w0 2019/070675 A1 | I 00 0000 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2019/070675 Al

11 April 2019 (11.04.2019) WIPOIPCT

(51) International Patent Classification:
GO6F 21/52 (2013.01) GO6F 21/62 (2013.01)
GO6F 21/55 (2013.01)

(72)
(21) International Application Number:
PCT/US2018/053920
(22) International Filing Date:
02 October 2018 (02.10.2018)
(25) Filing Language: English
(26) Publication Language: English (74)
(30) Priority Data:
62/567,498 03 October 2017 (03.10.2017) US
81

(71) Applicants: RUTGERS, THE STATE UNIVERSITY
OF NEW JERSEY [US/US]; 83 Somerset Street, New
Brunswick, NJ 08901 (US). THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA UNIVERSITY OF
CALIFORNIA, LOS ANGELES [US/US]; Tech. Dev.

Grp., 10889 Wilshire Blvd., Suite 920, Los Angeles, CA
90095-7191 (US).

Inventors: ZONOUZ, Saman Aliari; 155 Washinton
Street, Building 2, Apt. 1907, Jersey City, NJ 07302 (US).
SALLES-LOUSTAU, Gabriel; 913 Graham Street, Apt
G4, Highland Park, NJ 08904 (US). SRIVASTAVA, Mani;
3747 Regan Vista Drive, Sherman Oaks, CA 91403 (US).
ALZANTOT, Moustafa; 1310 Barry Avenue, Apt. 205,
Los Angeles, CA 90025 (US).

Agent: WAKIMURA, Mary Lou et al.; Hamilton, Brook,
Smith & Reynolds, P.C., 530 Virginia Rd, P.O. Box 9133,
Concord, MA 01742-9133 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(54) Title: VALUE-BASED INFORMATION FLOW TRACKING IN SOFTWARE PACKAGES

1000
202
/ 210 METRON SANDBOX 206
/ 'void S_teEDe_tec_tor_ (Io_ng,—!'ﬁo_a_t?-1
| L= a9)
float, float)

THIRD-PARTY APP TARGETED liconst/4vs #+3

classes.dex INSTRUME- iiconst/dvs, #+0

NTATION aput v14, v0, v

SOURCES 212 Iconst/4v7, #+0

SENSORS ® laget v7, v0, v7
DATA o

CODE Inew-array v0, v5, float]]

[

= I |
| :l = const4/ (int) sensor
I

216 A

const 2-|(const4/
/ (int) sensor)

5

|
: int-to-float y7,
|

4 ||

I

I

. = !
div-float|[vé] v3, v7, |
I

I

|

app.oat Q aput v6, v4, v5
n 214 , ,

R
- ._._i=const3-[(consty/
N7 a (inf) sensor)

() LIST OF TAINTED

® RUNTIME VALUES & OPERATION
SINKS VALUE-BASED IFT | H'SZTO%RY
SOCKETS, o a 208
FILES

\ 204

FIG. 1

(57) Abstract: A computer-implemented method, computer system, and ¢

B

omputer program product are directed to improving computer

security of a device using value based information flow tracking. Embodiments automatically capture raw data values from a data

source of the device and store in memory the captured raw data values in a
computed values of functions of a data flow are included in the collection

collection of sensitive data. Embodiments determine whether
of sensitive data. Based upon the determining, embodiments

prevent values of the collection of sensitive data from being transmitted from a sink of the device. Embodiments may determine whether
string representations of computed operand and return values of numerical or arithmetic operations of the functions of the data flow

are included in the collection of sensitive data.

[Continued on next page]

WO 2019/070675 A [10000000 00 0 0 0 0O

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))
— with amended claims (Art. 19(1))

WO 2019/070675 PCT/US2018/053920

-1-

VALUE-BASED INFORMATION FLOW TRACKING IN SOFTWARE PACKAGES

RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No. 62/567,498,
filed on October 3, 2017. The entire teachings of the above applications are incorporated herein

by reference.

GOVERNMENT SUPPORT

[0002] This invention was made with government support under D15PC00159 from

Department of Homeland Security (DHS). The government has certain rights in the invention.

BACKGROUND
[0003] In general, tracking as well as data flow tracking includes various programming
language analysis techniques. These techniques are employed in a variety of applications such

as privacy protection/verification.

SUMMARY

[0004] Applicants provide embodiments that track (monitor or determine) raw data values
(sensor readings) over time and use tracking results to characterize data flow of a device or
system. Application areas include Internet of Things domains, medical devices, mobile devices,
and wearables (with a processor).

[0005] Some embodiments are capable of privacy protection/verification. According to
some embodiments, if computer application has to comply with a security policy that says “no
accelerometer sensor data should be sent out of the phone to external network entities,” then a
flow-tracking engine may track propagation of the accelerometer data from its source (the
accelerometer sensor) system-wide while the subject data is being accessed and processed by
various applications in the phone. Once the data is about to leave the phone through the network
socket, the proposed may detect the policy violation and block the data flow. Some
embodiments, in comparison with the traditional taint-based data flow tracking, may provide a
more lightweight, accurate and effective outcome.

[0006] Compared to traditional taint-based data flow analysis, some embodiments do not

have to track at least some instructions and are not required to perform taint propagation.

WO 2019/070675 PCT/US2018/053920

-2

Instead, some embodiments may inspect the instructions that perform arithmetic operation on the
data values.

[0007] Embodiments include a computer-implemented method (and computer system, and
computer program product) directed to improving computer security (including but not limited to
user data protection) of a device using value based information flow tracking. Accordingly,
some embodiments may protect user data in one or more devices.

[0008] According to some embodiments, the computer-implemented method may
automatically capture one or more raw data values from a data source of the device. According
to some embodiments, the method may store (record) in cache memory the captured one or more
raw data values in a collection of sensitive data. The method may evaluate a data flow and/or
determine (or track) a data flow based on the stored sensitive data value(s). The method may
determine (or track) whether one or more computed values (or resulting values) of one or more
functions of a data flow are included in the collection of sensitive data. Based upon the
determining, the method may prevent one or more values of the collection of sensitive data from
being transmitted from a sink of the device. In some embodiments, the method may prevent one
or more values of the collection of sensitive data from being transmitted from the sink of the
device to external untrusted parties.

[0009] According to some embodiments, the computer-implemented method may determine
whether one or more representations (including but not limited to digital, value, digital value, or
string representations) of one or more computed operand and return values of one or more
numerical or arithmetic operations of the one or more functions of the data flow are included in
the collection of sensitive data.

[0010] Storing may be performed in response to one or more security policies. Determining
may be performed while the data flow is being accessed and processed. The device may include
a mobile device, an embedded controller, and/or a computer processing device (including but not
limited to a desktop computer, laptop computer and/or custom computer). The cache memory
may be configured as any of a ring buffer, a value table, and an array or the like. The data source
may include a sensor. The one or more raw data values may be readings of the sensor. The
sensor may be of a data type configured to generate sensitive data. The sink may include any of

a network socket, a file, or a message.

WO 2019/070675 PCT/US2018/053920

-3 -

[0011] According to some embodiments, the method may report a violation based upon the
determining. In response to the reported violation, the method may further block the one or more
values of the collection of sensitive data from being transmitted from the sink of the device.
[0012] Some embodiments include a system (computer system). The system may include at
least one processor, and memory (including cache memory) with computer code instructions
stored thereon. The memory may be operatively coupled to the at least one processor such that,
when executed by the at least one processor, the computer code instructions cause the computer
system to implement one or more of the following functions as described herein.

[0013] The computer system may include a data module configured to automatically capture
one or more raw data values from a data source of a device. The data module may be further
configured to store (record) the one or more raw data values in a collection of sensitive data.

The computer system may evaluate a data flow and/or track a data flow based on the stored
sensitive data value(s). A computing module may be operatively coupled to the data module.
The computing module may be configured to determine whether one or more computed
(resultant) values of the one or more functions of the data flow are included in the collection of
sensitive data. The computing module may be further configured, based upon the determining,
to prevent one or more values of the collection of sensitive data from being transmitted from a
sink of the device.

[0014] The computing module may be further configured to determine whether one or more
representations (including but not limited to digital, value, digital value, or string
representations) of one or more computed operand and return values of one or more numerical or
arithmetic operations of the one or more functions of the data flow are included in the collection
of sensitive data. The data module may perform storing in response to one or more security
policies. The computing module may perform determining while the data flow is being accessed
and processed. The device may include a mobile device, an embedded controller, and/or a
computer processing device (including but not limited to a desktop computer, laptop computer
and/or custom computer). The cache memory may be configured as any of a ring buffer, a value
table, and an array, or the like. The data source may include a sensor. The one or more raw data
values may be readings of the sensor. The sensor may be of a data type configured to generate
sensitive data. The sink may include any of a network socket, a file, or a message.

[0015] According to some embodiments, the computing module may be further configured to

report a violation based upon the determining. In response to the reported violation, the

WO 2019/070675 PCT/US2018/053920

-4 -

computing module may further block the one or more values of the collection of sensitive data
from being transmitted from the sink of the device.

[0016] According to some embodiments, the computer program product may include a non-
transitory computer-readable storage medium having code instructions stored thereon. The
storage medium may be operatively coupled to a processor such that, when executed by the
processor, the computer code instructions cause the processor to perform one or more functions
as described herein.

[0017] According to some embodiments, the computer program product may automatically
capture one or more raw data values from a data source of the device. According to some
embodiments, the computer program product may store (record) in cache memory the captured
one or more raw data values in a collection of sensitive data. The computer program product
may determine whether one or more computed values of one or more functions of a data flow are
included in the collection of sensitive data. The computer program product may evaluate a data
flow and/or determine a data flow based on the stored sensitive data value(s). Based upon the
determining, the computer program product may prevent one or more values of the collection of
sensitive data from being transmitted from a sink of the device. In some embodiments, the
computer system may prevent one or more values of the collection of sensitive data from being
transmitted from the sink of the device to external untrusted parties.

[0018] According to some embodiments, the computer program product may determine
whether one or more representations (including but not limited to digital, value, digital value, or
string representations) of one or more computed operand and return values of one or more
numerical or arithmetic operations of the one or more functions of the data flow are included in
the collection of sensitive data.

[0019] Storing may be performed in response to one or more security policies. Determining
may be performed while the data flow is being accessed and processed. The device may include
a mobile device, an embedded controller, and/or a computer processing device (including but not
limited to a desktop computer, laptop computer and/or custom computer). The cache memory is
configured as any of a ring buffer, a value table, and an array, or the like. The data source may
include a sensor. The one or more raw data values may be readings of the sensor. The sensor
may be of a data type configured to generate sensitive data. The sink may include any of a

network socket, a file, or a message.

WO 2019/070675 PCT/US2018/053920

-5-

[0020] The storage and execution of the information flow values may be protected by a
hardware mechanism that allows trusted parties to access this data and algorithm, therefore
preventing data disclosure to a malicious third-party.

[0021] The detection and storage of sensitive values may be assisted by machine learning
mechanisms ensuring that the most relevant data benefits from this protection mechanism and
therefore reduces further the system requirement for this protection mechanisms. Additionally,
the proposed technique may enable privacy-preserving and secure machine learning algorithms
such as deep neural networks that are based on numerical values.

[0022] Applications of this protection mechanism may include, non-restrictively, mobile
devices, wearable devices, and/or self-driving cars that may intensively rely on sensor data to
provide context awareness.

[0023] Another use for this protection mechanism are medical applications that rely on
sensors to infer medical diagnostics at runtime based on the real-time data feeds.

[0024] According to some embodiments, the computer program product may report a
violation based upon the determining. In response to the reported violation, the computer
program product may further block the one or more values of the collection of sensitive data
from being transmitted from the sink of the device. In some embodiments, the computer
program product may prevent one or more values of the collection of sensitive data from being

transmitted from the sink of the device to external untrusted parties.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] The foregoing will be apparent from the following more particular description of
example embodiments, as illustrated in the accompanying drawings in which like reference
characters refer to the same parts throughout the different views. The drawings are not
necessarily to scale; emphasis instead being placed upon illustrating embodiments.

[0026] FIG. 1A is a flowchart of an example method (and system), according to some
embodiments.

[0027] FIG. 1B presents a dynamic information flow tracking (DIFT) frame-work for
handling numerical values, according to some embodiments.

[0028] FIG. 2 is a schematic view of data flow and control in another example system (and
method), according to some embodiments.

[0029] FIG. 3 is an illustration of code instrumentation, according to some embodiments.

WO 2019/070675 PCT/US2018/053920

-6 -

[0030] FIG. 4 is a graph showing a cumulative percentage of successful lookups on the ring
buffer, at each position, for a previously recorded tainted value, according to some embodiments.
[0031] FIG. 5 shows DROIDBENCH results comparison between some embodiments,
BAYESDROID and TAINTDROID.

[0032] FIG. 6 is a schematic view of a computer network system or similar digital processing
environment, according to some embodiments.

[0033] FIG. 7 is a block diagram of an example internal structure of a computer processing
device (e.g., client processor/device or server computers) in the computer network system of

FIG. 6, according to some embodiments.

DETAILED DESCRIPTION

[0034] A description of example embodiments follows.

[0035] Mobile devices are equipped with a variety of sensors that enable various useful
applications. While it is desirable to grant applications access to these sensors in order to
accomplish their legitimate functionalities, ensuring that the sensor readings are not leaked to
other parties is a challenging problem. Information flow tracking techniques have been proposed
to detect malicious data flows. However, the existing solutions suffer from several usability and
precision issues that hinder their adoption.

[0036] As such, embodiments of the present invention provide an information flow tracking
framework to detect potential data disclosures. Embodiments leverage a new lightweight
information flow tracking technique that enables flow detection based on tainted values rather
than a shadow memory taint system. In particular, embodiments leverage an application
sandbox mechanism to carry out the analysis of a monitored application. Unlike previous
solutions, implementation on ANDROID may work as a user-space application that does not
require modifying either the operating system or the target application. While legacy
information flow tracking solutions may rely on the abandoned DALVIK VM, example
embodiments are compatible with the latest ANDROID RUNTIME (ART). Embodiments are
capable of providing a good accuracy for flow detection compared to other state-of-art solutions.
Example embodiments report less false positives than TAINTDROID, as well as similar
accuracy to BAYESDROID while handling numerical values that BAYESDROID cannot
handle. Moreover, example embodiments allow the investigation of data leakage without

modifying the operating system or the target application while adding acceptable overhead.

