(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date 14 February 2013 (14.02.2013) (10) International Publication Number WO 2013/020918 A1 (51) International Patent Classification: C09C 1/02 (2006.01) C02F 3/34 (2006.01) C02F 1/68 (2006.01) (21) International Application Number: PCT/EP2012/065251 (22) International Filing Date: 3 August 2012 (03.08.2012) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: EP 11177031.9 9 August 2011 (09.08.2011) 61/523,867 16 August 2011 (16.08.2011) US - (71) Applicant (for all designated States except US): OMYA DEVELOPMENT AG [CH/CH]; Baslerstrasse 42, CH-4665 Oftringen (CH). - (72) Inventors; and - Inventors/Applicants (for US only): DI MAIUTA, Nicola [IT/CH]; Amselweg 8, CH-4528 Zuchwil (CH). SCHWARZENTRUBER, Patrick [CH/CH]; Untere Lättenstrasse 193, CH-5245 Habsburg (CH). SKOVBY, Michael [DK/CH]; Wampflenstrasse 52, CH-8706 Meilen (CH). - Agent: GLAS, Holger; Maiwald Patentanwalts GmbH, Elisenhof Elisenstrasse 3, 80335 München (DE). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ## Published: with international search report (Art. 21(3)) (57) Abstract: The invention relates to a surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions, to a method for binding and bioremediating hydrocarbon-containing compositions as well as to the use of surface-treated calcium carbonate for binding and bioremediating hydrocarbon- containing compositions and to a composite material comprising the surface-treated calcium carbonate and a hydrocarbon-containing composition. Surface-treated calcium carbonate for binding and bioremediating hydrocarboncontaining compositions 5 The invention relates to a surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions, to a method for binding and bioremediating hydrocarbon-containing compositions as well as to the use of surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions and to a composite material comprising the surface-treated calcium carbonate and a hydrocarbon-containing composition. Pollution of soils, sea water or ground water with water-insoluble fluids such as compositions comprising hydrocarbons has posed a serious environmental problem all over the world. In this regard, hydrocarbon-containing compositions such as crude oil contribute significantly to the contamination of sea water and soils, while refined petroleum products such as gasoline, aviation fuel, diesel fuel and other refined petroleum products are the most frequent pollutants of ground water and soils. In particular, oil spills including releases of crude oil from tankers, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products and heavier fuels used by large ships such as bunker fuel, or the spill of oily refuse or waste oil have become an increasing problem. 15 20 25 30 In the art, several approaches for the remediation of hydrocarbon-polluted media such as soils, ground water, sea water and shore lines have been proposed. For instance, in the case of hydrocarbon-polluted water one approach involves the addition of sinking agents in the form of emulsifying agents and dispersants in order to bind water-insoluble fluids such as crude oil and to keep the mixture of sinking agent and crude oil suspended in the sea water. For example, GB 1 353 945 relates to a method for converting a petroleum product into a biodegradable emulsion which comprises bringing the petroleum product into contact with water and an emulsifying composition comprising: a) from 15 to 80 parts by weight of a micro-organism nutrient comprising molasses, cellulose, a sugar beet waste, casein, a malt extract, a proteose, an ammonium salt, an amine, an amide and/or vinasse, b) from 10 to 50 parts by weight of a surface tension reducing component which is an alkali or alkaline earth metal salt and comprises calcium silicate, sodium silicate, potassium silicate, calcium carbonate, sodium carbonate, potassium carbonate, ammonium carbonate, dibasic sodium phosphate, dicalcium phosphate, and/or a mono- or dibasic ammonium phosphate, and c) a diluent, and mixing the components to form an emulsion. EP 0 617 991 A1 refers to a method of recovering oil from waste oil fluids and of removal of oil from industrial wastewaters, respectively, using water-soluble polymers dispersed in a concentrated salt media. US 2006/032820 A1 describes a process for removing oil from a solid wellbore material such as drill cuttings or water such as produced by a subterranean formation include contacting the solid material/water with an amino-substituted polymer such as chitosan and a halogenating agent. GB 1,192,063 relates to a method of treating water polluted on its surface with oil or oil derivatives which comprises applying to the oil or oil derivatives a mineral powder which has been treated to render it hydrophobic or more hydrophobic, whereby an agglomerate of the powder and the oil or oil derivatives, having a specific gravity greater than that of the water, is formed and sinks through the water. 20 5 10 15 In a medium such as sea water, this approach has the advantage that the oil, e.g. from an oil spill, is relatively quickly removed from the water surface by suspending the mixture of sinking agent and oil in the water and prevents, thus, a hydrocarbon pollution of adjacent shore lines to a great extent. 25 However, this approach often causes problems because the suspended mixture comprising the respective sinking agent and oil is considered as being toxic for several marine organisms with consequent higher mortality rates for e.g. sea birds, - 3 - marine mammals and fishes and a consequent disturbance of the ecological balance of the marine environment for several years. Furthermore, the suspension of the mixture of sinking agent and oil in the sea water allows it's easier distribution over a wide area by the ocean current and, thus, the disadvantageous effects can still be observed in distant areas. 5 10 15 20 25 Another approach considers the utilization of microorganisms such as bacteria and algae effective in biodegrading petroleum and petroleum products by inoculating the polluted medium with the respective microorganisms. For example, US 5,753,122 relates to an in situ thermally enhanced microbial remediation method for cleaningup toxic components of petroleum fuel hydrogens and halogenated organic solvents. WO 2010/080266 A2 relates to a strain of Gordonia sihwensis that may be used to sequester and/or biodegrade hydrocarbons. WO 2011/060107 A1 refers to algaebased bioremediation systems and methods in which algae is grown in a photobioreactor with nutrients supplied from a nutrient system. EP 0 962 492 A1 relates to a composition for use in the bioremediation of soil or fluids contaminated by organic compounds, comprising chitin and/or derivatives thereof and microorganisms. WO 2007/093993 A2 relates in general to the field of hydrocarbon degradation, and more particularly, to environmentally safe bacterial compositions useful for cleaning and treating hydrocarbon-contaminated water and surfaces. US 6,057,147 directed to an apparatus and method for enhanced bioremediation of hydrocarbons removed from a contaminated object comprising: (a) a basin for cleansing said hydrocarbon-contaminated object, said basin having a means for introducing a recycling bioremediating cleaning solution (NATURES WAY PCTM) for washing said object, a means for draining said solution from said basin into a biochamber reservoir and a means for screening particles from said solution upon entry into said reservoir; and (b) said reservoir having a means for temperature control between 90 ° to 112 °F., means for aerating said solution, means for agitating said solution, an outlet means to a plurality of filters for filtering said solution, an inlet means from said filters and means for removing filtered sediments. WO 2008/015688 A2 refers to a bio-assisted method for treatment of hydrocarbon contaminated soil employing novel microbes which are capable of decontaminating hydrocarbon contaminated soil having free flowing water or in slurry form or having large amount of gravels. US 2008/020947 A1 discloses microorganisms having excellent biodegradability and a method for the bioremediation of oil-contaminated soil. WO 2010/112696 A1 relates to Rhodococcus wratislaviensis CNCM I-4088 bacteria, or Rhodococcus aetherivorans CNCM I-4089 bacteria, capable of degrading multiple petroleum compounds in solution in aqueous effluents. EP 0594125 A2 refers to a carrier for supporting microorganisms is characterized by supporting the microorganisms for use in soil remediation, having pores, and holding a nutrient in the pores or being a nutrient for the microorganisms. EP 0962492
relates to the use of chitin and/or derivatives thereof as biocatalysts or biostimulators to stimulate, accelerate, enhance and protect the growth of microorganism and a method for the bioremediation of soils and fluids contaminated by organic compounds, comprising the addition of chitin and/or derivatives thereof to said soils and fluids However, the activity of most of the bacteria capable of biodegrading hydrocarbon products is best if temperatures and concentrations of inorganic nutrients are in specific optimal ranges. Thus, under real conditions such as at varying temperatures and limited nutrients the obtained action of such bacteria is in some cases insufficient to obtain an optimal bioremediation of hydrocarbon-polluted media such as soils, sea water, ground water and/or other polluted media. 25 5 10 15 20 Therefore, there is a continuous need for alternative materials and methods for binding and bioremediating hydrocarbon-containing compositions, which provide a better performance than existing materials and methods and effectively decrease the - 5 - concentration of hydrocarbon-containing compositions in sea water, ground water, soils and other media to be treated. This and other objects are solved by the subject-matter of the present invention. According to a first aspect of the present invention, a surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions having a degradation rate for the hydrocarbon-containing composition of at least 25 %, based on the total weight of the hydrocarbon-containing composition is provided, wherein at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid having between 5 and 24 carbon atoms and/or reaction products thereof. The inventors surprisingly found that the foregoing product according to the present invention provides an efficient binding and bioremediating activity for hydrocarbon-containing compositions and leads thus to a hydrocarbon-polluted medium containing an amount of hydrocarbons that is at least 25 % lower than the amount of hydrocarbons in a corresponding hydrocarbon-polluted medium obtained by the same method but without contacting it with the surface-treated calcium carbonate. More precisely, the inventors found that the binding and bioremediating activity for hydrocarbon-containing compositions can be improved by a calcium carbonate that It should be understood that for the purposes of the present invention, the following terms have the following meaning: is surface-treated with defined aliphatic carboxylic acids. The term "calcium carbonate" in the meaning of the present invention refers to ground or natural calcium carbonate (GCC), and/or synthetic or precipitated calcium carbonate (PCC) and/or surface modified calcium carbonate (MCC). "Ground calcium carbonate" (GCC) in the meaning of the present invention is a calcium carbonate obtained from natural sources, such as limestone, marble or chalk or dolomite, and processed through a treatment such as grinding, screening and/or fractionizing by a wet and/or dry process, for example, by means of a cyclone or classifier. "Precipitated calcium carbonate" (PCC) in the meaning of the present invention is a synthesized material, generally obtained by precipitation following reaction of carbon dioxide and lime in an aqueous environment or by precipitation of a calcium and carbonate ion source in water. "Surface-modified calcium carbonate" (MCC) in the meaning of the present invention refers to a natural calcium carbonate and/or precipitated calcium carbonate obtained by reacting it with an acid and with carbon dioxide prior to the preparation of the surface-treated calcium carbonate, wherein the carbon dioxide is formed in situ by the acid treatment and/or is supplied from an external source. 