(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 December 2009 (17.12.2009)

- (51) International Patent Classification: C12Q 1/68 (2006.01) C07H 19/20 (2006.01) C07H 19/14 (2006.01)
- (21) International Application Number:

PCT/US2009/047071

- (22) International Filing Date:
 - 11 June 2009 (11.06.2009)
- English (25) Filing Language:

(26) Publication Language: English

- (30) Priority Data: 61/060,795 11 June 2008 (11.06.2008) US 61/184,779 5 June 2009 (05.06.2009) US
- (71) Applicant (for all designated States except US): LASER-GEN, INC. [US/US]; 8052 El Rio Street, Houston, TX 77054 (US)

(72) Inventors; and

(75) Inventors/Applicants (for US only): LITOSH, Vladislav, A. [RU/US]; 15610 Wilwood Run, Cypress, TX 77433 (US). HERSH, Megan, N. [US/US]; C/o 8052 El Rio St., Houston, TX 77054 (US). STUPI, Brian, P. [US/US]; Buffalo Speedway, Apt. 1532, Houston, TX 77025 (US). WU, Weidong [CN/US]; 5499 Braesvalley Dr., Apt. 491, Houston, TX 77096 (US). METZKER, Michael, L. [US/US]; C/o 8052 El Rio St., Houston, TX 77054 (US).

- (10) International Publication Number WO 2009/152353 A2
- (74) Agent: VOGES, Mark, H.; Fulbright & Jawroski LLP, 600 Congress Ave, Suite 2400, Austin, TX 78701 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: NUCLEOTIDES AND NUCLEOSIDES AND METHODS FOR THEIR USE IN DNA SEQUENCING

(57) Abstract: The present invention relates generally to labeled and unlabled cleavable terminating groups and methods for DNA sequencing and other types of DNA analysis. More particularly, the invention relates in part to nucleotides and nucleosides with chemically cleavable, photocleavable, enzymatically cleavable, or non-photocleavable groups and methods for their use in DNA sequencing and its application in biomedical research.

DESCRIPTION

NUCLEOTIDES AND NUCLEOSIDES AND METHODS FOR THEIR USE IN DNA SEQUENCING

5

15

BACKGROUND OF THE INVENTION

The present application claims the benefit of priority to U.S. Provisional Applications Nos. 61/060,795 and 61/184,779, filed June 11, 2008 and June 5, 2009, respectively, the entire contents of which are each incorporated herein by reference.

10 I. Field of the Invention

The present invention relates generally to compositions and methods for DNA sequencing and other types of DNA analysis. More particularly, the invention relates in part to nucleotides and nucleosides with chemically cleavable, photocleavable, enzymatically cleavable, or non-photocleavable groups and methods for their use in a number of DNA sequencing methods and their applications in biomedical research.

II. Description of Related Art

Methods for rapidly sequencing DNA have become needed for analyzing diseases and mutations in the population and developing therapies. Commonly observed forms of human sequence variation are single nucleotide polymorphisms (SNPs), which occur in approximately 1-in-300 to 1-in-1000 base pairs of genomic sequence and structural variants (SVs) including block substitutions, insertion/deletions, inversions, segmental duplications, and copy number variants. Structural variants can accounted for 22% of all variable events and more variant bases than those contributed by SNPs (Levy *et al.*, 2007, which is incorporated herein by reference.). This finding is consistent with that of Scherer, Hurles, and colleagues who analyzed 270 individuals using microarray-based methods (Redon *et al.* 2006, which is incorporated herein by reference). Building upon the complete sequence of the human genome, efforts are underway to identify the underlying genetic link to common diseases by SNP mapping or direct association. Technology developments focused on rapid, high-throughput, and low cost DNA sequencing would facilitate the understanding and use of

30 genetic information, such as SNPs, in applied medicine.

In general, 10%-to-15% of SNPs will affect protein function by altering specific amino acid residues, will affect the proper processing of genes by changing splicing

mechanisms, or will affect the normal level of expression of the gene or protein by varying regulatory mechanisms. SVs may also play an important role in human biology and disease (Iafrate *et al.*, 2004; Sebat *et al.*, 2004; Tuzun *et al.*, 2005; Stranger *et al.*, 2007, which are incorporated herein by reference). It is envisioned that the identification of informative SNPs and SVs will lead to more accurate diagnosis of inherited disease, better prognosis of risk

- susceptibilities, or identity of sporadic mutations in tissue. One application of an individual's SNP and SV profile would be to significantly delay the onset or progression of disease with prophylactic drug therapies. Moreover, an SNP and SV profile of drug metabolizing genes could be used to prescribe a specific drug regimen to provide safer and more efficacious
- 10 results. To accomplish these ambitious goals, genome sequencing will move into the resequencing phase with the potential of partial sequencing of a large majority of the population, which would involve sequencing specific regions in parallel, which are distributed throughout the human genome to obtain the SNP and SV profile for a given complex disease.

15 Sequence variations underlying most common diseases are likely to involve multiple SNPs, SVs, and a number of combinations thereof, which are dispersed throughout associated genes and exist in low frequency. Thus, DNA sequencing technologies that employ strategies for *de novo* sequencing are more likely to detect and/or discover these rare, widely dispersed variants than technologies targeting only known SNPs.

- 20 Traditionally, DNA sequencing has been accomplished by the "Sanger" or "dideoxy" method, which involves the chain termination of DNA synthesis by the incorporation of 2',3'-dideoxynucleotides (ddNTPs) using DNA polymerase (Sanger *et al.*, 1997, which is incorporated herein by reference). The reaction also includes the natural 2'-deoxynucleotides (dNTPs), which extend the DNA chain by DNA synthesis. Balanced appropriately, competition between chain extension and chain termination results in the generation of a set of nested DNA fragments, which are uniformly distributed over thousands of bases and differ in size as base pair increments. Electrophoresis is used to resolve the nested DNA fragments by their respective size. The ratio of dNTP/ddNTP in the sequencing reaction determines the frequency of chain termination, and hence the distribution of lengths of terminated chains.
- 30 The fragments are then detected *via* the prior attachment of four different fluorophores to the four bases of DNA (*i.e.*, A, C, G, and T), which fluoresce their respective colors when irradiated with a suitable laser source. Currently, Sanger sequencing has been the most widely used method for discovery of SNPs by direct PCR sequencing (Gibbs *et al.*, 1989,

which is incorporated herein by reference) or genomic sequencing (Hunkapiller *et al.*, 1991; International Human Genome Sequencing Consortium., 2001, which are incorporated herein by reference).

Advantages of next-generation sequencing (NGS) technologies include the ability to
produce an enormous volume of data cheaply, in some cases in excess of a hundred million short sequence reads per instrument run. Many of these approaches are commonly referred to as *sequencing-by-synthesis* (SBS), which does not clearly delineate the different mechanics of sequencing DNA (Metzker, 2005, which is incorporated herein by reference). Here, the DNA polymerase-dependent strategies are classified as cyclic reversible termination (CRT), single nucleotide addition (SNA, *e.g.*, pyrosequencing), and real-time sequencing. An approach whereby DNA polymerase is replaced by DNA ligase is referred to as sequencing-

by-ligation (SBL). There is a great need for developing new sequencing technologies, with potential

- applications spanning diverse research sectors including comparative genomics and 15 evolution, forensics, epidemiology, and applied medicine for diagnostics and therapeutics. Current sequencing technologies are often too expensive, labor intensive, and time consuming for broad application in human sequence variation studies. Genome center cost is calculated on the basis of dollars per 1,000 Q₂₀ bases and can be generally divided into the categories of instrumentation, personnel, reagents and materials, and overhead expenses.
- 20 Currently, these centers are operating at less than one dollar per 1,000 Q_{20} bases with at least 50% of the cost resulting from DNA sequencing instrumentation alone. Developments in novel detection methods, miniaturization in instrumentation, microfluidic separation technologies, and an increase in the number of assays per run will most likely have the biggest impact on reducing cost.

10

20

SUMMARY OF THE INVENTION

In some aspects, the present disclosure provides provides novel compounds and compositions that are useful in efficient sequencing of genomic information in high throughput sequencing reactions. In another aspect, reagents and combinations of reagents that can efficiently and affordably provide genomic information are provided. In further aspects, the present invention provides libraries and arrays of reagents for diagnostic methods and for developing targeted therapeutics for individuals.

In some aspects, the present disclosure provides new compounds that may be used in DNA sequencing. For example, in some embodiments, the invention provides compounds of the formula:

wherein:

Z is -O-, -S-, -NH-, -OC(O)O-, -NHC(O)O-, -OC(O)NH- or -NHC(O)NH-;

R₁ is hydroxy, monophosphate, diphosphate, triphosphate or polyphosphate;

15 R_2 is hydrogen or hydroxy;

R₃ and R₄ are each independently:

hydrogen, hydroxy, halo or amino; or

alkyl_(C≤12), alkenyl_(C≤12), alkynyl_(C≤12), aryl_(C≤12), aralkyl_(C≤12), heteroaryl_(C≤12), heteroaralkyl_(C≤12), alkoxy_(C≤12), aryloxy_(C≤12), aralkoxy_(C≤12), heteroaryloxy_(C≤12), heteroaralkoxy_(C≤12), alkylamino_(C≤12), dialkylamino_(C≤12), arylamino_(C≤12), aralkylamino_(C≤12), or a substituted version of any of these groups; or R₅, R₆, R₇, R₈ and R₉ are each independently:

hydrogen, hydroxy, halo, amino, nitro, cyano or mercapto;

alkyl_(C ≤ 12), alkenyl_(C ≤ 12), alkynyl_(C ≤ 12), aryl_(C ≤ 12), aralkyl_(C ≤ 12), heteroaryl_(C ≤ 12), heteroaralkyl_(C ≤ 12), $acyl_{(C\leq 12)},$ alkoxy_(C≤12), alkenyloxy_(C ≤ 12), alkynyloxy_(C ≤ 12), aryloxy_(C ≤ 12), aralkoxy_(C ≤ 12), heteroaryloxy_(C ≤ 12), heteroaralkoxy_(C ≤ 12), acyloxy_(C ≤ 12), alkylamino_(C ≤ 12), dialkylamino_(C ≤ 12), alkoxyamino_(C≤12), alkenylamino_(C≤12), alkynylamino_(C≤12), arylamino_(C ≤ 12), aralkylamino_(C ≤ 12), heteroarylamino_(C ≤ 12), heteroaralkylamino_(C<12), alkylsulfonylamino_(C ≤ 12), amido_(C ≤ 12), alkylthio_(C<12), alkenylthio_(C<12), alkynylthio_(C<12), arylthio_(C<12), aralkylthio_(C≤12), heteroarylthio_(C ≤ 12), heteroaralkylthio_(C \leq 12), acylthio_(C ≤ 12), thioacyl_(C ≤ 12), alkylsulfonyl_(C ≤ 12), arylsulfonyl_(C ≤ 12), alkylammonium_(C \le 12), alkylsulfonium_(C \le 12), alkylsilyl_(C \le 12), or a substituted version of any of these groups;

15 a group of formula:

X is

20

25

5

10

-O-, -S-, or -NH-; or

alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups;

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted

alkanediyl_(C≤12);

n is an integer from 0-12; and

m is an integer from 0-12; or

a -linker-reporter;

or a salt, esters, hydrates, solvates, tautomers, prodrugs, or optical isomers thereof.

In some aspects the invention provides a compound of formula:

wherein:

Z is -O-, -S-, -NH-, -OC(O)O-, -NHC(O)O-, -OC(O)NH- or -NHC(O)NH-;

10

15

R₁ is hydroxy, monophosphate, diphosphate, triphosphate or polyphosphate;

 R_2 is hydrogen or hydroxy;

R₃ and R₄ are each independently:

hydrogen, hydroxy, halo or amino; or

alkyl_(C ≤ 12), alkenyl_(C ≤ 12), alkynyl_(C ≤ 12), aryl_(C ≤ 12), aralkyl_(C ≤ 12), heteroaryl_(C ≤ 12), heteroaralkyl_(C<12), aralkoxy_(C<12),

alkoxy_(C ≤ 12), aryloxy_(C ≤ 12), heteroaryloxy_(C ≤ 12), heteroaralkoxy_(C ≤ 12), alkylamino(C≤12), dialkylamino_(C ≤ 12), arylamino_(C ≤ 12), aralkylamino_(C ≤ 12), or a substituted version of any of these groups;

R_5 , R_6 , R_7 and R_8 are each independently:

hydrogen, hydroxy, halo, amino, nitro, cyano or mercapto; or

alkyl_(C ≤ 12), alkenyl_(C ≤ 12), alkynyl_(C ≤ 12), aryl_(C ≤ 12), aralkyl_(C ≤ 12), heteroaryl_(C ≤ 12), heteroaralkyl_(C ≤ 12), alkoxy_(C ≤ 12), alkenyloxy_(C ≤ 12), $acyl_{(C\leq 12)}$, alkynyloxy_(C ≤ 12), aryloxy_(C ≤ 12), aralkoxy_(C ≤ 12), heteroaryloxy_(C ≤ 12), heteroaralkoxy_(C ≤ 12), acyloxy_(C ≤ 12), alkylamino_(C ≤ 12), dialkylamino_(C ≤ 12), 20 alkoxyamino_(C<12), alkenylamino_(C<12), alkynylamino_(C≤12), arylamino_(C≤12), aralkylamino_(C≤12), heteroarylamino_(C \leq 12), heteroaralkylamino_(C ≤ 12), alkylsulfonylamino_(C ≤ 12), amido_(C ≤ 12), arylthio_(C≤12), alkylthio_(C ≤ 12), alkenylthio_(C ≤ 12), alkynylthio_(C≤12), aralkylthio_(C ≤ 12), heteroarylthio_(C ≤ 12), heteroaralkylthio_(C ≤ 12), 25 thioacyl_(C ≤ 12), alkylsulfonyl_(C ≤ 12), arylsulfonyl_(C ≤ 12), acylthio_(C≤12),

alkylammonium_(C \leq 12), alkylsulfonium_(C \leq 12), alkylsilyl_(C \leq 12), or a substituted version of any of these groups; or

a group of formula:

5

wherein

X is

10

15

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12);

n is an integer from 0–12; and

m is an integer from 0-12; or

a -linker-reporter; and

 R_9 is alkyl_(C≤12), aryl_(C≤12) or a substituted version of either of these groups;

or a salt, esters, hydrates, solvates, tautomers, prodrugs, or optical isomers thereof.

In some embodiments, the compound is further defined as a compound of formula A.
In some embodiments, the compound is of formula B. In some embodiments, the compound is further defined as a compound of formula C. In some embodiments, the compound is of formula D. In some embodiments Z is -O-. In some embodiments R₁ is hydroxy. In some embodiments, R₁ is a monophosphate. In some embodiments R₁ is a diphosphate. In some embodiments R₁ is a diphosphate. In some embodiments R₁ is a polyphosphate. In some embodiments R₁ is a polyphosphate. In some embodiments R₂ is hydrogen. In some embodiments R₂ is hydroxy. In some embodiments R₃ is hydrogen. In some embodiments R₃ is alkyl_(C≤12) or a substituted version thereof. In some embodiments R₃ is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl. In some embodiments R₃ is methyl. In some embodiments R₃ is alkyl_(C2-6). In some

embodiments R_3 is alkyl_(C3-5). In some embodiments R_3 is isopropyl. In some embodiments R_3 is *tert*-butyl. In some embodiments R_4 is hydrogen. In some embodiments R_4 is alkyl_(C≤12) or a substituted version thereof. In some embodiments R_4 is alkyl_(C≤8). In some embodiments R_4 is alkyl_(C≤6). In some embodiments R_4 is selected from the group consisting of methyl,

- 5 ethyl, *n*-propyl, isopropyl and *tert*-butyl. In some embodiments R_4 is methyl. In some embodiments R_4 is alkyl_(C2-6). In some embodiments R_4 is alkyl_(C3-5). In some embodiments R_4 is isopropyl. In some embodiments R_4 is *tert*-butyl. In some embodiments R_5 is hydrogen. In some embodiments R_5 is cyano. In some embodiments R_5 is alkoxy_(C≤12) or a substituted version thereof. In some embodiments R_5 is alkoxy_(C≤8). In some embodiments R_5 is
- $\label{eq:rescaled} 10 \quad alkoxy_{(C \leq 6)}. \ \mbox{In some embodiments R_5 is alkoxy_{(C \leq 3)}$. In some embodiments R_5 is methoxy. In some embodiments R_5 is a group of formula:$

wherein X is $-O^-$, $-S^-$, or $-NH^-$; or alkanediyl_(C \le 12), alkenediyl_(C \le 12), alkynediyl_(C \le 12), arenediyl_(C \le 12), heteroarenediyl_(C \le 12), or a substituted version of any of these groups; and n is an integer from 0–12.

In some embodiments X is alkynediyl_(C \leq 12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is $-C\equiv C-$. In some embodiments n is zero. In some embodiments R₅ is a group of formula:

20

25

15

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; Y is -O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0-12; and m is an integer from 0-12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments Y is $-CH_2-$. In some embodiments n is zero. In some embodiments m is zero.

In some embodiments R₆ is a –linker–reporter. In some embodiments the linker is:

10

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and n is an integer from 0-12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments n is zero. In some embodiments the linker is:

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; Y is -O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0-12; and m is an integer from 0-12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments Y is $-CH_2-$. In some embodiments n is zero. In some embodiments m is zero. In some embodiments the linker is:

15 wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; Y is -O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0-12; and m is an integer from 0-12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C≤12). In some embodiments Y is -CH₂-.
20 In some embodiments n is zero. In some embodiments m is zero. In some embodiments the reporter is based on a dye, wherein the dye is zanthene, fluorescein, rhodamine, BODIPY, cyanine, coumarin, pyrene, phthalocyanine, phycobiliprotein, ALEXA FLUOR® 350, ALEXA FLUOR® 405, ALEXA FLUOR® 430, ALEXA FLUOR® 488, ALEXA FLUOR® 514, ALEXA FLUOR® 532, ALEXA FLUOR® 546, ALEXA FLUOR® 555, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 660, ALEXA FLUOR® 610, ALEXA FLUOR® 633, ALEXA FLUOR® 647, ALEXA FLUOR® 660, ALEXA FLUOR®

680, ALEXA FLUOR[®] 700, ALEXA FLUOR[®] 750, or a squaraine dye. In some embodiments the reporter is:

5 In some embodiments R₆ is hydrogen. In some embodiments R₆ is alkoxy_(C≤12) or a substituted version thereof. In some embodiments R₆ is alkoxy_(C≤8). In some embodiments R₆ is alkoxy_(C≤6). In some embodiments R₆ is alkoxy_(C≤3). In some embodiments R₆ is methoxy. In some embodiments R₆ is a group of formula:

10 wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and n is an integer from 0–12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments n is zero. In some embodiments R₆ is a group of formula:

15

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; Y is

10

-O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0–12; and m is an integer from 0–12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments Y is $-CH_2-$. In some embodiments n is zero. In some embodiments m is zero. In some embodiments R₆ is a –linker–reporter. In some embodiments the linker is:

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and n is an integer from 0–12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments n is zero. In

some embodiments the linker is:

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; Y is -O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0-12; and m is an integer from 0-12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments Y is $-CH_2-$. In some embodiments n is zero. In some embodiments m is zero. In some embodiments the linker is:

20

25

wherein X is -O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; Y is -O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0-12; and m is an integer from 0-12. In some embodiments X is alkynediyl_(C≤12). In some embodiments X is alkynediyl_(C2-8). In some embodiments X is -C=C-. In some embodiments Y is $-CH_2-$.

In some embodiments n is zero. In some embodiments m is zero. In some embodiments the reporter is based on a dye, wherein the dye is zanthene, fluorescein, rhodamine, BODIPY, cyanine, coumarin, pyrene, phthalocyanine, phycobiliprotein, ALEXA FLUOR® 350, ALEXA FLUOR® 405, ALEXA FLUOR® 430, ALEXA FLUOR® 488, ALEXA FLUOR® 514, ALEXA FLUOR® 532, ALEXA FLUOR® 546, ALEXA FLUOR® 555, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 610,

ALEXA FLUOR® 633, ALEXA FLUOR® 647, ALEXA FLUOR® 660, ALEXA FLUOR® 680, ALEXA FLUOR® 700, ALEXA FLUOR® 750, or a squaraine dye. In some embodiments the reporter is:

In some embodiments R7 is hydrogen. In some embodiments R8 is hydrogen. In some embodiments R_8 is nitro. In some embodiments R_8 is alkyl_(C \le 12) or a substituted version thereof. In some embodiments R_8 is alkyl_(C ≤ 8). In some embodiments R_8 is alkyl_(C ≤ 6). In 15 some embodiments R_8 is alkyl_(C ≤ 3). In some embodiments R_8 is methyl. In some embodiments R₉ is hydrogen. In some embodiments R₉ is nitro. In some embodiments R₉ is alkyl_(C ≤ 12) or a substituted version thereof. In some embodiments R₉ is alkyl_(C ≤ 8). In some embodiments R_9 is alkyl_(C \le 0). In some embodiments R_9 is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl. In some embodiments R_9 is methyl. In 20 some embodiments R_9 is $alkyl_{(C2-6)}$. In some embodiments R_9 is $alkyl_{(C3-5)}$. In some embodiments R₉ is isopropyl. In some embodiments R₉ is tert-butyl. In some embodiments R_9 is aryl_(C \le 12) or a substituted version thereof. In some embodiments R_9 is aryl_(C \le 8). In some embodiments R₉ is phenyl.

In some embodiments, the invention provides a compound of the formula:

5

In some emodiments the compound is a salt of a formula above. In some embodiments, the compound is a 50:50 *R*:*S*-at-the- α -carbon-mixture of diastereomers of any of the formulas above, or salts thereof, that have a stereocenter at the α -carbon. In some embodiments, the compound is predominantly one diastereomer substantially free from other optical isomers thereof. For example, in some embodiments the present disclosure provides any of the following diastereomers, or salts thereof, substantially free from other optical isomers thereof:

In some emodiments the salt of any of the formulas or diastermereomers above comprises a monovalent cation. In some emodiments the monovalent cation is lithium. In some emodiments the monovalent cation is sodium. In some emodiments the monovalent cation is potassium. In some emodiments the salt comprises a divalent cation. In some emodiments the divalent cation is calcium, magnesium or manganese(II). In some emodiments the salt comprises a cation selected from the group consisting of ammonium, tri-n-butyl ammonium and (HOCH₂)₃CNH₃⁺.

WO 2009/152353

5

10

15

20

25

In another aspect the invention provides a method of sequencing a target nucleic acid comprising the following steps:

(i)	attaching the 5'	'-end of a	primer to	a solid	surface;
-----	------------------	------------	-----------	---------	----------

(ii)	hybridizing a target nucleic acid to the primer attached to
	the solid surface;

(iii)	adding a compound according to any of claims 1-293,			
	with the proviso that where more than one type of base is			
	present, each base is attached to a different reporter			
	group;			

(iv	<i>i</i>) adding a nucleic acid replicating enzyme to the
	hybridized primer/target nucleic acid complex to
	incorporate the composition of step (iii) into the growing
	primer strand, wherein the incorporated composition of
	step (iii) terminates the polymerase reaction at an
	efficiency of between about 70% to about 100%;

- (v) washing the solid surface to remove unincorporated components;
- (vi) detecting the incorporated reporter group to identify the incorporated composition of step (iii);

(viii) washing the solid surface to remove the cleaved terminating group; and

(ix) repeating steps (iii) through (viii) one or more times to identify the plurality of bases in the target nucleic acid.

In another aspect the invention provides a method of sequencing a target nucleic acid comprising the following steps:

- (i) attaching the 5'-end of a target nucleic acid to a solid surface;
- (ii) hybridizing a primer to the target nucleic acid attached to the solid surface;

WO 2009/152353

	(iii)	adding a compound according to any of claims 1-293,
		with the proviso that where more than one type of base is
		present, each base is attached to a different reporter
		group;
5	(iv)	adding a nucleic acid replicating enzyme to the
		hybridized primer/target nucleic acid complex to
		incorporate the composition of step (iii) into the growing
		primer strand, wherein the incorporated composition of
		step (iii) terminates the polymerase reaction at an
10		efficiency of between about 70% to about 100%;
	(v)	washing the solid surface to remove unincorporated
		components;
	(vi)	detecting the incorporated reporter group to identify the
		incorporated composition of step (iii);
15	(vii)	optionally adding one or more chemical compounds to
		permanently cap unextended primers;
	(viii)	a cleavage step to remove the terminating moiety
		resulting in an extended primer with naturally-occurring
		bases;
20	(ix)	washing the solid surface to remove the cleaved
		terminating group; and
	(x)	repeating steps (iii) through (ix) one or more times to
		identify the plurality of bases in the target nucleic acid.

In some embodiments the compound is incorporated by a nucleic acid replicating

25 enzyme that is a DNA polymerase. In some embodiments the DNA polymerase is selected from the group consisting of Taq DNA polymerase, Klenow(exo-) DNA polymerase, Bst DNA polymerase, VENT® (exo-) DNA polymerase (DNA polymerase A cloned from Thermococcus litoralis and containing the D141A and E143A mutations), Pfu(exo-) DNA polymerase, and DEEPVENT[™] (exo-) DNA polymerase (DNA polymerase A, cloned from 30 the Pyrococcus species GB-D, and containing the D141A and E143A mutations). In some embodiments the DNA polymerase is selected from the group consisting of AMPLITAQ® DNA polymerase, FS (Taq DNA polymerase that contains the G46D and F667Y mutations), THERMOSEQUENASE[™] DNA polymerase (*Taq* DNA polymerase that contains the F667Y THERMOSEQUENASE™ II DNA polymerase of mutation), (blend

THERMOSEQUENASETM DNA polymerase and T. acidophilum pyrophosphatase), THERMINATOR™ DNA polymerase (DNA polymerase A, cloned from the *Thermococcus* 9°N-7 and containing the D141A, E143A and A485L mutations), species THERMINATORTM II DNA polymerase (THERMINATORTM DNA polymerase that contains the additional Y409V mutation), and VENT® (exo-) A488L DNA polymerase 5 (VENT® (exo-) DNA polymerase that contains the A488L mutation). In some embodiments the cleavage of the terminating moiety is a chemical cleavage, a photo-cleavage, electrochemical or an enzymatic cleavage. In some embodiments the chemical cleavage is performed using a catalyst or stoichiometric reagent. In some embodiments the catalyst homogeneous or 10 heterogeneous. In some embodiments the heterogeneous catalyst comprises Palladium. In some embodiments the homogeneous catalyst comprises Palladium. In some embodiments 85% to 100% of the photocleavable terminating moieties are removed by means of the photocleavage. In some embodiments the photo-cleavage is performed using a wavelength of light ranging between 300 nm to 400 nm. In some embodiments 85% to 100% of the

15 photocleavable terminating moieties are removed by means of the photo-cleavage. In some embodiments the invention provides a method of performing Sanger or Sanger-type sequencing using a compound disclosed herein. In some embodiments the invention provides a method of performing pyrosequencing or pyrosequencing-type sequencing using a compound disclosed herein.

20

Non-limiting examples of compounds provided by this invention include the compounds according to the formulas shown below. In certain embodiments, these compounds are substantially free from other optical isomers thereof.

WW#	Chemical Name	Diastereomer
1p129	N^{6} -(2-nitrobenzyl)-2'-dATP	
2p108	O ⁶ -(2-nitrobenzyl)-2'-dGTP	
2p143	O^{6} -(α -methyl-2-nitrobenzyl)-2'-dGTP	mixture
2p148	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dUTP	mixture
3p006	N^{6} -(α -methyl-2-nitrobenzyl)-2'-dATP	mixture
3p063	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dUTP	single
3p065	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dCTP	single

WW#	Chemical Name	Diastereomer
3p075	5-(α-tert-butyl-2-nitrobenzyloxy)methyl-2'-dUTP	single
3p085	5-(α-tert-butyl-2-nitrobenzyloxy)methyl-2'-dCTP	single
4p135	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dCTP-linker	single
5p085	C ⁷ -(2-nitrobenzyloxy)methyl-2'-dATP	
5p098-ds1	C^{7} -(α -isopropyl-2-nitrobenzyloxy)methyl-2'-dATP (ds1)	single
5p098-ds2	C^{7} -(α -isopropyl-2-nitrobenzyloxy)methyl-2'-dATP (ds2)	single
5p107	C ⁷ -(2-nitrobenzyloxy)methyl-2'-dGTP	
5p111	5-(α-isopropyl-benzyloxy)methyl-2'-dUTP	mixture
5p127	C ⁷ -(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dATP-6-FAM	single
5p130- LP2	C^{7} -(α -isopropyl-2-nitrobenzyloxy)methyl-2'-dATP-6-CR110	single
5p143	C ⁷ -(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dGTP	mixture
5p143-ds1	C^{7} -(α -isopropyl-2-nitrobenzyloxy)methyl-2'-dGTP (ds1)	single
5p143-ds2	C^{7} -(α -isopropyl-2-nitrobenzyloxy)methyl-2'-dGTP (ds2)	single
5p145	5-(benzyloxy)methyl-2'-dUTP	
5p147	5-(2-methylbenzyloxy)methyl-2'-dUTP	
5p149	5-(2-isopropylbenzyloxy)methyl-2'-dUTP	
6p005	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dUTP-5-R6G	single
6p008	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dUTP-6-JOE	single
6p010	5-(2-phenylbenzyloxy)methyl-2'-dUTP	
6p015	5-(2,6-dimethylbenzyloxy)methyl-2'-dUTP	
6p017	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dCTP-Cy5	single
6p024	5-(2-tert-butylbenzyloxy)methyl-2'-dUTP	
6p034	C ⁷ -(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dGTP-6-ROX	single

WW#	Chemical Name	Diastereomer
6p036	C ⁷ -(α-isopropyl-2-nitrobenzyloxy)methyl- 2'-dGTP-dTAMRA-1	single
6p044	$5-(\alpha-isopropyl-2-nitrobenzyloxy)$ methyl-2'-dUTP-6-ROX	single
6p057-ds1	C^{7} -(α -isopropyl-2,6-dinitrobenzyloxy)methyl-2'-dATP (ds1)	single
6p057-ds2	C^{7} -(α -isopropyl-2,6-dinitrobenzyloxy)methyl-2'-dATP (ds2)	single
6p063	N^{δ} -(α -isopropyl-2-nitrobenzyl)-2'-dATP	single
6p071	C ⁷ -(α-isopropyl-2-nitrobenzyloxy)methyl- 2'-dGTP-alexa-fluor-530	single
6p073	C^{7} -(α -isopropyl-2-nitrobenzyloxy)methyl-2'-dGTP-6-JOE	single
6p087-ds1	C ⁷ -(α-isopropyl-4-methoxy-2-nitrobenzyl- oxy)methyl-2'-dATP (ds1)	single
6p087-ds2	C ⁷ -(α-isopropyl-4-methoxy-2-nitrobenzyl- oxy)methyl-2'-dATP (ds2)	single
6p094	5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dUTP-6-FAM	single

Other objects, features and advantages of the present disclosure will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. Note that simply because a particular compound is ascribed to one particular generic formula doesn't mean that it cannot also belong to another generic formula.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure. The invention may be better understood by reference to one of these drawings in combination with the detailed description of specific embodiments presented herein.

FIG. 1. Incorporation Assay: Natural dCTP and a modified dCTP analog were assayed for incorporation on a template with complementary base "G".

FIG. 2. X-ray Crystallography data of (S)-1-(2-nitrophenyl)-2-methyl-1-propyl (1S)camphanate: C₂₀H₂₅NO₆, M = 375.41, colorless plate, $0.26 \times 0.24 \times 0.10$ mm³, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 11.9268(15), b = 11.9812(14), c = 13.5488(16) Å, V =1936.1(4) Å³, Z = 4, $D_c = 1.288$ g/cm³, $F_{000} = 800$, MWPC area detector, CuK α radiation, $\lambda =$ 1.54178 Å, T = 110(2)K, $2\theta_{max} = 120.0^{\circ}$, 22896 reflections collected, 2665 unique (R_{int} = 0.0462). Final *GooF* = 1.009, RI = 0.0219, wR2 = 0.0554, R indices based on 2629 reflections with I >2sigma(I) (refinement on F^2), 245 parameters, 0 restraints. Lp and absorption corrections applied, $\mu = 0.787$ mm⁻¹. Absolute structure parameter = 0.09(5).

FIG. 3. X-ray crystallography data for (*R*)-1-(4-iodo-2-nitrophenyl)-2-methyl-1propyl (1*S*)-camphanate: Crystal data for $lg_{01}a$: C₂₀H₂₄INO₆, *M* = 501.30, colorless plate, 0.30 × 0.20 × 0.20 mm³, monoclinic, space group *P*2₁ (No. 4), *a* = 7.5810(15), *b* = 12.446(3), *c* = 11.722(3) Å, β = 107.613(10)°, *V* = 1054.2(4) Å³, *Z* = 2, *D*_c = 1.579 g/cm³, *F*₀₀₀ = 504, CCD area detector, MoKα radiation, λ = 0.71073 Å, *T* = 110(2)K, 2 θ_{max} = 50.0°, 24239 reflections collected, 3558 unique (R_{int} = 0.0302). Final *GooF* = 1.010, *R1* = 0.0123, *wR2* = 0.0316, *R* indices based on 3520 reflections with I >2sigma(I) (refinement on *F*²), 253 parameters, 3 restraints. Lp and absorption corrections applied, μ = 1.554 mm⁻¹. Absolute structure parameter = 0.020(9).

25

5

FIG. 4. HPLC stack trace of hydrogenolysis of 5-benzyloxymethyl-2'-deoxyuridine.

FIG. 5. HPLC stack trace of hydrogenolysis of 5-(1-phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

I. Definitions

When used in the context of a chemical group, "hydrogen" means -H; "hydroxy" means -OH; "oxo" means =O; "halo" means independently -F, -Cl, -Br or -I; "amino" 5 means -NH₂ (see below for definitions of groups containing the term amino, e.g., alkylamino); "hydroxyamino" means -NHOH; "nitro" means -NO₂; imino means =NH (see below for definitions of groups containing the term imino, e.g., alkylimino); "cyano" means -CN; "azido" means $-N_3$; in a monovalent context "phosphate" means $-OP(O)(OH)_2$ or a deprotonated form thereof; in a divalent context "phosphate" means -OP(O)(OH)O- or a 10 deprotonated form thereof; "mercapto" means -SH; "thio" means =S; "thioether" means -S-; "sulfonamido" means $-NHS(O)_2$ - (see below for definitions of groups containing the term sulfonamido, e.g., alkylsulfonamido); "sulfonyl" means $-S(O)_2$ (see below for definitions of groups containing the term sulfonyl, e.g., alkylsulfonyl); "sulfinyl" means -S(O) (see below for definitions of groups containing the term sulfinyl, *e.g.*, alkylsulfinyl); 15 and "silyl" means $-SiH_3$ (see below for definitions of group(s) containing the term silyl, e.g., alkylsilyl).

The symbol "--" means a single bond, "=" means a double bond, and "≡" means triple bond. The symbol "----" represents a single bond or a double bond. The symbol " \cdots ", when drawn perpendicularly across a bond indicates a point of attachment of the the group. It

is noted that the point of attachment is typically only identified in this manner for larger groups in order to assist the reader in rapidly and unambiguously identifying a point of attachment. The symbol "—" means a single bond where the group attached to the thick end of the wedge is "out of the page." The symbol """" means a single bond where the group attached to the thick end of the wedge is "into the page". The symbol " " means a single bond where the group attached to the thick end of the wedge is "into the page". The symbol " " means a single bond where the group attached to the thick end of the wedge is "into the page". The symbol " " means a single bond where the group attached to the thick end of the wedge is "into the page". The symbol " " means a single bond where the conformation is unknown (*e.g.*, either *R* or *S*), the geometry is unknown (*e.g.*, either *E* or *Z*) or the compound is present as mixture of conformation or

geometries (e.g., a 50%/50% mixture).

When a group "R" is depicted as a "floating group" on a ring system, for example, in the formula:

then R may replace any hydrogen atom attached to any of the ring atoms, including a depicted, implied, or expressly defined hydrogen, so long as a stable structure is formed.

When a group "R" is depicted as a "floating group" on a fused ring system, as for example in the formula:

5

then R may replace any hydrogen attached to any of the ring atoms of either of the fuzed rings unless specified otherwise. Replaceable hydrogens include depicted hydrogens (*e.g.*, the hydrogen attached to the nitrogen in the formula above), implied hydrogens (*e.g.*, a hydrogen of the formula above that is not shown but understood to be present), expressly defined hydrogens, and optional hydrogens whose presence depends on the identity of a ring atom (*e.g.*, a hydrogen attached to group X, when X equals -CH-), so long as a stable structure is formed. In the example depicted, R may reside on either the 5-membered or the 6-membered ring of the fused ring system. In the formula above, the subscript letter "y" immediately following the group "R" enclosed in parentheses, represents a numeric variable.

15 Unless specified otherwise, this variable can be 0, 1, 2, or any integer greater than 2, only limited by the maximum number of replaceable hydrogen atoms of the ring or ring system.

