» UK Patent Application ..GB .,2503932

(13)A

(43)Date of A Publication 15.01.2014

(21) Application No: 1212509.2

(22) Date of Filing: 13.07.2012

(71) Applicant(s):
International Business Machines Corporation
(Incorporated in USA - New York)
New Orchard Road, Armonk, N.Y. 10504,
United States of America

(72) Inventor(s):
Ivan Derek Hargreaves
lan James Mitchell
Julian Charles Horn
Fraser Bohm

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(51) INT CL:
GOGF 9/48 (2006.01)
GO6F 9/455 (2006.01)

GOG6F 9/46 (2006.01)

(56) Documents Cited:
EP 1122644 A1
US 20090210874 A1

US 6138169 A

(58) Field of Search:
INT CL GO6F
Other: Online: WPI, EPODOC, TXTE, INSPEC, XPESP,
XPESP2, XPIEE, XPIPCOM, XPI3E, XPLNCS, XPRD,
XPSPRNG.

(54) Title of the Invention: Hybrid computer thread creation and management
Abstract Title: Creating a hybrid processing thread to be executed on multiple application servers

(57) A computer system 100 is operable to support an
application, and includes at least two application server
environments 102, 104. The system comprises: a
component 106 for intercepting a request relating to the
application issued to the first environment before it the
requested work is executed; a component 108 for
creating a processing thread 110 from the request which
is adapted for execution in the first environment; a
dispatcher component 112, which attaches a context 114
to the thread to modify the thread into a hybrid thread 116
which is also suitable for execution in the second
environment; and a component 118 for returning the
hybrid thread to the first environment. This allows the
request to access services or components in the second
environment without requiring additional layers of
processor overhead or modification of either
environment. The environments may be incompatible in
terms of their programming models, where one may be a
procedural environment and the other an object-oriented
environment.

100

102 104

106

REQ *

108

112 116 116
—| 110 110
]
118
H > | 114 114
'RETURN
Figure 1

vV ¢E6E09¢ 99

REQ

1/4

100
102 104
106
108
112 116 116
— 110 110
-
- >
118
R > 114 114
RETURN

Figure 1

2/4

116 HYBRID THREAD

114
110 120
THREAD TXN
CTL

122

SEC
CTL

124

MON
CTL

126

TRACE
CTL

128

API

Figure 2

3/4

300
(START)
302
INTERCEPT
REQUEST
304
CREATE THREAD
FOR ENVIRONMENT
1
306 |
ATTACH CONTEXT
FOR ENVIRONMENT 2
308 |
RETURN THREAD
FOR EXECUTION
310

(END)

Figure 3

400

JAVA
LISTENER/DISPATCHER

402 ¢

CICS EXECUTOR
SERVICE

404 ¢

CICS THREAD
DISPATCHER

406 %

EXISTING CICS TASK
MANAGER

408 #

CICS NATIVE THREAD
CATCHER

410 ‘

EXISTING CICS TCB
DISPATCHER

412 #

CICS JAVA THREAD
CATCHER

4/4

Figure 4

414

TARGET JAVA
RUNNABLE

10

15

20

25

30

HYBRID COMPUTER THREAD CREATION AND MANAGEMENT

BACKGROUND OF THE INVENTION

The present invention relates to a system and method for managing a hybrid thread in

heterogeneous application server environments.

As is well known in the computer art, application server environments are supporting
environments that mediate between the base computer operating system environment and user
applications. Application server environments also provide a number of supporting services
to user applications; for example, control of communications between clients and databases,
performance monitoring, diagnostic tracing and transaction control services, among others.
Many also provide specialised application programming interfaces tailored to enable users to

exploit advanced services in a simple, standardised manner.

Examples of application server environments are Oracle Corporation’s WebLogic, SAP
NetWeaver Application Server, IBM Corporation’s WebSphere Application Server, and IBM
Corporation’s CICS Transaction Server, among others. Application server environments may
operate independently, side-by-side within an operating system environment, or in a nested
fashion, with one environment embedded within another. (IBM, WebSphere and CICS are
trademarks of International Business Machines Corporation, registered in many jurisdictions
worldwide. Other product or service names may be trademarks or registered trademarks of

others).

As is also well known in the art, application server environments take several forms. Some
application server environments follow traditional computing paradigms (for example, using
traditional procedural programming approaches), while others follow more recent
programming paradigms, such as object-oriented programming and portable programming
models like the Java model. (Java and all Java-related trademarks and logos are trademarks

or registered trademarks of Oracle Corporation in the US and other countries.)