WO 2019/070675 PCT/US2018/053920

[0037] Section 1 - Introduction

[0038] Modern mobile devices embed a wide range of sensors that enable novel usages and
capabilities such as context awareness, activity recognition, and exercise tracking. Users have
widely adopted usage of these mobile devices, as the mobile devices do not require purchasing
extra hardware but simply installing an application (also known as “app” herein) that provide the
new functionality. While these new sensors and applications empower the users by providing
useful features, malicious attacks have also been developed by making use of these same sensors.
For example, previous research has shown that sensors such as the accelerometer and gyroscope
or ambient light sensors can be used as a keylogger mechanism (see Miluzzo, E, et al,
“TapPrints: Your Finger Taps Have Fingerprints,” In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, ACM, pages 323-336, June 25-29,
2012, which is incorporated by reference herein in its entirety and Spreitzer, R., “Pin Skimming:
Exploiting the Ambient-Light Sensor in Mobile Devices,” In Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices. ACM, pages 51-62, May
15, 2014, which is incorporated by reference herein in its entirety).

[0039] Mobile operating systems currently offer rudimentary protection mechanisms to
defend users against malicious inferences attacks. The most popular mobile operating systems
on the market, GOOGLE ANDROID and APPLE IOS, use runtime permissions mechanisms to
regulate applications access to privacy-sensitive sensors, such as microphone or global
positioning systems (GPS) having latitude, longitude, time, or other parameters. Other sensors
such as the accelerometer do not require any permission at all. Permission mechanisms have
been proven inefficient both in terms of relevance and efficiency: they provide coarse-grained
permissions with no alternative but to comply with the permission request (see Felt, AP, et al ,
“Android Permissions Demystified,” In Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS *11). ACM, New York, NY, USA, pages 627-638.
https://doi.org/10.1145/2046707.2046779, October 17-21, 2011, which is incorporated by
reference herein in its entirety and Sarma, B, et al., “Android Permissions: A Perspective
Combining Risks and Benefits,” In Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies (SACMAT ’12), ACM, New York, NY, USA, pages 13-22,
June 20-22, 2012, https: //doi.org/10.1145/2295136.2295141, which is incorporated by reference
herein in its entirety). As a result, it is nearly impossible for a user to grasp if any app computes

a specific inference and if an app intentionally, or maliciously, leaks sensor values.

WO 2019/070675 PCT/US2018/053920

-8-

[0040] Information flow tracking (IFT) solutions have been proposed to identify applications
that leak sensitive data, including but not limited to hardware sensor data and personal data.
These solutions monitor data flows from a privacy-sensitive source, such as hardware sensor
readings, and determine if a flow of sensitive data reaches a sink which can be network socket, a
file, or a message shared with another app via inter-process communication (IPC). State of art
approaches for information flow tracking analysis techniques can be categorized as follows: off-
line static analysis, such as FLOWDROID (see Arzt, S., et al., “FLOWDROID: Precise,
Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps,”
Acm Sigplan Notices, 49, 6, pages 259-269, June 9-11, 2014, which is incorporated by reference
herein in its entirety) or DROIDSAFE (see Gordon, M. L, et al., “Information-Flow Analysis of
Android Applications in DROIDSAFE.. In NDSS ’15,. Citeseer, 16 pages, February 8-11, 2015,
which is incorporated by reference herein in its entirety) and runtime dynamic analysis, such as
BAYES-DROID (see Tripp, O., et al., “A Bayesian Approach to Privacy Enforcement in
Smartphones,” In 23rd USENIX Security Symposium (USENIX Security 14, pages 175-190,
August 20-22, 2014, which is incorporated by reference herein in its entirety) or TAINTDROID
(see W Enck, W, et al., “TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones,” In Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association, pages 393-407, October 4-6, 2010,
which is incorporated by reference herein in its entirety), or DROIDSCOPE (see an, L. K, et al ,
“DROIDSCOPE: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic
Android Malware Analysis,” In USENIX Conference on Security Symposium, pages 29-29,
August 8-10, 2012, which is incorporated by reference herein in its entirety)). On the one hand,
static analysis suffers from high processing cost and can be easily bypassed by dynamic code
loading. On the other hand, dynamic IFT solutions differ by the granularity they provide: for
example, HISTAR (see Zeldovich, N, et al., “Making Information Flow Explicit in HISTAR,”
In Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, Vol. 7, 16 pages, November 6-8, 2006, which is incorporated by reference
herein in its entirety) labels operate on high-level system objects such as processes and files
while TAINTDROID implements a variable-level IFT. This granularity directly impacts the
precision of the information flow detection. Moreover, dynamic analysis solutions tend to
provide minimal information in their leak reports. A typical alert currently includes the tainted

data with a corresponding source.

WO 2019/070675 PCT/US2018/053920

-9.-

[0041] From a user perspective, dynamic IFT solutions provide “black-and-white”
conclusions about whether a given app discloses sensitive data to unauthorized parties. The
common flow provenance reporting adopted by IFT solutions fails to characterize a flow in
several ways. Consider two different fitness sports apps, where one sends out accelerometer data
readings constantly while in use, whereas the other app reports monthly running distance
averages. A typical dynamic data flow tracker may mark both of them as privacy violations
regardless, because the network outputs are tainted by the source sensor data. More importantly,
a single value detected at a sink may not give information about the type of computation it
results from. Currently, taint tracking solutions may not differentiate a raw data leakage (e.g.,
raw accelerometer data) from an inference computed value (e.g., a pedometer application can
infer the number of steps walked by a person from the raw accelerometer data). A static analysis
solution partially bridges this gap, but at a very high computing cost, both in terms of memory
space and time. Such an extreme black-and-white treatment of sensitive data disclosures may
lead to unnecessarily pessimistic conclusions about legitimate apps. Consequently, users may
discard reporting alerts due to their inaccurate reports.

[0042] A second issue resides in the usability of current IFT solutions. Existing dynamic
taint tracking solutions such as BAYES-DROID, TAINTDROID or DROIDSCOPE may require
system modifications (i.e., modifying the operating system or requiring root access). Generally,
dynamic information flow solutions require substantial system modifications and require the user
to install a custom modified version of ANDROID and/or require root privileges. Such
requirements have prevented the adoption of information flow tracking technologies by common
users who are incapable or unwilling to replace their factory images of ANDROID by a custom
one in order to check if an application is disclosing their personal data.

[0043] As a result, the investigation of privacy leakage by applications has been the work of
a limited group of researchers which do not have the resources to cover the gigantic amount of
applications available on the smartphone platforms. Also, currently available solutions such as
TAINTDROID are implemented by modifying the DALVIK virtual machine. Unfortunately,
these solutions may not be compatible with new versions of ANDROID since GOOGLE has
shifted ANDROID application execution environment from the DALVIK virtual machine to the
new ANDROID RUNTIME (ART) as of ANDROID 5.0. Recent work such as ARTIST (see
Backes, M., et al., “ARTist: The Android Runtime Instrumentation and Security Toolkit,” CoRR
abs/1607.06619, http://arxiv.org/abs/1607.06619, 13 pages, July 22, 2016, which is incorporated

WO 2019/070675 PCT/US2018/053920

-10 -

by reference herein in its entirety) proposes an ART based taint tracking but still requires system
modification.

[0044] Some embodiments provide a new practical information flow tracking solution and a
data disclosure analysis framework for numerical values such as sensors measurements. In order
to address the fundamental issues that exist in current taint-taint based information flow tracking
solutions, some embodiments focus on three or more aspects. First, some embodiments
introduce a new value-based information flow tracking system. Second, the embodiments track
tainted data operation history and adds this information to the sink reporting. Third,
embodiments enable deployment on top of unmodified commodity versions of ANDROID
without requiring root access. Hence some embodiments can be used by any user to check the
privacy leakage of applications running on his or her phone.

[0045] While the majority of previous IFT solutions use taint metadata to identify data flows,
some embodiments introduce a new approach for tracking sensitive data based on the sensitive
data value(s). The embodiments provide an evaluation of this value-based IFT approach and
show how it achieves comparable performance and precision to previous solutions while
infringing less memory overhead and fewer deployment constraints. Embodiments may follow
propagation logic: any operation that manipulates a value previously seen at the source or is a
result of an operation that contains data from a source is an operation involved in a flow from
this source and thus returns sensitive tainted data. Some embodiments operate by instrumenting
numerical instructions in order to track operands values and record return value as a flow
tracking mechanism. The embodiments store the result of past numerical operations that involve
arguments that are part of these previously seen information flow. In addition to this flow
detection mechanism, embodiments record each taint value operation history. This enables a
characterization of data flows that beyond white and black assessment. To evaluate this
approach, a prototype is implemented on top of ANDROID 5.0. The prototype may run as a
third-party application that acts as a sandbox layer between the unmodified ANDROID system
and the monitored application. Some embodiments may perform evaluation on unmodified
ANDROID systems running real word applications installed directly from the PLAY-STORE.
In addition, for some embodiments, design may be ported back to ANDROID 4.3 in order to
compare its accuracy against the state of art legacy solutions such as TAINTDROID, and
BAYESDROID. Compared to TAINTDROID, embodiments may improve the detection

accuracy significantly, and reports fewer false positives (2 versus 17). And in comparison to

WO 2019/070675 PCT/US2018/053920

-11 -

BAYESDROID, some embodiments may also report better accuracy in terms of the number of
true positives while being able to handle numerical values.

[0046] Some embodiments may include design and evaluation of a novel lightweight
information flow analysis algorithm for numerical values that does not require exhaustive
instruction instrumentation. Applicants implement a prototype and evaluate its performance and
accuracy versus other solutions. This evaluation is conducted using benchmarks and real-world
popular applications execution traces that manipulate sensors values. Applicants show how to
extend current IFT solutions to provide insightful information about leaks that go beyond a black
or white detection mechanism through the collection of tainted data operations history as an
inference detection mechanism.

[0047] FIG. 1A is a flowchart of an example method (and system), according to
embodiments of the present invention. As illustrated in FIG. 1A, the first step 102 of the
computer-implemented method (and computer system, and computer program product) 1000
automatically captures one or more raw data values from a data source (i.e. sensors) of the
device. The next step 104 stores in cache memory the captured one or more raw data values
(sensor readings) in a collection of sensitive data. The next step 106 determines whether one or
more computed values of one or more functions of a data flow are included in the collection of
sensitive data. Based upon the determining, the next step 108 may prevent one or more values of
the collection of sensitive data from being transmitted from a sink of the device, as so called
“tainted” data.

[0048] According to some embodiments, the method (computer-implemented method) may
determine whether one or more representations (including but not limited to digital, value, digital
value, or string representations) of one or more computed operand and return values of one or
more numerical or arithmetic operations of the one or more functions of the data flow are
included in the collection of sensitive data.

[0049] Storing may be performed in response to one or more security policies. Tracking
may be performed while the data flow is being accessed and processed. The device may include
a mobile device, an embedded controller, and/or a computer processing device (including but not
limited to a desktop computer, laptop computer and/or custom computer). The cache memory
may be configured as any of a ring buffer, a value table, and an array. The data source may

include a sensor. The one or more raw data values may be readings of the sensor. The sensor

WO 2019/070675 PCT/US2018/053920

-12 -

may be of a data type configured to generate sensitive data. The sink may include any of a
network socket, a file, or a message.

[0050] According to some embodiments, the method (device, system) may report a violation
based upon the tracking. In response to the reported violation, the method (device, system) may
further block the one or more values of the collection of sensitive data from being transmitted
from the sink of the device.

[0051] In other words, the method (and system) may look at raw sensor values, hold values
inside a cache memory, and compare results in held in the cache memory with values of the data
flow to determine whether a sensitive value has been tainted. As such, the method (and system)
may prevent such tainted values from being transmitted from the system, after identifying the
tainted values. Such identification may be performed based upon monitoring of the data flow
and comparison with the cache memory before data is transmitted out from the system.

[0052] Section 2 - Overview

[0053] Table 1: Number of floating point operations encountered at execution time in

cfree pedometer app

DEX op executed 25,080,000
fp op executed 106,514 (0.42%)
numerical op executed 1,891,834 (7.5%)

[0054] As illustrated in FIG. 1B, some embodiments may include a dynamic information
flow tracking (DIFT) frame-work for numerical values. In FIG. 1B, DIFT solutions track data
flows from a set of sources 202 to a set of sinks 204. According to some embodiments, sources
202 can be any system component that generates numerical values, such as phone sensors.
Contrary to existing techniques that use a taint metadata, stored in a shadow memory, to track
information flows, some embodiments may instead record values involved in data flows. This
approach leverages the operands and return values of numerical operations. Some embodiments
may keep track of the result of numerical computations that involve tainted values which are
either raw values from a source 202 or computed values that are functions of other previously
tainted values. See Section 4.1 titled “Sources and Sinks” regarding how raw data is considered.
[0055] When data reaches a sink 204, some embodiments may detect the information flow
involving tainted values by comparing representations (including but not limited to digital, value,
digital value, or string representations) of numerical values against the set of previously

encountered tainted values. The inspection of numerical operations operands and return values is

WO 2019/070675 PCT/US2018/053920

-13 -

achieved by running the application 210 within a virtualized environment (i.e. a sandbox,
element 206) and by instrumenting 212 the application code (thereby providing an output .oat
file, element 214 of FIG. 1B) using a modified version of the DEX2OAT compiler. The present
invention may be implemented by other means within the virtualized environment 206 including
but not limited to including using interrupts or using other mechanisms enabled on other
operating systems or via virtual machines like those supported by VMWARE.

