

Europäisches Patentamt European Patent Office

Office européen des brevets

(1) Publication number : 0 317 269 B1

(12)	EUROPEAN PATEN	IT SPECIFICATION
45	Date of publication of patent specification : 04.03.92 Bulletin 92/10	(51) Int. CI. ⁵ : A61K 31/48
21	Application number : 88310779.9	
22	Date of filing : 15.11.88	
54)	Antiparkinson ergoline derivatives.	
30	Priority : 20.11.87 GB 8727236 23.09.88 GB 8822424	 (3) Proprietor : FARMITALIA CARLO ERBA S.r.L. Via Carlo Imbonati 24 I-20159 Milano (IT)
43	Date of publication of application : 24.05.89 Bulletin 89/21	 (72) Inventor : Buonamici, Metilde Via Canova n. 33
45	Publication of the grant of the patent : 04.03.92 Bulletin 92/10	Parabiago (Milan) (IT) Inventor : Pegrassi, Lorenzo Via Giosue Carducci n.32 Milan (IT) Inventor : Rossi, Alessandro
84)	Designated Contracting States : AT BE CH DE ES FR GB GR IT LI LU NL SE	Via Luigi Barzini n.7 Milan (IT) Inventor : Mantegani, Sergio Via Carlo Pisacane n.57
56	References cited : EP-A- 0 003 667 EP-A- 0 197 241 GOODMAN AND GILMAN'S: "The phar- macological basis of therapeutics", 1985, 7th edition, pages 482-483, Macmillan Publishing Co., new York, US	Milan (IT) (74) Representative : Woods, Geoffrey Corlett et al J.A. KEMP & CO. 14 South Square Gray's Inr London WC1R 5EU (GB)
	Note: Within nine months from the publication of	the mention of the grant of the European patent, any

0 Б

person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The present invention relates to a new therapeutic use of ergoline derivatives having the formula I

5

10

 R_{3} R_{2} R_{5} R_{1} R_{6} R_{6} R_{1}

15

25

30

35

wherein R_1 represents a hydrogen atom or methyl group, either R_2 and R_3 represent hydrogen atoms or together represent a chemical bond, R_4 represents a hydrogen atom or a C_1 - C_4 alkyl group, R_5 represents a C_1 - C_4 alkyl group or an allyl group and R_6 represents a hydrogen or halogen atom; and the pharmaceutically acceptable salts thereof.

The compounds of the formula I and their preparation are described in EP-A-0197241. This shows their functional anti-dopaminergic activity in normal mice. The compounds are said to have moderate to good anti-hypertensive activity and to be useful as anxiolytic and antipsychotic agents.

It is known that bromocriptine, an ergot derivative with dopaminergic activity, is an effective antiparkinson agent, but severe side effects limit the clinical usefulness of this drug. Adverse effects of bromocriptine include emesis, hypotension, cardiac arhythmia, digital vasospasm in cold weather, conjunctival irritation, diplopia, nasal stuffiness, constipation and a syndrome of bilateral red, tender edema of the lower limbs and neuroendocrine alterations. These problems are due to the fact that bromocriptine exerts its agonist effect on both cent-

ral and peripheral populations of dopamine receptors.

It has been found that the ergoline derivatives of the formula I may be unexpectedly used in the treatment of other diseases different from psychosis and anxiety. The compounds of formula I are surprisingly highly potent dopamine agonists when tested in animal experiments where central dopamine receptor supersensitivity had been induced by appropriate interventions.

Accordingly, the present invention provides the use of a compound of the formula I or a pharmaceutically acceptable salt thereof in the preparation of a pharmaceutical composition for treating extrapyramidal syndromes such as Parkinson's disease.

The ergoline derivatives of formula I and their salts induce less side effects that bromocriptine. They have a potent dopaminergic activity only on the central receptors when modified by extrapyramidal syndromes, such as in Parkinson's disease. They may be used alone or in association with other antiparkinson agents.

In formula I, R_4 is preferably methyl or hydrogen. R_5 may be methyl, ethyl, n-propyl, iso-propyl, n-butyl, secbutyl, t-butyl, iso-butyl or allyl. Preferably R_5 is methyl. When R_6 is halogen, it may be fluorine, chlorine or bromine. Preferably R_6 is chlorine or bromine or hydrogen.