Where user applications have been created to use the services of, and the programming model
provided by, a particular one of these application server environments, serious problems arise

in any attempt to move to a different application server environment, or to enable coexistence

10

15

20

25

30

of applications between different application server environments. These problems are
exacerbated by the need to support “software as a service” and cloud computing models, in
which applications need to be made mobile between server platforms and across multiple,

potentially heterogeneous environments.

It is known that various attempts to address this problem have been proposed. One example
is the provision of wrappers, connectors or adapters, which provide translations of the
language and other constructs used by a user application that are specific to a first application
server environment into the equivalent language and other constructs that would be used by
the user application in a second application server environment. These wrappers, connectors
and adapters disadvantageously add layers of processing overhead between the applications
and their environments and thus adversely affect the performance, reliability and

serviceability of the applications and the application server environments.

It would thus be desirable to alleviate these adverse effects and to provide a means by which
applications could take advantage of the services provided by different application server
environments without being bound by the limitations of those environments, and without the

need to reprogram applications to make them portable between the environments.

It would therefore be desirable to improve upon the known art.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention, there is provided a computer system (100)
operable to support an application; at least a first application server environment (102) and a
second application server environment (104); and comprising: a request interceptor
component (106) for intercepting a work request relating to said application issued to said
first application server environment (102) prior to execution of requested work; an executor
component (108), responsive to said request interceptor component (106), for creating a
thread (110) adapted for execution in said first application server environment (102); a thread
dispatcher component (112) , responsive to said executor component (108), for attaching to
said thread (110) a context (114) to non-disruptively modify said thread (110) into a hybrid

thread (116) additionally suitable for execution in said second application server environment

10

15

20

25

30

(104); and a catcher component (118), responsive to said thread dispatcher component (112),

for returning said hybrid thread (116) to said first application server environment (102).

Preferably, said hybrid thread (116) is operable to execute in an unmodified said first
application server environment (102) and in an unmodified said second application server
environment (104). Preferably, said hybrid thread (116) comprises first data visible to a
server only in said first application server environment (102) and second data visible to a
server only in said second application server environment (104). Preferably, said first
application server environment (102) and said second application server environment (104)
are incompatible in their program execution models. Preferably, only one of said first
application server environment (102) or said second application server environment (104) is a
procedural program environment. Preferably, only one of said first application server
environment (102) or said second application server environment (104) is an object-oriented
program environment. Preferably, said context comprises transactional control data (120) of
one of said application server environments (102, 104). Preferably, said context comprises
transactional control data (120), security control data (122), monitoring control data (124),
diagnostic tracing control data (126), or data (128) enabling access to an application

programming interface of one of said application server environments (102, 104).

According to a second aspect of the present invention, there is provided a method of operating
a computer system (100) to support an application; at least a first application server
environment (102) and a second application server environment (104); and comprising:
intercepting, by a request interceptor component (106), a work request relating to said
application issued to said first application server environment (102) prior to execution of
requested work; responsive to said request interceptor component (106), creating a thread
(110) adapted for execution in said first application server environment (102) by an executor
component (108); responsive to said executor component (108), attaching to said thread
(110), by a thread dispatcher component (112), a context (114) to non-disruptively modify
said thread (110) into a hybrid thread (116) additionally suitable for execution in said second
application server environment (104); and responsive to said thread dispatcher component
(112), returning said hybrid thread (116) to said first application server environment (102) by

a catcher component (118).

10

15

20

25

30

Preferably, said hybrid thread (116) is operable to execute in an unmodified said first
application server environment (102) and in an unmodified said second application server
environment (104). Preferably, said hybrid thread (116) comprises first data visible to a
server only in said first application server environment (102) and second data visible to a
server only in said second application server environment (104). Preferably, said first
application server environment (102) and said second application server environment (104)
are incompatible in their program execution models. Preferably, only one of said first
application server environment (102) or said second application server environment (104) is a
procedural program environment. Preferably, only one of said first application server
environment (102) or said second application server environment (104) is an object-oriented
program environment. Preferably, said context comprises transactional control data (120) of
one of said application server environments (102, 104). Preferably, said context comprises
transactional control data (120), security control data (122), monitoring control data (124),
diagnostic tracing control data (126), or data (128) enabling access to an application

programming interface of one of said application server environments (102, 104).