[0056] At runtime, most ANDROID applications have a small ratio of numerical instructions
executed by comparison to the overall number of operations executed. Table 1 above shows
statistics about the percentage of numerical and more specifically floating point operations in a
popular pedometer application. Even applications that constantly compute inferences from the
sensors data, such as pedometer applications, have a ratio of numerical instructions to the total
number of instructions performed < 10% (and < 1% for floating point operations). This
observation motivates the design of a selective monitoring of these numerical operations.
Instead of instrumenting all operations to detect information flows, some embodiments may
instrument a subset of instructions which include numerical instructions.

[0057] This selective instruction coverage implies a tradeoff between some embodiments’
accuracy versus traditional approaches for taint-tracking (e.g., taint stored in shadow memory).
Applicants investigate this tradeoff by analyzing the challenges in terms of flow coverage and
correctness of the flows detected. Intuitively, limiting the scope of operations tracked to
numerical operations constrains the scope of the detection of the system to values that are read as
numerical values and that are manipulated as numerical values. According to some
embodiments, evaluation may show that in practice this challenge does not heavily affect the
solution flow detection rate by comparison to other solutions. Also, employing the values
themselves as a propagation mechanism can lead to false positives: a same numerical value can
result from two different sequences of operations, from two different data flows, one being
tainted and the other one not being tainted. In practice most of the sensors provide high entropy
of the values manipulated with very low chance of collision (same exact value found twice).
Also, section 4 presents a design tradeoff for keeping track of tainted values having a direct
influence on this challenge.

[0058] Additionally, as represented in FIG. 1B, some embodiments provide extra
information to the user regarding the nature of the flow that reaches the sink. Some

embodiments keep track of the computation history 208 of each tainted numerical value 216 and

WO 2019/070675 PCT/US2018/053920

-14 -

provide a basis for further analysis to compute risk analysis based on the history of operations
208 used to compute the leaked value 216. According to some embodiments, the risk assessment
of a flow reaching a sink is left to the user. However, some embodiments are not so limited.
[0059] One may evaluate the performance overhead and usability of the method (and system)
1000 via its implementation as a sandboxing app. One may run and investigate data leakage
from any other third party applications while not requiring any changes to the system or to the
application. In practice, the user may install two apps to use this solution: Applicant’s
embodiment and the application to be investigated. The target application is started through
Applicant’s embodiment. The embodiment transparently uses dynamic code loading and app
virtualization techniques, which is discussed to follow in section 5, to monitor the flow of
sensitive values while the target app is running.

[0060] Section 3 — Threat Model

[0061] According to some embodiments, the threat model may assume that apps have access
to the device sensors and leverage this access to achieve one or more purposes. Some
embodiments may consider privacy threats caused unintentionally by legitimate (as opposed to
malicious) applications. Some embodiments assume that applications being examined do not try
to leverage any known or unknown vulnerability in the underlying execution framework (kernel,
system services). According to embodiments, while the implementation presented in
embodiments follows this assumption, the design proposed may have a relaxed threat model that
assumes that the hardware is trusted by leveraging trusted hardware commodities such as ARM
TRUSTZONE to host the flow decision logic.

[0062] Some embodiments assume that no covert channel attack is used by applications.
Some embodiments assume that no external actors try to defeat the analysis techniques presented
by tampering with the sensor environment. Some embodiments assume that there is no
intentional tampering with the phone environment to defeat the flow detection.

[0063] Section 4 — Value-Based Information Flow Tracking

[0064] The following presents various design challenges that are solved by some
embodiments of the value-based information flow tracking system.

[0065] 4.1 Sources and Sinks

[0066] According to some embodiments, the information flow tracking solution may handle
numerical values, but is not so limited. The information sources that some embodiments

consider may include a numerical values generator, e.g. accelerometer, GPS, or heart-rate sensor.

WO 2019/070675 PCT/US2018/053920

-15 -

Moreover, sensors generating high entropy numerical values are considered. According to some
embodiments, smartphone sensors that generate floating point values are a target of choice as
data sources (see Android Developers. 2017. (2017). Android Motion Sensors; available at
https://developer.android.com/guide/topics/sensors/sensors motion. html, which is incorporated
by reference herein in its entirety) enumerates the motion sensors supported by the ANDROID
OS and their unit of measure. Most of these sensor readings are stored as floating point values in
ANDROID. Moreover, sensors, such as the accelerometer, may allow developers to specify
pooling data frequency. High sensor precision and customizable pooling frequency are key
factors that enable some embodiments’ value-based information flow tracking system. These
two parameters determine how likely a sensor may generate a unique new value and thus may
ensure that values that may be tracked are different. High entropy in these values eventually
ensures the minimization of false positive detection for the information flow tracking system.
Some embodiments assume that the likelihood of a collision (e.g. same value generated multiple
times) is null.

[0067] Some embodiments use classic detection interfaces as information flow sinks.
Possible sinks include network sockets, IPC messages, and files. At the sinks, some
embodiments assume the data is encoded as cleartext ASCII bytes arrays. The flow detection at
the sinks is performed by comparing any numerical value representation in the string (and/or
digital, value, or digital value) to the list of tainted numerical maintained by some embodiments.
The detection of a numerical value at the sink relies on a regular expression that matches any
integer or floating point representation.

[0068] Listing 1 shows an example of a file written by a pedometer application that utilizes
the accelerometer to compute the number of steps the user made. In this file writing operation,
the string (and/or other digital representation or value) detected at the sink is marked as
containing sensor data. All integer or floating point values do not carry sensitive information.
Typically, the XML version number 1.0 is not a relevant value to lookup. So is the 8 of UTF-8.
However, the remaining numerical values in this file are values derived from a computation of
the accelerometer data and that are values of interest.

[0069] In the Listing 1 to follow, the flow detection is triggered by the value “0.010439022”
that is computed as a function of the accelerometer measurements, according to some
embodiments. According to some embodiments, such a detection result is similar to dynamic

IFT solution: it provides information about the origin of the data, the source and the sink the data

WO 2019/070675 PCT/US2018/053920

-16 -

is detected at. It is interesting to note that other values are not detected by legacy solutions such

as TAINTDROID.

[0070] Listing 1: Example of flow detected at the sink. App: Accupedo

<?7xmlversion='1.0'encoding="'utf-8'standalone="'yes'?>

<map>
<intname="lapsteps"value="25"/>
<floatname="distance"value="0.010439022"/>
<floatname="lapdistance"value="0.010439022"/>
<longname="lapsteptime"value="11670"/>
<longname="steptime"value="11670"/>
<floatname="calories"value="0.85382223"/>
<floatname="lapcalories"value="0.85382223"/>
<intname="lapnumber"value="1"/>
<intname="steps"value="25"/>

</map>

[0071] 4.2 Information Flow Tracking via Numerical Values

[0072] According to some embodiments, the information flow tracking solution may rely on

the operands and return value of numerical operations as a way to perform taint propagation

during the application execution time.

[0073] Contrary to metadata-based information flow tracking solutions where system objects

such as variables, process, files, as examples, may be tainted using shadow variables that indicate

the belonging or the provenance of a flow, some embodiments may rely on the comparison

between the numerical instruction operands values as a means to track a data flow. If one or

more of the operands belongs to a list of tainted values maintained by some embodiments, then

the return value of the instruction may be added to the list of tainted values. The list of tainted

values may be boot-strapped by the raw values obtained from the source.

[0074] As illustrated in Table 1.2 below, an example embodiment is compared against

existing metadata approaches. As shown in Table 1.2, Applicant’s embodiment is capable of

tracking (determining) based on a subset of instructions and corresponding values (indicated in

bold in Table 1.2), whereas existing metadata approaches require tracking of memory

manipulation operations in additional steps (illustrated in italics and not in bold in Table 1.2). As

such, existing metadata approaches require additional storing and calculation as opposed to

WO 2019/070675 PCT/US2018/053920

-17-

Applicant’s example embodiment. In other words, Applicant’s embodiment is a more
lightweight or streamlined approach, providing more efficient, faster, and better computation
(and technical improvement), as compared with existing metadata approaches.

[0075] Table 1.2: Value-Based Information Flow Tracking vs. Metadata approaches

Applicant’s App code Execution Update shadow
embodiment memory
(adds to value
table)
{1, 49} x =read_sensor(); // source | x =1.49; ix}
a = move data around(x); a=149; ix, a}
b = move data around(x); b=1.49; {x, a b}
{1.49, 2.98} y = b*2; // value change y =2.98; ix,a by}
¢ = move data around(b); c=1.49; {x,a by c}
d = move data around(y); d=298; ix,a by cdl
z=Yy; z=2.98; x,abycd?z
2.98 in {1.49, | send_data_socket(z); //sink |2.98 -> OUT z tainted?
2.98}

[0076] A first critical choice resides in determining the type of numerical operations some
embodiments may track. There may be a tradeoff between the operation coverage that some
embodiments may provide and the accuracy of the tracking mechanism. Some embodiments
investigate two levels of coverage for numerical operations. The first level may cover floating
point operations, i.e., float and/or double operations. The second level may extend coverage to
integers and/or long operations. Such a choice may create a tradeoff between information flow
detection and overhead. Section 6 investigates more the details regarding this tradeoff.

[0077] A second critical aspect comes from using values as a primitive to track flow. This
problem can be broken down into three sub-problems: (1) the unicity of the values and the flow
detection precision, (2) the storage of the values that belong to a flow, and (3) the flow lookup
mechanism.

[0078] (1) Unicity of tainted values: The unicity (or uniqueness) of the tainted value may
influence the precision of the IFT system of some embodiments. Two levels of precision may be

distinguished: the ability to identify a tainted data flow from a non-tainted data flow, and the

WO 2019/070675 PCT/US2018/053920

-18 -

ability to identify correctly the flow history. Some embodiments may address the first problem
by comparing the execution results to taint-based IFT systems, such as TAINTDROID. The
second problem may fall out of the scope of existing taint tracking solutions and can be verified
by recording the execution history. Taint tracking IFT solutions may provide a yes or no
assessment about either a piece of data is tainted or not. However, unlike some embodiments,
existing solutions may not provide further information about the history of a flow making the
investigation of information flow quite hard.

[0079] The method (and system) of some embodiments may compare sensor readings to
ensure that sensor values being read are unique. The method (and system) of some embodiments
may monitor the results of one or more sensors and if a repeated value is detected within one
sensor or among two or more sensors, then the method (and system) may flag an error indicating
a possible collision.

[0080] For non-limiting example, in an example embodiment, the method (and system) may
monitor a plurality of accelerometers. The accelerometer readings may form a gaussian
distribution with respect to frequency over time. An example plot of such accelerometer
readings (in meters/sec”2) may illustrate collisions being detected, for example, where an
accelerometer reading is the reported to be the same among different accelerometers, but at a
different frequency for the different accelerometers.

[0081] (2) Storage of tainted values: Smartphones are embedded devices. Especially when
it comes to memory, operating system designers such as ANDROID make sure that the
applications preferably do not use amounts of memory over a certain threshold. Mechanisms
such as ANDROID’s LOWMEMORYKILLER are designed to ensure this. The method (and
system) of some embodiments addresses this issue by using a fixed memory space to store
tainted values. This fixed space may be implemented as a ring buffer where the most recent
tainted values are kept and the oldest ones are reused. The length of the ring buffer directly
influences the precision of the information flow tracking system. Subsection 6.1 provides further
detail regarding this choice. Some embodiments also store the history of the computation
applied to a tainted value along with the value. This history may include a chain of characters
that can be read as a function of sensor values.

[0082] (3) Value lookup: In order to determine if a value is part of a flow, some
embodiments use a lookup mechanism in the ring buffer. According to some embodiments, the

lookup may match values at the beginning of the buffer, which makes sense since a sequence of

WO 2019/070675 PCT/US2018/053920

-19-

operations in the code may often reuse the least recently used computation results. Accordingly,

some embodiments use a hybrid lookup mechanism that searches first the latest inserted values

in the ring buffer and then uses a binary tree search if the value is not found. One important
point to note, depending on the IFT precision that some embodiments want to achieve, some
embodiments may perform one or multiple searches in the ring buffer. Some embodiments may
taint sensitive data according to the IFT, and a search match on one or more of the parameters
that are given to an operation may detect a flow. Some embodiments may lookup operands of
the operation in order to build an operation history linked to the flow. The taint propagation may
correspond to the search for a match between the values given as a parameter of an instruction
and the values stored in the ring buffer. At the sink, however, some embodiments look for an
approximate match between the value read at the sink and the values know in the ring buffer.

[0083] 4.3 Operations history

[0084] For example, an accelerometer is one sensor of interest. Other sensors of interest

include a gyroscope, global positioning system (GPS), or other sensors known to those skilled in

the art. Some embodiments may make numerical sensor readings using one of these sensors,
store the results in floating point variables, and process the results using numerical operations.

[0085] Some embodiments record the operation history for each tainted value, and may carry

information about the sources and the type of operations performed by the shim layer. Listing 2

presents such an example of operation history. This function indicates exactly the specific

operation that was computed on specific sensor values read at the source (e.g. SO_XXX). This
specific computation provides further information about the data that is sent out. According to
some embodiments, since it may be a very generic function definition, a function analysis can
provide more detailed information about the content of the value. For example, this allows the
differentiation between direct leaks from a sensor to a sink versus computed inferences.

