Office de la Proprieté Canadian

Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2585860 A1 2006/06/02

(21) 2 585 860

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1

(86) Date de déepot PCT/PCT Filing Date: 2004/11/19

(87) Date publication PCT/PCT Publication Date: 2006/06/02
(85) Entree phase nationale/National Entry: 200//05/14

(86) N° demande PCT/PCT Application No.: |IB 2004/003821
(87) N° publication PCT/PCT Publication No.: 2005/050570
(30) Priorité/Priority: 2003/11/20 (US10/718,318)

51) Cl.Int./Int.Cl. GO67T 15/00(2006.01)

(71) Demandeur/Applicant:
ATI TECHNOLOGIES, INC., CA

(72) Inventeurs/Inventors:
MOREIN, STEVEN, US;
LEFEBVRE, LAURENT, CA;
GRUBER, ANDY, US;
SKENDE, ANDI, US

(74) Agent: GIERCZAK, EUGENE J. A.

(54) Titre : ARCHITECTURE DE TRAITEMENT GRAPHIQUE FAISANT APPEL A UN OUTIL A OMBRER UNIFIE
(54) Title: A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

INDICES

64 6

UNIFIED
SHADER

B85

76

RENDER
BACK

END

77

78
78 MEMORY
CONTROLLER
DISPLAY
CONTROLLER

81

MEMORY
DATA

68
TEXTURE
VERTEX | g9
69A CACHE
PARAMETER
CACHE

POSITION
CACHE
71
PRIMTIVE | 32
ASSEMBLY
73
RASTERIZATION| 7
ENGINE

/5

8 84 82
DISPLAY MEMORY

A graphics processing architecture employing a single shader Is disclosed. The architecture includes a circuit operative to select
one of a plurality of inputs in response to a control signal; and a shader, coupled to the arbiter, operative to process the selected

(57) Abrégée/Abstract:

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

B

.

'

e
ok [ [ f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~




CA 2585860 A1 2006/06/02

en 2 585 860
13) A1

(57) Abrege(suite)/Abstract(continued):
one of the plurality of inputs, the shader including means for performing vertex operations and pixel operations, and wherein the

shader performs one of the vertex operations or pixel operations based on the selected one of the plurality of inputs. The shader
Includes a register block which Is used to store the plurality of selected inputs, a sequencer which maintains vertex manipulation
and pixel manipulations instructions and a processor capable of executing both floating point arithmetic and logical operations on

the selected inputs In response to the Instructions maintained in the sequencer.



wO 2005/050570 A1 I D0 ! A0 ) 0 O 0 D

CA 02585860 2007-05-14

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Burcau

(43) International Publication Date

2 June 2005 (02.06.2005)

GO6T 15/00

(51) International Patent Classification’:

(21) International Application Number:
PCT/1B2004/003821

(22) International Filing Date:
19 November 2004 (19.11.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/718,318 20 November 2003 (20.11.2003) US

(71) Applicant (for all designated States except BB, US): ATI
TECHNOLOGIES, INC [CA/CA]; 1 Commerce Valley
Drive East, Markham, Ontario L3T 7X6 (CA).

(71) Applicant (for BB only): ATI INTERNATIONAL, SRL
|[BB/BB]; Beaumont House, Hastings, Christ Church (BB).

(10) International Publication Number

WO 2005/050570 Al

(72) Inventors; and

(75) Inventors/Applicants (for US only): MOREIN, Steven
[US/US]; 10 Magazine, Apt. 801, Cambridge, MA 02139
(US). LEFEBVRE, Laurent [CA/CA]; 124 Parenchere,
Lachenaie, Quebec J6W 6A5 (CA). GRUBER, Andy
[US/US]; 215 Pleasant Street, Arlington, MA 02476
(US). SKENDE, Andi [US/US]; 49 Sheridan Drive, #11,
Shrewsbury, MA 01545 (US).