When y is 2 and " $(R)_y$ " is depicted as a floating group on a ring system having one or more ring atoms having two replaceable hydrogens, *e.g.*, a saturated ring carbon, as for example in the formula:

20

25

then each of the two R groups can reside on the same or a different ring atom. For example, when R is methyl and both R groups are attached to the same ring atom, a geminal dimethyl group results. Where specifically provided for, two R groups may be taken together to form a divalent group, such as one of the divalent groups further defined below. When such a divalent group is attached to the same ring atom, a spirocyclic ring structure will result.

When the point of attachment is depicted as "floating", for example, in the formula:

25

then the point of attachment may replace any replaceable hydrogen atom on any of the ring atoms of either of the fuzed rings unless specified otherwise.

In the case of a double-bonded R group (*e.g.*, oxo, imino, thio, alkylidene, etc.), any pair of implicit or explicit hydrogen atoms attached to one ring atom can be replaced by the R group. This concept is exemplified below:

For the groups below, the following parenthetical subscripts further define the groups as follows: "(Cn)" defines the exact number (n) of carbon atoms in the group. "(C≤n)" defines the maximum number (n) of carbon atoms that can be in the group, with the minimum number of carbon atoms in such at least one, but otherwise as small as possible for the group in question. *E.g.*, it is understood that the minimum number of carbon atoms in the 15 group "alkenyl_(C≤8)" is two. For example, "alkoxy_(C≤10)" designates those alkoxy groups having from 1 to 10 carbon atoms). (Cn-n') defines both the minimum (n) and maximum number (n') of carbon atoms in the group. Similarly, "alkyl_(C2-10)" designates those alkyl groups having from 2 to 10 carbon atoms (*e.g.*, 2, 3, 4, 5, 6, 7, 8, 9, or 10, or any range 20 derivable therein (*e.g.*, 3 to 10 carbon atoms)).

The term "alkyl" when used without the "substituted" modifier refers to a nonaromatic monovalent group with a saturated carbon atom as the point of attachment, a linear or branched, cyclo, cyclic or acyclic structure, no carbon-carbon double or triple bonds, and no atoms other than carbon and hydrogen. The groups, -CH₃ (Me), -CH₂CH₂CH₃ (Et), -CH₂CH₂CH₃ (*n*-Pr), -CH(CH₃)₂ (*iso*-Pr), -CH(CH₂)₂ (cyclopropyl), -CH₂CH₂CH₂CH₂CH₃ (*n*-Bu), -CH(CH₃)CH₂CH₃ (*sec*-butyl), -CH₂CH(CH₃)₂ (*iso*-butyl), -C(CH₃)₃ (*tert*-butyl), -CH₂C(CH₃)₃ (*neo*-pentyl), cyclobutyl, cyclopentyl, cyclohexyl, and cyclohexylmethyl are
non-limiting examples of alkyl groups. The term "substituted alkyl" refers to a non-aromatic monovalent group with a saturated carbon atom as the point of attachment, a linear or branched, cyclo, cyclic or acyclic structure, no carbon-carbon double or triple bonds, and at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P,

and S. The following groups are non-limiting examples of substituted alkyl groups: -CH₂OH,
-CH₂Cl, -CH₂Br, -CH₂SH, -CF₃, -CH₂CN, -CH₂C(O)H, -CH₂C(O)OH, -CH₂C(O)OCH₃,
-CH₂C(O)NH₂, -CH₂C(O)NHCH₃, -CH₂C(O)CH₃, -CH₂OCH₃, -CH₂OCH₂CF₃,
-CH₂OC(O)CH₃, -CH₂NH₂, -CH₂NHCH₃, -CH₂N(CH₃)₂, -CH₂CH₂Cl, -CH₂CH₂OH,
-CH₂CF₃, -CH₂CH₂OC(O)CH₃, -CH₂CH₂NHCO₂C(CH₃)₃, and -CH₂Si(CH₃)₃.

The term "alkanediyl" when used without the "substituted" modifier refers to a nonaromatic divalent group, wherein the alkanediyl group is attached with two σ -bonds, with one or two saturated carbon atom(s) as the point(s) of attachment, a linear or branched, cyclo, cyclic or acyclic structure, no carbon-carbon double or triple bonds, and no atoms other than carbon and hydrogen. The groups, $-CH_2-$ (methylene), $-CH_2CH_2-$, $-CH_2C(CH_3)_2CH_2-$,

-CH₂CH₂CH₂-, and , are non-limiting examples of alkanediyl groups. The term "substituted alkanediyl" refers to a non-aromatic monovalent group, wherein the alkynediyl group is attached with two σ-bonds, with one or two saturated carbon atom(s) as the point(s) of attachment, a linear or branched, cyclo, cyclic or acyclic structure, no carbon-carbon double or triple bonds, and at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The following groups are non-limiting examples of substituted alkanediyl groups: -CH(F)-, -CF₂-, -CH(Cl)-, -CH(OH)-, -CH(OCH₃)-, and -CH₂CH(Cl)-.

The term "alkenyl" when used without the "substituted" modifier refers to a monovalent group with a nonaromatic carbon atom as the point of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one nonaromatic carbon-carbon double bond, no carbon-carbon triple bonds, and no atoms other than carbon and hydrogen. Non-limiting examples of alkenyl groups include: -CH=CH₂ (vinyl), -CH=CHCH₃, -CH=CHCH₂CH₃, -CH=CH₂CH₂CH=CH₂ (allyl), -CH₂CH=CHCH₃, and -CH=CH-C₆H₅. The term "substituted alkenyl" refers to a monovalent group with a nonaromatic carbon atom as the point of attachment, at least one nonaromatic carbon-carbon double bond, no carbon-carbon triple bonds, a linear or branched, cyclo, cyclic or acyclic structure, and at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The

groups, -CH=CHF, -CH=CHCl and -CH=CHBr, are non-limiting examples of substituted alkenyl groups.

The term "alkenediyl" when used without the "substituted" modifier refers to a nonaromatic divalent group, wherein the alkenediyl group is attached with two σ -bonds, with two carbon atoms as points of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one nonaromatic carbon-carbon double bond, no carbon-carbon triple bonds, and no atoms other than carbon and hydrogen. The groups, -CH=CH-,

-CH=C(CH₃)CH₂-, -CH=CHCH₂-, and , are non-limiting examples of alkenediyl groups. The term "substituted alkenediyl" refers to a non-aromatic divalent group, 10 wherein the alkenediyl group is attached with two σ -bonds, with two carbon atoms as points of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one nonaromatic carbon-carbon double bond, no carbon-carbon triple bonds, and at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The following groups are non-limiting examples of substituted alkenediyl groups: -CF=CH-, 15 -C(OH)=CH-, and -CH₂CH=C(Cl)-.

The term "alkynyl" when used without the "substituted" modifier refers to a monovalent group with a nonaromatic carbon atom as the point of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one carbon-carbon triple bond, and no atoms other than carbon and hydrogen. The groups, $-C \equiv CCH_3$, $-C \equiv CCH_3$, $-C \equiv CC_6H_5$ and 20 -CH₂C=CCH₃, are non-limiting examples of alkynyl groups. The term "substituted alkynyl" refers to a monovalent group with a nonaromatic carbon atom as the point of attachment and at least one carbon-carbon triple bond, a linear or branched, cyclo, cyclic or acyclic structure, and at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The group, $-C \equiv CSi(CH_3)_3$, is a non-limiting example of a substituted alkynyl group.

25

30

The term "alkynediyl" when used without the "substituted" modifier refers to a nonaromatic divalent group, wherein the alkynediyl group is attached with two σ -bonds, with two carbon atoms as points of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one carbon-carbon triple bond, and no atoms other than carbon and hydrogen. The groups, $-C \equiv C-$, $-C \equiv CCH_2-$, and $-C \equiv CCH(CH_3)-$ are non-limiting examples of alkynediyl groups. The term "substituted alkynediyl" refers to a non-aromatic divalent group, wherein the alkynediyl group is attached with two σ -bonds, with two carbon atoms as points of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one carbon-carbon triple bond, and at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The groups $-C \equiv CCFH-$ and $-C \equiv CHCH(Cl)-$ are non-limiting examples of substituted alkynediyl groups.

The term "aryl" when used without the "substituted" modifier refers to a monovalent group with an aromatic carbon atom as the point of attachment, said carbon atom forming 5 part of one or more six-membered aromatic ring structure(s) wherein the ring atoms are all carbon, and wherein the monovalent group consists of no atoms other than carbon and hydrogen. Non-limiting examples of aryl groups include phenyl (Ph), methylphenyl, (dimethyl)phenyl, $-C_6H_4CH_2CH_3$ (ethylphenyl), $-C_6H_4CH_2CH_2CH_3$ (propylphenyl), 10 $-C_{6}H_{4}CH(CH_{3})_{2}$, $-C_{6}H_{4}CH(CH_{2})_{2}$, $-C_6H_3(CH_3)CH_2CH_3$ (methylethylphenyl), $-C_6H_4CH=CH_2$ (vinylphenyl), $-C_6H_4CH=CHCH_3$, $-C_6H_4C\equiv CCH_3$, naphthyl, and the monovalent group derived from biphenyl. The term "substituted aryl" refers to a monovalent group with an aromatic carbon atom as the point of attachment, said carbon atom forming part of one or more six-membered aromatic ring structure(s) wherein the ring atoms 15 are all carbon, and wherein the monovalent group further has at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. Non-limiting examples of substituted aryl groups include the groups: -C₆H₄F, -C₆H₄Cl, -C₆H₄Br, -C₆H₄I, $-C_{6}H_{4}OH$, $-C_{6}H_{4}OCH_{3}$, $-C_{6}H_{4}OCH_{2}CH_{3}$, $-C_{6}H_{4}OC(O)CH_{3}$, $-C_{6}H_{4}NH_{2}$, $-C_{6}H_{4}NHCH_{3}$, $-C_6H_4CH_2OH$, $-C_{6}H_{4}CH_{2}OC(O)CH_{3}$, $-C_{6}H_{4}CH_{2}NH_{2}$, $-C_{6}H_{4}CF_{3}$, $-C_{6}H_{4}N(CH_{3})_{2}$, 20 $-C_{6}H_{4}CN$, $-C_{6}H_{4}CHO$, $-C_{6}H_{4}CHO$, $-C_{6}H_{4}C(O)CH_{3}$, $-C_{6}H_{4}C(O)C_{6}H_{5}$, $-C_{6}H_{4}CO_{2}H$, $-C_6H_4CO_2CH_3$, $-C_6H_4CONH_2$, $-C_6H_4CONHCH_3$, and $-C_6H_4CON(CH_3)_2$.

The term "arenediyl" when used without the "substituted" modifier refers to a divalent group, wherein the arenediyl group is attached with two σ-bonds, with two aromatic carbon atoms as points of attachment, said carbon atoms forming part of one or more sixmembered aromatic ring structure(s) wherein the ring atoms are all carbon, and wherein the monovalent group consists of no atoms other than carbon and hydrogen. Non-limiting examples of arenediyl groups include:

$$-\frac{1}{2}$$
, $-\frac{1}{2}$, $-\frac{1$

The term "substituted arenediyl" refers to a divalent group, wherein the arenediyl group is 30 attached with two σ -bonds, with two aromatic carbon atoms as points of attachment, said carbon atoms forming part of one or more six-membered aromatic rings structure(s), wherein

WO 2009/152353

the ring atoms are carbon, and wherein the divalent group further has at least one atom independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S.

The term "aralkyl" when used without the "substituted" modifier refers to the monovalent group –alkanediyl–aryl, in which the terms alkanediyl and aryl are each used in a manner consistent with the definitions provided above. Non-limiting examples of aralkyls are: phenylmethyl (benzyl, Bn), 1-phenyl-ethyl, 2-phenyl-ethyl, indenyl and 2,3-dihydro-indenyl, provided that indenyl and 2,3-dihydro-indenyl are only examples of aralkyl in so far as the point of attachment in each case is one of the saturated carbon atoms. When the term "aralkyl" is used with the "substituted" modifier, either one or both the alkanediyl and the aryl is substituted. Non-limiting examples of substituted aralkyls are: (3-chlorophenyl)-methyl, 2-oxo-2-phenyl-ethyl (phenylcarbonylmethyl), 2-chloro-2-phenyl-ethyl, chromanyl where the point of attachment is one of the saturated carbon atoms, and tetrahydroquinolinyl where the point of attachment is one of the saturated atoms.

The term "heteroaryl" when used without the "substituted" modifier refers to a 15 monovalent group with an aromatic carbon atom or nitrogen atom as the point of attachment, said carbon atom or nitrogen atom forming part of an aromatic ring structure wherein at least one of the ring atoms is nitrogen, oxygen or sulfur, and wherein the monovalent group consists of no atoms other than carbon, hydrogen, aromatic nitrogen, aromatic oxygen and aromatic sulfur. Non-limiting examples of aryl groups include acridinyl, furanyl,

- 20 imidazoimidazolyl, imidazopyrazolyl, imidazopyridinyl, imidazopyrimidinyl, indolyl, indazolinyl, methylpyridyl, oxazolyl, phenylimidazolyl, pyridyl, pyrrolyl, pyrimidyl, pyrazinyl, quinolyl, quinazolyl, quinoxalinyl, tetrahydroquinolinyl, thienyl, triazinyl, pyrrolopyridinyl, pyrrolopyrimidinyl, pyrrolopyrazinyl, pyrrolotriazinyl, pyrroloimidazolyl, chromenyl (where the point of attachment is one of the aromatic atoms), and chromanyl 25 (where the point of attachment is one of the aromatic atoms). The term "substituted
- heteroaryl" refers to a monovalent group with an aromatic carbon atom or nitrogen atom as the point of attachment, said carbon atom or nitrogen atom forming part of an aromatic ring structure wherein at least one of the ring atoms is nitrogen, oxygen or sulfur, and wherein the monovalent group further has at least one atom independently selected from the group
- 30 consisting of non-aromatic nitrogen, non-aromatic oxygen, non aromatic sulfur F, Cl, Br, I, Si, and P.

The term "heteroarenediyl" when used without the "substituted" modifier refers to a divalent group, wherein the heteroarenediyl group is attached with two σ -bonds, with an

aromatic carbon atom or nitrogen atom as the point of attachment, said carbon atom or nitrogen atom forming part of one or more aromatic ring structure(s) wherein at least one of the ring atoms is nitrogen, oxygen or sulfur, and wherein the divalent group consists of no atoms other than carbon, hydrogen, aromatic nitrogen, aromatic oxygen and aromatic sulfur. Non-limiting examples of heteroarenediyl groups include:

The term "substituted heteroarenediyl" refers to a divalent group, wherein the heteroarenediyl group is attached with two σ -bonds, with an aromatic carbon atom or nitrogen atom as points of attachment, said carbon atom or nitrogen atom forming part of one or more six-membered aromatic ring structure(s), wherein at least one of the ring atoms is nitrogen, oxygen or sulfur, and wherein the divalent group further has at least one atom independently selected from the group consisting of non-aromatic nitrogen, non-aromatic oxygen, non aromatic sulfur F, Cl, Br, I, Si, and P.

15

10

5

The term "heteroaralkyl" when used without the "substituted" modifier refers to the monovalent group –alkanediyl–heteroaryl, in which the terms alkanediyl and heteroaryl are each used in a manner consistent with the definitions provided above. Non-limiting examples of aralkyls are: pyridylmethyl, and thienylmethyl. When the term "heteroaralkyl" is used with the "substituted" modifier, either one or both the alkanediyl and the heteroaryl is substituted.

20 The term "acyl" when used without the "substituted" modifier refers to a monovalent group with a carbon atom of a carbonyl group as the point of attachment, further having a linear or branched, cyclo, cyclic or acyclic structure, further having no additional atoms that are not carbon or hydrogen, beyond the oxygen atom of the carbonyl group. The groups, -CHO, -C(O)CH₃ (acetyl, Ac), -C(O)CH₂CH₃, -C(O)CH₂CH₂CH₃, -C(O)CH(CH₃)₂, 25 -C(O)CH(CH₂)₂, -C(O)C₆H₅, -C(O)C₆H₄CH₃, -C(O)C₆H₄CH₂CH₃, -COC₆H₃(CH₃)₂, and -C(O)CH₂C₆H₅, are non-limiting examples of acyl groups. The term "acyl" therefore encompasses, but is not limited to groups sometimes referred to as "alkyl carbonyl" and "aryl carbonyl" groups. The term "substituted acyl" refers to a monovalent group with a carbon atom of a carbonyl group as the point of attachment, further having a linear or branched, 30 cyclo, cyclic or acyclic structure, further having at least one atom, in addition to the oxygen of the carbonyl group, independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The groups, $-C(O)CH_2CF_3$, $-CO_2H$ (carboxyl), $-CO_2CH_3$ (methylcarboxyl),

 $-CO_2CH_2CH_3$, $-CO_2CH_2CH_2CH_3$, $-CO_2C_6H_5$, $-CO_2CH(CH_3)_2$, $-CO_2CH(CH_2)_2$, $-C(O)NH_2$ (carbamoyl), $-C(O)NHCH_3$, $-C(O)NHCH_2CH_3$, $-CONHCH(CH_3)_2$, $-CONHCH(CH_2)_2$, $-CON(CH_3)_2$, $-CONHCH_2CF_3$, -CO-pyridyl, -CO-imidazoyl, and $-C(O)N_3$, are nonlimiting examples of substituted acyl groups. The term "substituted acyl" encompasses, but is not limited to, "heteroaryl carbonyl" groups.

The term "alkylidene" when used without the "substituted" modifier refers to the divalent group =CRR', wherein the alkylidene group is attached with one σ -bond and one π -bond, in which R and R' are independently hydrogen, alkyl, or R and R' are taken together to represent alkanediyl. Non-limiting examples of alkylidene groups include: =CH₂, =CH(CH₂CH₃), and =C(CH₃)₂. The term "substituted alkylidene" refers to the group =CRR', wherein the alkylidene group is attached with one σ -bond and one π -bond, in which R and R' are independently hydrogen, alkyl, or R and R' are taken together to

15

20

25

30

10

5

The term "alkoxy" when used without the "substituted" modifier refers to the group -OR, in which R is an alkyl, as that term is defined above. Non-limiting examples of alkoxy groups include: $-OCH_3$, $-OCH_2CH_3$, $-OCH_2CH_2CH_3$, $-OCH(CH_3)_2$, $-OCH(CH_2)_2$, -O-cyclopentyl, and -O-cyclohexyl. The term "substituted alkoxy" refers to the group -OR, in which R is a substituted alkyl, as that term is defined above. For example, $-OCH_2CF_3$ is a substituted alkoxy group.

represent a substituted alkanediyl, provided that either one of R and R' is a substituted alkyl

or R and R' are taken together to represent a substituted alkanediyl.

Similarly, the terms "alkenyloxy", "alkynyloxy", "aryloxy", "aralkoxy", "heteroaryloxy", "heteroaralkoxy" and "acyloxy", when used without the "substituted" modifier, refers to groups, defined as –OR, in which R is alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and acyl, respectively, as those terms are defined above. When any of the terms alkenyloxy, alkynyloxy, aryloxy, aralkyloxy and acyloxy is modified by "substituted," it refers to the group –OR, in which R is substituted alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and acyl, respectively.

The term "alkylamino" when used without the "substituted" modifier refers to the group –NHR, in which R is an alkyl, as that term is defined above. Non-limiting examples of alkylamino groups include: –NHCH3, –NHCH2CH3, –NHCH2CH3, –NHCH2CH3, –NHCH(CH3)2, –NHCH(CH2)2, –NHCH2CH2CH2CH3, –NHCH(CH3)CH2CH3, –NHCH2CH(CH3)2, –NHCH(CH3)3, –NH-cyclopentyl, and –NH-cyclohexyl. The term "substituted alkylamino"

30

refers to the group -NHR, in which R is a substituted alkyl, as that term is defined above. For example, $-NHCH_2CF_3$ is a substituted alkylamino group.

The term "dialkylamino" when used without the "substituted" modifier refers to the group –NRR', in which R and R' can be the same or different alkyl groups, or R and R' can be taken together to represent an alkanediyl having two or more saturated carbon atoms, at least two of which are attached to the nitrogen atom. Non-limiting examples of dialkylamino groups include: –NHC(CH₃)₃, –N(CH₃)CH₂CH₃, –N(CH₂CH₃)₂, *N*-pyrrolidinyl, and *N*-piperidinyl. The term "substituted dialkylamino" refers to the group –NRR', in which R and R' can be the same or different substituted alkyl groups, one of R or R' is an alkyl and the other is a substituted alkyl, or R and R' can be taken together to represent a substituted alkanediyl with two or more saturated carbon atoms, at least two of which are attached to the nitrogen atom.

The terms "alkoxyamino", "alkenylamino", "alkynylamino", "arylamino", "aralkylamino", "heteroarylamino", "heteroaralkylamino", and "alkylsulfonylamino" when 15 used without the "substituted" modifier, refers to groups, defined as –NHR, in which R is alkoxy, alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and alkylsulfonyl, respectively, as those terms are defined above. A non-limiting example of an arylamino group is –NHC₆H₅. When any of the terms alkoxyamino, alkenylamino, alkynylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino and alkylsulfonylamino is 20 modified by "substituted," it refers to the group –NHR, in which R is substituted alkoxy, alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and alkylsulfonyl, respectively.

The term "amido" (acylamino), when used without the "substituted" modifier, refers to the group -NHR, in which R is acyl, as that term is defined above. A non-limiting example of an acylamino group is $-NHC(O)CH_3$. When the term amido is used with the "substituted" modifier, it refers to groups, defined as -NHR, in which R is substituted acyl, as that term is defined above. The groups $-NHC(O)OCH_3$ and $-NHC(O)NHCH_3$ are nonlimiting examples of substituted amido groups.

The term "alkylimino" when used without the "substituted" modifier refers to the group =NR, wherein the alkylimino group is attached with one σ -bond and one π -bond, in which R is an alkyl, as that term is defined above. Non-limiting examples of alkylimino groups include: =NCH₃, =NCH₂CH₃ and =N–cyclohexyl. The term "substituted alkylimino" refers to the group =NR, wherein the alkylimino group is attached with one σ -bond and one

 π -bond, in which R is a substituted alkyl, as that term is defined above. For example, =NCH₂CF₃ is a substituted alkylimino group.

Similarly, the terms "alkenylimino", "alkynylimino", "arylimino", "aralkylimino", "heteroarylimino", "heteroaralkylimino" and "acylimino", when used without the "substituted" modifier, refers to groups, defined as =NR, wherein the alkylimino group is 5 attached with one σ -bond and one π -bond, in which R is alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and acyl, respectively, as those terms are defined above. When any of the terms alkenylimino, alkynylimino, arylimino, aralkylimino and acylimino is modified by "substituted," it refers to the group =NR, wherein the alkylimino group is attached with one σ -bond and one π -bond, in which R is substituted alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and acyl, respectively.

10

15

20

25

30

The term "fluoroalkyl" when used without the "substituted" modifier refers to an alkyl, as that term is defined above, in which one or more fluorines have been substituted for hydrogens. The groups, $-CH_2F$, $-CF_2H$, $-CF_3$, and $-CH_2CF_3$ are non-limiting examples of fluoroalkyl groups. The term "substituted fluoroalkyl" refers to a non-aromatic monovalent group with a saturated carbon atom as the point of attachment, a linear or branched, cyclo, cyclic or acyclic structure, at least one fluorine atom, no carbon-carbon double or triple bonds, and at least one atom independently selected from the group consisting of N, O, Cl, Br, I, Si, P, and S. The following group is a non-limiting example of a substituted fluoroalkyl: -CFHOH.

The term "alkylphosphate" when used without the "substituted" modifier refers to the group -OP(O)(OH)(OR), in which R is an alkyl, as that term is defined above. Non-limiting examples of alkylphosphate groups include: -OP(O)(OH)(OMe) and -OP(O)(OH)(OEt). The term "substituted alkylphosphate" refers to the group -OP(O)(OH)(OR), in which R is a substituted alkyl, as that term is defined above.

The term "dialkylphosphate" when used without the "substituted" modifier refers to the group -OP(O)(OR)(OR'), in which R and R' can be the same or different alkyl groups, or R and R' can be taken together to represent an alkanediyl having two or more saturated carbon atoms, at least two of which are attached via the oxygen atoms to the phosphorus Non-limiting examples of dialkylphosphate groups include: -OP(O)(OMe)₂, atom. -OP(O)(OEt)(OMe) and $-OP(O)(OEt)_2$. The term "substituted dialkylphosphate" refers to the group -OP(O)(OR)(OR'), in which R and R' can be the same or different substituted alkyl groups, one of R or R' is an alkyl and the other is a substituted alkyl, or R and R' can be taken

together to represent a substituted alkanediyl with two or more saturated carbon atoms, at least two of which are attached via the oxygen atoms to the phosphorous.

The term "alkylthio" when used without the "substituted" modifier refers to the group -SR, in which R is an alkyl, as that term is defined above. Non-limiting examples of alkylthio groups include: -SCH₃, -SCH₂CH₃, -SCH₂CH₂CH₃, -SCH(CH₃)₂, -SCH(CH₂)₂, 5 -S-cyclopentyl, and -S-cyclohexyl. The term "substituted alkylthio" refers to the group -SR, in which R is a substituted alkyl, as that term is defined above. For example, -SCH₂CF₃ is a substituted alkylthio group.

10

Similarly, the terms "alkenylthio", "alkynylthio", "arylthio", "aralkylthio", "heteroarylthio", "heteroaralkylthio", and "acylthio", when used without the "substituted" modifier, refers to groups, defined as -SR, in which R is alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and acyl, respectively, as those terms are defined above. When any of the terms alkenylthio, alkynylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, and acylthio is modified by "substituted," it refers to the group -SR, in which R is substituted 15 alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl and acyl, respectively.

The term "thioacyl" when used without the "substituted" modifier refers to a monovalent group with a carbon atom of a thiocarbonyl group as the point of attachment, further having a linear or branched, cyclo, cyclic or acyclic structure, further having no additional atoms that are not carbon or hydrogen, beyond the sulfur atom of the carbonyl

20 group. The groups, -CHS, -C(S)CH₃, -C(S)CH₂CH₃, -C(S)CH₂CH₂CH₃, -C(S)CH(CH₃)₂, $-C(S)CH(CH_2)_2$, $-C(S)C_6H_5$, $-C(S)C_6H_4CH_3$, $-C(S)C_6H_4CH_2CH_3$, $-C(S)C_6H_3(CH_3)_2$, and $-C(S)CH_2C_6H_5$, are non-limiting examples of thioacyl groups. The term "thioacyl" therefore encompasses, but is not limited to, groups sometimes referred to as "alkyl thiocarbonyl" and "aryl thiocarbonyl" groups. The term "substituted thioacyl" refers to a radical with a carbon 25 atom as the point of attachment, the carbon atom being part of a thiocarbonyl group, further having a linear or branched, cyclo, cyclic or acyclic structure, further having at least one atom, in addition to the sulfur atom of the carbonyl group, independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. The groups, -C(S)CH₂CF₃, -C(S)O₂H, $-C(S)OCH_3$, $-C(S)OCH_2CH_3$, $-C(S)OCH_2CH_2CH_3$, $-C(S)OC_6H_5$, $-C(S)OCH(CH_3)_2$, -C(S)OCH(CH₂)₂, -C(S)NH₂, and -C(S)NHCH₃, are non-limiting examples of substituted 30 thioacyl groups. The term "substituted thioacyl" encompasses, but is not limited to, "heteroaryl thiocarbonyl" groups.

The term "alkylsulfonyl" when used without the "substituted" modifier refers to the group $-S(O)_2R$, in which R is an alkyl, as that term is defined above. Non-limiting examples

of alkylsulfonyl groups include: $-S(O)_2CH_3$, $-S(O)_2CH_2CH_3$, $-S(O)_2CH_2CH_2CH_2CH_3$, $-S(O)_2CH(CH_3)_2$, $-S(O)_2CH(CH_2)_2$, $-S(O)_2$ -cyclopentyl, and $-S(O)_2$ -cyclohexyl. The term "substituted alkylsulfonyl" refers to the group $-S(O)_2R$, in which R is a substituted alkyl, as that term is defined above. For example, $-S(O)_2CH_2CF_3$ is a substituted alkylsulfonyl group.

5

10

30

Similarly, the terms "alkenylsulfonyl", "alkynylsulfonyl", "arylsulfonyl", "aralkylsulfonyl", "heteroarylsulfonyl", and "heteroaralkylsulfonyl" when used without the "substituted" modifier, refers to groups, defined as $-S(O)_2R$, in which R is alkenyl, alkynyl, aryl, aralkyl, heteroaryl, and heteroaralkyl, respectively, as those terms are defined above. When any of the terms alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, aralkylsulfonyl, heteroarylsulfonyl, and heteroaralkylsulfonyl is modified by "substituted," it refers to the group $-S(O)_2R$, in which R is substituted alkenyl, alkynyl, aryl, aralkyl, heteroaryl and heteroaralkyl, respectively.

The term "alkylsulfinyl" when used without the "substituted" modifier refers to the group -S(O)R, in which R is an alkyl, as that term is defined above. Non-limiting examples 15 of alkylsulfinyl groups include: $-S(O)CH_3$, $-S(O)CH_2CH_3$, $-S(O)CH_2CH_2CH_2CH_3$, $-S(O)CH(CH_3)_2$, $-S(O)CH(CH_2)_2$, -S(O)-cyclopentyl, and -S(O)-cyclohexyl. The term "substituted alkylsulfinyl" refers to the group -S(O)R, in which R is a substituted alkyl, as that term is defined above. For example, $-S(O)CH_2CF_3$ is a substituted alkylsulfinyl group.

Similarly, the terms "alkenylsulfinyl", "alkynylsulfinyl", "arylsulfinyl", 20 "aralkylsulfinyl", "heteroarylsulfinyl", and "heteroaralkylsulfinyl" when used without the "substituted" modifier, refers to groups, defined as -S(O)R, in which R is alkenyl, alkynyl, aryl, aralkyl, heteroaryl, and heteroaralkyl, respectively, as those terms are defined above. When any of the terms alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, aralkylsulfinyl, heteroarylsulfinyl, and heteroaralkylsulfinyl is modified by "substituted," it refers to the 25 group -S(O)R, in which R is substituted alkenyl, alkynyl, aryl, aralkyl, heteroaryl and heteroaralkyl, respectively.

The term "alkylammonium" when used without the "substituted" modifier refers to a group, defined as $-NH_2R^+$, $-NHRR'^+$, or $-NRR'R''^+$, in which R, R' and R" are the same or different alkyl groups, or any combination of two of R, R' and R" can be taken together to represent an alkanediyl. Non-limiting examples of alkylammonium cation groups include: $-NH_2(CH_3)^+$, $-NH_2(CH_2CH_3)^+$, $-NH_2(CH_2CH_2CH_3)^+$, $-NH(CH_3)_2^+$, $-NH(CH_2CH_3)_2^+$, $-NH(CH_2CH_3)_2^+$, $-NH(CH_2CH_3)_2^+$, $-NH(CH_3)_3^+$, $-N(CH_3)_3(CH_2CH_3)_2^+$, $-N(CH_3)_2(CH_2CH_3)_4^+$, $-NH_2C(CH_3)_3^+$, $-NH_2C(CH_3$

R" is a substituted alkyl or two of R, R' and R" can be taken together to represent a substituted alkanediyl. When more than one of R, R' and R" is a substituted alkyl, they can be the same of different. Any of R, R' and R" that are not either substituted alkyl or substituted alkanediyl, can be either alkyl, either the same or different, or can be taken together to represent a alkanediyl with two or more carbon atoms, at least two of which are attached to the nitrogen atom shown in the formula.

The term "alkylsulfonium" when used without the "substituted" modifier refers to the group -SRR^{*t*+}, in which R and R' can be the same or different alkyl groups, or R and R' can be taken together to represent an alkanediyl. Non-limiting examples of alkylsulfonium
groups include: -SH(CH₃)⁺, -SH(CH₂CH₃)⁺, -SH(CH₂CH₂CH₃)⁺, -S(CH₃)₂⁺, -S(CH₂CH₃)₂⁺, -S(CH₂CH₃)₂⁺, -S(CH₂CH₃)₂⁺, -SH(cyclopentyl)⁺, and -SH(cyclohexyl)⁺. The term "substituted alkylsulfonium" refers to the group -SRR^{*t*+}, in which R and R' can be the same or different substituted alkyl groups, one of R or R' is an alkyl and the other is a substituted alkyl, or R and R' can be taken together to represent a substituted alkanediyl. For example, -SH(CH₂CF₃)⁺ is a substituted alkylsulfonium group.

The term "alkylsilyl" when used without the "substituted" modifier refers to a monovalent group, defined as -SiH₂R, -SiHRR', or -SiRR'R", in which R, R' and R" can be the same or different alkyl groups, or any combination of two of R, R' and R" can be taken together to represent an alkanediyl. The groups, -SiH₂CH₃, -SiH(CH₃)₂, -Si(CH₃)₃ and -Si(CH₃)₂C(CH₃)₃, are non-limiting examples of unsubstituted alkylsilyl groups. The term "substituted alkylsilyl" refers -SiH₂R, -SiHRR', or -SiRR'R", in which at least one of R, R' and R" is a substituted alkyl or two of R, R' and R" can be taken together to represent a substituted alkyl or two of R, R' and R" is a substituted alkyl or two of R, R' and R" is a substituted alkyl or the same of different. Any of R, R' and R" that are not either substituted alkyl or substituted alkanediyl, can be either alkyl, either the same or different, or can be taken together to represent a alkanediyl with two or more saturated carbon atoms, at least two of which are attached to the silicon atom.

In addition, atoms making up the compounds of the present invention are intended to include all isotopic forms of such atoms. Isotopes, as used herein, include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium, and isotopes of carbon include ¹³C and ¹⁴C. Similarly, it is contemplated that one or more carbon atom(s) of a compound of the present invention may be replaced by a silicon atom(s). Furthermore, it is

20

25

30

contemplated that one or more oxygen atom(s) of a compound of the present invention may be replaced by a sulfur or selenium atom(s).

A compound having a formula that is represented with a dashed bond is intended to include the formulae optionally having zero, one or more double bonds. Thus, for example,

Any undefined valency on an atom of a structure shown in this application implicitly represents a hydrogen atom bonded to the atom.

As used herein, a "chiral auxiliary" refers to a removable chiral group that is capable of influencing the stereoselectivity of a reaction. Persons of skill in the art are familiar with such compounds, and many are commercially available.

The terms "nucleotide base", "nucleobase" or simply "base", as used herein, refers to a substituted or unsubstituted nitrogen-containing parent heteroaromatic ring of a type that is commonly found in nucleic acids, as well as natural, substituted, modified, or engineered variants or analogs of the same. In a typical embodiment, the nucleobase is capable of forming Watson-Crick and/or Hoogsteen hydrogen bonds with an appropriately complementary nucleobase. Exemplary nucleobases include, but are not limited to,

- purines such as 2-aminopurine, 2,6-diaminopurine, adenine (A), ethenoadenine, N^6 - Δ^2 -isopentenyladenine (6iA), N^6 - Δ^2 -isopentenyl-2-methylthioadenine (2ms6iA), N^6 -methyladenine, guanine (G), isoguanine, N^2 -dimethylguanine (dmG), 7-methylguanine (7mG), 2-thiopyrimidine, 6-thioguanine (6sG), hypoxanthine and O^6 -methylguanine;
 - 7-deaza-purines such as 7-deazaadenine (7-deaza-A), 7-deazaguanine (7-deaza-G), 7deaza-7-hydroxymethyladenine, 7-deaza-7-aminomethyladenine and 7-deaza-7-hydroxymethylguanine;
- pyrimidines such as cytosine (C), 5-propynylcytosine, isocytosine, 5-hydroxylmethylcytosine (HOMeC), 5-aminomethyl-cytosine, thymine (T), 4-thiothymine (4sT), 5,6-dihydrothymine, *O*⁴-methylthymine, uracil (U), 4thiouracil (4sU), 5-hydroxylmethyluracil (HOMeU), 5-aminomethyl-uracil, and 5,6-dihydrouracil (dihydrouracil; D);

indoles such as nitroindole and 4-methylindole; pyrroles such as nitropyrrole; nebularine; base (Y); etc.

Additional exemplary nucleobases can be found in Lehninger, 2005, which is incorporated by reference, and the references cited therein.

5 The term "nucleoside" as used herein, refers to a glycosylamine consisting of a nucleobase bound to a five-carbon sugar, typically a ribose or a deoxyribose. Examples of these include, but are not limited to, cytidine, 2'-deoxycytidine, 5-hydroxylmethylcytidine, 2'-deoxy-5-hydroxylmethylcytidine, 5-aminomethylcytidine, 2'-deoxy-5aminomethylcytidine, uridine, 2'-deoxyuridine, 5-hydroxylmethyluridine, 2'-deoxy-5-10 hydroxylmethyluridine, 5-aminomethyluridine, 2'-deoxy-5-aminomethyluridine, adenosine, 7-deaza-7-hydroxymethyladenosine, 2'-deoxyadenosine, 2'-deoxy-7-deaza-7hydroxymethyladenosine, 7-deaza-7-aminomethyladenosine, 2'-deoxy-7-deaza-7-aminomethyladenosine, guanosine, 2'-deoxyguanosine, 7-deaza-7-hydroxymethyl guanosine, 2'deoxy-7-deaza-7-hydroxymethyl, 7-deaza-7-aminomethyl guanosine, 2'-deoxy-7-deaza-7-15 aminomethyl guanosine, thymidine, and 2'-deoxythymidine.

