the identified components.

Database server

* Required libraries

* Required environment
s Required configuration
» Required data storage

TCP port 3306

Language interpreter

Primary entry point CGlinterface
Web server .
TCP port 80 {pipes)
> * Required libraries
+ Required environment
* Required configuration
o Required static page files
.
Figure 1

Required libraries
Required environment
Required configuration

.
.
.
e Required script files

l Pipes

External internet

API
e

Web client

= Required libraries

* Required environment

* Required configuration

* Required storage {e.g
cookies)

vV 806.09¢ €9

o
w

IdV
19uJajul |eusalxy

(sanjood
8'9) a8eu03s pasinbay e
uonjeansiyuod paiinbay e
JUBWIUOIIAUD palinbay o
salelql| paiinbay e

3IP gam

sadid

s9|1} 3diIds pasinbay e
uolnjednsiyuod paiinbay e
JUDWUOUIAUD paldinbay o

salelqi| paainbay e

J93124d491ul 28ensuen

90€€ Wod dD1L

98e40]s ejep paliinbay o
uolnjednsiyuod paiinbay e
JUBWIUOIIAUD palinbay o

saueuql| paiinbay e

J9AI9S 9seqgele

(sadid)

9degiajul [9)

/T

sa|1j 98ed o11e31s palinbay e
uoljednsiyuod palinbay e
JUDWIUOUIAUD pauinbay o

saueuql| paiinbay o

SEVWELYLET

I 24nbi4

A

08 Hod ddo1
jujod Anpua Asewiid

10

15

20

25

30

APPLICATION TO CONTAINER CONVERSION AND MIGRATION

The present invention relates to migration of a software application from a source
computer system to a target computer system. In particular the invention provides
methods for automatically or semi-automatically converting an application into a

containerised structure for migration to a modern environment.
BACKGROUND TO THE INVENTION

Many organisations today rely on a large number of “legacy applications”. Broadly, a
legacy application may be said to be a computer system which works and provides a
useful (possibly critical) business function, but relies on technology which is no longer

current.

An “application” may comprise a number of interrelated components, for example
database servers, web servers, runtime engines, etc. An application may be running

on a single server or across multiple servers.

The continued use of legacy applications can present a number of problems. Firstly,
legacy applications may be running on old hardware. Replacement parts may no
longer be available and so in the event of a failure, repair may not be possible. Even if
the hardware can continue to function reliably, the power consumption and
requirement for cooling associated with older hardware is likely to be greater than for
modern hardware. Many organizations are looking to eliminate or at least significantly
reduce on-site servers in favour of the use of the “cloud” in order to outsource some
aspects of infrastructure management and take advantage of, for example, highly
robust redundant power and network connections, 24 hour security, etc. which would
be prohibitively expensive for small or medium businesses, but which can be provided
efficiently when the cost is shared by many customers of a large datacentre or hosting
provider. However, legacy applications which rely on old hardware may be a significant

barrier to completion of such projects.

More importantly, legacy applications may rely on old versions of software, especially
unsupported versions of operating systems. Continuing to run unsupported operating
systems represents a significant security risk due to the inevitable presence of
unpatched security vulnerabilities. This can sometimes be managed to an extent by
isolating the unsupported systems and setting up well-defined and secure access to
them, but this will never completely solve the security problem and may compromise

usability. The problem is not limited to operating systems but may include, for example,

10

15

20

25

30

old versions of database management systems, web servers, and indeed any other

software.

Old hardware, and old versions of operating systems and other software may also not
be compatible or not completely compatible with, for example, backup systems,
monitoring software, UPS devices and so on. This leads to a significant ongoing
management burden associated with legacy applications, which may require for
example bespoke and manual backup procedures separate from an organization-wide
centralised backup system, or regular manual checking that all components are still
working (for example, no disks in a RAID array have failed) where centralised

monitoring and alerting cannot be relied on.

Another problem associated with legacy applications is that the architecture of the
application can be unclear and unknown. An “application” could comprise of a complex
set of interrelated components running on one or more computers which may
communicate with each other in different ways. For example, multiple components
might access a shared database directly, while other components may access data by
requesting it through a service provided by another component. The structure and
dependencies of the application may be undocumented or partially documented.
Dependencies of components of the application on particular configuration options or
particular versions of libraries may be unclear. Ongoing maintenance may depend to
a large extent on personal knowledge of individuals, and this knowledge is prone to
loss with staff turnover. This makes diagnosis and repair of any faults potentially

difficult and time-consuming.