15 20 25 5 10 The term "surface-treated" calcium carbonate in the meaning of the present invention refers to a ground calcium carbonate and/or precipitated calcium carbonate and/or surface-modified calcium carbonate that has been processed with aliphatic carboxylic acids through an additional treatment step in order to render the surface of the calcium carbonate particles more hydrophobic. The term "aliphatic carboxylic acid" in the meaning of the present invention refers to straight chain, branched chain, saturated, unsaturated or alicyclic organic compounds composed of carbon and hydrogen. Said organic compound further contains a carboxyl group placed at the end of the carbon skeleton. The term "aliphatic carboxylic acid accessible surface area" in the meaning of the present invention refers to the surface of the calcium carbonate particle that is accessible or exposed to the aliphatic carboxylic acid applied by coating techniques known to the skilled person such as hot fluidised bed spray coating, hot-wet coating, solvent-assisted or self-assembly coating and the like and thereby forming a monolayer of aliphatic carboxylic acid on the surface of the calcium carbonate particle. In this regard, it should be noted that the amount of aliphatic carboxylic acid required for full saturation of the accessible surface area is defined as a monolayer concentration. Higher concentrations thus can be chosen as well thereby forming bilayered or multi-layered structures on the surface of the calcium carbonate particle. Such monolayer concentrations can be readily calculated by the skilled person, based on the publication of Papirer, Schultz and Turchi (Eur. Polym. J., Vol. 20, No. 12, pp. 1155-1158, 1984). The term "reaction products" in the meaning of the present invention refers to the products typically obtained by contacting a ground calcium carbonate and/or a precipitated calcium carbonate with an aliphatic carboxylic acid having between 5 and 24 carbon atoms. Said reaction products are preferably formed between the applied aliphatic carboxylic acid and molecules located at the surface of the ground calcium carbonate and/or the precipitated calcium carbonate. The term "hydrocarbon-containing composition" in the meaning of the present invention refers to a composition comprising at least one type of hydrocarbons. The term "hydrocarbon", as used herein, refers to straight chain, branched chain, saturated, unsaturated or alicyclic organic compounds composed of carbon and hydrogen. They include the alkanes, alkenes, alkynes and aromatic hydrocarbons. 25 5 10 15 The term "bioremediating" or "bioremediation" in the meaning of the present invention refers to the at least partially removal of pollutants by using microorganisms. The term "degradation rate" in the meaning of the present invention corresponds to the reduction of the amount of hydrocarbons in the hydrocarbon-containing composition within 60 days by the addition of the inventive surface-treated calcium carbonate in comparison to a corresponding hydrocarbon-containing composition containing no surface-treated calcium carbonate. Another aspect of the present invention is directed to a method for binding and bioremediating hydrocarbon-containing compositions, comprising the following steps: a) providing a hydrocarbon-containing composition; 5 10 15 20 25 - b) providing the at least one surface-treated calcium carbonate; and - c) contacting the hydrocarbon-containing composition of step a) with the surface-treated calcium carbonate of step b) for obtaining a composite material comprising said surface-treated calcium carbonate and said hydrocarbon-containing composition. It is preferred that the hydrocarbon-containing composition is crude oil and/or a refined petroleum product selected from the group comprising gasoline, diesel fuel, aviation fuel, hydraulic oil, kerosene and mixtures thereof. It is further preferred that step c) is carried out by at least partially covering the surface of the hydrocarbon-containing composition of step a) with the surface-treated calcium carbonate of step b) and/or mixing the hydrocarbon-containing composition of step a) with the surface-treated calcium carbonate of step b). It is also preferred that step c) is carried out in that the weight ratio of hydrocarbon-containing composition and surface-treated calcium carbonate is from 10:1 to 1:100, more preferably from 1:1 to 1:50, even more preferably from 1:1 to 1:25 and most preferably from 1:1 to 1:15. It is even further preferred that the method further comprises step d) of contacting the composite material obtained in step c) with a composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. It is further preferred that the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is selected from at least one strain of bacteria and/or fungi. It is preferred that the at least one strain of bacteria is selected from the group comprising *Psychrobacter, Pseudomonas, Pseudobacterium, Acinetobacter, Vibrio, Planococcus, Actinobacterium, Arthrobacter, Marinobacter, Methylosinus, Methylomonas, Methylobacterium, Mycobacterium, Nocardia, Bacillus, Brevibacterium, Micrococcus, Corynebacterium, Sarcina, Streptomyces, Flavobacterium, Xanthomonas* and mixtures thereof, more preferably is selected from the group comprising *Psychrobacter glacincola, Acinetobacter calcoaceticus, Acinetobacter faecalis* and mixtures thereof. It is still further preferred that step c) and step d) are carried out simultaneously or separately. It is also preferred that step c) and/or step d) are repeated one or more times. A further aspect of the present invention is directed to the use of the surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions. It is preferred that the surface-treated calcium carbonate is used in soil, sea water, ground water, flat water, shore lines, containers and/or
reservoirs. A still further aspect of the present invention is directed to a composite material comprising the surface-treated calcium carbonate and a hydrocarbon-containing composition. 25 5 10 15 20 When in the following reference is made to preferred embodiments or technical details of the inventive surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions, it is to be understood that - 10 - these preferred embodiments or technical details also refer to the inventive method for binding and bioremediating hydrocarbon-containing compositions, the inventive use of the surface-treated calcium carbonate as well as to the composite material comprising the surface-treated calcium carbonate and the hydrocarbon-composition defined herein and vice versa (as far as applicable). If, for example, it is set out that the inventive surface-treated calcium carbonate preferably comprises ground calcium carbonate and/or precipitated calcium carbonate and/or surface-modified calcium carbonate, also the surface-treated calcium carbonate provided in the inventive method, the inventive use as well as the inventive composite material preferably comprise ground calcium carbonate and/or precipitated calcium carbonate and/or surface-modified calcium carbonate. 5 10 15 20 According to one preferred embodiment of the inventive surface-treated calcium carbonate, the surface-treated calcium carbonate comprises ground calcium carbonate and/or precipitated calcium carbonate and/or surface-modified calcium carbonate, preferably ground calcium carbonate. According to another preferred embodiment of the inventive surface-treated calcium carbonate, the source of ground calcium carbonate (GCC) is selected from marble, chalk, calcite, dolomite, limestone and mixtures thereof and/or the precipitated calcium carbonate (PCC) is selected from one or more of the aragonitic, vateritic and calcitic mineralogical crystal forms. According to yet another preferred embodiment of the inventive surface-treated calcium carbonate, the surface-treated calcium carbonate has a weight median particle diameter *d*₅₀ value of between 0.1 μm and 250 μm, preferably between 1 μm and 200 μm, more preferably between 1 μm and 150 μm, even more preferably between 1 μm and 100 μm and most preferably between 3 μm and 100 μm. - 11 - According to one preferred embodiment of the inventive surface-treated calcium 5 10 20 25 area. mixtures thereof. carbonate, the coating of the surface-treated calcium carbonate comprises at least one aliphatic carboxylic acid selected from the group consisting of pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidic acid, heneicosylic acid, behenic acid, tricosylic acid, lignoceric acid and mixtures thereof, preferably the aliphatic carboxylic acid is selected from the group consisting of octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid and mixtures thereof and most preferably the aliphatic carboxylic acid is selected from the group consisting of myristic acid, palmitic acid, stearic acid and According to another preferred embodiment of the inventive surface-treated calcium carbonate, at least 20 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid and/or reaction products thereof, preferably at least 30 % of the accessible surface According to yet another preferred embodiment of the inventive surface-treated calcium carbonate, the surface-treated calcium carbonate further comprises at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. According to one preferred embodiment of the inventive surface-treated calcium carbonate, the surface-treated calcium carbonate is immobilized with at least one - 12 - microorganism capable of degrading at least one component of the hydrocarboncontaining composition. According to another preferred embodiment of the inventive surface-treated calcium carbonate, the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is selected from at least one strain of bacteria and/or fungi. According to yet another preferred embodiment of the inventive surface-treated calcium carbonate, the at least one strain of bacteria and/or fungi is at least one strain of petroleum-degrading bacteria and/or petroleum-degrading fungi. According to one preferred embodiment of the inventive surface-treated calcium carbonate, the at least one strain of bacteria is selected from the group comprising 15 Psychrobacter, Pseudomonas, Pseudobacterium, Acinetobacter, Vibrio, Planococcus, Actinobacterium, Arthrobacter, Marinobacter, Methylosinus, Methylomonas, Methylobacterium, Mycobacterium, Nocardia, Bacillus, Brevibacterium, Micrococcus, Corynebacterium, Sarcina, Streptomyces, Flavobacterium, Xanthomonas and mixtures thereof, more preferably is selected 20 from the group comprising Psychrobacter glacincola, Acinetobacter calcoaceticus, Acinetobacter faecalis and mixtures thereof. According to another preferred embodiment of the inventive surface-treated calcium carbonate, the surface-treated calcium carbonate is in powder form and/or in the form of granules or in the form of slurry. According to yet another preferred embodiment of the inventive surface-treated calcium carbonate, the surface-treated calcium carbonate is incorporated in a 25 - 13 - nonwoven fabric. It is preferred that the surface-treated calcium carbonate is incorporated in a biodegradable nonwoven fabric. In the following, it is referred to further preferred embodiments of the present invention: 5 10 15 20 In accordance with the inventive surface-treated calcium carbonate, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid having between 5 and 24 carbon atoms and/or reaction products thereof. In one preferred embodiment, the surface-treated calcium carbonate comprises ground (or natural) calcium carbonate (GCC) or precipitated (or synthetic) calcium carbonate (PCC) or surface-modified calcium carbonate (MCC). In another preferred embodiment, the surface-treated calcium carbonate comprises a mixture of at least two calcium carbonates selected from GCC, PCC and MCC. For example, the surface-treated calcium carbonate comprises a mixture of GCC and PCC. Alternatively, the surface-treated calcium carbonate comprises a mixture of GCC and MCC. Alternatively, the surface-treated calcium carbonate comprises a mixture of PCC and MCC. In one especially preferred embodiment, the surface-treated calcium carbonate comprises ground calcium carbonate. Ground (or natural) calcium carbonate (GCC) is understood to be a naturally occurring form of calcium carbonate, mined from sedimentary rocks such as limestone or chalk, or from metamorphic marble rocks. Calcium carbonate is known to exist as three types of crystal polymorphs: calcite, aragonite and vaterite. Calcite, the most common crystal polymorph, is considered to be the most stable crystal form of calcium carbonate. Less common is aragonite, which has a discrete or clustered needle orthorhombic crystal structure. Vaterite is the rarest calcium carbonate polymorph and is generally unstable. Ground calcium carbonate is almost exclusively of the calcitic polymorph, which is said to be trigonal-rhombohedral and represents the most stable of the calcium carbonate polymorphs. 