(74) Agent: HOWE, Steven; Lloyd Wise, Commonwealth
House, 1-19 New Oxford Street, L.ondon WCIA 1LLW

(GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, K7, L.C, LK, LR, LS, LT, LU, L.V, MA, MD,

MG, MK, MN;, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

[ Continued on next page]

(54) Title: A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

INDICES

UNIFIED

TO MEMORY

(57) Abstract: A graphics processing
architecture employing a single shader
is disclosed. The architecture includes
a circuit operative to select one of a
plurality of inputs in response to a
control signal; and a shader, coupled
to the arbiter, operative to process
the selected one of the plurality of

68

SHADER TEXTURE MEMORY inputs, the shader including means for

60 R \éilg_l'ié( 69 s performing vertex operations and pixel
85 operations, and wherein the shader

performs one of the vertex operations

or pixel operations based on the selected

76 one of the plurality of inputs. The shader

.;RENDER CACHE 70 includes a register block which is used

BACK to store the plurality of selected inputs,

END POSITION a sequencer which maintains vertex

- manipulation and pixel manipulations

DISPLAY
CONTROLLER
8 84 82
DISPLAY MEMORY

. 71
PRIMITIVE | /2
79 N ASSEMBLY
CONTROLLER
73
74
RASTERIZATION
y ENGINE

75

instructions and a processor capable of
executing both floating point arithmetic
and logical operations on the selected
inputs in response to the instructions
maintained in the sequencer.



(84)

CA 02585860 2007-05-14

WO 2005/050570 Al

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
/. W.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, 1,
FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE,
SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TQG).

Declaration under Rule 4.17;

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP. KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,

MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,
M, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, FEE, ES, FI FR, GB, GR, HU,
IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI

patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML,

MR, NE, SN, TD, TG)

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED
SHADER |
FIELD OF THE INVENTION
The present invention generally relates to graphics processors and, more

particularly, to a graphics processor architecture employing a single shader.

BACKGROUND OF THE INVENTION
In computer graphics applications, complex shapes and structures are formed
through the sampling, interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive is a triangle, or other
suitable polygon. These primitives, in turn, are formed by the interconnection of
individual pixels. Color and texture are then applied to the individual pixels that
comprise the shape based on their location within the primitive and the primitives
orientation with respect to the generated shape; thereby generating the object

that is rendered to a corresponding display for subsequent viewing.

The interconnection of primitives and the application of color and textures to
generated shapes are generally performed by a graphics processor.
Conventional graphics processors include a series of shaders that specify how
and with what corresponding attributes, a final image is drawn on a screen, or
suitable display device. As illustrated in FIG. 1, a conventional shader 10 can be
represented as a processing block 12 that accepts a plurality of bits of input data,
such as, for example, object shape data (14) in object space (X,y,z); material

properties of the object, such as color (16); texture information (18); luminance



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

information (20); and viewing angle information (22) and provides output data
(28) representing the object with texture and other appearance properties applied

thereto (X', y’, z°).

In exemplary fashion, as illustrated in FIGS. 2A-2B, the shader accepts "the
vertex coordinate data representing cube 30 (FIG. 2A) as inputs and provides
data representing, for example, a perspectively corrected view of the cube 30°
(FIG. 2B) as an output. The corrected view may be provided, for example, by
applying an appropriate transformation matrix to the data representing the initial
cube 30. More specifically, the representation illustrated in FIG. 2B is provided
by a vertex shader that accepts as inputs the data representing, for example,
vertices Vx, Vy and Vz, among others of cube 30 and providing angularly oriented
vertices Vx,Vy- and Vz, including any appearance attributes of corresponding

cube 30°.

In addition to the vertex shader discussed above, a shader processing block that
operates on the pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel shader provides the color
value associated with each pixel of a rendered object. Conventionally, both the
vertex shader and pixel shader are separate components that are configured to
perform only a single transformation or operation. Thus, in order to perform a
position and a texture transformation of an input, at least two shading operations
and hence, at least two shaders, need to be employed. Conventional graphics
processors require the use of both a vertex shader and a pixel shader in order to

generate an object. Because both types of shaders are required, known

2



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

graphics processors are relatively large in size, with most of the real estate being

taken up by the vertex and pixel shaders.

In addition to the real estate penalty associated with conventional graphics
processors, there is also a corresponding performance penalty associated
therewith. In conventional graphics processors, the vertex shader and the pixel
shader are juxtaposed in a sequential, pipelined fashion, with the vertex shader
being positioned before and operating on vertex data before the pixel shader can

operate on individual pixel data.

Thus, there is a need for an improved graphics processor employing a shader

that is both space efficient and computationally effective.

SUMMARY OF THE INVENTION
Briefly stated, the present invention is directed to a graphics processor that
employs a unified shader that is capable of performing both the vertex operations
and the pixel operations in a space saving and computationally efficient manner.
In an exemplary embodiment, a graphics processor according to the present
Invention includes an arbiter circuit for selecting one of a plurality of inputs for
processing in response to a control signal; and a shader, coupled to the arbiter,
operative to process the selected one of the plurality of inputs, the shader
including means for performing vertex operations and pixel operations, and
wherein the shader performs one of the vertex operations or pixel operations

based on the selected one of the plurality of inputs.