Virtualization is a relatively simple solution in many instances to the problem of out-of-
date hardware. The contents of an old physical server can be imaged and run on a
virtual machine, often with minimal or no modification. Virtualization eliminates reliance
on old hardware, may help, at least to some extent, with the problems of compatibility
with modern backup systems (since the virtual machine at least can normally be
imaged and backed up as a whole), and may allow the legacy application to take
advantage at least partially of modern power management and monitoring associated
with the modern hardware on which the virtual machines run. However, it does not
address the most significant security problems associated with out-of-date and

unsupported software.

Containerization involves bundling up a particular service into a single executable

package which includes all required configurations, libraries and dependencies. Each

10

15

20

25

30

container communicates with other containers only via well-defined interfaces. Building
an application as a series of isolated containers therefore makes it easier to
understand, troubleshoot and maintain. Containerization is sometimes known as “OS-
level virtualization” and containers are portable across operating systems and
operating system versions. Operating systems can therefore be kept up-to-date and
the containers in principle should continue to work unaffected. However, although
containerization as a concept has been known for a long time, it has only really become
common in the past 10 years. It is likely therefore that many “legacy” applications will

not be structured in this way.

Full migration of an application to a modern platform is therefore a time-consuming and
manual process, which for large projects may involve a team of skilled people. The
environment essentially needs to be re-built from scratch, using modern versions of
the operating system and other required components (database servers, web servers,
etc.). As part of this process the application may be containerized to make it more
maintainable in the future, but correctly building and configuring each component in
the container still requires identifying the required dependencies and configurations.
Without full knowledge of how the legacy application works, this may involve a certain
amount of trial and error. The time required and therefore the cost of such a migration
project may be difficult to accurately estimate in advance. Some projects may prove

unmanageable within available budget and may end up being abandoned altogether.

Preferably a container is built with a minimal set of dependencies — in other words the
component (for example a web server) in the container does not have any packages
installed or any interfaces enabled which it does not need. The person doing the
migration could take the view that anything which was installed or enabled in the legacy
application ought to be installed and enabled in the new container, but this will lead to
a less efficient, less maintainable, and less secure result. Best practice is to only install

what is required, but exactly what is required may be unclear without significant work.

It is an object of the present invention to reduce or substantially obviate the
aforementioned problems. In particular it is an object of the invention to provide an
automatic software-driven system for legacy application migration which provides a
more complete, durable and modern result than simply virtualizing an application to
take it off old hardware, but without the significant cost, time and uncertainty associated

with a “re-platforming” performed manually.

STATEMENT OF INVENTION

10

15

20

25

30

According to the present invention there is provided a computer-implemented method
of migrating an application from a source computer system to a target computer

system, the method comprising the steps of:

(a) identifying a primary entry point provided by the application on the source

computer system;

(b) examining the application on the source computer system to determine an

executable program which provides the entry point;

(c) defining an application component by identifying internal and external entry

points used and provided by the program;

(d) recursively carrying out steps (b) and (c) for each of the internal entry points
identified as used in step (c), until there are no internal entry points
associated with any components which are not provided by another

component;

(e) provisioning a container on the target computer system for each application

component.

An entry point is an interface. For example, an entry point may be a network port or
APl endpoint. The application will have at least one external entry point, i.e. an
interface to something which is not defined as part of the application. Some
applications may have more than one external entry point. The application is likely to
include multiple internal entry points, i.e. interfaces between components which are

part of the application.

For each application component identified, a list of dependencies associated with the
executable program may be identified. The dependencies may include for example
packages and libraries required by the program and/or persistent configuration storage

required by the program.

The effect of the method of the invention is to break the application down into small
components. A component is defined as the immediate executable program which
provides an entry point to the component, and everything which that component needs
in order to run — its dependencies. Thus once the application is broken down into small
components, each component is built back up to include a minimal but complete set of
everything which it needs in order to run. In different embodiments, each component

may be “built back up” (by identifying a minimal but complete set of dependencies) as

4

10

15

20

25

30

it is identified, or alternatively all of the components may be identified by building a
complete map of components and internal entry points between components before

each component is then built back up to include everything it requires.