[0086] Listing 2: Example of a flow history at the sink. App: Accupedo
(((((0.0909091%8S0_ 114)+(0.909091%((0.0909091%850_ 138
)+(0.909091%((0.0909091%S50_36)+(0.909091%((0.090909
1«S0 18)+(0.909091%((0.0909091%S0 120)
+(0.909091%((0.0909091%S0 114)+(0.909091%((0.090909
1¥«S0 12)+(0.909091%((0.0909091%xS0 102)+(0.909091 (
(0.0909091%xS0 _0)+(0.909091%((0.0909091%S0 _30)

WO 2019/070675 PCT/US2018/053920

-20 -

+(0.909091%((0.0909091%S0 0)+(0.909091%((0.0909091 x
SO 6)+(0.909091%((0.0909091%S0 36)+(0.909091%((0.09
09091%S0 0)+(0.909091%((0.0909091%xS0 _60)
+(0.909091%((0.0909091%S0 54)+(0.909091x((0.0909091
S0 12)+(0.909091%((0.0909091%S0 _0)+(0.909091x((0.0
909091%S0 36)+(0.909091%((0.0909091%xS0 _30)
+(0.909091%((0.0909091%S0 24)+(0.909091x((0.0909091
S0 18)+(0.909091%((0.0909091%S0 12)+(0.909091*((0.
0909091%S0 6)+(0.909091%((0.0909091%xS0 0)+-0.05792

58)))))))))))))))))IIIIIIIIIIIIIIIIIIIIIIIIIIIDD)))
)))

[0087] In an example embodiment, the operation history of Listing 2 may be associated with
FIG. 1B. As illustrated in Listing 2, an example embodiment records the operation history for
each tainted value, and may carry information about the sources 202 and the type of operations
216 performed by the shim layer. Listing 2 presents such an example of operation history 208.
[0088] In an example embodiment, this function (operation history) indicates the specific
operation 216 that was computed on specific sensor values read at the source (e.g. SO_XXX) or
element 202 of FIG. 1B. Such example sources 202 shown in bold in Listing 2 include “S 0 _ 1
147°S0 _1387and“S0_36”

[0089] This specific computation provides further information about the data that is sent out.
According to some embodiments, since it may be a very generic function definition, a function
analysis can provide more detailed information about the content of the value. For example, this
allows the differentiation between direct leaks from a sensor 202 to a sink 204 versus computed
inferences.

[0090] Section 5 - Implementation

[0091] FIG. 2 illustrates data flow and control of another example system (and method)
1000, according to some embodiments. According to some embodiments, FIG. 2 also presents
an overall software (computing) architecture. As illustrated in FIG. 2, some embodiments may
be implemented as a user-space application 262 compatible with ANDROID (including but not
limited to the modern versions of ANDROID, namely 5, 6, and/or 7). Some embodiments may
evaluate experiments on ANDROID 5.0.1. Since ANDROID 5.0, ANDROID uses a new
runtime mechanism named the ANDROID RUNTIME (ART) which uses ahead-of-time

WO 2019/070675 PCT/US2018/053920

-21-

compilation to compile applications into native code upon their installation. According to some
embodiments, this compilation may take place on a device using the DEX2O0AT compiler 264
which outputs an OAT file 270 and provides the OAT file 270 as input to a tracee process 254.
Some embodiments can be used on commodity ANDROID devices without either modifying the
operating system or the application to be examined. While switching from DALVIK to ART
may break legacy taint tracking solutions (e.g. Taint-Droid), some embodiments are compatible
with the new runtime environment. APIs used by some embodiments may be allowed in
ANDROID. A prototype of some embodiments may be uploaded to the GOOGLE PLAY-
STORE and accepted without issues.

[0092] To investigate an installed third party application for data leakage, the user may start
the target application through some embodiments. Some embodiments may rely on two
mechanisms to perform analysis: (1) an application sand-boxing mechanism (of FIG. 1B) and (2)
re-compiling the application APK file using a modified version of the DEX20OAT compiler 264
(of FIG. 2).

[0093] Referring back to FIG. 1B, the app sandboxing mechanism 206 enables the inspection
of the data flowing into and/or out of the target application. This sand-boxing 206 (of FIG. 1B)
is achieved through syscall interception of some embodiments. The compiler instrumentation
212 (of FIG. 1B) may be used to assess tracking the propagation of sensitive values through the
numerical instructions performed by the application (210 of FIG. 1B). Some embodiments may
use a modified version of the compiler to inject additional system calls within the target app ELF
(more specifically, OAT file format) binary to transfer execution between the app and other
functions in order to keep track of computations performed. The modified version of compiler
may be included as a binary asset within the package of some embodiments. When an
application is to be run for the first time within some embodiments, some embodiments may
invoke the compiler to generate an instrumented binary file from the application DEX bytecode.
Some embodiments do not replace the application existing binary file with our modified version,
instead when an application is selected to run within some embodiments, some embodiments
may rely on system-call interception to redirect the open system call to the path of the modified
OAT file (214 of FIG. 1B).

[0094] Referring back to the overall system architecture of FIG. 2, some embodiments may
include an instrumented version of the DEX20OAT compiler that is used to generate modified

binary files for target applications. During runtime, some embodiments may possess two or

WO 2019/070675 PCT/US2018/053920

-22 -

more processes. One process may be a tracee process 254 within which the modified binary file
of the target app is loaded and executed. The second process may be a tracer process 252 that
intercepts system-calls 268 (including sensor data delivery, files and network access, and IPC
messages) between the tracee process 254 which runs the target application and the ANDROID
OS 260. System call interception 258 may be used to update the list of tainted values maintained
by the value tracker 256 of some embodiments. System call interception 258 may also be used
to detect the leakage of values by comparing the values being sent out by the tracee process 254
against the list of tainted values maintained by the value tracker.

[0095] Subsections 5.1 and 5.2 to follow respectively discuss the design and implementation
the application sand-boxing and the instrumented compiler.

[0096] 5.1 Application sandboxing

[0097] The core component of some embodiments is a user-space level application
sandboxing process that can be used to encapsulate the code of other third party applications
during their execution. The techniques of implementing the application sandboxing having been
recently demonstrated (see Backes, M, et al., “Boxify: Full-fledged App Sandboxing for Stock
Android,” In 24th USENIX Security Symposium (USENIX Security 15), pages 691-706, August
12-14, 2015, which is incorporated by reference herein in its entirety and Bianchi, A, et al,,
“NJAS: Sandboxing Unmodified Applications in Non-Rooted Devices Running Stock Android,”
In Proceedings of the Sth Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices; ACM, pages 27-38, October 12, 2015, which is incorporated by reference
herein in its entirety). The two approaches use dynamic code loading and system-call
interposition to implement the sand-boxing mechanism. Some embodiments may extend these
approaches to implement information flow tracking which may run on top of unmodified
versions of ANDROID system.

[0098] FIG. 2 illustrates the event sequence 280 of the user space 262 information flow-
tracking. The tracer application spawns two processes under a same app: a tracee process 254
and another tracer process 252 which monitors and controls the tracee process 254. The target
app is loaded and executed within the tracee process 254, while the tracer process 252 holds a
fixed-size ring buffer 200 that stores the list of sensitive values received by the target application.
When the target app receives new sensitive values, some embodiments may add a copy of this
value to the ring buffer 200 of sensitive values, and when writing a value to the sink 204 (FIG.

1B), may inspect the values being written to the sink 204 to see if they match any of the sensitive

WO 2019/070675 PCT/US2018/053920

-23 -

values stored in the ring buffer 200. The compiler instrumentation described below leverages
system-call injections within the target application in order to notify the tracer process 252 about
the operations and operands about to be executed by the tracee process 254 and derive new
computed values from sensitive values. One or more return values computed from tainted
operands may be added to the tracer ring buffer 200.

[0099] Various configurations of the ring buffer 200, such as a value table or other cache, are
suitable.

[00100] The section 5.1.1 below provides a brief background of ANDROID Binder IPC
mechanism followed by the description of the implementation of the application sandbox,
according to some embodiments.

[00101] 5.1.1 ANDROID Binder. ANDROID may isolate running applications and system
service by running them in separate processes with their own unique process identifier (known as
“pid”) and user identifier (known as “uid”). This prevents a malicious app from tempering with
the memory and resources that belong to other applications. Different apps communicate with
each other or with system services through RPC messages which are transported using the
Binder inter-process communication framework. Binder may be a core component of the
ANDROID OS that implements this light-weight IPC scheme used for communications between
different apps and the system services. Higher level communication and data ex-change
mechanisms in ANDROID such as intents, services, or content providers leverage the Binder
framework. Binder may include two (or more) components: (1) the Binder kernel driver 260 that
runs as a linux kernel component and is responsible for transferring IPC data between different
processes and threads (it copies data from the memory space of one process, from an application
to another target application, process and thread); and (2) the Binder user-space library
(libbinder.so) is pre-loaded into each application memory space by the ZYGOTE application
loader. This library takes care of communication with the binder kernel driver 260 to perform
IPC with other applications and performs the data serialization (known as
marshalling/unmarshalling to one skilled in the art) for the objects exchanged in the
communication. It also includes a pool of threads (known as IPCThreadState) that may be
continuously waiting for incoming binder requests to handle an incoming request.

[00102] Asillustrated in FIG. 2, the kernel 290 may communicate with a system server 266
that may include one or more services 268. According to some embodiments, the interface

between the process library 292 and the kernel 290 operates when the calling application initiates

WO 2019/070675 PCT/US2018/053920

-24 -

a Binder IPC via an IOCTL system call on a file descriptor open on “/dev/binder,” which may
correspond to the Binder kernel driver character device. The “ioctl” may contains a request code
parameter that specifies the binder control operation. For example, the specific Binder command
BINDER WRITE READ may be used for Binder RPC and data exchange messages.
According to some embodiments, the calling application may also pass a pointer to a special data
structure named binder transaction_data which may encapsulate the payload for the RPC call.
[00103] 5.1.2 Application sandboxing. According to some embodiments, sandboxing
another application within some embodiments may be enabled by the help of dynamic code
loading and system-call interception. First, some embodiments use ANDROID dynamic code
loading APIs to load the code of the other application. Second, the embodiments setup an
environment for intercepting system calls (including the IOCTL system-call used to perform the
Binder transactions). Lastly, embodiments may start one or more activities of the target
application while using system-call interposition to inspect and modify the content of the system
calls and binder transactions payloads.
[00104] Loading the code of target app: ANDROID provides well documented APIs for
dynamic code loading. The DexClassLoader class may act as a class loader that can be used load
the classes from a given JAR or APK file. In addition, ANDROID provides the
createPackageContext which can be used to create the context object of a given installed
application. The return context object includes the application resources from its APK file and
optionally, can include the application code as well, as illustrated in Listing 2.1 to follow:
Contexttarget context=getApplicationContext().createPacka
geContext(targetPackageName,Context
.CONTEXT IGNORE SECURITY |Context. CONTEXT INCLU
DE CODE);
ClassLoaderloader=target context.getClassLoader();
Listing 2.1: Context object
[00105] The security implications of dynamic code loading are discussed in existing works
(see Falsina, L., et al., “Grab’n Run: Secure and Practical Dynamic Code Loading for Android
Applications,” In Proceedings of the 31st Annual Computer Security Applications Conference.
ACM, pages 201-210, December 7-11, 2015, which is incorporated by reference herein in its
entirety).

WO 2019/070675 PCT/US2018/053920

-25.

[00106] Intercepting system calls: Before starting the code load from the target application,
some embodiments establish the system call interception by using PTRACE system call. First,
some embodiments use the fork system call to clone some embodiments into another process.
Some embodiments call the new child process as the tracer. After making the fork system call,
the process may allow the tracer to use PTRACE to control it, which may be performed by the
following code:

prctl(PR_SET DUMPABLE,1,0,0,0);

Listing 3: prctl system call

[00107] Next, the tracer may make the following system call to attach its parent.
ptrace(PTRACE ATTACH,parent pid,0,0);

Listing 4: PTRACE system call to attach a process

[00108] In some embodiments, as a result, the process may become a tracee controlled by the
tracer process. Consequently, the tracer may get interrupted for every system call made by the
tracee. When interrupted, the tracer becomes able to read and modify the registers and memory
content of its tracee.

[00109] Running the target application: With the system-call inter-position ready, some
embodiments now start activity of the target application by using the ClassLoader created from
the target application context to load the activity class. Some embodiments wrap the loaded
classes with an Intent wrapper and ask the ActivityManager frameworks service to start it by
using StartActivity function call. While the normal behavior of ANDROID is to disallow
applications to start the code loaded from other application packages in the same process, some
embodiments make use of the system-call interception to modify the payload of the Binder
transactions made by the StartActivity framework method call. Namely, some embodiments use
the tracer process to modify the content of both the START ACTIVITY TRANSACTION, and
SCHEDULE LAUNCH ACTIVITY TRANSACTION taking place between the some
embodiments application process (the tracee) and the ANDROID frame-work
ActivityManagerService process. More details about the exact patching procedure can be found
herein (see also reference 5).

[00110] After starting the target within the tracee which is monitored by the tracer, the tracer
process has the responsibility to perform the following tasks:

[00111] a) Virtualizing the resources of the target application: In order to keep the target app

running within the context of our tracee process, which is part of some embodiments, the tracer

WO 2019/070675 PCT/US2018/053920

-26 -

may virtualize the private resources of the target app such as the application components (e.g.,
Activities, Services) and the private data directory (/data/data/[application package name]).
Files accessed under the private data directory of the target app package may be redirected to the
private data directory of some embodiments by intercepting the files-related system calls. Also,
when the target application attempts to start another activity from its own package, the tracer
may intercept the Binder transactions to replace the package name of the activity to be started by
the package name of the app. Then, when the ActivityManagerService responds by providing
the ActivityInfo of the activity to be started, the tracer replaces it by an instance of the
ActivityInfo obtained from the target app context some embodiments obtained by dynamic code
loading.

[00112] b) Intercepting sensor values delivered to the application. The tracer process may
intercept RPC messages between the tracee process, which runs the target app, and the sensors
data sources within the ANDROID framework (e.g., SensorManagerService). For example, to
intercept accelerometer and gyroscope values the application receives, some embodiments may
intercept the GET _SENSOR_CHANNEL exchanged between the application and the framework
SensorManagerService, which contains a descriptor for a network socket used to deliver sensor
values to the application. Then, network socket (“recvfrom”) system call may be intercepted to
inspect the actual values delivered via the socket descriptor some embodiments have found.
Sensor values may be added to a list of sensitive values maintained by some embodiments.
[00113] c¢) Intercepting file and network related system calls: The tracer may intercept file and
network related system-calls to inspect the files written to files and network sockets for data
leakage. Values written to files or network sockets may be checked against the list of sensitive
values maintained by some embodiments.

[00114] d) Keeping track of propagation of tainted values with help of the compiler
instrumentation, some embodiments describe later in subsection 5.2, some embodiments inject
system calls into the target application ELF code so that tracer is interrupted when a numerical
operation is being done by the tracee. Once interrupted, the tracer checks if the any of the
numerical operation belongs to the list of sensitive values. If so, then the result of the operation
is also added to the list of sensitive values.