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

The shader includes a general purpose register block for storing at least the
plurality of selected inputs, a sequencer for storing logical and arithmetic
instructions that are used to perform vertex and pixel manipulation operétions
and a processor capable of executing both floating point arithmetic and logical
operations on the selected inputs according to the instructions maintained in the
sequencer. The shader of the present invention iIs referred to as a “unified”
shader because it is configured to perform both vertex and pixel operations. By
employing the unified shader of the present invention, the associated graphics
processor is more space efficient than conventional graphics processors
because the unified shader takes up less real estate than the conventional multi-

shader processor architecture.

In addition, according to the present invention, the unified shader is more
computationally efficient because it allows the shader to be flexibly allocated to

pixels or vertices based on workload.

BRIEF DESCRIPTION OF THE DRAWINGS
The present invention and the associated advantages and features thereof, will
become better understood and appreciated upon review of the following detailed
description of the i;nvention, taken in conjunction with the following drawings,

where like numerals represent like elements, in which:

FIG. 1 Iis a schematic block diagram of a conventional shader;



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

FIGS. 2A-2B are graphical representations of the operations performed by

the shader illustrated in FIG. 1;

FIG. 3 is a schematic block diagram of a conventional graphics processor

architecture:

FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention:

FIG. 4B is a schematic block diagram of an optional input component to

the graphics processor according to an alternate embodiment of the present

invention; and

FIG. 5 Is an exploded schematic block diagram of the unified shader

employed in the graphics processor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION
FIG. 3, illustrates a graphics processor incorporating a conventional pipeline
architecture. As shown, the graphics processor 40 includes a vertex fetch block
42 which recelves vertex information relating to a primitive to be rendered from
an off-chip memory 55 on line 41. The fetched vertex data is then transmitted to
a vertex cache 44 for storage on line 43. Upon request, the vertex data
maintained in the vertex cache 44 is transmitted to a vertex shader 46 on line 45.
As discussed above, an example of the information that is requested by and
transmitted to the vertex shader 46 includes the object shape, material properties

(e.g. color), texture information, and viewing angle. Generally, the vertex shader



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

46 is a programmable mechanism which applies a transformation position matrix
to the input position information (obtained from the vertex cache 44), thereby
providing data representing a perspectively corrected image of the object to be

rendered, along with any texture or color coordinates thereof.

After performing the transformation operation, the data representing the
transformed vertices are then provided to a vertex store 48 on line 47. The
vertex store 48 then transmits the modified vertex information contained therein
to a primitive assembly block 50 on line 49. The primitive assembly block 50
assembles, or converts, the input vertex information into a plurality of primitives
to be subsequently processed. Suitable methods of assembling the input vertex
information into primitives is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmitted to a rasterization
engine 52, which converts the previously assembled primitives into pixel data
through a process referred to as walking. The resulting pixel data is then

transmitted to a pixel shader 54 on line 53.

The pixel shader 54 generates the color and additional appearance attributes
that are to be applied to a given pixel, and applies the appearance attributes to
the respective pixels. In addition, the pixel shader 54 is capable of fetching
texture data from a texture map 57 as indexed by the pixel data from the
rasterization engine 52 by transmitting such information on line 55 {o the texture
map. The requested texture data is then transmitted back from the texture map
57 on line 57 and stored in a texture cache 56 before being routed to the pixel

shader on line 58. Once the texture data has been received, the pixel shader 54

6



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

then performs specified logical or arithmetic operations on the received texture
data to generate the pixel color or other appearance attribute of interest. The
generated pixel appearance attribute is then combined with a base color, as
provided by the rasterization engine on line 53, to thereby provide a pixel color to
the pixel corresponding at the position of interest. The pixel appearance attribute
present on line 59 is then transmitted to post raster processing blocks (not

shown).

As described above, the conventional graphics processor 40 requires the use of
two separate shaders: a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall footprint of the graphics
processor is relatively large as the two shaders take up a large amount of real
estate. Another drawback associated with conventional graphics processor

architectures is that can exhibit poor computational efficiency.