For each component, entry points, i.e. interfaces which the component needs to have
with other components, are identified. These entry points are recorded in a list

associated with the component.

An entry point will be identified either as external or internal — whether it is an interface
to another component of the application or whether it is an interface to an external
system or another application. Some interfaces, for example a web server which is
accessed by users on client machines, may be obviously external interfaces. In other
cases the difference between an “internal” and “external” interface may simply depend
on what is defined as “part of the application” and what is defined as a “different
application”, which may depend on the wider context and in particular the status of
different parts of the estate as “legacy”. For example, an interface to another computer
system which is already running in a modern virtualized and containerised environment
in the cloud, on an up-to-date operating system, would probably be considered a
different application since it does not need to be migrated. However, where there are
multiple legacy applications all of which interact and all of which need to be migrated
to a more modern environment, the boundaries between applications may be
considered a matter of engineering discretion. Therefore, although the method is to a
large extent automatic and driven by software, defining the ultimate bounds of the
application and therefore the difference between an external and internal entry point

may be a matter of user input.

For each component, entry points will be identified which are used by that component
and entry points will also be identified which are provided by that component. Where
a component uses an internal entry point which is not provided by any yet-identified
component, steps (b) and (c) need to be recursively carried out to define a component
to provide that entry point. When there are no internal entry points left which are used
by some component but not provided by another component, all components of the

application have been identified.

Once all components of the application have been identified, any entry points which
are provided by a component but not used by any other component may be examined
to determine whether they are required external entry points of the application, or

whether they are redundant entry points. A redundant entry point, i.e. an interface to a

10

15

20

25

30

component which exists as a result of how the source system was configured, but
which is not required by any internal component or external application or user, may
represent an unnecessary security risk. Therefore any components having redundant
entry points may be re-defined to omit that entry point. Again, this is a matter of defining
the boundaries of what is meant by the “application” which may be a matter which is

not automated, or not completely automated, in some embodiments.

Hence there is a recursive process of building a map of components and entry points,
until there are no entry points used by any components which are not either provided
by other components or defined as external entry points used or provided by the

application.

Identifying the primary entry point may include scanning the source system for known
types of service files. However some manual intervention may be required to identify
the primary entry point(s) associated with an application, based on the services which
the application is known to provide. Some applications may have multiple primary entry

points in which case step (b) is carried out (and recursed) for each primary entry point.

At step (b), identifying the executable program which provides the entry point may be
done by examining the application when it is running on the source computer system,
in particular identifying which running process is bound to the entry point, for example
the network port or pipe. Service files may be examined to determine, in addition to the
executable program which provides the process, any arguments or environment

variables which need to be passed to it.

Determining entry points used and provided by a component may be done by
examining the respective computer program when it is running on the source system

and observing how it interacts with, for example, TCP ports, UDP ports, pipes, etc.

Determining the list of dependencies may include determining which binaries and
libraries are required by the program. This is achieved by examining which binaries
and libraries are installed alongside the application via package files on the source
system. Additionally, the source system may be examined to determine any system

libraries utilized by the program.

It will be understood that determining binaries and libraries which are required may
include recursively building a dependency tree. |.e. dependencies of dependencies are
all included in the list of dependencies associated with an executable program which

forms one component. Although the list of dependencies is built by starting with one

10

15

20

25

30

executable program, there is not necessarily only one executable program per

component since the executable program may depend on others.

Each defined component corresponds to one container to be provisioned on the target
system. It is quite possible that some binaries and libraries will form part of multiple
components / containers. Each container includes a minimal but complete set of
executable programs, libraries and configuration which provide the services required

by the entry points at the boundary of that container.

Determining the list of dependencies may include identifying files in persistent storage.
This may be done by examining the computer program when it is running on the source

system and observing which files are accessed and changed by the program.

Provisioning each container may include selecting a container base image from a
library of container images. Container images are likely to be available including up-
to-date versions of web servers, database servers, etc. A container base image may
be selected which includes a subset of the programs and libraries which are identified
as part of an application component. The container image may then be modified to
include anything which the application component requires which was not part of the

container image.