A "nucleotide" is composed of a nucleoside with one, two, three or more phosphate groups bound in a chain to the 5-carbon sugar of the nucleoside.

- Unless specified otherwise, a "linker" refers to one or more divalent groups (linking members) that function as a covalently-bonded molecular bridge between two other groups. A linker may contain one or more linking members and one or more types of linking members. Exemplary linking members include: -C(O)NH-, -C(O)O-, -NH-, -S-, -S(O)_n- where n is 0, 1 or 2, -O-, -OP(O)(OH)O-, -OP(O)(O⁻)O-, alkanediyl, alkenediyl, alkynediyl, arenediyl, heteroarenediyl, or combinations thereof. Some linkers have pendant side chains or pendant functional groups (or both). Examples of such pendant moieties are hydrophilicity modifiers, for example, solubilizing groups like, *e.g.*, -SO₃H or -SO₃⁻. In some embodiments, a linker may connect a reporter to another moiety such as a chemically, photochemically or enzymatically reactive group (*e.g.*, a cleavable or non-cleavable terminating moiety). In other embodiments, a linker connects a reporter to a biological and non-biological component, for example, a nucleobase, a nucleoside or a nucleotide. In further
- 30 embodiments, a linker connects chemically reactive groups to a nucleobase, a nucleoside or a nucleotide. The moiety formed by a linker bonded to a reporter may be designated -L-Reporter. Depending on such factors as the molecules to be linked and the conditions in which the method of strand synthesis is performed, the linker may vary in length and

composition for optimizing properties such as stability, length, FRET efficiency, resistance to certain chemicals and/or temperature parameters, and be of sufficient stereo-selectivity or size to operably link a label to a nucleotide such that the resultant conjugate is useful in optimizing a polymerization reaction. Linkers can be employed using standard chemical techniques and include but not limited to, amine linkers for attaching labels to nucleotides (see, for example, Hobbs and Trainor, U.S. Patent No. 5,151,507, which is incorporated herein by reference); a linker typically contain a primary or secondary amine for operably linking a label to a nucleotide; and a rigid hydrocarbon arm added to a nucleotide base (see, for example, Service, 1998, which is incorporated herein by reference). Some exemplary

10 linking methodologies for attachment of reporters to base molecules are provided in U.S. Patents 4,439,356 and 5,188,934; European Patent Application 87310256.0; International Application PCT/US90/05565 and Barone *et al.*, 2001, each of which is incorporated herein by reference in its entirety.

A "cleavable linker" is a linker that has one or more cleavable groups that may be 15 broken by the result of a reaction or condition. The term "cleavable group" refers to a moiety that allows for release of a portion, *e.g.*, a fluorogenic or fluorescent moiety. Such cleavage is typically chemically, photochemically or enzymatically mediated. Exemplary enzymatically cleavable groups include phosphates, or peptide sequences.

The use of the word "a" or "an," when used in conjunction with the term 20 "comprising" in the claims and/or the specification may mean "one," but it is also consistent with the meaning of "one or more," "at least one," and "one or more than one."

Throughout this application, the term "about" is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.

25

5

The terms "comprise," "have" and "include" are open-ended linking verbs. Any forms or tenses of one or more of these verbs, such as "comprises," "comprising," "has," "having," "includes" and "including," are also open-ended. For example, any method that "comprises," "has" or "includes" one or more steps is not limited to possessing only those one or more steps and also covers other unlisted steps.

30

The term "effective," as that term is used in the specification and/or claims, means adequate to accomplish a desired, expected, or intended result.

The term "hydrate" when used as a modifier to a compound means that the compound has less than one (*e.g.*, hemihydrate), one (*e.g.*, monohydrate), or more than one (*e.g.*,

dihydrate) water molecules associated with each compound molecule, such as in solid forms of the compound.

As used herein, the term " IC_{50} " refers to but not limited to the concentration of a nucleotide analog at which its incorporation on a primer-template complex yields equal numbers of moles of substrate and product and/or could be defined, but not limited to, incorporation efficiency measured by determining the concentration at which the compound incorporates on half the primer-template complexes.

As used herein, the term "oligonucleotide" refers to DNA fragments of 2 to 200 covalently linked nucleotides.

As used herein, the term "template" refers to an oligonucleotide serving as the complimentary strand for DNA synthesis (incorporation).

As used herein, the term "primer" refers to an oligonucleotide that is hybridized to a complement sequence on the template strand used to initiate DNA synthesis (incorporation).

When used herein in the scientific or technical sense, the term "incorporation" refers to a nucleotide or nucleotide analog forming a complement base-pair with the template strand and a covalent bond to a primer strand by a polymerase. The primer-template complex is extended one or more bases from the initial primer strand.

As used herein, the term "cleavage" refers to the removal of the terminating group by photo-cleavage, chemical cleavage, enzymatic cleavage or the like.

20

5

10

As used herein, the term "incorporation cycle" refers to the incorporation of a nucleotide or nucleotide analog by a polymerase, the detection and identification of said nucleotide or nucleotide analog, and if a nucleotide analog, cleavage of the terminating group from said analog.

As used herein, the term "misincorporation" refers to a nucleotide or nucleotide analog forming a non-complement base-pair with the template strand and a covalent bond to a primer by a polymerase. The primer-template complex is extended one or more bases from the initial primer strand.

As used herein, the term "discrimination" refers the IC_{50} concentration differences for misincorporation versus incorporation of nucleotide or nucleotide analogs by a polymerase.

30

As used herein, the term "termination" refers to the incorporation of a nucleotide or nucleotide analog forming a complement or non- complement base-pair with the template strand and a covalent bond to a primer by a polymerase. The primer-template complex is extended only one base from the initial primer strand for any given incorporation cycle.

WO 2009/152353

5

10

As used herein, the term " DT_{50} " refers to the amount of time required to cleavage 50% of the base analog incorporated in the primer-template complex.

The term "analog" as used herein, is understood as being a substance which does not comprise the same basic carbon skeleton and carbon functionality in its structure as a "given compound", but which can mimic the given compound by incorporating one or more appropriate substitutions such as for example substituting carbon for heteroatoms.

An "isomer" of a first compound is a separate compound in which each molecule contains the same constituent atoms as the first compound, but where the configuration of those atoms in three dimensions differs.

As used herein, the term "patient" or "subject" refers to a living mammalian organism, such as a human, monkey, cow, sheep, goat, dog, cat, mouse, rat, guinea pig, or transgenic species thereof. In certain embodiments, the patient or subject is a primate. Non-limiting examples of human subjects are adults, juveniles, infants and fetuses.

When used in reference to a compound, composition, method or device, 15 "pharmaceutically acceptable" means generally safe, non-toxic and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary use as well as human pharmaceutical use.

As used herein, "predominantly one enantiomer" means that a compound contains at least about 85% of one enantiomer, or more preferably at least about 90% of one enantiomer, or even more preferably at least about 95% of one enantiomer, or most preferably at least about 99% of one enantiomer. Similarly, the phrase "substantially free from other optical isomers" means that the composition contains at most about 15% of another enantiomer or diastereomer, more preferably at most about 10% of another enantiomer or diastereomer, even more preferably at most about 5% of another enantiomer or diastereomer, and most preferably at most about 1% of another enantiomer or diastereomer.

"Prevention" or "preventing" includes: (1) inhibiting the onset of a disease in a subject or patient which may be at risk and/or predisposed to the disease but does not yet experience or display any or all of the pathology or symptomatology of the disease, and/or (2) slowing the onset of the pathology or symptomatology of a disease in a subject or patient which may be at risk and/or predisposed to the disease but does not yet experience or display

30

The term "saturated" when referring to an atom means that the atom is connected to other atoms only by means of single bonds.

any or all of the pathology or symptomatology of the disease.

WO 2009/152353

A "stereoisomer" or "optical isomer" is an isomer of a given compound in which the same atoms are bonded to the same other atoms, but where the configuration of those atoms in three dimensions differs. "Enantiomers" are stereoisomers of a given compound that are mirror images of each other, like left and right hands. "Diastereomers" are stereoisomers of a given compound that are not enantiomers.

The invention contemplates that for any stereocenter or axis of chirality for which stereochemistry has not been defined, that stereocenter or axis of chirality can be present in its R form, S form, or as a mixture of the R and S forms, including racemic and non-racemic mixtures.

10

5

"Therapeutically effective amount" or "pharmaceutically effective amount" means that amount which, when administered to a subject or patient for treating a disease, is sufficient to effect such treatment for the disease.

"Treatment" or "treating" includes (1) inhibiting a disease in a subject or patient experiencing or displaying the pathology or symptomatology of the disease (*e.g.*, arresting 15 further development of the pathology and/or symptomatology), (2) ameliorating a disease in a subject or patient that is experiencing or displaying the pathology or symptomatology of the disease (*e.g.*, reversing the pathology and/or symptomatology), and/or (3) effecting any measurable decrease in a disease in a subject or patient that is experiencing or displaying the pathology or symptomatology of the disease.

20

As used herein, the term "water soluble" means that the compound dissolves in water at least to the extent of 0.010 mole/liter or is classified as soluble according to literature precedence.

The above definitions supersede any conflicting definition in any of the reference that is incorporated by reference herein. The fact that certain terms are defined, however, should not be considered as indicative that any term that is undefined is indefinite. Rather, all terms used are believed to describe the invention in terms such that one of ordinary skill can appreciate the scope and practice the present invention.

II. Synthetic Methods

Compounds of the present disclosure may be made using the methods outlined in the 30 Examples section. These methods can be further modified and optimized using the principles and techniques of organic chemistry as applied by a person skilled in the art. Such principles and techniques are taught, for example, in March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (2007), which is incorporated herein by reference.

III. Biological Function and Cleavage Rates

As shown in some apects of the present disclosure, substitution and its stereochemistry of the α -carbon of the 2-nitrobenzyl group affects biological function and cleavage rates of reaction of 3'-unblocked, base-modified dNTPs.

5

10

15

In one embodiment, sample components enable the determination of SNPs. The method may be for the high-throughput identification of informative SNPs. The SNPs may be obtained directly from genomic DNA material, from PCR amplified material, or from cloned DNA material and may be assayed using a single nucleotide primer extension method. The single nucleotide primer extension method may comprise using single unlabeled dNTPs, single labeled dNTPs, single labeled dNTPs, single labeled 2',3'-dideoxynucleotides. The mini-sequencing method may comprise using single unlabeled dNTPs, single base-modified 2'-dNTPs, single labeled dNTPs, single labeled 2',3'-dideoxynucleotides. The mini-sequencing method may comprise using single unlabeled dNTPs, single labeled 2',3'-dideoxynucleotides. The SNPs may be obtained directly from genomic DNA material, from PCR amplified material, or from cloned DNA materials.

The present disclosure further provides nucleotide and nucleoside compounds as well as salts, esters and phosphates thereof, that can be used in rapid DNA sequencing technology. The compounds are optionally in the form of ribonucleoside triphosphates (NTPs) and deoxyribonucleoside triphosphates (dNTP). The nucleotide and nucleoside compounds in

- 20 some cases include a photocleavable group labeled with a reporter group such as a fluorescent dye. The nucleotide and nucleoside compounds include photoremovable protecting groups that are designed to terminate DNA synthesis as well as cleave rapidly, so that these monomers can be used for rapid sequencing in a parallel format. The presence of such rapidly cleavable groups labeled with fluorescent dyes on the nucleotide and nucleoside 25 compounds can enhance the speed and accuracy of sequencing of large oligomers of DNA in
- parallel, to allow, for example, rapid whole genome sequencing, and the identification of polymorphisms and other valuable genetic information.

In certain aspects, the present disclosure relates to compounds wherein the base of the nucleoside is covalently attached with a 2-nitrobenzyl group, and the alpha carbon position of the 2-nitrobenzyl group is optionally substituted with one alkyl or aryl group as described herein. In certain examples, the base of the nucleoside is covalently attached with a 2-nitrobenzyl group, and the 2-nitrobenzyl group is optionally substituted with one or more of an electron donating and electron withdrawing group as described herein. The 2-nitrobenzyl

group can be functionalized to enhance the termination properties as well as the light catalyzed deprotection rate. The termination properties of the 2-nitrobenzyl and alpha carbon substituted 2-nitrobenzyl group attached to the nucleobase occur even when the 3'-OH group on the ribose sugar is unblocked. These 3'-OH unblocked terminators are well-tolerated by a

5 number of commercially available DNA polymerases, representing a key advantage over 3'-O-blocked terminators. The alpha carbon substituted 2-nitrobenzyl group also can be derivatized to include a selected fluorescent dye or other reporter group.

A. Nucleotide and Nucleoside Compounds and Their Use in DNA Sequencing

- Nucleotide and nucleoside compounds are provided which are useful in DNA sequencing technology. One aspect of the present invention is directed towards the use of the promising sequencing approach, cyclic reversible termination (CRT). CRT is a cyclic method of detecting the synchronistic, single base additions of multiple templates. This approach differentiates itself from the Sanger method (Metzker, 2005, which is incorporated herein by reference) in that it can be performed without the need for gel electrophoresis, a major bottleneck in advancing this field. Like Sanger sequencing, however, longer readlengths translates into fewer sequencing assays needed to cover the entire genome. The CRT cycle typically comprises three steps, incorporation, imaging, and deprotection. For this
- efficiency is the product of deprotection and incorporation efficiencies and determines the
 CRT read-length. The CRT cycle time is the sum of incorporation, imaging, and deprotection times. For rapid CRT for whole genome sequencing, the nucleotide and nucleoside compounds as disclosed herein may be used, which can exhibit fast and efficient deprotection properties. These compounds can be labeled with reporter groups such as fluorescent dyes, attached directly to the 2-nitrobenzyl, providing, *e.g.*, fluorescent, reversible
 terminators with similar deprotection properties. It has remained difficult to accomplish the goal of long CRT reads because reversible terminators typically act as poor substrates with

procedure, cycle efficiency, cycle time, and sensitivity are important factors. The cycle

- commercially available DNA polymerases. Modified nucleotide analogs of the present invention may be used to improve this technology by providing substrates that incorporate as well or better than a natural nucleotide with commercially available DNA polymerases.
- 30

When applied to genomic DNA, the compounds can be used in CRT to read directly from genomic DNA. Fragmented genomic DNA can be hybridized to a high-density oligonucleotide chip containing priming sites that span selected chromosomes. Each priming sequence is separated by the estimated read-length of the CRT method. Between base additions, a fluorescent imager can simultaneously image the entire high-density chip, marking significant improvements in speed and sensitivity. In specific embodiments, a fluorophore, which is attached to the 2-nitrobenzyl group or its derivatives described herein, is removed by UV irradiation releasing the 2-nitrobenzyl group for the next round of base

- 5 addition. After approximately 500 CRT cycles, the complete and contiguous genome sequence information can then be compared to the reference human genome to determine the extent and type of sequence variation in an individual's sample. Reversible terminators that exhibit higher incorporation and deprotection efficiencies will typically achieve higher cycle efficiencies, and thus longer read-lengths.
- 10 CRT Efficiency is defined by the formula: $(RL)^{Ceff} = 0.5$, where RL is the read-length in bases and Ceff is the overall cycle efficiency. In other words, a read-length of 7 bases could be achieved with an overall cycle efficiency of 90%, 70 bases could be achieved with a cycle efficiency of 99% and 700 bases with a cycle efficiency of 99.9%. The efficiency of incorporation of compounds according to the invention may range from about 70% to about
- 15 100% of the incorporation of the analogous native nucleoside. Preferably, the efficiency of incorporation will range from about 85% to about 100%. Photocleavage efficiencies will preferably range from about 85% to about 100%. Further, termination of nucleic acid extension will range from about 90% to about 100% upon incorporation of compounds according to the invention. Nucleotide and nucleoside compounds in one embodiment have a
- 20 cycle efficiency of at least 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%.

Another aspect of the present invention is directed towards the use of pyrosequencing, which is a non-electrophoretic, bioiluminescence method that measures the release of inorganic pyrophosphate (PPi) by proportionally converting it into visible light by a series of enzymatic reactions (Ronaghi *et al.*, 1998, which is incorporated herein by reference). Unlike other sequencing approaches that use modified nucleotides to terminate DNA synthesis, the pyrosequencing assay manipulates DNA polymerase by the single addition of a dNTP in limiting amounts. DNA polymerase then extends the primer upon incorporation of the complementary dNTP and pauses. DNA synthesis is reinitiated following the addition of 30 the next complementary dNTP in the dispensing cycle. The order and intensity of the light peaks are recorded as flowgrams, revealing the underlying DNA sequence. For homopolymer repeats up to six nucleotides, the number of dNTPs added is directly proportional to the light signal. Homopolymer repeats greater than six nucleotide can result

in insertional errors, which are the most common error type for pyrosequencing. Modified

nucleotide analogs of the present invention may improve this technology by accurate sequencing through homopolymer repeats, particularly those greater than six nucleotides in length.

Another aspect of the present invention is directed towards the use of Sanger 5 sequencing, particularly in heterozygote detection. Despite much advancement, improvements in the dideoxy-BigDye terminator sequencing chemistry for accurate heterozygote detection are needed. It is generally believed that a uniform peak height distribution in the primary data makes base-calling and heterozygote detection more reliable and accurate. The termination pattern in Sanger sequencing is primarily due to sequence-10 dependent bias incorporation by DNA polymerase, which can selectively incorporate natural nucleotides over modified nucleotides (Metzker et al., 1998, which is incorporated herein by reference). These bias incorporation effects are more pronounced with the dye-terminator chemistry than with the dye-primer chemistry. This can be attributed to effects of the large fluorescent dye structures attached to the terminating nucleotide, lowering enzyme activity at 15 least 10-fold to that of the natural substrate. Thus, the reduction of bias incorporation effects by DNA polymerase towards dye-labeled terminators could lead to improved heterozygote detection. Modified nucleotide analogs of the present invention may improve this technology by incorporating as well or better than a natural nucleotide, thus eliminating incorporation

bias in Sanger sequencing.

Another aspect of the present invention is directed towards the use of clonally amplified templates and single DNA molecule templates. The front-end of NGS technologies can be partitioned into two camps: clonally amplified templates from single DNA molecules and single DNA molecule templates. It is well recognized in the art that DNA can be immobilized to a solid surface by either attaching a primer to said surface and hybridizing a target nucleic acid to said primer (Southern and Cummins, 1998, US Patent No. 5,770,367; Harris *et al.*, 2008, which are incorporated herein by reference) or by attaching a target nucleic acid (Dressman *et al.*, 2003; Margulies *et al.*, 2005, which are incorporated herein by reference). Either immobilization configuration can be used in the present invention for then binding a DNA polymerase to initiate either the CRT method or the pyrosequencing method.

For CRT terminators to function properly, the protecting group must be efficiently cleaved under mild conditions. The removal of a protecting group generally involves either treatment with strong acid or base, catalytic or chemical reduction, or a combination of these methods. These conditions may be reactive to the DNA polymerase, nucleotides,

oligonucleotide-primed template, or the solid support creating undesirable outcomes. The use of photochemical protecting groups is an attractive alternative to rigorous chemical treatment and can be employed in a non-invasive manner.

- A number of photoremovable protecting groups including, but not limited to 2nitrobenzyl, benzyloxycarbonyl, 3-nitrophenyl, phenacyl, 3,5-dimethoxybenzoinyl, 2,4-5 dinitrobenzenesulphenyl, and their respective derivatives have been used for the synthesis of peptides, polysaccharides, and nucleotides (Pillai, 1980, which is incorporated herein by reference). Of these, the light sensitive 2-nitrobenzyl protecting group has been successfully applied to the 2'-OH of ribonucleosides for diribonucleoside synthesis (Ohtsuka et al., 1974, 10 which is incorporated herein by reference), the 2'-OH of ribophosphoramidites in automated ribozyme synthesis (Chaulk and MacMillan, 1998, which is incorporated herein by reference), the 3'-OH of phosphoramidites for oligonucleotide synthesis in the Affymetrix chemistry (Pease et al., 1994, which is incorporated herein by reference), and to the 3'-OH group for DNA sequencing applications (Metzker et al., 1994, which is incorporated herein by reference). Under deprotection conditions (ultraviolet light >300 nm), the 2-nitrobenzyl 15 group can be efficiently cleaved without affecting either the pyrimidine or purine bases (Pease et al., 1994 and Bartholomew and Broom, 1975, which are incorporated by reference).
- In one aspect, the present invention is directed towards the use of chemically cleavable reversible terminators. For example, the benzyl protecting group has been widely 20 used in organic synthesis as a result of its stability and ease of mild and selective deprotection by catalytic hydrogenolysis (Green and Wuts, 1999, which is incorporated herein by reference). Hydrogenolysis, which can be conducted under neutral conditions, is advantageous when working with nucleosides containing phosphoanhydride bonds, since nucleoside diphosphates, and especially nucleoside triphosphates, degrade under acidic 25 conditions (Wu et al., 2004; Johnson et al., 2004, which are incorporated herein by reference). Removal of a benzyl protecting group from solid-supported compounds by hydrogenolysis using Palladium nano-particles (Kanie et al., 2000, which is incorporated herein by reference) and hydrogenation conducted on a microfluidic device with immobilized Palladium catalyst (Kobayashi et al. 2004, which is incorporated herein by reference) have also been reported in addition to hydrogenolysis using conventional Palladium catalyst.

30

B. Polymerase Assays

Natural and modified nucleotides were tested for incorporation efficiency using the "polymerase end point assay" (Wu et al., 2007, which is incorporated herein by reference).

This assay examines incorporation efficiency on matched and mismatched template bases. Incorporation efficiency is measured by determining the concentration at which the compound incorporates on half the primer-template complexes (IC_{50}). Titrations of increasing compound concentration were performed to generate curves from which the IC_{50} can be determined

5 can be determined.

The sequence of the template DNA is selected depending on which compound will be tested. For example, the first interrogation base after the primer in the template sequence is the complement base of the compound when measuring incorporation efficiency, and one of three mismatched bases when measuring mismatch discrimination properties.

- To the annealed reaction, a DNA polymerase (*e.g.*, THERMINATOR[™] DNA polymerase, 0.25 units per reaction, New England Biolabs), 1× Thermopol Buffer, and a known concentration of either natural or modified nucleotide are added to each 10 µL reaction and incubated at 75°C for 10 minutes, cooled on ice, and quenched with 10 µL of stop solution (98% formamide: 10 mM Na₂EDTA, pH = 8.0, 25 mg/ml Blue Dextran).
 Stopped reactions are heated to 75°C for 30 seconds to denature the DNA, and then placed on ice. The extension products are analyzed on a 10% Long Ranger (Lonza) polyacrylamide gel using an ABI model 377 DNA sequencer. Additional details are provided in Example 1, below.
- FIG. 1 compares the incorporation with THERMINATOR[™] DNA polymerase of
 nucleotides disclosed herein with natural nucleotides. For example, compound 3p065 (5-(α-isopropyl-2-nitrobenzyloxymethyl-2'-dCTP) reaches 50% incorporation at a lower concentration than its natural analog (IC₅₀ = 1.1 ± 0.1 nM versus 3.0 ± 0.6 nM). Compounds labeled with dye also incorporate efficiency with THERMINATOR[™] DNA polymerase, for example compound 6p038/6p017 5-(α-isopropyl-2-nitrobenzyloxy)methyl-2'-dCTP-Cy5 has
- an $IC_{50} = 5.1 \pm 1.4$ nM. Table A shows the IC_{50} concentrations for many of the modified nucleotide analogs described herein.

WW#	Chemical Name	Diastereomer	IC ₅₀ for incorporation
1p129	N ⁶ -(2-nitrobenzyl)-2'-dATP		2.5±0.3 nM
2p043	$5-(\alpha-methyl-mitrobenzyl-oxymethyl)-2'-dUTP$	mixture	$1.7 \pm 0.2 \text{ nM}$
2p108	O ⁶ -(2-nitrobenzyl)-2'-dGTP		$4.0\pm0.7~\mathrm{nM}$
2p143	O^{6} -(α -methyl-2-nitrobenzyl)-2'-dGTP	mixture	$10 \pm 0.0 \text{ nM}$
2p148	$5-(\alpha-isopropyl-nitrobenzyl-oxymethyl)-2'-dUTP$	mixture	$2.3 \pm 0.1 \text{ nM}$
3p006	N^{6} -(α -methyl-2-nitrobenzyl)-2'-dATP	mixture	8.5 ± 1.8 nM
3p063	$5-(\alpha-isopropyl-2-nitrobenzyl-oxymethyl)-2'-dUTP$	single	2.0 nM
3p065	$5-(\alpha-isopropyl-2-nitrobenzyl-oxymethyl)-2'-dCTP$	single	$1.1 \pm 0.1 \text{ nM}$
3p075	5-(α -tert-butyl-2-nitrobenzyl-oxymethyl)-2'-dUTP	single	3.0 nM
3p085	$5-(\alpha-tert-butyl-2-nitrobenzyl-oxymethyl)-2'-dCTP$	single	2.0 nM
5p085	C ⁷ -(2-nitrobenzyl-oxymethyl)-2'-dATP		$3.6 \pm 0.3 \text{ nM}$
5p098-ds1	C^{7} -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dATP (ds1)	single	6.7 ± 0.8 nM
5p098-ds2	C^{7} -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dATP (ds2)	single	$5.7 \pm 1.1 \text{ nM}$
5p107	C ⁷ -(2-nitrobenzyl-oxymethyl)-2'-dGTP		$1.5 \pm 0.3 \text{ nM}$
5p111	$5-(\alpha-isopropyl-benzyl-oxymethyl)-2'-dUTP$	mixture	0.8 nM
5p127	C^7 -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dATP-6-FAM	single	$6.4 \pm 1.0 \text{ nM}$
5p130-LP2	C^{7} -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dATP-6-CR110	single	$15 \pm 3 \text{ nM}$

Table A: Effects of Substitution at the α -Carbon on Mismatch Discrimination.

WW#	Chemical Name	Diastereomer	IC ₅₀ for incorporation
5p143-ds1	C^{7} -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dGTP (ds1)	single	$1.2 \pm 0.2 \text{ nM}$
5p143-ds2	C^7 -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dGTP (ds2)	single	$1.3 \pm 0.3 \text{ nM}$
5p145	5-benzyl-oxymethyl-2'-dUTP		1.4 nM
5p147	5-(2-methyl-benzyl-oxymethyl)-2'-dUTP		1.4 nM
5p149	5-(2-isopropyl-benzyl-oxymethyl)-2'-dUTP		1.4 nM
6p005	$5-(\alpha-isopropyl-2-nitrobenzyl-oxymethyl)-2'-dUTP-5-R6G$	single	$15 \pm 1 \text{ nM}$
6p008	$5-(\alpha-isopropyl-2-nitrobenzyl-oxymethyl)-2'-dUTP-6-JOE$	single	$9.0 \pm 1.4 \text{ nM}$
6p010	5-(2-phenyl-benzyl-oxymethyl)-2'-dUTP		1.4 nM
6p015	5-(2,6-dimethyl-benzyl-oxymethyl)-2'-dUTP		1.4 nM
6p017	5-(a-isopropyl-2-nitrobenzyl-oxymethyl)-2'-dCTP-Cy5	single	$4.8 \pm 1.9 \text{ nM}$
6p024	5-(2-tert-butyl-benzyl-oxymethyl)-2'-dUTP		0.7 nM
6p028/5p127	C^7 -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dATP-6-FAM	single	$6.4 \pm 1.0 \text{ nM}$
6p034	C^7 -(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dGTP-6-ROX	single	$7.4 \pm 0.1 \text{ nM}$
6p038/6p017	5-(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dCTP-Cy5	single	$5.1 \pm 1.4 \text{ nM}$
6p044	$5-(\alpha-isopropyl-2-nitrobenzyl-oxymethyl)-2'-dUTP-6-ROX$	single	$18 \pm 1 \text{ nM}$
6p057-ds1	C^7 -(α -isopropyl-2,6-di-nitrobenzyl-oxymethyl)-2'-dATP (ds1)	single	$5.2 \pm 0.2 \text{ nM}$
6p057-ds2	C^7 -(α -isopropyl-2,6-di-nitrobenzyl-oxymethyl)-2'-dATP (ds2)	single	$5.8 \pm 1.1 \text{ nM}$
6p063	N^{6} -(α -isopropyl-2-nitrobenzyl)-2'-dATP	single	12 ± 1 nM

#MM#	Chemical Name	Diastereomer	IC ₅₀ for incorporation
6p075/6p008	5-(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dUTP-6-JOE	single	$9.0 \pm 1.4 \text{ nM}$
6p087-ds1	C^{7} -(α -isopropyl-4-methoxy-2-nitrobenzyl-oxymethyl)-2'-dATP (ds1)	single	$15 \pm 1 \text{ nM}$
6p087-ds2	C^{7} -(α -isopropyl-4-methoxy-2-nitrobenzyl-oxymethyl)-2'-dATP (ds2)	single	$18 \pm 3 \text{ nM}$
6p094	5-(α -isopropyl-2-nitrobenzyl-oxymethyl)-2'-dUTP-6-FAM	single	$8.1 \pm 0.2 \text{ nM}$

C. Mismatch Discrimination

It has been reported that substitution at the α-carbon of the 2-nitrobenzyl group can increase the rate of the cleavage reaction (Reichmanis *et al.*, 1985; Cameron and Frechet, 1991; Hasan *et al.*, 1997, which are incorporated herein by reference). Without being bound 5 by theory, the results presented herein suggest that substitution at the α-carbon of the 2-nitrobenzyl group can also affect the termination of DNA synthesis for 3'-unblocked nucleotide triphosphates and improve discrimination against mismatch incorporation. Furthermore, and based on the results discussed in greater detail below, it was found that the stereochemistry of the substitution of α-carbon of the 2-nitrobenzyl group can have a 10 significant impact on the extent of mismatch discrimination and the rate of the cleavage reaction.

Table 1 shows a comparison between the two diastereomers "ds1" and "ds2" of the α-substituted carbon and their precursors. The mismatch/match ratios represent the ability of the polymerase to distinguish between correctly incorporating against a matched template
base and a mismatch one. Discrimination is considered sufficient when the mismatch/match ratio is greater than or equal to 100 (two orders of magnitude). Table 1 shows the discrimination of natural dGTP and C⁷-hydroxymethyl-dGTP analogs 5p107, 5p143-ds1 and 5p143-ds2. Both natural dGTP and C⁷-(2-nitrobenzyloxy)methyl-2'-dGTP (5p107) show mismatch/match ratios ranging from 10 to 360, and 10 to 250, respectively, two of which are below the 100-fold threshold. Substitution of the α-methylene carbon with an isopropyl group, however, results in a significantly higher discrimination ratio for all mismatch template bases. 5p143-ds1 exhibits a high mismatch discrimination ratio compared with

5p143-ds2. These data provide evidence that the stereochemistry of the α -isopropyl group can affect the degree of discrimination against mismatch incorporation. A similar trend is observed for the C⁷-hydroxymethyl-dATP analogs. For the compounds shown in Table 1, substitution at the α -carbon of the 2-nitrobenzyl group increases mismatch discrimination in a

stereo-specific manner.

Complement	Mismatch / match ratio (10 ²)			
Base	dGTP	5p107	5p143-ds1	5p143-ds2
"C"	N/A	N/A	N/A	N/A
"T"	0.1	0.1	5	2.5
"A"	3.6	2.5	>830	>770
"G"	0.2	0.4	>21	>7.7

Table 1: Effects of Substitution at the α-Carbon on Mismatch Discrimination.

dGTP = natural dGTP

 $5p107 = C^{7}$ -(2-nitrobenzyloxy)methyl-2'-dGTP

 $5p143 = C^{7} - (\alpha - isopropyl - 2 - nitrobenzyloxy) methyl - 2' - dGTP$

D. Termination

5

Without being bound by theory, at least two factors were found to typically influence termination of DNA synthesis after a single incorporation: a) substitution at the α-carbon of the 2-nitrobenzyl group, and b) substitution at the 2-position of the benzyl ring. Table 2
shows the influence of various substitutions using a "weighted sum" analysis, which is determined by quantifying primer extension products using automated gel electrophoresis. A weighted sum of 1.0 represents complete termination after a single incorporation, while a value greater than 1.0 indicates incorporation beyond the +1 position (e.g. nucleotide read through). To standardize the termination assay, a concentration of 25× the IC₅₀ value of a given compound is used. The assay is performed as described above for the polymerase endpoint assay, except that the template used is a homopolymer repeat, thereby allowing for multiple incorporations of a given nucleotide compound. In this example, modified dUTP analogs are compared to natural dTTP, which at 25× its IC₅₀ value extends the entire length of the homopolymer repeat template and misincorporates the 11th base (weighted sum = 11).

- 20 Compound 3p085 (2-nitrobenzyloxymethyl-2'-dUTP) shows a degree of termination with a weighted sum of 3.7 ± 0.1 . Substitution of the α -carbon with a methyl group (2p043) further improves termination, reducing the weighted sum value to 1.7 ± 0.1 . Complete termination is achieved with an α -isopropyl substitution (2p148), showing a weighted sum value of 1.0. The IC₅₀ value for the complement base, however, does not increase, indicating that the larger
- 25 isopropyl substitution has a beneficial effect on termination, but does not compromise incorporation efficiency.

	, second se	Adj ICso	Aver	age Weighted Sum	± SD
	Immusanc	Conc (nM)	1x IC ₅₀	5X ICso	25X IC ₈₀
dTTP	(natural dTTP)	2.1	0.68	3.0	12.2
2p043	a-methyl-5-(2-nitrobenzyl)	1.7	0.53 ± 0.06	1.1 ± 0.0	1.7 ± 0.1
2p148	a-isopropy}-5-(2-nitrobenzyl)	2.1	0.59 ± 0.02	0.99 ± 0.01	1.0 ± 0.01
5p111	a-isopropy -5-benzy	0.8	0.44 ± 0.02	0.96 ± 0.01	1.1 ± 0.03
5p145	5-benzyl	1.4	0.43 ± 0.1	1.3 ± 0.3	2.9 ± 0.4
5p147	5-(2-methyl benzyl)	4.	0.51 ± 0.1	1.5 ± 0.3	2.6 ± 0.4
5p149	5-(2-isopropyl benzyl)	1.4	0.53 ± 0.1	1.3 ± 0.1	2.2 ± 0.2
6p010	5-(2-phenyl benzyl)	1.4	0.46 ± 0.1	1.1 ± 0.1	1.7 ± 0.3
6p015	5-(2,6-dimethyl benzyl)	1.4	0.56 ± 0.1	1.5 ± 0.1	2.2 ± 0.1
6p024	5-(2-tertbutyl benzyl)	0.7	0.44 ± 0.1	1.2 ± 0.1	1.9 ± 0.1

ns) u i
and	i o a c
nç,	u00
Ϊ'n	tho
ızy	Qf.
ber	00
tro	arti
-ni	Č.
e 2	Š
f th	ļ
jo t	not
poq	, m.
car	404
ς.	
the	1001
at	in fl
suc	5
utic	
stift	1777
3qn	hon
th s	64

The substitution of the 2-position on the benzyl ring can also influence the termination properties of these modified nucleotides. For example, removing the nitro group from this position (compound 5p111) increases the weighted sum value to 1.1 for an α -isopropyl substitution analog. A number of dUTP analogs were synthesized with various substituents on the 2-position and characterized for termination in the absence of the isopropyl group at the α -carbon. Table 2 shows a general trend of increasing substituent size and shape and improved termination properties, compare 5p145 (WS=2.9) and 6p010 (WS=1.7) at 25× IC₅₀ concentrations.

E. UV-Cleavage Rates

10 Cleavage of the terminating substituted 2-nitrobenyl group when analogs are incorporated into the primer strand with 365 nm UV light allows for the next cycle of incorporation to resume. Without being bound by theory,, at least two factors were found typically influence UV-cleavage rates of incorporated nucleotide analogs: a) stereo-chemistry of the α-carbon substitution of the 2-nitrobenzyl group, and b) substitution on the benzyl ring.
15 Incorporation on a matched template is performed as described above using 1 μM concentration to extend the primer strand. Ten identical tubes are used for each incorporation experiment, after which NaN₃ is added to a final concentration of 50 mM. Extended primer reactions are exposed to 365 nm light for various time points using the UV deprotector device described by Wu *et al.* (2007, which is incorporated herein by reference) and analyzed using
20 an AB model 377 DNA sequencer. The quantitative data are plotted linearly as product

- formation versus exposure time, and the time point at which half the nucleotide analog is cleaved is calculated, as a DT_{50} value. As shown in Table 3, the stereochemistry affects the rate of UV-cleavage for C⁷-hydroxymethyl-dATP analogs 5p098-ds1 and –ds2, 6p057-ds1 and –ds2, and 6p087-ds1 and –ds2. For example, based on these examples, the ds2 analogs
- 25 show faster cleavage rates (e.g., lower DT_{50} values) compared with ds1 analogs. Furthermore, substitution of a methoxy group at the 4 position on the benzyl ring further increases the rate of UV-cleavage, albeit for ds2 analogs only (*e.g.*, the DT_{50} value for 5p098ds2 is 3.3 sec versus that of 1.9 sec for 6p087-ds2). Based on the examples summarized in Table 3, substitution at the α -carbon of the 2-nitrobenzyl ring increases UV-cleavage in a
- 30 stereospecific manner.