In a third aspect, there is provided a computer program comprising computer program code
to, when loaded into a computer system and executed thereon, cause said computer system to
perform the steps of the method according to the second aspect.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by way of example only, with

reference to the accompanying drawings, in which:

Figure 1 illustrates the components of a system according to a preferred embodiment of the

present invention;

Figure 2 represents a detailed view of a hybrid thread according to a preferred embodiment of

the present invention;

Figure 3 represents a flow diagram illustrating the steps of a method of operation according to

a preferred embodiment of the present invention; and

10

15

20

25

30

Figure 4 represents a flow of control in an exemplary CICS and Java embodiment of the

present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In a typical commercial data processing system of the present day, there is often a mixture of
processing environments, some of which, like IBM’s high-performance and high-integrity
CICS transaction processing products, follow a conventional, though highly advanced and
reliable, procedural programming and operational paradigm, and some of which, like IBM’s
WebSphere Application Server, offer an inbuilt opportunity to exploit object-oriented and
Java processing environments. As will be clear to one of ordinary skill in the art, CICS and
WebSphere are merely two examples of application server environments; many other such

application server environments are supplied by other vendors.

CICS has for some time provided facilities for permitting a level of interoperability between
the normal CICS environment and programs implementing a Java model. However, these
facilities have certain limitations — for example, they do not apply to processing threads
initiated from inside the Java Virtual Machine (JVM) as a result of a Thread.Start instruction.
Such threads are not able to participate in a CICS task and cannot make use of the CICS API
and services. This is particularly unfortunate when users have a need to port server side
components to run in the JVM under CICS as it is a very common pattern for such
components (Jetty, Axis 2, Liberty etc), to attach worker threads from inside the JVM to
satisfy external requests. When such components are hosted in CICS it is almost certain that
such worker threads will require access to CICS services or API, and this cannot be achieved

using the facilities presently provided.

The approaches to improving the situation implemented in various application server
environments thus far involve significant reprogramming, both of the application server

environments and of the applications themselves, and this is clearly disadvantageous.

The first is to completely remove the listening/dispatching component from one application
server environment and to re-implement it using the infrastructure provided by a second
application server environment. As noted above, this approach has the disadvantage that it

requires a significant rewrite of the ported server side components.

10

15

20

25

30

The second approach is to alter the listening/dispatching logic of a first application server
environment to issue an additional call to the second application server environment to start
another transaction. This transaction is started outside the first application server
environment and must then be synchronised with the calling component inside the first
application server environment. The approach again requires a significant re-write of the
dispatching/listening components to be made workable. It also requires the first application
server environment code to know the characteristics of the required task environment of the

second application server environment.

Turning to Figure 1, there is illustrated a computer system (100) operable to support an
application; at least a first application server environment (102) and a second application
server environment (104). In a most preferred embodiment, the first application server
environment (102) is a CICS application server environment, and the second application
server environment (104) is a Java-enabled environment, such as the WebSphere Application

Server.

Computer system (100) comprises a request interceptor component (106) for intercepting a
work request relating to the application issued to the first application server environment
(102) prior to execution of requested work. In the present embodiment, the work request
could be, for example, a Java Thread.Start request. Computer system (100) further comprises
an executor component (108), responsive to the request interceptor component (106), for
creating a thread (110) adapted for execution in said first application server environment

(102).

There is also provided a thread dispatcher component (112), responsive to the executor
component (108), for attaching to the thread (110) a context (114) to non-disruptively modify
the thread (110) into a hybrid thread (116) additionally suitable for execution in the second
application server environment (104). A catcher component (118) is responsive to the thread
dispatcher component (112), for returning said hybrid thread (116) to the first application

server environment (102).

The computer system (100) as described enables the hybrid thread (116) to execute in an
unmodified first application server environment (102) and in an unmodified second

application server environment (104). In the computer system (100) as described, the hybrid

10

15

20

25

30

thread (116) comprises first data visible to a server only in the first application server
environment (102) and second data visible to a server only in the second application server

environment (104).

Advantageously, the computer system (100) as described is operable in systems in which the
first application server environment (102) and the second application server environment
(104) are incompatible in their program execution models. For example, one of the
application server environments (102, 104) could be a procedural program environment,
while the other application server environment (102, 104) could be an object-oriented

program environment.

The context (114) attached to the thread in this way to make a hybrid thread, as is shown in
Figure 2, could comprise transactional control data (120), security control data (122),
monitoring control data (124), diagnostic tracing control data (126), or data (128) enabling
access to an application programming interface of one of the application server environments

(102, 104).