The source and target computer systems are assumed to be ABI (application binary
interface) compatible. The target computer system may be a virtual machine (indeed
it is likely that the target computer system will usually be a virtual machine) and so an

ABIl-compatible target computer system may easily be provisioned.

The method may further include provisioning network connections between containers
on the target computer system. Each container will require internal network
connection(s), allowing communication with one or more other containers, and at least
one container, probably multiple containers, will require an external network
connection where an entry point / interface to the application as a whole is provided.
Network connections on the target system are provisioned according to the entry points

identified as needing to be associated with each component.

Storage volumes for container(s) to hold persistent data may be provisioned on the
target system according to the persistent configuration storage identified as needing
to be associated with each component. Containers are inherently ephemeral and so
any files which are determined to be critical for persistence are externalized from the

container as volumes which are attached to the relevant container.

10

15

20

25

30

A startup script may be created for each container, or for at least some of the
containers. The startup script may for example set up environment variables when the
container starts, or pass arguments to the executable program according to the

requirements identified on analysis of the source system.

Migrating the application to the target system may further include copying data from
the source system to the target system. Data copied may include package files and

libraries.

Files being copied may be scanned for source-system-specific configuration
information. For example references to hostnames or IP addresses. If any of these
references are found to map to services migrated as part of the application, they are
changed to reference the internal container network names assigned by the container

host on the target system.

A container orchestration script may be created. This is in effect an application-wide
startup script, which ensures that each container is started in the right way and in the

right order.

BRIEF DESCRIPTION OF THE DRAWING

For a better understanding of the present invention, and to show more clearly how it
may be carried into effect, reference will now be made by way of example only to the
accompanying drawing, in which Figure 1 shows an example map of application

components and entry points created and used by an embodiment of the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

An embodiment of the invention comprises computer software made up of an analysis
module, a container provisioning module and a data migration module. The analysis
module examines the source computer system to build up a map of application
components and entry points between components. Further, the analysis module
identifies all dependencies required by a component to form a minimal but complete

runnable container to perform the function of that component.

The container provisioning module provisions containers on the target computer
system according to the information collected by the analysis module. A container will
be provisioned for each identified application component, and the appropriate

interfaces will also be set up between the containers.

10

15

20

25

30

Provisioning a container may include identifying a suitable container base image. The
container base image may have a subset of the programs required by the application
component, with more programs / libraries to be installed to build a container to provide
the component. In some cases, programs / libraries may be deleted from a container
base image where they are not required by an application component. It is envisaged
that container base images will normally be selected on the basis of having a fairly

minimal installation of a particular program, for example a web server.

Finally the data migration module copies the required files from the source computer
system to the target computer system. Files being copied may be scanned to identify

where configuration parameters need to be updated as part of the migration.

The starting point for the analysis module is to identify a primary entry point provided
by the application on the source computer system. The primary external entry point
may be defined by user input, but in embodiments an automated process may at least
suggest likely primary entry points. For example, a web server port bound to a web
server may well be a primary entry point, through which the application on the source

computer system is accessed by users on client stations.

Given the primary entry point, the analysis module identifies the executable program
responsible for providing that entry point. This is done by examining the source
computer system when the application is running and looking at how executing
processes interact with entry points. For example, a running process bound to a TCP
port which has been identified as the primary entry point will be identified as associated

with the executable program responsible for providing that entry point.

The identified program is then analysed while running on the source computer system
to fully identify everything which is required in order for it to run. In this embodiment,
this is done alongside identifying other entry points which are used or provided by the
identified program. This process of fully defining everything which is required in the
application component is referred to as “package analysis”, and comprises of the

following parts.

1. What further service(s) / entry point(s) does the program provide?

This is achieved by scanning the installation package associated with the
program for known types of service files, e.g. Sysinit files or SystemD unit files.
If none of these service files are found, a search is performed based on the

binaries that are part of the package. Programs may be observed while they

10

15

20

25

30

are running on the source computer system to see what network ports, pipes,

etc. are bound to running processes.

How does the program provide the entry point(s)?

From any service file, e.g. Sysinit or SystemD unit file, it can be determined
which binary needs to be run along with any arguments or environment

variables which need to be passed to it.

What binaries and libraries does the program need to run?