Compound	Substitution	DT ₅₀ (seconds)
5p098-ds1	α-isopropyl-2-	7.5 ± 0.8
5p098-ds2	nitrobenzyl	3.3 ± 0.2
6p057-ds1	α-isopropyl-2,6-	7.3 ± 1.2
6p057-ds2	nitrobenzyl	4.8 ± 0.5
6p087-ds1	α-isopropyl-2-	8.8 ± 0.6
6p087-ds2	methoxy	1.9 ± 0.1

Table 3: Table 3, UV-Cleavage Rates of 2-Nitrobenzyl Ring Derivatives.

F. Chemical cleavage

- In one aspect, the present invention is directed towards the use of chemically cleavable reversible terminators. For example, the benzyl protecting group has been widely used in organic synthesis as a result of its stability and ease of mild and selective deprotection by catalytic hydrogenolysis (Green and Wuts, 1999, which is incorporated herein by reference). Hydrogenolysis, which can be conducted under neutral conditions, is advantageous when working with nucleosides containing phosphoanhydride bonds, since nucleoside diphosphates, and especially nucleoside triphosphates, degrade under acidic
- conditions (Wu *et al.*, 2004; Johnson *et al.*, 2004, which are incorporated herein by reference). Removal of a benzyl protecting group from solid-supported compounds by hydrogenolysis using palladium nano-particles (Kanie *et al.*, 2000, which is incorporated herein by reference) and hydrogenation conducted on microfluidic device with immobilized
- 15 palladium catalyst (Kobayashi *et al.* 2004, which is incorporated herein by reference) have also been reported beside hydrogenolysis using conventional palladium catalyst. Examples of chemically reversible cleavage results, including cleavage of 5-benzyloxymethyl-dU analogs using catalytic hydrogenolysis, are provided in Example 10 below.

IV. Examples

20

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure,

appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1 – Methods and Materials

Polymerase assays. Natural and modified nucleotides were tested for incorporation efficiency using the "polymerase end point assay" (Wu *et al.*, 2007, which is incorporated herein by reference). This assay examines incorporation efficiency on matched and mismatched template bases. Incorporation efficiency is measured by determining the concentration at which the compound incorporates on half the primer-template complexes
 (IC₅₀). Titrations of increasing compound concentration were performed to generate curves from which the IC₅₀ can be determined.

The assay is performed by first annealing 5nM of BODIPY-FL labeled primer with 40 nM template DNA in 1× Thermopol Buffer (20 mM Tris-HCl, pH 8.8; 10 mM (NH₄)₂SO₄; 10 mM KCl; 2 mM MgSO₄; 0.1% Triton X-100, New England BioLabs). The temperature cycle to complete primer annealing is 80°C for 30 seconds, 57°C for 30 seconds, then cooling to 4°C. The sequence of the template DNA is selected depending on which compound will be tested. For example, the first interrogation base after the primer in the template sequence is the complement base of the compound when measuring incorporation efficiency, and one of three mismatched bases when measuring mismatch discrimination properties.

To the annealed reaction, a DNA polymerase (*e.g.*, THERMINATORTM DNA polymerase, 0.25 units per reaction, New England Biolabs), 1× Thermopol Buffer, and a known concentration of either natural or modified nucleotide are added to each 10 μL reaction and incubated at 75°C for 10 minutes, cooled on ice, and quenched with 10 μL of stop solution (98% formamide: 10 mM Na₂EDTA, pH = 8.0, 25 mg/ml Blue Dextran).
Stopped reactions are heated to 75°C for 30 seconds to denature the DNA, and then placed on ice. The extension products are analyzed on a 10% Long Ranger (Lonza) polyacrylamide gel using an ABI model 377 DNA sequencer. The quantitative data are displayed as a linear-log plot of product formation versus compound concentration, and the IC₅₀ is calculated using KaleidaGraph software (Synergy Software).

Example 2 – Synthesis of α-Substituted 2-Nitrobenzyl Alcohols

Synthesis of (RS)-1-(2-nitrophenyl)ethanol

2-nitroacetophenone (RS)-1-(2-nitrophenyl)ethanol

Scheme 1. (i) NaBH₄, MeOH, 1,4-dioxane, room temperature, 100%.

(RS)-1-(2-Nitrophenyl)ethanol: Sodium borohydride (0.69 g, 18.16 mmol) was added to a solution of a 2-nitroacetophenone (1.0 g, 6.06 mmol) in methanol (9 mL) and 1,4-dioxane (6 mL) in small portions (Dong *et al.*, 2005, which is incorporated herein by reference). The mixture was stirred at room temperature for 30 minutes, then concentrated *in vacuo*. The residue was diluted with acetyl acetate (50 mL), washed with water (10 mL) and brine (10 mL). The organic phase was dried over Na₂SO₄ and concentrated *in vacuo* to yield racemic (*RS*)-1-(2-nitrophenyl)ethanol (1.02 g, 100%). ¹*H NMR (400 MHz, CDCl₃):* δ 7.90 (m, 1 H, Ph-H), 7.84 (m, 1 H, Ph-H), 7.66 (m, 1 H, Ph-H), 7.44 (m, 1 H, Ph-H), 5.42 (m, 1 H, Ph-CH), 2.33 (d, 1 H, *J* = 3.5 Hz, OH) 1.58 (d, 3 H, *J* = 5.1 Hz, CH₃).

Synthesis of (RS)-1-(4-iodo-2-nitrophenyl)ethanol

Scheme 2. Synthesis of (*RS*)-1-(4-iodo-2-nitrophenyl)ethanol: (i) NaNO₂, H₂SO₄, minus 2°C; then NaI, 100°C, 82%; (ii) NBS, benzoyl peroxide, CCl₄, reflux, 45%; (iii) DMSO, NaHCO₃, 86°C, 61%; (iv) Me₂Zn, Ti(O*i*-Pr)₄, CH₂Cl₂, toluene, 0°C, 48%.

4-Iodo-2-nitrotoluene: To a suspension of 4-methyl-3-nitroaniline (4.30 g, 28.26 mmol) in water (40 mL) cooled in ice-water bath, 98% sulfuric acid (1.89 mL) was added cautiously (Herm et al., 2002, which is incorporated herein by reference). Sodium chloride was added into the ice-water bath to lower the temperature to minus 2°C, and a solution of NaNO₂ (2.15 g, 31.10 mmol) in water (10 mL) was added at a rate that the reaction 5 temperature did not exceed 0°C. Upon completion of the addition, the mixture was stirred at minus 2°C for 45 minutes. This solution of the diazo compound was then carefully added (in small portions) to a boiling solution of NaI (12.89 g, 86 mmol) (CAUTION: vigorous gas evolution). Upon completion of the addition, the reaction mixture was cooled down to room 10 temperature and extracted with methylene chloride (50 mL) four times. The combined organic phase was washed with saturated NaHCO₃ (40 mL) and water (40 mL), dried over Na₂SO₄, concentrated *in vacuo*. The residue was purified by silica gel chromatography to yield 4-iodo-2-nitrotoluene (6.07 g, 82%). ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, 1 H, J = 1.8 Hz, Ph-H), 7.81 (dd, 1 H, J = 2.2 and 8.1 Hz, Ph-H), 7.09 (d, 1 H, J = 8.1 Hz, Ph-H), 2.55 (s, 3 H, CH₃). 15

1-Bromomethyl-4-iodo-2-nitrobenzene: NBS (5.45 g, 30.62 mmol) and benzoyl peroxide (75% aq, 200 mg, 0.85 mmol) were added to a solution of 4-iodo-2-nitrotoluene (4.63 g, 17.60 mmol) in CCl₄ (60 mL). The mixture was heated to reflux overnight, then cooled to room temperature, concentrated *in vacuo*, and purified by column chromatography

to yield 1-bromomethyl-4-iodo-2-nitrobenzene (2.71 g, 45%). ¹H NMR (400 MHz, CDCl₃): δ
8.35 (d, 1 H, J = 1.8 Hz, Ph-H), 7.93 (dd, 1 H, J = 1.8 and 8.1 Hz, Ph-H), 7.30 (d, 1 H, J = 8.1 Hz, Ph-H), 4.76 (s, 2 H, PhCH₂).

4-Iodo-2-nitrobenzaldehyde: NaHCO₃ (3.32 g, 39.48 mmol) was added to a solution of 1-bromomethyl-4-iodo-2-nitrobenzene (2.25 g, 6.58 mmol) in anhydrous DMSO (150mL).

- The mixture was stirred at 86°C for 19 hours under a nitrogen atmosphere, then cooled down to room temperature, diluted with water (300 mL), and extracted with methylene chloride four times (250 mL). The combined organic phase was dried over Na₂SO₄, concentrated *in vacuo*, and purified by silica gel chromatography to yield 4-iodo-2-nitrobenzaldehyde (1.11 g, 61%). ¹H NMR (400 MHz, CDCl₃): δ 10.38 (d, 1 H, J = 1.6 Hz, CHO), 8.45 (d, 1 H, J = 1.5
- 30 Hz, Ph-H), 8.15 (dd, 1 H, J = 1.5 and 8.0 Hz, Ph-H), 7.67 (d, 1 H, J = 8.1 Hz, Ph-H); ¹³C NMR (100 MHz, CDCl₃): δ 187.28 (CH), 143.18 (CH), 133.29 (CH), 130.67 (CH), 130.28 (C), 109.60 (C), 99.78 (C).

(*RS*)-1-(4-Iodo-2-nitrophenyl)ethanol: Titanium(IV) isopropoxide (1.2 mL, 4.04 mmol) was dissolved in anhydrous dichloromethane (8 mL) under a nitrogen atmosphere. The

24.28 (CH₃).

15

solution was cooled to 0°C and dimethylzinc (2 M in toluene, 8.67 mL, 17.34 mmol) was added dropwise. The mixture was stirred at 0°C for 45 minutes followed by addition of 4-iodo-2-nitrobenzaldehyde (800 mg, 2.89 mmol). The mixture was stirred at 0°C for 36 hours, then quenched by 1 M HCl (CAUTION: *vigorous gas evolution*!) and extracted with ethyl

5 either (50 mL) three times. The combined organic phase was washed with water (50 mL), saturated NaHCO₃ solution (50 mL) and brine (50 mL), dried over Na₂SO₄, concentrated *in vacuo*, and purified by column chromatography to yield racemic (*RS*)-1-(4-Iodo-2-nitrophenyl)ethanol (408 mg, 48%). ¹*H NMR* (400 MHz, CDCl₃): δ 8.21 (dd, 1 H, J = 1.8 and 5.3 Hz, Ph-H), 7.96 (m, 1 H, Ph-H), 7.58 (d, 1 H, J = 8.3 Hz, Ph-H), 5.38 (q, 1 H, J = 6.1 Hz, Ph-CH), 2.34 (br s, 1 H, OH), 1.54 (d, 3 H, J = 6.1 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 147.98 (C), 142.49 (CH), 140.68 (C), 132.77 (CH), 131.31 (CH), 91.60 (C), 65.40 (CH),

Synthesis of (*RS*)-1-(2-nitrophenyl)-2-methyl-1-propanol and (*S*)-1-(2-nitrophenyl)-2-methyl-1-propanol

Scheme 3. Synthesis of (*RS*)-1-(2-nitrophenyl)-2-methyl-1-propanol and (*S*)-1-(2-nitrophenyl)-2-methyl-1-propanol. (i) PhMgCl, *i*-PrCHO, THF (anhydrous), minus 40°C to

room temperature, 99%; (ii) (1*S*)-camphanic acid chloride, pyridine (anhydrous), room temperature; (iii) recrystallization from methanol; (iv) K_2CO_3 /MeOH, reflux, 97%.

(RS)-1-(2Nitrophenyl)-2-methyl-propanol: To a solution of 1-iodo-2-nitrobenzene (1.12 g, 4.5 mmol) in anhydrous THF (15 mL) cooled to minus 40°C under nitrogen atmosphere, a solution of phenylmagnesium chloride (2 M in THF, 2.4 mL, 4.8 mmol) was 5 added dropwise at a rate that the temperature would not exceed minus 35°C. Upon completion of the addition the mixture was stirred for five minutes at minus 40°C, followed by addition of isobutyraldehyde (0.545 mL, 6.0 mmol). The mixture was gradually warmed up to room temperature, quenched with saturated ammonium chloride (6 mL), poured into 10 water (80 mL), and extracted with ethyl acetate three times (100 mL). Combined organic phase was washed with brine (80 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography to yield racemic (RS)-1-(2nitrophenyl)-2-methyl-propanol (0.876 g, 99%) as a light yellow oil. ¹H NMR (400 MHz, $CDCl_3$: δ 7.84 (dd, 1 H, J = 1.2 and 8.2 Hz, Ph-H), 7.73 (dd, 1 H, J = 1.4 and 7.9 Hz, Ph-H), 7.61 (m, 1 H, Ph-H), 7.39 (m, 1 H, Ph-H), 5.03 (dd, 1 H, J = 4.5 and 5.8 Hz, Ph-CH), 2.42 (d, 15 1 H, J = 4.5 Hz, OH), 2.02 (m, 1 H, CH), 0.95 (d, 3 H, J = 6.7 Hz, CH₃), 0.89 (d, 3 H, J = 6.8Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 148.48 (C), 138.91 (C), 132.95 (CH), 128.85 (CH), 127.95 (CH), 124.21 (CH), 73.79 (CH), 34.30 (CH), 19.66 (CH₃), 17.01 (CH₃).

(S)-1-(2-Nitrophenvl)-2-methyl-propyl (1S)-camphanate: To a solution of (RS)-1-(2-20 nitrophenyl)-2-methyl-propanol (2.18 g, 11.2 mmol) in anhydrous pyridine (10 mL) (1S)camphanic acid chloride (2.63 g, 12.2 mmol) was added. The mixture was stirred for 18 hours at room temperature under nitrogen atmosphere, then concentrated in vacuo to afford (*RS*)-1-(2-nitrophenyl)-2-methyl-propyl (1*S*)-camphanate (1:1)mixture crude of diastereomers). The camphanate was dissolved in boiling methanol (100 mL) and the 25 solution was allowed to cool to room temperature and left overnight. Crystals formed were collected by filtration and were redissolved in boiling methanol (80 mL) and the solution was allowed to cool to room temperature and left overnight. Crystals formed were collected by filtration to afford of pure (S)-1-(2-nitrophenyl)-2-methyl-propyl (1S)-camphanate (0.76 g, 36%). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (dd, 1 H, J = 1.8 and 7.8 Hz, Ph-H), 7.63 (m, 2 H,

Ph-H), 7.45 (m, 1 H, Ph-H), 6.33 (d, 1 H, J = 6.0 Hz, Ph-CH), 2.32 (m, 2 H), 1.91 (m, 2 H),
1.67 (m, 1 H), 1.12 (s, 3 H, CH₃), 1.05 (s, 3 H, CH₃), 1.03 (d, 3 H, J = 6.8 Hz, CH₃), 1.00 (s, 3 H, CH₃), 0.99 (d, 3 H, J = 6.8 Hz, CH₃).

X-ray Crystallography data of (S)-1-(2-nitrophenyl)-2-methyl-propyl (1S)camphanate: C₂₀H₂₅NO₆, M = 375.41, colorless plate, $0.26 \times 0.24 \times 0.10$ mm³, orthorhombic,
10

space group $P2_12_12_1$ (No. 19), a = 11.9268(15), b = 11.9812(14), c = 13.5488(16) Å, V = 1936.1(4) Å³, Z = 4, $D_c = 1.288$ g/cm³, $F_{000} = 800$, MWPC area detector, CuK α radiation, $\lambda = 1.54178$ Å, T = 110(2)K, $2\theta_{max} = 120.0^{\circ}$, 22896 reflections collected, 2665 unique (R_{int} = 0.0462). Final *GooF* = 1.009, R1 = 0.0219, wR2 = 0.0554, R indices based on 2629 reflections with I >2sigma(I) (refinement on F^2), 245 parameters, 0 restraints. Lp and abcomption corrections applied u = 0.787 mm⁻¹. Abcolute structure perpendent = 0.00(5)

absorption corrections applied $\mu = 0.787 \text{ mm}^{-1}$. Absolute structure parameter = 0.09(5) (Flack, 1983, which is incorporated herein by reference). See FIG. 2.

(S)-1-(2-Nitrophenyl)-2-methyl-propanol: (S)-1-(2-Nitrophenyl)-2-methyl-propyl (1S)-camphanate (0.717 g, 1.90 mmol) was dissolved in hot methanol (40 mL) and K₂CO₃ (0.380 g, 2.74 mmol) was added. The mixture was heated to reflux for one hour, then cooled down, concentrated *in vacuo*, and diluted with diethyl ether (100 mL). The organic phase was washed with water (20 mL), dried over anhydrous Na₂SO₄, and purified by silica gel column chromatography to yield (S)-1-(2-nitrophenyl)-2-methyl-propanol (0.360 g, 97%) as a

light yellow oil. ¹H NMR was identical to that of the racemic alcohol.

72

Synthesis of (*RS*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol, (*R*)-1-(4-Iodo-2nitrophenyl)-2-methyl-1-propanol and (*S*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1propanol

5 Scheme 4. Synthesis of (*RS*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol, (*R*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol and (*S*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol.
(i) NaNO₂, AcOH, H₂SO₄, minus 5-0°C; NaI , 100°C, 99%; (ii) PhMgCl, *i*-PrCHO, THF (anhydrous), minus 40°C to room temperature, 80%; (iii) (1*S*)-camphanic acid chloride, DMAP, CH₂Cl₂ (anhydrous), room temperature, 84%; (iv) recrystallization from methanol or isopropanol; (v) K₂CO₃, MeOH, reflux, 100%.

1,4-Diiodo-2-nitrobenzene: 4-Iodo-2-nitroaniline (6.60 g, 0.025 mol) was suspended in water (19 mL) and glacial acetic acid (17.5 mL) (Sapountzis *et al.*, 2005, which is incorporated herein by reference). The mixture was cooled to 0°C. Sulfuric acid (17.5 mL, 0.328 mol) was added cautiously. The mixture was cooled to minus 5°C, and a solution of NaNO₂ (1.90 g, 0.028 mol) in water (7.5 mL) was added dropwise at a rate that the temperature would not exceed 0°C. Upon completion of the addition the mixture was stirred for 30 minutes and was added in small portions to a boiling solution of sodium iodide (22.33

g, 0.149 mol) in water (7.5 mL) (CAUTION: *vigorous nitrogen evolution*!). The resulting mixture was kept at 60°C for one hour, then cooled down to room temperature, followed by addition of diethyl ether (500 mL). The ether solution was separated, washed twice with water (150 mL) and once saturated NaHCO₃ (150 mL). The solution was dried over Na₂SO₄ and concentrated *in vacuo* to a solid, which was recrystallized from ethanol to yield 1,4diiodo-2-nitrobenzene (9.30 g, 99%). ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, 1H, J = 2.0 Hz), 7.75 (d, 1 H, J = 8.3 Hz), 7.56 (dd, 1 H, J = 8.3 and 2.0 Hz).

(RS)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol: To a solution of 1,4-diiodo-2-nitrobenzene (2.24 g, 6.0 mmol) in anhydrous THF (20 mL) at minus 40°C under a nitrogen atmosphere, phenylmagnesium bromide (2 M in THF, 3.2 mL, 6.4 mmol) was added dropwise at a rate that the temperature would not exceed minus 35°C. Upon completion of the addition the mixture was stirred for 5 minutes, followed by addition of isobutyraldehyde (0.726 mL, 8.0 mmol). The mixture was gradually warmed up to room temperature, quenched with saturated NH₄Cl (8 mL), then poured into water (100 mL). The mixture was extracted three times with ethyl acetate (150 mL), and the combined organic phase was

20 washed with brine (100 mL), dried over Na₂SO₄, concentrated *in vacuo* and purified by silica gel column chromatography to yield racemic (RS)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol (1.54 g, 80%) as a light yellow oil. ¹*H NMR (400 MHz, CDCl₃):* δ 8.18 (d, 1 H, *J* = 1.7 Hz, Ph-H), 7.93 (dd, 1 H, *J* = 1.7 and 8.3 Hz, Ph-H), 7.50 (d, 1 H, *J* = 8.3 Hz, Ph-H), 5.04 (m, 1 H, Ph-CH), 2.17 (d, 1 H, *J* = 4.4 Hz, OH), 1.98 (m, 1 H, CH), 0.93 (d, 3 H, *J* = 4.4 Hz, CH₃); ¹³*C NMR (100 MHz, CDCl₃):* δ 148.62 (C), 141.81 (CH), 138.57 (C), 132.72 (CH), 130.49 (CH), 91.51 (C), 73.48 (CH), 34.22 (CH), 19.62 (CH₃), 16.71 (CH₃).

30

(*R*)- and (*S*)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyl (1*S*)-camphanate: Under a nitrogen atmosphere (1*S*)-camphanic acid chloride (0.89 g, 4.09 mmol) was added to a solution of (*RS*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol (1.10 g, 3.41 mmol) and DMAP (0.50 g, 4.09 mmol) in anhydrous dichloromethane (30 mL). The mixture was stirred for 1.5 hours at room temperature and then concentrated *in vacuo*. The residue was purified by silica gel column chromatography to (*RS*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propyl (1*S*)-camphanates (1.44 g, 84%, 1:1 mixture of diastereomers) as a solid, which was dissolved

in boiling methanol (70 mL) and left at room temperature overnight. Crystals formed were filtered to yield pure (R)-1-(4-iodo-2-nitrophenyl)-2-methyl-1-propyl (1S)-camphanate (0.465 g, 65%). The mother liquor was evaporated, and the residue was dissolved in boiling isopropanol (40 mL) and left at room temperature overnight. Crystals formed were filtered

- and recrystallized from boiling isopropanol (20 mL) to yield pure (S)-1-(4-iodo-2-nitrophenyl)-2-methyl-1-propyl (1S)-camphanate (0.288 g, 40%). ¹H NMR (400 MHz, CDCl₃) for (R, S)-camphanate: δ 8.30 (d, 1 H, J = 1.8 Hz, Ph-H), 7.92 (dd, 1 H, J = 1.8 and 8.3 Hz, Ph-H), 7.56 (d, 1 H, J = 8.3 Hz, Ph-H), 6.27 (d, 1 H, J = 6.8 Hz, Ph-CH), 2.40 (m, 1 H), 2.23 (m, 1 H), 2.06 (m, 1 H), 1.92 (m, 1 H), 1.72 (m, 1 H), 1.11 (s, 3 H, CH₃), 1.03 (d, J =
- 6.8 Hz, 3 H, CH₃), 1.02 (s, 1 H, CH₃), 0.98 (d, J = 6.8 Hz, 3 H, CH₃), 0.82 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) for (R, S)-camphanate: δ 178.21 (C), 166.92 (C), 148.67 (C), 142.07 (CH), 134.80 (C), 133.34 (CH), 129.73 (CH), 92.59 (C), 90.75 (C), 76.07 (CH), 54.79 (C), 54.34 (C), 33.27 (CH), 31.03 (CH₂), 28.88 (CH₂), 19.07 (CH₃), 17.40 (CH₃), 16.70 (CH₃), 16.66 (CH₃), 9.61 (CH₃).

15

20

¹*H NMR* (400 *MHz*, *CDCl*₃)) for (S, S)-camphanate: δ 8.30 (d, 1 H, *J* = 1.8 Hz, Ph-H), 7.94 (dd, 1 H, *J* = 1.8 and 8.3 Hz, Ph-H), 7.35 (d, 1 H, *J* = 8.3 Hz, Ph-H), 6.23 (d, 1 H, *J* = 6.1 Hz, Ph-CH), 2.34 (m, 1 H), 2.24 (m, 1 H), 1.91 (m, 2 H), 1.67 (m, 1 H), 1.13 (s, 3 H, CH₃), 1.04 (s, 3 H, CH₃), 1.02 (d, 3 H, *J* = 5.2 Hz, CH₃), 1.00 (s, 3 H, CH₃), 0.98 (d, 3 H, *J* = 5.6 Hz, CH₃); ¹³*C NMR* (100 *MHz*, *CDCl*₃) (*S*, *S*)-camphanate: δ 178.28 (C), 167.03 (C), 148.67 (C), 142.27 (CH), 134.90 (C), 133.28 (CH), 129.59 (CH), 91.60 (C), 91.06 (C), 76.21

(CH), 54.91 (C), 54.40 (C), 33.16 (CH), 30.75 (CH₂), 28.83 (CH₂), 19.14 (CH₃), 17.41 (CH₃), 16.97 (CH₃), 16.65 (CH₃), 9.70 (CH₃).

X-ray crystallography data for (*R*)-1-(4-iodo-2-nitrophenyl)-2-methyl-1-propyl (1*S*)camphanate: Crystal data for $1g_{01}a$: C₂₀H₂₄INO₆, *M* = 501.30, colorless plate, 0.30 × 0.20 × 0.20 mm³, monoclinic, space group *P*2₁ (No. 4), *a* = 7.5810(15), *b* = 12.446(3), *c* = 11.722(3) Å, β = 107.613(10)°, *V* = 1054.2(4) Å³, *Z* = 2, *D*_c = 1.579 g/cm³, *F*₀₀₀ = 504, CCD area detector, MoKα radiation, λ = 0.71073 Å, *T* = 110(2)K, 2 θ_{max} = 50.0°, 24239 reflections collected, 3558 unique (R_{int} = 0.0302). Final *GooF* = 1.010, *R1* = 0.0123, *wR2* = 0.0316, *R* indices based on 3520 reflections with I >2sigma(I) (refinement on *F*²), 253 parameters, 3

30 restraints. Lp and absorption corrections applied, $\mu = 1.554 \text{ mm}^{-1}$. Absolute structure parameter = 0.020(9) (Flack, 1983, which is incorporated herein by reference). See FIG. 3.

(R)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol: (R)-1-(4-Iodo-2-nitrophenyl)-2methyl-1-propyl (1S)-camphanate (0.41 g, 0.82 mmol) was dissolved in hot methanol (60

10

mL) and K_2CO_3 (0.22 g, 1.58 mmol) was added. The mixture was heated to reflux for one hour, cooled to room temperature and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to yield (*R*)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol (0.262 g, 100%) as a light yellow oil. ¹H NMR was identical to that of the racemic alcohol.

(S)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol: (S)-1-(4-Iodo-2-nitrophenyl)-2methyl-1-propyl (1S)-camphanate (0.288 g, 0.57 mmol) was dissolved in hot methanol (40 mL) and K₂CO₃ (0.15 g, 1.1 mmol) was added. The mixture was heated to reflux for one hour, cooled to room temperature and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to yield (S)-1-(4-Iodo-2-nitrophenyl)-2-methyl-1-propanol (0.184 g, 100%) as a light yellow oil. ¹H NMR was identical to that of the racemic alcohol.

Synthesis of (*RS*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol and (*R* or *S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol

Scheme 5. Synthesis of (*RS*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol and (*R* or *S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol. (i) PhMgCl, *t*-BuCHO, THF (anhydrous), minus 40°C to room temperature, 72%; (ii) (*IS*)-camphanic acid chloride, pyridine (anh.), room temperature, 81%; (iii) recrystallization from methanol; (iv) K_2CO_3 , MeOH, reflux, 92%.

- *(RS)-1-(2-Nitrophenyl)-2,2-dimethyl-1-propanol:* Under a nitrogen atmosphere, a solution of 1-iodo-2-nitrobenzene (3.0 g, 12 mmol) in anhydrous THF (30 mL) was cooled to minus 40°C, and then phenylmagnesium chloride (2 M in THF, 7.2 mL, 14.5 mmol) was added dropwise at a rate that the temperature would not exceed minus 35°C. After the mixture was stirred for 20 minutes at minus 40°C, trimethylacetaldehyde (1.85 mL, 16.8 mmol) was added dropwise and the mixture was stirred for another 30 minutes at minus 40°C. The mixture was gradually warmed up to room temperature, quenched with saturated ammonium chloride (60 mL), poured into water (60 mL), and extracted with ethyl acetate
- three times (60 mL each). The combined organic phase was dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to yield (*RS*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol (1.82 g, 72%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, 1 H, J = 6.4 Hz, Ph-H), 7.76 (d, 1 H, J = 6.4 Hz, Ph-H), 7.61 (t, 1 H, J = 6.4 Hz, Ph-H), 7.39 (t, 1 H, J = 6.4 Hz, Ph-H), 5.39 (d, 1 H, J = 2.8 Hz, Ph-CH), 2.14 (d, 1 H, J = 3.2 Hz, OH), 0.89 (s, 9 H, C(CH₃)₃).
- (RS)-1-(2-Nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate: Under a nitrogen atmosphere, (1S)-camphanic acid chloride (3.37 g, 15.6 mmol) was added to a solution of (RS)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol (2.71 g, 13 mmol) and DMAP (80 mg, 0.65 mmol) in anhydrous pyridine (50 mL). The mixture was stirred for 24 hours at room temperature. Solvent was removed *in vacuo*, and the residue was dissolved in ethyl acetate (50 mL), washed with 0.5 M HCl (20 mL) twice followed with saturated NaHCO₃ solution 25 (20 mL). The organic phase was dried over Na₂SO₄, concentrated *in vacuo* and purified by
- silica gel column chromatography to yield (*RS*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate (4.11 g, 81%, 1:1 mixture of diastereomers) as a yellow solid. ¹*H NMR (400 MHz, CDCl₃) for diastereomers:* δ 7.91 (m, 1 H, Ph-H), 7.62 (m, 2 H, Ph-H), 7.46 (m, 1 H, Ph-H), 6.66 and 6.62 (2 s, 1 H, Ph-CH), 2.38 (m, 1 H), 2.10 1.9 (m, 2 H), 1.71 (m, 1 H),
- 30 1.13, 1.11, 1.08, 1.04, 1.03, 0.87 (6 s, 9 H, CH₃ × 3), 0.97 (s, 9 H, (CH₃)₃C).

(*R* or S)-1-(2-Nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate: Pure single diastereomer (*R* or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate (0.79 g, 35%) was obtained after repeated crystallization of (*RS*)-1-(2-Nitrophenyl)-2,2-dimethyl-1-

77

propyl (1S)-camphanate (4.57 g) from methanol. The absolute configuration of the single diastereomer camphanate is not determined. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (dd, 1 H, J = 0.8 and 8.0 Hz, Ph-H), 7.61 (m, 2 H, Ph-H), 7.46 (m, 1 H, Ph-H), 6.62 (s, 1 H, Ph-CH), 2.35 (m, 1 H), 1.93 (m, 2 H), 1.69 (m, 1 H), 1.13, 1.08 and 1.02 (3 s, 9 H, CH₃ × 3), 0.96 (s, 9 H, (CH₃)₃C).

5

10

(*R or S*)-1-(2-Nitrophenyl)-2,2-dimethyl-1-propanol: A mixture of single diastereomer (R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate (658 mg, 1.68 mmol) and K₂CO₃ (241 mg, 1.74 mmol) in methanol (23 mL) was heated to reflux for 30 minutes. Water (5 mL) was added and the solution was neutralized to pH 7 with 1 M HCl. Solvent was removed in vacuo and the residue was taken into a mixture of ethyl acetate (20 mL) and water (10 mL). The organic phase was separated, dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by silica gel column chromatography to yield single enantiomer (R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol (325 mg, 92%) as a light yellow oil. ¹H NMR was identical to that of the racemic alcohol. The absolute configuration of the single enantiomer

15 alcohol is not determined. Synthesis of (*RS*)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol and (*R* or *S*)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol

Scheme 6. Synthesis of (*RS*)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol and (*R* or *S*)1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol. (i) PhMgCl, *t*-BuCHO, THF (anhydrous), minus 40°C to room temperature, 81%; (ii) (1*S*)-camphanic acid chloride, DMAP, CH₂Cl₂ (anhydrous), room temperature, 88%; (iii) recrystallization from methanol; (iv) K₂CO₃, MeOH, reflux, 98%.

(RS)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol: Under a nitrogen atmosphere
 a solution of 1,4-diiodo-2-nitrobenzene (3.0 g, 8.0 mmol) in anhydrous THF (20 mL) was cooled to minus 40°C, and then a solution of phenylmagnesium chloride (2 M in THF, 4.8 mL, 9.6 mmol) was added dropwise at a rate that the temperature would not exceed minus 35°C. Upon completion of the addition the mixture was stirred for ten minutes, followed by

addition of trimethylacetaldehyde (1.2 mL, 11.2 mmol), and the mixture was stirred for 30 minutes at minus 40°C. The mixture was gradually warmed up to room temperature, quenched with saturated ammonium chloride (60 mL), poured into water (120 mL), and extracted with ethyl acetate twice (60 mL each). The combined organic phase was washed

- 5 with water (60 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to yield racemic (*RS*)-1-(4-iodo-2-nitrophenyl)-2,2dimethyl-1-propanol (2.17 g, 81%) as a brown oil. ¹*H NMR (400 MHz, CDCl₃):* δ 8.04 (d, 1 H, *J* = 1.6 Hz, Ph-H), 7.88 (dd, 1 H, *J* = 1.6 and 8.4 Hz, Ph-H), 7.51 (d, 1 H, *J* = 8.4 Hz, Ph-H), 5.28 (d, 1 H, *J* = 3.6 Hz, Ph-CH), 2.29 (d, 1 H, *J* = 3.6 Hz, OH), 0.85 (s, 9 H, C(CH₃)₃).
- ¹³C NMR (100 MHz, CDCl₃): δ 149.87 (C), 141.0 (CH), 136.2 (C), 132.3 (CH), 131.63 (CH),
 91.85 (C), 74.33 (CH), 36.81 (C), 25.6 (CH₃).

(*RS*)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanates: Under a nitrogen atmosphere, (1S)-camphanic acid chloride (1.68 g, 7.77 mmol) was added to a solution of (*RS*)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol (2.17 g, 6.47 mmol) and

- 15 DMAP (1.18 g, 9.7 mmol) in anhydrous dichloromethane (50 mL). The mixture was stirred overnight at room temperature and then washed with saturated NaHCO₃ solution (60 mL) and water (60 mL). The organic phase was dried over Na₂SO₄, concentrated *in vacuo* and purified by silica gel column chromatography to yield (*RS*)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-1-propyl (1*S*)-camphanate (2.94 g, 88%, 1:1 mixture of diastereomers) as a white solid. ¹*H*
- 20 *NMR (400 MHz, CDCl₃) for diastereomers:* δ 8.23 (m, 1 H, Ph-H), 7.90 (m, 1 H, Ph-H), 7.31 (m, 1 H, Ph-H), 6.56 and 6.51 (2 s, 1 H, Ph-CH), 2.38 (m, 1 H), 2.07 1.9 (m, 2 H), 1.69 (m, 1 H), 1.13, 1.11, 1.07, 1.04, 1.02, 0.87 (6 s, 9 H, CH₃ × 3), 0.96 (s, 9 H, (CH₃)₃C).

(*R or S*)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate: (RS)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propyl (1S)-camphanate (2.07 g) was dissolved in boiling
methanol (100 mL) and left at room temperature for two days. Crystals formed were filtered to yield pure single diastereomer (*R or S*)-1-(4-iodo-2-nitrophenyl)-2-methyl-1-propyl (1S)-camphanate (0.409 g, 39%). The absolute configuration of the single diastereomer camphanate is not determined. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, 1 H, J = 2.0 Hz, Ph-H), 7.89 (dd, 2 H, J = 2.0 and 8.4 Hz, Ph-H), 7.30 (d, 1 H, J = 8.4 Hz, Ph-H), 6.56 (s, 1 H, Ph-30 CH), 2.42 (m, 1 H), 2.07 (m, 1 H), 1.94 (m, 1 H), 1.73 (m, 1 H), 1.11, 1.04 and 0.87 (3 s, 9

30 CH), 2.42 (m, 1 H), 2.07 (m, 1 H), 1.94 (m, 1 H), 1.73 (m, 1 H), 1.11, 1.04 and 0.87 (3 s H, CH₃ 3), 0.95 (s, 9 H, (CH₃)₃C).