Turning to Figure 3, there is shown a method of operating a computer system (100) to support
an application; at least a first application server environment (102) and a second application
server environment (104); and comprising the step, following START step (300), of
intercepting (302), by a request interceptor component (106), a work request relating to the
application issued to the first application server environment (102) prior to execution of
requested work. The method continues at step (304), responsive to the request interceptor
component (106), creating (304) a thread (110) adapted for execution in said first application
server environment (102) by an executor component (108). Then, responsive to the executor
component (108), the process continues by attaching (306) to the thread (110), by a thread
dispatcher component (112), a context (114) to non-disruptively modify the thread (110) into
a hybrid thread (116) additionally suitable for execution in the second application server
environment (104). Responsive to the thread dispatcher component (112), the catcher
component (118) returns, at step (308) the hybrid thread (116) to the first application server

environment (102), and the process completes, for this instantiation, at END step (310).

Thus, in the preferred CICS and Java embodiment, there is provided a combined (partially in

Java, partially native services) thread dispatching service which can be called from any Java

10

15

20

25

30

thread (CICS attached or not) that will provide a Java thread and related CICS task
environment such that the thread is also a CICS task and can make full use of CICS API and

SErvices.

In a most preferred embodiment, this thread dispatching service is used to implement a Java
ThreadExecutor — this allows the advantages of the preferred embodiment of the invention to
be achieved with no code changes to the dispatching/listening components and minimal

changes to the configuration of the ported component.

Turning to Figure 4, there is shown the flow through a set of components of a preferred CICS
and Java embodiment. The Java listener/dispatcher (400) receives the work request and calls
the CICS executor service (402). CICS executor service (402) creates the base Java thread
and then invokes CICS thread dispatcher (404), which uses the services of the existing CICS
task manager (406), the CICS native thread catcher (408) and the existing CICS task control
block dispatcher (410) to create and attach the CICS context to the thread, thereby creating a
hybrid thread. The thread is then passed back by the CICS Java thread catcher (412) to the

CICS executor service (402), which emits the target Java runnable component (414).

As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

EE Y

“circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more computer readable medium(s)

having computer readable program code embodied thercon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable storage medium would include the

following: an electrical connection having one or more wires, a portable computer diskette, a

10

15

20

25

30

hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible medium that can contain, or store a
program for use by or in connection with an instruction execution system, apparatus, or

device.

A computer readable signal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in baseband or as part of a carrier
wave. Such a propagated signal may take any of a variety of forms, including, but not limited
to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a program for use by or in

connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's computer
and partly on a remote computer or entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an

Internet Service Provider).

It will be equally clear to one of skill in the art that all or part of a logic arrangement

according to the preferred embodiments of the present invention may suitably be embodied in

10

15

20

25

30

10

a logic apparatus comprising logic elements to perform the steps of the method, and that such

logic elements may comprise components such as logic gates in, for example a programmable
logic array or application-specific integrated circuit. Such a logic arrangement may further be
embodied in enabling elements for temporarily or permanently establishing logic structures in
such an array or circuit using, for example, a virtual hardware descriptor language, which may

be stored and transmitted using fixed or transmittable carrier media.

Aspects of the present invention are described below with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium that
can direct a computer, other programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of operational steps to be
performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or
other programmable apparatus provide processes for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products

according to various embodiments of the present invention. In this regard, each block in the

10

11

flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the specified functions

or acts, or combinations of special purpose hardware and computer instructions.

10

15

20

25

30

12

CLAIMS

1. A computer system (100) operable to support an application; at least a first application
server environment (102) and a second application server environment (104); and comprising:

a request interceptor component (106) for intercepting a work request relating to said
application issued to said first application server environment (102) prior to execution of
requested work;

an executor component (108), responsive to said request interceptor component (106),
for creating a thread (110) adapted for execution in said first application server environment
(102);

a thread dispatcher component (112) , responsive to said executor component (108),
for attaching to said thread (110) a context (114) to non-disruptively modify said thread (110)
into a hybrid thread (116) additionally suitable for execution in said second application server
environment (104); and

a catcher component (118), responsive to said thread dispatcher component (112), for

returning said hybrid thread (116) to said first application server environment (102).

2. The computer system (100) as claimed in claim 1, wherein said hybrid thread (116) is
operable to execute in an unmodified said first application server environment (102) and in an

unmodified said second application server environment (104).

3. The computer system (100) as claimed in claim 2, wherein said hybrid thread (116)
comprises first data visible to a server only in said first application server environment (102)

and second data visible to a server only in said second application server environment (104).

