o

PCT

International B

WORLD INTELLECTUAL PROPERTY ORGANIZATION
ureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 94/27214
GO6F 9/318, 9/455 Al
9318, (43) International Publication Date: 24 November 1994 (24.11.94)
(21) International Application Number: PCT/US94/03862 | (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN,
CZ, DE, DK, ES, FL, GB, HU, JP, KP, KR, KZ, LK, LU,
(22) International Filing Date: 8 April 1994 (08.04.94) LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
SE, SK, UA, US, UZ, VN, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
(30) Priority Data: OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
059,215 7 May 1993 (07.05.93) Us NE, SN, TD, TG
(71) Applicant (for all designated States except US): APPLE COM- | Published
PUTER, INC. [US/US]; 20525 Mariani Avenue, Cupertino, With international search report.
CA 95014 (US).
(72) Inventor; and
(75) Inventor/Applicant (for US only): DAVIDIAN, Gary, G.
[US/US]; 247 Sierra Vista Avenue, Mountain View, CA
94043 (US).
(74) Agent: FLIESLER, Martin, C.; Fliesler, Dubb, Meyer and
Lovejoy, Suite 400, Four Embarcadero Center, San Fran-
cisco, CA 94111-4156 (US). "
(54) Title: METHOD FOR DECODING SEQUENCES OF GUEST INSTRUCTIONS FOR A HOST COMPUTER
(57) Abstract mw I 13
Emulator performance can be improved by recognizing repeated se- HOST EMULATION
quences of the same instruction, or commonly groups of instructions. For cPU — DISPATCH b—17
example, it is very common to see a three instruction sequence of MOVEM, TABLE
UNLK A6, and RTS instructions for a 68020 processor in procedure exit code. 20
By looking for these sequences, and combining the operations performed by EMULATION
the separate sequences, overhead of decoding and dispatching the individual - GPR ROUTINES
instructions in the sequence can be eliminated, and performance improved. s 2l
Common instruction sequences or repeated sequences in a guest program are
detected during emulation of the guest program on a host processor, and perfor-
mance of the emulation optimized based on the detected sequences. Thus, the
emulation logic comprising host instructions embedded within a particular em- &R GUEST | o
ulation program for a particular guest instruction, detects a particular sequence 12— ¥ER PROGRAMS
of guest instructions and in response to detection of the particular sequence by- R :
passes the dispatch logic for guest instructions within the particular sequence. [N N
The sequences detected can comprise repeated guest instructions, or common . GUEST STATE
sequences of two or more than two guest instructions.
14 j
KEYBOARD | |
MOUSE OTHER L— 9
MEMORY
15 \\
DISPLAY | —
16

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

SRAAERREQAN222339301

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Beain

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Deamark

Spain

Finland

France

Gabon

GB
GE
GN
GR

SEE88<SRFRE RERSARE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Keaya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

BIRE3E555

2887

SK

United States of America

Viet Nam

WO 94/27214 PCT/US94/03862

10

15

20

25

30

METHOD FOR DECODING SEQUENCES OF GUEST INSTRUCTIONS
FOR A HOST COMPUTER

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to the emulation of
software written for a given computer on a different
computer which executes a different set of instructions;
and more particularly to a system for decoding guest
instructions into host instructions by the host computer.

Description of the Related Art

Central processing units for computers are designed
to execute a specific set of instructions unique to a
particular central processing unit. Thus, a
microprocessor in one family, such as the Motorola 68000
family, executes software written in a language unique to
the 68000 family, while processors in the Intel 80286
family execute software written with another language
which is unique to that family of processors. A need
often arises to execute software written for a particular
processor in a host processor that utilizes a different
language. For the purposes of this application, the
language for the host CPU 1is based on T"host
instructions", while the language for other CPUs are
referred to as "guest instructions'.

Because of the large body of software written for
existing processors, such as the Motorola 68000 series,
new processors which are designed often attempt to
emulate the 68000 series processors in software. This
emulation process involves first decoding the 68000
series guest instructions into a sequence of host
instructions which accomplish the result intended by the
guest instruction. The routines ' needed to emulate a

WO 94/27214 PCT/US94/03862

10

15

20

25

30

given instruction are stored in a host addressable table.
For instance, in one prior art system, each guest
instruction is used to generate a jump table pointer
which points to a table that includes one entry for each
of the possible combinations of operational code and
addressing mode for a guest instruction. The jump table
stores a pointer to the particular code segment adapted
to a particular code combination. See, ARRANGEMENT FOR
SOFTWARE EMULATION, International Application No.
PCT/GB87/00202; invented by MacGregor.

A disadvantage of this prior art technique arises
because of the delay involved in composing a jump table
pointer based on the guest instruction, looking up a
second pointer in the jump table, and then accessing the
emulation segment. Because of data access latencies and
the like, this can significantly slow down the emulation
routine.

At least one prior art system based upon a jump
table includes an ability to detect common opcode
sequences, soO that optimized emulation programs may be
used for such sequences. This prior art system is based
on eight bit opcodes, and forms a 16 bit index using the
two 8 bit opcodes in the sequence. Using the 16 bit
index, a jump table entry can be found to an optimized
emulation program. This approach works well with eight
bit opcodes, which result in an index of manageable size.
However for current 16 bit opcode systems, this approach
would require a 32 bit index - or with over 4 billion
possible entries. The prior art has not provided a
practical technique for optimizing the emulation of
commonly occurring guest instruction sequences for longer
opcodes.

Accordingly, it is desirable to provide an emulation
system which enhances the performance of the host

WO 94/27214 PCT/US94/03862

10

15

20

25

30

processor in emulation of guest instructions sequences
particularly suited to longer opcodes of current
processor architectures.

SUMMARY OF THE TNVENTION

Emulator performance can be improved by recognizing
repeated sequences of the same instruction, or commonly
used groups of instructions. For example, it is very
common to see a three instruction sequence of MOVEM, UNLK
A6, and RTS instructions for a 68020 processor in
procedure exit code. By looking for these sequences, and
combining the operations performed by the separate
sequences, overhead of decoding and dispatching the
individual instructions in the sequence <can be
eliminated, and performance improved. The present
invention provides a technique in which common
instruction sequences or repeated sequences in a guest
program can be detected during emulation of the guest
program on a host processor, and performance of the
emulation optimized based on the detected sequences.
According to the present invention, this detection is
performed in the execution of the emulation program for
the first instruction in the sequence. This approach
does add some overhead to the general case of the first
instruction when it is not followed by the expected
second instruction. However, these optimizations improve
performance if the probability of this sequence occurring
is very high in the guest program being emulated.

Accordingly, the present invention <can be
characterized as a system for decoding guest instructions
in a host processor. The system includes a guest program
store in host addressable memory to store at least one
program of guest instructions. An emulation program
store in the host addressable memory includes a set of

-3-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

emulation programs which comprise host instruction
routines for respective particular guest instructions.
Further, dispatch logic is coupled with the guest program
store and the emulation program store to dispatch
emulation programs in response to guest instructions in
a guest instruction program, and in response to the
emulation programs in the emulation program store.
Emulation logic comprising host instructions embedded
within a particular emulation program for a particular
guest instruction, detects a particular sequence of guest
instructions and in response to detection of the
particular sequence bypasses the dispatch logic for guest
instructions within the particular sequence. The
sequences detected can comprise repeated guest
instructions, or common sequences of two or more than two
guest instructions.

According to a further aspect of the invention, both
the dispatch logic and the emulation logic which detects
guest instruction sequences are based on host
instructions embedded within the emulation programs.

Further, the decoding system is further optimized
according to the present invention by dividing the
emulation program store into a dispatch store and an
emulation routine store. The dispatch store is placed in
host addressable memory, and stores a set of dispatch
entries. Each dispatch entry includes a plurality of
host instructions of the emulation program corresponding
to a particular guest instruction. The emulation routine
store is placed in host addressable memory and includes
a set of emulation entries beginning at corresponding
emulation table addresses. Each emulation entry in the
set includes a host instruction routine for the
particular emulation program. The plurality of host
instructions in the dispatch entries include a host jump

WO 94/27214 PCT/US94/03862

10

15

20

25

30

instruction which causes a jump upon execution by the

~host processor to an emulation table address of a

corresponding emulation entry in the emulation routine
store. The emulation entries include host instructions
which upon execution by the host processor form an
emulation program address to a dispatch entry in response
to a next guest instruction, and jump directly to the
dispatch table address. Thus, according to this
optimization, emulation programs in the emulation program
store comprise a dispatch table entry and a host
instruction routine in the emulation routine store.
Further, the dispatch logic and the logic for detecting
guest instruction sequences are embedded in the host
instruction routine stored in the emulation routine
store.

According to this embodiment, the host system
includes a guest instruction pointer store for a guest
instruction pointer indicating a guest instruction
address, a prefetched guest instruction store for a guest
instruction read from the program of guest instructions
in response to the guest instruction pointer, and an
emulation program pointer store for an emulation program
address formed in response to the guest instruction read
from the prefetched guest instruction store. Also, the
emulation program includes a first macro which upon
execution by the host processor forms an emulation
program address in the emulation program pointer store in
response to the guest instruction in the prefetched guest
instruction store. A second macro of host instructions
reads the next guest instruction from an address
indicated by the guest instruction pointer into the
prefetched guest instruction store. A third macro of
host instructions causes a jump to the emulation program
indicated by the emulation program address in the

WO 94/27214

10

15

20

25

30

PCT/US94/03862

emulation program pointer store. A fourth macro embedded
within the emulation routine bypasses at least the third
dispatch segment upon detection of the particular
sequence of guest instruction.

Accordingly, a decoding technique for emulating a
guest program of instructions in a host processor is
provided. The system includes an optimized technique for
dispatching emulation programs in response to guest
instructions, in combination with the ability to detect
common sequences of guest instructions. Upon detection
of common sequences, optimized emulation programs can be
executed which bypass the dispatching overhead, and
which, where appropriate, optimize the emulation of the
instruction sequence. The improved emulator optimizes
common instruction sequences in the guest programs being
emulated, even for guest instructions which comprise long
opcodes (e.g., 16 bits).

Other aspects and advantages of the present
invention can be seen upon review of the figures, the
detailed description, and the claims which follow.

BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 is a schematic block diagram of a computer

system implementing the present invention.

Fig. 2 is a diagram of a dispatch store according to
the present invention.

Fig. 3 is a diagram of an emulation routine store-
according to the present invention.