5 10 15 20 25 Preferably, the source of the ground calcium carbonate is selected from the group comprising marble, chalk, calcite, dolomite, limestone and mixtures thereof. In a preferred embodiment, the source of the ground calcium carbonate is calcite. The term "source" of the calcium carbonate in the meaning of the present invention refers to the naturally occurring mineral material from which the calcium carbonate is obtained. The source of the calcium carbonate may comprise further naturally occurring components such as magnesium carbonate, alumino silicate etc. Additionally or alternatively, the surface-treated calcium carbonate comprises a precipitated calcium carbonate (PCC). Calcium carbonate polymorphs of the PCC type often include, in addition to calcites, less stable polymorphs of the aragonitic-type, which has an orthorhombic, acicular crystal shape, and hexagonal vateritic-type, which has an even lower stability than aragonite. The different PCC forms may be identified according to their characteristic x-ray powder diffraction (XRD) peaks. PCC synthesis most commonly occurs by a synthetic precipitation reaction that includes a step of contacting carbon dioxide with a solution of calcium hydroxide, the latter being most often provided on forming an aqueous suspension of calcium oxide, also known as burnt lime, and the suspension of which is commonly known as milk of lime. Depending on the reaction conditions, this PCC can appear in various forms, including both stable and unstable polymorphs. Indeed, PCC often represents - 15 - a thermodynamically unstable calcium carbonate material. When referred to in the context of the present invention, PCC shall be understood to mean synthetic calcium carbonate products obtained notably by carbonation of a slurry of calcium hydroxide, commonly referred to in the art as a slurry of lime or milk of lime when derived from finely divided calcium oxide particles in water. Preferred precipitated calcium carbonate is selected from aragonitic, vateritic or calcitic mineralogical crystal forms or mixtures thereof. 5 20 25 Additionally or alternatively, said GCC or PCC may be surface reacted to form a
surface-modified calcium carbonate, which is a material comprising GCC and/or PCC and an insoluble, at least partially crystalline, non-carbonate calcium salt extending from the surface of at least part of the calcium carbonate. Such surface-modified products may, for example, be prepared according to WO 00/39222, WO 2004/083316, WO 2005/121257, WO 2009/074492, EP 2 264 108 A1, EP 2 264 109 A1. For example, the surface-modified calcium carbonate is obtained by reacting a natural calcium carbonate and/or precipitated calcium carbonate with an acid and with carbon dioxide prior to the preparation of the surface-treated calcium carbonate, wherein the carbon dioxide is formed in situ by the acid treatment and/or is supplied from an external source. The acid treatment can be carried out with an acid having a pK_a at 25 °C of 2.5 or less. If the pK_a at 25 °C is 0 or less, the acid is preferably selected from sulphuric acid, hydrochloric acid, or mixtures thereof. If the pK_a at 25 °C is from 0 to 2.5, the acid is preferably selected from H₂SO₃, M⁺HSO₄⁻ (M⁺ is an alkali metal ion selected from the group comprising sodium and potassium), H₃PO₄, oxalic acid or mixtures thereof. In an especially preferred embodiment, the calcium carbonate particles of the present surface-treated calcium carbonate have a weight median particle diameter d_{50} value of from 0.1 µm to 250 µm before surface treatment, preferably from 1 µm to 200 um, more preferably from 1 um to 150 um and most preferably from 1 um to 100 um, measured according to the sedimentation method. In one especially preferred embodiment, the calcium carbonate particles of the present surface-treated calcium carbonate have a weight median particle diameter d_{50} value of from 3 µm to 100 µm before surface treatment. For example, the calcium carbonate particles of the surfacetreated calcium carbonate have a weight median particle diameter d_{50} value of 19.5 µm before surface treatment. Alternatively, the calcium carbonate particles of the surface-treated calcium carbonate have a weight median particle diameter d_{50} value of 1.4 μ m before surface treatment. Calcium carbonate particles having a d_{98} of less than 100 microns, preferably of less than 85 microns may also be advantageous, for example 83 microns. Alternatively, calcium carbonate particles having a d_{98} of less than 20 microns, preferably of less than 10 microns may be advantageous, for example 5 microns. As used herein and as generally defined in the art, the weight median particle diameter " d_{98} " value is defined as the size at which 98 % (the mean point) of the particle volume or mass is accounted for by particles having a diameter equal to the specified value. The weight median particle diameter was measured according to the sedimentation method. The sedimentation method is an analysis of sedimentation behaviour in a gravimetric field. The measurement is made with a SedigraphTM 5100 of Micromeritics Instrument Corporation. 25 5 10 15 20 The calcium carbonate particles of the present surface-treated calcium carbonate preferably have a specific surface area of from $0.5~\text{m}^2/\text{g}$ to $120~\text{m}^2/\text{g}$ before surface treatment, preferably $0.5~\text{m}^2/\text{g}$ to $100~\text{m}^2/\text{g}$, more preferably $0.5~\text{m}^2/\text{g}$ to $75~\text{m}^2/\text{g}$ and most preferably 0.5 m²/g to 50 m²/g, measured using nitrogen and the BET method. For example, the calcium carbonate particles of the surface-treated calcium carbonate have a specific surface area of from 0.5 m²/g to 10 m²/g before surface treatment. Alternatively, the calcium carbonate particles of the present surface-treated calcium carbonate have a specific surface area of from 5 m²/g to 15 m²/g. 5 10 15 20 In one preferred embodiment, the calcium carbonate particles of the present surfacetreated calcium carbonate have a specific surface area within the range of 0.5 m²/g to 120 m²/g and a weight median particle diameter d_{50} value within the range of 0.1 to 250 µm before surface treatment. More preferably, the specific surface area is within the range of 0.5 m²/g to 100 m²/g and the weight median particle diameter d_{50} value is within the range of 1 to 200 µm before surface treatment. Even more preferably, the specific surface area is within the range of 0.5 m²/g to 75 m²/g and the weight median particle diameter is within the range of 1 to 150 µm before surface treatment. Most preferably, the specific surface area is within the range of 0.5 m²/g to 50 m²/g and the weight median particle diameter d_{50} value is within the range of 1 to 100 µm before surface treatment. For example, the calcium carbonate particles of the present surface-treated calcium carbonate have a specific surface area within the range of 5 m^2/g to 15 m^2/g and a weight median particle diameter d_{50} value of 1.4 µm. Alternatively, the calcium carbonate particles of the present surface-treated calcium carbonate have a specific surface area within the range of 0.5 m²/g to 10 m²/g and a weight median particle diameter d_{50} value of 19.5 µm. In accordance with the inventive surface-treated calcium carbonate, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid having between 5 and 24 carbon atoms and/or reaction products thereof. In this regard, the at least one aliphatic carboxylic acid may be selected from one or more straight chain, branched chain, saturated, unsaturated and/or alicyclic carboxylic acids. Preferably, the aliphatic carboxylic acid is a monocarboxylic acid, i.e. the aliphatic carboxylic acid is characterized in that a single carboxyl group is present. Said carboxyl group is placed at the end of the carbon skeleton. In one preferred embodiment, the at least one aliphatic carboxylic acid is selected from saturated unbranched carboxylic acids, i.e. the at least one aliphatic carboxylic acid is selected from the group consisting of pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidic acid, heneicosylic acid, behenic acid, tricosylic acid, lignoceric acid and mixtures thereof. In a further preferred embodiment, the at least one aliphatic carboxylic acid is selected from the group consisting of octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid and mixtures thereof. Preferably, the at least one aliphatic carboxylic acid is selected from the group consisting of myristic acid, palmitic acid, stearic acid and mixtures thereof. 20 5 10 In an especially preferred embodiment, the aliphatic carboxylic acid is stearic acid. In one preferred embodiment, the aliphatic carboxylic acid comprises a mixture of at least two aliphatic carboxylic acids having between 5 and 24 carbon atoms. 25 Preferably, if the aliphatic carboxylic acid comprises a mixture of at least two aliphatic carboxylic acids having between 5 and 24 carbon atoms, one aliphatic carboxylic acid is stearic acid. In a further preferred embodiment, the aliphatic carboxylic acid comprises a mixture of two aliphatic carboxylic acids having between 5 and 24 carbon atoms, wherein one aliphatic carboxylic acid is stearic acid and the other one is selected from the group consisting of octanoic acid, myristic acid, palmitic acid, arachidic acid, behenic acid and lignoceric acid. 5 10 15 20 25 If the aliphatic carboxylic acid comprises a mixture of two aliphatic carboxylic acids having between 5 and 24 carbon atoms, the mole ratio of stearic acid and the second aliphatic carboxylic acid is from 99:1 to 1:99, more preferably from 50:1 to 1:50, even more preferably from 25:1 to 1:25 and most preferably from 10:1 to 1:10. In one especially preferred embodiment of the present invention, the mole ratio of stearic acid and the second aliphatic carboxylic acid is from 90:1 to 1:1, more preferably from 90:1 to 10:1 and most preferably from 90:1 to 50:1. In another preferred embodiment, the mole ratio of stearic acid and the second aliphatic carboxylic acid is 1:1. If the aliphatic carboxylic acid comprises a mixture of two aliphatic carboxylic acids having between 5 and 24 carbon atoms, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating preferably comprising a mixture of stearic acid, myristic acid and/or reaction products thereof. In a further preferred embodiment, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising a mixture of stearic acid, palmitic acid and/or reaction products thereof. In yet another preferred embodiment, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising a mixture of stearic acid, arachidic acid and/or reaction products thereof. In still another preferred embodiment, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising a mixture of stearic acid, behenic acid and/or reaction products thereof. In a further preferred embodiment, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising a mixture of stearic acid, lignoceric acid and/or reaction products thereof. In yet another preferred embodiment, at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising a mixture of stearic acid, octanoic acid and/or reaction products thereof. 5 25 The at least one aliphatic carboxylic acid is preferably present in the coating covering the calcium
