Office de la Propriete Canadian CA 2527447 C 2015/05/05

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 527 447
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
(13) C
(22) Date de depot/Filing Date: 2005/11/18 (51) ClL.Int./Int.Cl. HO4L 12/16 (2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 200//05/18 GO6F 17/00 (2006.01), GOG6F 9/44 (2000.01)
(45) Date de delivrance/lssue Date: 2015/05/05 (72) Inventeurs/Inventors:

CHAN, ALLEN VI CUONG, CA;
CHEN, ZHONGMING, CA;
COULTHARD, PHIL, CA,;
GOLDBERG, RICHARD MYER, CA,;
LAU, ELAINE YIN LING, CA,;

OOl, CHEE WAI, MY,

SPRIET, DAVID ADIEL, CA

(73) Propriéetaire/Owner:
IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

(74) Agent: WANG, PETER

(54) Titre : CREATION DE SERVICES WEB ORIENTEE VERS LES MESSAGES
(54) Title: MESSAGE ORIENTED CONSTRUCTION OF WEB SERVICES

290

\‘ "" -

o’] y *
Flow Builder Code Runtime
GUI Generation
300 2060 240

250

290 220

ez

(57) Abrege/Abstract:
Embodiments of the present invention address deficiencies of the art in respect to VWeb services construction and provide a novel
and non-obvious method, system and computer program product for message-oriented Web services construction. A method for

SR SR VENEN

S TR

TR RN/
4

I*I - - o, B e
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca oric B w omE
OPIC - CIPO 191

CA 2527447 C 2015/05/05

anen 2 527 447
(13) C

(57) Abrege(suite)/Abstract(continued):

the message oriented construction of a Web service can include graphically assembling a selection of message flow primitives
defining an operation for a Web service, interconnecting selected ones of the message flow primitives to represent a flow of
messages from one interconnected message flow primitive to another interconnected message flow primitive, and generating VWeb
service logic from the selection of message flow primitives. The method further can Include interpreting or executing the Web
service logic In response to recelving a reguest to invoke the Web service.

CA 02527447 2005-11-18

ABSTRACT OF THE DISCLOSURE

Embodiments of the present invention address deficiencies of the art in respect to Web
services construction and provide a novel and non-obvious method, system and computer
program product for message-oriented Web services construction. A method for the message
oriented construction of a Web service can include graphically assembling a selection of
message flow primitives defining an operation for a Web service, interconnecting selected ones
of the message flow primitives to represent a flow of messages from one interconnected message
flow primitive to another interconnected message flow primitive, and generating Web service
logic from the selection of message flow primitives. The method further can include interpreting

or executing the Web service logic in response to receiving a request to invoke the Web service.

CA9-2005-0080 29

CA 02527447 2005-11-18

MESSAGE ORIENTED CONSTRUCTION OF WEB SERVICES

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to the field of Web services in distributed computing,

and more particularly to the message oriented integration of Web services.

Description of the Related Art

[0002] Web services represent the leading edge of distributed computing and are viewed as
the foundation for developing a truly universal model for supporting the rapid development of
component based applications over the World Wide Web. Web services are known 1n the art to
include a stack of emerging standards that describe a service oriented, component based
application architecture. In particular, Web services are loosely-coupled, reusable sottware
components that semantically encapsulate discrete functionality and are distributed and
programmatically accessible over standard Internet protocols. Conceptually, Web services
represent a model in which discrete tasks within processes are distributed widely throughout a
value net. Many industry experts consider the service oriented Web services initiative to be the

next evolutionary phase of the Internet.

[0003] Typically, Web services are described by an interface such as the Web services
definition language (WSDL), and can be implemented according to the interface, though the
implementation details matter little so long as the implementation conforms to the Web services
interface. For example, a Web Service can be described externally via a WSDL port type
including of one or more operations. The operations include up to one input message, up to one

output message, and zero or more fault messages. Once a Web service has been implemented

CA9-2005-0080 {

CA 02527447 2005-11-18

according to a corresponding interface, the implementation can be registered with a Web services
registry, such as Universal Description, Discover and Integration (UDDI), as is well known in
the art. Upon registration, the Web service can be accessed by a service requestor through the

use of any supporting messaging protocol, including for example, the simple object access

protocol (SOAP).

[0004] Reterring to Figure 1, a traditional Web services server 110 includes a servlet 140
disposed within a Web container 120 as a listener for a Web service request 160A from a Web

services client 130 and to provide a response 160B to the Web services client 130. When the
request 160A 1is received in the servlet 140, the message content of the request 160A, along with
reflection logic, are used to create the target object of the message, and to select the correct
method in an instance of business logic 150 on the object. Parameters to the method on the
target object further are created using the encoded form of the message along with the methods
of the reflection interface. Thus, the conventional Web services model tightly couples the client

interface to the server implementation of the service.