Fig. 4 is a flow chart illustrating the decoding
method according to the present invention.

Fig. 5 illustrates an emulation program according to
the present invention.

Fig. 6 illustrates an alternative emulation program
according to the present invention.

WO 94/27214 PCT/US94/03862

10

15

20

25

30

Fig. 7 is a flow chart of an emulation program which
is- optimized for a three opcode sequence, which may be
common in guest programs.

Fig. 8 illustrates an emulation program according to
the present invention for a guest instruction which may
be a first instruction of a three instruction sequence of
guest instructions.

Fig. 9 illustrates an emulation program according to
the present invention for a guest instruction, which may
be the first guest instruction in a two opcode sequence.

Fig. 10 illustrates an emulation program according
to the present invention for a guest instruction, which
may be repeated. ' |

DESCRIPTION OF THE PREFERRED EMBODIMENTS
A detailed description of preferred embodiments of
the present invention is provided with respect to Figs.
1-10.

I. Emulator System
Fig. 1 illustrates a host processor which is adapted

to emulate guest instructions according to the present
invention. The host processor includes a host CPU 10
which executes host instructions. Coupled with the host
CPU 10 are a set of general purpose registers 11, and a
set of special purpose registers 12, implemented as
commonly known in the industry as part of an integrated
circuit microprocessor, incorporating the CPU 10.

The host CPU 10 is coupled to a system bus 13. The
bus is also coupled to input devices such as a keyboard
and mouse 14, a display system 15, and a memory system 16
such as a disk drive.

The host processor system also includes host
addressable memory, which includes an emulation program

WO 94/27214

10

15

20

25

30

PCT/US94/03862

store 17, a sequence of guest instructions in a guest
program store 18, and other memory 19. The emulation
program store 17, according to a preferred embodiment of
the present invention, includes an emulation dispatch
store 20, and a set of emulation routines 21.

Fig. 2 illustrates the structure of a preferred
embodiment of the emulation dispatch store 20. The
emulation dispatch store 20 includes a set of instruction
pairs, e.g., pair 30, pair 31, pair 32. Each pair
includes a host non-jump instruction and a host jump
instruction.

According to the preferred embodiment, the dispatch
store is an indexed table of 65536 pairs of host
instructions, which correspond to the entry points for
emulation programs to emulate each of the 65536 possible
guest instruction encodings for a Motorola 68020
microprocessor assembly language. The first instruction
of the pair will generally perform some operation related
to a source operand fetching or addressing. The second
instruction of the pair is generally a branch instruction
to an emulation routine which resides outside of the
dispatch store in the emulation routine store 21. Since
each pair of instructions will occupy 8 bytes, the total
size of the dispatch store is 512K bytes. The dispatch
store may be located, for instance, at addresses
(hex) 68000000 through (hex)6807FFFF.

The alignment of the beginning of the store is
important. 1In a preferred system, the store starts at
either the beginning of a 2 Megabyte address boundary, or
a 512 Kilobyte address boundary past the 2 Megabyte
boundary. By having this 512K byte block aligned onto a
512K byte address, block address translation registers
can be used to perform address translation of a fairly

WO 94/27214 PCT/US94/03862

10

15

20

25

30

randomly accessed block of code and eliminate potential
thrashing in translation lookaside buffers.

The 512K byte alignment also allows a single
instruction to index the dispatch store using a sixteen
bit 68020 opcode multiplied by 8. Thus, a single host
instruction can shift a 68020 opcode left by 3 bits
(multiplied by 8), and insert it into the address of the
base of the table to form the address of a dispatch table
entry for that opcode.

By having this table start in the first 1 Megabyte
of a 2 Megabyte aligned boundary, where the second 1
Megabyte of addresses will cause an exception if
accessed, it is possible to use an additional address bit
to assist in the detection of address errors as described
below.

As illustrated in Fig. 2, the host CPU 10 executes
a host instruction in order to dispatch a guest
instruction by accessing the first instruction in an
instruction pair in the dispatch store. The first
instruction executes, and then a second instruction in
the dispatch pair is executed. This second instruction
includes a jump instruction which goes to an emulation
block in the emulation routine store 21.

Fig. 3 illustrates the implementation of the
emulation routine store 21. The emulation routines are
allocated to a 64K block of bytes for host instruction
routines to which the jump instruction in the dispatch
entry branches. In general, the first two host
instructions in an emulation program reside in an entry
in the dispatch store, while the remaining instructions,
which are referred to as emulation routines, reside in
the emulation routine block of code. This block may be
located, for instance, at addresses (hex) 68080000 through
(hex) 6808FFFF.

WO 94/27214 PCT/US94/03862

10

15

20

25

30

As above, the alignment of the block of code for the
emulation routines is also important. In a preferred
system, it needs to start at the beginning with 64K byte
boundary.

During emulation, it is frequently desirable to
compute the address of a guest instruction within the
emulated block, such as by computation of a PC relative
address. The host architecture in a preferred system may
not provide an instruction to compute a PC relative
address. By storing the address of the beginning of the
emulation routine block so that it has zeros in the 16
least significant bits in a host register, referred to as
code ptr, a computation of the address of any label within

this 64K byte block of code can be optimized by using the
value in codeptr as a code base by doing an OR immediate,
with a 16 bit immediate value as the offset.

Within the 64K byte block of emulation routine code,
there is additional attention paid to code alignment. In
particular, the emulation blocks are aligned into blocks
which match the processor caching routing used to
retrieve the code. 1In a preferred system, a processor
cache uses 32 byte cache blocks in a cache line of 64
bytes, and the emulation blocks are packed into aligned
32 and 64 byte blocks.

Thus, as illustrated in Fig. 3, the emulation
routine store 21 may include a plurality of emulation
routines including emulation block 40, emulation block
41, emulation block 42, emulation block 43, emulation
block 44, etc. Each of these blocks 40-44 is either a 32
or 64 byte block.

A particular emulation block, e.g., block 42, is
entered by a jump from the dispatch table, and ends with
an instruction to dispatch the next guest instruction.

-10-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

As illustrated in Fig. 3, some emulation blocks may
include effective address calculation routines, such as
block 43. Such effective address routines are entered by
a jump from the dispatch table as described below, and
end with a jump to a return address of an emulation block
within the emulation routine memory.

Fig. 4 illustrates the emulation decoding process
according to the present invention. As mentioned above,
the host processor 10 shown in Fig. 1 includes a
plurality of special purpose and general purpose
registers. The general purpose register disp_table stores

a pointer to a dispatch table entry. Also, at this point
in the decoding sequence, a special purpose register
labelled ctr will contain the same value as disp_table. A
general purpose register labelled pc stores a guest
instruction pointer 2 bytes past a current guest
instruction. A general purpose register labelled
prefetch_data stores a next guest instruction, as indicated
at block 50. As mentioned above, the emulation routines
include host instructions distributed within the routines
to carry out the decoding process: Thus, each emulation
program will include a DISPATCH macro, generally 51,
which does inter-instruction processes which may be
required between guest instructions, and causes a jump to
the dispatch table entry indicated by the pointer in

- register ctr. The emulation program also includes a macro

referred to as DECODE1l macro 52, which takes the next
guest instruction from the prefetch_data register,

multiplies that instruction by 8, and inserts the results
in the general purpose register labelled disp_table so that

it forms an address of a dispatch table entry.

-11-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

A next macro 53 within an emulation program referred
to as DECODE2 macro, copies the value in the disp_table
register to the special purpose register ctr.

A final macro referred to as PREFETCH macro 54 is
included within an emulation program. The PREFETCH macro
54 advances the guest instruction pointer in register pc

by 2 bytes, then causes a prefetch of the next guest
instruction from the address indicated by the pointer in
register pc and places the prefetched instruction in the

general purpose register prefetch_.data. The final macro in

a given emulation routine is the DISPATCH macro 51.
Thus, as illustrated in Fig. 4, an emulation program for
a particular guest instruction begins immediately after
the jump instruction of the DISPATCH macro 51.

The structures of alternative emulation programs,
according to the present invention, are shown in Figs.
5 and 6. Fig. 5 illustrates the general case. Line 1 is
the first instruction INST1 stored in a dispatch entry in
the dispatch store. Generally, this is a non-jump
instruction relevant to addressing mode of the guest
instruction. Line 2 stores the second instruction INST2
stored in the dispatch entry. Generally, this is a jump
to a block of code in the emulation routine store.

Line 3 corresponds to the instruction or
instructions at the beginning of an emulation block.
Within an emulation program, the DECODE1 macro oOCCurs
next, as indicated at line 4. After the DECODEl macro in
line 4, an instruction or instructions may be included
relevant to emulation of the guest instruction. Next, a
DECODE2 macro is executed as indicated at line 6. The
DECODE2 macro in 1line 6 may be followed by other
instructions indicated by line 7, relevant to the decoded
guest instruction. Next in the sequence, a PREFETCH
macro of line 8 is executed. The PREFETCH macro may be

-12-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

followed by an instruction or instructions represented by
line 9 of the emulation program. ¥Finally, the DISPATCH
macro is executed as indicated at line 10. The first
instruction of the DISPATCH macro is a conditional jump
to the value in the ctr register, if no special conditions
are pending.

Fig. 5 illustrates the distribution of the DECODE1,
DECODE2, PREFETCH, and DISPATCH macros within an
emulation program. It will be appreciated by those of
skill in the art that the presence of instructions
between such macros may or may not occur. However, by
distributing the macros among the instructions of the
emulation program, the programmer can take advantage of
any data or instruction access latency occurring in the
program to improve performance.

Fig. 6 illustrates an emulation program which is
used when a single instruction in a dispatch entry in the
dispatch table is insufficient to handle addressing mode
issues. 1In this case, the first instruction, INST of the
dispatch entry, is shown in line 1. This instruction is
a non-jump instruction which sets the value of a return
address in a host register labelled rtn_addr which is a
general purpose register in a preferred embodiment of the
present invention. The next instruction in line 2 of
Fig. 6 is the instruction INST2 in the dispatch entry.
This instruction causes a jump to an effective address
routine stored in the emulation routine store, ‘as
illustrated at element 43 of Fig. 3.