45

The wavy line ($\sim\sim\sim$) in formula I indicates that the substituent in the 8-position may be either in the α -configuration, i.e. below the plane of the ring, or in the β -configuration, i.e. above the plane of the ring, or in both, i.e. a mixture thereof such as a racemic mixture. Preferably the substituent in the 8-position is in the β -configuration.

50

Preferred ergoline derivatives for use in the present invention are identified in Table I.

<u>Table I</u>

Laboratory Co de	Chemical Name	Reference
FCE 23884	6-Methyl-9,10-didehydro- 86-(3,5-dioxo-piperazin- 1-yl-methyl)-ergoline (I: $R_1 = R_4 = R_5 = CH_3$ $R_2 + R_3 = bond$)	EP-A-197241 Example 5
CE 23952	1,6-Dimethyl-8 β -(3,5- dioxo-piperazin-1-yl- methyl)-ergoline (I:R ₂ =R ₃ =R ₄ =R ₆ =H, R ₁ =R ₅ =CH ₃)	EP-A-197241 Example 2

3

5	FCE 23710	6-Methyl-8 β -(3,5-dioxo-4- EP-A-197241 methyl-piperazin-1-yl- Example 3 methyl)-ergoline (I: $R_1 = R_2 = R_3 = R_6 = H$, $R_4 = R_5 = CH_3$)
10		6-Methyl-8 β -(3,5-dioxo- piperazin-1-yl-methyl)- ergoline (I: $R_1 = R_2 = R_3 = R_4 = R_6 = H$, $R_5 = CH_3$)
15		6-Methyl-9,10-didehydro- 8α-(3,5-dioxopiperazin-1- yl-methyl)-ergoline (I:R ₁ = R ₄ =R ₆ =H, R ₅ =CH ₃ , R ₂ +R ₃ =bond)
20		6-Allyl-9,10-didehydro-8β- (3,5-dioxopiperazin-1-yl- methyl)-ergoline (I:R ₁ =R ₄ = R ₆ =H, R ₅ =allyl, R ₂ +R ₃ =bond)
25		6-Propyl-9,10-didehydro-8β- (3,5-dioxopiperazin-1-yl- methyl)-ergoline (I:R ₁ =R ₄ = R ₆ =H, R ₅ =propyl, R ₂ +R ₃ =bond)
30		6-Propyl-9,10-didehydro-8α- (3,5-dioxopiperazin-1-yl- methyl)-ergoline (I:R ₁ =R ₄ = R ₆ =H, R ₅ =propyl, R ₂ +R ₃ =bond)
35		2-Chloro-6-methyl-9,10-didehydro- 8β-(3,5-dioxopiperazin-1-yl- methyl)-ergoline (I:R ₁ =R ₄ =H, R ₅ = CH ₃ , R ₆ =Cl, R ₂ +R ₃ =bond)
40		2-Bromo-9,10-didehydro-8 β -(3,5- dioxopiperazin-1-yl-methyl)- ergoline (I:R ₁ =R ₄ =H, R ₅ =CH ₃ , R ₆ =Br, R ₂ +R ₃ =bond)

45 The ergoline derivatives of formula I and their pharmaceutically acceptable salts are useful in the therapy of extrapyramidal syndromes such as Parkinson's disease. Thus, they may be used for the preparation of medicaments effective against Parkinson's disease and for the improvement of effectiveness with control of sideeffects when used in association with other antiparkinson agents.

Accordingly, the compounds of formula I and their pharmaceutically acceptable salts can be used to treat extrapyramidal syndromes such as Parkinsonism by administering to a patient in need of said treatment a therapeutically effective amount of a said compound or salt. Morbus Parkinson can therefore be treated by use of a compound of formula I or a pharmaceutically acceptable salt thereof.

BIOLOGICAL TESTS

55

The anti-dopaminergic activity in normal mice of the ergoline derivatives according to the invention was assessed by the antagonism to apomorphine-induced climbing (Protais, P et al., Psychopharmacology, <u>50</u>, 1, 1976).

The obtained results are reported in Table II.