[00115] 5.2 Intercepting numerical operations

[00116] Until ANDROID 4.4 (KITKAT), ANDROID has relied exclusively on the DALVIK

Virtual Machine as its runtime environment. Starting from ANDROID 4.4, a new runtime

WO 2019/070675 PCT/US2018/053920

-27-

environment has been used as a re-placement for DALVIK. One of the features of this new
runtime environment is the Ahead-of-Time compilation that transforms the DEX bytecode that is
embedded in and ANDROID application to optimized native code. This ahead-of-time
compilation is a one-time operation performed during the app installation. The compilation
process is performed using the DEX20AT utility that acts a compiler for DEX bytecode. The
resulting binary is an ELF executable with the application DEX code embedded in it for
debugging purposes. The compilation takes place in two phases. The first phase transforms
each sequence of DEX instructions into a linked list of instructions corresponding to the
opcodes, denoted to as the MIR representation. The second phase transforms the MIR
representation to a platform specific representation, (referred to as LIR). Both steps may include
optimization phases such as garbage collection optimizations and improved register mapping
among others. Finally, the compiler may generate a native code from the LIR representation.
[00117] Unfortunately, system-call interception, established by the app sandboxing technique
discussed earlier in Section 5.1, allows us to inspect values read from “sources” (e.g. sensor
readings such as accelerometer are received through a network socket “recvfrom” system call)
and values sent to “sinks” (which are leaked by either network sockets, written to file, or passed
through Binder RPC to another application). However, system-call interposition may not
provide information about the computations applied to the sensitive values after being read from
the “source” and before being sent to the “sink.” Using this information, some embodiments
may be able to identify the sensitive value leakage when they are leaked in the raw values read
from the “source” and may detect the information leakage caused by leaking computed functions
(i.e. inferences) from the sensitive values. Some embodiments may rely on compiler
instrumentation by shipping a modified version of the DEX20OAT compiler. Some embodiments
may run the modified compiler on the application CLASSES.DEX file (which is accessible
under the “/data/code/[package name]” directory) to generate a modified oat file. When the
application is started through some embodiments, dynamic code loading API loads the
application oat file. Through system-call interception, some embodiments redirect the file open
system call to the location of the modified oat file.

[00118] The goal of our modified DEX2OAT compiler is to instrument the numerical
operation instructions within (add-*, sub-*, mul-*, div-*, as examples) within the application.
Specifically, the compiler adds an arbitrary selected unused system call number, 382, before any

floating point operation in the code. The placement of this system call before the operation is

WO 2019/070675 PCT/US2018/053920

-28 -

important, as it allows the interception mechanism to handle instructions such as add, sub, div,
and/or mul-2addr which may use the first register both to provide an operand and store the return
value. According to some embodiments, the “syscall” may be intercepted within applications
that may be running. Then some embodiments are able to inspect the operands and then the
return values of numerical operations the application is performing. ANDROID leverages
hardware functionalities, when available, to speed up floating point operations. In particular,
ANDROID makes use of the ARM Floating Point architecture (VFP) to handle floating point
operations. This architecture is compliant with the IEEE 754 norm. The VFP architecture uses a
set of registers of either 32 or 64 bits’ size that are dedicated to floating point operations. As a
debugging feature, these registers can be retrieved via the PTRACE syscall. Some embodiments
use the capstone library to read the numerical expression and the parameters that are executed
next. By looking up the VFP registers that correspond to the operand some embodiments read
the numerical values and look them up in the ring bufter.

[00119] FIG. 3 illustrates example code Listings 5-8 (elements 302, 304, 306, 308,
respectively). An example for Java code snippet for an ANDROID application that manipulates
numerical values is shown in Listing 5 (element 302). The equivalent DEX bytecode is given in
Listing 6 (element 304). The native assembly code generated by compiling this DEX bytecode
by our modified compiler is shown in Listing 7 (element 306). Instructions injected due to our
compiler extensions are marked with a ‘+’ next to them. Listing 8 (element 308) presents a part
of the modifications some embodiments made to the DEX20OAT compiler source code. Some
embodiments first save the register 7 and O that respectively contain the system call number and
the return of the sys-call. The syscall number some embodiments inject is unknown to the kernel
and may be ignored for it. However, the system call number may be intercepted, according to
some embodiments, as a marker that a floating point instruction is being executed. Then some
embodiments may pick the registers of target application process (i.e., tracee) to inspect the
operands and return values of the numerical operation. Finally, some embodiments resume the
application execution by restoring the original values of the registers R7 and RO.

[00120] In addition, in order to compare the precision of this solution versus existing
solutions, some embodiments ported back design to ANDROID version 4.3 rl to compare their
performance with previous implementations in section 6.

[00121] Section 6 — Evaluation

WO 2019/070675 PCT/US2018/053920

-20.

[00122] Some embodiments may perform different experiments to evaluate the performance
overhead and taint tracking accuracy. Some embodiments compare results to the state of art
information flow tracking solutions using both the DROIDBENCH benchmark and popular real-
world application that manipulate sensors values. Sections 6.1 and 6.2 provide the results of
some embodiments’ performance overhead and flow tracking accuracy, respectively.

[00123] 6.1 Performance Overhead

[00124] 6.1.1 Computation overhead. The extra overhead added by some embodiments
correspond to the applications can be attributed to the following factors: (1) the overhead due to
running the application inside the some embodiments sandbox instead of running it directly on
top of the ANDROID OS; (2) the overhead due to the additional instructions injected by the
modified DEX20AT compiler; (3) the overhead due to looking up the values of numerical
operations operands into the ring-buffer to perform taint propagation. This section provides the
result of our evaluation for these three factors.

[00125] (1) Overhead due to running inside the sandbox: running the application within a
virtualized environment (i.e., sandbox) provided by some embodiments allows some
embodiments to dynamically examine the application behavior while running without having to
modify the operating system or the application (APK) package. This advantage comes at the
cost of runtime penalty due to the interception and modification of the system-calls and binder
transactions. Some embodiments measure the virtualization overhead on popular real-world
applications downloaded from the PLAY-STORE. Some embodiments run each app in two
modes: running natively on top of the OS and running within the sandbox. For each mode, some
embodiments conduct five experiments and report the median of time it takes to start the
application activity. Some embodiments may measure the time period spent since the framework
StartActivity method is called to start the application until the application is loaded and the life-
cycle of the activity is started by its OnCreate method finishes.

[00126] Table 2 to follow shows that the first two apps are launched around 36% slower when
started within the sandbox. The third application (Free Pedometer) experiences more severe
slow-down during the launch because it performs more operations to load and initialize third
party ads and application analytics libraries during its execution. Also, it setups a reads/writes
data to a private SQLite database.

[00127] Table 2: Application launch overhead

WO 2019/070675 PCT/US2018/053920

-30-
Application Native Execution Sandboxed Execution
ANDROID SensorBox 455 ms 620 ms (136%)
Mobile LINPACK 813 ms 1119 ms (137%)
Free Pedometer 1442 ms 8596 ms (590%)

[00128] (2) Overhead due to instrumenting numerical operations The additional system
calls that are injected by the modified DEX2OAT compiler in order to intercept the operands and
return values of floating point operations also add a runtime overhead. To measure this
overhead, some embodiments use the Mobile LINPACK benchmark which uses CPU-intensive
floating point performance benchmarking applications. Some embodiments compare the scores
while running: (a) natively on top of OS; (b) within sandbox without instrumenting floating
points; and (c) within the sandbox while instrumenting floating points. The results are shown
below in Table 3.

[00129] Table 3 to follow shows when the application runs within the sandbox while
intercepting the additional system calls injected by the modified DEX20OAT compiler. The
benchmarking score for floating points operation shows a throughput is 460 times slower.
Despite how prohibitive is this cost, some embodiments emphasize that this micro-benchmark is
floating-point intensive, while in real apps the numerical operations constitute a very small
faction of the whole application code (0.42% according the statistics in Table 1 for a general app
versus 29.35% for the LINPACK benchmark (70% more operations)). Therefore, the slowdown
overhead of the whole app runtime is amortized due to the small fraction of operations the costly
numerical operations. The overhead of system call tracing having studied in (see System call
overhead. http://www linux-

kongress.org/2009/slides/system_call tracing overhead joerg zinke.pdf, which is incorporated
by reference herein in its entirety).

[00130] Table 3: Numerical operations benchmarks

Benchmark Native Execution Sandbox & Num. Op.
Interception

LINPACK 4.6 Mflops 0.01 Mflops

Mobile

[00131] (3) Overhead due to looking up values in the ring buffer

WO 2019/070675 PCT/US2018/053920

-31-

[00132] FIG. 4 shows the cumulative percentage of successful lookups 402 on the ring buffer
at each position 404 (relative to the head) for a previously recorded tainted value for varying
applications 406. This analysis shows that between 42% and 83% of the lookups for tainted
values succeed by looking up the 10 last inserted values in the ring buffer. That justifies the
design tradeoff described earlier for which a linear search on the last few values inserted is
performed first (in this example, on the 5 last values) followed by a tree based search if any of
the first values was a match. In this specific example, some embodiments use a 20,000 value ring
buffer. An average binary tree search in the ring buffer may thus require 15 comparisons
maximum. The overhead added by this lookup operation may be high, as shown in Table 1n but
since the number of floating point operations in general purpose apps is generally low, the
overall overhead is reasonable.

[00133] 6.1.2 Memory Requirement. According to some embodiments, the size of the ring
buffer may influence the detection of flows. Depending on the length of computations applied to
the floating point values, the ring buffer is preferably designed to be large enough to store
enough values by the time a value reaches a sink. The size of the ring buffer is left to the
decision of the user. Some embodiments noticed that a buffer of 20,000 values was large enough
to perform as least as well as TAINTDROID opcode taint propagation for the applications
considered herein.

[00134] 6.2 Flow tracking accuracy

[00135] The following evaluates some embodiments in terms of the information flow
detection accuracy. Some embodiments conduct two kinds of evaluation experiments. First,
some embodiments evaluate the accuracy of some embodiments against the DROIDBENCH
benchmarking dataset. Some embodiments compare some embodiments against TAINTDROID
and BAYESDROID. DROIDBENCH provides some embodiments with fine grained
comparison about the different kinds of information flow that can be detected by each solution.
Second, some embodiments evaluate the practicality of the system by using it to examine
information flow made by real applications installed from the ANDROID market.

[00136] 6.2.1 DROIDBENCH:

[00137] FIG. 5 shows DROIDBENCH test results for TAINTDROID 506, BAYESDROID
504 and the method (and system) 502 of some embodiments. The method (and system) 502
scores 34 true positives (element 510) compared to 31 and 29 true positives (element 510) by

TAINTDROID 506 and BAYESDROID 504, respectively. Also, the method (and system) 502

WO 2019/070675 PCT/US2018/053920

-32-

of some embodiments significantly improves in terms of false positives compared to
TAINTDROID 506. As illustrated in FIG. 5, the method (and system) 502 of some
embodiments, and BAYESDROID, reported one false positive 512 while TAINTDROID
reported 17 cases. Both BAYESDROID and some embodiments report the same number of false
negatives (2 false negatives) 514. The two false negative results are due to the two string (and/or
other digital representation or value) obfuscation tests Loop1 (See https://github.com/secure-
software-engineering/DROIDBENCH/blob/master/eclipse-
project/GeneralJava/Loop1/src/de/ecspride/LoopExamplel java) and an ImplicitFlow1 (See
https://github.com/secure-software-engineering/DROIDBENCH/blob/master/eclipse-
project/ImplicitFlows/ImplicitFlow1/src/de/ecspride/ImplicitFlow1.java). The ImplicitFlow1
test is particularly interesting: it generates two data leaks from the sensitive value using implicit
flows. Both implicit flows are based on correspondence tables. The first test obfuscates the
sensitive value while the second correspondence table leads to the creation of the original string
(and/or other digital representation or value). Since some embodiments rely on the
representation of the value at the sink in order to detect a flow, this second implicit flow is
actually detected. However, in general, some embodiments do not support implicit flow. Some
embodiments and BAYESDROID false positive is due to the PrivateDatal.eak3 test (See
https://github.com/secure-software-engineering/DROIDBENCH/blob/master/eclipse-
project/ANDROIDSpecific/PrivateDatal.eak3/src/de/ecspride/MainActivity. java). This test first
may write a sensitive value to a file and then send the data out via SMS. The leak may occur
when the data is sent via SMS. In term of flow, the detection at the file operation is legitimate.
In term of leak, if the solution covers the file access a sink, it is indeed a false positive
information leak. Overall, some embodiments may provide more robust results than
TAINTDROID while being able to track the flow of numerical values which are not supported
by BAYESDROID. The detailed evaluation results of DROIDBENCH experiment are show in
Table 7 to follow.

[00138] Unfortunately, DROIDBENCH results consider a subset of possible configurations of
flows observable in a system. Some embodiments address this problem by investigating flows
on different types of applications taken from the market.

[00139] 6.2.2 Taint detection accuracy on real-world applications. In addition to the
DROIDBENCH detection accuracy, some embodiments are compared with TAINTDROID taint

detection while running popular real-world applications downloaded from the GOOGLE

WO 2019/070675 PCT/US2018/053920

-33 -

application store. Some embodiments chose popular applications that manipulate sensor values,
including but not limited to pedometer and fitness tracking applications.

[00140] According to some embodiments, the value-based information flow tracking approach
may be ported to ANDROID 4.3 rl in order to run it side by side with TAINTDROID [11] and
evaluate both of them in terms taint detection accuracy. According to some embodiments, how
many tainted operations were missed on each side is determined. Table 4 to follow presents the
corresponding results. Several observations can be extracted from this table. First, by
comparing the total number of instructions executed versus the number of numerical operations
executed some embodiments it is discovered that this last group represents less than 10% of the
total number of instruction. As an accuracy evaluation, the method (and system) 502 of some
embodiments may record the number of detected instructions manipulating tainted values. The
number of instructions detected by TAINTDROID may be higher than the number of
instructions detected by the method (and system) 502, according to some embodiments.
However by looking closer at individual results, the difference between these detection numbers
may be due to two reasons. The first reason is that TAINTDROID did generate several false
positive flows. For the first three applications reported in Table 4, TAINTDROID raised a false
positive alert and some embodiments did not. These false positive alerts are dues to a wrongly
tainted array in TAINTDROID. Naively, TAINTDROID marks a whole array as tainted even
when one value within the array is tainted. It may not be uncommon for pedometer applications
to use arrays to store temporary computation results. Therefore, a false positive may be raised
whenever any part of array is sent to a sink.