Line 3 of Fig. 6 illustrates the beginning
instructions of the effective address routine. Line 4 of
the program shown in Fig. 6 is an instruction which
results in moving the return address from the register

rtn_addr to a special purpose register Ir, which is used for

jump addresses by the host processor. This may or may

-13-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

not be necessary in a given implementation of the present
invention. Line 5 of the program illustrates the final
instruction of the effective address routine, which
requires a jump to the return address stored in the
register |Ir. This jump results in execution of the
instructions illustrated at line 6, starting the
emulation block for the guest instruction. This
emulation block will include the DECODEl macro, line 7,
possibly other instructions, line 8, the DECODE2 macro,
line 9, the PREFETCH macro, line 10, possibly other
instructions, line 11, and the DISPATCH macro, line 12,
as described above with respect to Fig. 5.

II. Multi-Instruction Sequence Emulation

The emulation system according to the present
invention may be further optimized for sequences of guest
instructions which are expected to be relatively common
in the guest code to be emulated. For instance, the move
multiple opcode MOVEM in the 68020 architecture may be a
first instruction in a three instruction sequence,
including MOVEM, unlink UNLK, ahd return-to-subroutine
RTS, which commonly occurs in many programs written for
the 68020 processor. Thus, Fig. 7 illustrates how an
emulation program for the MOVEM opcode may be implemented
according to the present invention.

The MOVEM emulation program, after dispatching, as
described above, will include a section which begins
execution of the opcode, including the DECODE1, DECODE2,
and PREFETCH macros (block 100). After the prefetching,
the next opcode (2nd) can be tested to determine whether
it is the UNLK opcode (block 101). If it is not, then
the expected sequence is not occurring, and the MOVEM
instruction is completed (block 102).

-14-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

If at block 101, the emulation program detects a
UNLK instruction, then the algorithm tests whether
special conditions are pending, such as an interrupt, or
instruction tracing condition (block 103). If a special
condition is pending, then the algorithm branches back to
complete the MOVEM instruction at block 102, because the
special condition must be handled between guest
instructions.

If no special condition is pending at block 103,
then the next opcode (3rd) is tested (block 104). If the
third opcode is not the RTS instruction, then the
predicted three instruction sequence is not found, and
the algorithm branches to complete a combined MOVEM and
UNLK instruction program (block 105). If the next opcode
is found to be RTS in block 104, then the algorithm
branches to complete the combined MOVEM, UNLK, and RTS
instruction sequence (block 106).

Thus, it can be seen that for the combined sequence,
the overhead of the decoding and dispatching logic for
UNLK and RTS is bypassed.

Fig. 8 illustrates an emulation program for the
MOVEM instruction, or a similar instruction which may be
the first instruction in a three guest instruction
sequence. As illustrated in Fig. 8, the first guest
instruction is dispatched by the emulation program of the
previous instruction, as described above. Thus, the
first guest instruction emulation program includes
instruction 1 on line 1 and instruction 2 on line 2 which
are found in the dispatch table. Instruction 2 on line
2 causes a jump to line 3 of the program, found in the
emulation program store. These instructions for the
MOVEM instruction will need a MOVEM opcode extension.
This opcode extension will have been loaded by the

previous emulation program in the prefetch_data register, as

-15-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

it consists of the next two bytes in the guest
instruction sequence. Thus, an additional prefetch is
needed to be executed to find the next guest instruction.
So, the pc value is then incremented by two bytes and a
prefetch operation to fetch the instruction from the
address pointed to by the register pc to a general purpose

register gpr, other than the prefetch data register is

executed (line 4). The emulation program tests whether
the second guest instruction, which is now indicated by
the value in the general purpose register is the expected
second guest instruction of the sequence and saves the
result (line 5).

Line 6 of the program indicates that the extension
data is used by the emulation program. An additional
instruction or group of instructions may be executed
(line 7). Lines 8 and 9 of the program illustrate that
the DECODE1 and DECODE2 macros are executed. Line 10
indicates that an instruction or instructions may be
interspersed between the DECODE2 macro and the PREFETCH
macro on line 11. After the DECODE1l, DECODE2 and
PREFETCH macros are executed, a check for special
conditions, such as an interrupt or instruction tracing
mode, is made (line 12). As indicated at line 13, the
program will branch if the sequence had been detected in
line 5, and no special conditions were found. If the
sequence is not detected, then instructions indicated at
line 14 are executed to complete emulation of the MOVEM
instruction. Finally, the DISPATCH macro is executed to
jump to the dispatch table entry for the second guest
instruction (line 15).

In Fig. 8, if the branch is taken at line 13, then
the program moves to 1line 16. At this point,
instructions may be executed. Line 17 of Fig. 8 shows
that the program then tests for the third expected guest

-16-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

instruction in the sequence by looking at the value in
the prefetch data register. As indicated at line 18, the
algorithm will branch if the sequence is detected. If
not, the instructions indicated by line 19 are executed
to carry out a combined two instruction sequence. The
DECODE1 and DECODE2 macros are executed, as indicated at
lines 20 and 21. Line 22 indicates the possibility of
interspersed instructions for the emulation program
between the macros. At line 23, the PREFETCH macro is
executed to prefetch the fourth guest instruction in the
sequence. Next, the DISPATCH macro is executed to jump
to the dispatch table entry for the third guest
instruction in the sequence (line 24).

If at line 18 of the program the branch was taken,
then for the program illustrated in Fig. 8, line 25 is
executed. This line indicates that instructions in the
emulation program are executed. Line 26 illustrates that
an additional fetch operation is executed to retrieve the
fourth guest instruction into the prefetch_data register.
For the RTS instruction in this sequence, the PREFETCH
macro is replaced by instructions to retrieve the target
of the return from subroutine instruction into the
prefetch_data register.

Lines 27 and 28 correspond to the standard DECODE1
and DECODE2 macros in the emulation system. Line 29
indicates the presence of interspersed instructions to
complete the combined three guest instruction emulation.
Line 30 illustrates the presence of the PREFETCH macro to
retrieve the fifth guest instruction in the sequence.
Line 31 ends up the routine with a DISPATCH macro which
causes a jump to the dispatch table entry of the fourth
guest instruction in the sequence.

Thus, it can be seen that the emulation program
includes 1logic which bypasses the dispatching of

-17-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

instructions in the detected sequence. This greatly
reduces the overhead involved in executing common guest
instruction sequences.

Fig. 9 illustrates an emulation program for a
sequence of guest instructions, such as a repeated
sequence. As can be seen in Fig. 9, the first guest
instruction is dispatched by the previous emulation
program, and instructions 1 and 2 from the dispatch table
entry are executed (lines 1 and 2). Instruction 2 causes
a jump to the emulation program store and execution of
the sequence beginning with line 3.

Line 3 in Fig. 9 illustrates that the emulation
program will include instructions that test the
prefetch_data register for the sequence. This register will

have been filled with the second guest instruction in the
sequence by the PREFETCH macro of the previous guest
instruction.

As indicated on line 4, the algorithm branches if
the sequence is detected to line 11. If the sequence is
not detected, then the algorithm continues with
instructions indicated at 1line 5 to complete the
emulation program. The emulation program would also
include the DECODE1l and DECODE2 macros as indicated at
lines 6 and 7. Line 8 indicates that instructions of the
emulation program may be interspersed with the macros
involved in decoding and prefetching instructions. At
line 9, the PREFETCH macro is executed to retrieve the
third guest instruction in the sequence. Line 10 is the
DISPATCH macro which jumps to the dispatch table entry
for the second guest instruction. If at line 4, the
branch was taken, a PREFETCH macro is executed to
retrieve the third guest instruction. This macro is
necessary because the DECODEl1l, DECODE2, and PREFETCH
macros of lines 6, 7, and 9 were bypassed by the

-18-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

detection of the sequence of guest instructions. Then,

the instructions at line 12 are executed for the combined

emulation program. Next, the emulation program will
include a DECODEl macro as indicated at line 13. Line 14
indicates the possible distribution of instructions
within the emulation program. Line 15 indicates the
DECODE2 macro which loads the ctr register with the

address of the dispatch entry for the third guest
instruction. ©Line 16 indicates the PREFETCH macro for
retrieving the fourth guest instruction in the sequence.
Line 17 is the DISPATCH macro which causes a jump to the
dispatch table entry for the third guest instruction.

Thus, Fig. 9 illustrates the bypassing of decode and
dispatch logic in the emulation program for a common
opcode sequence, such as a repeated pair of opcodes.

Fig. 10 illustrates a program which is optimized for
decoding repeated sequences of instructions. In this
example, the first instruction on line 1 is a test for
repeat and the second instruction is a jump from the
dispatch table entry to an emulation routine on line 3 as
shown in Fig. 10. Thus, lines 1 and 2" of Fig. 10
correspond to the dispatch table entry for the first
guest instruction.

At line 3, the routine executes an instruction or
instructions relevant to the guest instruction being
decoded. Next, the DECODEl1l macro is executed, followed
by the PREFETCH macro for the third guest instruction
(lines 4 and 5). After the PREFETCH macro, an
instruction or instructions for emulating the guest
instruction are executed (line 6). In line 7, the
algorithm then branches if a repeat had been detected to
line 11 of the routine. If no repeat had been detected,
then the DECODE2 macro is executed, as indicated at line
8. This macro is followed by instructions indicated at

-19-

WO 94/27214

10

15

20

25

30

PCT/US94/03862

line 9 which wrap up the emulated guest instruction.
Line 10 indicates the DISPATCH macro is executed. This
results in dispatching of the (2+N)th guest instruction,
where "N" is the number of times that a repeated
instruction had been detected. Thus, if no repeat is
detected at line 7, then the second guest instruction is
dispatched at line 10.

If the branch had been taken at line 7, then the
algorithm goes to line 11 to test for a repeat once
again. Thus, the second and third guest instructions can
be compared to determine whether a repeat has occurred at
this point, because the PREFETCH macro on line 5 had
prefetched‘the third gueét.

In line 12 of the routine, a branch is taken if a
special condition is detected to line 8 to complete the
execution of the current guest instruction. In line 13,
additional instructions are executed to handle the
combined execution of repeated instructions. At line 14,
the DECODEl1l macro is executed, followed by the PREFETCH
macro in line 15. The PREFETCH macro on line 15
prefetches the (3+N)th guest instruction, where "N" again
is the value indicating the number of times that a repeat
had been detected.

At line 16, instructions are executed relevant to
emulation of the guest instruction sequence. At line 17,
the algorithm branches if a repeat had been detected at
line 11 back to line 11. The algorithm continues in this
loop from 1lines 11 through 17, until the repeated
sequence ends. Line 18 of the routine causes a branch to
line 8 to wrap up the sequence if the branch at line 17
is not taken.