4. The computer system (100) as claimed in any preceding claim, wherein said first
application server environment (102) and said second application server environment (104)

are incompatible in their program execution models.

5. The computer system (100) as claimed in claim 4, wherein only one of said first
application server environment (102) or said second application server environment (104) is a

procedural program environment.

10

15

20

25

30

13

6. The computer system (100) as claimed in claim 4, wherein only one of said first
application server environment (102) or said second application server environment (104) is

an object-oriented program environment.

7. The computer system (100) as claimed in any preceding claim, wherein said context
(114) comprises transactional control data (120) of one of said application server

environments (102, 104).

8. The computer system (100) as claimed in any preceding claim, wherein said context
(114) comprises security control data (122) of one of said application server environments

(102, 104).

9. The computer system (100) as claimed in any preceding claim, wherein said context
(114) comprises monitoring control data (124) of one of said application server environments

(102, 104).

10. The computer system (100) as claimed in any preceding claim, wherein said context
(114) comprises diagnostic tracing control data (126) of one of said application server

environments (102, 104).

11. The computer system (100) as claimed in any preceding claim, wherein said context
(114) comprises data (128) enabling access to an application programming interface of one of

said application server environments (102, 104).

12. A method of operating a computer system (100) to support an application; at least a
first application server environment (102) and a second application server environment (104);
and comprising:

intercepting, by a request interceptor component (106), a work request relating to said
application issued to said first application server environment (102) prior to execution of
requested work;

responsive to said request interceptor component (106), creating a thread (110)
adapted for execution in said first application server environment (102) by an executor

component (108);

10

15

20

25

30

14

responsive to said executor component (108), attaching to said thread (110), by a
thread dispatcher component (112), a context (114) to non-disruptively modify said thread
(110) into a hybrid thread (116) additionally suitable for execution in said second application
server environment (104); and

responsive to said thread dispatcher component (112), returning said hybrid thread

(116) to said first application server environment (102) by a catcher component (118).

13. The method as claimed in claim 12, wherein said hybrid thread (116) is operable to
execute in an unmodified said first application server environment (102) and in an unmodified

said second application server environment (104).

14. The method as claimed in claim 13, wherein said hybrid thread (116) comprises first
data visible to a server only in said first application server environment (102) and second data

visible to a server only in said second application server environment (104).

15. The method as claimed in any of claims 12 to 14, wherein said first application server
environment (102) and said second application server environment (104) are incompatible in

their program execution models.

16. The method as claimed in claim 15, wherein only one of said first application server
environment (102) or said second application server environment (104) is a procedural

program environment.

17. The method as claimed in claim 15, wherein only one of said first application server
environment (102) or said second application server environment (104) is an object-oriented

program environment.

18. The method as claimed in any of claims 12 to 17, wherein said context (114)

comprises transactional control data (120) of one of said application server environments

(102, 104).

19. The method as claimed in any of claims 12 to 18, wherein said context (114)

comprises security control data (122) of one of said application server environments (102,

104).

10

15

15

20. The method as claimed in any of claims 12 to 19, wherein said context (114)

comprises monitoring control data (124) of one of said application server environments (102,
104).

21. The method as claimed in any of claims 12 to 20, wherein said context (114)

comprises diagnostic tracing control data (126) of one of said application server environments

(102, 104).

22. The method as claimed in any of claims 12 to 21, wherein said context (114)
comprises data (128) enabling access to an application programming interface of one of said

application server environments (102, 104).

23. A computer program comprising computer program code to, when loaded into a
computer system and executed thereon, cause said computer system to perform the steps of

the method as claimed in any of claims 12 to 22.

+?® INTELLECTUAL

ceo’ PROPERTY OFFICE

Application No:

Claims searched:

GB1212509.2
1-23

16

Examiner: Mr Michael Warren

Date of search: 5 November 2012

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - EP 1122644 A1l
(SUN MICROSYSTEMS)
A - US 2009/0210874 Al
(HARRIS et al)
A - US 6138169 A
(FREUND et al)
Categories:
X Document indicating lack of novelty or inventive Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™

Worldwide search of patent documents classified in the following areas of the IPC

| GO6F

The following online and other databases have been used in the preparation of this search report

XPRD, XPSPRNG

WPI, EPODOC, TXTE, INSPEC, XPESP, XPESP2, XPIEE, XPIPCOM, XPI3E, XPLNCS,

International Classification:

Subclass Subgroup Valid From
GO6F 0009/48 01/01/2006
GO6F 0009/46 01/01/2006
GO6F 0009/455 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