[0005] The flow of control, once the message 160A has been delivered to the servlet 140 is as

follows:

1. Message delivered to the servlet.

2. Servlet determines the name of the class to service the message.

3. Servlet creates an instance of the class.

4. Servlet determines the name of the method to invoke on the class.

CA9-2005-0080 9

CA 02527447 2005-11-18

5. Servlet creates the parameters to the method from information in the message.

6. Servlet invokes the method passing the parameters created from the message.

7. Method returns with results or fault.

8. Servlet encodes the results or fault similar to the parameters sent in the message.

9. Servlet responds with the response message.

[0006] In the typical circumstance, a Web service can be constructed using a low-level
programming language such as the Java™ programming language, the C++ programming
language or the Java 2 Enterprise Edition framework. (Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc.) Notwithstanding, the use of a low-level programming
language to construct a Web service requires of the developer a degree of proficiency in the
underlying programming languages and an awareness of any restrictions imposed by the specific

domain mapping rules.

[0007] By comparison, a Message Oriented Architecture (MOA) describes a system
integration approach where applications can communicate with other applications through the
exchange of messages without requiring knowledge of the platform or processor in which each
other application resides. Rather, the messages can contain formatted data, requests for action,
or both. The modern climate reflects an increasing need to integrate or mediate Web services
which use different standards and protocols, and oftentimes demonstrate different operating
behaviors. The integration and mediation of Web services can be particularly important in the
domain of Enterprise Application Integration (EAI) and Enterprise Data Interchange (EDI),

which traditionally use a MOA approach to integrate Web services. Yet, for users who are only

CA9-2005-0080 3

CA 02527447 2005-11-18

familiar with message-based programming, construction of Web services through Java and J2EE

requires a significant investment in skills training and domain knowledge transfer.
BRIEF SUMMARY OF THE INVENTION

[0008] Embodiments of the present invention address deficiencies of the art in respect to Web
services construction and provide a novel and non-obvious method, system and computer
program product for message-oriented Web services construction. In a first embodiment of the
invention, a method for the message oriented construction of a Web service can include
graphically assembling a selection of message flow primitives defining an operation for a Web
service, interconnecting selected ones of the message flow primitives to represent a flow of
messages from one interconnected message flow primitive to another interconnected message
tlow primitive, and generating Web service logic from the selection of message flow primitives.
The method turther can include interpreting or executing the Web service logic in response to

recelving a request to invoke the Web service.

[0009] In one aspect of the embodiment, graphically assembling a selection of message flow
primitives defining an operation for a Web service can include determining a Web services
operation type for the Web service, matching the Web services operation type to a pre-
configured message flow pattern, and rendering a visual representation of the message flow
pattern. In another aspect of the embodiment, an additional flow primitive can be inserted in the
message flow pattern and the inserted additional flow primitive can be connected to at least one
other flow primitive in the message flow pattern. In yet another aspect of the embodiment,
determining a Web services operation type for the Web service can include reading a registry of

Web services to identify Web services as defined by a corresponding WSDL document,

CA9-2005-0080 4

CA 02527447 2005-11-18

1dentifying Web services operations for each ot the Web services in the registry, and determining

a Web services operation type for a selected one of the identified Web services operations.

[0010] In a second embodiment of the invention, a data processing system configured for
message oriented Web services construction can include message flow patterns, each message
flow pattern including a selection of message tlow primitives, a graphical user interface (GUI)
message flow builder coupled to the message flow patterns and a registry of Web services, and
code generation logic coupled to the GUI message tlow builder. The GUI message flow builder
can include program code enabled to generate tlow logic from an assembly of message flow
primitives in a message flow pattern matched to a Web services operation type for a Web
services operation selected in a Web service listed in the registry. Likewise, the code generation
logic can include program code enabled to transform the message flow logic into Web services

logic for use by a run-time for a Web services server

[0011] Additional aspects of the invention will be set forth in part in the description which
follows, and in part will be obvious from the description, or may be learned by practice of the
invention. The aspects of the invention will be realized and attained by means of the elements
and combinations particularly pointed out in the appended claims. It is to be understood that
both the foregoing general description and the following detailed description are exemplary and

explanatory only and are not restrictive of the invention, as claimed.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0012] The accompanying drawings, which are incorporated in and constitute part of this
specification, illustrate embodiments of the invention and together with the description, serve to

explain the principles of the invention. The embodiments illustrated herein are presently

CA9-2005-0080 5

CA 02527447 2005-11-18

preferred, it being understood, however, that the invention 1s not limited to the precise

arrangements and instrumentalities shown, wherein:

[0013] Figure 1 is a block diagram illustrating traditional Web services deployment and

delivery architecture known in the art;

[0014] Figure 2 is a schematic illustration of a Web services deployment and delivery

architecture configured for message-oriented construction in accordance with the present

invention;

[0015] Figure 3 is a flow chart illustrating a process for the message oriented construction of
a Web service through the assembly of flow primitives in flow pattern in a user interface to the

Web services deployment and delivery architecture of Figure 2;

[0016] Figure 4 is a pictorial illustration of a flow primitive for use in a user interface to the

Web services deployment and delivery architecture of Figure 2;

[0017] Figure 5 is a screen shot of a user interface to the Web services deployment and

delivery architecture ot Figure 2;

[0018] Figures 6A through 6D, taken together, are screen shots ot ditterent tflow patterns

defining message-oriented logic for Web service operations in the user interface of Figure 5; and,

[0019] Figure 7 is a table correlating different Web services operation types with different
ones of the flow patterns of Figures 6A through 6D 1n the construction of a Web service in the

user interface of Figure 5.