-20-

WO 94/27214 | PCT/US94/03862

10

15

20

25

30

ITI. Details of a 68020 Emulation on a Power Architecture

The present invention may be further understood with
reference to or detailed information concerning emulation
of the Motorola 68020 microprocessor guest code on an IBM
POWER microprocessor architecture. Thus, the internal
design of a 68020 emulator for the POWER architecture
processor is provided below.

POWER Registers
The POWER architecture defines 32 general purpose 32

bit registers (actually they can be 64 bits, but the
emulator just uses the 32 bit architecture) referred to

as r0..r31. There are 32 double precision 64 bit floating
point registers referred to as f0...f31, which are not used

at all by the emulator. There are 4 additional special
purpose 32 bit registers used by the emulator, they are
called cr (condition register), xer (exception register),
ctr (counter), and Ir (link register).

In the source code, the general purpose register are
referred to by names, instead of r0.r31. These name will

be used in the remainder of the document. The current
assignments are as follows, although they can easily be
rearranged.

r0 zero

ri a7

r2 (unused)

r3 addr

r4 data

rd rtn_addr

ré immed_data

r7 base_disp (also called scaled_index)

-21-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

r8...rt6 do...d7
r16...r22 a0...ab

r23 (unused)

r24 pc

r25 sr_and_flags
r26 cer_x

r27 prefetch_data
r28 vbr

r29 disp_table

r30 code_ptr

r31 EmulatorStatePtr

The zero register contains a constant value of zero,
it is never changed. Assigning this to register r0 is
also convenient due to the POWER architecture base
address quirk that does not allow r0 to be used as a
memory base register.

The register d0...d7, a0...a7, pc, sr_and_flags, ccr x, and
vbr are used to hold corresponding 68020 register state.
This is described in detail later in this document.

Registers addr, data, rtn_addr, immed_data, and base_disp

are five temporary scratch registers used during the
emulation of a 68020 instruction. Although they can be
used for many different purposes, their names describe
how they are used by effective address calculation
routines, which are used during the emulation of many of
the opcodes.

The prefetch_data register generally contains the sign

extended 16 bit data value pointed to by the pc register.
The disp_table register points to an entry in the 512KB

instruction dispatch table. The opcode being dispatched

-22-

WO 94/27214

10

15

20

25

30

PCT/US94/03862

to is inserted into this register to index the table,
this is described in more detail later.

The code _ptr register points to the beginning of the
64KB block of code that contains the emulation routines
this block is 64KB aligned so that a 16 bit immediate
value can be “or”ed with this register to point to any
address with this 64KB block of code.

EmulatorStatePtr points to the base of the memory area
that is used to store less frequently used emulator state
that cannot be contained in the POWER registers.

The POWER special purpose Ir register is available
for use during the emulation of a 68020 instruction, and
does not correspond to any 68020 register state.

The POWER special purpose ctr register is available
for use during the emulation of a 68020 instruction, and
does not correspond to any 68020 register state. It is
used by convention to hold the address of the first POWER
instruction to be executed to emulate the next 68020
instruction.

The POWER special purpose‘xér-register is used to
hold the V and C bits of the 68020 CCR register. It also
contains the POWER SO bit, as well as the byte count to
be used by POWER string instructions.

The POWER condition register cr is used to hold the
N and Z bits of the 68020 CCR register. The low 16 bits
are available for general use during the emulation df a
68020 instruction. The 4 bit condition register fields
crl and cr2 are not used, the 4 bits of cr3 are used for
global flags related to interrupts and special conditions

which are described later.

-23-

WO 94/27214

io

15

20

25

30

PCT/US94/03862

68020 Register State Assignments
The 68020 has a number of general purpose and

special purpose registers, some of which are only
accessible in supervisor mode. All of these registers
contents must be maintained by the emulator. In some
cases, the bits in these registers may be distributed in
a number of different places within the POWER
architecture, but the emulator will gather/scatter the
bits whenever it encounters a 68020 instruction that
accesses the entire register. In other cases, there may
be multiple copies of a register contents. Many of the
special purpose registers are stored in memory pointed to
by EmulatorStatePtr. The 68020 registers and their POWER

locations are as follows.

DO...D7 do...d7

AO...A6 a0...a6

A7 a7 (currently active stack pointer)

PC pc (POWER version does not always point

to executing instruction)

PC trace_pc(EmulatorStatePtr) (valid when tracing
enabled)

CCR cr/xer/cer_x (bits are distributed)

SR sr_and_flags (upper byte of SR only)

USP saved_usp(EmulatorStatePtr) (a7, when wusp is

active stack)
ISP saved_isp(EmulatorStatePtr) (a7, when isp is

active stack)

MSP saved_msp(EmulatorStatePtr) (a7, when msp is
active stack)

VBR saved_vbr(EmulatorStatePtr) (duplicate copy in
vbr)

-24-

WO 94/27214 | PCT/US94/03862

10

15

20

25

30

SFC saved_sfc(EmulatorStatePtr)
DFC saved_dfc(EmulatorStatePtr)
CACR saved_cacr(EmulatorStatePtr)
CAAR saved_caar(EmulatorStatePtr)

The 68020 registers dO0...d7/a0...a6 are in POWER

registers. The 68020 has three stack pointers, and the

active stack pointer will be in register a7, while the

remaining two inactive stack pointers will reside in
memory. The memory copy of the active stack pointer is
not used and inconsistent while that stack pointer is
selected as the active stack pointer.' When the selection
of the active stack pointer is changed, the register copy
of the old stack pointer will be written to memory, and
the new register copy of the active stack pointer will be
read from memory. It should be noted that register a7 is
assigned to POWER register rl, which is register used for
the native POWER stack pointer. This is to allow a
single stack model in a mixed emulated and native
environment.

In the 68020, the pc generally points to the
beginning of the instruction that is currently being
executed. During emulation, the pc register advances as
the instruction is decoded and executed, and generally
points somewhat past the beginning of the instruction
being executed. At the beginning of the execution of an
instruction, the pc always points two bytes (16 bits) past
the beginning of the instruction, which may actually
point to the next instruction. Since this offset is

constant, it is always possible to compute the actual pc

at an instruction boundary. When the 68020 instruction
trace mode is active, the exception frame that is
generated after the execution of a traced instruction

-25-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

needs to contain the pc of the beginning of the
instruction that has Jjust completed. Since it is
generally not possible to compute the size of the
instruction that just completed, or worse yet, it may
have been a branch instruction which computed a
completely new pc, there is a memory copy called trace_pc.
When trace mode is active, the pc of an instruction that

is about to execute is save in the memory based trace pc,

so that the starting pc of the instruction can be
determined when the instruction completes. Since there
is a performance penalty associated with this computation
and updating, this is only performed when trace mode is
enabled.

The 68020 CCR register consists of five condition
code bits, called X, N, Z, V, and C. During emulation,

these are treated as five separate bits which are in
three different registers, instead of a single field of
five bits. The X bit is stored in bit 2 of the POWER

register named ccr_x. This bit position corresponds the
position of the CA bit in the POWER special purpose XER
register. The N bit is stored in bit 0 of the POWER cr
register, this corresponds to the LT condition bit of crO.
The Z bit is stored in bit 2 of the cr register, this
corresponds to the EQ condition bit of crQ0. The V bit is
stored in bit 1 of the POWER special purpose XER
register, which is the OV flag. The C bit is stored in
bit 2 of the XER register, which is the CA flag. Most of
the 68020 data movement and logical operations only
update four of the five condition codes. They leave the
X bit unchanged, set the N and Z bits to indicate if the
result is negative or zero, and always clear the V and C

bits. Using this arrangement, a single POWER instruction

-26-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

can move data from one register to another, and update
some or all of these four bits of the CCR as follows.
ao. dst,src,zero ;# move data, update N,Z, clear V,C
or. dst,src,zero ;# move data, update N,Z
ao dst,src,zero ;# move data, clear V,C
caxo dst,src,zero ;# move data, clear V

a dst,src,zero ;# move data, clear C

Most of the 68020 arithmetic and shift operations
update the X bit to the same value as the C bit. Since
the C bit is in the XER register, a simple move from the
XER register into the bcr_x register is all that is
required to update the X bit. It should be noted that
the 68020 X and C bits are set to 1 if there is a borrow

during subtraction, while the POWER (and most other RISC
processors) set the CA bit to 0 if there is a borrow

during subtraction. This will require the CA bit to be
complemented before saving it as the X and Cbits. The

same inversion is needed when the X bit is used as a
borrow-in for the 68020 SUBX instruction. By using the

following instruction pair, it is possible to perform a
subtraction followed by an addition, which will set the
CA flag to correspond to the 68020 conventions.

sfo. dst,src,dst ;# dst <- dst-src, update N,Z,V

a tmp,dst,src ;# update C, ignore result

The upper byte of the 68020 SR register is stored in
the low 8 bits (24.31) of the sr_and flags register. The

high 16 bits (0.15) of this register contain test-mode
enable flags. Bit 20 is the flag_group_1_active bit which

-27-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

indicates that a group 1 exception (Bus Error or Address
Error) is being processed, and is used to detect a Double
Bus Fault situation. Bit 22 is the flag_odd pc bit, which
is used for Address Error detection. Bit 23 is the
flag_trace_pending bit, which indicates that the 68020

instruction currently being executed is being traced, and

needs to generate a trace exception when it completes.
Many of the 68020 special purpose registers that are

accessed via the MOVEC instruction are stored in memory,

because they are infrequently accessed, and there are not
enough POWER registers available to hold all of them. An

exception to this is the vbr register, there is a
dedicated POWER register that is used to hold a copy of
the vbr register contents, however the memory copy is also
kept up to date. The various stack pointers are also an
exception. Since only one of the three stack pointers
can be selected at a time, the register a7 is used for

the selected stack pointer, and the remaining two
inactive stack pointers are stored in memory.

The Dispatch Table
The dispatch table is an indexed table of 65536

pairs of POWER instructions, which correspond to the
entry points for the routines to emulate each of the
65536 possible 68020 instruction encodings. The first
instruction of the pair will generally perform some
operation related to source operand fetching or
addressing. The second instruction of the pair is
generally a branch instruction to an emulation routine
which resides outside of this table. Since each pair of
instructions will occupy 8 bytes, the total size of this
table is 512K bytes. Currently this table is located at
addresses $68000000..$6807FFFF, and can reside in Read

-28-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

Only Memory (ROM). The register disp table is used to
address this table.