Т	Α	В	L	Ε	II

5	r	
	Compound	Apomorphine antagonism (ED ₅₀ , mg/kg p.o.)
10	FCE 23884	0.5
	FCE 23952	0.9
15	FCE 23710	. 2.2
20	Eromocriptir	ne Inactive at 10 mg/kg

20

30

35

40

45

EFFECT ON TURNING BEHAVIOUR IN 6-OHDA LESIONED RATS

The profile of dopamine agonists of the compound of the formula I was preliminary discovered by an induction of contralateral turning in rats with unilateral 6-hydroxy dopamine-induced lesions of the dopaminergic nigrostriatal pathway (according to the principles of U. Ungerstedt et al., Brain Research 24 (1970); p.485).

Methods

Male (ICR) Wistar rats (290-310 g) anaesthetized i.p. with 50 mg/kg penthobarbital sodium were placed in a Stoelting stereotaxis frame and unilaterally injected with 6-hydroxy-dopamine (6-OHDA) in <u>substantia nigra</u>, <u>pars compacta</u> (8 μ g of free base in 4 μ l of saline kept ice cold with 0.2% ascorbic acid at the rate of 1 μ l/min.).

The neurotoxin was injected via a 10 μ l Hamilton syringe under following coordinates : A, 3.7 mm anterior to interaural line; V, 2.2 mm dorsal to interaural line; L, 2.2 mm from midline, according to Paxinos and Watson

(The rat brain in stereotaxic coordinates. Acadamic Press, Sidney, Australia, 1982). The needle was left in place a further 5 minutes before being slowly withdrawn.

Following recovery from anaesthesia, rats were housed in a cage and given ad libitum access to food and water.

After a 3 weeks recovery, rats were injected with apomorphine (0.5 mg/kg s.c.) and immediately put in automated rotometer bowls with printing unit for 3 hours.

Only rats showing contralateral turning behaviour totalling at least 250 complete turns within the control time, were used for the test with the compounds.

The test compounds were injected subcutaneously and rotational behaviour scored each time for six hours. All tested compounds were administered in a fixed volume (2 ml/kg body weight).

The obtained results are reported in Table III.

50

TABLE III

10	Compounds	mg/kg s.c.	Turning rats/ Treated rats	No. of contralateral turns (X) in turning rạts
15	FCE 23884	1.0 0.5 0.1	5/5 10/10 9/10	2146 2591.7 1317.5
	FCE 23952	1.0	4/4	710.5
20	FCE 23710	1.0	4/4	1829.2
25	Bromocriptine	1	6/9	1922.3

5 EFFECT OF THE TESTED COMPOUNDS ON TURNING BEHAVIOUR IN 6-OHDA LESIONED RATS

30 The orientative acute toxicity of the compounds I in rats is higher than 300 mg/kg p.o.. The compounds are therefore indicated for use as antiparkinson agents.

The amount of active compound for this indication will, of course, be dependent on the subject being treated, the severity of the application, the manner of administration and the judgment of the prescribing physician.

35 However, an effective dosage is in the range of 0.01 to 5 mg, conveniently given in divided doses 1 to 5 times a day in unit dosage form containing from 0.01 to 2 mg of the compound or in sustained release form.

ADMINISTRATION AND COMPOSITIONS

45

40 Administration of the active compound and salts described herein can be via any of the accepted modes of administration for antiparkinson agents.

The routes of administration include parenteral, oral, buccal, peroral, transdermal, intranosal or other suitable routes. Depending on the intended route of administration, such compositions may be formulated in conventional manner or other pharmaceutical systems for delivery of the drug in a rate and extent needed for the intended therapeutical use. The composition will include a conventional pharmaceutical carrier or excipient and an active compound of formula Lor the pharmaceutically acceptable solts thereof and in addition, may include

an active compound of formula I or the pharmaceutically acceptable salts thereof and, in addition, may include other medicinal agents, pharmaceutical agents, carriers or adjuvants.

For solid composition, conventional non toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose or magnesium carbonate may be used. Liquid pharmaceutically administerable compositions can, for example, be prepared by dissolving or dispersing, an active compound as defined above and optional pharmaceutical adjuvant in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol or ethanol, to thereby form a solution or suspension.

The compound coded FCE 23884 is the preferred compound.

55 The following examples still further illustrate the invention.

EXAMPLE 1

LOCOMOTOR ACTIVITY IN RESERPINE-TREATED MICE

5 Method

Male mice, (22-25 g) of the CrI:CD^R-1 (ICR) BR strain, were used. Injection volume for drugs was 0.5 ml/100 g body weight. Locomotor activity in mice was examined from 5 up to 90 min. by use of two "Columbus activity Meters" placing 5 animals per cage after each treatment. Comparison was made with reserpine treated animals (5 mg//kg i.p.) receiving saline (controls).