DETAILED DESCRIPTION OF THE INVENTION

CA9-2005-0080 6

CA 02527447 2005-11-18

[0020] Embodiments of the present invention provide a method, system and computer
program product for the message-oriented construction of Web services. In accordance with an
embodiment of the present invention, an operation for a Web service can be detined through a
message oriented arrangement of graphical elements in a graphical user interface. The graphical
elements, referred to as message flow primitives, can specify either the receipt or transmission of
a message and corresponding processing to be performed subsequent to the receipt of a message,
prior to the transmission of a message or both. Each message flow primitive further can provide

for a fault message to be provided to a fault handler.

[0021] Importantly, a message flow pattern can be formed from a selection of interconnected
message flow primitives to match the Web services operation type of the selected operation. As
it is well-known in the art, Web services operation types include one-way, request-response,
solicit-response and notification operations. Other Web services operation types also are
contemplated to fall within the scope of the invention including those defined by the WSDL 2.0
specification. Additionally, intermediate processing can be specitied for the message flow
pattern by inserting a user defined activity primitive into the message flow pattern. Finally,
different flow patterns can be combined to provide a uniform approach to handle both
synchronous and asynchronous message based protocols. Specifically, a flow pattern can be
coupled to a message queue through a message primitive corresponding to one-way type Web

services operation type in order to provide access to different types of message-oriented systems.

[0022] Notably, a Web service defined by the message flow pattern can include a message
flow primitive to call out another Web service. In this way, Web services can be composed from
other Web services. Finally, the message flow pattern can be processed by a code generator to

produce code enabled for use in a run-time environment for a Web services server. In this way, a

CA9-2005-0080 7

CA 02527447 2005-11-18

Web service can be constructed graphically according to a messaging paradigm and can be

deployed into a Web service environment. Thus, one familiar with message based programming
can more readily construct a Web service without having a full command of procedural

programming.

[0023] In more particular illustration, Figure 2 is a schematic illustration of a Web services
deployment and delivery data processing system configured for message-oriented construction in
accordance with the present invention. As shown in Figure 2, the data processing system can
include a flow builder graphical user interface (GUI) 300 coupled to code generation logic 260.
The flow builder GUI 300 can access each of one or more flow patterns 270 and one or more
flow primitives 280 in the course of constructing flow logic 200 for a selected Web service

operation for a Web service in the Web services registry 250.

[0024] The flow primitives 280 can represent a unit of work that must be completed betore
executing the next flow primitive. Specifically, each flow primitive 280 can receive and process,
formulate and process, or formulate and transmit a message. For example, each tlow primitive
280 can act upon or change the content or context of a message. To that end, as shown in Figure
4, a flow primitive 400 can include zero or more input terminals 410 in which a message can be
received, and zero or more output terminals 420 through which a message can be transmitted to
another, coupled flow primitive. Optionally, a flow primitive 400 further can include a terminal

for fault handling 430 over which fault messages can be transmitted to a coupled fault handler.

[0025] The terminals 410, 420 of the flow primitive 400 can be typed by a WSDL message.
As such, the messages must be compatible in order to permit the connection of an output

terminal 420 of the flow primitives 400 to the input terminal 410 of another primitive 400. Yet,

CA9-2005-0080 2

CA 02527447 2005-11-18

there 1s no requirement that the message type of an output message from an output terminal 420
match that of an input terminal 410 in another primitive 400. Rather, transformation logic can
included within a specific type of tlow primitive 400 to transform a message type from one
format to another to establish compatibility between messages transmitted between flow

primitives 400.

[0026] Flow primitives 400 can be categorized as Web service operation flow primitives and
as user-defined flow primitives. Web service operation flow primitives define the operational
behavior of a Web service operation. The following table defines a selection of exemplary Web

services operation flow primitives:

input Reuest

InputResponse A return response [nput Request,
CallOut Response

Solicit Sending of a solicit request | Input Request,
Solicit Request

CallOut Response
SolicitResponse A response from the solicit | Solicit Response
request -
Notification Sending of a notification Input Request
| CallOut Response
CallOut Calling a Partner Web | Input Request
Service o
CallOutResponse A response from the call to | CallOut Response

the Partner Web Service

InputFault Return of a fault message Input Request
CallOut Response

CallOutFault Receipt of a fault message

By comparison, a user-defined flow primitive can be user-defined to perform stand-alone

operations, such as message logging, binary decision switching, content transformation. In

CA9-2005-0080 9

CA 02527447 2005-11-18

addition, the user defined flow primitive can host a Java programming logic or XQuery logic

operation operating on an input message.

[0027) Different flow primitives can be arranged into a flow pattern which can be matched to
a specific Web services operation type. In more particular illustration, Figures 6A through 6D,
taken together, are screen shots of different flow patterns defining message-oriented logic for
Web service operations. Referring first to Figure 6A, an input request flow pattern 610 is shown.
An input request flow pattern 610 can include an input primitive combined with one or more
user-defined activity primitives followed by either an input response primitive or a call out

primitive which can invoke other Web services operations for other Web services.