Referring now to FIG. 4A, in an exemplary embodiment, the graphics processor
60 of the present invention includes a multiplexer 66 having vertex (e.g. indices)
data provided at a first input thereto and interpolated pixel parameter (e.g.
position) data and attribute data from a rasterization engine 74 provided at a
second input. A control signal generated by an arbiter 64 is transmitted to the
multiplexer 66 on line 63. The arbiter 64 determines which of the two Inputs to
the multiplexer 66 is transmitted to a unified shader 62 for further processing.
The arbitration scheme employed by the arbiter 64 is as follows: the vertex data
on the first input of the multiplexer 66 is transmitted to the unified shader 62 on

line 65 if there is enough resources available in the unified shader to operate on

7



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

the vertex data; otherwise, the interpolated pixel parameter data present on the

second input will be passed to the unified shader 62 for further processing.

Referring briefly to FIG. 5, the unified shader 62 will now be described. As
llustrated, the unified shader 62 includes a general purpose register block 92, a
plurality of source registers: including source register A 93, source register B 95,
and source register C 97, a processor (e.g. CPU) 96 and a sequencer 99. The
'. general purpose register block 92 includes sixty four registers, or available
entries, for storing the information transmitted from the multiplexer 66 on line 65
or any other information to be maintained within the unified shader. The data
present in the general purpose register block 92 is transmitted to the plurality of

source registers via line 109.

The processor 96 may be comprised of a dedicated piece of hardware or can be
configured as part of a general purpose computing device (i.e. personal
computer). In an exemplary embodiment, the processor 96 is adapted to perform
32-bit floating point arithmetic operations as well as a complete series of logical
operations on corresponding operands. As shown, the processor is logically
partitioned into two sections. Section 96 is configured to execute, for example,
the 32-bit floating point arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations (e.g. log, exponent,

reciprocal square root) of the unified shader.

The sequencer 99 includes constants block 91 and an instruction store 98. The

constants block 91 contains, for example, the several transformation matrices



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

used in connection with vertex manipulation operations. The instruction store 98
contains the necessary instructions that are executed by the processor 96 in
order to perform the respective arithmetic and logic operations on the data
maintained in the general purpose register block 92 as provided by the source
registers 93-95. The Instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified shader 62 to fetch texture
and other types of data, from memory 82 (FIG. 4A). In operation, the sequencer
99 determines whether the next instruction to be executed (from the instruction
store 98) is an arithmetic or logical instruction or a memory (e.g. texture fetch)
instruction. If the next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not shown) which retrieves the
required information from memory 82 (FIG. 4A). The retrieved information is
then transmitted to the sequencer 99, through the vertex texture cache 68 (FIG.

4A) as described in greater detail below.

If the next instruction to be executed is an arithmetic or logical instruction, the
sequencer 99 causes the appropriate operands to be transferred from the
general purpose register.block 92 into the appropriate soufce registers (93, 95,
O7) for execution, and an appropriate signal is sent to the processor 96 on line
101 indicating what operation or series of operations are to be executed on the
several operands present in the source registers. At this point, the processor 96
executes the instructions on the operands present in the source registers and

provides the result on line 85. The information present on line 85 may be



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

transmitted back to the general purpose register block 92 for storage, or

transmitted to succeeding components of the graphics processor 60.

As discussed above, the instruction store 98 maintains both vertex manipulation
instructions and pixel manipulation instructions. Therefore, the unified shader 99
of the present invention is able to perform both vertex and pixel operations, as
well as execute memory fetch operations. As such, the unified shader 62 of the
present invention is able to perform both the vertex shading and pixel shading
operations on data in the context of a graphics controller based on information
passed from the multiplexer. By being adapted to perform memory teiches, the
unified shader of the present invention is able to perform additional processes

that conventional vertex shaders cannot perform; while at the same time, perform

pixel operations.

The unified shader 62 has ability to simultaneously perform vertex manipulation
operatio'ns and pixel manipulation operations at various degrees of completion by
being able to freely switch between such programs or instructions, maintained in
the instruction store 98, very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92 from multiplexer 66. The
instruction store 98 then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex operations. However, if the
general purpose register block 92 does not have enough available space therein
to store the incoming vertex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this manner, any pixel

calculation operations that are to be, or are currently being, performed by the

10



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

processor 96 are continued, based on the instructions maintained in the
Instruction store 98, until enough registers within the general purpose register
block 92 become available. Thus, through the sharing of resources within the
unified shader 62, processing of image data is enhanced as there is no down

time associated with the processor 96.