[00141] Table 5 to follow examines two popular real-world applications manipulating
accelerometer values for information flow tracking. Table 5 provides the case of two
information leakage cases some embodiments captured. The method (and system) 502 of some
embodiments also may report the history of operations that are used to compute the leaked value.
The method (and system) 502 of some embodiments may indicate whether the raw sensor value
is leaked or a computed function of some embodiments. Listing 2 shows a sample output of the
detection mechanism at the sink for the Accupedo application. In this sample, the method (and
system) 502 of some embodiments contributes of the accelerometer values for the X axis
(denoted with the SO prefix) at several time intervals (suffixes XXX). Likewise, investigation

of the Guava app revealed flow of values directly recorded from the sensor on the Z-axis.

WO 2019/070675 PCT/US2018/053920

-34 -

[00142] Section 7 - Discussion
[00143] Handling non-numerical values: Some embodiments are designed to track the flow of
numerical values. However, some embodiments are not so limited. While numerical values
represent most of sensitive information (e.g. accelerometer and GPS data), sensitive values can
be exist in different forms such as strings (and/or other digital representations or values).
Complementary approaches for value-tracking such as BAYESDROID which track the flow of
strings (and/or other digital representations or values) can be used jointly with some
embodiments to provide exhaustive covering of sensitive values tracking.
[00144] System call interception overhead: As reported in subsection 6.1, the PTRACE
system call interception may add significant runtime overhead due to the context-switching
between the tracer and tracee. This has been studied previously in [1]. Some embodiments may
use PTRACE system-call interception to update the list of tainted values. According to some
embodiments, a possible method to reduce overhead may be to use shared memory between the
tracee and tracer to store the list of tainted values and rely on the compiler instrumentation to
inject instructions to update this shared memory buffer. According to some embodiments, this
may add more changes to the DEX20AT compiler.
[00145] Handling implicit information flows: Listing 9 shows a code snippet from the
GOOGLE open-source sample pedometer application. According to some embodiments, the
number of steps may be incremented based on threshold conditions on the velocity and
timestamps.
[00146] Listing 9: The case of implicit information flow in the GOOGLE sample
pedometer application

// velocityEstimate and oldVelecityEstimate are

calculated from accelerometer data

if (velocityEstimate > STEP_ THRESHOLD &&

oldVelocityEstimate <= STEP_ THRESHOLD & &

(timeNs -lastStepTimeNs > STEP. DELAY NS)) {

step ++; // implicit flow !

lastStepTimeNs = timeNs ;

}

oldVelocityEstimate = velocityEstimate ;

WO 2019/070675 PCT/US2018/053920

-35-

[00147] Rewriting the native libraries by injecting additional system-calls to track the
propagation of sensitive values through numerical operations within the native library can be
achieved, according to some embodiments.

[00148] Risk Analysis of information leakage: Some embodiments may provide the user
with insights about the values being leaked by applications. Some embodiments are capable of
providing the user with a log of history of operations that are used to compute the leaked values.
This operations history can provide a good basis about how to quantify the risk associated with
the computed values.

[00149] Table 4: Taint Tracking comparison of some embodiments (METRON) versus

TAINTDROID (TD)
App Name # tot Inst. # num inst. # TD taint # METRON taint comment
inst. inst.

Accupedo 45550000 3935741 (8.64%) 217587 217585 (217585 fp) TD array false
positives

Ffree 22350000 1524497 (6.82%) 22068 20709 (11368 fp) TD array false
positives

Noom 46650000 4536839 (9.73%) 210138 209072 (93714 fp) TD array false
positives

Runtastic 130750000 11304888 (8.65%) 10985 10985 (10985 fp) Identical flow
detection

[00150] Table S: Flow observed in several fitness tracking application

Application name Flow observed Notes
Guava Z accelerometer value saved to Raw sensor values leaked
file
Accupedo Value lapdistance saved to a file Leaked value computed from multiple sensor
measurements

[00151] Section 8 - Related Work

[00152] Dynamic information flow tracking: The state of the art in information flow
tracking on ANDROID is TAINTDROID. In terms of granularity, TAINTDROID provides up
to a variable-based information flow tracking system. TAINTDROID attaches shadow memory
integer values (taints) for one or more variables or objects stored in the system memory.

TAINTDROID suffers from reporting many false positive alarms. BAYESDROID is

WO 2019/070675 PCT/US2018/053920

-36 -

implemented a variation of TAINTDROID to reduce the false positives rate. BAYESDROID
uses Bayesian reasoning and the hamming distance between strings (and/or other digital
representations or values) read at the source and to string (and/or other digital representation or
value) detected at the sink in order to detect flows. However, in contrast to some embodiments,
BAYESDROID is limited to tracking string values (and/or other digital representation or values)
and does not track numerical values. In addition, both TAINTDROID and BAYESDROID are
implemented on top of the DALVIK VM which is replaced by the Ahead-Of-Time compilation
via the ART compiler. Therefore, TAINTDROID and BAYESDROID are require OS
modification and are not compatible with new versions of ANDROID.

[00153] Protections against unwanted inferences from sensor data are presented in previous
research such as IPSHIELD (see r hakraborty, S., et al., “ipShield: A Framework For Enforcing
Context-Aware Privacy,” In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation. USENIX Association, pages 143—156, April 2-4, 2014,
which is incorporated by reference herein in its entirety) which implements a firewall for sensors
data. In some embodiments, protection mechanisms may use custom versions of ANDROID.
[00154] Recently, existing approaches (see “TaintART: A Practical Multi-level Information-
Flow Tracking System for Android Runtime,” In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, pages 331-342, October 24-28,
2016, which is incorporated by reference herein in its entirety) presented preliminary research for
how to revive dynamic information tracking under the new ANDROID RUNTIME (ART)
environment. Similar to some embodiments, the three solutions modify the DEX20AT
compiler. Some embodiments may present a way to achieve taint tracking with minimal
compiler modifications and therefore making it easier to port some embodiments to future
versions of ANDROID.

[00155] Programming languages such as Jeeves (see r ang, J, et al., “A Language for
Automatically Enforcing Privacy Policies,” In POPL ‘12, Proceedings of the 39" Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages, 85-96,
January 25-27, 2012, which is incorporated by reference herein in its entirety) enable the
developer to define fine-grained information flow rules in the application code.

[00156] Application sandboxing techniques: BOXIFY and NJSAP demonstrate how to
encapsulate the execution of a third party application with a virtualized environment. While

NJSAP may use PTRACE for system-call interception, NJSAP may use LIBC function hooking.

WO 2019/070675 PCT/US2018/053920

-37 -

Some embodiments show comparable results in terms of virtualization overhead while extending
the sandboxing environment to implement a working value-tracking environment by
coordination with a modified version of DEX20OAT compiler. Both execution both techniques
(BOXIFY and NJSAPO) rely on syscall introspection in order to allow the execution of a third
party application in the context of another application. Another approach to instrument an
application without modifying either the system or the application may include hooking virtual
methods. ARTDROID (see Costamagna, V., et al., “ARTDroid: A Virtual-Method Hooking
Framework on Android ART Runtime,” Proceedings of the Workshop on Innovations in Mobile
Privacy and Security IMPS at ESSoS’16, London, UK, 9 pages, April 6, 2016, which is
incorporated by reference herein in its entirety) provides such a solution. While this approach
can be of some use for specific task, some embodiments opt for the combination of a modified
compiler with syscall interception to achieve an opcode granularity.

[00157] Strict app sandboxing to protect against private data disclosures has been proposed in
FLASKDROID (see Bugiel, S., et al., “Flexible and Fine-Grained Mandatory Access Control on
Android for Diverse Security and Privacy Policies.”. In Usenix security, pages 131-146, August
14-16, 2013, which is incorporated by reference herein in its entirety) and SAINT (see Ongtang,
M., et al,, “Semantically Rich Application-Centric Security in Android. Security and
Communication Networks Vol. 5, Issue 6, pages 658—673, June 2012, which is incorporated by
reference herein in its entirety) that extend the existing permission policies by ANDROID
applications. BLUEBOX (see Bluebox. 2014. (2014). https://bluebox.com/, which is
incorporated by reference herein in its entirety) provides a per-app data encryption mechanism,
and corporate data access tracking.

[00158] Some embodiments present a dynamic information flow tracking solution. Some
embodiments may run at the application-level without having to modify the underlying operating
system or requiring elevated privileges to examine other apps. Some embodiments may utilize a
new approach for tracking information flows based on the values themselves instead of attaching
taint variables to them. Compared to previous work on dynamic information flow tracking, some
embodiments may work on top of the latest commodity ANDROID versions. Some
embodiments achieve better results than TAINTDROID (fewer false positives), and can handle
numerical values which are not covered by BAYESDROID. Further details are provided in
Sections A.1 and A.2 to follow.

[00159] A.1 Package names and versions of real-world applications using for evaluation

WO 2019/070675 PCT/US2018/053920

-38 -

[00160] Table 6: App name to application package name and version correspondence table

App name App package name Version
Accupedo com.corusen.accupedo.te 598
Ffree com.ffree. Pedometer 2.6.0
Noom com.noom.walk 1.4.0
Runtastic com.runtastic. ANDROID.pedometer lite 1.6.2
Guava com.guava.pedometer.stepcounter 23.0
SensorBox imoblife. ANDROIDsensorbox 5.0
LINPACK com.sqi. LINPACKbenchmark 1.4

[00161] A.2 DROIDBENCH benchmark results

[00162] Table 7 presents the detailed DROIDBENCH results for three IFT solutions: some
embodiments, BAYESDROID and TAINTDROID.

[00163] Table 7: Table: Comparison of the METRON performance (according to some
embodiments) over the existing solutions: TAINTDROID, DROIDSAFE.

Benchmark Algorithm TP FP FN Benchmark Algorithm TP FP FN
METRON 1 0 0 METRON 1 0 1
ActivityCommunication | BayesDroid 1 0 0 ImplicitFlow1 BayesDroid 0 0o 2
TaintDroid 1 0 0 TaintDroid 2 0 0
METRON 1 0 0 METRON 1 0 0
ActivityLifecyclel BayesDroid 1 0 0 InheritedObjectl BayesDroid 1 0 0
TaintDroid 1 0 0 TaintDroid 1 0 0
METRON 1 0 0 METRON 0 0 0
ActivityLifecycle2 BayesDroid 1 0 0 ListAccessl BayesDroid 0 0 0
TaintDroid 1 0 0 TaintDroid 0 1 0
METRON 1 0 0 METRON 2 0 0
ActivityLifecycle4 BayesDroid 1 0 0 LocationLeak 1 BayesDroid 0 0 0
TaintDroid 1 0 0 TaintDroid 0 2 0
METRON 1 0 0 METRON 2 0 0
Library2 BayesDroid 1 0 0 LocationLeak2 BayesDroid 0 0 0
TaintDroid 1 0 0 TaintDroid 0 2 0
METRON 1 0 0 METRON 0 0 1
Obfuscationl BayesDroid 1 0 0 Loopl BayesDroid 1 0 0
TaintDroid 1 0 0 TaintDroid 1 0 0
METRON 1 1 0 METRON 0 0 0
PrivateDatal.eak3 BayesDroid 1 1 0 Loop2 BayesDroid 1 0 0
TaintDroid 1 1 0 TaintDroid 1 0 0
METRON 2 0 0 METRON 1 0 0
AnonymousClass1 BayesDroid 0 0 0 ApplicationLifecyclel | BayesDroid 1 0 0
TaintDroid 0 1 0 TaintDroid 1 0 0
METRON 0 0 0 METRON 1 0 0
Array Accessl BayesDroid 0 0 0 ApplicationLifecycle3 | BayesDroid 1 0 0
TaintDroid 0 1 0 TaintDroid 1 0 0
METRON 0 0 0 METRON 1 0 0
Array Access2 BayesDroid 0 0 0 MethodOverridel BayesDroid 1 0 0
TaintDroid 0 1 0 TaintDroid 1 0 0
METRON 0 0 0 METRON 0 0 0
HashMapAccess1 BayesDroid 0 0 0 ObjectSensitivity 1 BayesDroid 0 0 0
TaintDroid 0 1 0 TaintDroid 0 1 0
METRON 1 0 0 METRON 0 0 0
Buttonl BayesDroid 1 0 0 ObjectSensitivity2 BayesDroid 0 0 0
TaintDroid 1 0 0 TaintDroid 0 2 0
METRON 2 0 0 METRON 1 0 0
Button3 BayesDroid 2 0 0 Reflectionl BayesDroid 1 0 0
TaintDroid 2 0 0 TaintDroid 1 0 0

WO 2019/070675 PCT/US2018/053920

-39 .
METRON 0 0 0 METRON 1 0 0
Orderingl BayesDroid 0 0 0 Reflection2 BayesDroid 1 0 0
TaintDroid 0 2 0 TaintDroid 1 0 0
METRON 1 0 0 METRON 1 0 0
RegisterGlobal 1 BayesDroid 1 0 0 Reflection3 BayesDroid 1 0 0
TaintDroid 1 0 0 TaintDroid 1 0 0
METRON 1 0 0 METRON 1 0 0
DirectLeak1 BayesDroid 1 0 0 Reflectiond BayesDroid 1 0 0
TaintDroid 1 0 0 TaintDroid 1 0 0
METRON 0 0 0 METRON 5 0 0
FicldSensitivity2 BayesDroid 0 0 0 SourceCodeSpecificl BayesDroid 5 0 0
TaintDroid 0 1 0 TaintDroid 5 0 0
METRON 1 0 0 METRON 1 0 0
FicldSensitivity 3 BayesDroid 1 0 0 StaticInitialization1 BayesDroid 1 0 0
TaintDroid 1 0 0 TaintDroid 1 0 0
METRON 0 0 0 METRON 34 1 2
FicldSensitivity4 BayesDroid 0 0 0 Total BayesDroid 29 1 2
TaintDroid 0 1 0 TaintDroid 31 17 0

Computer system:

[00164] FIG. 6 illustrates a computer network (and system) or similar digital processing
environment, according to some embodiments 1000. Client computer(s)/devices 50 and server
computer(s) 60 provide processing, storage, and input/output devices executing application
programs and the like. The client computer(s)/devices 50 can also be linked through
communications network 70 to other computing devices, including other client devices/processes
50 and server computer(s) 60. The communications network 70 can be part of a remote access
network, a global network (e.g., the Internet), a worldwide collection of computers, local area or
wide area networks, and gateways that currently use respective protocols (TCP/IP, Bluetooth®,
etc.) to communicate with one another. Other electronic device/computer network architectures
are suitable.