Groups of five mice were used each time. Eighteen hours reserpine pretreated mice were subcutaneously injected with the test compound or apomorphine or saline.

Five minutes later, the animals were tested for locomotor activity according D. Hinzen et al., European Journal of Pharmacology 131 (1986) 75-86.

15

10

Results (see Table IV)

As shown in Table IV, FCE 23884 at the dose of 1 mg/kg s.c. elicits locomotor activity as does apomorphine - the classical dopaminergic agonist - in akinetic reserpinized mice.

20

25

TABLE IV

LOCOMOTOR ACTIVITY IN RESERVINE-TREATED MICE (5mg/kg i.p.)

30	Compound	Dosage mg/kg s.c.	Number of animals	No. of counts in 85 min.
	Reserpine + saline	-	10	15
35	Reserpine + apomor- phine	0.05	10	413
40	Reserpine + FCE 2388		15	625

45

EXAMPLE 2

50 MPTP-INDUCED PARKINSONISM IN MONKEY MODEL

In non human primates the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) selectively destroys dopaminergic neurons in the <u>substantia nigra pars compacta</u> as has been shown in different primate species (1) (2) including common marmoset and cynomolgus.

55

Repeated administration of MPTP produces varying degrees of akinesia or bradykinesia accompanied by rigidity of limbs, loss of vocalization and postural tremor.

The early motor deficits produced by MPTP mimic the major symptoms occurring in human Parkinson's disease and all these behavioural effects can be reversed by L-DOPA plus carbidopa or by some other

EP 0 317 269 B1

dopaminergic drugs.

Marmoset and cynomolgus were employed in our experiments and we administered a variable dosage regime for each animal showing them an individual susceptibility to MPTP according to Jenner et al. (3).

For marmoset the cumulative dose was between 11-29 mg/kg i.p. over time courses of 4-10 days for three marmosets and 10-12 mg/kg i.p. for two cynomolgus in 4 days.

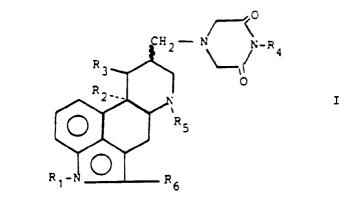
All the monkeys were severely affected, completely akinetic and rigid with loss of vocalization, and blink reflex, with some postural tremor and unabled to eat by themselves. After two or three days of wash-out to avoid the acute effect of MPTP administration, we injected subcutaneously our compound FCE 23884 once a day starting from the dose 0.1 mg/kg up to 2 mg/kg and we observed the reversal of akinesia dose-dependently.

10

20

25

30


35

5

- We alternated saline every three treatments to avoid the normal described improvement after the suspension of MPTP administration.
- Depending from the dose we observed the reversal of akinesia starting from 30 minutes for the lowest dose (0.1 mg/kg s.c.) to 5 minutes for the highest dose (2 mg/kg s.c.).
- On the contrary our compound, injected subcutaneously to MPTP non-treated monkeys, dose dependently showed a sedative effect like an antidopaminergic compound reproducing the same behavioural patterns already seen in normal rats, while it shows a dopaminergiceffect in lesioned animals.
 - For the results obtained we have to consider our compound FCE 23884 as a dopaminergic agent in the MPTP treated monkeys and an antidopaminergic in non MPTP-treated monkeys.
 - (1) Langston J.W. et al., Brain Res. 292:390-394, 1984.
 - (2) Burns R.S. et al., Pro.Natl.Acad.Sci.USA 80. : 4546-4550. 1983.
 - (3) Jenner P. et al., J.Neuronal Trans. Suppl.20:11-39, 1986.

Claims

1. Use of a compound of the formula I

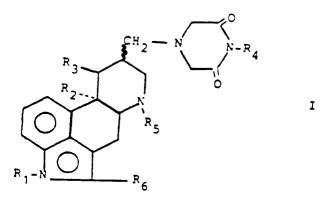
40

wherein R_1 represents a hydrogen atom or methyl group, either R_2 and R_3 represent hydrogen atoms or together represent a chemical bond, R_4 represents a hydrogen atom or a C_1 - C_4 alkyl group, R_5 represents a C_1 - C_4 alkyl group or an allyl group and R_6 represents a hydrogen or halogen atom; or a pharmaceutically acceptable salt thereof; in the preparation of a pharmaceutical composition for use in treating extrapyramidal syndromes.