(*R or S*)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol: A mixture of single diastereomer (*R* or *S*)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-1-propyl (1*S*)-camphanate (409

mg, 0.79 mmol) and K_2CO_3 (110 mg, 0.8 mmol) in methanol (15 mL) was heated to reflux for 30 minutes. Water (5 mL) was added and the solution was neutralized to pH 7 with 1 M HCl. Solvent was removed *in vacuo* and the residue was taken into a mixture of ethyl acetate (30 mL) and water (10 mL). The organic phase was separated, dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by silica gel column chromatography to yield single

enantiomer (R or S)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol (260 mg, 98%) as a light yellow oil. ¹H NMR was identical to that of the racemic alcohol. The absolute configuration of the single enantiomer alcohol is not determined.

Synthesis of (±)-1-(2,6-dinitrophenyl)-2-methyl-1-propanol

10

5

Scheme 7. Synthesis of racemic 1-(2,6-dinitrophenyl)-2-methyl-1-propanol. (i) Isoamyl nitrite, diiodomethane, 105°C, 52%; (ii) PhMgBr, anhydrous THF, minus 45°C; then *i*-PrCHO, work up, 30%.

1-Iodo-2,2-dinitrobenzene: To a dispersion of 2,6-dinitroaniline (4.00 g, 0.021 mol) in
diiodomethane (24 mL, 0.297 mol) isoamylnitrite (15 mL, 0.112 mol) was added (Smith *et al.*, 1990, which is incorporated herein by reference). The mixture was stirred at room temperature for one hour, and then heated at 105°C for eight hours. The excess of diiodomethane was removed in high vacuo. The residue was diluted with acetyl acetate (10 mL). Silica (*ca* 30 mL, mesh 230-400 Å) was added; the mixture was concentrated *in vacuo*and purified by column chromatography to yield 1-iodo-2,6-dinitrobenzene (3.21 g, 52%).

¹*H* NMR (400 MHz, CDCl₃): δ 7.84 (d, 2 H, J = 8.0 Hz), 7.67 (t, 1 H, J = 8.0 Hz).

 (\pm) -1-(2,2-dinitrophenyl)-2-methyl-1-propanol: To a solution of 1-iodo-2,6dinitrobenzene (1.55 g, 5.27 mmol) in anhydrous tetrahydrofuran (18 mL) cooled at minus 53°C (dry ice-isopropanol bath) under nitrogen atmosphere, phenylmagnesium bromide (2 M

25 in THF, 3.16 mL, 6.32 mmol) was added at a rate to keep the temperature at or below minus 45°C. Upon completion of the addition the mixture was stirred for five minutes, then isobutyraldehyde (0.957 mL, 10.54 mmol) was added. The mixture was allowed to gradually warm up to room temperature, then quenched with saturated NH₄Cl (5 mL) and poured into

water (50 mL)/dichloromethane (100 mL). The organic layer was separated; aqueous layer was extracted three times with dichloromethane (50 mL each). Combined organic extract was washed with water (20 mL), dried over anhydrous Na_2SO_4 , concentrated under reduced pressure, and purified by silica gel column chromatography to yield racemic *(RS)*-1-(2,6-

dinitrophenyl)-2-methyl-1-propanol (0.375 g, 30%) as a light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, 2 H, J = 8.0 Hz, Ph-H), 7.59 (t, 1 H, J = 8.0 Hz, Ph-H), 4.84 (dd, 1 H, J = 7.6 and 9.2 Hz, Ph-CH), 2.87 (d, 1 H, J = 7.6 Hz, OH), 2.18 (m, 1 H, CHC<u>H</u>(CH₃)₂), 1.12 (d, 3 H, J = 6.4 Hz, CH₃), 0.77 (d, 3 H, J = 6.8 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 150.82 (C), 130.62 (C), 129.31 (CH), 127.30 (CH), 74.52 (CH), 34.19 (CH), 19.84 (CH₃), 19.14 (CH₃).

Synthesis of (±)-1-(4-methoxy-2-nitrophenyl)-2-methyl-1-propanol

4-iodo-3-nitroanisole (±) 1-(4-methoxy-2-nitrophenyl)-2methyl-1-propanol

Scheme 8. Synthesis of *1-(4-methoxy-2-nitrophenyl)-2-methyl-1-propanol*. (i) PhMgCl, anhydrous THF, minus 40°C; then *i*-PrCHO, work up, 67%.

15 (±)-1-(4-Methoxy-2-nitrophenyl)-2-methyl-1-propanol: To a solution of 4-iodo-2nitroanisole (2.79 g, 10.00 mmol) in anhydrous tetrahydrofuran (20 mL) cooled at minus 45°C (dry ice-isopropanol bath) under nitrogen atmosphere, phenylmagnesium chloride (2 M in THF, 6 mL, 6.32 mmol) was added at a rate to keep the temperature at or below minus 40°C. Upon completion of the addition the mixture was stirred for five minutes, then 20 isobutyraldehyde (1.816 mL, 20.00 mmol) was added. The mixture was allowed to gradually warm up to room temperature, then quenched with saturated NH_4Cl (5 mL) and poured into water (30 mL)/dichloromethane (100 mL). The organic layer was separated; aqueous layer was extracted three times with dichloromethane (50 mL each). Combined organic extract was dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by 25 silica gel column chromatography to yield racemic (RS)-1-(4-methoxy-2-nitrophenyl)-2methyl-1-propanol (1.502 g, 30%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (AB d, 1 H, J = 8.8 Hz, Ph-H), 7.34 (d, 1 H, J = 2.6 Hz, Ph-H), 7.15 (dd, 1 H, J = 2.6 and 8.8 Hz, Ph-H), 4.91 (m, 1 H, Ph-CH), 3.86 (s, 3 H, MeO), 2.45 (br s, 1 H, OH), 2.00 (m, 1 H,

CHC<u>H</u>(CH₃)₂), 0.97 (d, 3 H, *J* = 6.7 Hz, CH₃), 0.86 (d, 3 H, *J* = 6.9 Hz, CH₃); ^{*I*3}*C NMR* (100 *MHz*, *CDCl*₃): δ 158.76 (C), 149.07 (C), 130.79 (C), 129.88 (CH), 119.62 (CH), 108.66 (CH), 73.75 (CH), 55.81 (CH₃), 34.27 (CH), 19.59 (CH₃), 17.36 (CH₃).

5

Scheme 9. Synthesis of racemic 1-(5-cyano-2-nitrophenyl)-2-methyl-1-propanol. (i) NaNO₂/H₂SO₄, 0°C, 1 hour, then NaNO₂/CuSO₄, 100°C, 35%; (ii) PhMgCl, anhydrous THF, minus 40°C; then *i*-PrCHO, work up, 30%.

- 3-iodo-4-nitrobenzonitrile: To a suspension of 4-amino-3-iodobenzene (2.44 g, 10.00
 mmol) in aqueous sulfuric acid (2 M, 50 mL) chilled to 0°C (ice-water-NaCl bath) a solution of sodium nitrite (1.656 g, 24.00 mol) in water (6 mL) was added at such rate that the temperature of the reaction mixture did not exceed 0°C. Upon completion of the addition the mixture was stirred for one hour (or until cleared), then it was transferred in portions to a hot solution of sodium nitrite (13.8 g, 200 mmol) and CuSO₄·5H₂O (0.12 g, 0.05 mmol).
- 15 (CAUTION: *vigorous gas evolution*!) Upon completion of transfer, the mixture was stirred at reflux for 30 minutes, then cooled down to room temperature, and extracted three times with dichloromethane (100 mL each). Combined extracts were dried over Na₂SO₄, concentrated under reduced pressure, mixed with silica (*ca* 30 mL, mesh 230-400 Å), and purified by column chromatography to yield 3-iodo-4-nitrobenzonitrile (0.95 g, 35%). ¹H
- 20 NMR (400 MHz, CDCl₃): δ 8.10 (d, 1 H, J = 1.9 Hz), 7.99 (d, 1 H, J = 8.2 Hz), 7.29 (dd, 1 H, 8.2 and 1.9 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 141.76 (CH), 139.93 (CH), 131.66 (CH), 116.65 (C), 114.78 (CN), 113.15 (C), 108.62 (C).

(±)-1-(5-cyano-2-nitrophenyl)-2-methyl-1-propanol: To a solution of 3-iodo-4nitrobenzonitrile (314 mg, 1.14 mmol) in anhydrous tetrahydrofuran (5.5 mL) cooled at
25 minus 45°C (dry ice-isopropanol bath) under nitrogen atmosphere, phenylmagnesium bromide (2 M in THF, 3.16 mL, 6.32 mmol) was added at a rate to keep the temperature at or below minus 40°C. Upon completion of the addition the mixture was stirred for five minutes, then isobutyraldehyde (0.957 mL, 10.54 mmol) was added. The mixture was allowed to gradually warm up to room temperature, then quenched with saturated NH_4Cl (2 mL) and poured into water (50 mL)/dichloromethane (50 mL). The organic layer was separated; aqueous layer was extracted three times with dichloromethane (25 mL each). Combined organic extract was dried over anhydrous Na_2SO_4 , concentrated under reduced pressure, and

- 5 purified by silica gel column chromatography to yield racemic (*RS*)-1-(5-cyano-2-nitrophenyl)-2-methyl-1-propanol (57 mg, 23%) as a light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, 1 H, J = 8.1 Hz, Ph-H), 7.74 (s, 1 H, Ph-H), 7.21 (d, 1 H, J = 8.1 Hz, Ph-H), 4.72 (d, 1 H, J = 3.6 Hz, Ph-CH), 2.33 (br. s, 1 H, OH), 2.03 (m, 1 H, CHC<u>H</u>(CH₃)₂), 1.04 (d, 3 H, J = 6.8 Hz, CH₃), 0.89 (d, 3 H, J = 6.6 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ
- 10 147.78 (C), 140.25 (CH), 131.40 (CH), 131.24 (CH), 118.36 (C), 112.27 (CN), 103.82 (C), 80.80 (CH), 33.56 (CH), 19.70 (CH₃), 15.62 (CH₃).

$\begin{array}{l} Example \ 3-Synthesis \ of \ Deoxyuridine \ and \ Deoxycytidine \ Analogs \ with \ \alpha-Isopropyl \\ Groups \end{array}$

Synthesis 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine-

15 5'-triphosphate

Scheme 10. Synthesis of 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'- deoxyuridine-5'-triphosphate. (i) (S)-1-(2-nitrophenyl)-2-methyl-propanol, neat, 108–112°C,

4%; (ii) POCl₃, proton sponge, (MeO)₃PO, 0° C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

5-[(S)-1-(2-Nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (dU.x1):
Compound dU.x0 (250 mg, 0.385 mmol) and (S)-1-(2-nitrophenyl)-2-methyl-propanol (300 mg, 1.54 mmol) were heated neat at 105–110°C for 30 minutes under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine dU.x1 (6 mg, 4%). (3' or 5')-O-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (39 mg, 18%) and 3',5'-

- O-bis-(*tert*-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (36 mg, 14%) were also obtained from the reaction. ¹H NMR (100 MHz, CD₃OD) for dU.x1: δ 7.96 (s, 1 H, H-6), 7.88 (d, 1 H, J = 8.3 Hz, Ph-H), 7.74 (dd, 1 H, J = 1.5 and 7.6Hz, Ph-H), 7.68 (m, 1 H, Ph-H), 7.49 (m, 1 H, Ph-H), 6.25 (dd, 1 H, J = 6.4 and 7.8 Hz, H-1'), 4.77 (d, 1 H, J = 6.0 Hz, Ph-CH), 4.39 (m, 1 H, H-3'), 4.17 (AB d, 1 H, J =
- 15 12.3 Hz, 5-CH₂a), 4.07 (AB d, 1 H, J = 12.3 Hz, 5-CH₂b), 3.92 (m, 1 H, H-4'), 3.77 (AB dd, 1 H, J = 3.4 and 12.1 Hz, H-5'a), 3.71 (AB dd, 1 H, J = 3.8 and 12.1 Hz, H-5'b), 2.24 (m, 2 H, H-2'), 1.95 (m, 1 H, CH), 0.94 (d, 3 H, J = 6.7 Hz, CH₃), 0.85 (d, 3 H, J = 6.9 Hz, CH₃).

5-[(S)-1-(2-Nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine-5'-triphosphate (WW3p063): POCl₃ (4 μL, 0.045 mmol) was added to a solution of compound **dU.x1** (14 mg,

- 20 0.03 mmol) and proton sponge (13 mg, 0.06 mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for one hour. Additional POCl₃ (4 μ L, 0.045 mmol) was added and the mixture was stirred for another three hours. A solution of tri-*n*-butylammonium pyrophosphate (72 mg, 0.15 mmol) and tri-*n*-butylamine (30 μ L) in anhydrous DMF (0.3 mL) was added. After five minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 5 mL) was
- 25 added. The reaction was stirred at room temperature for one hour and then lyophilized to dryness. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography on a Q Sepharose FF column (2.5×20 cm) with a linear gradient of NH₄HCO₃ (50 mM to 500 mM in 240 minutes) at a flow rate of 4.5 mL/min. The fractions containing triphosphate were combined and lyophilized to give 5-[(*S*)-1-(2-nitrophenyl)-2-
- 30 methyl-propyloxy]methyl-2'-deoxyuridine-5'-triphosphate WW3p063 (10 mg, 46%) as a white fluffy solid. ¹H NMR (400 MHz, D₂O): δ 7.88 (dd, 1 H, J = 1.2 and 6.4 Hz, Ph-H), 7.66 (m, 1 H, Ph-H), 7.58 (dd, 1 H, J = 1.2 and 6.4 Hz, Ph-H), 7.56 (s, 1 H, H-6), 7.46 (dt, 1 H, J = 1.2 and 6.4 Hz, Ph-H), 6.09 (t, 1 H, J = 5.6 Hz, H-1'), 4.46 (m, 1 H, H-3'), 4.39 (AB d, 1 H, H, H)

J = 10 Hz, 5-CH₂a), 4.23 (AB d, 1 H, J = 10 Hz, 5-CH₂b), 4.20 – 4.12 (m, 3 H, H-4' and H-5'), 2.29 (m, 1 H, H-2'a), 2.2 (m, 1 H, H-2'b), 1.94 (m, 1 H, CH), 0.97 (d, 3 H, J = 5.6 Hz, CH₃), 0.74 (d, 3 H, J = 5.6 Hz, CH₃). ³¹*P NMR* (162 *MHz*, *D*₂*O*): δ -5.06 (d, J = 16.2 Hz), -10.55 (d, J = 16.2 Hz), -20.9 (t, J = 16.2 Hz).

Synthesis 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxycytidine-5'-triphosphate

Scheme 11. Synthesis of 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'deoxycytidine-5'-triphosphate. (i) (S)-1-(2-nitrophenyl)-2-methyl-propanol, neat, $108-112^{\circ}$ C, 14%; (ii) 2,4,6-triisopropylbenzenesulfonyl chloride, DAMP, Et₃N, CH₂Cl₂ (anhydrous), room temperature, 42%; (iii) NH₃ (0.5 M in 1,4-dioxane), 85–90°C, 61%; (iv) *n*-Bu₄NF,

5 THF, room temperature, 96%; (v) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-

propyloxy]methyl-2'-deoxyuridine (dU.x2): Compound dU.x0 (250 mg, 0.385 mmol) and (S)-1-(2-nitrophenyl)-2-methyl-propanol (300 mg, 1.54 mmol) were heated neat at 105-110°C for 10 30 minutes under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to 3',5'-O-bis-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methylyield propyloxy]methyl-2'-deoxyuridine dU.x2 (36 mg, 14%). (3' or 5')-O-(tertbutyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (39)

- mg, 18%) and 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (6 mg, 4%) were also obtained from the reaction. ¹H NMR (400 MHz, CDCl₃) for dU.x2: δ 8.76 (s, 1 H, NH), 7.84 (dd, 1 H, J = 1.1 and 8.1 Hz, Ph-H), 7.73 (dd, 1 H, J = 1.3 and 7.9 Hz, Ph-H), 7.66 (m, 1 H, Ph-H), 7.59 (s, 1 H, H-6), 7.42 (m, 1 H, Ph-H), 6.29 (dd, 1 H, J = 5.9 and 7.8 Hz, H-1'), 4.78 (d, 1 H, J = 6.2 Hz, Ph-CH), 4.42 (m, 1 H, H-3'), 4.18 (AB d, 1 H, J = 12.0
- Hz, 5-CH₂a), 4.04 (AB d, 1 H, J = 12.0 Hz, 5-CH₂b), 3.94 (m, 1 H, H-4'), 3.77 (m, 2 H, H-5'),
 2.30 (m, 1 H, H-2'a), 2.05 (m, 1 H, H-2'b), 1.96 (m, 1 H, CH), 0.92 (d, 3 H, J = 6.7 Hz, CH₃),
 0.90 (s, 9 H, (CH₃)₃CSi), 0.89 (s, 9 H, (CH₃)₃CSi), 0.84 (d, 3 H, J = 6.9 Hz, CH₃), 0.10 (s, 3 H, CH₃Si), 0.09 (s, 3 H, CH₃Si), 0.08 (s, 3 H, CH₃Si), 0.07 (s, 3 H, CH₃Si); ¹³C NMR (100 MHz, CDCl₃) for dU.x2: δ 162.39 (C), 150.01 (C), 149.47 (C), 138.33 (CH), 136.78 (C),
- 132.88 (CH), 129.24 (CH), 124.08 (CH), 111.48 (C), 87.84 (CH), 85.16 (CH), 81.33 (CH),
 72.35 (CH), 64.50 (CH₂), 63.09 (CH₂), 40.95 (CH₂), 34.91 (CH), 25.94 (C(CH₃)₃), 25.76 (C(CH₃)₃), 19.28 (CH₃), 18.41 (C), 18.02 (C), 17.90 (CH₃), -4.66 (CH₃), -4.82 (CH₃), -5.32 (CH₃), -5.41 (CH₃).

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-

30 propyloxy]methyl-O⁴-(2,4,6-triisopropylbenzenesulfonyl)-2'-deoxyuridine (dU.x3): To a solution of compound dU.x2 (90 mg, 0.136 mmol), DMAP (17 mg, 0.140 mmol), and triethylamine (0.172 mL, 1.224 mmol) in anhydrous dichloromethane (6 mL) 2,4,6-triisopropylbenzenesulfonyl chloride (1.57 g, 5.19 mmol) was added. The mixture was stirred

at room temperature for 17 hours under nitrogen atmosphere, then concentrated in vacuo and purified by column chromatography to afford 3',5'-O-bis-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-4-O-(2,4,6-triisopropylbenzenesulfonyl)-2'-deoxyuridine **dU.x3** (54 mg, 42%). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1 H, H-6), 7.86

5 (m, 1 H, Ph-H), 7.71 (m, 1 H, Ph-H), 7.46 (m, 1 H, Ph-H), 7.16 (s, 2 H, Ph-H), 6.09 (t, 1 H, J = 6.4 Hz, H-1'), 4.79 (d, 1 H, J = 6.2 Hz, Ph-CH), 4.34 (m, 1 H, H-3'), 4.12 (m, 4 H), 3.97 (m, 1 H, H-4'), 3.80 (AB dd, 1 H, J = 3.4 and 11.2 Hz, H-5'a), 3.80 (AB dd, 1 H, J = 3.6 and 11.2 Hz, H-5'b), 2.89 (m, 1 H, CH), 2.51 (m, 1 H, H-2'a), 1.96 (m, 2 H), 1.29 and 1.21 (d, 12 H, J = 6.7 Hz, CH₃ × 4), 1.25 (d, 6 H, J = 7.0 Hz, CH₃ × 2), 0.99 (d, 3 H, J = 6.7 Hz, CH₃), 0.87 (2
s, 18 H, (CH₃)₃CSi), 0.84 (d, 3 H, J = 6.9 Hz, CH₃), 0.07 (s, 6 H, (CH₃)₂Si), 0.06 (s, 6 H, J = 7.0 Hz, CH₃)

 $(CH_3)_2Si).$

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-

propoxy]methyl-2'-deoxcytidine (dC.x4): To a solution of compound dU.x3 (47 mg, 0.051 mmol) in anhydrous 1,4-dioxane (3 mL) a solution of ammonia (3 mL, 0.5 M in dioxane, 1.50 mmol) was added. The mixture was transferred into a sealed tube and heated at 85–90°C for 1.5 hours. The mixture was cooled down to room temperature, concentrated *in vacuo* and purified by silica gel column chromatography to yield 3',5'-O-bis-(tert-butyldimethylsilyl)-5-[(S)-1-(2-nitrophenyl)-2-methyl-propoxy]methyl-2'-deoxcytidine dC.x4 (20 mg, 61%) as a waxy solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, 1 H, J = 8.1 Hz, Ph-H), 7.66 (m, 2 H, Ph-H)

- H), 7.51 (s, 1 H, H-6), 7.45 (m, 1 H, Ph-H), 6.64 and 5.81 (2 br. s, 2 H, NH₂), 6.28 (t, 1 H, J = 6.5 Hz, H-1'), 4.70 (d, 1 H, J = 6.8 Hz, Ph-CH), 4.32 (m, 1 H, H-3'), 4.20 (AB d, 1 H, J = 12.6 Hz, 5-CH₂a), 4.07 (AB d, 1 H, J = 12.6 Hz, 5-CH₂b), 3.89 (m, 1 H, H-4'), 3.77 (AB dd, 1 H, J = 3.5 and 11.2Hz, H-5'a), 3.69 (AB dd, 1 H, J = 3.4 and 11.2 Hz, H-5'b), 2.42 (m, 1 H, H-2'a), 1.99 (m, 2 H, H-2'b and CH), 0.98 (d, 3 H, J = 6.6 Hz, CH₃), 0.88 (s, 9 H, (CH₃)₃CSi),
 0.80 (s, 9 H, (CH₃)₃CSi), 0.78 (d, 3 H, J = 7.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si), 0.06 (s, 3 H, J = 12.0 Hz, CH₃), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃
 - CH₃Si), -0.01 (s, 3 H, CH₃Si), 0.04 (s, 3 H, CH₃Si).

5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxcytidine (dC.x5): To a solution of compound dC.x4 (16 mg, 0.024 mmol) in THF (1 mL) a solution of tetra-n-butylammonium fluoride trihydrate (31 mg, 0.096 mmol) in THF (2 mL) was added. The mixture was stirred at room temperature for 30 minutes, concentrated *in vacuo* and purified by silica gel column chromatography to give 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxycytidine dC.x5 (10 mg, 96%) as a waxy solid. ¹H NMR (400 MHz, DMSO-d₆) δ 7.95 (m, 1 H, Ph-H), 7.76 (m, 1 H, Ph-H), 7.64 (m, 1 H, Ph-H), 7.63 (s, 1 H, H-H)

6), 7.56 (d, 1 H, *J* = 8.3 Hz, Ph-H), 7.39 and 6.66 (2 br. s, 2 H, D₂O exchangeable, NH₂), 6.13 (m, 1 H, H-1'), 5.20 (d, 1 H, *J* = 4.1 Hz, D₂O exchangeable, 3'-OH), 4.85 (t, 1 H, *J* = 5.4 Hz, D₂O exchangeable, 5'-OH), 4.67 (d, 1 H, *J* = 6.0 Hz, Ph-CH), 4.17 (m, 1 H, H-3'), 4.10 (AB d, 1 H, *J* = 12.2 Hz, 5-CH₂a), 3.99 (AB d, 1 H, *J* = 12.2 Hz, 5-CH₂b), 3.74 (m, 1 H, H-4'),

- 5 3.49 (m, 2 H, H-5'), 2.08 (m, 1 H, H-2'a), 1.91 (m, 2 H, H-2'b and CH), 0.88 (d, 3 H, J = 6.7 Hz, CH₃), 0.77 (d, 3 H, J = 6.9 Hz, CH₃); ¹³C NMR (100 MHz, CD₃OD): δ 166.57 (C), 158.14 (C), 151.46 (C), 142.74 (CH), 137.30 (C), 134.29 (CH), 130.28 (CH), 129.91 (CH), 125.32 (CH), 104.64 (C), 89.00 (CH), 87.57 (CH), 81.04 (CH), 72.13 (CH), 66.42 (CH₂), 62.87 (CH₂), 42.22 (CH₂), 36.30 (CH), 19.64 (CH₃), 18.56 (CH₃).
- 10

5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxcytidine-5'-phosphate (*WW3p065*): POCl₃ (3 µL, 0.034 mmol) was added to a solution of compound**dU.x5**(10 mg, 0.023 mmol) and proton sponge (10 mg, 0.046 mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for two hour. Additional POCl₃ (3 µL, 0.034 mmol) was added and the mixture was stirred for another one hour. A solution of tri-*n*-butylammonium pyrophosphate (55 mg,

- 15 0.115 mmol) and tri-*n*-butylamine (30 μ L) in anhydrous DMF (0.25 mL) was added. After five minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred at room temperature for one hour and then lyophilized to dryness. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography on a Q Sepharose FF column (2.5 × 20 cm) with a linear gradient of
- NH₄HCO₃ (50 mM to 500 mM in 240 minutes) at a flow rate of 4.5 mL/min. The fractions containing triphosphate were combined and lyophilized to give 5-[(S)-1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxycytidine-5'-triphosphate WW3p065 (16 mg, 96%) as a white fluffy solid. ¹H NMR (400 MHz, D₂O): δ 7.85 (dd, 1 H, J = 1.2 and 8.4 Hz, Ph-H), 7.65 (m, 3 H, Ph-H and H6), 7.49 (dt, 1 H, J = 1.6 and 8.4 Hz, Ph-H), 6.05 (t, J = 6.4 Hz, 1 H, H-
- 1'), 4.54 (AB d, 1 H, J = 13.6 Hz, 5-CH₂a), 4.46 (m, 1 H, H-3'), 4.44 (AB d, 1 H, J = 13.6 Hz, 5-CH₂b), 4.18 (m, 3 H, H-4' and H-5'), 2.39 (m, 1 H, H-2'a), 2.2 (m, 1 H, H-2'b), 2.01 (m, 1 H, CH), 1.06 (d, 3 H, J = 6.4 Hz, CH₃), 0.73 (d, 3 H, J = 7.2 Hz, CH₃); ³¹P NMR (162 MHz, D₂O) for diastereomers: δ -5.25 (d, J = 21.0 Hz), -10.79 (d, J = 19.44 Hz), -21.14 (t, J = 21.0 Hz).

Example 4 – Synthesis of Deoxyuridine and Deoxycytidine Analogs with a-tert-Butyl Groups

Synthesis 5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-

deoxyuridine-5'-triphosphate

5

Scheme 12. Synthesis of 5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'deoxyuridine-5'-triphosphate. (i) (R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol, neat, 108-115°C, 4%; (ii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

10

5-[(R or *S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine (dU.x4): Compound dU.x0 (520 mg, 0.802 mmol) and enantio-pure (R or S)-1-(2nitrophenyl)-2,2-dimethyl-1-propanol (580 mg, 2.77 mmol) were heated neat at 108 -115°C for one hour under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel 15 chromatography to yield 5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'deoxyuridine (dU.x4) (16 mg, 4%). (3' or 5')-O-(tert-butylsimethylsilyl)-5-[(R or S)-1-(2nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine (78 mg, 17%), and 3',5'-Obis-(*tert*-butylsimethylsilyl)-5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-

10

2'-deoxyuridine (115 mg, 21%) were also obtained from the reaction. ¹*H* NMR (100 MHz, CD_3OD) for **dU.x4**: δ 7.84 (s, 1 H, H-6), 7.68 (dd, 1 H, J = 1.2 and 8.1 Hz, Ph-H), 7.64 (dd, 1 H, J = 1.4 and 7.9 Hz, Ph-H), 7.53 (m, 1 H, Ph-H), 7.36 (m, 1 H, Ph-H), 6.13 (t, 1 H, J = 7.2 Hz, H-1'), 4.84 (s, 1 H, Ph-CH), 4.26 (m, 1 H, H-3'), 4.13 (AB d, 1 H, J = 12.4 Hz, 5-CH₂a), 3.96 (AB d, 1 H, J = 12.4 Hz, 5-CH₂b), 3.78 (m, 1 H, H-4'), 3.60 (m, 2 H, H-5'), 2.12 (m, 2

H, H-2'), 0.69 (s, 9 H, (CH₃)₃C).

5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine-5'triphosphate (WW3p075): POCl₃ (5 µL, 0.053 mmol) was added to a solution of compound **dU.x4** (16 mg, 0.035 mmol) and proton sponge (15 mg, 0.07 mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for two hours. Additional POCl₃ (3 µL, 0.032 mmol) was added and the mixture was stirred for another one hour. A solution of tri-*n*-butylammonium

pyrophosphate (83 mg, 0.175 mmol) and tri-*n*-butylamine (35 μ L) in anhydrous DMF (0.35 mL) was added. After five minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred at room temperature for one hour and

- 15 then lyophilized to dryness. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography on a Q Sepharose FF column (2.5×20 cm) with a linear gradient of NH₄HCO₃ (50 mM to 500 mM in 240 minutes) at a flow rate of 4.5 mL/min. The fractions containing triphosphate were combined and lyophilized to give 5-[(*R* or *S*)-1-(2nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine-5'-triphosphate **WW3p075**
- 20 (14 mg, 53%) as a white fluffy solid. ¹H NMR (400 MHz, D₂O): δ 7.83 (d, 1 H, J = 8.8 Hz, Ph-H), 7.63 (m, 3 H, Ph-H and H-6), 7.47 (m, 1 H, Ph-H), 6.08 (t, 1 H, J = 6.8 Hz, H-1'), 4.46 (m, 1 H, H-3'), 4.41 (AB d, 1 H, J = 8.4 Hz, 5-CH₂a), 4.32 (AB d, 1 H, J = 8.8 Hz, 5-CH₂b), 4.20 4.11 (m, 3 H, H-4' and H-5'), 2.24 (m, 2 H, H-2'), 0.79 (s, 9 H, (CH₃)₃C); ³¹P NMR (162 MHz, D₂O): δ -5.11(d, J = 19.4 Hz), -10.55 (d, J = 19.4 Hz), -20.9 (t, J = 19.4 Hz).

91

Synthesis 5-[(*R* or *S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'deoxycytidine-5'-triphosphate

Scheme 13. Synthesis of 5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-propyloxy]methyl-2'-deoxycytidine-5'-triphosphate. (i) (S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol, neat, 108-115°C, 21%; (ii) 2,4,6-triisopropylbenzenesulfonyl chloride (TPSCl), DMAP, Et₃N, CH₂Cl₂ (anhydrous), room temperature, 31%; (iii) NH₃ (0.5 M in 1,4-dioxane), 85–90°C, 61%; (iv) *n*-

Bu₄NF, THF, room temperature, 96%; (v) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

3',5'-O-Bis-(tert-butylsimethylsilyl)-5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1propyloxy]methyl-2'-deoxyuridine (dU.x5): Compound dU.x0 (520 mg, 0.802 mmol) and

- 5 enantio-pure (R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propanol (580 mg, 2.77 mmol) were heated neat at 108–115°C for one hour under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 3',5'-O-bis-(tert-butylsimethylsilyl)-5-[(R or S)-1-(2nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine **dU.x5** (115 mg, 21%). (3' or
- 5')-O-(tert-butylsimethylsilyl)-5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine (78 mg, 17%) and 5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxyuridine (16 mg, 4%) was also obtained from the reaction. ¹H NMR (400 MHz, CDCl₃) for dU.x5: δ 8.97 (s, 1 H, NH), 7.76 (d, 2 H, J = 8.0 Hz, Ph-H), 7.60 (m, 2 H, Ph-H and H-6), 7.41 (s, 1 H, Ph-H), 6.29 (dd, 1 H, J = 6.0 and 7.6
- Hz, H-1'), 4.97 (s 1 H, Ph-CH), 4.42 (m, 1 H, H-3'), 4.28 (AB d, 1 H, J = 12.0 Hz, 5-CH₂a),
 4.06 (AB d, 1 H, J = 12.0 Hz, 5-CH₂b), 3.92 (m, 1 H, H-4'), 3.76 (m, 2 H, H-5'), 2.30 (m, 1 H, H-2'a), 2.05 (m, 1 H, H-2'b), 0.95 (s, 9 H, (CH₃)₃CSi), 0.90 (s, 9 H, (CH₃)₃CSi), 0.83 (s, 9 H, (CH₃)₃C), 0.12 (s, 3 H, CH₃Si), 0.09 (s, 3 H, CH₃Si), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si); ¹³C NMR (100 MHz, CDCl₃) for dU.x5: δ 162.52 (C), 150.82 (C), 150.15 (C),
- 138.50 (CH), 134.19 (C), 132.01 (CH), 130.11 (CH), 128.14 (CH), 123.81 (CH), 111.45 (C),
 87.70 (CH), 84.98 (CH), 81.44 (CH), 72.19 (CH), 64.60 (CH₂), 62.95 (CH₂), 40.85 (CH₂),
 36.51 (C), 25.94 ((CH₃)₃C), 25.91 ((CH₃)₃C), 25.78 (C(CH₃)₃), 18.39 (C), 18.00 (C), -4.66 (CH₃), -4.84 (CH₃), -5.35 (CH₃), -5.42 (CH₃).

3',5'-O-Bis-(tert-butylsimethylsilyl)-5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-25 propyloxy]methyl-O⁴-(2,4,6-triisopropylbenzenesulfonyl)-2'-deoxyuridine (dU.x6): To asolution of dU.x5 (110 mg, 0.16 mmol), DMAP (20 mg, 0.17 mmol), and triethylamine (63µL, 0.45 mmol) in anhydrous dichloromethane (3 mL) 2,4,6-triisopropyl benzenesulfonylchloride (61 mg, 0.20 mmol) was added. The mixture was stirred at room temperature for 36hours under a nitrogen atmosphere, then concentrated in vacuo and purified by silica gel

30 column chromatography to give 3',5'-O-bis-(tert-butylsimethylsilyl)-5-[(R or S)-1-(2nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-O⁴-(2,4,6-triisopropylbenzenesulfonyl)-2'deoxyuridine **dU.x6** (47 mg, 31%). ¹H NMR (500 MHz, CDCl₃): δ 8.08 (s, 1 H, H-6), 7.80 (dd, 1 H, J = 1.2 and 8.0 Hz, Ph-H), 7.78 (dd, 1 H, J = 1.6 and 8.0 Hz, Ph-H), 7.67 (m, 1 H,

10

Ph-H), 7.46 (m, 1 H, Ph-H), 7.20 (s, 2 H, Ph-H), 6.09 (t, 1 H, J = 6.4 Hz, H-1'), 4.98 (s, 1 H, Ph-CH), 4.35 (m, 1 H, H-3'), 4.25 (AB d, 1 H, J = 11.6 Hz, 5-CH₂a), 4.11 (AB d, 1 H, J = 11.6 Hz, 5-CH₂b), 3.97 (m, 1 H, H-4'), 3.79 (dd, 1 H, J = 3.6 and 11.6 Hz, H-5'a), 3.74 (dd, 1 H, J = 11.6 and 3.6 Hz, H-5'b), 2.90 (m, 1 H, CH), 2.50 (m, 2 H, H-2'), 1.98 (m, 2 H, CH), 1.31 - 1.22 (m, 18 H, (CH₃)₂CH × 3), 0.88 (2 s, 18 H, (CH₃)₃CSi × 2), 0.87 (s, 9 H, (CH₃)₃C), 0.07 (s, 6 H, (CH₃)₂Si), 0.06 (s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 166.03 (C), 154.39 (C), 153.52 (C), 151.09 (C), 150.94 (C), 144.77 (CH), 133.60 (C), 132.43 (CH), 131.07 (C), 130.12 (CH), 128.24 (CH), 123.05 (CH), 123.81 (CH), 104.64 (C), 88.39 (CH), 87.42 (CH), 82.45 (CH), 71.93 (CH), 64.41 (CH₂), 62.78 (CH₂), 42.09 (CH₂), 36.54 (C), 34.26 (CH), 29.60 (CH), 25.92 ((CH₃)₃C), 25.82 ((CH₃)₃C), 25.74 ((CH₃)₃C), 24.62 (CH₃), 24.34 (CH₃), 23.48 (CH₃), 18.40 (C), 17.99 (C), -4.62 (CH₃), -4.92 (CH₃), -5.37 (CH₃), -5.34 (CH₃).