[0028] By comparison, referring to Figure 6B, a solicit response flow pattern 620 can include
a solicit primitive followed by one or more user-defined activity primitives. Referring to Figure
6C, a notification/solicit request flow pattern 630 can include a user-activity detined primitive
followed by either a notification primitive or a solicit primitive. Finally, referring to Figure 6D,
a call out response flow pattern 640 can include a call out response primitive coupled to one or

more user-defined activity primitives followed by an input response primitive.

[0029] Returning to Figure 2, in operation, a selection of Web services and corresponding
operations defined by respective WSDL documents for the Web services can be provided
through the flow builder GUI 300. An operation can be selected for a Web service and the
operation type of the operation can be determined. To facilitate the matching of the selected
operation to a flow pattern 270, a table can be accessed by the tlow builder GUI 300 to correlate

a selected operation to a corresponding flow pattern 270. For instance, Figure 7 1s a table

CA9-2005-0080 10

CA 02527447 2005-11-18

illustrating the correlation of different Web services operation types with different ones of the

flow patterns of Figures 6A through 6D in the construction of a Web service.

[0030] Based upon the determined operation type, a flow pattern 270 can be selected for the
operation and the selected flow pattern 270 can be rendered in the flow builder GUI 300
according to the primitives 280 defined for the selected tlow pattern 270. Additional primitives
280 such as user-defined activities can be inserted into the selected flow pattern 270 as can
additional primitive-to-primitive connections between primitives 280 in the selected flow pattern
270. In illustration of the arrangement of primitives in the flow builder GUI 300, Figure 5 is a
screen shot of a user interface to the Web services deployment and delivery architecture of

Figure 2.

[0031] As shown in Figure 5, a flow builder GUI 500 can include a Web service construction
project window 510, a listing window 520 of Web services operations identified within Web
services in a registry, and a flow builder window 530. The Web services construction project
window 510 can provide a hierarchical view of the components of a Web services construction
project, including defined message flow logic for one or more operations of the Web service
under construction. The listing window 520, in turn, can provide a listing of Web services
operations available for definition as located in a coupled registry of Web service WSDL
documents. Finally, the flow builder window 530 can permit the placement and interconnection
of flow patterns and flow primitives to define flow logic for a selected operation in the listing

window 520.

[0032] Specifically, when an operation 1s selected in the listing window 520, the Web

services operation type can be identified for the selected operation and a table can be consulted

CA9-2005-0080 11

CA 02527447 2005-11-18

to identify a corresponding flow pattern. Subsequently, a graphical representation of the
corresponding flow pattern can be rendered in the tlow builder window. Generally, the flow
patterns can include any of an input primitive 540A, one or more user-defined activity primitives
540B, or an output primitive 540C such as a response primitive, notification primitive, call out
primitive, solicit primitive, or input response primitive. Different ones of the primitives can be
coupled to one another indicating a flow of messages there between through graphical primitive-
to-primitive connections coupled to the terminals of coupled primitives. Moreover, different

message flows can be assembled for a selected Web service operation and can be accessed

through tabs 550.

[0033] In further illustration of the operation of the flow builder GUI of Figure 5, Figure 3 is
a flow chart 1llustrating a process for the message oriented construction of a Web service through
the assembly of flow primitives in flow pattern in the tlow builder window 530. Beginning in
block 305, a listing of Web services can be provided by reference to a registry of Web services.
In block 310, a Web service can be selected and 1n block 315, a listing of defined operations for
the selected Web service can be provided. Subsequently, in block 320, a particular one of the

operations for the selected Web service can be selected for construction.

]0034] In block 325, the operation type for the selected operation for the selected Web service
can be determined and in block 330, the operation type can be matched to a particular flow

pattern. In consequence, a graphical representation of the matched flow pattern can be rendered
for use and modification by an end user. In decision block 340, it can be determined whether a
connector between different primitives 1n the flow pattern i1s to be added or removed. If so, in
block 345, the selected connector can be added or removed as the case may be. Likewise, in

decision block 350, it can be determined whether a primitive 1s to be added or removed to the

CA9-2005-0080 12

CA 02527447 2005-11-18

flow pattern. If so, in block 355, the primitive can be added or removed as the case may be. The
process can continue in decision block 360 until no more modifications are to be made.
Subsequently, the flow logic 365 can be generated for compilation into Web service logic for

interpretation at run-time.

[0035] Finally returning to Figure 2, generated flow logic 200 can be transtormed by code
generation logic 260 into Web service logic 290 interpretable by run-time 240. The run-time 240
can be coupled to a Web services server 210 configured to respond to Web service requests by
requesting clients 220 over the computer communications network 230. In this regard, when a
request for an operation in a Web service is received in the Web service server 210 from a
requesting client 220, the run-time 240 can execute or interpret the logic defined by the Web
service logic 290 in order to satisfy the received request. Any output produced by the Web

service logic 290 can be provided to Web service server 210 for return to the requesting client

220.