[00165] Client computers/devices S0 may be configured with a computing module. Server
computers 60 may be configured with a data module which communicates with client devices
(i.e., computing modules) 50 for improving computer security (including but not limited to user
data protection) of a device using value based information flow tracking. The server computers
60 may not be separate server computers but part of cloud network 70. In some embodiments,
the server computer (e.g., display module) may enable users to improve computer security
(including but not limited to user data protection) of a device using value based techniques
(described herein) that may be located on the client 50, server 60, or network 70 (e.g., global
computer network). The client (computing module) 50 may communicate information regarding

the system back to and/or from the server 60 (data module). In some embodiments, the client SO

WO 2019/070675 PCT/US2018/053920

-40 -

may include client applications or components (e.g., computing module) executing on the client
50 for generating or receiving (or accessing) data, and the client 50 may communicate this
information to the server (e.g., data module) 60.

[00166] In other words, according to some embodiments, the computer system of FIG. 6 may
include a data module 60 configured to automatically capture one or more raw data values from a
data source of a device. The data module 60 may further be configured to store the one or more
raw data values in a collection of sensitive data. The computing module 50 may be operatively
coupled to the data module 60. The computing module 50 may be configured to track whether
one or more computed values of the one or more functions of the data flow are included in the
collection of sensitive data. The computing module 50 may be further configured, based upon
the tracking, to prevent one or more values of the collection of sensitive data from being
transmitted from a sink of the device.

[00167] The computing module 50 may be further configured to track whether one or more
representations (including but not limited to digital, value, digital value, or string
representations) of one or more computed operand and return values of one or more numerical or
arithmetic operations of the one or more functions of the data flow are included in the collection
of sensitive data. The data module 60 may perform storing in response to one or more security
policies. The computing module 50 may perform tracking while the data flow is being accessed
and processed. The device may include a mobile device, an embedded controller, and/or a
computer processing device (including but not limited to a desktop computer, laptop computer
and/or custom computer). The memory 90 may include a cache memory that may be configured
as any of a ring buffer, a value table, and an array. The data source may include a sensor. The
one or more raw data values may be readings of the sensor. The sensor may be of a data type
configured to generate sensitive data. The sink may include any of a network socket, a file, or a
message.

[00168] According to some embodiments, the computing module 50 may further be
configured to report a violation based upon the tracking. In response to the reported violation,
the computing module 50 may further block the one or more values of the collection of sensitive
data from being transmitted from the sink of the device.

[00169] According to some embodiments, FIG. 7 is a diagram of an example internal structure
of a computer (e.g., client processor/device 50 or server computers 60) in the computer system of

FIG. 6. Each computer 50, 60 contains a system bus 79, where a bus is a set of hardware lines

WO 2019/070675 PCT/US2018/053920

-41 -

used for data transfer among the components of a computer or processing system. The system
bus 79 is essentially a shared conduit that connects different elements of a computer system (e.g.,
processor, disk storage, memory, input/output ports, network ports, etc.) that enables the transfer
of information between the elements. Attached to the system bus 79 is an I/O device interface 82
for connecting various input and output devices (e.g., keyboard, mouse, displays, printers,
speakers, etc.) to the computer 50, 60. A network interface 86 allows the computer to connect to
various other devices attached to a network (e.g., network 70 of FIG. 6). Memory 90 provides
volatile storage for computer software instructions 92 and data 94 used to implement some
embodiments 1000 (e.g., multiuser site, computing module, and/or display module engine
elements described herein). Disk storage 95 provides non-volatile storage for computer software
instructions 92 and data 94 used to implement an embodiment of the present disclosure. A
central processor unit 84 is also attached to the system bus 79 and provides for the execution of
computer instructions.

[00170] In one embodiment, the processor routines 92 and data 94 are a computer program
product (generally referenced 92), including a computer readable medium (e.g., a removable
storage medium such as one or more DVD-ROM’s, CD-ROM’s, diskettes, tapes, etc.) that
provides at least a portion of the software instructions for the invention system. Computer
program product 92 can be installed by any suitable software installation procedure, as is well
known in the art. In another embodiment, at least a portion of the software instructions may also
be downloaded over a cable, communication and/or wireless connection. In other embodiments,
the invention programs are a computer program propagated signal product 107 embodied on a
propagated signal on a propagation medium (e.g., a radio wave, an infrared wave, a laser wave, a
sound wave, or an electrical wave propagated over a global network such as the Internet, or other
network(s)). Such carrier medium or signals provide at least a portion of the software
instructions for the present invention routines/program 92.

[00171] In alternate embodiments, the propagated signal is an analog carrier wave or digital
signal carried on the propagated medium. For example, the propagated signal may be a digitized
signal propagated over a global network (e.g., the Internet), a telecommunications network, or
other network. In one embodiment, the propagated signal is a signal that is transmitted over the
propagation medium over a period of time, such as the instructions for a software application
sent in packets over a network over a period of milliseconds, seconds, minutes, or longer. In

another embodiment, the computer readable medium of computer program product 92 is a

WO 2019/070675 PCT/US2018/053920

-42 -

propagation medium that the computer system 50 may receive and read, such as by receiving the
propagation medium and identifying a propagated signal embodied in the propagation medium,
as described above for computer program propagated signal product.

[00172] Generally speaking, the term “carrier medium” or transient carrier encompasses the
foregoing transient signals, propagated signals, propagated medium, storage medium and the
like.

[00173] Embodiments 1000 or aspects thereof may be implemented in the form of hardware
(including but not limited to hardware circuitry), firmware, or software. If implemented in
software, the software may be stored on any non-transient computer readable medium that is
configured to enable a processor to load the software or subsets of instructions thereof. The
processor then executes the instructions and is configured to operate or cause an apparatus to
operate in a manner as described herein.

[00174] Further, hardware, firmware, software, routines, or instructions may be described
herein as performing certain actions and/or functions of the data processors. However, it should
be appreciated that such descriptions contained herein are merely for convenience and that such
actions in fact result from computing devices, processors, controllers, or other devices executing
the firmware, software, routines, instructions, etc.

[00175] It should be understood that the flow diagrams, block diagrams, and network
diagrams may include more or fewer elements, be arranged differently, or be represented
differently. But it further should be understood that certain implementations may dictate the
block and network diagrams and the number of block and network diagrams illustrating the
execution of the embodiments be implemented in a particular way.

[00176] Accordingly, further embodiments may also be implemented in a variety of computer
architectures, physical, virtual, cloud computers including but not limited to both single-tenant
and multi-tenant systems, and/or some combination thereof, and, thus, the data processors
described herein are intended for purposes of illustration only and not as a limitation of the
embodiments.

[00177] Some embodiments may provide one or more technical advantages that may
transform the behavior and/or data, provide functional improvements, and/or solve a technical

problem.

WO 2019/070675 PCT/US2018/053920

-43 -

[00178] Some embodiments may provide a technical advantage by improving computer
security (including but not limited to user data protection) of a device using value based
information flow tracking.

[00179] Compared to existing approaches, some embodiments may provide a technical
advantage by improving the detection accuracy significantly, and reporting fewer false positives.
And in comparison to existing approaches, some embodiments may also provide a technical
advantage by reporting better accuracy in terms of the number of true positives while being able
to handle numerical values.

[00180] In addition, some embodiments may provide a technical advantage by using value
based information to improve computational efficiency (and/or speed, and/or accuracy) of flow
tracking, as compared with existing shadowing techniques. Such improvements may be due to
the novel lightweight information flow analysis algorithm for numerical values of some
embodiments that do not require exhaustive instruction instrumentation.

[00181] Some embodiments may provide functional improvements by improving computer
security (including but not limited to user data protection) of a device using value based
information flow tracking.

[00182] Compared to existing approaches, some embodiments may provide functional
improvements by improving the detection accuracy significantly, and reporting fewer false
positives. And in comparison to existing approaches, some embodiments may also provide
functional improvements by reporting better accuracy in terms of the number of true positives
while being able to handle numerical values.

[00183] Some embodiments may provide functional improvements to the quality of computer
security (including but not limited to user data protection) by using value based information to
improve computational efficiency (and/or speed, and/or accuracy) of flow tracking, as compared
with existing shadowing techniques. Such improvements may be due to the novel lightweight
information flow analysis algorithm for numerical values of some embodiments that do not
require exhaustive instruction instrumentation.

[00184] Some embodiments may solve a technical problem by improving computer security
(including but not limited to user data protection) of a device using value based information flow
tracking.

[00185] Compared to existing approaches, some embodiments may solve a technical problem

by improving the detection accuracy significantly, and reporting fewer false positives. And in

WO 2019/070675 PCT/US2018/053920

-44 -

comparison to existing approaches, some embodiments may also solve a technical problem by
reporting better accuracy in terms of the number of true positives while being able to handle
numerical values.

[00186] Some embodiments may solve a technical problem by improving the quality of
computer security by using value based information to improve computational efficiency (and/or
speed, and/or accuracy) of flow tracking, as compared with existing shadowing techniques. Such
a solution may be due to the novel lightweight information flow analysis algorithm for numerical
values of some embodiments that do not require exhaustive instruction instrumentation.

[00187] Further, some embodiments may transform the behavior and/or data of received (or
generated or accessed) data flow based upon value based information flow tracking.

[00188] METRON is a tradename or trademark of Applicants.

[00189] While this disclosure has been particularly shown and described with references to
example embodiments thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the scope of the

disclosure encompassed by the appended claims.

WO 2019/070675 PCT/US2018/053920

- 45 -
CLAIMS

What is claimed is:

1. A computer-implemented method of improving the computer security of a device,

comprising:

automatically capturing one or more raw data values from a data source of the
device;

storing in cache memory the captured one or more raw data values in a collection
of sensitive data;

determining whether one or more computed values of one or more functions of a
data flow are included in the collection of sensitive data; and

based upon the determining, preventing one or more values of the collection of

sensitive data from being transmitted from a sink of the device.

2. The computer-implemented method of Claim 1, further comprising determining whether
one or more representations of one or more computed operand and return values of one or
more numerical or arithmetic operations of the one or more functions of the data flow are

included in the collection of sensitive data.

3. The computer-implemented method of Claim 1, wherein the storing is performed in

response to one or more security policies.

4. The computer-implemented method of Claim 1, wherein the determining is performed

while the data flow is being accessed and processed.

5. The computer-implemented method of Claim 1, wherein the sink includes any of a

network socket, a file, or a message.

6. The computer-implemented method of Claim 1, wherein at least one of:
the device includes a mobile device, an embedded controller, or a computer
processing device; and
the cache memory is configured as any of a ring buffer, a value table, and an

array.

10.

11.

12.

WO 2019/070675 PCT/US2018/053920

- 46 -

The computer-implemented method of Claim 1, further comprising:
reporting a violation based upon the determining; and
in response to the reported violation, further preventing the one or more values of

the collection of sensitive data from being transmitted from the sink of the device.

The computer-implemented method of Claim 1, wherein the data source includes a

sensor, and the one or more raw data values are readings of the sensor.

The computer-implemented method of Claim 8, wherein the sensor is of a data type

configured to generate sensitive data.

A computer system, comprising:

at least one processor; and

memory with computer code instructions stored thereon, the memory operatively
coupled to the at least one processor such that, when executed by the at least one
processor, the computer code instructions cause the computer system to implement:

a data module configured to automatically capture one or more raw data values
from a data source of a device;

the data module being further configured to store in cache memory the captured
one or more raw data values in a collection of sensitive data;

a computing module operatively coupled to the data module and configured to
determine whether one or more computed values of one or more functions of a data flow
are included in the collection of sensitive data; and

the computing module being further configured, based upon the determining, to
prevent one or more values of the collection of sensitive data from being transmitted from

a sink of the device.

The computer system of Claim 10, wherein the computing module is further configured
to determine whether one or more representations of one or more computed operand and
return values of one or more numerical or arithmetic operations of the one or more

functions of the data flow are included in the collection of sensitive data.

The computer system of Claim 10, wherein the storing is performed in response to one or

more security policies.

WO 2019/070675 PCT/US2018/053920

-47 -

13. The computer system of Claim 10, wherein the determining is performed while the data
flow is being accessed and processed.

14. The computer system of Claim 10, wherein the sink includes any of a network socket, a
file, or a message.

15. The computer system of Claim 10, wherein at least one of’

the device includes a mobile device, an embedded controller, or a computer
processing device; and
the cache memory is configured as any of a ring buffer, a value table, and an

array.

16. The computer system of Claim 10, wherein the computing module is further configured
to:
report a violation based upon the determining; and
in response to the reported violation, further prevent the one or more values of the

collection of sensitive data from being transmitted from the sink of the device.

17. The computer system of Claim 10, wherein the data source includes a sensor, and the one

or more raw data values are readings of the sensor.

18. The computer system of Claim 17, wherein sensor is of a data type configured to generate

sensitive data.

19. A computer program product comprising:

a non-transitory computer-readable storage medium having code instructions
stored thereon, the storage medium operatively coupled to a processor such that, when
executed by the processor, the computer code instructions cause the processor to:

automatically capture one or more raw data values from a data source of the
device;

store in cache memory the captured one or more raw data values in a collection of
sensitive data;

determine whether one or more computed values of one or more functions of a

data flow are included in the collection of sensitive data; and

20.