Referring back to FIG. 4A, the graphics processor 60 further includes a cache
block 70, including a parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62 on line 85 and stores the
respective pixel parameter and position information in the corresponding cache.
The pixel information present in the cache block 70 is then transmitted to the
primitive assembly block 72 on line 71. The primitive assembly block 72 is
responsible for assembling the information transmitted thereto from the cache
block 70 into a series of triangles, or other suitable primitives, for further
processing. The assembled primitives are then transmitted on line 73 to
rasterization engine block 74, where the transmitted primitives are then
converted into individual pixel data information through a walking process, or any
other suitable pixel generation process. The resulting pixel data from the
rasterization engine block 74 is the interpolated pixel parameter data that is

transmitted to the second input of the multiplexer 66 on line 75.

In those situations when vertex data is transmitted to the unified shader 62
through the muitiplexer 66, the resulting vertex data generated by the processor
96, Is transmitted to a render back end block 76 which converts the resulting

vertex data into at least one of several formats suitable for later display on

11



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

display device 84. | For example, if a stained glass appearance effect is to be
applied to an image, the information corresponding to such appearance effect is
associated with the appropriate position data by the render back end 76. The
information from the render back end 76 is then transmitted to memory 82 and a
display controller line 80 via memory controller 78. Such appropriately formatted

information is then transmitted on line 83 for presentation on display device 84.

Referring now to FIG. 4B, shown therein is a vertex block 61 which is used to
provide the vertex information at the first input of the multiplexer 66 according to
an alternate embodiment of the present invention. The vertex block 61 includes
a veriex fetch block 61A which is responsible for retrieving vertex information
from memory 82, if requested, and transmitting that vertex information into the
vertex cache 61B. The information stored in the vertex cache 61B comprises the

vertex information that is coupled to the first input of multiplexer 66.

As discussed above, the graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of performing both vertex
manipulation operations and pixel manipulation operations based on the
Instructions stored In the instruction store 98. In this fashion, the graphics
processor 60 of the present invention takes up less real estate than conventional
graphics processors as separate vertex shaders and pixel shaders are no longer
required. In addition, as the unified shader 62 is capable of alternating between
performing vertex manipulation operations and pixel manipulation operations,
graphics processing efficiency is enhanced as one type of data operations is not

dependent upon another type of data operations. Therefore, any performance

12



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

penalties experienced as a result of dependent operations in conventional

graphics processors are overcome.

The above detailed description of the present invention and the examples
described therein have been presented for the purposes of illustration and
description. It is therefore contemplated that the present invention cover any and
all modifications, variations and equivalents that fall within the scope of the basic

underlying principles disclosed and claimed herein.

13



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

CLAIMS
1. A graphics processor (60), comprising:

an arbiter circuit (64) for selecting one of a plurality of inputs in
response to a control signal; and

a shader (62), coupled to the arbiter circuit (64) , operative to
process the selected one of the plurality of inputs, the shader (62) including
means for performing vertex operations and pixel operations, and perfofming one
of the vertex operations or pixel operations based on the selected one of the

plurality of inputs, wherein the shader (62) provides an appearance attribute.

2. The graphics processor of claim 1, further inciuding a vertex storage

block (70) for maintaining vertex information.

3. The graphics processor of claim 2, wherein the vertex storage block
(70) further includes a parameter cache (70A) operative to maintain appearance
attribute data for a corresponding vertex and a position cache (70B)operative to

maintain position data for a corresponding vertex.
4. The graphics processor of any one of the preceding claims, wherein

the appearance attribute is at least one of color, lighting, texture, normal and

position data.

14



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

5. The graphics processor of claim 4, wherein the appearance attribute is
color, and the color is associated with a corresponding pixel when the selected

one of the plurality inputs is pixel data.

6. The graphics processor of claim 4 or claim 5, wherein the appearance
attribute is position, and the position attribute is associated with a corresponding

vertex when the selected one of the plurality of inputs is vertex data.

7. The graphics processor of any one of the preceding claims, wherein

the appearance value is depth.

8. The graphics processor of any one of the preceding claims, i'ncluding a
selection circuit comprising a multiplexer (66) coupled to the arbiter (64), wherein
the arbiter (64) provides a control signal to control the multiplexer to select a

required input (66).

9. The graphics processor of any one of the preceding claims, wherein
the shader (62) provides vertex position data and further including a primitive
assembly block (72), coupled to the shader (62), operative to generate primitives

in response to the vertex position data.

15



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

10. The graphics processor of claim 9, further including a raster engine
(74), coupled to the primitive assembly block (72), operative to generate pixel

parameter data in response to the assembled vertex data.

11. The graphics processor of any one of the preceding claims, wherein
the shader (62) generates pixel color information in response to the selected one

of the plurality of inputs.