The alignment of the beginning of the table is very
important, ‘it needs to start at either the beginning of
a 2MB boundary, or 512KB past the beginning. By having
this 512KB block aligned to a 512KB address, the POWER
Block Address Translation (BAT) registers can be used to
perform the address translation of this fairly randomly
accessed block of code, and eliminate potential thrashing
of the TLBs.

The 512KB alignment also allows a single POWER
instruction to index the table using the 68020 opcode
times 8. The following instruction will shift the opcode
left by 3 bits (multiply by 8), and insert it into the
address of the base of the table, forming the address of
the table entry for that opcode.

rlimi disp_table,opcode,3,0x0007FFF8

By having this table start in the first 1MB of a 2MB
aligned boundary, where the second 1MB of addresses will
cause an exception if accessed, it is possible to use an
additional address bit to assist in the detection of
Address Errors (see discussion later in this document).

The Emulation Routines

There is a block of 64K bytes allocated for the
POWER instructions the Dispatch Table branches to. In
general, the first two POWER instructions in the
emulation of a 68020 instruction reside in the Dispatch
Table, while the remaining instructions, which we refer
to as the Emulation routines, reside in this block of
code. Currently this block is located at addresses
$68080000..56808FFFF, and can reside in Read Only Memory

-29-

WO 94/27214 . PCT/US94/03862

10

15

20

25

30

(ROM) . The register code_ptr contains the address of the

beginning of this block.

Just like the Dispatch Table, the alignment of the
block of code for the Emulation routines is also very
important, it needs to start at the beginning of a 64KB
boundary.

In the emulator, it is frequently desirable to
compute the address of an instruction within this block
of code. The POWER architecture does not provide an
instruction to compute a pc-relative address. The
register code_ptr points to the beginning of the block, and

there is a label in the source code called cb which marks

the code base. To easily compute the address of any
label within this 64KB block of code, the following
instruction can be used.

ori addr,code_ptr,label-cb

Within the 64KB block of code, there is additional
attention paid to code alignment. The 601 processor
cache has 32 byte cache blopks, and a cache line
consisting of 2 cache blocks, or 64 bytes. To improve
locality, and reduce the number of bytes of code that
needs to be fetched when there is a cache miss, the
routines are packed into nicely aligned 32 or 64 byte
blocks.

68020 Instruction Prefetching
On the 601 processor, as well as most other RISC

processors, there is some latency associated with memory
read operations, and attempts to use the results of a
load instruction, in the very next instruction will
usually result in a pipeline stall. To improve
performance, and minimize these stalls, it is very

-30-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

desirable to issue memory reads several instructions
before attempting to use the data that they read.

Since the emulator needs to read all of the 68020
opcode and operand bytes 1in order to emulate an
instruction, performance can be improved by issuing these
reads long before the data is needed. To accomplish
this, the emulator uses a register called prefetch_data to
read (or pre-fetch) the next 16 bits (sign extended) of
the instruction stream into, as soon as the current 16

bits have been consumed. The register pc is used to point

to the position within the 68020 instruction stream that
has been read. The POWER architecture provides an
efficient instruction that can both advance the pc
register, and read the data pointed to by the updated pc.
The instruction is as follows, and there is also a macro
called PREFETCH that is used within the emulator source
code.
lhau prefetch_data,2(pc)

The prefetched data is always read 16 bits at a
time, and sign extended, because the 68020 opcodes and
extension words are most often organized in 16 bit
groups. The sign extension is useful for the addressing
modes that use a 16 bit signed displacement that is added
to an A-register or the PC register.

68020 Instruction Decoding

By using many of the concepts introduced above, the
four basic steps required to decode and emulate a simple
68020 instruction can now be described. The four steps
are referred to as DECODEl, DECODE2, PREFETCH, and
DISPATCH. For simplicity, we will assume that this is a
16 bit opcode that does not perform any useful operation.

-31-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

Since this is a very pipelined sequence of events,
and we must start somewhere in the pipeline, we will
begin at the first instruction in the dispatch table for
this opcode, and after going through the remaining
stages, we will see how we get back here after completing
the remaining phases.

Upon entry, the following registers are setup as
follows. The disp_table and ctr registers contains the
address of the dispatch table entry for this opcode (the
POWER address that we are currently executing at). The
pc register points 2 bytes past the 68020 opcode that we
are about to emulate. The prefetch_data register contains
the sign extended 16 bit value that the pc register points
to (in this example, it is the next 68020 opcode to be
emulated) .

The first phase is DECODE1, this phase is begins the
decoding of the next 68020 instruction to be emulated.
In this example, we are assuming that the current 68020
instruction consists of just a 16 bit opcode, and does
not have any extension words. If there were extension
words, they would need to be consumed by PREFETCHing,
until. prefetch_data contains the opcode of the next 68020

instruction, and pc points to that opcode. The DECODE1
operation takes the next 68020 opcode that is in the
prefetch_data register, multiplies it by 8, and inserts it
into the disp_table register, forming the address of the

dispatch table entry for the next 68020 instruction.
This is done in a single POWER instruction as follows,
the macro DECODEl performs this instruction.

rlimi disp_table,prefetch_data,3,0x0007FFF8

Since DECODE1 was the first of the two POWER
instructions that reside in the dispatch table entry for

-32-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

this 68020 instruction, the second instruction must be a
branch out of the dispatch table, and into an emulation
routine. This is not considered to be one of the phases
of the decoding process, but rather a necessity imposed
by the two instruction limit with a dispatch table entry.
In this example we will assume that this branch is as
follows.

b continue

The second phase is DECODE2, which in this example
will occur in the first POWER instruction of the
emulation routine. DECODE2 simply takes the dispatch
table entry address that was computed by DECODE1l, and
moves it into the POWER ctr register. This is because the
POWER branch instructions cannot branch to addresses
contained in the general purpose registers, and can only
branch to addresses in either the ctr or Ir special purpose
registers. The DECODE2 phase is done in a single POWER
instruction as follows, the macro DECODE2 performs this
instruction. o

continue:

mtctr disp_table

The third phase is PREFETCH, which in this example
will occur in the second POWER instruction of the
emulation routine. As described earlier, PREFETCH will
advance the pc register by 2 bytes, and read the sign
extended 16 bit value at that address into the prefetch_data
register. We need to prefetch at this time, because we
have consumed the previous contents of the prefetch_data
register, which had contained the 16 bit 68020 opcode for
next instruction to be emulated. This will setup the
prefetch_data register with the first extension word (if

-33-

WO 94/27214

10

15

20

25

30

PCT/US94/03862

any) associated with the next opcode, or the opcode of
the instruction following the next instruction. As shown
earlier, the PREFETCH phase is done in a single POWER
instruction as follows, the macro PREFETCH performs this
instruction.

lhau prefetch_data,2(pc)

The fourth and final phase is DISPATCH, which in
this example will occur in the third and fourth POWER
instructions of the emulation routine. There are two
POWER instructions needed for this phase, but in general
the second one never gets executed. The DISPATCH phase
completes the emulation of the current 68020 instruction,
and begins the emulation of the next 68020 instruction.
Since this marks the boundary between two 68020
instructions, any special processing that needs to occur
between two 68020 instructions must happen here.
Instruction Trace exceptions, and 68020 interrupt
processing are examples of special events that need to be
processed on instruction boundaries. There is a bit in
the POWER cr register referred to as cr_special_event_pending,
which gets set whenever any of this special handling is
needed. How this bit gets set will be described later,
but for néw, lets just assume that it is cleared. Since
the dispatch table entry address for the next 68020
instruction is already loaded into the POWER ctr register,
the DISPATCH phase simply needs to branch to this addfess
when there are no special events pending, or branch to a
common routine to process pending special events. This
final phase is done in two POWER instructions as follows,
the macro DISPATCH performs these instructions.

bfc cr_special_event_pending

b process_special_event

-34-

WO 94/27214 . PCT/US94/03862

10

15

20

25

30

By breaking the decoding and dispatching process
into these simple phases, the instructions to perform the
various phases can be distributed between other
instructions within the emulation routines to execute in
gaps where the processor would have otherwise stalled due
to memory access latency.

Effective Address Computation
The 68020 architecture has a number of different

addressing modes, some are very simple, and some can
become very complex. Since the effective address, and
the data that it points to, is generally needed very
early in the emulation of a 68020.instruction, it is
convenient to have a number of Effective Address
Computation routines that can run be selected based upon
the addressing mode, and a common emulation routine to
implement the operation independent of the addressing
mode used.

In some cases, the entire Effective Address
Computation can occur in a single POWER instruction, and
can be placed in the Dispatch Table. In other cases a
short (or possibly long) subroutine is needed. Since
there is only room for two instructions in the dispatch
table, one method of performing a subroutine call would
be to have the first instruction contain a call to the
subroutine, which would return to the second instruction,
which would be a branch to the emulation routine. This
would result in a branch to a branch instruction, on the
initial dispatch, and a branch to a branch instruction
when returning from the Effective Address subroutine.
This type of branching does not perform well on the POWER
processor. It is more desirable to have the Effective
Address calculation subroutine return directly to the e
first instruction of the emulation routine.

-35-

WO 94/27214 . PCT/US94/03862

10

15

20

25

30

To reduce the number of branches, a slightly
different subroutine calling convention is used. The
first instruction in the dispatch table will load the
address of the emulation routine into the register
rtn_addr, and the second instruction will branch to the
Effective Address subroutine. The subroutine will move
the address of the emulation routine from rtn_addr into the
Ir, and when it returns, it will return to the emulation
routine.
routine, the code ptr register is used as a base address.
An example of what the two instructions in the dispatch
table may look like is as follows.

ori rtn_addf,code_ptr,not_l_mem-cb

b cea_|_30

There are some register conventions used by the
effective address routines. As mentioned before rtn_addr
is used to pass the return address, and may be used as a
scratch register by the Effective Address routine. The
register addr is used to return the effective address (if
one is computed). The register data will contain the data
that was read from the effective address (if it was a
Fetch Effective Address routine), or will remain
unchanged. The register immed data is used to return the
immediate operand, or opcode extension word that follows
to opcode but precedes the Effective Address extension
words, for Immediate/Extended Effective Address routines.
The register base_disp is used as a scratch register.