- 45 2. Use according to claim 1, wherein the pharmaceutical composition is for use in treatment of Parkinson's disease.
 - 3. Use according to claim 1 or 2, wherein R_4 is methyl in formula I.
 - 4. Use according to any one of the preceding claims, wherein R₅ is methyl.

5. Use according to any one of the preceding claims, wherein the substituent in the 8-position is in the β configuration.

6. Use according to any one of the preceding claims, wherein R_6 is chlorine or bromine or hydrogen.


7. Use according to claim 1 or 2, in which the compound of formula I is 6-methyl-9,10-didehydro- 8β -(3,5-dioxo-piperazin-1-yl-methyl)ergoline.

55

50

Patentansprüche

1. Verwendung einer Verbindung der Formel I:

10

5

worin R₁ ein Wasserstoffatom oder eine Methylgruppe darstellt, R₂ und R₃ stellen jeweils Wasserstoffatome
 dar oder bilden zusammen eine chemische Bindung, R₄ stellt ein Wasserstoffatom oder eine C₁-C₄ Alkylgruppe
 dar, R₅ stellt eine C₁-C₄ Alkylgruppe oder eine Allylgruppe dar und R₅ stellt ein Wasserstoff oder Halogenatom
 dar; und pharmazeutisch annehmbare Salze davon, zur Herstellung einer pharmazeutischen Zusammenset zung zur Verwendung bei der Behandlung extra-pyramidaler Syndrome.

2. Verfahren nach Anspruch 1, worin die pharmazeutische Zusammenstzung zur Verwendung bei der 20 Behandlung der Parkinsonschen Krankheit bestimmt ist.

3. Verwendung nach Anspruch 1 oder 2, worin R₄ in Formel I Methyl ist.

4. Verwendung nach einem der vorhergehenden Ansprüche, worin R₅ Methyl ist.

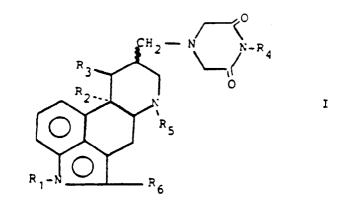
5. Verwendung nach einem der vorhergehenden Ansprüche, worin der Substituent in der 8-Stellung in der beta-Konfiguration vorliegt.

6. Verwendung nach einem der vorhergehenden Ansprüche, worin R₅ Chlor, Brom oder Wasserstoff ist.

7. Verwendung nach Anspruch 1 oder 2, bei der die Verbindung der Formel I 6-Methyl-9,10-didehydro-8beta-(3,5-dioxopiperazin-1-yl-m ethyl)ergolin ist.

30 Revendications

1. Utilisation d'un composé représenté par la formule (I) :


35

25

45

55

dans laquelle : R₁ représente un atome d'hydrogène ou un groupe méthyle; R₂ et R₃ représentent chacun un atome d'hydrogène, ou bien représentent ensemble une liaison chimique ; R₄ représente un atome d'hydro gène ou un groupe alkyle en C₁-C₄ ; R₅ représente un groupe alkyle en C₁-C₄ ou un groupe allyle ; et R₆ représente un atome d'hydrogène ou d'halogène ; ou d'un sel pharmaceutiquement acceptable de ce composé ; dans la préparation d'une composition pharmaceutique destinée à être utilisée dans le traitement des syndromes extrapyramidaux.

2. Utilisation selon la revendication 1, dans laquelle la composition pharmaceutique est destinée à être utilisée dans le traitement de la maladie de Parkinson.

- 3. Utilisation selon la revendication 1 ou 2, dans laquelle R₄ représente méthyle dans la formule (I).
- 4. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle R₅ représente méthyle.
- 5. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le substituant en posi-

EP 0 317 269 B1

tion 8 est dans la configuration β .

6. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle R₆ représente chlore ou brome ou hydrogène.

7. Utilisation selon la revendication 1 ou 2, dans laquelle le composé de la formule (I) est la méthyl-6 didéshydro-9,10 (dioxo-3,5 pipérazinyl-1 méthyl)-8 β ergoline.