[0036] Embodiments of the invention can take the form of an entirely hardware embodiment,
an entirely software embodiment or an embodiment containing both hardware and software
elements. In a preferred embodiment, the invention 1s implemented 1n software, which includes
but is not limited to firmware, resident software, microcode, and the like. Furthermore, the
invention can take the form of a computer program product accessible from a computer-usable or

computer-readable medium providing program code for use by or in connection with a computer

or any instruction execution system.

[0037] For the purposes of this description, a computer-usable or computer readable medium

can be any apparatus that can contain, store, communicate, propagate, or transport the program

CA9-2005-0080 13

CA 02527447 2005-11-18

for use by or in connection with the instruction execution system, apparatus, or device. The
medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system (or apparatus or device) or a propagation medium. Examples of a computer-readable
medium include a semiconductor or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk. Current examples of optical disks include compact disk — read only memory

(CD-ROM), compact disk — read/write (CD-R/W) and DVD.

[0038] A data processing system suitable for storing and/or executing program code will
include at least one processor coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory employed during actual execution
of the program code, bulk storage, and cache memories which provide temporary storage of at
least some program code in order to reduce the number of times code must be retrieved from
bulk storage during execution. Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or
through intervening I/O controllers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other data processing systems or remote

printers or storage devices through intervening private or public networks. Modems, cable

modem and Ethernet cards are just a few of the currently available types of network adapters.

CA9-2005-0080 14

CA 02527447 2014-01-03

CLAIMS
We claim:
L. A method for message-oriented construction of a Web service, the method
comprising:

graphically assembling, via a computing device within a message flow builder, a
selection of graphical message flow primitives that each graphically represent and define
message-oriented logic of an operation for the Web service, where each graphical message
flow primitive is defined as a unit of work usable to define message flow patterns of Web
service operation flow types within the message flow builder and each graphical message
flow primitive comprises a Web service operational processing logic definition of the
respective unit of work, wherein graphically assembling the selection of the graphical
message flow primitives comprises: ‘

determining a Web services operation type for the Web service, comprising:
reading a registry of Web services to identify a plurality of Web services as
defined by a corresponding Web services definition language (WSDL) document;
identifying a plurality of Web services operations for each of the Web
services in the registry; and
determining a Web services operation type for a selected one of the
identified Web services operations, the Web services operation type comprising a Web
services operation type selected from a group consisting of a one-way operation, a request-
response operation, a solicit-response operation and a notification operation;
matching the Web services operation type to a pre-configured message flow
pattern, comprising:
matching the Web services operation type to a message flow pattern selected
from a group consisting of an input request flow pattern, a call out response flow
pattern, a notification/solicit request flow pattern and a solicit response flow
pattern; and

rendering a visual representation of the message flow pattern;

CA9-2005-0080 15

CA 02527447 2014-01-03

graphically interconnecting, in response to detection of user input selections,
selected ones of the graphical message flow primitives to represent a flow of
messages from one interconnected graphical message flow primitive to another
interconnected graphical message flow primitive to create a message-oriented Web
service definition;

Inserting, in response to detection of an additional user input selection, an
additional graphical message flow primitive in the message flow pattern;

connecting the inserted additional graphical message flow primitive to at
least one other graphical message flow primitive in the message flow pattern; and

generating executable Web service logic defined by each one of the
interconnected selections of graphical message flow primitives within the created

message-oriented Web service definition to construct the Web service.

2. The method of claim 1, further comprising interpreting the executable Web service

logic in response to receiving a request to invoke the Web service.

3. The method of claim 1, further comprising executing the executable Web service

logic in response to receiving a request to invoke the Web service.

1, The method of claim 1, further comprising graphically interconnecting, in response
to detection of the additional user input selection, the assembly of the graphical message

flow primitives with a message queue through a graphical message flow primitive

corresponding to a one-way Web services operation type.

5. A data processing system configured for message-oriented construction of a Web
service, the system comprising:

a memory having computer usable program code for the message-oriented
construction of the Web service stored thereon; and

a processor programmed to execute the computer usable program code to direct the

data processing system to:

CA9-2005-0080 16

CA 02527447 2014-01-03

store a plurality of message flow patterns, each message flow pattern comprising a

selection of message flow primitives in the memory renderable as graphical message flow

primitives;

execute a graphical user interface (QUI) message flow builder coupled to the

message flow patterns and a registry of Web services; and

execute code generation logic coupled to the QUI message flow builder;

where the QUI message flow builder comprises program code executed by the processor to:

graphically assemble a selection of interconnected graphical message flow

primitives by:

determining a Web services operation type for the Web service, comprising:
reading a registry of Web services to identify a plurality of Web
services as defined by a corresponding Web services definition language

(WSDL) document;

identifying a plurality of Web services operations for each of the Web
services in the registry; and

determining a Web services operation type for a selected one of the
identified Web services operations, the Web services operation type
comprising a Web services operation type selected from a group consisting of
a one-way operation, a request-response operation, a solicit-response
operation and a notification operation; matching the Web services operation
type to a pre-configured message flow pattern, comprising:

matching the Web services operation type to a message flow pattern
selected from a group consisting of an input request flow pattern, a call out
response flow pattern, a notification/solicit request flow pattern and a solicit
response flow pattern; and

rendering a visual representation of the message flow pattern; and

where the QUI message flow builder further comprises program code executed by

the processor to:

insert, in response to detection of an additional user input selection, an

additional graphical message flow primitive in the message flow pattern;