carbonate in a quantity such that the total weight of said at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid on the surface of the surface-treated calcium carbonate product is between 0.01% w/w and 50 % w/w of the calcium carbonate. In one preferred embodiment, the at least one aliphatic carboxylic acid is present in the coating covering the calcium carbonate in a quantity such that the total weight of said at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid on the surface of the surface-treated calcium carbonate product is less than 50 % w/w, more preferably less than 15 % w/w and most preferably less than 10 % w/w of the calcium carbonate. In another preferred embodiment, the at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid are present in the coating covering at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate in an amount of about 0.1 wt.-% to 10 wt.-%, more preferably of about 0.1 wt.-% to 8 wt.-%, even more preferably of about 0.2 wt.-% to 5 wt.-% and most preferably of about 0.2 wt.-% to 2.5 wt.-%, based on the dry weight of the calcium carbonate. Alternatively, at least 20 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising the at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid. In a preferred embodiment, at least 30 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising the at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid, preferably at least 50 % of the aliphatic carboxylic acid accessible surface area. In another preferred embodiment, at least 75 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising the at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid. For example, at least 90 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising the at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid. Alternatively, between 10 % and 25 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising the at least one aliphatic carboxylic acid and/or reaction products of said at least one aliphatic carboxylic acid. 20 5 10 15 In one preferred embodiment, at least 75 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising stearic acid and/or reaction products of stearic acid. In another preferred embodiment, between 10 % and 25 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate particles is covered by a coating comprising stearic acid and/or reaction products of stearic acid. In one preferred embodiment, the at least one aliphatic carboxylic acid has a solubility in water of below 5 g/100 ml of water, preferably of below 2.5 g/100 ml of water, even more preferably of below 1 g/100 ml of water and most preferably of below 0.5 g/100 ml of water. In one especially preferred embodiment, the at least one aliphatic carboxylic acid is immiscible in water. 5 10 15 20 25 The surface-treated calcium carbonate is preferably in the form of a particulate material, and may have a particle size distribution as conventionally employed for the material(s) involved in the treatment of hydrocarbon-polluted media. In general, the weight median particle diameter d_{50} value of the surface-treated calcium carbonate is in the range between 0.1 μ m to 250 μ m, preferably between 1 μ m and 200 μ m, more preferably between 1 μ m and 150 μ m, even more preferably between 1 μ m and 100 μ m and most preferably between 3 μ m and 100 μ m, measured according to the sedimentation method. For example, the surface-treated calcium carbonate has a weight median particle diameter d_{50} value of 19.5 μ m. Alternatively, the surface-treated calcium carbonate has a weight median particle diameter d_{50} value of 1.4 μ m. A surface-treated calcium carbonate having a d_{98} of less than 100 microns, preferably of less than 85 microns may also be advantageous, for example 83 microns. Alternatively, surface-treated calcium carbonate having a d_{98} of less than 20 microns, preferably of less than 10 microns may be advantageous, for example 5 microns. The inventive surface-treated calcium carbonate preferably has a specific surface area of from $0.5 \text{ m}^2/\text{g}$ to $120 \text{ m}^2/\text{g}$, preferably $0.5 \text{ m}^2/\text{g}$ to $100 \text{ m}^2/\text{g}$ and more preferably $0.5 \text{ m}^2/\text{g}$ to $75 \text{ m}^2/\text{g}$, measured using nitrogen and the BET method. For example, the surface-treated calcium carbonate has a specific surface area of from $0.5 \text{ m}^2/\text{g}$ to $10 \text{ m}^2/\text{g}$, e.g. a specific surface area of $0.61 \text{ m}^2/\text{g}$. Alternatively, the surface-treated calcium carbonate has a specific surface area of from 5 m 2 /g to 15 m 2 /g, e.g. a specific surface area of 5.5 m 2 /g. In one preferred embodiment, the surface-treated calcium carbonate further comprises at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. For the purposes of the present invention, microorganism which "degrade" at least one component of the hydrocarbon-containing composition correspond to microorganisms having the ability to convert at least one component of the hydrocarbon-containing composition into inactive forms and/or smaller molecules, e.g. by utilizing these substrates as intermediates in their pathways. 10 If the surface-treated calcium carbonate further comprises at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition, said surface-treated calcium carbonate and said at least one microorganism may be in the separated form and/or said surface-treated calcium carbonate is immobilized with said at least one microorganism. 20 If the surface-treated calcium carbonate and the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition are in the separated form, both the surface-treated calcium carbonate and the at least one microorganism are preferably in the form of a suspension. Such suspensions can be present in accordance with well-known forms and can be prepared by methods well known to the skilled person. For example, the inventive surface-treated calcium carbonate is present in powder form and/or in the form of granules and the at least one microorganism capable of - 24 - degrading at least one component of the hydrocarbon-containing composition is present in the form of an aqueous suspension. Alternatively, the inventive surface-treated calcium carbonate is present in the form of slurry and the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is present in the form of an aqueous suspension. Optionally, the aqueous suspension of the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition further comprises nutrients such as phosphate, ammonium nitrate, proteins, alkali metal ammonium phosphates, glucose, dextrose, urea, yeast and the like. Additionally or alternatively, these nutrients may be present in the slurry of said surface-treated calcium carbonate. In one especially preferred embodiment, the surface-treated calcium carbonate is immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. 15 20 10 5 In general, the surface-treated calcium carbonate is immobilized with the at least one microorganism in accordance with well-known methods. For example, an immobilization method can be used which comprises the exposure of surface-treated calcium carbonate to an aqueous suspension of the at least one microorganism to be immobilized. If desired, such exposure can be only for a time sufficient to permit adsorption of the microorganism onto the surface-treated calcium carbonate. Alternatively, if the aqueous suspension comprises a nutrient broth, such exposure can be for a longer period of time which will permit some growth of microorganism during the immobilization procedure on the surface-treated calcium carbonate. Additionally or alternatively, the immobilization method may comprise confining the Additionally or alternatively, the immobilization method may comprise confining the microorganism to the pores of the surface-treated calcium carbonate under reduced pressure. In this regard, no particular restriction is put on the microorganism to be utilized with the surface-treated calcium carbonate of the present invention, but suitable microorganisms are selected from microorganisms known to have a degrading ability to various hydrocarbons usually found in crude oil and/or a refined petroleum product. Examples of microorganisms capable of degrading at least one component of the hydrocarbon-containing composition which may be suitably used in the present invention are selected from the group comprising at least one strain of bacteria and/or fungi. In one preferred embodiment, the at least one strain of bacteria and/or fungi capable of degrading at least one component of the hydrocarbon-containing composition is at least one strain of petroleum-degrading bacteria and/or
petroleum-degrading fungi. In one preferred embodiment, the at least one strain of bacteria and/or fungi capable of degrading at least one component of the hydrocarbon-containing composition is at least one strain of petroleum-degrading bacteria or petroleum-degrading fungi. Alternatively, the at least one strain of bacteria and/or fungi capable of degrading at least one component of the hydrocarbon-containing composition is at least one strain of petroleum-degrading bacteria and petroleum-degrading fungi. 20 5 Specific examples of strains of bacteria which may be suitably used in the present invention are selected from the group comprising *Psychrobacter*, *Pseudomonas*, *Pseudobacterium*, *Acinetobacter*, *Vibrio*, *Planococcus*, *Actinobacterium*, *Arthrobacter*, *Marinobacter*, *Methylosinus*, *Methylomonas*, *Methylobacterium*, 25 Mycobacterium, Nocardia, Bacillus, Brevibacterium, Micrococcus, Corynebacterium, Sarcina, Streptomyces, Flavobacterium, Xanthomonas and mixtures thereof. In one especially preferred embodiment, the at least one strain of bacteria is selected from the group comprising *Psychrobacter glacincola*, *Acinetobacter calcoaceticus*, *Acinetobacter faecalis* and mixtures thereof. - In one preferred embodiment, the at least one strain of bacteria capable of degrading at least one component of the hydrogen-containing composition is at least one strain of genetically modified bacteria, i.e. the bacteria have been genetically engineered in order to upregulate the metabolic pathway for degrading at least one component of the hydrocarbon-containing composition. - In one preferred embodiment, the at least one strain of fungi capable of degrading at least one component of the hydrocarbon-containing composition is at least one strain of filamentous fungi. 10 25 15 Specific examples of strains of fungi which may be suitably used in the present invention are selected from the group comprising *Aspergillus flavus*, *Aspergillus fumigates*, *Aspergillus niger*, *Aspergillus niveus*, *Aspergillus terreus*, *Aspergillus versicolor*, *Fusarium sp.*, *Mortierella spp.*, *Mucor*, *Mycelia*, *Penicillium corylophilum*, *Paecilomyces niveus*, *Paecilomyces variotti*, *Rhizopus*, *Talamoryces*, 20 *Trichoderma spp.* and mixtures thereof. In one preferred embodiment, the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is a microorganism that is capable of degrading at least two components of the hydrocarbon-containing composition, preferably at least three components of the hydrocarbon-containing composition and most preferably a plurality of components of the hydrocarbon-containing composition. The at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is selected such that the at least one microorganism shows a degradation rate for the hydrocarbon-containing composition of at least 25 %, preferably of at least 40 %, more preferably of at least 50 %, even more preferably of at least 60 % and most preferably of at least 70 %, based on the total weight of the hydrocarbon-containing composition. In one especially preferred embodiment, the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition shows a degradation rate for the hydrocarbon-containing composition of at least 75 %, based on the total weight of the hydrocarbon-containing composition. 5 10 15 20 25 In one preferred embodiment, the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is a mixture of at least two microorganisms capable of degrading at least one component of the hydrocarbon-containing composition. Preferably, the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is a mixture of at least three microorganisms capable of degrading at least one component of the hydrocarbon-containing composition. Preferably, if the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is a mixture of at least two microorganisms, one microorganism is a bacterial strain of *Psychrobacter glacincola*. The inventive surface-treated calcium carbonate can be present in any appropriate form, e.g. in the form of granules or a powder or in the form of a cake. Preferably, the surface-treated calcium carbonate is in powder form and/or in the form of granules. In a preferred embodiment, the surface-treated calcium carbonate is in powder form. Alternatively, the surface-treated calcium carbonate can be present as an aqueous suspension, e.g. in the form of slurry. A "slurry" or "suspension" in the meaning of the present invention comprises insoluble solids, i.e. surface-treated calcium carbonate and water and optionally further additives. Suspensions usually contain large amounts of solids and are more viscous and generally of higher density than the liquid from which they are formed. It is accepted in the art that the general term "dispersion" inter alia covers "suspensions" or "slurries" as a specific type of dispersion. 5 In one preferred embodiment, the inventive surface-treated calcium carbonate is suspended in water such that the slurry has a content of surface-treated calcium carbonate within the range of 1 wt.-% to 80 wt.-%, more preferably 3 wt.-% to 60 wt.-%, and even more preferably 5 wt.-% to 40 wt.-%, based on the weight of the slurry. 