The package files are examined to determine what binaries and libraries are
installed. Separately, the source system is examined to determine any system
libraries which are required. This may be done recursively, to build a minimal
but complete environment in which the program can function to provide the

entry point(s) which it provides — the application component.

Which entry point(s) does the program need to be available?

This is achieved primarily by examining the program when running within the
source computer system to identify how it interacts with other components via

interfaces (entry points) such as TCP ports, UDP ports, pipes, etc.

This allows a dependency map to be constructed between application
components, and it ensures that all application components are identified, since
the package analysis stage will be carried out recursively on all identified
required entry points, until all required entry points are provided by some
identified application component or are defined as external entry points, i.e.
interfaces to some other system not defined as part of the application being

migrated.

What storage does the program need for its persistent data?

This is achieved by examining files on the source system in well-known
configuration locations (such as the /etc directory on Linux / UNIX systems).
The program may be observed while running to determine what storage it

interacts with.

The package analysis stage, carried out recursively on all identified entry points, and

in this way a map of application components and entry points between the components

10

10

15

20

25

30

is built up. Each application component is defined completely including all required
system libraries, environment variables and persistent storage. However, the
application component is minimal or close to minimal, in that it contains nothing which
is not required to provide the entry point(s). Figure 1 shows a visualisation of the map
of application components which may be built up for a simple application. Each box
constitutes an application component. The arrows between boxes indicate entry points
provided by one component (the component at the arrowhead provides the entry point)
and used by another component (the component at the other end of the arrow uses
the entry point). In this example a simple application is provided by a web server. A
primary entry point is obviously the TCP port through which web clients connect. The
web server program is identified and the package analysis takes place to fully identify
everything required by the web server program, to define the component which can
run in an isolated container. This includes all required libraries, environment and
persistent storage for configuration and data. As part of the package analysis, it is
determined that the web server uses a CGI interface, i.e. pipes to other processes
running on the source system. The program providing this entry point is then identified,
and the package analysis is completed in relation to this program as well. All required
binaries, libraries, environment and persistent storage required by the language
interpreter are determined, and it is also identified that when running on the source
computer system, the language interpreter interacts with TCP port 3306 and also
through pipes with other processes running on the source system. The programs
providing these entry points (in this case, a database server and a web client) are then

subject to the package analysis stage.

In this example the web client is observed to communicate with an external internet
service to retrieve information. This represents an external entry point, to a service

which is not part of the application being migrated.

Once the analysis module has built a full map of application components, the container
provisioning module can create containers on the target computer system ready for

data transfer. The container provisioning module performs the following actions:

1. Create empty containers on the target computer system

For each container (a container is provided for each application component) a
base image for the container is selected. Preferably container base images are
available in a container base image library which have minimalist installations

of common programs, for example web servers. A container base image is

11

10

15

20

25

30

selected having a subset of what the application component requires, with extra
packages / libraries then being added where necessary according to what has

been identified as required as part of the application component.

A container is provisioned for each application component identified in the

analysis stage.

Create external and internal container networks.

Internal (i.e. within the container host) network connections are set up to allow
communication between containers. In the example shown in Figure 1, the
language interpreter needs a network connection to communicate with the
database server. External (i.e. externally of the container host) network
connections are also created if required. For example the web server in Figure
1 needs an external network connection so that users can access it, and the
web client in Figure 1 needs an external network connection so that it can

access an internet API.

It should be noted that the external network connections may be to different
networks. For example, the external internet connection required by the web
client in Figure 1 will need to be to the internet, but the external network
connection provided by the web server in Figure 1 could be for example to an

internal company network having no (direct) connection to the internet.

Create volumes for the containers to hold persistent data

The information determined by the analysis module includes files which are
required by application components to store persistent data. These files are
externalised as volumes and then attached to the containers, ensuring that the

information persists when containers are stopped and started.

Create startup scripts to run the programs in the containers

The commands extracted from the service files in the analysis stage, for
example arguments or options, are moved into a separate script which is
executed when the container starts. This script contains all environment
variables, user variables and customizations which are required for the

application component to function properly.