CA9-2005-0080

17

CA 02527447 2014-01-03

connect the inserted additional graphical message flow primitive to at least

one other graphical message flow primitive in the message flow pattern; and
generate message flow logic from the assembly of interconnected graphical
message flow primitives in the message flow pattern matched to the Web services
operation type for a Web services operation selected in a Web service listed in the
registry, where each graphical message flow primitive graphically represents and
defines message-oriented logic of an operation for the Web service and is defined as
a unit of work usable to define message flow patterns of Web service operation flow
types within the QUI message flow builder and each graphical message flow
primitive comprises a Web service operational processing logic definition of the
respective unit of work; and
where the code generation logic comprises program code executed by the

processor to transform the message flow logic into executable Web services logic for

execution by a run-time of a Web services server.

6. The system of claim 5, where the graphical message flow primitives each comprise a
graphical message flow primitive selected from a group consisting of an input primitive, an
Input response primitive, a solicit primitive, a solicit response primitive, a notification
primitive, a call out primitive, a call out response primitive, an input fault primitive, a user

defined activity primitive and a call out fault primitive.

7. A computer program product comprising a computer usable storage device having

computer usable program code executable by a computer for message-oriented
construction of a Web service stored thereon, said computer program product including:
computer usable program code for graphically assembling within a message flow
builder a selection of graphical message flow primitives that each graphically represent
and define message-oriented logic of an operation for the Web service, where each
graphical message flow primitive is defined as a unit of work usable to define message flow
patterns of Web service operation flow types within the message flow builder and each
graphical message flow primitive comprises a Web service operational processing logic

definition of the respective unit of work, comprising:

CA9-2005-0080 18

CA 02527447 2014-01-03

computer usable program code for determining a Web services operation
type for the Web service, comprising:
computer usable program code for reading a registry of Web services

to identify a plurality of Web services as defined by a corresponding Web

services definition language (WSDL) document;
computer usable program code for identifying a plurality of Web
services operations for each of the Web services in the registry; and
computer usable program code for determining a Web services
operation type for a selected one of the identified Web services operations, the Web
services operation type comprising a Web services operation type selected from a group
consisting of a one-way operation, a request-response operation, a solicit-response
operation and a notification operation;
computer usable program code for matching the Web services
operation type to a pre-configured message flow pattern, comprising:
computer usable program code for matching the Web services
operation type to a message flow pattern selected from a group consisting of
an input request flow pattern, a call out response flow pattern, a
notification/solicit request flow pattern and a solicit response flow pattern;
and
computer usable program code for rendering a visual representation
of the message flow pattern;

computer usable program code for graphically interconnecting, in response to

detection of user input selections, selected ones of the graphical message flow primitives to
represent a flow of messages from one interconnected graphical message flow primitive to
another interconnected graphical message flow primitive to create a message-oriented
Web service definition;

computer usable program code for inserting, in response to detection of an
additional user input selection, an additional graphical message flow primitive in the

message tlow pattern;

CA9-2005-0080 19

CA 02527447 2014-01-03

computer usable program code for connecting the inserted additional graphical
message flow primitive to at least one other graphical message flow primitive in the
message flow pattern; and

computer usable program code for generating executable Web service logic defined
by each one of the interconnected selection of graphical message flow primitives within the

created message-oriented Web service definition to construct the Web service.

8. The computer program product of claim 7, further comprising computer usable
program code for interpreting the executable Web service logic in response to receiving a

request to invoke the Web service.

9. The computer program product of claim 7, further comprising computer usable

program code for executing the executable Web service logic in response to receiving a

request to invoke the Web service.

10. The computer program product of claim 7, further comprising computer usable
program code for graphically interconnecting, in response to detection of the additional
user input selection, the assembly of the graphical message flow primitives with a message

queue through a graphical message flow primitive corresponding to a one-way Web

services operation type.

11. A method for message-oriented construction of a Web service, the method
comprising:

eraphically assembling, via a computing device within a message flow builder, a
selection of graphical message flow primitives defined within the message flow builder that
each graphically represent and define message-oriented logic of an operation for the Web
service, where each graphical message flow primitive is defined within the message flow
builder as a representation of a unit of work usable to define message flow patterns of Web
service operation flow types within the message flow builder, and each graphical message

flow primitive comprises a Web service operational processing logic definition of the

CA9-2005-0080 20

CA 02527447 2014-01-03

representation of the respective unit of work usable to generate executable Web service
logic defined within the message flow builder by the respective message flow primitive;
graphically interconnecting, in response to detection of user input selections,
selected ones of the graphical message flow primitives to represent a flow of messages
from one interconnected graphical message flow primitive to another interconnected
graphical message flow primitive to create a message-oriented Web service definition; and
generating the executable Web service logic defined within the message flow
builder by each one of the interconnected selected graphical message flow primitives

within the created message-oriented Web service definition to construct the Web service.

12. The method of claim 11, further comprising interpreting the executable Web service

logic in response to receiving a request to invoke the Web service.

13. The method of claim 11, further comprising executing the executable Web service

logic in response to receiving a request to invoke the Web service.