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1propyloxy]methyl-2'-deoxcytidine (dC.x6): To a solution of compound dU.x6 (47 mg, 0.050

- mmol) in anhydrous 1,4-dioxane (2 mL) a solution of ammonia (2 mL, 0.5 M in dioxane) was 15 added. The mixture was transferred into a sealable tube and was heated at 92°C for 10 hours. The mixture was cooled down to room temperature, concentrated *in vacuo* and purified by silica gel column chromatography to yield 3',5'-O-bis-(tert-butyldimethylsilyl)-5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxcytidine dC.x6 (31 mg, 91%). ¹H
- 20 *NMR* (400 *MHz*, *CDCl*₃) δ 7.67 (m, 3 H, Ph-H), 7.53 (s, 1 H, H-6), 7.45 (m, 1 H, Ph-H), 6.30 (t, 1 H, J = 6.6 Hz, H-1'), 5.72 (br s, 2 H, NH₂), 4.88 (s, 1 H, Ph-CH), 4.32 (m, 1 H, H-3'), 4.28 (AB d, 1 H, J = 12.8 Hz, 5-CH₂a), 4.08 (AB d, 1 H, J = 12.8 Hz, 5-CH₂b), 3.87 (m, 1 H, H-4'), 3.74 (dd, 1 H, J = 3.6 and 14.8 Hz, H-5'a), 3.66 (dd, 1 H, J = 3.6 and 11.3 Hz, H-5'b), 2.41 (m, 1 H, H-2'a), 2.03 (m, 1 H, H-2'b), 0.90 (s, 9 H, (CH₃)₃CSi), 0.87 (s, 9 H, (CH₃)₃CSi),
- 0.83 (s, 9 H, (CH₃)₃C), 0.09 (2 s, 6 H, (CH₃)₂Si), 0.06 (2 s, 6 H, (CH₃)₂Si); ¹³C NMR (100 25 *MHz*, *CDCl*₃): δ 165.16 (C), 155.52 (C), 151.31 (C), 140.63 (CH), 133.31 (C), 132.04 (CH), 129.53 (CH), 128.56 (CH), 123.76 (CH), 101.89 (C), 87.39 (CH), 85.72 (CH), 81.24 (CH), 71.59 (CH), 66.55 (CH₂), 62.68 (CH₂), 41.65 (CH₂), 36.20 (C), 25.92 ((CH₃)₃C), 25.82 (18.23 (C), 17.97 (C), -4.64 $(CH_3)_3C),$ 25.75 $(CH_3)_3C),$ (CH₃), (-4.94 (CH₃), -5.47 (CH₃), -5.53 (CH₃).

30

5-[(R or*S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxcytidine (dC,x7): A solution of tetra-*n*-butylammonium fluoride trihydrate (28 mg, 0.09 mmol) in THF (1 mL) was added to a solution of compound dC.x6 (20 mg, 0.03 mmol) in THF (2 mL).

10

The mixture was stirred at room temperature for 30 minutes, then concentrated *in vacuo* and purified by silica gel column chromatography to yield 5-[(*R* or *S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxcytidine **dC.x7** (11 mg, 82%). ¹*H NMR* (400 *MHz*, *CD*₃*OD*) δ 7.87 (s, 1 H, H-6), 7.82 (dd, 1 H, *J* = 1.2 and 8.4 Hz, Ph-H), 7.76 (dd, 1 H, *J* = 1.6 and 8.0 Hz, Ph-H), 7.68 (m, 1 H, Ph-H), 7.51 (m, 1 H, Ph-H), 6.23 (t, 1 H, *J* = 6.6 Hz, H-1'), 4.94 (s, 1 H, Ph-CH), 4.44 (AB d, 1 H, *J* = 13.2 Hz, 5-CH₂a), 4.34 (m, 1 H, H-3'), 4.11 (AB d, 1 H, *J* = 13.2 Hz, 5-CH₂b), 3.88 (m, 1 H, H-4'), 3.71 (dd, 1 H, *J* = 3.2 and 12.0 Hz, H-5'a), 3.63 (dd, 1 H, *J* = 4.0 and 12.0 Hz, H-5'b), 2.35 (m, 1 H, H-2'a), 2.14 (m, 1 H, H-2'b), 0.80 (s, 9 H, (CH₃) ₃C); ¹³*C NMR* (100 *MHz*, *CD*₃*OD*): δ 166.65 (C), 158.22 (C), 152.66 (C), 143.25 (CH), 134.69 (C), 133.42 (CH), 131.19 (CH), 129.96 (CH), 125.30 (CH), 104.49 (C), 88.94 (CH), 87.46 (CH), 81.44 (CH), 72.20 (CH), 66.33 (CH₂), 62.88 (CH₂), 42.11 (CH₂), 37.34 (C), 26.44 ((CH₃)₃C).

5-[(R or S)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxcytidine-5'triphosphate (WW3p085): POCl₃ (3.5 μL, 0.038 mmol) was added to a solution of compound dU.x7 (11 mg, 0.025 mmol) and proton sponge (10.5 mg, 0.049 mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for two hour. Additional POCl₃ (3.5 μL, 0.038 mmol) was added and the mixture was stirred for another one hour. A solution of tri-*n*butylammonium pyrophosphate (59 mg, 0.125 mmol) and tri-*n*-butylamine (30 μL) in

anhydrous DMF (0.25 mL) was added. After five minutes of stirring, triethylammonium

- 20 bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred at room temperature for one hour and then lyophilized to dryness. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography on a Q Sepharose FF column (2.5 × 20 cm) with a linear gradient of NH₄HCO₃ (50 mM to 500 mM in 240 minutes) at a flow rate of 4.5 mL/min. The fractions containing triphosphate were combined
- and lyophilized to give 5-[(*R* or *S*)-1-(2-nitrophenyl)-2,2-dimethyl-1-propyloxy]methyl-2'-deoxycytidine-5'-triphosphate WW3p085 (12 mg, 65%) as a white fluffy solid. ¹*H NMR (400 MHz, CD₃OD)* δ 7.81 (d, 1 H, *J* = 8.0 Hz, Ph-H), 7.65 (m, 3 H, Ph-H and H-6), 7.45 (t, 1 H, *J* = 8.0 Hz, Ph-H), 6.03 (t, 1 H, *J* = 6.4Hz, H-1'), 4.52 (AB d, 1 H, *J* = 13.6 Hz, 5-CH₂a), 4.46 (d, 1 H, *J* = 13.6 Hz, 5-CH₂b), 4.41 (m, 1 H, H-3'), 4.12 (m, 3 H, H-4' and H-5'), 2.35 (m, 1
- 30 H, H-2'a), 2.17 (m, 1 H, H-2'b), 0.82 (s, 9 H, (CH₃) ₃C); ³¹P NMR (162 MHz, D₂O) for diastereomers: δ -5.15 (d, J = 21.0 Hz), -10.64 (d, J = 19.44 Hz), -21.0 (t, J = 21.0 Hz).

95

Example 5 – Synthesis of Dye-Attached Deoxyuridine and Deoxycytidine Analogs with α-Isopropyl Groups

Synthesis of 6-JOE labeled 5-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2methyl-propyloxy}methyl-2'-deoxyuridine-5'-triphosphate

Scheme 14. Synthesis of 6-JOE labeled $5-\{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy\} methyl-2'-deoxyuridine-5'-triphosphate. (i) (R)-1-(4-iodo-2-nitrophenyl)-2-nitrophenyl)-2-nitrophenyl-2'-deoxyuridine-5'-triphosphate. (i) (R)-1-(4-iodo-2-nitrophenyl)-2-nitrophenyl-2-nitr$

2-methyl-1-propanol, neat, 108-112°C, 9%; (ii) *N*-propargyltrifluoroacetamide, $Pd(PPh_3)_4(0)$, CuI, Et₃N, DMF (anh.), 86%; (iii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃; NH₄OH; (iv) 6-JOE-SE, 0.1 M Na₂CO₃/NaHCO₃ buffer (pH 9.2).

5

5-[(R)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethylpropyloxy]methyl-2'-deoxyuridine

(dU.y1): Compound dU.x0 (775 mg, 1.19 mmol) and enantio-pure (R)-1-(4-iodo-2-nitrophenyl)-2-methyl-1-propanol (1.22 g, 3.80 mmol) were heated neat at 108 -112 °C for 45 minutes under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to

- yield 5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (dU.y1)
 (60 mg, 9%). (3' or 5')-O-(*tert*-butylsimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (90 mg, 11%) and 3',5'-O-bis-(*tert*-butylsimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (194 mg, 21%) were also obtained from the reaction. ¹H NMR (400 MHz, CD₃CD) for dU.y1: δ 8.23 (d, 1 H,
- J = 1.7 Hz, Ph-H), 8.03 (dd, J = 8.4 and 1.7 Hz, 1 H, Ph-H), 8.00 (s, 1 H, H-6), 7.50 (d, 1 H, J = 8.4 Hz, Ph-H), 6.26 (t, 1 H, J = 6.8 Hz, H-1'), 4.69 (d, 1 H, J = 5.8 Hz, PhCH), 4.40 (m, 1 H, H-3'), 4.13 (AB d, J = 11.8 Hz, 1 H, 5-CH₂a), 4.08 (AB d, J = 11.8 Hz, 1 H, 5-CH₂b), 3.93 (m, 1 H, H-4'), 3.79 (dd, J = 12.0 and 3.3 Hz, 1 H, H-5'a), 3.73 (dd, J = 12.0 and 3.6 Hz, 1 H, H-5'b), 2.26 (m, 1 H, H-2'a), 2.19 (m, 1 H, H-2'b), 1.93 (m, 1 H, CH(CH₃)₃), 0.93 (d, J = 6.4
- 20 Hz, 3 H, CH₃), 0.87 (d, J = 6.8 Hz, 3 H, CH₃).

5-{(R)-1-[4-(3-Trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methyl-

propyloxy}methyl-2'-deoxyuridine (dU.y2): A solution of compound dU.y1 (60 mg, 0.11 mmol), *N*-propargyltrifluoroacetylamide (48 mg, 0.32 mmol), tetrakis(triphenylphosphine)-palladium(0) (12 mg, 0.01 mmol), CuI (4 mg, 0.02 mmol), and Et₃N (30 µL, 0.21 mmol) in

- anhydrous DMF (5 mL) was stirred at room temperature for 4.5 hours. Methanol (4 mL) and methylene chloride (4 mL) were added, followed by sodium bicarbonate (49 mg, 0.58 mmol). The mixture was stirred for another hour, then concentrated *in vacuo* and purified by silica gel column chromatography to yield 5-{(*R*)-1-[4-(3-trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxyuridine dU.y2 (54 mg, 86%). ¹H NMR
- 30 (400 MHz, DMSO-d₆): δ 11.33 (s, 1 H, D₂O exchangeable, 3-NH), 10.12 (br t, J = 4.8 Hz, 1 H, D₂O exchangeable, CH₂N<u>H</u>TFA), 7.98 (d, 1 H, J = 1.5 Hz, Ph-H), 7.85 (s, 1 H, H-6), 7.74 (dd, J = 8.2 and 1.5 Hz, 1 H, Ph-H), 7.64 (d, 1 H, J = 8.2 Hz, Ph-H), 6.13 (t, 1 H, J = 6.8 Hz, H-1'), 5.24 (d, J = 4.2 Hz, 1 H, D₂O exchangeable, 3'-OH), 4.96 (t, J = 5.2 Hz, 1 H, D₂O

exchangeable, 5'-OH), 4.61 (d, 1 H, J = 5.5 Hz, PhCH), 4.30 (d, 2 H, J = 4.8 Hz, CH₂NHTFA), 4.22 (m, 1 H, H-3'), 3.97 (s, 2 H, 5-CH₂a and 5-CH₂b), 3.76 (m, 1 H, H-4'), 3.56 (m, 2 H, H-5'a and H-5'b), 2.06 (m, 2 H, H-2'a and H-2'b), 1.88 (m, 1 H, CH(CH₃)₃), 0.83 (d, J = 6.7 Hz, 3 H, CH₃), 0.80 (d, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD):

δ 163. 59 (C), 157.22 (C), 150.67 (C), 149.23 (C), 139.78 (CH), 137.05 (C), 135.21 (CH),
129.48 (CH), 126.63 (CH), 122.76 (C), 110.89 (C), 87.60 (CH), 85.70 (C), 85.14 (CH), 87.96 (CH), 80.27 (C), 70.86 (CH), 64.34 (CH₂), 61.44 (CH₂), 39.96 (CH₂), 34.62 (CH), 29.07 (CH₂), 18.30 (CH₃), 16.44 (CH₃).

5-{(R)-1-[4-(3-Amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-

- 10 2'-deoxyuridine-5'-triphosphate (dU.y3): POCl₃ (6 μL, 0.06 mmol) was added to a solution of compound dU.y2 (18 mg, 0.03 mmol) and proton sponge (13 mg, 0.06 mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for two hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (73 mg, 0.15 mmol) and tri-*n*-butylamine (30 μL) in anhydrous DMF (0.3 mL) was added. After five minutes of stirring, triethylammonium
- bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred for one hour at room temperature and then lyophilized to dryness. The residue was dissolved in water (5 mL), filtered, and part of the solution was purified with reverse-phase HPLC using a Perkin Elmer OD-300 C₁₈ column (4.6 × 250 mm) to yield 5-{(*R*)-1-[4-(3-trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxy-uridine-5'-trihosphate.
- 20 Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water (pH 7.0); B, 100 mM TEAA in water/CH₃CN (30:70). The purified triphosphate was then treated with concentrated ammonium hydroxide (27%) at room temperature for two hours to yield 5-{(*R*)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxyuridine-5'-triphosphate **dU.v3**. ¹*H NMR (400 MHz, D₂O)*: δ 8.01 (s, 1 H, Ph-H), 7.76 (d, 1 H, *J* = 6.9 Hz,
- Ph-H), 7.62 (m, 2 H, H-6 and Ph-H), 6.17 (t, 1 H, J = 6.4 Hz, H-1'), 4.55 (m, 1 H, H-3'), 4. 39 and 4.29 (2 d, 2 H, J = 6.4 Hz, CH₂), 4.17 (m, 3 H, H-4' and H-5'), 3.74 (s, 2 H, CH₂), 2.28 (m, 2 H, H-2'), 2.00 (m, 1 H, CH), 0.79 (m, 3 H, CH₃); ³¹P NMR (162 MHz, D₂O): δ -5.40 (d, J = 19.4 Hz), -10.75 (d, J = 19.4 Hz), -21.23 (t, J = 19.4 Hz).

6-JOE labeled 5-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl30 propyloxy}methyl-2'-deoxyuridine-5'-triphosphate (WW3p024): A solution of 6-JOE-SE (0.625 mg, 1 µmol) in anhydrous DMSO (25 µL) was added to a solution of triphosphate dU.y3 (0.31 µmol) in Na₂CO₃/NaHCO₃ buffer (0.1 M, pH 9.2; 180 µL) and incubated at room temperature for one hour. The reaction was purified by reverse-phase HPLC using a

Perkin Elmer OD-300 C_{18} column (4.6 × 250 mm) to yield the 6-JOE labeled triphosphate **WW3p024**. Mobile phase: A, 100 mM TEAA in water (pH 7.0); B, 100 mM TEAA in water/CH₃CN (30:70). **WW3p024** was characterized by its incorporation by DNA polymerase and photo deprotection.

5

Synthesis of Cy5 labeled 5-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2methyl-propyloxy}methyl-2'-deoxycytidine-5'-triphosphate

Scheme 15. Synthesis of Cy5 labeled $5-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxycytidine-5'-triphosphate (i) (R)-1-(4-iodo-2-nitrophenyl)-$

2-methyl-1-propanol, neat, 108–112°C, 21%; (ii) TPSCl, DMAP, Et₃N, CH₂Cl₂ (anhydrous), room temperature; (iii) NH₃, 1,4-dioxane, 92–94°C, 76% for two steps; (iv) *n*-Bu₄NF, THF, room temperature, 80%; (v) *N*-propargyltrifluoroacetamide, Pd(PPh₃)₄ (0), CuI, Et₃N, DMF(anhydrous), 99%; (vi) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃; NH₄OH;

Scheme 16. (vii) Cy5 mono NHS, 0.1 M Na₂CO₃/NaHCO₃ buffer, pH 9.2.

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-

- propyloxy]methyl-2'-deoxyuridine (dU.y4): Compound dU.x0 (775 mg, 1.19 mmol) and
 enantio-pure (R)-1-(4-iodo-2-nitrophenyl)-2-methyl-1-propanol (1.22 g, 3.80 mmol) were heated neat at 108–112°C for 45 minutes under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 3',5'-O-bis-(*tert*-butyldimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine dU.y4 (194 mg, 21%).
 (3' or 5')-O-(*tert*-butyldimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (90 mg, 11%) and 5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxyuridine (60 mg, 9%) were also obtained from the reaction. ¹H NMR (400 MHz, CDCl₃) for dU.y4: δ 8.43 (s, 1 H, 3-NH), 8.18 (d, 1 H, J = 1.6 Hz, Ph-H), 7.96 (dd, J = 8.3 and 1.6 Hz, 1 H, Ph-H), 7.65 (s, 1 H, H-6), 7.47 (d, 1 H, J = 8.3 Hz, Ph-H),
- 6.29 (dd, 1 H, J = 7.8 and 5.8 Hz, H-1'), 4.74 (d, 1 H, J = 5.8 Hz, PhCH), 4.39 (m, 1 H, H-3'),
 4.14 (AB d, J = 11.6 Hz, 1 H, 5-CH₂a), 3.98 (AB d, J = 11.6 Hz, 1 H, 5-CH₂b), 3.97 (m, 1 H,
 H-4'), 3.78 (m, 2 H, H-5'a and H-5'b), 2.31 (m, 1 H, H-2'a), 1.99 (m, 1 H, H-2'b), 1.91 (m, 1 H,
 CH(CH₃)₃), 0.92 (d, J = 6.7 Hz, 3 H, CH₃), 0.90 (s, 9 H, (CH₃)₃CSi), 0.98 (s, 9 H,

(CH₃)₃CSi), 0.86 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.09 (s, 3 H, CH₃Si), 0.08 (s, 3 H, CH₃Si), 0.07 (s, 3 H, CH₃Si), 0.04 (s, 3 H, CH₃Si); ^{*13*}*C NMR (100 MHz, CDCl₃) for dU.y4*: δ 162.20 (C), 149.83 (C), 149.69 (C), 141.89 (CH), 138.68 (CH), 136.56 (C), 132.63 (CH), 130.94 (CH), 111.19 (C), 91.84 (C), 88.00 (CH), 85.41 (CH), 80.99 (CH), 72.40 (CH), 64.46 (CH₂), 63.18 (CH₂), 41.22 (CH₂), 34.74 (CH), 25.93 (C(CH₃)₃), 25.75 (C(CH₃)₃), 19.29 (CH₃), 18.40 (C), 18.00 (C), 17.49 (CH₃), -4.64 (CH₃), -4.81 (CH₃), -5.37 (2 CH₃).

3',5-O-Bis-(tert-butyldimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-

propyloxy]methyl-2'-deoxcytidine (dC.y5): To a solution of compound dU.y4 (0.256 g, 0.32 mmol), DMAP (23 mg, 0.21 mmol) and triethylamine (1.138 mL, 8.10 mmol) in anhydrous

- 10 dichloromethane (14 mL), 2,4,6-triisopropyl benzenesulfonyl chloride (1.57 g, 5.19 mmol) was added. The mixture was stirred at room temperature for 16 hours under a nitrogen atmosphere, and then concentrated *in vacuo*. Ammonia (0.5 M in dioxane, 24 mL, 12.0 mmol) was added and the mixture was transferred into a sealed tube, and heated at 92–94°C for four hours. The mixture was concentrated under reduced pressure and purified by silica
- gel column chromatography to yield 3',5-O-bis-(*tert*-butyldimethylsilyl)-5-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxcytidine dC.y5 (192 mg, 76%). ¹H NMR (400 MHz, CDCl₃) & 8.13 (d, 1 H, J = 1.6 Hz, Ph-H), 7.95 (dd, J = 8.3 and 1.6 Hz, 1 H, Ph-H), 7.59 (s, 1 H, H-6), 7.38 (d, 1 H, J = 8.3 Hz, Ph-H), 6.28 (t, 1 H, J = 6.5 Hz, H-1'), 6.02 (br, 2 H, 4-NH₂), 4.63 (d, 1 H, J = 6.6 Hz, PhCH), 4.32 (m, 1 H, H-3'), 4.19 (AB d, J = 12.5
- Hz, 1 H, 5-CH₂a), 4.04 (AB d, J = 12.5 Hz, 1 H, 5-CH₂b), 3.93 (m, 1 H, H-4'), 3.81 (AB dd, J = 11.3 and 3.0 Hz, 1 H, H-5'a), 3.72 (AB dd, J = 11.3 and 2.8 Hz, 1 H, H-5'b), 2.43 (m, 1 H, H-2'a), 1.92 (m, 2 H, H-2'b and CH(CH₃)₃), 0.96 (d, J = 6.6 Hz, 3 H, CH₃), 0.82 (d, J = 6.9 Hz, 3 H, CH₃), 0.89 (s, 9 H, (CH₃)₃CSi), 0.80 (s, 9 H, (CH₃)₃CSi), 0.06 (s, 3 H, CH₃Si), 0.05 (s, 3 H, CH₃Si), -0.02 (s, 3 H, CH₃Si), -0.04 (s, 3 H, CH₃Si); ¹³C NMR (100 MHz, CDCl₃): δ
- 25 165.02 (C), 152.93 (C), 150.09 (C), 141.92 (CH), 140.37 (CH), 135.53 (C), 132.55 (CH),
 130.35 (CH), 101.50 (C), 92.35 (C), 87.76 (CH), 86.26 (CH), 80.33 (CH), 71.98 (CH), 66.92 (CH₂), 62.84 (CH₂), 42.14 (CH₂), 34.75 (CH), 25.89 (C(CH₃)₃), 25.77 (C(CH₃)₃), 19.01 (CH₃), 18.30 (C), 18.15 (CH₃), 18.00 (C), -4.57 (CH₃), -4.87 (CH₃), -5.43 (CH₃), -5.49 (CH₃).

30

5-[(R)-1-(4-Iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-2'-deoxcytidine dC.y6: A solution of tetra-n-butylammonium fluoride trihydrate (112 mg, 0.36 mmol) in THF (2 mL) was added to a solution of compound dC.y5 (192 mg, 0.24 mmol) in THF (8 mL). The mixture was stirred at room temperature for 45 minutes, then concentrated*in vacuo*and

purified by silica gel column chromatography to yield 5-[(*R*)-1-(4-iodo-2-nitrophenyl)-2methyl-propyloxy]methyl-2'-deoxcytidine **dC.y6** (110 mg, 80%). ^{*I*}*H* NMR (400 MHz, DMSO-d₆) δ 8.26 (d, 1 H, J = 1.7 Hz, Ph-H), 8.07 (dd, J = 8.3 and 1.7 Hz, 1 H, Ph-H), 7.70 (s, 1 H, H-6), 7.38 (d, 1 H, J = 8.3 Hz, Ph-H), 7.32 and 6.59 (2 br. s, 2 H, D₂O exchangeable,

- 4-NH₂), 6.11 (dd, 1 H, J = 7.2 and 6.1 Hz, H-1'), 5.19 (d, J = 4.2 Hz, 1 H, D₂O exchangeable, 3'-OH), 4.88 (t, J = 5.4 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.58 (d, 1 H, J = 6.0 Hz, PhCH), 4.19 (m, 1 H, H-3'), 4.07 (AB d, J = 12.2 Hz, 1 H, 5-CH₂a), 4.02 (AB d, J = 12.2 Hz, 1 H, 5-CH₂b), 3.75 (m, 1 H, H-4'), 3.51 (m, 2 H, H-5'a and H-5'b), 2.09 (m, 1 H, H-2'a), 1.90 (m, 2 H, H-2'b and C<u>H</u>(CH₃)₃), 0.87 (d, J = 6.7 Hz, 3 H, CH₃), 0.78 (d, J = 6.8 Hz, 3 H, CH₃); ¹³C
- NMR (100 MHz, CD₃OD): δ 166.48 (C), 158.09 (C), 151.27 (C), 143.22 (CH), 142.77 (CH), 137.32 (C), 133.80 (CH), 132.20 (CH), 104.72 (C), 93.10 (C), 89.08 (CH), 87.73 (CH), 81.82 (CH), 72.05 (CH), 67.22 (CH₂), 62.82 (CH₂), 42.21 (CH₂), 36.20 (CH), 19.62 (CH₃), 18.41 (CH₃).

5-{(R)-1-[4-(3-Trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methyl-

- 15 propyloxy}methyl-2'-deoxcytidine (dC.y7): A solution of compound dC.y6 (110 mg, 0.20 mmol), N-propargyltrifluoroacetylamide (88 mg, 0.59 mmol), tetrakis(triphenylphosphine)-palladium(0) (23 mg, 0.02 mmol), CuI (7 mg, 0.04 mmol), and Et₃N (0.11 mL, 0.78 mmol) in anhydrous DMF (4 mL) was stirred at room temperature for 4.5 hours. Methanol (4 mL) and methylene chloride (4 mL) were added, followed by sodium bicarbonate (90 mg, 1.07 mmol).
- The mixture stirred for another one hour, then concentrated *in vacuo* and purified by silica gel column chromatography to yield $5-\{(R)-1-[4-(3-trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxcytidine$ **dC.y7**(112 mg, 99%). ^{*l*}*H NMR* $(400 MHz, DMSO-d_6): <math>\delta$ 10.12 (br t, 1 H, D₂O exchangeable, CH₂N<u>H</u>TFA), 7.98 (d, 1 H, *J* = 1.6 Hz, Ph-H), 7.76 (dd, *J* = 8.2 and 1.7 Hz, 1 H, Ph-H), 7.73 (s, 1 H, H-6), 7.62 (d, 1 H, *J* =
- 8.2 Hz, Ph-H), 7.33 and 6.60 (2 br. s, 2 H, D₂O exchangeable, 4-NH₂), 6.11 (t, 1 H, J = 6.8 Hz, H-1'), 5.19 (d, J = 4.2 Hz, 1 H, D₂O exchangeable, 3'-OH), 4.89 (t, J = 5.4 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.64 (d, 1 H, J = 5.9 Hz, PhCH), 4.31 (d, 2 H, J = 5.2 Hz, CH₂NHTFA), 4.19 (m, 1 H, H-3'), 4.09 (AB d, J = 12.1 Hz, 1 H, 5-CH₂a), 4.03 (AB d, J = 12.1 Hz, 1 H, 5-CH₂b), 3.75 (m, 1 H, H-4'), 3.52 (m, 2 H, H-5'a and H-5'b), 2.08 (m, 1 H, H-4')
- 2'a), 1.91 (m, 2 H, H-2'b and CH(CH₃)₃), 0.87 (d, J = 6.7 Hz, 3 H, CH₃), 0.79 (d, J = 6.8 Hz, 3 H, CH₃): ¹³C NMR (100 MHz, CD₃OD): δ 164. 83 (C), 157.51 (C), 157.14 (C), 156.45 (C), 149.25 (C), 141.23 (CH), 136.46 (C), 135.39 (CH), 129.39 (C), 126.64 (CH), 122.98 (C), 117.43 (C), 114.58 (C), 87.54 (CH), 86.22 (CH), 86.02 (C), 80.34 (C), 80.27 (CH), 70.53

(CH), 65.75 (CH₂), 61.28 (CH₂), 40.60 (CH₂), 34.73 (CH), 29.16 (CH₂), 18.15 (CH₃), 16.96 (CH₃). HRMS: for $C_{25}H_{29}F_{3}N_{5}O_{8}$ [MH⁺]: clcd 584.1968 found 584.1926

 $5-{(R)-1-[4-(3-Amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'$ deoxcytidine-5'-triphosphate (**dC.v8**): POCl₃ (6 µL, 0.06 mmol) was added to a solution of

- 5 compound **dC.y7** (19 mg, 0.03 mmol) and proton sponge (14 mg, 0.06 mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for two hours. A solution of bis-tri-*n*butylammonium pyrophosphate (76 mg, 0.16 mmol) and tri-*n*-butylamine (32 μL) in anhydrous DMF (0.32 mL) was added. After five minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred for one hour at
- 10 room temperature and then concentrated *in vacuo* at 25°C. The residue was dissolved in water (2 mL), filtered, and purified with reverse-phase HPLC using a Perkin Elmer OD-300 C_{18} column (4.6 × 250 mm) to yield 5-{(*R*)-1-[4-(3-trifluoroacetamido-1-propynyl)-2nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxycytidine-5'-trihosphate. Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water (pH 7.0); B, 100 mM TEAA in
- 15 water/CH₃CN (30:70). The purified triphosphate was then treated with concentrated ammonium hydroxide (27%) at room temperature for two hours to yield 5-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-2'-deoxycytidine-5'-triphosphate dC.y8.

Cy5 labeled $5-\{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyl 20 oxy}methyl-2'-deoxycytidine-5'-triphosphate (WW3p117): A solution of Cy5 mono NHS (1$ mg, 1.26 µmol) in anhydrous DMSO (40 µL) was added to a solution of triphosphate dC.y8(0.31 µmol) in Na₂CO₃/NaHCO₃ buffer (0.1 M, pH 9.2; 100 µL) and left at room temperaturefor one hour. The reaction was purified by reverse-phase HPLC using a Perkin Elmer OD-300 C₁₈ column (4.6 × 250 mm) to yield the Cy5 labeled triphosphate WW3p117. Mobile

25 phase: A, 100 mM TEAA in water (pH 7.0); B, 100 mM TEAA in water/CH₃CN (30:70).

Example 6 – Synthesis of Dye-Attached Deoxyuridine and Deoxycytidine Analogs with α-tert-Butyl Groups

Synthesis of 6-TAMRA labeled 5-{(R or S)-1-[4-(3-amino-1-propynyl)-2-

nitrophenyl]-2,2-dimethyl-propoxy}methyl-2'-deoxycytidine-5'-triphosphate

Scheme 17. Synthesis of 6-TAMRA labeled 5- $\{(R \text{ or } S)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2,2-dimethyl-propoxy<math>\}$ methyl-2'-deoxycytidine-5'-triphosphate. (i) Enantio-pure (*R* or *S*)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-1-propanol, neat, 108-115°C, 28%; (ii) TPSCl, DMAP, CH₂Cl₂ (anhydrous), room temperature, 54%; (iii) NH₃, 1,4-dioxane, 96°C,

TPSCl, DMAP, CH₂Cl₂ (anhydrous), room temperature, 54%; (iii) NH₃, 1,4-dioxane, 96°C, 65%; (iv) *n*-Bu₄NF, THF, room temperature, 73%; (v) *N*-propargyltrifluoroacetamide, Pd(PPh₃)₄(0), CuI, Et₃N, DMF (anhydrous), 85%;

Scheme 18. (vi) POCl₃, proton sponge, (MeO)₃PO, 0° C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃; NH₄OH; (vii) 6-TAMRA-SE, 0.1 M Na₂CO₃/NaHCO₃ buffer, pH 9.2.

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(R S)-1-(4-iodo-2-nitrophenyl)-2,2ordimethyl-propyloxy]methyl-2'-deoxyuridine (dU.z1): Compound dU.x0 (688 mg, 1.06 mmol) and enantio-pure (R or S)-1-(4-iodo-2-nitrophenyl)-2.2-dimethyl-1-propanol (889 mg, 2.65 mmol) were heated neat at 108-115°C for one hour under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl 10 acetate, and purified by silica gel chromatography to yield 3',5'-O-bis-(tertbutyldimethylsilyl)-5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-propyloxy]-methyl-2'deoxyuridine dU.z1 (236 mg, 28%). (3' or 5')-O-(tert-butyldimethylsilyl)-5-[(R or S)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-propyloxy]methyl-2'-deoxyuridine (20 mg, 3%) and 5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-propyloxy]methyl-2'-deoxyuridine (49 mg, 8%)

- were also obtained from the reaction. ¹H NMR (400 MHz, CDCl₃) for dU.z1: δ 8.86 (s, 1 H, 15 3-NH), 8.08 (d, 1 H, J = 1.8 Hz, Ph-H), 7.94 (dd, J = 8.4 and 1.7 Hz, 1 H, Ph-H), 7.68 (s, 1 H, H-6), 7.47 (d, 1 H, J = 8.4 Hz, Ph-H), 6.29 (dd, 1 H, J = 7.8 and 5.8 Hz, H-1'), 4.91 (s, 1 H, PhCH), 4.39 (m, 1 H, H-3'), 4.23 (AB d, J = 11.8 Hz, 1 H, 5-CH₂a), 4.01 (AB d, J = 11.8 Hz, 1 H, 5-CH₂b), 3.98 (m, 1 H, H-4'), 3.78 (m, 2 H, H-5'a and H-5'b), 2.31 (m, 1 H, H-2'a), 1.99
- 20 (m, 1 H, H-2'b), 1.91 (m, 1 H, CH(CH₃)₃), 0.90 (s, 9 H, (CH₃)₃CSi), 0.89 (s, 9 H, (CH₃)₃CSi),

0.82 (s, 9 H, (CH₃)₃CC), 0.09 (2 s, 6 H, (CH₃)₂Si), 0.08 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si); ¹³C NMR (100 MHz, CDCl₃) for **dU.z1**: δ 162.41 (C), 150.98 (C), 150.00 (C), 141.60 (CH), 138.58 (CH), 133.83 (C), 132.26 (CH), 131.89 (CH), 111.16 (C), 92.05 (C), 88.03 (CH), 85.49 (CH), 81.62 (CH), 72.46 (CH), 64.64 (CH₂), 63.22 (CH₂), 41.22 (CH₂), 36.55 (C), 25.92 (C(CH₃)₃), 25.75 (C(CH₃)₃), 25.70 (C(CH₃)₃), 18.38 (C), 18.00 (C), -4.64 (CH₃Si), -4.81 (CH₃Si), -5.39 (2 (CH₃)₂Si).

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-propyloxy]methyl-O⁴-(2,4,6-triisopropylbenzenesulfonyl)-2'-deoxyuridine (dU.z2):2,4,6-Triisopropyl benzenesulfonyl chloride (1.57 g, 5.19 mmol) was added to a solution of

- 10 compound dU.z1 (0.236 g, 0.29 mmol), DMAP (38 mg, 0.32 mmol) and triethylamine (0.465 mL, 3.31 mmol) in anhydrous dichloromethane (10 mL). The mixture was stirred at room temperature for 24 hours under a nitrogen atmosphere, then concentrated in vacuo and purified by silica gel column chromatography to give 3',5'-O-bis-(tert-butyldimethylsilyl)-5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-propyl-oxy]methyl-O⁴-(2,4,6-
- triisopropylbenzenesulfonyl)-2'-deoxyuridine dU.z2 (169 mg, 54%). ¹H NMR (500 MHz, CDCl₃): δ 8.18 (s, 1 H, H-6), 8.10 (d, J = 1.8 Hz, 1 H, Ph-H), 7.98 (dd, J = 8.3 and 1.8 Hz, 1 H, Ph-H), 7.63 (d, J = 8.3 Hz, 1 H, Ph-H), 7.20 (s, 2 H, OSO₂Ph-H), 6.10 (t, J = 6.3 Hz, 1 H, H-1'), 4.91 (s, 1 H, PhC<u>H</u>(t-Bu)O), 4.30 (m, 1 H, H-3'), 4.23 (m 3 H, 5-CH₂a and OSO₂Ph(o-C<u>H</u>(CH₃)₂)₂), 4.01 (m, 2 H, H-4' and 5-CH₂b), 3.85 (AB dd, J = 11.4 and 3.3 Hz, 1 H, H-5'a),
- 3.74 (AB dd, J = 11.4 and 2.8 Hz, 1 H, H-5'b), 2.90 (sep, J = 6.9 Hz, 1 H, OSO₂Ph(p-C<u>H</u>(CH₃)₂)), 2.53 (m, 1 H, H-2'a), 1.94 (m, 1 H, H-2'b), 1.29 (d, J = 6.9 Hz, 6 H, OSO₂Ph(p-C<u>H</u>(CH₃)₂)), 1.26 (d, J = 7.2 Hz, 12 H, OSO₂Ph(o-C<u>H</u>(CH₃)₂)₂), 0.87 (s, 18 H, (CH₃)₃CSi), 0.85 (s, 9 H, (CH₃)₃CC), 0.06 and 0.05 (2 s, 12 H, 2 (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 166.01 (C), 154.43 (C), 153.54 (C), 151.21 (C), 151.08 (C), 145.07 (CH), 141.49 (CH),
- 25 133.16 (C), 132.32 (CH), 131.76 (CH), 131.15 (C), 124.08 (CH), 104.64 (C), 92.25 (C), 88.60 (CH), 87.83 (CH), 82.48 (CH), 71.83 (CH), 64.33 (CH₂), 62.75 (CH₂), 42.31 (CH₂), 36.51 (C), 34.26 (CH), 29.68 (CH), 25.91 (C(CH₃)₃), 25.73 (C(CH₃)₃), 24.51 (C(CH₃)₃), 23.52 (CH₃), 23.45 (CH₃), 18.37 (C), 17.98 (C), -4.57 (CH₃), -4.91 (CH₃), -5.34 (CH₃), -5.39 (CH₃).