The 68020 modes 6n and 73 indexed addressing modes
can be very complex. In it’s simplest form, any of the
sixteen 68020 A/D registers can be used as an index. The
index can be treated as a sign extended 16 bit quantity,
or a full 32 bit value, and can be multiplied by 1, 2, 4,

-36-

WO 94/27214 » PCT/US94/03862

10

15

20

25

30

or 8, added to a base register, and added to a sign
extended 8 bit displacement. Most of the information
needed to compute the address is in a secondary extension
word. There is an additional bit that indicates that
even more complex addressing options are available. To
quickly decode all of these options, there is a 256 entry
table of instruction pairs that is at the beginning of
the emulation routine code block. The code ptr register

points to the base of this indexed addressing mode decode
table.

Address Error Processing
Since all instructions in the 68020 architecture are

a multiple of two bytes long, the 68K does not allow
instructions to begin on odd addresses. If a branch to
an odd address is attempted, an Address Error exception
is generated. Since this exception is an indication of
a programming error, and is not a normal occurrence, the
emulator would like to spend as little time as possible
checking for this condition. There have been two methods
used in the emulator to detect branches to odd addresses,
each has different performance characteristics.

The first method (which is no longer used) consists
of two phases, called CHECK_ODD_PCl1 and CHECK_ODD_PC2.
Each phase consisted of a single instruction. The first
instruction would move the low bit of the pc register into

bit 31 of the cr register. The second instruction would
“or” bit 31 into the special event pending flag. This
would cause the process_special_event routine to be entered

if the new pc value was odd. That routine would check to
see if the pc was odd, and generate an Address Error

exception if it was. The POWER instructions used by the
two phases are as follows.

-37-

WO 94/27214

10

15

20

25

30

PCT/US94/03862

mtcrf Ox01,pc

cror cr_special_event_pending,cr_special_event_pending,31

The second method consists of a single phase, called
CHECK_ODD_PC1, which is a single POWER instruction. This
instruction will insert the low bit of the pc register

into bit 11 of the disp_table register. Assuming that this

is done before the DECODE2 phase, it will cause the
DISPATCH phase to jump to an address that is 1MB past the
Dispatch Table Entry that should have been used. This is
an illegal address, and will cause an exception when the
DISPATCH is attempted. The handler for this exception
will notice that the bit in disp_table had been set, and

will cause an Address Error exception to be generated.
This method has less overhead than the first method when

the pc is even, but significantly more overhead when the
pc is odd. The single POWER used by this method is as

follows.
rlimi disp_table,pc,20,0x00100000

MOVEM Register List Optimizations
The 68020 MOVEM instruction has a 16 bit register

list mask associated with it. There is one bit for each
of the 16 A/D registers, indicating if the register
should be moved. 1In general, the emulator would need to
perform 16 individual tests of the bits to determine if
the corresponding register needed to be read/written.
This can be very time consuming. Due to compiler
register allocation, parameter passing, and calling
conventions, there are some registers that rarely appear
in the register list of the MOVEM instruction, and others
that are much more frequent. Taking advantage of this,
the emulator can first check to see if any of the

-38-

WO 94/27214 | PCT/US94/03862

10

15

20

25

30

infrequent registers are on the list, using a bitwise
“and” operation against the mask. If none of those bits
were set, then there is a much smaller list of bits that
need to be checked individually (7 instead of 16), which
will improve performance. The infrequent registers that
the emulator currently test for are d0-d3/a0-al/ab-a7 and

the frequent registers are d4-d7/a2-a4.

Optimizations based on Opcode Synonyms

In the 68020 instruction set, there are many cases
where two different opcode encodings perform exactly the
same operation. Since the emulator can uniquely decode
each of the 65536 possible opcode encodings, it can make
sure that the dispatch table entries for two opcode
synonyms are the same, and have exactly the same
performance. | Below is a list of instructions and their
synonyms .
add.<b,w,l> #imm,dn = addi.<b,w,> #mm,dn
adda.w #imm,an = lea.l imm(an),an
addg.w #imm,an = addq.l . #imm,an
and.<b,w,I> #imm,dn = andi.<b,w,!> #mm,dn

asl.<b,w,I> #1,dn = add.<b,w, > dn,dn

bra.s *+4 = dbt.w dx,xxxx (32 bit nop)
bra.w d16 = jmp d16(pc)

bsr.w di16 = jsr d16(pc)

cir.l dn = moveq.| #0,dn

cmp.<b,w,I>#imm,dn = cmpi.<b,w,|> #imm,dn

lea.l (as),ad = movea.l as,ad

lea.l abs.w,an = movea.w #mm16,an
lea.l abs.l,an = movea.l #imm32,an
movea.l. (@a7),a7 = unlk a7

or.<b,w,I> #mm,dn = ori.<b,w,I> #imm,dn

-39-

WO 94/27214 | PCT/US94/03862

10

15

20

25

30

sub.<b,w,I> #imm,dn = subi.<b,w,|> #imm,dn

subq.w #imm,an = subq.l #imm,an

Optimizations based on Operands
In many cases, opcodes that have the same register

specified as both the source and destination behave the
same as some other opcode which executes faster. For these
opcodes, we create an optimized dispatch table entry which
is the same as the simpler opcode, instead of using the
dispatch table entry for the general case. The table below
shows the transformations.

and.<b,w,1> dn,dn -> tst.<b,w,I> dn

cmp.<b,w,l> dn,dn -> tst.l zero

cmpa.l an,an -> st zero

eor.<b,w,|> dn,dn -> clr.<b,w,|> dn

exg.l rn,rn -> nop

lea.l (an),an -> nop

move.<b,w,l> dn,dn -> tst.<b,w,I> dn

movea.l an,an -> nop

movea.<w,l> (an)+,an -> movea.<w,|> (an),an

or.<b,w,|> dn,dn -> tst.<b,w,I> dn

sub.<b,w,I> dn,dn -> clr.<b,w,I> dn (also clear
ccr.x)

In many cases, memory to memory MOVE instructions that
have the same source and destination addresses behave the
same as a TST instruction. If we can assume that the read
and the write will be to the same RAM location, and that
there are no side effects (write protected or I/O space
accesses), then it should be safe to omit the write, and
just do the read. The table below shows the
transformations.

-40-

WO 94/27214 | PCT/US94/03862

10

15

20

25

30

move.<b,w,I> (an),(an) -> tst.<b,w,I> (an)
move.<b,w,I> -(an),(an) -> tst.<b,w,I> -(an)
move.<b,w,I> (an)+,-(an) -> tst.<b,w,I> (an)
move.<b,w,I> -(an),(an)+ -> tst.<b,w,I> <1,2,4>(an)

Optimizations based on repeated Opcodes

There are many places in the Macintosh QuickDraw
routines where data movement loops are “unwound” and
contain 16 repeated sequences of the same instruction,
followed by a DBRA looping instruction. . There are also
cases of shorter sequences in compiler generated code for
structure copying. Since the emulation of a repeated
sequence of 68020 opcodes will cause a repeated sequence of
POWER instructions to be executed within the emulator, it
is possible for the emulation of one of these opcodes to
detect that the next opcode is the same, and eliminate some
of the decoding and dispatching overhead, which will
improve the performance of the subsequent instances of the
same opcode. If instruction tracing or an interrupt is
pending, this optimization cannot be performed, because
special event processing would need to occur at the
instruction boundaries. The opcodes that the emulator
currently detects repeated sequence of are shown below.

move.l d6,(at) +
move.| d6,(ab) +
eor.| d6,(ab) +
move.l (a0) +,(a1) +
move.l (a0) +,(a2) +
move.| (a1) +,(a0) +
move.| (@a2) +,(a1)+
move.| (a4) +,(ab) +

-41-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

Optimizations based on Opcode Segquences
In compiler generated code, and sometimes in the

Macintosh ROM code there are common sequences of two and
sometimes three instructions that occur frequently due to
runtime calling conventions. In many cases detecting these
sequences is done by having the emulation of the first
instruction of the sequence check to see if it is followed
by the second instruction of the sequence. For sequences
of three instructions, if the pair of the first two had
been detected, then the check for the third instruction can
be made. The emulator currently detects and optimizes the
following pairs and triples of instructions. As with other
optimizations of this kind, the optimization cannot be

performed if special events are pending. The sequences
that the emulator may detect are shown below.
move.b (a1)+,(a0) + bne.s *-2
move.b (a0)+,d0 cmp.b (a1)+,dO
move.b (a0)+,d1 cmp.b (al1)+,d1
move.l (a7)+,(a7) rts
move.l ([d16,ZA0,ZA0.w*1],d16),-(a7) . rts
move.l abs.w,-(a7) rts
movem.l d16(a6),reg_list unlk a6 s

movem.| (a7)+,reg list unlk a6 s

ATrap Dispatcher Acceleration
The Macintosh OS and Toolbox use the unimplemented

LineA opcode space to encode system calls. The LineA
dispatcher in the ROM executes several instructions (on
every call) to dispatch to the desired routine. This whole
process can be greatly improved by having the emulator
directly dispatch these instructions. However, there must
also be a way for this feature to be disabled if the
standard LineA dispatcher has been replaced, such as when

-42-

WO 94/27214 | PCT/US94/03862

10

15

20

25

30

using the A-Trap record/break features of MacsBug. In
order to achieve this compatibility, we need to know if the
handler address (in vector offset $28) has changed.
Fortunately, we do not have to worry about tracing, since
the 68000 will not take a trace trap on a LineA (or any
other unimplemented) instruction.

IV. Conclusion

This emulation technique is also optimized for an
upgraded version of the POWER architecture, referred to as
the POWER PC architecture. This updated version of the
POWER architecture executes the same opcodes listed above
for the POWER architecture instrﬁctions, except with
different mnemonics.

Thus, a highly efficient method for decoding 68020
instructions in the POWER architecture processor, utilizing
a special table of instruction sequences, specific
sequences of instructions and other optimizations is
provided. The alignment and method of indexing the table
contribute to the high speed decoding of the 68020
instructions. In particular, a single POWER instruction
can be used to index the table, by aligning the dispatch
table on a 512K byte boundary within a two megabyte range,
shifting the opcode left by three bits and inserting the
shifted opcode into the address of the base of the table.
Each entry in the table contains two POWER instructions.
The first instruction generally performs an operation
specific to source addressing mode, and the second
instruction branches to an emulation routine which is
generally independent of the source addressing mode. This
allows reduced code size, and better memory reference and
cache locality for the emulation routines.