14. The method of claim 11, further comprising graphically interconnecting, in response
to detection of an additional user input selection, the graphically-assembled selection of the

graphical message flow primitives with a message queue through a graphical message flow

primitive corresponding to a one-way Web services operation type.

15. The method of claim 11, where graphically assembling, via the computing device
within the message flow builder, the selection of graphical message flow primitives defined
within the message flow builder that each graphically represent and define the message-
oriented logic of the operation for the Web service comprises:

determining a Web services operation type for the Web service;

matching the Web services operation type to a pre-configured message flow

pattern; and

rendering a visual representation of the message flow pattern.

CA9-2005-0080 21

CA 02527447 2014-01-03

16. The method of claim 15, where determining the Web services operation type for the

Web service comprises:

reading a registry of Web services to identify a plurality of Web services as defined
by a corresponding Web services definition language (WSDL) document;

identifying a plurality of Web services operations for each of the Web services in the
registry; and

determining a Web services operation type for a selected one of the identified Web
services operations, the Web services operation type comprising a Web services operation
type selected from a group consisting of a one-way operation, a request-response

operation, a solicit-response operation and a notification operation.

17. The method of claim 15, where matching the Web services operation type to the
pre-configured message flow pattern comprises matching the Web services operation type
to a message flow pattern selected from a group consisting of an input request flow

pattern, a call out response flow pattern, a notification/solicit request flow pattern, and a

solicit response flow pattern.

18. The method of claim 11, further comprising inserting, in response to detection of an
additional user input selection, an additional graphical message flow primitive in a
message flow pattern and connecting the inserted additional graphical message flow
primitive to at least one other graphical message flow primitive in the message flow

pattern.

19. A data processing system configured for message-oriented construction of a Web
service, the system comprising:
a display; and
a processor programmed to:
execute a graphical user interface (GUI) message flow builder;
graphically assemble, on the display via the message flow builder, a selection
of graphical message flow primitives defined within the message flow builder that

each graphically represent and define message-oriented logic of an operation for the

CA9-2005-0080 22

20.

CA 02527447 2014-01-03

Web service, where each graphical message flow primitive is defined within the
message flow builder as a representation of a unit of work usable to define message
flow patterns of Web service operation flow types within the message flow builder,
and each graphical message flow primitive comprises a Web service operational
processing logic definition of the representation of the respective unit of work
usable to generate executable Web service logic defined within the message flow
builder by the respective message flow primitive;

graphically interconnect, on the display in response to detection of user input
selections, selected ones of the graphical message flow primitives to represent a
flow of messages from one interconnected graphical message flow primitive to
another interconnected graphical message flow primitive to create a message-
oriented Web service definition; and

generate the executable Web service logic defined within the message flow
builder by each one of the interconnected selected graphical message flow

primitives within the created message-oriented Web service definition to construct

the Web service.

The data processing system of claim 19, where the processor is further programmed

to interpret the executable Web service logic in response to receiving a request to invoke

the Web service.

21.

The data processing system of claim 19, where, in being programmed to graphically

assemble, on the display via the message flow builder, the selection of graphical message

flow primitives defined within the message flow builder that each graphically represent

and define the message-oriented logic of the operation for the Web service, the processor

is programmed to:

and

determine a Web services operation type for the Web service;

match the Web services operation type to a pre-configured message flow pattern;

render a visual representation of the message flow pattern.

CA9-2005-0080 23

CA 02527447 2014-01-03

22. The data processing system of claim 21, where, in being programmed to determine
the Web services operation type for the Web service, the processor is programmed to:

read a registry of Web services to identify a plurality of Web services as defined by a
corresponding Web services definition language (WSDL) document;

identify a plurality of Web services operations for each of the Web services in the
registry; and

determine a Web services operation type for a selected one of the identified Web
services operations, the Web services operation type comprising a Web services operation
type selected from a group consisting of a one-way operation, a request-response

operation, a solicit-response operation and a notification operation.

23. A computer program product for message-oriented construction of a Web service,
comprising:

a computer readable storage medium having computer readable program code
embodied therewith, where the computer readable program code when executed on a
computer causes the computer to:

graphically assemble, within a message flow builder, a selection of graphical
message flow primitives defined within the message flow builder that each
graphically represent and define message-oriented logic of an operation for the Web
service, where each graphical message flow primitive is defined within the message
flow builder as a representation of a unit of work usable to define message flow

patterns of Web service operation flow types within the message flow builder, and

each graphical message flow primitive comprises a Web service operational
processing logic definition of the representation of the respective unit of work
usable to generate executable Web service logic defined within the message flow
builder by the respective message flow primitive;

graphically interconnect, in response to detection of user input selections,
selected ones of the graphical message flow primitives to represent a flow of
messages from one interconnected graphical message flow primitive to another

interconnected graphical message flow primitive to create a message-oriented Web

service definition; and

CA9-2005-0080 24

CA 02527447 2014-01-03

generate the executable Web service logic defined within the message flow
builder by each one of the interconnected selected graphical message flow

primitives within the created message-oriented Web service definition to construct

the Web service.