30

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2dimethyl-propyloxy]methyl-2'-deoxcytidine (dC.z3): Ammonia (0.5 M in dioxane, 4 mL, 2.0 mmol) was added to compound dU.z2 (169 mg, 0.158 mmol) and the mixture was transferred into a sealed tube, and heated at 96°C for 16 hours. After cooled to room temperature, the

106

mixture was concentrated under reduced pressure and purified by silica gel column chromatography to afford 3',5'-O-bis-(tert-butyldimethylsilyl)-5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2-dimethyl-propyloxy]methyl-2'-deoxcytidine **dC.z3** (83 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, 1 H, J = 1.6 Hz, Ph-H), 7.92 (dd, J = 8.3 and 1.6 Hz, 1 H, Ph-

- 5 H), 7.66 (s, 1 H, H-6), 7.42 (d, 1 H, J = 8.3 Hz, Ph-H), 6.29 (t, 1 H, J = 6.7 Hz, H-1'), 4.81 (s, 1 H, PhCH), 4.32 (m, 1 H, H-3'), 4.28 (AB d, J = 12.9 Hz, 1 H, 5-CH₂a), 4.04 (AB d, J = 12.9 Hz, 1 H, 5-CH₂b), 3.96 (m, 1 H, H-4'), 3.79 (AB dd, J = 11.2 and 3.2 Hz, 1 H, H-5'a), 3.72 (AB dd, J = 11.2 and 2.8 Hz, 1 H, H-5'b), 2.42 (m, 1 H, H-2'a), 1.90 (m, 1 H, H-2'b), 0.88 (s, 9 H, (CH₃)₃CSi), 0.81 (s, 9 H, (CH₃)₃CSi), 0.80 (s, 9 H, (CH₃)₃CC), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si), -0.05 (s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 165.23 (C), 155.63 (C), 151.24 (C), 141.01 (CH), 140.65 (CH), 133.29 (C), 132.26 (CH), 131.35 (CH), 101.59 (C), 92.38 (C), 87.80 (CH), 86.29 (CH), 81.00 (CH), 72.17 (CH), 66.80 (CH₂), 62.92 (CH₂),

15

20

5-[(R or S)-1-(4-Iodo-2-nitrophenyl)-2,2-dimethyl-propyloxy]methyl-2'-deoxycytidine (dC.z4): A solution of tetra-n-butylammonium fluoride trihydrate (81 mg, 0.26 mmol) in THF (2 mL) was added to a solution of compound dC.z3 (82 mg, 0.10 mmol) in THF (3 mL). The mixture was stirred at room temperature for 1 hour, then concentrated *in vacuo* and purified by silica gel column chromatography to give 5-[(R or S)-1-(4-iodo-2-nitrophenyl)-2,2dimethyl-propyloxy]methyl-2'-deoxcytidine dC.z4 (43 mg, 73%). ¹H NMR (400 MHz, DMSO-d₆) δ 8.23 (d, 1 H, J = 1.6 Hz, Ph-H), 8.06 (dd, J = 8.4 and 1.6 Hz, 1 H, Ph-H), 7.73

42.10 (CH₂), 36.27 (C), 25.82 (C(CH₃)₃), 25.80 (C(CH₃)₃), 25.77 (C(CH₃)₃), 18.27 (C), 17.99

(C), -4.58 (CH₃), -4.85 (CH₃), -5.47 (CH₃), -5.53 (CH₃).

- (s, 1 H, H-6), 7.38 (d, 1 H, *J* = 8.4 Hz, Ph-H), 7.37 and 6.64 (2 br. s, 2 H, D₂O exchangeable, 4-NH₂), 6.10 (t, 1 H, *J* = 6.8 Hz, H-1'), 5.20 (d, *J* = 4.0 Hz, 1 H, D₂O exchangeable, 3'-OH), 4.88 (t, *J* = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.76 (s, 1 H, PhCH), 4.19 (m, 1 H, H-3'),
- 4.10 (s, 1 H, 5-CH₂a and 5-CH₂b), 3.75 (m, 1 H, H-4'), 3.51 (m, 2 H, H-5'a and H-5'b), 2.08 (m, 1 H, H-2'a), 1.93 (m, 1 H, H-2'b), 0.76 (s, 9 H, (CH₃)₃C).

5-[(R or S)-1-(4-{3-Trifluoroacetamido-1-propynyl}-2-nitrophenyl)-2,2-dimethylpropyloxy]methyl-2'-deoxcytidine (dC.z5): A mixture of compound dC.z4 (40 mg, 0.069 mmol), N-propargyltrifluoroacetylamide (32 mg, 0.208 mmol), CuI (3 mg, 0.014 mmol),

30 Et₃N (0.01 mL, 0.138 mmol) and tetrakis(triphenylphosphine)palladium(0) (8 mg, 0.007 mmol) in anhydrous DMF (3 mL) was stirred at room temperature for 4.5 hours. Methanol (3 mL) and methylene chloride (3 mL) were added, followed by sodium bicarbonate (32 mg, 0.380 mmol). The mixture was stirred for 15 minutes, then concentrated *in vacuo* and
purified by silica gel column chromatography to yield 5-[(R or S)-1-(4-{3-trifluoroacetamido-1-propynyl}-2-nitrophenyl)-2,2-dimethyl-propyl-oxy]methyl-2'-deoxycytidine **dC.z5** (35 mg, 85%). ^{*I*}*H NMR (400 MHz, DMSO-d₆):* δ 10.13 (br t, 1 H, D₂O exchangeable, N<u>H</u>TFA), 7.94 (d, 1 H, J = 1.6 Hz, Ph-H), 7.75 (m, 2 H, Ph-H and H-6), 7.63 (d, 1 H, J = 8.2 Hz, Ph-H), 7.34

- and 6.66 (2 br. s, 2 H, D₂O exchangeable, 4-NH₂), 6.10 (t, 1 H, J = 6.8 Hz, H-1'), 5.20 (d, J = 4.2 Hz, 1 H, D₂O exchangeable, 3'-OH), 4.89 (t, J = 5.4 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.82 (s, 1 H, PhCH), 4.31 (d, 2 H, J = 5.4 Hz, CH₂NHTFA), 4.19 (m, 1 H, H-3'), 4.14 (AB d, J = 12.5 Hz, 1 H, 5-CH₂a), 4.10 (AB d, J = 12.5 Hz, 1 H, 5-CH₂b), 3.75 (m, 1 H, H-4'), 3.51 (m, 2 H, H-5'a and H-5'b), 2.08 (m, 1 H, H-2'a), 1.93 (m, 1 H, H-2'b), 0.76 (s, 9 H, (CH₃)₃C);
- ¹³C NMR (100 MHz, CD₃OD): δ 164. 83 (C), 157.51 (C), 157.14 (C), 156.45 (C), 150.34 (C), 141.65 (CH), 134.48 (CH), 133.91 (C), 130.26 (CH), 126.50 (CH), 123.01 (C), 87.55 (CH), 86.28 (CH), 86.08 (C), 80.77 (CH), 80.17 (C), 70.623 (CH), 65.74 (CH₂), 61.33 (CH₂), 40.51 (CH₂), 36.19 (C), 29.09 (CH₂), 24.83 (CH₃)₃C).

5-[(R or S)-1-(4-{3-Amino-1-propynyl}-2-nitrophenyl)-2,2-dimethyl-propyl-

- 15 $oxy]methyl-2'-deoxcytidine-5'-triphosphate (dC.z6): POCl_3 (2.5 µL, 0.027 mmol) was added$ to a solution of compound dC.z5 (11 mg, 0.018 mmol) and proton sponge (8 mg, 0.036 $mmol) in trimethylphosphate (0.3 mL) at 0°C and stirred for two hours. Additional POCl_3 (2.5$ µL, 0.027 mmol) was added twice in one hour interval. A solution of bis-tri-*n*butylammonium pyrophosphate (43 mg, 0.09 mmol) and tri-*n*-butylamine (20 µL) in
- 20 anhydrous DMF (0.2 mL) was added. After five minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo* at 25°C. The residue was dissolved in water (5 mL), filtered, and part of the mixture was purified with reverse-phase HPLC using a Perkin Elmer OD-300 C₁₈ column (4.6 × 250 mm) to yield 5-{(*R* or *S*)-1-[4-(3-trifluoroacetamido-1-
- propynyl)-2-nitrophenyl]-2,2-dimethyl-propyloxy}methyl-2'-deoxy-cytidine-5'-trihosphate.
 Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water (pH 7.0); B, 100 mM TEAA in water/CH₃CN (30:70). The purified triphosphate was then treated with concentrated ammonium hydroxide (27%) at room temperature for two hours to yield 5-{(*R* or *S*)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2,2-dimethyl-propyloxy}methyl-2'-
- deoxycytidine-5'-trihosphate dC.z6. ¹H NMR (400 MHz, CD₃OD) δ 8.01(s, 1 H, H-6), 7.84 (d, 1 H, J = 8.0 Hz, Ph-H), 7.67 (d, 1 H, J = 8.0 Hz, Ph-H), 7.51 (m, 1 H, Ph-H), 6.11 (t, 1 H, J = 6.4Hz, H-1'), 4.54 (AB d, 1 H, J = 13.6 Hz, 5-CH₂a), 4.49 (m, 1 H, H-3'), 4.35 (d, 1 H, J = 13.6 Hz, 5-CH₂b), 4.15 3.81 (m, 4 H, H-4', H-5' and CH₂), 2.31 (m, 1 H, H-2'a), 2.12 (m, 1 H, H-2'a), 2.12 (m, 1 H, H-2'a), 2.12 (m, 1 H, H-1)

1 H, H-2'b), 0.81 (s, 9 H, (CH₃) ₃C); ³¹*P NMR* (162 *MHz*, *D*₂*O*) for diastereomers: δ -5.20 (d, *J* = 19.4 Hz), -10.77 (d, *J* = 19.4 Hz), -20.96 (t, *J* = 19.4 Hz).

6-TAMRA labeled 5-[(R or S)-1-(4-{3-amino-1-propynyl}-2-nitrophenyl)-2,2dimethyl-propyloxy]methyl-2'-deoxcytidine-5'-triphosphate (**WW3p091**): A solution of Cy5

- 5 mono NHS (0.65 mg, 1.23 μ mol) in anhydrous DMSO (26 μ L) was added to a solution of triphosphate **dC.z6** (0.386 μ mol) in Na₂CO₃/NaHCO₃ buffer (0.1 M, pH 9.2; 200 μ L) and left at room temperature for one hour. The reaction was purified by reverse-phase HPLC using a Perkin Elmer OD-300 C₁₈ column (4.6 × 250 mm) to yield the 6-TAMRA labeled triphosphate **WW3p091**. Mobile phase: A, 100 mM TEAA in water (pH 7.0); B, 100 mM
- 10 TEAA in water/CH₃CN (30:70).

Example 7 – Synthesis of 7-Deazaguanosine Analogs

Synthesis of 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyguanosine-5'-

triphosphate

5 Scheme 19. Synthesis of 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyguanosine-5'triphosphate. (i) TFAA, pyridine (anh.), room temperature, 91% (ii) NIS, CH₂Cl₂ (anh.), room temperature; (iii) NH₃, MeOH, room temperature, 59%; (iv) 2-deoxy-3,5-*O*-di-(*p*-toluoyl)-α-D-ribofuranosyl chloride, TDA-1, KOH, MeCN (anhydrous), room temperature, 80%; (v) NH₃, MeOH, room temperature, 80%; (vi) TBSCl, imidiazole, DMF (anhydrous), room temperature, 56%; (vii) CO, PdCl₂[PhCN]₂, MeOH/1,4-dioxane, 50°C, 90%; (viii) LiBH₄, MeOH, THF, reflux, 68%; (ix) 2-nitrobenzyl bromide, *n*-Bu₄NBr, CH₂Cl₂/aq. NaOH,

LiBH₄, MeOH, THF, reflux, 68%; (ix) 2-nitrobenzyl bromide, *n*-Bu₄NBr, CH₂Cl₂/aq. N, room temperature, 48%; (x) *n*-Bu₄NF, THF, 95%;

Scheme 20. (xi) DABCO, H₃O, reflux, 30%; (xii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

10

6-Chloro-2-(trifluoroacetyl)amino-7-deazapurine (dG.22): Compound dG.22 was synthesized according to the procedure described by Seela and Peng (2006, which is incorporated herein by reference). To a solution of 2-amino-6-chloro-7-deazapurine (2.00 g, 11.86 mmol) in anhydrous pyridine (15 mL) was added trifluoroacetic anhydride (2.18 mL, 15.54 mmol) over fifteen minutes. The solution was stirred at room temperature for three

15 hours and concentrated *in vacuo* and co-evaporated with water (2 mL) two times. The material was then filtered, washed with cold water, and dried over KOH under vacuum to

yield 6-choloro-2-(trifluoroacetyl)amino-7-deazapurine dG.22 (2.86 g, 91%) as an amber solid.

2-Amino-6-chloro-7-iodo-7-deazapurine (dG.23): Compound dG.23 was synthesized according to the procedure described by Seela and Peng (2006, which is incorporated herein
by reference). To a suspension of compound dG.22 (2.86 g, 10.81 mmol) in anhydrous CH₂Cl₂ (51 mL) was added *N*-iodosuccinimide (2.68 g, 11.89 mmol). The mixture was protected from light while stirring at room temperature for two hours. The reaction was then diluted with 322 mL CH₂Cl₂ and filtered; the precipitate was then dissolved in 7N NH₃ in methanol solution (41 mL) and stirred at room temperature for three hours. The resulting solid was filtered and dried *in vacuo* to yield 2-amino-6-chloro-7-iodo-7-deazapurine dG.23 (1.86g, 59%) as an amber solid.

2-Amino-6-chloro-9-[β-D-3',5'-O-di-(p-toluoyl)-2'-deoxyribofuranosyl]-7-iodo-7-

deazapurine (dG.24): To a suspension of KOH (1.38 g, 22.16 mmol) and tris(3,6-dioxaheptyl)amine (0.26 mL, 0.80 mmol) in anhydrous acetonitrile (76 mL) was added

- 15 compound dG.23 (1.86 g, 6.33 mmol). After stirring the mixture for five minutes, 2-deoxy-3,5-di-O-(p-toluoyl)- α -D-ribofuranosyl chloride (3.20 g, 8.23 mmol) was added over 15 minutes. The reaction was stirred at room temperature for 30 minutes then filtered, and the precipitate was washed with acetonitrile (75 mL). The combined filtrated was concentrated *in vacuo* and purified by silica gel chromatography to yield 2-amino-6-chloro-9-[β -D-3',5'-O-
- di-(*p*-toluoyl)-2'-deoxyribofuranosyl]-7-iodo-7-deazapurine dG.24 (3.29 g, 80%) as a white foam. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (m, 4 H, Ph-H), 7.39 (s, 1 H, H-8), 7.37 (m, 4 H, Ph-H), 6.66 (dd, 1 H, J = 8.0 and 6.0 Hz, H-1'), 5.83 (m, 1 H, H-3'), 5.24 (bs, 2 H, 2-NH₂), 4.85 (dd, 1 H, H-5'a), 4.74 (dd, 1 H, H-5'b), 4.68 (m, 1 H, H-4'), 2.88 (m, 1 H, H-2'a), 2.76 (m, 1 H, H-2'b), 2.54 (s, 3 H, Ph-CH₃), 2.53 (s, 3 H, Ph-CH₃).
- 25 2-Amino-6-chloro-9-(β -D-2'-deoxyribofuranosyl)-7-iodo-7-deazapurine (dG.25): Compound dG.24 (3.29 g, 5.09 mmol) was dissolved in 7N NH₃ in methanol solution (153 mL) and stirred at room temperature for 32 hours. The mixture was concentrated *in vacuo* and purified by silica gel chromatography to yield 2-amino-6-chloro-9-(β -D-2'-deoxyribofuranosyl)-7iodo-7-deazapurine dG.25 (1.66 g, 80% yield) as a white foam. ¹H NMR (400 MHz, DMSO-
- 30 d₆): δ 7.60 (s, 1 H, H-8), 6.87 (bs, 2 H, 2-NH₂), 6.40 (dd, 1 H, J = 8.0 and 6.0 Hz, H-1'), 5.25 (d, 1 H, 3'-OH), 4.93 (t, 1 H, 5'-OH), 4.30 (m, 1 H, H-3'), 3.78 (m, 1 H, H-4'), 3.51 (m, 2 H, H-5'a and H-5'b), 2.40 (m, 1 H, H-2'a), 2.13 (m, 1 H, H-2'b).

9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyldimethylsilyl)amino-6-chloro-7-iodo-7-deazapurine (dG.26): Compound dG.25 (0.29 g, 0.70 mmol) was evaporated from anhydrous pyridine three times (3 mL each) and then dissolved in anhydrous DMF (5 mL). *tert*-Butyldimethylsilyl chloride (1.27 g, 8.43 mmol) and imidazole (1.15 g, 16.86 mmol) were added, and the mixture was stirred at 40°C for 42 hours (additional *tert*-butyldimethylsilyl chloride (0.64 g, 4.22 mmol) and imidazole (0.57 g, 8.43 mmol were added every six hours). The reaction was concentrated *in vacuo* and purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(*tert*-butyldimethylsilyl)amino-6-chloro-7-iodo-7-deazapurine dG.26 (0.30 g, 56% yield) as a white foam. ¹*H NMR (400 MHz, CDCl₃):* δ 7.35 (s, 1 H, H-8), 6.53 (t, 1 H, *J* = 6.0 Hz, H-1'), 4.70 (s, 1 H, 2-NH), 4.47 (m, 1 H, H-3'), 3.97 (m, 1 H, H-4'), 3.78 (m, 2 H, H-5'a and H-5'b), 2.23 (m, 2 H, H-2'a and H-2'b), 0.98 (s, 9 H, (CH₃)₃CSi), 0.95 (s, 9 H, (CH₃)₃CSi), 0.90 (s, 9 H, (CH₃)₃CSi), 0.29 (2 s, 6 H, (CH₃)₂Si), 0.13 (2 s, 6 H, CH₃)₂Si), 0.09 (s, 6 H, CH₃)₂Si).

15

20

10

5

dimethylsilvl)amino-6-chloro-7-methoxycarbonyl-7-deazapurine (dG.27): A solution of dG.26 (105 mg, 0.139 mmol) was dissolved in anhydrous 1.4-dioxane (6 mL). Anhydrous methanol (6 mL) and triethylamine (0.04 mL) were added, and the mixture was stirred for ten minutes under carbon monoxide atmosphere, followed by addition of bis(benzonitrile)dichloropalladium(II). The reaction was stirred at 50°C for 48 hours under CO atmosphere, and then concentrated in vacuo. The residue was purified by silica gel chromatography to yield 9-[\beta-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyldimethylsilyl)amino-6-chloro-7-methoxycarbonyl-7-deazapurine dG.27 (112 mg, 90%) as a viscous oil. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1 H, H-8), 6.57 (dd, 1 H, J = 8.0

9-[B-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyl-

and 6.0 Hz, H-1'), 4.78 (s, 1 H, 2-NH), 4.49 (m, 1 H, H-3'), 4.02 (m, 1 H, H-4'), 3.85 (s, 3 H, CH₃), 3.81 (m, 2 H, H-5'a and H-5'b), 2.25 (m, 2 H, H-2'a and H-2'b), 0.98 (s, 9 H, (CH₃)₃CSi), 0.93 (s, 9 H, (CH₃)₃CSi), 0.92 (s, 9 H, (CH₃)₃CSi), 0.31 (s, 6 H, (CH₃)₂Si), 0.13 (2 s, 6 H, (CH₃)₂Si), 0.11 (s, 6 H, (CH₃)₂Si);

¹³C NMR (100 MHz, CDCl₃): δ 163.04 (C), 160.06 (C), 154.46 (C), 153.04 (C), 129.81 (CH),
107.79 (C), 107.51 (C), 87.86 (CH), 84.05 (CH), 72.73 (CH), 63.21 (CH₂), 51.26 (CH₃),
42.21 (CH₂), 26.48 (CH₃), 25.96 (CH₃), 25.72 (CH₃), 18.42 (C), 18.03 (C), 17.59 (C), -4.73 (CH₃), -4.80 (CH₃), -5.49 (CH₃), -5.57 (CH₃).

 $9-[\beta-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyldimethylsilyl)amino-6-chloro-7-hydroxymethyl-7-deazapurine (dG.28): To a solution of dG.27 (52 mg, 0.076 mmol) in anhydrous THF (3 mL) lithium borohydride (0.007 g, 0.305 mmol) was added, followed by methanol (0.05 mL). The reaction mixture was heated at$

- 5 reflux for one hour. Upon cooling down, the reaction mixture was diluted with dichloromethane (100 mL), quenched with water (10 mL); the organic layer was separated, washed two times with brine (10 mL each), dried over anhydrous sodium sulfate, and concentrated *in vacuo*. The residue was purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribo-furanosyl]-2-(*tert*-
- butyldimethylsilyl)amino-6-chloro-7-hydroxymethyl-7-deazapurine dG.28 (0.12 g, 45%) as a viscous oil. ¹*H NMR (400 MHz, CDCl₃):* δ 7.16 (s, 1 H, H-8), 6.56 (t, 1 H, *J* = 6.4 Hz, H-1'), 4.79 (AB d, *J* = 13.6 Hz, 7-CH₂a), 4.75 (AB d, *J* = 13.6 Hz, 7-CH₂b), 4.70 (s, 1 H, 2-NH), 4.50 (m, 1 H, H-3'), 3.96 (m, 1 H, H-4'), 3.76 (m, 2 H, H-5'a and H-5'b), 2.23 (m, 2 H, H-2'a and H-2'b), 0.98 (s, 9 H, (CH₃)₃CSi), 0.94 (s, 9 H, (CH₃)₃CSi), 0.92 (s, 9 H, (CH₃)₃CSi), 0.30 (s, 3 H, (CH₃)₂Si), 0.29 (s, 3 H, (CH₃)₂Si), 0.11 (s, 6 H, (CH₃)₂Si) , 0.10 (s, 6 H, (CH₃)₂Si); ¹³*C NMR (100 MHz, CDCl₃):* δ 160.07 (C), 154.29 (C), 151.23 (C), 120.92 (CH), 115.65 (C), 108.44 (C), 87.26 (CH), 83.21 (CH), 72.50 (CH), 63.28 (CH₂), 57.15 (CH₂), 42.33 (CH₂), 26.55 (CH₃), 25.97 (CH₃), 25.73 (CH₃), 18.42 (C), 17.93 (C), 17.61 (C), -4.71 (CH₃), -4.75 (CH₃), -5.34 (CH₃), -5.47 (CH₃).
- 9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyl-dimethylsilyl)amino-6-chloro-7-(2-nitrobenzyloxy)methyl-7-deazapurine (dG.29): To a solution of compound dG.28 (150 mg, 0.23 mmol) in CH₂Cl₂ (3 mL) were added *n*-Bu₄NBr (37 mg, 0.12 mmol), 2-nitrobenzyl bromide (148 mg, 0.68 mmol) and 1 M NaOH solution (3 mL). The reaction mixture was stirred vigorously at room temperature for two days in the dark. The organic layer was separated, dried over Na₂SO₄, concentrated *in vacuo*, and purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyldimethylsilyl)amino-6-chloro-7-(2-nitrobenzyloxy)methyl-

7-deazapurine **dG.29** (87 mg, 48%) as a viscous oil. ^{*I*}*H* NMR (400 MHz, CDCl₃): δ 8.06 (dd, 1H, J = 8.0 and 1.2 Hz, Ph-H), 7.87 (d, 1 H, J = 7.2 Hz, Ph-H), 7.61 (dt, 1 H, J = 7.6 and 1.2

Hz, Ph-H), 7.43 (m, 1 H, Ph-H), 7.20 (s, 1 H, H-8), 6.56 (dd, 1 H, J = 7.6 and 6.0 Hz, H-1'),
4.99 (s, 2 H, PhCH₂), 4.83 (AB d, 1 H, J = 11.4 Hz, 7-CH₂a), 4.75 (AB d, 1 H, J = 11.4 Hz,
7-CH₂b), 4.67 (s, 1 H, 2-NH), 4.50 (m, 1 H, H-3'), 3.96 (m, 1 H, H-4'), 3.77 (m, 2 H, H-5'a and H-5'b), 2.25 (m, 2 H, H-2'a and H-2'b), 0.98 (s, 9 H, (CH₃)₃CSi), 0.92 (s, 18 H,

114

(CH₃)₃CSi), 0.30 (s, 3 H, (CH₃)₂Si), 0.29 (s, 3 H, (CH₃)₂Si), 0.09 (m, 12 H, (CH₃)₂Si); ¹³*C NMR (100 MHz, CDCl₃):* δ 159.94 (C), 154.18 (C), 151.78 (C), 147.16 (C), 135.23 (C), 133.6 (CH), 129.0 (CH), 127.75 (CH), 124.49 (CH), 121.85 (CH), 112.17 (C), 108.74 (C), 87.24 (CH), 83.22 (CH), 72.50 (CH), 68.48 (CH₂), 65.04 (CH₂), 63.27 (CH₂), 41.31 (CH₂), 26.52 (CH₃), 25.93 (CH₃), 25.7 (CH₃), 18.36 (C), 17.89 (C), 17.56 (C), -4.75 (CH₃), -4.81 (CH₃), -5.39 (CH₃), -5.52 (CH₃).

2-Amino-6-chloro-9-[β -D-2'-deoxyribofuranosyl]-7-(2-nitrobenzyloxy)methyl-7deazapurine (**dG.30**): A solution of *n*-Bu₄NF (123 mg, 0.39 mmol) in THF (2 mL) was added dropwise to a solution of compound **dG.29** (105 mg, 0.13 mmol) in THF (3 mL) at 0°C. The

- reaction mixture was stirred at 0°C for one hour and then at room temperature for two hours. The reaction was concentrated *in vacuo* and purified by silica gel chromatography to yield 2-amino-6-chloro-9-[β-D-2'-deoxyribofuranosyl]-7-(2-nitrobenzyloxy)methyl-7-deazapurine dG.30 (57 mg, 95%) as a yellow foam. ¹H NMR (400 MHz, DMSO-d6): δ, 8.02 (m, 1 H, Ph-H), 7.74 (m, 2 H, Ph-H), 7.55 (m, 1 H, Ph-H), 7.41 (s, 1 H, H-8), 6.73 (s, 2 H, D₂O exchangeable, NH₂), 6.41 (dd, 1 H, J = 8.4 and 6.0 Hz, H-1'), 5.26 (d, 1 H, D₂O
- exchangeable, 3'-OH), 4.91 (t, 1 H, D₂O exchangeable, 5'-OH), 4.88 (s, 2 H, Ph-CH₂), 4.66 (dd, 2 H, J = 11.6 Hz, 7-CH₂), 4.31 (m, 1 H, H-3'), 3.78 (m, 1 H, H-4'), 3.50 (m, 2 H, H-5'), 2.38 (m, 1 H, H-2'a), 2.15 (m, 1 H, H-2'b).

7-(2-Nitrobenzyloxy)methyl-7-deaza-2'-deoxyguanosine (dG.31): A mixture of dG.29

- 20 (38 mg, 0.084 mmol) and 1,4-diazabicyclo[2.2.2]octane (11 mg, 0.1 mmol) in water (4 mL) was heated to reflux under a nitrogen atmosphere for 4 hours. Water was removed *in vacuo*, and the residue was evaporated from methanol three times (3 mL each), and purified by silica gel chromatography to yield 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyguanosine dG.31 (11 mg, 30%). ¹H NMR (400 MHz, DMSO-d6): δ 10.4 (s, 1 H, D₂O exchangeable, N-H), 8.03
- (dd, 1 H, J = 8.4 and 0.8 Hz, Ph-H), 7.83 (d, 1 H, J = 7.6 Hz, Ph-H), 7.73 (m, 1 H, Ph-H),
 7.55 (m, 1 H, Ph-H), 6.92 (s, 1 H, H-8), 6.28 (m, 1 H, H-1'), 6.26 (bs, 2 H, D₂O exchangeable, NH₂),
 5.21 (d, 1 H, D₂O exchangeable, 3'-OH), 4.89 (t, 1 H, D₂O exchangeable, 5'-OH), 4.88 (s, 2 H, Ph-CH₂), 4.60 (dd, 2 H, 7-CH₂), 4.28 (m, 1 H, H-3'), 3.74 (m, 1 H, H-4'), 3.48 (m, 2 H, H-5'), 2.32 (m, 1 H, H-2'a), 2.08 (m, 1 H, H-2'b).

7-(2-Nitrobenzyloxy)methyl-7-deaza-2'-deoxyguanosine-5'-triphosphate (WW5p107): POCl₃ (5 µL, 0.05 mmol) was added to a solution of compound **dG.31** (11 mg, 0.025 mmol) in trimethylphosphate (0.3 mL), and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (118 mg,

³⁰

0.25 mmol) and tri-*n*-butylamine (50 μ L) in anhydrous DMF (0.5 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 5 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (10 mL), filtered, and purified by anion exchange

- 5 chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to give 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyguanosine-5'-triphosphate WW5p107 which was further purified by reverse phase HPLC on a Perkin
- 10 Elmer Aquapore OD-300 column (7 μ m, 250 × 4.6 mm). Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

Synthesis of 7-[1-(2-nitrophenyl)-2-methyl-propyloxy|methyl-7-deaza-2'-

deoxyguanosine-5'-triphosphate

WW5p143 ds1 & ds2

Scheme 21. Synthesis of 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'deoxyguanosine-5'-triphosphate. (i) PPh₃/CH₂Cl₂ (anhydrous), K₂CO₃, reflux, 46%; (ii) 1-(2-nitrophenyl)-2-methyl-propanol (racemic), neat, vacuum, 124°C; (iii) *n*-Bu₄NF, THF, 7% for two steps; (iv) DABCO, H₂O, reflux, 29%; (v) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

9-[\beta-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-

10 butyldimethylsilyl)amino-6-chloro-7-chloromethyl-7-deazapurine (dG.32): To a solution of dG.27 (1.22 g, 1.84 mmol) in carbon tetrachloride (24 mL, freshly distilled from CaH₂) were added potassium carbonate (1.00 g, 7.36 mmol) and triphenyl phosphine (1.20 g, 4.60 mmol). The reaction was stirred at reflux for 24 hours. The mixture was concentrated in vacuo and purified by silica gel chromatography to yield 9-[β -D-3',5'-O-bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-2-(tert-butyldimethylsilyl)amino-6-chloro-7-chloromethyl-7-

- deazapurine dG.32 (0.54 g, 43%) as foam. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (s, 1 H, H-8),
 6.54 (dd, 1 H, J = 8.0 and 6.0 Hz, H-1'), 4.78 (AB d, J = 11.4 Hz, 7-CH₂a), 4.68 (AB d, J = 11.4 Hz, 7-CH₂b), 4.64 (s, 1 H, 2-NH), 4.47 (m, 1 H, H-3'), 3.94 (m, 1 H, H-4'), 3.73 (m, 2 H, H-5'a and H-5'b), 2.20 (m, 2 H, H-2'a and H-2'b), 0.98 (s, 9 H, (CH₃)₃CSi), 0.91 (s, 9 H, (CH₃)₃CSi), 0.90 (s, 9 H, (CH₃)₃CSi), 0.28 (2 s, 6 H, (CH₃)₂Si), 0.09 (2 s, 6 H, (CH₃)₂Si),
- 10 0.07 (2 s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 159.85 (C), 154.16 (C), 151.82 (C), 121.86 (CH), 112.80 (C), 108.94 (C), 87.23 (CH), 83.17 (CH), 72.58 (CH), 63.35 (CH₂), 41.24 (CH₂), 29.72 (CH₂), 26.57 (CH₃), 25.97 (CH₃), 25.74 (CH₃), 18.38 (C), 17.93 (C), 17.62 (C), -4.71 (CH₃), -4.74 (CH₃), -4.76 (CH₃), -5.37 (CH₃), -5.49 (CH₃).

2-Amino-6-chloro-9-[β-D-2'-deoxyribofuranosyl]-7-[1-(2-nitrophenyl)-2-methyl-

- 15 propyl-oxy]methyl -7-deazapurine (dG.33): Compound dG.32 (0.82 g, 1.21 mmol) and 1-(2-nitrophenyl)-2-methyl-propanol (2.36 g, 12.10 mmol) were dissolved in anhydrous dichloromethane (10 mL). The solvent was removed *in vacuo*, and the residue was heated *in vacuo* at 124°C for 22 hours, then dissolved in ethyl acetate and purified by silica gel chromatography to yield crude 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-
- 20 deoxyribofuranosyl]-2-amino-6-chloro-7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7deazapurine. This intermediate was then dissolved in tetrahydrofuran (14 mL) and treated with tetra-*n*-butylammonium fluoride trihydrate (0.954 g, 3.03 mmol). After 30 minutes, the mixture was evaporated and purified by column chromatography to yield 9-[β-D-2'deoxyribofuranosyl]-2-amino-6-chloro-7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-
- deazapurine dG.33 (41 mg, 7%, 1:1 mixture of diastereomers). ¹H NMR (400 MHz, CD₃OD) for diastereomers: δ 7.82 and 7.79 (2 dd, J = 8.0 and 1.2 Hz, 1 H, Ph-H), 7.72 (dt, J = 8.0 and 1.6 Hz, 1 H, Ph-H), 7.60 (m, 1 H, Ph-H), 7.41 (m, 1 H, Ph-H), 7.17 and 7.14 (2 s, 1 H, H-8), 6.41 (m, 1 H, H-1'), 4.71 (t, 1 H, J = 6.8 Hz Ph-CH), 4.48 (m, 2 H, 7-CH₂ and H-3'), 3.94 (m, 1 H, H-4'), 3.71 (m, 2 H, H-5'), 2.53 (m, 1 H, H-2'a), 2.27 (m, 1 H, H-2'b), 1.92 (oct, J =
- 30 6.8 Hz, 1 H, CHC<u>H(CH₃)₂), 0.96 and 0.94 (2 d, J = 6.8 Hz, 3 H, CH₃), 0.80 and 0.76 (2 d, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD) for diastereomers: δ 160.65 (C), 155.83 and 155.78 (C), 153.54 and 153.45 (C), 151.39 and 151.12 (C), 138.42 and 138.27 (C), 133.89 and 133.77 (CH), 130.66 and 130.56 (CH), 129.44 and 129.36 (CH), 125.66 and
 </u>

125.29 (CH), 124.97 and 124.88 (CH), 113.67 and 113.39 (C), 110.08 (C), 88.81 and 88.78 (CH), 85.52 and 85.27 (CH), 81.60 and 81.87 (CH), 73.08 (CH), 64.71 and 64.18 (CH₂), 63.84 and 63.78 (CH₂), 41.00 and 40.86 (CH₂), 36.31 and 36.28 (CH), 19.77 and 19.73 (CH₃), 18.58 and 18.52 (CH₃).

5

10

7-[1-(2-nitrophenyl)-2-methyl-propyloxy] methyl-7-deaza-2'-deoxyguanosine (dG.34): A mixture of dG.33 (54 mg, 0.11 mmol) and 1,4-diazabicyclo[2.2.2]octane (25 mg, 0.22 mmol) in water (5 mL) was heated to reflux under a nitrogen atmosphere for three hours. Water was removed *in vacuo*, and the residue was evaporated from methanol three times (5 mL each), and purified by silica gel chromatography to yield 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyguanosine dG.34 (15 mg, 29%, 1:1 mixture of diastereomers). ¹H NMR (400 MHz, CD₃OD) for diastereomers: δ 7.82 (m, 1 H, Ph-H), 7.76 (m, 1 H, Ph-H), 7.60 (m, 1 H, Ph-H), 7.42 (m, 1 H, Ph-H), 6.81 and 6.78 (2 s, 1 H, H-8), 6.28 (m, 1 H, H-1'), 4.79 (m, 1 H, Ph-C<u>H</u>), 4.50 (m, 3 H, 7-CH₂ and H-3'), 3.92 (m, 1 H, H-4'), 3.71 (m, 2 H, H-5'), 2.48 (m, 1 H, H-2'a), 2.22 (m, 1 H, H-2'b), 1.92 (m, 1 H, CH), 0.93 (m, 3 H, CH) = 0.04 (m, 2 H, H-5').

15 H, CH₃), 0.83 (m, 3 H, CH₃).

7-[1-(2-Nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyguanosine-5'-

triphosphate (WW5p143 ds1 & ds2): POCl₃ (6 μ L, 0.064 mmol) was added to a solution of compound dG.34 (15 mg, 0.032 mmol) in trimethylphosphate (0.4 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for five hours. A solution of bis-tri-*n*-

- 20 butylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-*n*-butylamine (120 μL) in anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5
- × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to give 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyguanosine-5'-triphosphate WW5p143 as mixture of two diastereomers, which were separated by reverse phase HPLC on a Perkin
- 30 Elmer Aquapore OD-300 column (7 μm, 250 × 4.6 mm) to yield the single diastereomer
 WW5p143_ds1 (fast eluting) and WW5p143_ds2 (slow eluting). Mobile phase: A, 100 mM
 triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

Synthesis of 6-ROX labeled 7-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2methyl-propyloxy}methyl-7-deaza-2'-deoxyguanosine-5'-triphosphate

Scheme 22. Synthesis of 6-ROX labeled 7-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-5 methyl-propyloxy}methyl-7-deaza-2'-deoxyguanosine-5'-triphosphate (i) (R)-1-(4-iodo-2nitrophenyl)-2-methyl-propanol, neat, vacuum, 124°C; (ii) *n*-Bu₄NF, THF, 13% for two steps; (iii) DABCO, H₂O, reflux, four hours, 23%; (iv) N-propargyltrifluoroacetamide, Pd(PPh₃)₄ (0), CuI, Et₃N, anhydrous DMF (anhydrous), four hours, 50%;

WW6p034

Scheme 23. (v) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃; (vi) 6-ROX-SE, 0.1 M Na₂CO₃/NaHCO₃ buffer (pH 9.2), one hour.