15 The surface-treated calcium carbonate can be kept in suspension, optionally further stabilised by a dispersant. Conventional dispersants known to the skilled person can be used. A preferred dispersant is polyacrylic acid. Within the context of the present invention, it is also possible to provide a nonwoven fabric comprising the inventive surface-treated calcium carbonate. In this regard, conventional nonwoven fabrics known to the skilled person can be used. For example, nonwoven fabrics can be used that are manufactured by forming a fiber layer (fiber web) by means of a dry method, a wet process, or the like, and bonding fibers in the fiber layer to each other by means of a chemical bonding method, a thermal bonding method, or the like. In one preferred embodiment, the inventive surface-treated calcium carbonate is incorporated in a biodegradable nonwoven fabric. If the nonwoven fabric is biodegradable, the nonwoven fabric is preferably made of cotton, flax, hemp, jute, ramie, coir, sisal, abaca, kenaf, bagasse or mixtures thereof. For example, the biodegradable nonwoven fabric is made of cotton and/or flax. It is preferred that the biodegradable nonwoven fabric is made of cotton or flax. 5 In one preferred embodiment, the nonwoven fabric comprises the inventive surfacetreated calcium carbonate immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. Optionally, the nonwoven fabric may further comprise nutrients as described above. 10 In another preferred embodiment, the nonwoven fabric comprises the inventive surface-treated calcium carbonate and an aqueous suspension of at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition, optionally the aqueous suspension of the at least one microorganism further comprises nutrients as described above. 15 In accordance with the present invention, the surface-treated calcium carbonate is suitable for effectively binding and bioremediating hydrocarbon-containing compositions and has a degradation rate for the hydrocarbon-containing composition of at least 25 %, based on the total weight of the hydrocarbon-containing composition. 25 20 In one preferred embodiment, the surface-treated calcium carbonate is selected such that a degradation rate for the hydrocarbon-containing composition of at least 40 %, preferably of at least 50 %, more preferably of at least 60 % and most preferably of at least 70 %, based on the total weight of the hydrocarbon-containing composition, is obtained. In one especially preferred embodiment, the surface-treated calcium carbonate is selected such that a degradation rate for the hydrocarbon-containing composition of at least 75 %, based on the total weight of the hydrocarbon-containing composition, is obtained. A "hydrocarbon-containing composition" as used herein refers to a composition 5 comprising at least one hydrocarbon, i.e. the composition comprises at least one type of hydrocarbons. In one preferred embodiment, the hydrocarbon-containing composition comprises at least two hydrocarbons, i.e. the composition comprises at least two types of hydrocarbons. In an especially preferred embodiment, the hydrocarbon-containing composition comprises a plurality of hydrocarbons, i.e. the 10 composition is a mixture of different types of hydrocarbons. Examples of hydrocarbons include aliphatic hydrocarbons, aromatic hydrocarbons, nitro-aromatic hydrocarbons, halo-aliphatic hydrocarbons, halo-aromatic hydrocarbons and mixtures thereof. In one preferred embodiment, the hydrocarboncontaining composition comprises at least one type of hydrocarbons selected from the group comprising alkanes such as methane, ethane, propane, butane, isobutane, pentane, isopentane, neopentane, hexane, heptane, 2,4-dimethylhepane, octane, isooctane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane and eicosane and mixtures thereof; alkenes such as ethene, propene, butene, butadiene, isobutene, pentene, hexene, heptene, octene, nonene, and decene and mixtures thereof; alkynes such as ethyne, propyne, butyne, pentyne, hexyne, heptyne, octyne, nonyne, and decyne and mixtures thereof; cycloalkanes such as cyclopropane, cyclobutane, methylcyclopropane, cyclopentane, methylcyclopentane, cyclohexane, cyclohexane, methylcyclohexane,
cyclooctane, cyclononane and cyclodecane and mixtures thereof; alkadienes such as allene, butadiene, pentadiene, isoprene, hexadiene, heptadiene, octadiene, nonadiene, decadiene and mixtures thereof and aromatic hydrocarbons such as benzene, naphthalene, anthracene, acenaphthene, 15 20 25 - 31 - acenaphthylene, benzopyrene, pyrene, toluene, xylenes, trimethylbenzene, ethylbenzene, methylnaphthalene, aniline, phenol, phenanthrene and dimethylphenol and mixtures thereof. 5 The exact chemical composition of crude oil and refined petroleum products varies depending on the origin of the crude oil. In one preferred embodiment, the hydrocarbon-containing composition comprises from 10 wt.-% to 90 wt.-% of one type of hydrocarbon, preferably from 15 wt.-% to 75 wt.-%, more preferably from 20 wt.-% to 65 wt.-%, even more preferably from 25 wt.-% to 65 wt.-% and most preferably from 30 wt.-% to 65 wt.-%, based on the total weight of the hydrocarbon-containing composition. 10 15 20 25 In a further preferred embodiment, the hydrocarbon-containing composition comprises two or more types of hydrocarbons with each hydrocarbon present in a certain amount. In one especially preferred embodiment, a first type of hydrocarbon is present in an amount from 1 wt.-% to 25 wt.-% and a second type of hydrocarbon is present in amount from 70 wt.-% to 90 wt.-% based on the total weight of the hydrocarbon-containing composition. In another preferred embodiment, a first type of hydrocarbon is present in an amount from 10 wt.-% to 50 wt.-% and a second type of hydrocarbon is present in amount from 40 wt.-% to 80 wt.-% based on the total weight of the hydrocarbon-containing composition. In a further preferred embodiment, a first type of hydrocarbon is present in an amount from 20 wt.-% to 60 wt.-% and a second type of hydrocarbon is present in amount from 30 wt.-% to 75 wt.-% based on the total weight of the hydrocarbon-containing composition. In one especially preferred embodiment, a mixture of four to six types of hydrocarbons is present in an amount of at least 40 wt.-%, more preferably of at least 50 wt.% and most preferably of at least 60 wt.-%, based on the total weight of the hydrocarbon-containing composition. For example, a mixture of five types of hydrocarbons is present in an amount of at least 40 wt.-%, more preferably of at least 50 wt.% and most preferably of at least 60 wt.-%, based on the total weight of the hydrocarbon-containing composition. In one preferred embodiment, the hydrocarbon-containing composition is crude oil and/or a refined petroleum product selected from the group comprising gasoline, diesel fuel, aviation fuel, hydraulic oil, kerosene and mixtures thereof. 10 15 20 25 5 In accordance with another aspect of the present invention, the method for binding and bioremediating hydrocarbon-containing compositions comprises a step of providing a hydrocarbon-containing composition. Another step of the present method comprises the provision of at least one inventive surface-treated calcium carbonate, wherein at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid having between 5 and 24 carbon atoms and/or reaction products thereof. A further step of the inventive method comprises contacting the hydrocarbon-containing composition with the at least one surface-treated calcium carbonate for obtaining a composite material of surface-treated calcium carbonate and hydrocarbon-containing composition. In one preferred embodiment, the hydrocarbon-containing composition is crude oil and/or a refined petroleum product selected from the group comprising gasoline, diesel fuel, aviation fuel, hydraulic oil, kerosene and mixtures thereof. In another preferred embodiment, the step of contacting the hydrocarbon-containing composition with the at least one surface-treated calcium carbonate wherein at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid having between 5 and 24 carbon atoms and/or reaction products thereof preferably takes place in that the surface of the hydrocarbon-containing composition is at least partially covered with the at least one surface-treated calcium carbonate. Additionally or alternatively, the step of contacting the hydrocarbon-containing composition with the at least one surface-treated calcium carbonate preferably takes place in that the hydrocarbon-containing composition of step a) is mixed with the surface-treated calcium carbonate of step b). The skilled man will adapt the mixing conditions (such as the configuration of mixing speed) according to his needs and available equipment. 5 10 15 20 25 In one especially preferred embodiment, the surface-treated calcium carbonate is incorporated in a nonwoven fabric which may be placed on the surface of the hydrocarbon-containing composition. In one preferred embodiment, the nonwoven fabric is a biodegradable nonwoven fabric. In one further preferred embodiment, the surface-treated calcium carbonate is immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. The treatment time for carrying out the contacting of the at least one hydrocarbon-containing composition with the at least one surface-treated calcium carbonate is carried out for a period of 5 min or more, preferably for a period of 1 hour or more, more preferably for a period of 12 hours or more and most preferably for a period of 24 hours or more. In general, the length of contacting the hydrocarbon-containing composition with the at least one surface-treated calcium carbonate is determined by the degree of hydrocarbon-pollution and the medium to be treated. For example, where the degree of hydrocarbon-pollution is restricted to spatially confined areas such as a leak of hydraulic oil on sealed concrete, the treatment time is as short as, for example, 5 minutes to 6 hours. If the degree of hydrocarbon-pollution is of a huge extent such as a hydrocarbon pollution of sea water and the corresponding shore line affected by an oil spill, the treatment time can be as long as, for example, about 12 hours to 90 days. In one preferred embodiment, the treatment time is about 60 to 90 days. It is to be understood that the amount of surface-treated calcium carbonate according to the present invention is selected such that it is sufficient in the hydrocarbon-containing composition, i.e. high enough for providing efficient binding and bioremediating activity for at least one type of hydrocarbon present in the hydrocarbon-containing composition but at the same time is so low that no significant amount of unbound surface-treated calcium carbonate would be observed on the polluted medium to treated. In other words, by using the inventive surface-treated calcium carbonate or method efficient binding and bioremediating activity is provided and huge (and thus unwanted) amounts of surface-treated calcium carbonate are avoided. In one preferred embodiment, the contacting of the at least one hydrocarbon-containing composition with the at least one surface-treated calcium carbonate is carried out in that the weight ratio of hydrocarbon-containing composition and surface-treated calcium carbonate is from 10:1 to 1:100, more preferably from 1:1 to 1:50, even more preferably from 1:1 to 1:25 and most preferably from 1:1 to 1:15. 25 5 10 15 In one preferred embodiment, the method further comprises the step of contacting the composite material obtained in step c) with a composition comprising at least one microorganism capable of degrading at least one component of the hydrocarboncontaining composition. - If the composite material of surface-treated calcium carbonate and hydrocarboncontaining composition is further contacted with a composition comprising at least one microorganism capable of degrading at least one component of the hydrocarboncontaining composition, said composition may be provided in any appropriate form known to the skilled person. - 10 For example, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition of step d) may be provided in the form of an aqueous suspension. If the at least one microorganism is at least one strain of bacteria, the bacteria density of the aqueous suspension to be added to the polluted medium to be treated depends on the concentration of hydrocarbon-containing composition posed on the polluted medium. In one preferred embodiment, the bacteria density of the aqueous suspension is in the range of 1 cells/Litre to 10⁸ cells/Litre, more preferably in the range of 10² cells/Litre to 10⁵ cells/Litre. - Such aqueous suspension comprising microorganisms may be sprayed onto the surface of the composite material of surface-treated calcium carbonate and hydrocarbon-containing composition and/or may be injected into the polluted medium that comprises the composite material of surface-treated calcium carbonate and hydrocarbon-containing composition by suitable pumping means. Depending on the selected at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition, the growth of the microorganism added to the polluted medium may be supported by also spraying and/or injecting sufficient amounts of key nutrients such as phosphate, ammonium nitrate, proteins, alkali metal - 36 - ammonium phosphates, glucose, dextrose, urea, yeast and the like. Such nutrients may be added to the aqueous suspension comprising the microorganism. Additionally or alternatively, said nutrients may be injected into and/or sprayed onto the surface of the composite material in a separate aqueous suspension. 5 10 15 In case the surface-treated calcium carbonate is incorporated in a nonwoven fabric, said