5. Create service user context to run the migrated application

12

10

15

20

25

30

The analysis stage discovers which user contexts are used on the source
system to run the application and access any files / folders / binaries / libraries
it requires for normal operation. For each user encountered on the source
system, a new service user context is created on the target, along with a

mapping for use in the migration stage.

Finally, a data migration module copies raw data from the source system into the target
system. The data may be altered as it is copied in order to make necessary changes

arising out of the migration to a containerised environment.

The data migration module performs the following actions:

1. Copy the files and folders required by the application

Files and folders required by any component of the application are identified

in the analysis stage and are now copied.

2. Alteration of target filesystem permissions

The analysis stage identifies which user contexts are required to run which
application components, and which user contexts are required to access
particular files and folders. The target filesystem permissions need to be
altered to change the ownership of files to map to the new service user

context.

3. Alteration of internal network references

Data being migrated is scanned for references to known hostnames or IP
addresses which the source system uses for communication. If any of these
references are found to map to other application components being

migrated, the references are changed accordingly.

The invention provides an automatic system which allows an operator to take an
application that has been installed on one system, perhaps where there is little
knowledge of the structure and decision process which was made when the application
was written or installed, and move it into a containerised target system. This allows
legacy systems to be moved off old operating systems into modern environments,
especially into “cloud” environments, without the time and cost associated with

attempting to manually rebuild the application.

13

The embodiments described above are provided by way of example only, and various
changes and modifications will be apparent to persons skilled in the art without

departing from the scope of the present invention as defined by the appended claims.

14

10

15

20

25

CLAIMS

. A method of migrating an application from a source computer system to a target

computer system, the method comprising the steps of:

(a) identifying a primary entry point provided by the application on the source

computer system;

(b) examining the application on the source computer system to determine an

executable program which provides the entry point;

(c) defining an application component by identifying internal and external entry

points used and provided by the program;

(d) recursively carrying out steps (b) and (c) for each of the internal entry points
identified as used in step (c), until there are no internal entry points
associated with any components which are not provided by another

component;

(e) provisioning a container on the target computer system for each application

component.

. A method as claimed in claim 1, wherein for each application component

identified, a list of dependencies associated with the executable program is
identified.

. A method as claimed in claim 2, wherein the dependencies include packages

and libraries required by the program.

. A method as claimed in claim 2 or claim 3, wherein the dependencies include

persistent storage required by the program.

. A method as claimed in any of claims 2 to 4, wherein the dependencies are

identified during step (c).

. A method as claimed in any of the preceding claims, in which redundant entry

points are identified, and application components having redundant entry

points are redefined to omit redundant entry points.

15

10

15

20

7.

10.

11.

12.

13.

14.

A method as claimed in any of the preceding claims, in which identifying the
primary entry point includes scanning the source system for known types of

service files.

A method as claimed in any of the preceding claims, in which identifying the
executable program which provides the entry point in step (b) includes

examining the application when it is running on the source computer system.

A method as claimed in any of the preceding claims, in which identifying entry
points used and provided by a component includes examining the application

when it is running on the source computer system.

A method as claimed in any of claims 2 to 5, wherein determining a list of

dependencies includes recursively building a dependency tree.

A method as claimed in any of the preceding claims, further including
provisioning network connections between containers on the target computer

system.

A method as claimed in any of the preceding claims, further including

provisioning volumes for persistent storage on the target computer system.

A method as claimed in any of the preceding claims, further including creating

a startup script associated with at least one of the containers.

A computer program product such as a non-transient computer readable media
containing computer executable instructions adapted to carry out the method

of any of the preceding claims.

16

i 17
Intellectual
Property

Office

%

Application No: (GB2108502.2 Examiner: Contract Unit Examiner
Claims searched: 1-14 Date of search: 1 March 2022

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 1-14 US2016/330277 Al
(JAIN RAKESH ET AL) par 14, 16, 52, 54, 55; claim 1; figure 5
X 1-14 US2019/347127 Al
(COADY STEPHEN ET AL) par 14, 34-36, 41, 45, 48, 50
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
carlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC

[GOGF |

The following online and other databases have been used in the preparation of this search report

International Classification:

Subclass Subgroup Valid From
GO6F 0008/76 01/01/2018
GO6F 0008/36 01/01/2018

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - CLAIMS
	Page 18 - CLAIMS
	Page 19 - SEARCH_REPORT