There are four phases of the instruction decoding
process. DECODEl forms the address of the next dispatch

-43-

WO 94/27214 PCT/US94/03862

10

15

20

25

30

table entry by shifting and inserting the next 68020 opcode
into the address of the base of the dispatch table.
DECODE2 moves that dispatch table address to the power
architecture CTR register. PREFETCH reads the 16 bits
(assigned extended to 32 bits) that follow the next 68020
instruction into a temporary holding register called
prefetch_data. Finally, DISPATCH jumps to the address that

was computed by DECODE1l.

This sequence of four instruction macros is the
minimum number of instructions in this embodiment of the
invention that this task can be performed in on the POWER
architecture, and the use of opcode prefetching reduces or
eliminates pipeline stallé due to memory reference latency.

Overall, performance of an emulating guest
instructions is enhanced by reducing the number of host
instructions needed to be executed to emulate the guest
instruction. One primary reason for this benefit is the
direct access to the instructions in the dispatch table,
combined with prefetching of the guest instructions.
Furthermore, opcode sequences of any 1length may be
optimized, and decoding and dispatch logic bypassed for the
sequence, to further enhance emulator performance.

The foregoing description of preferred embodiments of
the present invention has been provided for the purposes of
illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations
will be apparent to practitioners skilled in this art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical
application, thereby enabling others skilled in the art to
understand the invention for various embodiments and with
various modifications as are suited to the particular use
contemplated. It is intended that the scope of the

-44-

WO 94/27214 PCT/US94/03862

invention be defined by the following claims and their
equivalents.

-45-

WO 94/27214 PCT/US94/03862

W O g9 68 LT b W N B

S S I N T T R e N T
N H O W ® a0 Wh RO

CLATIMS
What is claimed is:

1. For a host processor which executes host
instructions and includes host addressable memory, a system
for decoding guest instructions, comprising:

a guest program store in host addressable memory to
store at least one program of guest instructions;

an emulation program store in the host addressable
memory having a set of emulation programs, at least a
subset of the set of emulation programs including
respective host instruction routines for respective
particular guest instructions;

dispatch logic coupled with the guest program store
and the emulation program store to dispatch emulation
programs in the set, in response to guest instructions in
the at least one program of guest instructions and in
response to the emulation programs in the set of emulation
programs; and

emulation logic, comprising host instructions embedded
within a particular emulation program in the set of
emulation programs, to detect a particular sequence of
guest instructions, and in response to detection of the
particular sequence to bypass the dispatch logic for guest
instructions in the particular sequence.

2. The system of claim 1, wherein the particular
sequence comprises repeated guest instructions.

3. The system of claim 1, wherein the particular
sequence comprises more than two guest instructions.

-46-

WO 94/27214 PCT/US94/03862

W © g9 6 U1 b W N P

DD RN NNNRE BB R R BB R BB
QO U B WNR O WOODNONO U B WM R O

4. The system of claim 1, wherein the dispatch logic
comprises host instructions embedded within emulation
programs in the set of emulation programs.

5. The system of claim 1, wherein the emulation
programs store comprises:

a dispatch store in host processor addressable memory
having a set of dispatch entries, each dispatch entry in
the set including a plurality of host instructions of the
emulation program corresponding to a guest instruction;

an emulation routine store in host addressable memory
having a set of emulation entries beginning at
corresponding emulation ‘table addresses, each emulation
entry in the set including a host instruction routine for
the emulation program;

wherein the plurality of host instructions in a subset
of the set of dispatch entries includes a host jump
instruction which causes a jump upon execution by the host
processor to an emulation routine table address of a
corresponding emulation entry in the emulation routine
table; and -

wherein the host instruction routines in a subset of
the set of emulation entries include host instructions
which upon execution by the host processor form an
emulation program address to a dispatch entry in response
to a next guest instruction and jump directly to the
dispatch table address;

such that emulation programs in the emulation program
store comprise a plurality of instructions in the dispatch
table and a host instruction routine in the emulation
routine store.

-47-

WO 94/27214

W 0o 9 6 U1 b W N R

o
Lk o

W O U W N R

N I T R R T T T
© VW ® YOO UL WN R O

PCT/US94/03862

6. The system of claim 5, further including:

a gJuest instruction pointer store for a guest
instruction pointer indicating a guest instruction address
in the program of guest instructions;

a prefetched guest instruction store for a guest
instruction read from the program of guest instructions in
response to the guest instruction pointer; and

an emulation program pointer store for an emulation
program address formed in response to the current guest
instruction read from the prefetched guest instruction
store.

7. The system of claim 6, wherein emulation programs
in a subset of the set of emulation programs include:

a first segment of host instructions which upon
execution by the host processor forms an emulation program
address in the emulation program pointer store in response
to the current guest instruction in the prefetch guest
instruction store;

a second segment of host instructions which upon
execution by the host processor reads a next guest
instruction from an address indicated by the guest
instruction pointer into the prefetch guest instruction
store;

a third segment of host instructions which upon
execution by the host processor causes a jump to the
emulation program indicated by the emulation program
address in the emulation program pointer store; and

a fourth segment of host instructions which upon
execution by the host processor bypass at least the third
segment upon detection of the particular sequence for guest
instructions within the particular sequence.

-48-

WO 94/27214 PCT/US94/03862

W O 3 6 LT & W N B

S N T N R B R Y T o T SN Y ST Ry O Gy W R
Ul d WD KM O W IO U b W N B o

8. For a host processor which executes host
instructions and includes host addressable memory, a system
for decoding guest instructions, comprising:

a guest program store in host addressable memory to
store at least one program of guest instructions;

an emulation program store in the host addressable
memory having a set of emulation programs, at least a
subset of the set of emulation programs including
respective host instruction routines for respective
particular guest instructions;

prefetch logic comprising host instructions embedded
within emulation programs in the set of emulation programs,
to prefetch guest instructions in the at least one program
of guest instructions to a prefetch store;

dispatch logic comprising host instructions embedded
within emulation programs in the set of emulation programs,
to dispatch emulation programs in the set, in response to
guest instructions in the prefetch store; and

emulation logic, comprising host instructions embedded
within a particular emulation program in the set of
emulation programs, responsive to.guest instructions in the
prefetch store to detect a particular sequence of guest
instructions, and in response to detection of the
particular sequence to bypass the dispatch logic for guest
instructions in the particular sequence.

9. The system of claim 8, wherein the particular
sequence comprises repeated guest instructions.

10. The system of claim 8, wherein the particular
sequence comprises more than two guest instructions.

-49-

PCT/US94/03862

WO 94/27214

1 11. The system of claim 8, wherein the emulation
2 programs store comprises:

3 a dispatch store in host processor addressable memory
4 having a set of dispatch entries, each dispatch entry in
5 the set including a plurality of host instructions of the
6 emulation program corresponding to a guest instruction;

7 an emulation routine store in host addressable memory
8 having a set of emulation entries Dbeginning at
9 corresponding emulation table addresses, each emulation
10 entry in the set including a host instruction routine for
11 the emulation program;
12 wherein the plurality of host instructions in a subset
13 of the set of dispatch entries includes a host jump
14 instruction which causes a jump upon execution by the host
15 processor to an emulation routine table address of a
16 corresponding emulation entry in the emulation routine
17 table; and

18 wherein the host instruction routines in a subset of
19 the set of emulation entries include host instructions
20 which upon execution by the host processor form an
21 emulation program address to a dispatch entry in response
22 to a next guest instruction and Jjump directly to the
23 dispatch table address;
24 such that emulation programs in the emulation program
25 store comprise a plurality of instructions in the dispatch
26 table and a host instruction routine in the emulation
27 routine store.

-50-

WO 94/27214 PCT/US94/03862

o g3 o B d WD

W o 3 6 U W N B

e e L e O e e s
W o g0 UL WN B O

12. The system of claim 11, further including:

a guest instruction pointer store for a guest
instruction pointer indicating a guest instruction address
in the program of guest instructions; and

an emulation program pointer store for an emulation
program address formed in response to the current guest
instruction read from the prefetched guest instruction
store.

13. The system of claim 12, wherein emulation
programs in a subset of the set of emulation programs
include: |

a first segment of host instructions which upon
execution by the host processor forms an emulation program
address in the emulation program pointer store in response
to the guest instruction in the prefetch store;

a second segment of host instructions which upon
execution by the host processor reads a next guest
instruction from an address indicated by the guest
instruction pointer into the préfetéh store;

a third segment of host instructions which upon
execution by the host processor causes a jump to the
emulation program indicated by the emulation program
address in the emulation program pointer store; and

a fourth segment of host instructions which upon
execution by the host processor bypass at least the third
segment upon detection of the particular sequence for guest
instructions within the particular sequence.

-51-

WO 94/27214 PCT/US94/03862

W ® g 6 Ul D W N R

NN NN NDNNR R R R R RB R B B
©® 9 O U b W N R O WO IO U WD R O

14. For a host processor which executes host
instructions and includes host addressable memory, a system
for decoding guest instructions, comprising:

a guest program store in host addressable memory to
store at least one program of guest instructions;

a dispatch store in host processor addressable memory
having a set of dispatch entries, each dispatch entry in
the set including a plurality of host instructions of an
emulation program corresponding to a guest instruction;

an emulation routine store in host addressable memory
having a set of emulation entries Dbeginning at
corresponding emulation table addresses, each emulation
entry in the set including a host instruction routine for
an emulation program corresponding to a guest instruction;

prefetch logic comprising host instructions embedded
within emulation programs, to prefetch guest instructions
in the at least one program of guest instructions to a
prefetch store;

dispatch logic comprising host instructions embedded
within emulation programs, to dispatch emulation programs
in response to guest instructions in the prefetch store;
and

emulation logic, comprising host instructions embedded
within a particular emulation program, responsive to guest
instructions in the prefetch store to detect a particular
sequence of guest instructions, and in response to
detection of the particular sequence to bypass the dispatch
logic for guest instructions in the particular sequence.

15. The system of claim 14, wherein the particular
sequence comprises repeated guest instructions.

-52-

WO 94/27214 _ PCT/US94/03862

W o 9 6 U d» W N B

e o ol
w N B O

©® 3 0 Ut s W N

N oy U WD

16. The system of claim 14, wherein the particular
sequence comprises more than two guest instructions.

17. The system of claim 14,

wherein the plurality of host instructions in a subset
of the set of dispatch entries includes a host jump
instruction which causes a jump upon execution by the host
processor to an emulation routine table address of a
corresponding emulation entry in the emulation routine
table; and

wherein the dispatch logic in a subset of the set of
emulation entries includes host instructions which upon
execution by the host précessor form an emulation program
address to a dispatch entry in response to a next guest
instruction in the prefetch store and jump directly to the
dispatch table address.