nonwoven fabric can be further treated with said aqueous suspension comprising microorganisms in that the aqueous suspension is sprayed onto the nonwoven fabric and/or injected into the nonwoven fabric. Optionally, nutrients may be sprayed onto the nonwoven fabric and/or injected into the nonwoven fabric as described above. In one preferred embodiment of the present invention, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is added to the composite material of surface-treated calcium carbonate and hydrocarbon-containing composition in an amount of from 1 ppm to 10.000 ppm, preferably in amount of from 250 ppm to 5.000 ppm and most preferably is in the range of 500 ppm to 2.500 ppm, calculated relative to the hydrocarbon-containing composition. 20 The ratios of the surface-treated calcium carbonate and the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition may vary over a wide range. In the composite material according to the invention, the ratio of the surface-treated calcium carbonate and the microorganism composition corresponds preferably to a weight ratio of from 10:1 to 1:10, preferably from 5:1 to 1:5, particularly preferably from 2:1 to 1:2. The composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition preferably comprises - 37 - aerobic bacteria. If water is to be treated with the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition, the oxygen content in the water is preferably at least 0.2 mg/Litre, more preferably at least 0.5 mg/Litre, even more preferably at least 1 mg/Litre and most preferably at least 1.5 mg/Litre. Examples of strains of bacteria which may be suitably utilized in step d) of the present method are selected from the group comprising *Psychrobacter*, *Pseudomonas*, *Pseudobacterium*, *Acinetobacter*, *Vibrio*, *Planococcus*, 10 *Actinobacterium*, *Arthrobacter*, *Marinobacter*, *Methylosinus*, *Methylomonas*, *Methylobacterium*, *Mycobacterium*, *Nocardia*, *Bacillus*, *Brevibacterium*, *Micrococcus*, *Corynebacterium*, *Sarcina*, *Streptomyces*, *Flavobacterium*, *Xanthomonas* and mixtures thereof. In one especially preferred embodiment, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition comprises a bacterial strain selected from the group comprising *Psychrobacter glacincola*, *Acinetobacter calcoaceticus*, *Acinetobacter faecalis* and mixtures thereof. 20 25 5 Examples of strains of fungi which may be suitably utilized in step d) of the present method are selected from the group comprising *Aspergillus flavus*, *Aspergillus fumigates*, *Aspergillus niger*, *Aspergillus niveus*, *Aspergillus terreus*, *Aspergillus versicolor*, *Fusarium sp.*, *Mortierella spp.*, *Mucor*, *Mycelia*, *Penicillium corylophilum*, *Paecilomyces niveus*, *Paecilomyces variotti*, *Rhizopus*, *Talamoryces*, *Trichoderma spp.* and mixtures thereof. The composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition as utilized in step d) of the inventive method is preferably selected such that the at least one microorganism shows a degradation rate for the hydrocarbon-containing composition of at least 25 %, preferably of at least 40 %, more preferably of at least 50 %, even more preferably of at least 60 % and most preferably of at least 70 %, based on the total weight of the hydrocarbon-containing composition. In one especially preferred embodiment, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition utilized in step d) of the inventive method shows a degradation rate for the hydrocarbon-containing composition of at least 75 %, based on the total weight of the hydrocarbon-containing composition. 5 10 15 20 25 In one preferred embodiment, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition comprises a mixture of at least two microorganisms capable of degrading at least one component of the hydrocarbon-containing composition. Preferably, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition comprises a mixture of at least three microorganisms capable of degrading at least one component of the hydrocarbon-containing composition. Even more preferably, the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition comprises a plurality of microorganisms capable of degrading at least one component of the hydrocarbon-containing composition. If the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition comprises a mixture of at least two microorganisms, one microorganism is preferably a bacterial strain of *Psychrobacter glacincola*. In one especially preferred embodiment, the surface-treated calcium carbonate of step b) is further immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. 5 10 In one preferred embodiment, step c) and step d) are carried out simultaneously. If step c) and step d) are carried out simultaneously, the inventive surface-treated calcium carbonate and the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition are preferably provided together in the form of slurry, i.e. the slurry comprises the inventive surface-treated calcium carbonate as well as the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. 15 Alternatively, step c) and step d) are carried out separately. In this case, the hydrocarbon-containing composition is first contacted with the surface-treated calcium carbonate and then with the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon- 20 25 containing composition In one preferred embodiment of the inventive method, step c) or step d) is repeated one or more times. In a further preferred embodiment, step c) and step d) are repeated one or more times. If step c) and step d) are repeated one or more times, step c) and step d) may be repeated independently, i.e. step c) may be repeated several times, while step d) is repeated more or less times than step c) and vice versa. For example, step c) may be repeated twice, while step d) is repeated once or more than twice. The use of the inventive surface-treated calcium carbonate or method for binding hydrocarbon-containing compositions provides a number of improved properties. First of all, the inventive surface-treated calcium carbonate provides excellent binding and bioremediating activity when at least partially applied onto the surface of a hydrocarbon-containing composition or mixed with the hydrocarbon-containing composition. Furthermore, the inventive surface-treated calcium carbonate provides excellent binding and bioremediating activity when at least partially applied onto the surface of a hydrocarbon-containing composition and mixed with the hydrocarboncontaining composition. Furthermore, the inventive surface-treated calcium carbonate provides excellent binding and bioremediating activity when incorporated in a nonwoven fabric, for example, a biodegradable nonwoven fabric and applied onto the surface of a hydrocarbon-containing composition in the form of said nonwoven fabric. Preferably, the inventive surface-treated calcium carbonate provides excellent binding and bioremediating activity when applied onto the surface of a hydrocarbon-containing composition if the inventive surface-treated calcium carbonate further comprises an aqueous suspension of at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition and/or is immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. 20 25 5 10 15 The addition or the use of the inventive surface-treated calcium carbonate or method results in a composite material of surface-treated calcium carbonate and hydrocarbon-containing composition which can be easily removed from the polluted medium to be treated. Furthermore, the binding and bioremediating of hydrocarbon-containing compositions by the inventive surface-treated calcium carbonate results in a good cleansing quality of the medium to be treated. The surface-treated calcium carbonate may be stored for indefinitely long periods, is not categorized as toxic product and can be easily spread over the polluted medium to be treated. Furthermore, the surface-treated calcium carbonate further comprising an aqueous suspension of at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition and/or is immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition permit an efficient binding of the hydrocarbon-containing composition as well as an efficient bioremediation of the hydrocarbon-containing composition within a short period of time. 10 15 20 5 Depending on the specific requirements and/or the respective physical and/or chemical properties of the hydrocarbon-containing composition to be treated, the surface-treated calcium carbonate and the composition comprising at least one microorganism
capable of degrading at least one component of the hydrocarbon-containing composition to be used according to the inventive method can be applied both separately or a finished mixture may be used. In the form of a separately metered addition of the individual components of the surface-treated calcium carbonate and the composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition the concentration ratio may be individually adjusted depending on the present polluted medium to be treated. The polluted medium may be treated with the surface-treated calcium carbonate being formulated, for example, as a customary formulation, such as, for example, a solution, an emulsion, a suspension, a powder, a foam, pastes, granules, aerosols and incorporations in nonwoven fabrics. 25 A further advantage of the inventive surface-treated calcium carbonate or the inventive method resides in the fact that the used surface-treated calcium carbonate accelerates a biological remediation process of the hydrocarbon-containing composition without disturbing the ecological balance. Another advantage of the inventive surface-treated calcium carbonate or the inventive method is that none of the employed components, namely the surface-treated calcium carbonate and/or the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition, give rise to subsequent pollution of the medium to be treated. After use their reside materials already present in the natural environment. Among applications in soils, shore lines, sea water, flat water or ground water, the most important application is the cleansing of hydrocarbon-containing compositions distributed accidentally. In particular, oil spills affected by releases of crude oil from tankers, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products and heavier fuels used by large ships such as bunker fuel, or the spill of oily refuse or waste oil are considered as important applications. 15 Applications may also be possible for cleansing of hydrocarbon-polluted media originated in different industries such as railroad, airline and land transport industries as well as the oil storage, transportation, refining and fuel-dispensing industries. In this regard, the cleansing of containers, reservoirs and all kind of means for storing, transporting, refining and fuel-dispensing are considered as important applications. 