24. The computer program product of claim 23, where the computer readable program

code when executed on the computer further causes the computer to interpret the

executable Web service logic in response to receiving a request to invoke the Web service.

25. The computer program product of claim 23, where the computer readable program
code when executed on the computer further causes the computer to execute the

executable Web service logic in response to receiving a request to invoke the Web service.

26. The computer program product of claim 23, where the computer readable program
code when executed on the computer further causes the computer to graphically
Interconnect, in response to detection of an additional user input selection, the graphically-
assembled selection of the graphical message flow primitives with a message queue
through a graphical message flow primitive corresponding to a one-way Web services

operation type.

27. The computer program product of claim 23, where, in causing the computer to
graphically assemble, within the message flow builder, the selection of graphical message
flow primitives defined within the message flow builder that each graphically represent
and define the message-oriented logic of the operation for the Web service, the computer
readable program code when executed on the computer causes the computer to:

determine a Web services operation type for the Web service;

match the Web services operation type to a pre-configured message flow pattern;

and

render a visual representation of the message tlow pattern.

CA9-2005-0080 25

CA 02527447 2014-01-03

28. The computer program product of claim 27, where, in causing the computer to
determine the Web services operation type for the Web service, the computer readable
program code when executed on the computer causes the computer to:

read a registry of Web services to identify a plurality of Web services as defined by a

corresponding Web services definition language (WSDL) document;

identify a plurality of Web services operations for each of the Web services in the
registry; and

determine a Web services operation type for a selected one of the identified Web
services operations, the Web services operation type comprising a Web services operation

type selected from a group consisting of a one-way operation, a request-response

operation, a solicit-response operation and a notification operation.

29. The computer program product of claim 27, where in causing the computer to
match the Web services operation type to the pre-configured message flow pattern, the
computer readable program code when executed on the computer causes the computer to
match the Web services operation type to a message flow pattern selected from a group
consisting of an input request flow pattern, a call out response flow pattern, a

notification/solicit request flow pattern, and a solicit response flow pattern.

30. The computer program product of claim 23, where the computer readable program
code when executed on the computer further causes the computer to insert, in response to

detection of an additional user input selection, an additional graphical message flow
primitive in a message flow pattern and connect the inserted additional graphical message
flow primitive to at least one other graphical message flow primitive in the message flow

pattern.

CA9-2005-0080 26

CA 02527447 2005-11-18

115

Web Service Server 110
Request
160A
130 Business .
Logic |

\ Response ‘ 140
1608 Web Container 120

FIG. 1 (Prior Art)

| Web Service | 290

Flow Builder Code Runtime
GUI Generation

240

Services
Registry

——“ _—| o] = Gatowey
Ll

220

FIG. 2

CA 02527447 2005-11-18

2/5

305] List Available
Web Services
310] select Web
Service
315 List Defined
Ops(WS)
320
Select Op
325 identify WS Generate |369
Pattern Flow
330[Get Flow Type
(Pattern) VES

360
335 Render NO
(Flow Type)

340
Insert/Remove Insert/Remove | 349
Connector YES Connector
?
NO
Insert/Remove 3595
Connector

350
Insert/Remove

Primitive
?

FIG. 3

CA 02527447 2005-11-18

3/5

410

Flow Primitive

400

FIG. 4

900

Web Services - Flow Construction m

[]integrated Service Web Service Operation 1
LElWeb_Svc_Name Web Service Operation 2

L5 :
Flows :

Web Service Operation N

540A 5408

' Input Y - L o
Activity 1 000

530

FIG. 5

CA 02527447 2005-11-18

4/5

B R B
Activity Response

Input Request Flow
610

FIG. 6A

B B o
Solicit Activity

Solicit Response Flow
620

FIG. 6B

_Notification/
Solicit

Notification/Solicit Request Flow
630

* ’ .
Activity

FIG. 6C

N B . B
Response Response

Call Out Response Flow
640

FIG. 6D

CA 02527447 2005-11-18

5/5
}00
Ornigmator | Partner [nput CallOut Notification/ | Solicit
| operation type | operation type | Request Response | Solicit Response
Flow Flow Request Flow
Flow
One-way N/A Yes No +No | No |
| One-way One-way Yes No No J No
One-way Request- Yes Yes No No
response
One-way Solicit- Yes No No Yes
~ |response | . S L | B
One-way Notification | Yes ~ | No No | No .
Request- N/A Yes No No No
| response
Request- One-way Yes No No No
response
Request- Request- Yes Yes No No
response response
Request- "Solicit- Yes Yes No Yes
response | response N o L B -
Request- Notification Yes Yes No | No
response ‘ B - | | B L
,_Salcit- N/A No No Yes Yes
response
Solicit- One-way | No No No Yes
response |
Solicit- Request- No No No Yes
response response
Solicit- Solicit- No No No Yes
response response N] B |
| Solicit- Notification No No No Yes
response | o L o . o
Notification N/A No No Yes No
Notification One-way No | No No No
Notification Request- No No No | No
| response
Notification Solicit- No No No No
f response
Notification Notification No No No No

FIG. 7

Web
Services
Registry

250

200 Web Service | 290
Loglc

‘ o
o

Flow Builder Code Runtime
GUI Generation

240

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