18. The system of claim 17, further including:

a guest instruction pointer store for a guest
instruction pointer indicating a guest instruction address
in the program of guest instructions; and

an emulation program pointer store for an emulation
program address formed in response to the current guest
instruction read from the prefetched guest instruction
store.

19. The system of «claim 18, wherein emulation
programs in a subset of the set of emulation programs
include:

a first segment of host instructions which upon
execution by the host processor forms an emulation program
address in the emulation program pointer store in response
to the guest instruction in the prefetch store;

-53-

WO 94/27214

10
11
12
13
14
15
16
17
18
1S

PCT/US94/03862

a second segment of host instructions which upon
execution by the host processor reads a next guest
instruction from an address indicated by the guest
instruction pointer into the prefetch store;

a third segment of host instructions which upon
execution by the host processor causes a jump to the
emulation program indicated by the emulation program
address in the emulation program pointer store; and

a fourth segment of host instructions which upon
execution by the host processor bypass at least the third
segment upon detection of the particular sequence for guest
instructions within the particular sequence.

St
A4

-54-

WO 94/27214 _ PCT/US94/03862

loj j\13

HOST EMULATION
CPU DISPATCH Vp—17
TABLE
20
EMULATIDON
117
GPRs RI:IUTINES21
CR GUEST — 18
| XER PROGRAMS
12 CTR
LR
GUEST STATE
14 j
KEYBOARD
MOUSE OTHER L— 19
™ ~ MEMORY
DISPLAY
’ 3

FIG.—1

1/9
SUBSTITUTE SHEET (RULE 26)

WO 94/27214 PCT/US94/03862

20'\
$ 68000000
L ag INSTR (NON-JUMP) -
INSTR 2 (JUMP) ISPAT!
INSTR 1 (NON—-JUMP) INSTR.
311 INSTR 2 (JUMP) _///
INSTR 1 (NON—-JUMP)
32} INSTR 2 (JUMP) ~
10
EMULATION
. BLOCK
[]
[]
512K
DISPATCH
TABLE
Y
$6807FFFF
$68080000 EMULATION ROUTINES

FIG.—2
2/9
SUBSTITUTE SHEET (RULE 26)

WO 94/27214 PCT/US94/03862

21
\ EMULATION ROUTINES
$68080000
0 _
_ 32 BYTES 1~ 40
- EMULATION BLOCK
= f 41
_ 32 BYTES JUMP FROM
_ DISPATCH
EMULATION BLOCK TABLE
— | | 4
DISPATCH
- 64 BYTES 'NEXT GUEST
- INSTR
64K |-
- EMULATION BLOCK /
-
- JUMP FROM
_ 32 BYTES DISPATCH
A\ TABLE
EFFECTIVE ADDRESS ROUTINE ’\/
‘\ 43
- JUMP TO
- RETURN
| 64 BYTES ADDRESS
5 ek
- EMULATION BLOCK
Y N -
$6808FFFF | T

a/
FIG.—3

3/9
SUBSTITUTE SHEET (RULE 26)

WO 94/27214

PCT/US94/03862

CTR — POINTER TO DISPATCH
TABLE ENTRY

DIS. TABLE = CTR
PC = 2 BYTES PAST CURRENT
GUEST INSTR.

PREFETCH _DATA — NEXT GUEST INSTR.

|)
DISPATCH MACRO /\

I IF NO SPECIAL CONDITIONS, JUMP TO

CTR ELSE HANDLE SPECIAL CONDITIONS

EMULATION | 52
PROGRAM DECODE 1 MACRO

TAKE NEXT GUEST INSTR.

FROM PREFETCH_DATA
MULTIPLY BY 8

I MOVE DISP_TABLE REG.
TO CTR

l S4
PREFETCH MACRD

ADVANCE PC BY 2 BYTES

INSERT IN DISP_TABLE REG.

l a3
DECODE 2 MACRO

PREFETCH NEXT GUEST INSTR.

TO PREFETCH_DATA

A

DISPATCH MACRO

FIG.—4
4/9
SUBSTITUTE SHEET (RULE 26)

WO 94/27214 PCT/US94/03862

INST 1 (NON-JUMP-ADDRESSING MODE OP)
INST 2 (JUMP-TO EMULATION BLOCK) DISPATCH TABLE
INST(S) (START EMULATION BLOCK)
DECODE1 MACRO
INST(S> (EMULATION BLOCK) EMULATION CODE TABLE
DECODE2 MACRO
INST(S) (EMULATION BLOCK)
PRE-FETCH MACRO
INST(S) (EMULATION BLOCK)
0 DISPATCH MACRD

— 0 0O O U p Wl -

FIG.—5

INST 1 (NON-JUMP-SET RETURN ADDR)

INST 2 (JUMP-TO EFFECTIVE ADDR ROUTINE)DISPATCH TABLE
INST(S) (EFFECTIVE ADDR ROUTINE)

INST (MOVE rtn_addr TO 1r)

INSTC(S) (JUMP TO 1r) EMULATION CODE TABLE
INST(S) (START EMULATION BLOCK)

DECODE1 MACRD

INST(S> (EMULATIDON BLOCK)

9 DECODE2 MACRO

10 PRE-FETCH MACRO

11 INST(S) (EMULATION BLOCK)

12 DISPATCH MACRO

0 N O U WY —

FIG.—6

S/9

SUBSTITUTE SHEET (RULE 26)

WO 94/27214 PCT/US94/03862

begin MOVEM opcode, |— 199
DECODE!L, DECODEZR,
PREFETCH ocurred

/‘\101 (\103
Yes

Special condition
pending?

Next opcode = UNLK?

yes

no no [\ 104

Next opcode
Complete MOVEM (prefetch_data) =
instruction

TS? yes

L 102 105 ——w no

Complete combined
MOVEM and UNLK
iInstruction

106 ’W

Complete combined
MOVEM, UNLK, and
RTS instruction

FIG. =7

6/9

SUBSTITUTE SHEET (RULE 26)

WO 94/27214

PCT/US94/03862

ist GUEST 1 INST 1
2 INST 2
3 INST(S) (OPCODE EXTENSION NEEDED)
nd GUEST 4 PREFETCH FROM PC TO GPR (ADV PC)
S TEST GPR FOR SEOUENCE (SAVE)
6 USE EXTENSION IN PREFETCH_DATA
7 INST(S)
8 DECODE! MACRD ON GFR
9 DECODE2 MACRO DN GPR
10 INST(S)
3rd GUEST 11 PREFETCH MACRO INTD PREFETCH DATA
12 CHECK FOR SPECIAL CONDITIONS
13 BRANCH IF SEQUENCE AND NO SPECIAL CONDITION TO 16
14 INST(S)
15 DISPATCH MACRO (FOR 2nd GUEST)
16 INST(S)
17 TEST PREFETCH_DATA FOR SEQUENCE
18 BRANCH IF SEQUENCE TO 25
19 INST(S)
20 DECODE! MACRD
21 DECODE2 MACRD
22 INST(S)
4th GUEST 23 PREFETCH MACRD
24 DISPATCH MACRO (FOR 3rd GUEST)
25 INST(S)
4th GUEST 26 FETCH OPCODE FOR RTS
27 DECODE! MACRO
28 DECODE2 MACRD
29 INST(S)
Sth GUEST 30 PREFETCH MACRD
31 PREFETCH MACRD (FOR 4th GUEST RETURN)

FIG.—8

7/9
SUBSTITUTE SHEET (RULE 26)

WO 94/27214

PCT/US94/03862

lst GUEST 1 INST 1
[INST 2
end GUEST 3 TEST PREFETCH_DATA FOR SEQUENCE
4 BRANCH IF SEQUENCE AND NO SPECIAL COND. TO 11
9 INST(S) '
6 DECODE1 MACRO
7 DECODE2 MACRO
8 INST(S)
3rd GUEST 9 PREFETCH MACRO
10 DISPATCH MACRO (2nd GUEST)
3rd GUEST 11 PREFETCH MACRO
12 INST(S)
13 DECODE1 MACRO
14 INST(S)
- 13 DECODE2 MACRD
4th GUEST 16 PREFETCH MACRO
17 DISPATCH MACRO (3rd GUEST)

FIG.—-9

8/9

SUBSTITUTE SHEET (RULE 26)

WO 94/27214

1st GUEST

PCT/US94/03862

TEST FOR REPEAT
JUMP TO 3

(3rd GUEST)

— O O N OV U WD —

11

12

13
14
((3+N)th GUEST) 13
16
17

18

INST(S)
DECODE1 MACRO

. PREFETCH MACRO

INST(S)

BRANCH IF REPEAT 10 11
DECODE2 MACRO

INST(S)

DISPATCH MACRO ((2+N)>th GUEST)

TEST FOR REPEAT

BRANCH IF SPECIAL CONDITION 1O 8
INST(S)

DECODE1 MACRD

PREFETCH MACRO

INST(S)

BRANCH 1F REPEAT TO 11

BRANCH TO 8

FIG.—10

9/9

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intert &al Application No

PCT/US 94/03862

. CLASSIFICATION OF SUBJECT

A MATTER
IPC 5 GO6F9/318 GO6F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 5 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documnentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

1972
see the whole document

A EDN ELECTRICAL DESIGN NEWS 1,8,14
vol. 20, no. 6 , March 1975 , NEWTON,
MASSACHUSETTS US
pages 61 - 66
R. E. VAHLSTROM 'Microprogramming
Emulation of a General-Purpose Processor'
see page 63, right column, line 30 - page
64, left column, line 5
A US,A,3 698 007 (MALCOLM ET AL.) 10 October 1,8,14

_/__

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

* Special categories of cited documents :

‘A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claimy(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or
other means

"P” document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y*" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m&m, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual compietion of the international search

4 August 1994

Date of mailing of the international search report

16. 08 94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Daskalakis, T

Form PCT/ISA/210 {second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Interr

)al Application No

PCT/US 94/03862

C{(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

COMPUTER DESIGN.

vol. 25, no. 12 , June 1986 , LITTLETON,
MASSACHUSETTS US

pages 87 - 90

B. SHERMAN 'Attention to Basics Reduces
Risc in Ada Compiler Choice'

see page 89, right column, paragraph 2
-paragraph 4

1,8,14

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

...formation on patent family members

Interr. - jal Application No

PCT/US 94/03862

Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A-3698007 10~-10-72 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