20 25 5 10 In view of the very good results of the surface-treated calcium carbonate in binding and bioremediating of hydrocarbon-containing compositions from polluted media as defined above, a further aspect of the present invention is the use thereof for binding and bioremediating hydrocarbon-containing compositions. According to another aspect of the present invention, a composite material comprising the surface-treated calcium carbonate and a hydrocarbon-containing composition is provided. With regard to the definition of the surface-treated calcium carbonate and/or the hydrocarbon-containing composition and preferred embodiments thereof, reference - 43 - is made to the statements provided above when discussing the technical details of the surface-treated calcium carbonate and/or the hydrocarbon-containing composition. The following examples may additionally illustrate the invention, but are not meant to restrict the invention to the exemplified embodiments. The examples below show the good microbiological stability of the aqueous preparations of minerals, pigments or fillers protected with the composition according to the present invention: # **EXAMPLES** 10 #### Measurement methods The following measurement methods were used to evaluate the parameters given in the examples and claims. #### 15 BET specific surface area of a material The BET specific surface area was measured via the BET method according to ISO 9277 using nitrogen, following conditioning of the sample by heating at 250°C for a period of 30 minutes. Prior to such measurements, the sample was filtered, rinsed and dried at 110°C in an oven for at least 12 hours. 20 25 # Particle size distribution (mass % particles with a diameter < X) and weight median diameter (d_{50}) of a particulate material Weight median grain diameter and grain diameter mass distribution of a particulate material were determined via the sedimentation method, i.e. an analysis of sedimentation behaviour in a gravitational field. The measurement was made with a SedigraphTM 5100. - 44 - The method and the instrument are known to the skilled person and are commonly used to determine grain size of fillers and pigments. The measurement was carried out in an aqueous solution of 0.1 wt.-% Na₄P₂O₇. The samples were dispersed using a high speed stirrer and ultrasound. 5 # Aerobic degradation Measurements were carried out in accordance with the OECD 301 D close bottle test. # 10 Anaerobic degradation Measurements were carried out in accordance with the OECD 311. Anaerobic biodegradability of organic compounds in digested sludge was carried out by measurement of gas production. # 15 Biological oxygen demand BOD was assessed as described in OECD 301D. # **Analytical GC-MS** Samples were extracted with diethyl ether and analysed on an AutoSystem XL Perkin Elmer according to the standard method of the RDS-ANA lab (Report 58072.10) # Aliphatic carboxylic acid accessible surface area The aliphatic carboxylic acid accessible surface area may be determined by the method described in the publication of Papirer, Schultz and Turchi (Eur. Polym. J., Vol. 20, No. 12, pp. 1155-1158, 1984). - 45 - ### Example 1 The following illustrative Example involves the use of a surface-treated natural calcium carbonate powder for binding and bioremediating a hydrocarbon-containing composition by determining the residual hydrocarbon compounds over a period of 60 days for aerobic and anaerobic samples, respectively. Said surface-treated natural calcium carbonate powder has a weight medium particle diameter d_{50} value of 1.4 µm (measured according to the sedimentation method) and a specific surface area of 5.5 m²/g (measured using nitrogen and the BET method), before surface treatment. The surface-treated natural calcium carbonate is covered by a coating comprising stearic acid and/or reaction products thereof. Stearic acid and/or reaction products of stearic acid are present in the coating in an amount of 0.7 wt.-%, based on the dry weight of the calcium carbonate. 15 Aerobic and anaerobic biodegradation of crude oil in seawater were performed with seawater sampled from a fjord close to the Omya molde in Norway. 1000 ppm crude oil was used and the sinking agent was the surface-treated natural calcium carbonate powder as described above. The surface-treated natural calcium carbonate was used in a weight ratio of surface-treated calcium carbonate and hydrocarbon-containing composition of 10:1. The biogas (BG) production were monitored over a period of 60 days at 10 °C for the aerobic and anaerobic samples respectively. The residual hydrocarbon compounds were measured by GC-MS. Table 1 summaries the details of the utilized strains of bacteria and the measured oil recovery. - 46 - Table 1 | Sample | Condition | Bacteria | Oil recovery | |---------------|-----------|--------------------------|--------------| | | | | (%; GC-MS) | | Sea water-oil | aerobic | no | 100 | | Sea water-oil | aerobic | activated sludge | 60 | | Sea water-oil | aerobic | Ultra-microbes | 65 | | Sea water-oil | anaerobic | no | 100 | | Sea water-oil | anaerobic | digested sludge | 77 | | Sea water-oil | anaerobic | Psychrobacter glacincola | 100 | The Ultra-Microbes bacteria were provided by UltraTech (USA) and are the oldest registered biological/microbial product on the EPA's National Contingency Products List for water applications involving oil. The sludge samples were sampled from a plant in Aarburg. The GC-MS profiles provide an indication of the bioremediated oil compared to the control samples without microorganisms. During the aerobic degradation in the presence of activated sludge and Ultra-Microbes as well as in the anaerobic sample inoculated with the digested sludge a reduction of about 30 % of the hydrocarbons was measured by GC-MS. It can thus be concluded that during the aerobic degradation a bacteria oil-degrading activity is given. # 15 Example 2 The following illustrative Example involves the use of a surface-treated natural calcium carbonate powder (cf. Example 1 above) for binding and bioremediating a hydrocarbon-containing composition in sea water by determining the residual hydrocarbon compounds over a period of 60 days at a temperature of about 4 °C. 5 Aerobic bioremediation of 100 ppm petroleum in seawater was performed at 4 °C during a period of time of 60 days. The surface-treated natural calcium carbonate was used in a weight ratio of surface-treated calcium carbonate and hydrocarbon-containing composition of 10:1. The residual hydrocarbon compounds were measured by GC-MS. Table 2 summaries the details of the utilized bacteria and the measured oil recovery. Table 2 5 | Sample | Bacteria | Oil recovery (%; GC-MS) | |---------------|--------------------------|-------------------------| | Sea water-oil | no | 100 | | Sea water-oil | Psychrobacter glacincola | 22 | | Sea water-oil | activated sludge | 60 | | Sea water-oil | digested sludge | 65 | | Sea water-oil | seafloor sludge | 87 | | Sea water-oil | Ultra-microbes | 100 | 10 15 20 During the aerobic bioremediation, a bioremediation of about 78 % to 13 % was obtained at 4 °C depending on the microorganism utilized. The combination of surface-treated calcium carbonate and bacterial species *Psychrobacter glacincola*, a hydrocarbon-degrading bacterial strain isolated from extremely cold habitats, achieved a bioremediation of up to 78 % compared to the initial hydrocarbon
concentration as determined by GC-MS. Using the sewage samples from different plants, a bioremediation of about 35 % and 40 % was obtained. In contrast, the microorganisms of the seafloor sludge bioremediated only about 13 % of the hydrocarbons and the Ultra-microbes did not show any bioremediation activity at 4 °C. It can thus be concluded that during binding and the aerobic bioremediation a bacteria oil-degrading activity is given. # Example 3 5 10 15 20 The following illustrative Example involves the use of a surface-treated natural calcium carbonate powder (cf. Example 1 above) in combination with the commercially available dispersing agent Corexit 9500 (commercially available from Nalco, USA) for binding and bioremediating a hydrocarbon-containing composition in sea water by determining the residual hydrocarbon compounds over a period of 60 days at a temperature of about 4 °C. Furthermore, the residual hydrocarbon compounds over a period of 60 days at a temperature of about 4 °C for the surface-treated natural calcium carbonate powder /Corexit 9500 combination are compared with results obtained for the surface-treated natural calcium carbonate powder. Aerobic bioremediation of crude oil in seawater was performed with seawater containing a dispersant. 100 ppm petroleum was used and the sinking agent was the surface-treated natural calcium carbonate powder as described above in combination with the commercially available dispersing agent Corexit 9500 (Nalco). The surface-treated natural calcium carbonate was used in a weight ratio of surface-treated calcium carbonate and hydrocarbon-containing composition of 10:1. The residual hydrocarbon compounds were measured by GC-MS. Table 3 summaries the details of the utilized bacteria and the measured oil recovery. Table 3 | Sample | Bacteria | Oil recovery (%; GC-MS) | |---------------|-------------------------------|-------------------------| | Sea water-oil | no | 100 | | Sea water-oil | Psychrobacter glacincola | 66 | | Sea water-oil | activated and digested sludge | 47 | - 49 - | Sea water-oil | seafloor sludge molde 1 | 69 | |---------------|-------------------------|-----| | Sea water-oil | seafloor sludge molde 2 | 100 | | Sea water-oil | Ultra-microbes | 100 | The following table 4 outlines the oil recovery for the surface-treated natural calcium carbonate powder /Corexit 9500 combination in comparison with the results obtained for the surface-treated natural calcium carbonate powder over a period of 60 days at a temperature of about $4\,^{\circ}\mathrm{C}$. Table 4 | Sample | Bacteria | Oil recovery
(%; GC-MS)
No dispersant | Oil recovery (%; GC-MS) Dispersant COREXIT 9500 | |---------------|-------------------------------|---|---| | Sea water-oil | no | 100 | 100 | | Sea water-oil | Psychrobacter glacincola | 22 | 66 | | Sea water-oil | activated and digested sludge | 62 | 47 | | Sea water-oil | seafloor sludge molde 1 | 87 ^{a)} | 69 | | Sea water-oil | seafloor sludge molde 2 | | 100 | | Sea water-oil | Ultra-microbes | 100 | 100 | a) A mixture (1:1) of both seafloor samples - 50 - # Example 4 10 15 20 #### Determination of viability of bacteria after immobilization on CaCO₃ Pseudomonas sp. and Psychobacter glacinola were immobilized on CaCO₃ and stored for 31 days at room temperature. After storage the bacterial viability was determined. Portions of 100 μ l (> 10⁹ CFU/ml PBS) of a suspension of *Pseudomonas sp.* and *Psychobacter glacinola* were each mixed separately with 100 μ l of sterile PBS, 80% sterile glycerol, edible oil (rapeseed oil), and polyethylene glycol (Fluka order number 82280), which served as solvents for the microorganisms. Natural ground calcium carbonate was coated with stearic acid in amounts of 0.2 wt%, 0.6 wt% and 1.2 wt%. The BET specific surface area was $0.61 m^2/g$ and the weight median size was $19.5 \mu m$. Each suspension of the 200 µl premixed bacteria was mixed with 4g of the stearic acid coated calcium carbonate samples. The samples were vortexed during 1 minute and agitated during 30 minutes on a Turbula-mixer and incubated at room temperature in closed vials. After 3, 10, and 31 days, 1 g of the dry calcium carbonate powder with immobilized bacteria was used for the determination of TVC (Total Viable Counts). For this determination 1 g of powder was mixed with 9 ml of disruption buffer (10 mM Tris buffered in 0.9% saline, pH 8.0) in order to detach the microorganisms from the white pigment powder samples. The suspensions are shaken on a vortex for 60 sec. at 2500 rpm before being put on the rotation shaker for 30 minutes at 400 UpM (at room temperature). - 51 - From these preparations 100 µl samples were plated on a TSA plate (Tryptic-Soy-Agar) and incubated up to 5 days at 30°C. Without saying, all operations must be made under sterile conditions. 5 All quoted bacterial counts (Total Viable Count (TVC) values are in cfu/ml) in the Tables herebelow are determined after 5 days following plate-out and in accordance with counting method described in "Bestimmung von aeroben mesophilen Keimen", Schweizerisches Lebensmittelbuch, chapter 56, section 7.01, edition of 1985, revised version of 1988. Table 5 to 7 list the results with *Pseudomonas sp.*, table 8 lists the results for *Psychobacter glacinola* 15 Table 5: TVC results obtained with a culture of *Pseudomonas* (after 3 days of storage at room temperature). | solvent for microorganisms | stearic coating