WO 2019/070675 PCT/US2018/053920

-48 -

based upon the determining, prevent one or more values of the collection of

sensitive data from being transmitted from a sink of the device.

The computer program product of Claim 19, wherein the processor determines whether
one or more representations of one or more computed operand and return values of one or
more numerical or arithmetic operations of the one or more functions of the data flow are

included in the collection of sensitive data.

WO 2019/070675 PCT/US2018/053920
49

AMENDED CLAIMS
received by the International Bureau on 20 February 2019 (20.02.2019)

What is claimed is:

1. A computer-implemented method of improving the computer security of a device,

comprising:

automatically capturing one or more raw data values from a data source of the
device;

storing in cache memory the captured one or more raw data values in a collection
of sensitive data;

determining whether one or more computed values of one or more functions of a
data flow are included in the collection of sensitive data; and

based upon the determining, preventing one or more values of the collection of

sensitive data from being transmitted from a sink of the device.

2. The computer-implemented method of Claim 1, further comprising determining whether
one or more representations of one or more computed operand and return values of one or
more numerical or arithmetic operations of the one or more functions of the data flow are
included in the collection of sensitive data by directly comparing the one or more
representations to one or more values of the collection of sensitive data; the preventing
further based upon the determining of the one or more representations and recency of the

one or more representations included in the collection of sensitive data.

3. The computer-implemented method of Claim 1, wherein the storing is performed in

response to one or more security policies.

4. The computer-implemented method of Claim 1, wherein the determining is performed

while the data flow is being accessed and processed.

5. The computer-implemented method of Claim 1, wherein the sink includes any of a

network socket, a file, or a message.

6. The computer-implemented method of Claim 1, wherein at least one of
the device includes a mobile device, an embedded controller, or a computer
processing device; and
the cache memory is configured as any of a ring buffer, a value table, and an

array.

AMENDED SHEET (ARTICLE 19)

7.

10.

11.

WO 2019/070675 PCT/US2018/053920

50

The computer-implemented method of Claim 1, further comprising:
reporting a violation based upon the determining; and
in response to the reported violation, further preventing the one or more values of

the collection of sensitive data from being transmitted from the sink of the device.

The computer-implemented method of Claim 1, wherein the data source includes a

sensor, and the one or more raw data values are readings of the sensor.

The computer-implemented method of Claim 8, wherein the sensor is of a data type

configured to generate sensitive data.

A computer system, comprising:

at least one processor; and

memory with computer code instructions stored thereon, the memory operatively
coupled to the at least one processor such that, when executed by the at least one
processor, the computer code instructions cause the computer system to implement:

a data module configured to automatically capture one or more raw data values
from a data source of a device;

the data module being further configured to store in cache memory the captured
one or more raw data values in a collection of sensitive data;

a computing module operatively coupled to the data module and configured to
determine whether one or more computed values of one or more functions of a data flow
are included in the collection of sensitive data; and

the computing module being further configured, based upon the determining to
prevent one or more values of the collection of sensitive data from being transmitted

from a sink of the device.

The computer system of Claim 10, wherein the computing module is further configured
to determine whether one or more representations of one or more computed operand and
return values of one or more numerical or arithmetic operations of the one or more
functions of the data flow are included in the collection of sensitive data by directly
comparing the one or more representations to one or more values of the collection of
sensitive data; the preventing further based upon the determining of the one or more
representations and recency of the one or more representations included in the collection

of sensitive data.

AMENDED SHEET (ARTICLE 19)

12.

13.

14.

15.

16.

17.

18.

19.

WO 2019/070675 PCT/US2018/053920

51

The computer system of Claim 10, wherein the storing is performed in response to one or

more security policies.

The computer system of Claim 10, wherein the determining is performed while the data

flow is being accessed and processed.

The computer system of Claim 10, wherein the sink includes any of a network socket, a

file, or a message.

The computer system of Claim 10, wherein at least one of:

the device includes a mobile device, an embedded controller, or a computer
processing device; and

the cache memory is configured as any of a ring buffer, a value table, and an

array.

The computer system of Claim 10, wherein the computing module is further configured
to:

report a violation based upon the determining; and

in response to the reported violation, further prevent the one or more values of the

collection of sensitive data from being transmitted from the sink of the device.

The computer system of Claim 10, wherein the data source includes a sensor, and the one

or more raw data values are readings of the sensor.

The computer system of Claim 17, wherein sensor is of a data type configured to

generate sensitive data.

A computer program product comprising:

a non-transitory computer-readable storage medium having code instructions
stored thereon, the storage medium operatively coupled to a processor such that, when
executed by the processor, the computer code instructions cause the processor to:

automatically capture one or more raw data values from a data source of the
device;

store in cache memory the captured one or more raw data values in a collection of
sensitive data;

determine whether one or more computed values of one or more functions of a

data flow are included in the collection of sensitive data; and

AMENDED SHEET (ARTICLE 19)

20.

WO 2019/070675 PCT/US2018/053920
52

based upon the determining, prevent one or more values of the collection of

sensitive data from being transmitted from a sink of the device.

The computer program product of Claim 19, wherein the processor determines whether
one or more representations of one or more computed operand and return values of one or
more numerical or arithmetic operations of the one or more functions of the data flow are
included in the collection of sensitive data by directly comparing the one or more
representations to one or more values of the collection of sensitive data; the preventing
further based upon the determining of the one or more representations and recency of the

one or more representations included in the collection of sensitive data.

AMENDED SHEET (ARTICLE 19)

WO 2019/070675 PCT/US2018/053920

1/8

1000

CAPTURE DATA VALUES FROM SOURCE ~102

'

STORE CAPTURED DATA VALUES IN
COLLECTION OF SENSITIVE DATA

l

DETERMINE WHETHER COMPUTED
VALUES OF FUNCTIONS ARE INCLUDED ~106
IN SENSITIVE DATA COLLECTION

,

PREVENT VALUES FROM BEING
TRANSMITTED FROM SINK

—~ 104

—~ 108

FIG. 1A

PCT/US2018/053920

WO 2019/070675

2/8

dlL ©Old

¥0c /

S3aid

80C
AYOLSH
NOILVY3dO ® SINTVA
d3aINIVL 40 1S (§)

[o)

(Josuas (qui)

(Josuas (qui) W

- - - - T T T T ée9

[on ‘LA igA yeoy-ppe

141 d3sva-anivAa

JNILNNY @

yie

‘GA iLAJeOl)-gNS
GA ‘PN ‘OA 5%1

/A ‘€A {9A)yeol-AIp
T aldy Al —O1-
[/ 1A yeol-ol-jul

[N] ._

N LA ON LA Emm_
9l O+# ‘IAPASUOD
m>.o>.¢r>#:gm_

0+# ‘GAyAsuUO09|

[heoys ‘gn ‘On Aelie-mau|
C+# 'GAp/ISUOD,

(leoy} Jeol _

‘eoy}: ‘Buoy) Jo0910qdals ploA

902 XO9AaNVS NOYLINW

©

®

[4%2
NOILVIN
-JINNELSNI
3d092
d313odvl

jeo'dde

‘S13IMI0S
SUNIS

Xap'sasse|o

ddV ALdVd-ddIHL1

- (W]

vivd
SHOSN3S

S304dNO0S

\

0lLc

¢0¢ \

0001

PCT/US2018/053920

WO 2019/070675

3/8

¢ Ol

RETREN, 062
(1opuig/aapy) YIAAIYAlYIANIE —— 092 30VdS
aEIEN
owN\W\l\N |||||||||||||||||||||||||||||| -
—--d4--==F-L--+ Y 3OVdS
L ¢ | Y3I1ANVH TV W3LSAS d3sn
| 892 - _ X _\ I v/
! ! Y N 8% HIHOVEL INTYAH 95¢
! FOINIISHOSNIAS || | ~_ ¢ / -
_ _ +— 002
| 30INIISNOLLYOOT| || wmm_Pwawmmwwwm_m 082 | [yowanw Inovol—"7
_ ADINHISALIAILOY _ SSI004d ¥IovHL [8¢
s - | —$G7
S — Jeozxap @
$S300¥d 330VAL oz]
9|l Jeo 92
H3AYIS WILSAS NO¥.L3N
__ 992 262

0001

PCT/US2018/053920

WO 2019/070675

4/8

UO[JeJUSWLINJISU UOONJISU| [ealiswinu Ja|idwoo jeozxap (g) Bunsr
‘(ynsel 4 "1s8p) BN[EARIOIS

() bayieny Bau zois |1 ()P’
Ba.|ois | () Boyeny Bal Jnsal |J 'do) £y imeN

{(() Boen " 044 " dodauwinyLy) |meN

80¢ {(() Barren z47s1 " dodquinyLy) |H[ImMeN
{0 ImsqwInyLy) LymeN

1(z8g " /4 s4)juejsUODpEOT

{(() Boden " L4781 " ysndaunyLy) LymeN

{(() Boden " 0478l " ysndaunyLy) LymeN

+ o+ + + + o+ o+

‘fony ‘Boyd4y 1sep M) 007leAT
=}nsas |1 (Bayd4y 'zois) enjeppeo] =g
als |1 (Baygd4y LoJs 1) enjeppeo = Lois |

dwnpieo yym pajoesixa apoo xap psejessuss) (9) Bunsii

AT LA A 1804 - NS 9O0OX0

LA" A" ZA 18014 - PP :9000X0

401> 0LVLLEVROL+# ' LA 18U £000X0
06ZGEZZ0L+# ' OA 18U0D :0000X0

-30092 X3a

(6828} =
Pl "POLpBLUXap) (MalA " MBIA T JIOHANY) Yollouo
" L$AIAROYUIBN * YoBIjeO)) S|dWEeXS WOoo PIOA |,

¢ Ol

Jeozxep SINOY LI Ag 8pod Alquissse pajesauas (/) Bulsi]

/18918618 Zg) dnsA 89268/99

JJ dod 0899 +

o dod /899 +

0 Ims o0p +

Z8s4 " maow 9Ll +

0/ ysnd 189 +

/4 ysnd 08y +

98 'gls ' /IS Zg ppeA 80e96/99

J4 dod 0899 +

o/ dod /899 +

0 Ims oop +

Z8e#' 4 mAoW 9Ll +

0/ ysnd l8va +

/4 ysnd 08va +
98 /¥18666807X

0 ' loLz#'od "9ls ZeyipiA £gegiepe
©6661.907X

0 ! [pgs ' od 'gls zeyipiA Gge6}6Pe

dde g|0¥aNY & Ul uoiesado juiod Buneoy jo aousnbag (g) Buns

€1-2 =} 1|0l
T+ =€l 1eol
1¥0'G= ¢l 1|0l
1507 = 14 1e0l)

90¢

¢0€

PCT/US2018/053920

WO 2019/070675

5/8

000001

v Ol

1401%

d344N9 ONId 3H1 40 dv3H 3HL O1 NOILISOd 3AILV13d l\
00001

0001

001

ol

aj[02=[a)mAv/iY
43444

VAVNO
0d3adNddv

SSVdINOD
JILSVLISNNY
INOON

0] 4
O /#

o o
< N

o
©

o
3]
40 F9OVINIDHId IAILVYINIAND

NOILISOd O1 dN dNMOOT 11N4dSS300NS

001

0oclL

PCT/US2018/053920

WO 2019/070675

6/8

)4

G Old

\.o_‘m \N_‘m \v_‘m

JAILISOd INYL [] 3IAILISOd ASTVA N IAILYD3N 3ISTV4 i

Ge o€ Gz 0z Gl ol G 0 905
1€ | A\
Z Ay dioda.LnNivL
0
¥0S

62 |
F% alodas3IAve A\
Z

¢0g

e |
F@ NOYL3IN \
Z

WO 2019/070675 PCT/US2018/053920

7/8

1000

[]

Wil=:

L
=
50

=]

zin =

NETWORK
70

107

]
=

L]

FIG.6

PCT/US2018/053920

WO 2019/070675

8/8

L Ol

Y

¥6
vivd

<
~

26
NYd90¥d SO

G6 JOVHOLS MSIA

6. SN INJLSAS ~

D

¥6
vivd

aNILNOY

26

06 ANMOWAN

98
J0V4d3LNI
HHOMLIN

¥8
1INN
¥0SS3004d
TVHLINIO

09 ‘0§

z8
J0V4d3LNI
S3ADIN3A O/l

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/053920

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/52 GO6F21/55
ADD.

GO6F21/62

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

column 6, 1line 54 - line 55
column 6, line 67
column 7, line 27
column 9, Tine 17

[|
—_
[
>3
@ @
w w
~N

X US 8 127 360 Bl (WILHELM JEFFREY [US] ET 1-20
AL) 28 February 2012 (2012-02-28)

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 December 2018

Date of mailing of the international search report

21/12/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Koblitz, Birger

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/053920

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

STEVEN ARZT ET AL: "FlowDroid : precise
context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android
apps",

PROCEEDINGS OF THE 35TH ACM SIGPLAN
CONFERENCE ON PROGRAMMING LANGUAGE DESIGN
AND IMPLEMENTATION, PLDI '14, JUNE 09 - 11
2014, EDINBURGH, UNITED KINGDOM,

1 January 2013 (2013-01-01), pages
259-269, XP055534670,

New York, New York, USA

DOI: 10.1145/2594291.2594299

I1SBN: 978-1-4503-2784-8

the whole document

BACKES MICHAEL ET AL: "ARTist: The
Android Runtime Instrumentation and
Security Toolkit",

2017 TEEE EUROPEAN SYMPOSIUM ON SECURITY
AND PRIVACY (EUROS&P), IEEE,

26 April 2017 (2017-04-26), pages 481-495,
XP033113329,

DOI: 10.1109/EUROSP.2017.43

[retrieved on 2017-06-28]

the whole document

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2018/053920
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 8127360 Bl 28-02-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - amend-body
	Page 52 - amend-body
	Page 53 - amend-body
	Page 54 - amend-body
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - wo-search-report
	Page 64 - wo-search-report
	Page 65 - wo-search-report