12. The graphics processor of any one of the preceding claims, wherein
the shader (62) includes a register block for maintaining the selected one of the
plurality of inputs, a computation element operative to perform arithmetic and
logical operations on the data maintained in the register block, and a sequencer

for maintaining the instructions that are executed by the computation element.

13. The graphics processor of any one of the preceding claims, wherein

the shader (62) further includes circuitry operative to access a memory (82).

14. A unified shader, comprising:
a general purpose register block (92) for maintaining data;
a processor unit (96); and
a sequencer (99), coupled to the general purpose register block
(92) and the processor unit (96), the sequencer (99) maintaining instructions

operative to cause the processor unit (96) to execute vertex calculation and pixel

16



CA 02585860 2007-05-14
WO 2005/050570 PCT/1IB2004/003821

calculation operations on selected data maintained in the general purpose

register block (92).

15. The shader of claim 14, wherein the sequencer (99) further includes

circuitry operative to fetch data from a memory.

16. The shader of claim 14 or claim 15, further including a selection circuit
operative to provide information to the general purpose block (92) in response to

~a control signal.

17. The shader of claim 16, wherein the selection circuit is a multiplexer

(66) and the control signal is provided by an arbiter (64).

18. The shader of any one of claims 14 to 17, wherein the processor unit
(96) executes instructions that generate a pixel color in response to the selected

one of the plurality of inputs.

19. The shader of any one of claims 14 to 18, wherein the processor unit

(96) executes vertex calculations while the pixel calculations are still in progress.

20. The shader of any one of claims 14 to 19, wherein the processor unit

(96) generates vertex position and appearance data in response to a selected

one of the plurality of inputs.

17



CA 02585860 2007-05-14

PCT/1B2004/003821

WO 2005/050570

1/35

(z°A"%)

8¢

=
=

(LYY JORd)
STE

d30VHS

¢l

¢e

0¢
81
ol

14+

JTONY
ONIMIIA

JONVNINNT

vivd
JaNiIXdl

d0'109D

ddVHS
103rgo



CA 02585860 2007-05-14

WO 2005/050570 PCT/1B2004/003821
2/5

30

30f

30a

30b
FIG. 2A
(PRIOR ART)
V.’ 30a’ V.*

FIG. 2B

(PRIOR ART)



CA 02585860 2007-05-14

WO 2005/050570 PCT/1B2004/003821
3/5
59 R P
| TEXTURE |
MEMORY  we

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

41 43
‘ ~ 44
VERTEX FETCH V-CACHE |
AW e
VERTEX VERTEX |48
SHADER STORE
46
47 49
PRIMITIVE ,900
ASSEMBLY |

51

RASTERIZATION | 92
ENGINE
53
TO K& 55
57 PIXEL
. SHADER
FROM TEXTURE 54—
ST CACHE | 58

56— ,
59

FIG. 3 POST RASTER
(PRIOR ART) PROCESSING




CA 02585860 2007-05-14

WO 2005/050570 PCT/1B2004/003821
4/5

INDICES
63
64 . |
87 10 MEMORY
UNIFIED 68
SHADER TEXTURE  MEMORY
69A CACHE
76  PARAMETER |
~ CACHE 70
RENDER
BACK 0B
END POSITION }
CACHE
77
. 71
' PRIMITIVE | /2
79 EMORY ASSEMBLY
CONTROLLER "
74
RASTERIZATION]'
CONTROLLER
75
8 84 82
DISPLAY | MEMORY

FIG. 4A




CA 02585860 2007-05-14

WO 2005/050570 PCT/IB2004/003821
5/5
INDJICES o

Fosonssernedesmrsssseneneswe 'K:: --------------- ’

§ VERTEX VERTEX | {TO MuX

; FETCH CACHE [ i

. _ i FIG. 4B

61A 618
FROM MUX MEMORY

99 FETCH

67
INSTRUCTION 1/°°
92 STORE

65

69A
91
94 '
109
. 97
SOURCEA | SOURCEB SOURCE C
93
__________ =9)6/"\
CPU :
6T (SCALER)"
101
85

FIG. 5 A\G?_



ARBITER

64 6

79

INDICES

UNIFIED

SHADER TEXTURE MEMORY
VERTEX | g9 alls
69A CACHE

B85

RENDER
BACK
END
77
. 71
PRIMITIVE | /4
VEMORY ASSEMBLY

CONTROLLER

73
:
DISPLAY 81 ENGINE
CONTROLLER
75
8 84 82

DISPLAY

MEMORY



	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - abstract drawing