on CaCO ₃ | TVC | |----------------------------|---|-------| | | - | <100 | | | 1.2% | <100 | | 80% glycerol | 0.6% | <100 | | | 0.2% | <100 | | | 1.2% | >>104 | | edible oil | 0.6% | >>104 | | | 0.2% | >>104 | | | 1.2% | <100 | | polyethylene glycol | 0.6% | <100 | | | 0.2% | <100 | | | 1.2% | >>104 | | water/PBS | 0.6% | >>104 | | | 0.2% | >>104 | Table 6: TVC results obtained with a culture of *Pseudomonas* (after 10 days of storage at room temperature). 5 | solvent for microorganisms | stearic coating on CaCO ₃ | TVC | |----------------------------|--------------------------------------|------------| | | 1.2% | <100 | | 80% glycerol | 0.6% | <100 | | | 0.2% | <100 | | | 1.2% | >>104 | | edible oil | 0.6% | >>104 | | | 0.2% | >>104 | | | 1.2% | <100 | | polyethylene glycol | 0.6% | <100 | | | 0.2% | <100 | | | 1.2% | $3.2*10^4$ | | water/PBS | 0.6% | >>104 | | | 0.2% | >>104 | Table 7: TVC results obtained with a culture of *Pseudomonas* (after 31 days of storage at room temperature). | solvent for microorganisms | stearic coating on CaCO ₃ | TVC | |----------------------------|--------------------------------------|-------------| | | 1.2% | <100 | | 80% glycerol | 0.6% | <100 | | | 0.2% | <100 | | | 1.2% | >>104 | | edible oil | 0.6% | >>104 | | | 0.2% | >>104 | | | 1.2% | <100 | | polyethylene glycol | 0.6% | <100 | | | 0.2% | <100 | | | 1.2% | >>104 | | Water/PBS | 0.6% | $3.5*10^4$ | | | 0.2% | $3.18*10^4$ | Disruptionbuffer:<10, as negative control Growth of colonies was judged after 24 and 48 hours (after 3 days [table 5] only after 24 hours since *Pseudomonas* is a fast growing species). The results after 48 hours were the same as after 24 hours. 5 15 Table 8: TVC results obtained with a culture of *Psychrobacter* (after 21 days of storage at room temperature. Plates were judged at different days, plating of bacteria occurred once). | solvent for microorganisms | stearic coating
on CaCO ₃ | TVC 48h | TVC 72h | TVC 7 days | |----------------------------|---|---------|------------------|-----------------| | | 1.2% | <100 | <100 | $2.8*10^3$ | | 80% glycerol | 0.6% | <100 | <100 | <100 | | | 0.2% | <100 | <100 | <100 | | | 1.2% | sc | >>104 | >>104 | | edible oil | 0.6% | sc | >10 ⁴ | >>104 | | | 0.2% | sc | >104 | >>104 | | | 1.2% | <100 | <100 | <100 | | polyethylene glycol | 0.6% | <100 | <100 | <100 | | | 0.2% | <100 | <100 | <100 | | | 1.2% | sc | >104 | 10 ⁴ | | Water/PBS | 0.6% | sc | $1.7*10^3$ | $4.7*10^3$ | | | 0.2% | sc | 10^{4} | >104 | O Disruptionbuffer:<10 (3 and 7 days) as negative control Edible oil: <10 after 1 and 5 days of incubation of the TSA. Since the edible oil was neither sterilized, nor micro-filtered, a negative control was necessary to exclude that possible bacteria growth was due to present microorganisms in the edible oil due to contamination. The results nicely show that microorganisms when immobilized on treated calcium carbonate can be stored for at least 31 day without loss of growing power, 20 particularly in both edible oil and water/PBS. #### Claims - 1. A surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions having a degradation rate for the hydrocarbon-containing composition of at least 25 %, based on the total weight of the hydrocarbon-containing composition, wherein at least 10 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid having between 5 and 24 carbon atoms and/or reaction products thereof. - 2. The surface-treated calcium carbonate according to claim 1, wherein the surface-treated calcium carbonate comprises ground calcium carbonate and/or precipitated calcium carbonate and/or surface-modified calcium carbonate, preferably ground calcium carbonate. 15 20 - 3. The surface-treated calcium carbonate according to claim 2, wherein the source of ground calcium carbonate (GCC) is selected from marble, chalk, calcite, dolomite, limestone and mixtures thereof and/or the precipitated calcium carbonate (PCC) is selected from one or more of the aragonitic, vateritic and calcitic mineralogical crystal forms. - 4. The surface-treated calcium carbonate according to any one of claims 1 to 3, wherein the surface-treated calcium carbonate has a weight median particle diameter d₅₀ value of
between 0.1 μm and 250 μm, preferably between 1 μm and 200 μm, more preferably between 1 μm and 150 μm, even more preferably between 1 μm and 100 μm and most preferably between 3 μm and 100 μm. 5. The surface-treated calcium carbonate according to any one of claims 1 to 4, wherein the coating of the surface-treated calcium carbonate comprises at least one aliphatic carboxylic acid selected from the group consisting of pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidic acid, heneicosylic acid, behenic acid, tricosylic acid, lignoceric acid and mixtures thereof, preferably the aliphatic carboxylic acid is selected from the group consisting of octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid and mixtures thereof and most preferably the aliphatic carboxylic acid is selected from the group consisting of myristic acid, palmitic acid, stearic acid and mixtures thereof. 5 10 - 6. The surface-treated calcium carbonate according to any one of claims 1 to 5, wherein at least 20 % of the aliphatic carboxylic acid accessible surface area of the calcium carbonate is covered by a coating comprising at least one aliphatic carboxylic acid and/or reaction products thereof and preferably at least 30 % of the accessible surface area and most preferably at least 50 % of the accessible surface area. - 7. The surface-treated calcium carbonate according to any one of claims 1 to 6, wherein the surface-treated calcium carbonate further comprises at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. 8. The surface-treated calcium carbonate according to claim 7, wherein the surface-treated calcium carbonate is immobilized with at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. PCT/EP2012/065251 5 9. The surface-treated calcium carbonate according to any one of claims 7 or 8, wherein the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is selected from at least one strain of bacteria and/or fungi. 10 - 10. The surface-treated calcium carbonate according to any one of claims 9, wherein the at least one strain of bacteria and/or fungi is at least one strain of petroleum-degrading bacteria and/or petroleum-degrading fungi. - 11. The surface-treated calcium carbonate according to any one of claims 9 or 10, wherein the at least one strain of bacteria is selected from the group comprising Psychrobacter, Pseudomonas, Pseudobacterium, Acinetobacter, Vibrio, Planococcus, Actinobacterium, Arthrobacter, Marinobacter, Methylosinus, Methylomonas, Methylobacterium, Mycobacterium, Nocardia, 20 Bacillus, Brevibacterium, Micrococcus, Corynebacterium, Sarcina, Streptomyces, Flavobacterium, Xanthomonas and mixtures thereof, more preferably are selected from the group comprising Psychrobacter glacincola, - 25 12. The surface-treated calcium carbonate according to any one of claims 1 to 11, wherein the surface-treated calcium carbonate is in powder form and/or in the form of granules or in the form of slurry. Acinetobacter calcoaceticus, Acinetobacter faecalis and mixtures thereof. PCT/EP2012/065251 13. The surface-treated calcium carbonate according to any one of claims 1 to 12, wherein the surface-treated calcium carbonate is incorporated in a nonwoven fabric, preferably the surface-treated calcium carbonate is incorporated in a biodegradable nonwoven fabric. 5 - 14. A method for binding and bioremediating hydrocarbon-containing compositions, comprising the following steps: - a) providing a hydrocarbon-containing composition; - b) providing at least one surface-treated calcium carbonate according to any one of claims 1 to 13; and - c) contacting the hydrocarbon-containing composition of step a) with the surface-treated calcium carbonate of step b) for obtaining a composite material of surface-treated calcium carbonate and hydrocarbon-containing composition. 15 10 15. The method according to claim 14, wherein the hydrocarbon-containing composition is crude oil and/or a refined petroleum product selected from the group comprising gasoline, diesel fuel, aviation fuel, hydraulic oil, kerosene and mixtures thereof. 20 25 16. The method according to any one of claims 14 or 15, wherein step c) is carried out by at least partially covering the surface of the hydrocarboncontaining composition of step a) with the surface-treated calcium carbonate of step b) and/or mixing the hydrocarbon-containing composition of step a) with the surface-treated calcium carbonate of step b). 5 10 - 17. The method according to any one of claims 14 to 16, wherein step c) is carried out in that the weight ratio of hydrocarbon-containing composition and surface-treated calcium carbonate is from 10:1 to 1:100, more preferably from 1:1 to 1:50, even more preferably from 1:1 to 1:25 and most preferably from 1:1 to 1:15. - 18. The method according to any one of claims 14 to 17, wherein the method further comprises step d) of contacting the composite material obtained in step c) with a composition comprising at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition. - 19. The method according to claim 18, wherein the at least one microorganism capable of degrading at least one component of the hydrocarbon-containing composition is selected from at least one strain of bacteria and/or fungi. - 20. The method according to claim 19, wherein the at least one strain of bacteria is selected from the group comprising *Psychrobacter*, *Pseudomonas*, 20 Pseudobacterium, Acinetobacter, Vibrio, Planococcus, Actinobacterium, Arthrobacter, Marinobacter, Methylosinus, Methylomonas, Methylobacterium, Mycobacterium, Nocardia, Bacillus, Brevibacterium, Micrococcus, Corynebacterium, Sarcina, Streptomyces, Flavobacterium, Xanthomonas and mixtures thereof, more preferably is selected from the 25 group comprising *Psychrobacter glacincola*, Acinetobacter calcoaceticus, Acinetobacter faecalis and mixtures thereof. - 21. The method according to any one of claims 18 to 20, wherein step c) and step d) are carried out simultaneously or separately. - 22. The method according to any one of claims 14 to 21 wherein step c) and/or step d) are repeated one or more times. - 23. Use of surface-treated calcium carbonate according to any one of the claims 1 to 13 for binding and bioremediating hydrocarbon-containing compositions. - 24. The use according to claim 23, wherein the surface-treated calcium carbonate is used in soil, sea water, ground water, flat water, shore lines, containers and/or reservoirs. - 25. A composite material comprising the surface-treated calcium carbonate according to any one of the claims 1 to 13 and a hydrocarbon-containing composition. #### INTERNATIONAL SEARCH REPORT International application No PCT/EP2012/065251 A. CLASSIFICATION OF SUBJECT MATTER INV. C09C1/02 C02F1/68 C09C1/02 C02F3/34 ADD. According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C09C C02F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ US 2002/022084 A1 (CALHOUN ALLISON ANNE 1-6,12[US] ET AL) 21 February 2002 (2002-02-21) paragraphs [0039], [0041], [0053], Α 7-11, [0083], [0084] 13-25 US 2010/069552 A1 (GUERRET OLIVIER [FR] ET Χ 1-6,12 AL) 18 March 2010 (2010-03-18) examples Α 7-11. 13-25 US 4 151 136 A (CORNELL STEPHEN W [US]) 24 April 1979 (1979-04-24) Χ 1-6,12examples 7-11, 13-25 GB 1 400 256 A (BANQUE POUR LEXPANSION Α 1-25 IND) 9 July 1975 (1975-07-09) the whole document Х Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 12 September 2012 20/09/2012 Authorized officer Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Nobis, Barbara # **INTERNATIONAL SEARCH REPORT**
Information on patent family members International application No PCT/EP2012/065251 | Patent document cited in search report | | Publication
date | | Patent family
member(s) | | Publication
date | |--|----|---------------------|--|--|--|--| | US 2002022084 | A1 | 21-02-2002 | AU
BR
CA
CN
CZ
EP
JP
MX
PL
US
WO | 5944401
0110595
2408264
1440306
101812238
20023641
1278596
2003532770
PA02010819
359386
2002022084
2004147636
0185832 | A
A1
A
A
A3
A2
A
A1
A1 | 20-11-2001
28-10-2003
15-11-2001
03-09-2003
25-08-2010
14-05-2003
29-01-2003
05-11-2003
06-09-2004
23-08-2004
21-02-2002
29-07-2004
15-11-2001 | | US 2010069552 | A1 | 18-03-2010 | AT
CA
CN
EP
ES
FR
JP
KR
RU
US
WO | 455155
2665040
101528866
2087048
2339506
2907788
2010508382
20090075842
2009120457
2010069552
2008053296 | A1
A2
T3
A1
A
A
A | 15-01-2010
08-05-2008
09-09-2009
12-08-2009
20-05-2010
02-05-2008
18-03-2010
09-07-2009
10-12-2010
18-03-2010
08-05-2008 | | US 4151136 | Α | 24-04-1979 | CA
US | 1128816
4151136 | | 03-08-1982
24-04-1979 | | GB 1400256 | A | 16-07-1975 | AUEAHDEGSRBULTPUYLOAHLOESSUA | 323079
472543
784412
980026
556910
97641
2227840
10503
403815
2144003
1400256
166804
39637
956772
52030782
65465
7700105
7208177
132902
4113
9496
79494
62780
390291
604464
7203852 | BAAAAAAAABABBAAABAABABABABABABABABABAB | 25-06-1975
27-05-1976
02-10-1972
16-12-1975
13-12-1974
12-05-1973
11-01-1973
31-03-1976
01-05-1975
09-02-1975
28-06-1975
28-06-1975
31-12-1975
10-10-1973
10-08-1977
05-10-1972
31-12-1977
02-01-1973
20-10-1975
30-11-1979
08-01-1976
30-06-1975
20-05-1977
13-12-1976
25-04-1978
28-03-1973 |