 $2-Amino-6-chloro-9-[\beta-D-2'-deoxyribofuranosyl]--7-[(R)-1-(4-iodo-2-nitrophenyl)-2-indexpression and a start of the second st$

5 *methyl-propyloxy]methyl-7-deazapurine (dG.35)*: Compound dG.32 (0.62 g, 0.914 mmol) and (R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propanol (3.52 g, 10.97 mmol) were dissolved in anhydrous dichloromethane (10 mL). The solvent was removed in vacuo, and the residue was heated in vacuo at 122°C for 16 hours, then dissolved in ethyl acetate and purified by

silica gel chromatography to yield crude 2-amino-6-chloro-9-[β -D-3',5'-O-bis-(tertbutyldimethylsilyl)-2'-deoxyribofuranosyl]-7-[(R)-1-(4-iodo-2-nitrophenyl)-2-methylpropyloxy]methyl-7-deazapurine that was dissolved in tetrahydrofuran (15 mL). The intermediate was treated with tetra-n-butylammonium fluoride trihydrate (0.72 g, 2.28 mmol).

- 5 After 30 minutes, the mixture was evaporated and purified by column chromatography to yield 2-amino-6-chloro-9-[β -D-2'-deoxyribofuranosyl]--7-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine **dG.35** (74 mg, 13%). ¹H NMR (400 MHz, CD₃OD): δ 8.09 (d, J = 1.2 Hz, 1 H, Ph-H), 7.86 (dd, J = 8.0 and 1.2 Hz, 1 H, Ph-H), 7.43 (d, J = 8.0 Hz, 1 H, Ph-H), 7.14 (s, 1 H, H-8), 6.38 (dd, J = 8.0 and 6.0 Hz, 1 H, H-1'), 4.65 (d, J = 6.4
- Hz, 1 H, Ph-C<u>H</u>), 4.57 (AB d, J = 12.4, 1H, 7-CH₂a), 4.48 (m, 1 H, H-3'), 4.47 (AB d, J = 12.4, 1H, 7-CH₂b), 3.95 (m, 1 H, H-4'), 3.76 (AB dd, J = 12.0 and 3.6 Hz, 1 H, H-5'a), 3.70 (AB dd, J = 12.0 and 3.6 Hz, 1 H, H-4'), 2.52 (m, 1 H, H-2'a), 2.26 (m, 1 H, H-2'b), 1.89 (oct, J = 6.8 Hz, 1 H, CHC<u>H</u>(CH₃)₂), 0.94 (d, J = 6.8 Hz, 3 H, CH₃), 0.79 (2 d, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD): δ 159.09 (C), 151.52 (C), 151.95 (C), 149.53 (C), 141.20 (CH), 136.91 (C), 131.91 (CH), 130.96 (CH), 124.03 (CH), 111.96 (C), 108.59 (C), 90.84 (C), 87.29 (CH), 83.97 (CH), 79.92 (CH), 71.62 (CH), 63.44 (CH₂), 62.36 (CH₂), 39.31 (CH₂), 34.63 (CH), 18.22 (CH₃), 16.95 (CH₃).

7-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxy-

- guanosine (dG.36): Compound dG.35 (72 mg, 0.12 mmol) and 1,4-diazabicyclo[2.2.2]octane 20 (52 mg, 0.46 mmol) in water (5 mL) was heated to reflux under a nitrogen atmosphere for four hours. Water was removed *in vacuo*, and the residue was evaporated from methanol three times (5 mL each), and purified by silica gel chromatography to yield 7-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyguanosine dG.36 (16 mg, 23%). ${}^{1}H NMR (400 MHz, CD_{3}OD): \delta 8.12$ (d, J = 1.6 Hz, 1 H, Ph-H), 7.86 (dd, J = 8.4 and 1.6 Hz,
- 1 H, Ph-H), 7.50 (d, J = 8.4 Hz, 1 H, Ph-H), 6.80 (s, 1 H, H-8), 6.28 (dd, J = 8.0 and 6.0 Hz, 1 H, H-1'), 4.74 (d, J = 5.6 Hz, 1 H, Ph-CH), 4.55 (AB d, J = 12.0, 1H, 7-CH₂a), 4.48 (AB d, J = 12.0, 1H, 7-CH₂b), 4.44 (m, 1 H, H-3'), 3.92 (m, 1 H, H-4'), 3.75 (AB dd, J = 12.0 and 4.0 Hz, 1 H, H-5'a), 3.69 (AB dd, J = 12.0 and 4.0 Hz, 1 H, H-5'b), 2.46 (m, 1 H, H-2'a), 2.23 (m, 1 H, H-2'b), 1.91 (m, 1 H, CH), 0.93 (d, J = 6.8 Hz, 3 H, CH₃), 0.86 (2 d, J = 6.8 Hz, 3 H, CH₃).

7-{(R)-1-[4-(3-Trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methylpropyloxy}methyl-7-deaza-2'- deoxyguanosine (dG.37): A solution of compound dG.36 (15 mg, 0.025 mmol), N-propargyltrifluoroacetylamide (11 mg, 0.075 mmol),

tetrakis(triphenylphosphine)-palladium(0) (3 mg, 0.0025 mmol), CuI (1 mg, 0.005 mmol), and Et₃N (7 μ L, 0.050 mmol) in anhydrous DMF (1.5 mL) was stirred at room temperature for four hours. The mixture was concentrated *in vacuo* and purified by silica gel column chromatography to yield 7-{(R)-1-[4-(3-trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-

- 5 methyl-propyloxy} methyl-7-deaza-2'- deoxyguanosine dG.37 (15 mg, 99%) as a waxy solid.
 ¹*H NMR (400 MHz, CD₃OD):* 8 7.88 (d, *J* = 1.6 Hz, 1 H, Ph-H), 7.75 (d, *J* = 8.0 Hz, 1 H, Ph-H), 7.45 (dd, *J* = 8.0 and 1.6 Hz, 1 H, Ph-H), 6.83 (s, 1 H, H-8), 6.30 (dd, *J* = 8.4 and 6.4 Hz, 1 H, H-1'), 4.80 (d, *J* = 6.4 Hz, 1 H, Ph-C<u>H</u>), 4.56 (AB d, *J* = 12.0, 1H, 7-CH₂a), 4.50 (AB d, *J* = 12.0, 1H, 7-CH₂b), 4.47 (m, 1 H, H-3'), 4.35 (s, 1 H, CH₂N), 3.94 (m, 1 H, H-4'), 3.77
- (AB dd, J = 12.0 and 4.0 Hz, 1 H, H-5'a), 3.71 (AB dd, J = 12.0 and 4.0 Hz, 1 H, H-5'b),
 2.49 (m, 1 H, H-2'a), 2.23 (m, 1 H, H-2'b), 1.93 (m, 1 H, C<u>H</u>), 0.95 (d, J = 6.4 Hz, 3 H, CH₃),
 0.87 (d, J = 6.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD): δ 161.61 (C), 154.02 (C),
 152.67 (C), 150.49 (C), 142.69 (C), 139.77 (C), 136.37 (CH), 131.37 (CH), 127.90 (CH),
 123.71 (C), 119.34 (CH), 117.19 (C), 116.42 (C), 88.69 (CH), 86.89 (C), 85.58 (CH), 81.93
 (C), 81.42 (CH), 71.19 (CH), 65.42 (CH₂), 63.97 (CH₂), 41.12 (CH₂), 36.16 (CH), 30.63
 - (CH₂), 19.93 (CH₃), 18.00 (CH₃).

 $7-{(R)-1-[4-(3-Amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-7$ deaza-2'- deoxyguanosine-5'-triphosphate (dG.38): POCl₃ (7 µL, 0.076 mmol) was added to a solution of compound dG.37(12 mg, 0.019 mmol) and proton sponge (8 mg, 0.038 mmol)

- in trimethylphosphate (0.3 mL), and the reaction was stirred at 0°C under a nitrogen atmosphere for four hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (237 mg, 0.5 mmol) and tri-*n*-butylamine (100 µL) in anhydrous DMF (1 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*.
- 25 The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to dryness. The residue was dissolved in water (5 mL) and treated
- with concentrated ammonium hydroxide (2 mL, 27%) at room temperature for one hour to give 7-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy} methyl-7-deaza-2'- deoxyguanosine-5'-triphosphate dG.38 which was purified by reverse phase HPLC on a

Perkin Elmer Aquapore OD-300 column (7 μ m, 250 × 4.6 mm). Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

6-ROX labeled 7-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methylpropyloxy}methyl-7-deaza-2'- deoxyguanosine-5'-triphosphate (**WW6p034**): A solution of 6-

- 5 ROX-SE (3.5 mg, 5.54 μmol) in anhydrous DMSO (280 μL) was added to a solution of triphosphate dG.38 (0.85 μmol) in Na₂CO₃/NaHCO₃ buffer (0.1 M, pH 9.2, 800 μL). The mixture was left at room temperature for one hour. The dye labeled triphosphate was first purified by anion exchange HPLC using a Perkin Elmer AX-300 column (7 μm, 250 × 4.6 mm). Mobile phase: A, 25% CH₃CN/75% 0.1 M TEAB; B, 25% CH₃CN/75% 1.5 M TEAB.
- 10 The product was further purified by reverse-phase HPLC using a Perkin Elmer OD-300 column (7 μ m, 4.6 \times 250 mm) to yield 6-ROX labeled triphosphate **WW6p034**. Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water (pH 7.0); B, 100 mM TEAA in water/CH₃CN (30:70).

Example 8 – Synthesis of 7-Deazaadenosine Analogs

```
15
```

Synthesis of 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyadenosine-5'triphosphate

OH

Scheme 24. Synthesis of 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyadenosine-5'triphosphate. (i) NIS, CH₂Cl₂ (anhydrous), room temperature, 52%; (ii) 2-deoxy-3,5-di-O-(p-toluoyl)- α -D-ribofuranosyl chloride, TDA-1, KOH, MeCN (anhydrous), room temperature; (iii) NH₃, MeOH, room temperature, 47%; (iv) TBSCl, imidiazole, DMF (anhydrous), room temperature, 51%; (v) CO, PdCl₂[PhCN]₂, MeOH/1,4-dioxane, 50°C, 99%; (vi) LiBH₄,

- MeOH, THF, 45%; (vii) 2-nitrobenzyl bromide, *n*-Bu₄NBr, CH₂Cl₂/aq. NaOH, , room temperature, 50%; (viii) *n*-Bu₄NF, THF; NH₃, 1,4-dioxane/MeOH, 90-100°C, 91%; (ix) POCl₃, (MeO)₃PO, minus 40°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.
- 10

15

5

6-Chloro-7-iodo-7-deazapurine (dA.23): Compound dA.23 was synthesized according to the procedure described by Ju *et al.* (2006, which is incorporated herein by reference). To a suspension of 6-chloro-7-deazapurine (1.00 g, 6.51 mmol) in anhydrous CH_2Cl_2 (55 mL) was added *N*-iodosuccinimide (1.70 g, 7.56 mmol). The reaction was protected from light while stirring at room temperature for two hours. The reaction was then concentrated down *in vacuo*. The material was re-crystallized from hot methanol to yield 6chloro-7-iodo-7-deazapurine dA.23 (0.94 g, 52%).

10

30

9-(β-D-2 '-Deoxyribofuranosyl)-6-chloro-7-iodo-7-deazapurine (dA.24): Compound dA.24 was synthesized according to the procedure described by Ju *et al.* (2006, which is incorporated herein by reference). To a suspension of KOH (0.52 g, 8.29 mmol) and tris(3,6dioxaheptyl)amine (0.07 mL, 0.22 mmol) in 56 mL anhydrous acetonitrile was added compound dA.23 (0.93 g, 3.32 mmol). The reaction stirred at room temperature for five minutes and then 2-deoxy-3,5-di-*O*-(*p*-toluoyl)-α-D-ribofuranosyl chloride (1.38 g, 3.55 mmol) was added over 15 minutes. The reaction stirred at room temperature for one hour then was filtered and washed with hot acetone (50 mL). The filtrated was concentrated down *in vacuo* and half of the material was dissolved in 7N NH₃ in methanol solution (40 mL) and stirred at room temperature for 16 hours. The reaction was then concentrated down *in vacuo* and purified by silica gel chromatography to yield 9-(β-D-2'-deoxyribofuranosyl)-6-chloro-7iodo-7-deazapurine dA.24 (0.31 g, 47%) as a white foam.

9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-iodo-

- 7-deazapurine (dA.25): Compound dA.24 (0.30 g, 0.76 mmol) was evaporated from
 anhydrous pyridine (2 mL) three times and dissolved in anhydrous DMF (5 mL). tert-Butyldimethylsilyl chloride (0.34 g, 2.28 mmol) and imidazole (0.31 g, 4.55 mmol) were
 added and the mixture was stirred at room temperature for 16 hours. The reaction was
 concentrated *in vacuo* and purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-iodo-7-deazapurine dA.25 (0.24
- g, 51%) as a white foam. ¹H NMR (400 MHz, CDCl3): δ 8.61 (s, 1 H, H-2), 7.81 (s, 1 H, H-8), 6.74 (t, 1 H, J = 6.4 Hz, H-1'), 4.56 (m, 1 H, H-4'), 4.01 (m, 1 H, H-3'), 3.87 (dd, 1 H, H-5'a), 3.79 (dd, 1 H, H-5'b), 2.39 (m, 2 H, H-2'a and H-2'b), 0.96 (s, 9 H, (CH₃)₃CSi), 0.91 (s, 9 H, (CH₃)₃CSi), 0.18 (2s, 6 H, (CH₃)₂Si), 0.15 (s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 152.50 (C), 150.80 (CH), 150.48 (C), 131.94 (CH), 117.33 (C), 87.92 (CH), 84.16
 (CH), 72.20 (CH), 63.01 (CH₂), 51.98 (C), 42.08 (CH₂), 26.07 (CH₃), 25.77 (CH₃), 18.51 (C), 18.05 (C), -4.63 (CH₃), -4.78 (CH₃), -5.25 (CH₃), -5.39 (CH₃).

9-[B-D-3'.5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7methoxycarbonyl-7-deazapurine (dA.26): To a solution of dA.25 (1.3 g, 2.1 mmol) in anhydrous 1,4-dioxane (30 mL) and anhydrous methanol (25 mL) was added triethylamine (0.58)mL). After stirring for ten minutes under CO atmosphere, bis(benzonitrile)dichloropalladium(II) was added. The reaction was stirred at 50°C for 48 hours under CO atmosphere, and then concentrated *in vacuo*. The residue was purified by silica chromatography give 9-[β-D-3',5'-O-bis-(tert-butyldimethylsilyl)-2'gel to

deoxyribofuranosyl]-6-chloro-7-methoxycarbonyl-7-deazapurine **dA.26** (1.15 g, 99%) as a viscous oil. ¹*H NMR (400 MHz, CDCl₃):* δ 8.69 (s, 1 H, H-2), 8.31 (s, 1 H, H-8), 6.77 (t, 1 H, J = 6.8 Hz, H-1'), 4.58 (m, 1 H, H-4'), 4.06 (m, 1 H, H-3'), 3.90 (s, 3 H, CH₃O), 3.87 (dd, 1 H, H-5'a), 3.81 (dd, 1 H, H-5'b), 2.42 (m, 2 H, H-2'a and H-2'b), 0.93 (s, 18 H, (CH₃)₃CSi),

5 0.13 (s, 6 H, (CH₃)₂Si), 0.12 (s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 162.46 (C), 153.12 (C), 152.07 (C), 151.35 (CH), 133.27 (CH), 115.27 (C), 107.65 (C), 88.23 (CH), 84.52 (CH), 72.46 (CH), 63.06 (CH₂), 51.55 (CH₃), 42.15 (CH₂), 25.99 (CH₃), 25.77 (CH₃), 18.45 (C), 18.03 (C), -4.64 (CH₃), -4.78 (CH₃), -5.49 (CH₃), -5.55 (CH₃).

9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-

- 10 *hydroxymethyl-7-deazapurine (dA.27):* To a solution of dA.26 (0.28 g, 0.50 mmol) in anhydrous THF (4 mL) lithium borohydride (0.044 g, 2.01 mmol) was added, followed by methanol (0.1 mL). The reaction mixture was stirred at room temperature for ten minutes and then heated at reflux for 45 minutes. Upon cooling down, the reaction mixture was diluted with dichloromethane (20 ml) and quenched with water (2 mL). The organic layer was
- separated, washed with brine two times (5 mL each), dried over anhydrous sodium sulfate, and concentrated *in vacuo*. The residue was purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-hydroxymethyl-7-deazapurine dA.27 (0.12 g, 45%) as a white foam. ¹H NMR (400 MHz, CDCl₃): δ 8.62 (s, 1 H, H-8), 7.61 (s, 1 H, H-2), 6.75 (dd, 1 H, J = 6.0 and 7.2 Hz, H-1'), 4.96 (AB d, 1 H, J = 11.6
- Hz, 7-CH₂a), 4.91 (AB d, 1 H, J = 11.6 Hz, 7-CH₂b), 4.57 (m, 1 H, H-4'), 4.00 (m, 1 H, H-3'), 3.80 (m, 2 H, H-5'a and H-5'b), 2.44 (m, 1 H, H-2'a), 2.04 (m, 1 H, H-2'b), 0.91 (2 s, 18 H, (CH₃)₃CSi), 0.11 (2 s, 12 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 151.84 (C), 151.37 (C), 150.98 (CH), 125.33 (CH), 115.97 (C), 115.48 (C), 87.67 (CH), 83.73 (CH), 72.28 (CH), 63.07 (CH₂), 56.89 (CH₂), 41.42 (CH₂), 25.98 (CH₃), 25.79 (CH₃), 18.45 (C), 18.03 (C), -4.64 (CH₃), -4.76 (CH₃), -5.35 (CH₃), -5.47 (CH₃).

 $9-[\beta-D-3, 5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-(2$ nitrobenzyloxy)methyl-7-deazapurine (dA.28): To a solution of dA.27 (30 mg, 0.057 mmol)in CH₂Cl₂ (2 mL) were added*n*-Bu₄NBr (9 mg, 0.029 mmol), 2-nitrobenzyl bromide (37 mg,0.17 mmol) and 1 M NaOH solution (2 mL). The reaction mixture was stirred vigorously atroom temperature for 48 hours in the dark. The organic layer was separated, dried over

Na₂SO₄, concentrated *in vacuo*, and purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-(2-

nitrobenzyloxy)methyl-7-deazapurine dA.28 (19 mg, 50%) as a viscous oil. ¹H NMR (400

10

*MHz, CDCl*₃): δ 8.63 (s, 1 H, H-2), 8.06 (dd, 1 H, *J* = 8.4 and 1.2 Hz, Ph-H), 7.84 (d, 1 H, *J* = 7.6 Hz, Ph-H), 7.64 (s, 1 H, H-8), 7.62 (m, 1 H, Ph-H), 7.43 (t, 1 H, Ph-H), 6.75 (dd, 1 H, *J* = 7.2 and 6.0 Hz, H-1'), 5.03 (s, 2 H, PhCH₂), 4.95 (AB d, 1 H, *J* = 12.0 Hz, 7-CH₂a), 4.88 (AB d, 1 H, *J* = 12.0 Hz, 7-CH₂b), 4.59 (m, 1 H, H-4'), 4.00 (m, 1 H, H-3'), 3.80 (m, 2 H, H-5'a and H-5'b), 2.48 (m, 1 H, H-2'a), 2.37 (m, 1 H, H-2'b), 0.92 (2 s, 18 H, (CH₃)₃CSi), 0.11 (s, 6 H, (CH₃)₂Si), 0.10 (s, 6 H, (CH₃)₂Si).

7-(2-Nitrobenzyloxy)methyl-7-deaza-2'-deoxyadenosine (dA.29): A solution of *n*-Bu₄NF (17 mg, 0.054 mmol) in THF (1 mL) was added to a solution of dA.28 (18 mg, 0.027 mmol) in THF (1 mL) at 0°C. The reaction mixture was gradually warmed to room temperature and stirred for two hours. The mixture was concentrated *in vacuo*, and then the residue was dissolved in 1,4-dioxane (2 mL) followed by addition of 7N NH₃ in methanol (4 mL). The mixture was transferred to a sealed tube and stirred at 90-100 °C for 16 hours, then cooled down, concentrated *in vacuo*, and the residue was purified by silica gel chromatography to yield 7-(2-nitrobenzyloxy)methyl-7-deaza-2'-deoxyadenosine dA.29 (10

- 15 mg, 91%) as a white foam. ¹H NMR (400 MHz, DMSO-d₆): δ 8.08 (s, 1 H, H-2), 8.06 (m, 1 H, Ph-H), 7.75 (m, 2 H, Ph-H), 7.58 (m, 1 H, Ph-H), 7.42 (s, 1 H, H-8), 6.64 (bs, 2 H, D₂O exchangeable, 6-NH₂), 6.48 (dd, 1 H, J = 2.0 and 6.0 Hz, H-1'), 5.25 (d, 1 H, J = 4.0 Hz, D₂O exchangeable, 3'-OH), 5.08 (t, 1 H, J = 5.6 Hz, D₂O exchangeable, 5'-OH), 4.90 (s, 2 H, PhCH₂), 4.75 (AB dd, 2 H, 7-CH₂), 4.33 (m, 1 H, H-3'), 3.81 (m, 1 H, H-4'), 3.54 (m, 2 H, H-1)
- 20 5'a and H-5'b), 2.47 (m, 1 H, H-2'a), 2.15 (m, 1 H, H-2'b).

7-(2-Nitrobenzyloxy)methyl-7-deaza-2'-deoxyadenosine-5'-triphosphate (WW5p085): POCl₃ (2.6 µL, 0.028 mmol) was added to a solution of **dA.29** (6 mg, 0.014 mmol) and proton sponge (6 mg, 0.028 mmol) in trimethylphosphate (0.25 mL) at minus 40°C and stirred for four hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (66 mg, 0.14 mmol)

- 25 and tri-*n*-butylamine (28 μL) in anhydrous DMF (0.28 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 1 mL) was added. The reaction was stirred at room temperature for one hour and then concentrated *in vacuo*. The residue was dissolved in water (2 mL), filtered, and purified with reverse-phase HPLC using a Perkin Elmer OD-300 C₁₈ column (7 μm, 4.6 × 250 mm) to yield 7-(2-nitrobenzyloxy)methyl-7-
- 30 deaza-2'-deoxyadenosine-5'-triphosphate WW5p085. Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water (pH 7.0); B, 100 mM TEAA in water/CH₃CN (30:70).

Synthesis of 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-

deoxyadenosine-5'-triphosphate

Scheme 25. Synthesis of 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'deoxyadenosine-5'-triphosphate. (i) TsCl, DMAP, CH₂Cl₂ (anhydrous), room temperature, 39%; (ii) 1-(2-nitrophenyl)-2-methyl-propanol (racemic), neat, vacuum, 105°C, 54%; (iii) *n*-Bu₄NF, THF; NH₃, 1,4-dioxane/MeOH, 90-100°C, 76%; (iv) POCl₃, (MeO)₃PO, minus 40°C to 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-

- 10 chloromethyl-7-deazapurine (dA.30): To a solution of dA.27 (0.257 g, 0.485 mmol) in dichloromethane (12 mL, freshly distilled from CaH₂) were added 4-N,Ndimethylaminopyridine (0.148 g, 1.213 mmol) and tosyl chloride (0.111 g, 0.583 mmol). The reaction mixture was stirred at room temperature for 18 hours, and then concentrated *in vacuo*. The residue was purified by silica gel chromatography to yield 9-[β -D-3',5'-O-bis-
- 15 (tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-chloromethyl-7-deazapurine

dA.30 (0.103 g, 26%) as a viscous oil. ¹*H NMR (400 MHz, CDCl₃):* δ 8.64 (s, 1 H, H-2), 7.72 (s, 1 H, H-8), 6.73 (t, 1 H, *J* = 6.8 Hz, H-1'), 4.95 (AB d, *J* = 12.4 Hz, 7-CH₂a), 4.91 (AB d, *J* = 12.0 Hz, 7-CH₂b), 4.58 (m, 1 H, H-3'), 4.00 (m, 1 H, H-4'), 3.82 (m, 2 H, H-5'a and H-5'b), 2.41 (m, 2 H, H-2'a and H-2'b), 0.95 (s, 9 H, (CH₃)₃CSi), 0.93 (s, 9 H, (CH₃)₃CSi),

5 0.12 (s, 6 H, (CH₃)₂Si), 0.11 (s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 151.78 (C),
151.56 (C), 151.26 (CH), 126.68 (CH), 112.15 (C), 115.54 (C), 87.78 (CH), 83.97 (CH),
72.17 (CH), 62.98 (CH₂), 41.72 (CH₂), 37.56 (CH₂), 25.99 (CH₃), 25.78 (CH₃), 18.45 (C),
18.03 (C), -4.63 (CH₃), -4.78 (CH₃), -5.35 (CH₃), -5.45 (CH₃).

9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[1-(2-

- 10 nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine (dA.31): Compound dA.30 (54 mg, 0.1 mmol) and 1-(2-nitrophenyl)-2-methyl-propanol (191 mg, 0.978 mmol) were dissolved in anhydrous dichloromethane (10 mL). The solvent was removed *in vacuo* and the residue was heated *in vacuo* for one hour, then dissolved in ethyl acetate and purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-
- 6-chloro-7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine dA.31 (38 mg, 54%, 1:1 mixture of diastereomers). ¹H NMR (400 MHz, CDCl₃) for diastereomers: δ 8.60 and 8.59 (2 s, 1 H, H-2), 7.83 (m, 1 H, Ph-H), 7.79 (m, 1 H, Ph-H), 7.56 (m, 1 H, Ph-H), 7.48 and 7.47 (2 s, 1 H, H-8), 7.38 (m, 1 H, Ph-H), 6.70 (m, 1 H, H-1'), 4.81 (m, 1 H, Ph-CH), 4.70 (m, 1H, 7-CH₂a), 4.58 (m, 2 H, 7-CH₂b and H-3'), 3.99 (m, 1 H, H-4'), 3.78 (m, 2 H, H-
- 5'a and H-5'b), 2.48 (m, 1 H, H-2'a), 2.35 (m, 1 H, H-2'b), 1.96 (m, 1 H, CH), 0.98 and 0.96 (2 d, 3 H, CH₃), 0.93 (2 s, 9 H, (CH₃)₃CSi), 0.89 (2 s, 9 H, (CH₃)₃CSi), 0.82 and 0.78 (2 d, 3 H, CH₃), 0.12 (2 s, 6 H, (CH₃)₂Si), 0.08 and 0.07 (2 s, 3 H, (CH₃)₂Si), 0.06 and 0.05 (2 s, 3 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃) for diastereomers: δ 152.60 and 152.47 (C), 150.84 (CH), 150.28 and 150.21 (C), 149.56 and 149.47 (C), 148.01 (C), 137.22 and 137.08
- 25 (C), 132.70 and 132.68 (CH), 129.15 and 129.13 (CH), 127.97 (CH), 126.65 and 126.29 (CH), 123.85 and 123.79 (CH), 112.36 and 112.07 (C), 87.63 and 87.59 (CH), 83.71 and 83.68 (CH), 81.92 and 81.08 (CH), 72.40 and 72.28 (CH), 63.50 (CH₂), 63.15 and 63.03 (CH₂), 41.07 and 41.00 (CH₂), 35.08 and 35.05 (CH), 19.20 and 19.11 (CH₃), 18.42 and 18.40 (C), 18.18 and 18.05 (CH₃), -4.67 and -4.76 (CH₃Si), -4.78 (CH₃Si),
 20 5.25 (CH Si) 5.47 and 5.51 (CH Si)
- 30 -5.35 (CH₃Si), -5.47 and -5.51 (CH₃Si).

7-[1-(2-Nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine (dA.32): A solution of *n*-Bu₄NF (44 mg, 0.140 mmol) in THF (2 mL) was added to a solution of dA.31 (38 mg, 0.053 mmol) in THF (2 mL) at 0°C. The reaction was gradually warmed to room temperature and stirred for two hours. The mixture was concentrated *in vacuo*, dissolved in 1,4-dioxane (4 mL), followed by addition of 7N NH₃ in methanol solution (8 mL). The mixture was transferred to a sealed tube and stirred at 90-100°C for 24 hours, then cooled down, concentrated *in vacuo*, and the residue was purified by silica gel chromatography to

- 5 yield 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine dA.32 (19 mg, 76%, 1:1 mixture of diastereomers) as a viscous oil. ¹H NMR (400 MHz, DMSO-d₆) for diastereomers: δ 8.06 and 8.04 (2 s, 1 H, H-2), 7.90 (m, 1 H, Ph-H), 7.67 (m, 2 H, Ph-H), 7.56 (m, 2 H, Ph-H), 7.19 and 7.16 (2 s, 1 H, H-8), 6.63 (bs, 2 H, D₂O exchangeable, 6-NH₂), 6.39 (m, 1 H, H-1'), 5.23 (m, 1 H, D₂O exchangeable, 3'-OH), 5.00 (m, 1 H, D₂O
- exchangeable, 5'-OH), 4.72 (2 d, 1 H, Ph-CH), 4.45 (s, 2 H, 7-CH₂), 4.30 (m, 1 H, H-3'), 3.77 (m, 1 H, H-4'), 3.49 (m, 2 H, H-5'a and H-5'b), 2.40 (m, 1 H, H-2'a), 2.12 (m, 1 H, H-2'b), 1.94 (m, 1 H, CH), 0.87 (m, 3 H, CH₃), 0.74 (m, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD) for diastereomers: δ 157.76 (C), 151.08 (CH), 149.92 and 149.57 (C), 148.01 (C), 135.99 and 135.92 (C), 132.51 and 132.41 (CH), 128.89 (CH), 128.20 and 128.15 (CH), 123.49 and 123.43 (CH), 122.32 and 121.97 (CH), 111.86 (C), 103.02 (C), 87.65 and 87.59 (CH), 85.25 and 85.00 (CH), 80.29 and 79.60 (CH), 71.73 (CH), 63.97 and 69.92 (CH₂), 63.49 and 62.41 (CH₂), 39.95 and 39.77 (CH₂), 34.55 and 34.51 (CH), 18.09 (CH₃), 17.16 (CH₃).

7-[1-(2-Nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine-5'-

- triphosphate (WW5p098 ds1 & ds2): POCl₃ (8 μL, 0.083 mmol) was added to a solution of
 compound dA.32 (19 mg, 0.041 mmol) in trimethylphosphate (0.4 mL), and the reaction was stirred at minus 40 °C under a nitrogen atmosphere for two hours. Additional POCl₃ (8 μL, 0.083 mmol) was added, and the reaction was stirred at 0°C for additional three hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (97 mg, 0.2 mmol) and tri-*n*-butylamine (40 μL) in anhydrous DMF (0.4 mL) was added. After 30 minutes of stirring,
 triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was
- stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5×10 cm) with a linear gradient of 25% acetonitrile/75% 0.1M triethylammonium bicarbonate (TEAB) to 25% acetonitrile/75% 1.5 M TEAB over 240 min
- at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield
 7-[1-(2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine-5'-triphosphate
 WW5p098 as mixture of two diastereomers, which were separated by reverse phase HPLC
 on a Perkin Elmer Aquapore OD-300 column (7 µm, 250 × 4.6 mm) to yield the single

131

WO 2009/152353

5

diastereomer **WW5p098 ds1** (fast eluting) and **WW5p098 ds2** (slow eluting). Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

Synthesis of 6-FAM labeled 7-{(*R*)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2methyl-propyloxy}methyl-7-deaza-2'-deoxyadenosine-5'-triphosphate

dA.30

Scheme 26. Synthesis of 6-FAM labeled 7-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2methyl-propyloxy}methyl-7-deaza-2'-deoxyadenosine-5'-triphosphate (i) (R)-1-(4-iodo-2nitrophenyl)-2-methyl-propanol, neat, vacuum, 108°C, 47%; (ii) *n*-Bu₄NF, THF; NH₃, 1,4-

dioxane/MeOH, 90-100°C, 82%; (iii) *N*-propargyltrifluoroacetamide, Pd(PPh₃)₄ (0), CuI, Et₃N, anhydrous DMF, 99%; (iv) POCl₃, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃;

Scheme 27. (v) 6-FAM-SE, 0.1 M Na₂CO₃/NaHCO₃ buffer (pH 9.2).

9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[(R)-1-(4iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine (**dA.33**). Compound **dA.30**

- 5 (80 mg, 0.147 mmol) and enantio-pure (R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propanol (518 mg, 1.163 mmol) were dissolved in anhydrous dichloromethane (10 mL). The solvent was removed *in vacuo*, and the residue was heated *in vacuo* for one hour, then dissolved in ethyl acetate and purified by silica gel chromatography to yield 9-[β-D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[(R)-1-(4-iodo-2-nitrophenyl)-2-
- methyl-propyloxy]methyl-7-deazapurine dA.33 (57 mg, 47%). ¹H NMR (400 MHz, CDCl₃): δ
 8.60 (s, 1 H, H-2), 8.12 (d, J = 2.0 Hz, 1 H, Ph-H), 7.87 (dd, J = 8.4 and 1.6 Hz, 1 H, Ph-H),
 7.47 (d, J = 8.0 Hz, 1 H, Ph-H), 7.47 (s, 1 H, H-8), 6.71 (dd, J = 7.6 and 6.0 Hz, 1 H, H-1'),
 4.76 (d, J = 6.4 Hz, 1 H, Ph-C<u>H</u>), 4.70 (AD d, J = 11.6 Hz, 1H, 7-CH₂a), 4.58 (m, 2 H, 7-CH₂b and H-3'), 4.00 (m, 1 H, H-4'), 3.79 (m, 2 H, H-5'a and H-5'b), 2.45 (m, 1 H, H-2'a),
- 15 2.36 (m, 1 H, H-2'b), 1.93 (sep, J = 6.8 Hz, 1 H, CHC<u>H</u>(CH₃)₂), 0.98 (d, J = 6.4 Hz, 3 H, CH₃), 0.93 (s, 9 H, (CH₃)₃CSi), 0.91 (s, 9 H, (CH₃)₃CSi), 0.82 (d, J = 6.8 Hz, 3 H, CH₃), 0.126 (s, 6 H, (CH₃)₂Si), 0.123 (s, 3 H, (CH₃)₂Si), 0.09 (s, 3 H, (CH₃)₂Si), 0.06 (s, 3 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃): δ 151.81 (C), 151.76 (C), 150.93 (CH), 149.79 (C), 141.63 (CH), 137.04 (C), 132.34 (CH), 130.85 (CH), 126.41 (CH), 116.17 (C), 112.06 (C),

91.57 (C), 87.65 (CH), 83.77 (CH), 80.68 (CH), 72.41 (CH), 63.58 (CH₂), 63.15 (CH₂), 41.07 (CH₂), 34.95 (CH), 25.96 (C(CH₃)₃), 25.80 (C(CH₃)₃), 19.13 (CH₃), 18.42 (C), 18.05 (CH₃), - 4.63 (CH₃), -4.78 (CH₃), -5.35 (CH₃), -5.45 (CH₃).

7-[(R)-1-(4-Iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-

- 5 *deoxyadenosine (dA.34):* A solution of n-Bu₄NF (58 mg, 0.182 mmol) in THF (2 mL) was added to a solution of **dA.33** (57 mg, 0.069 mmol) in THF (2 mL) at 0°C. The reaction was gradually warmed to room temperature and stirred for two hours. The mixture was concentrated *in vacuo*, dissolved in 1,4-dioxane (5 mL), followed by addition of 7N NH₃ in methanol solution (16 mL). The mixture was transferred to a sealed tube and stirred at 90-
- 10 100°C for 24 hours, then cooled down, concentrated *in vacuo*, and the residue was purified by silica gel chromatography to yield 7-[(R)-1-(4-iodo-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine dA.34 (33 mg, 82%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.22 (d, J = 1.6 Hz, 1 H, Ph-H), 8.04 (s, 1 H, H-2), 8.00 (dd, J = 8.4 and 1.6 Hz, 1 H, Ph-H), 7.19 (s, 1 H, H-8), 6.60 (bs, 2 H, D₂O
- exchangeable, 6-NH₂), 6.40 (dd, J = 8.4 and 6.0 Hz, 1 H, H-1'), 5.24 (d, J = 4.0 Hz, 1 H, D₂O exchangeable, 3'-OH), 5.00 (d, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.64 (d, J = 6.0 Hz, 1 H, Ph-CH), 4.45 (AB dd, 2 H, 7-CH₂), 4.29 (m, 1 H, H-3'), 3.78 (m, 1 H, H-4'), 3.47 (m, 2 H, H-5'a and H-5'b), 2.40 (m, 1 H, H-2'a), 2.11 (m, 1 H, H-2'b), 1.92 (m, 1 H, CH), 0.87 (d, J = 6.4 Hz, 3 H, CH₃), 0.76 (d, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD):
- δ 164.68 (C), 151.12 (CH), 150.12 (C), 149.84 (C), 141.38 (CH), 136.09 (C), 131.94 (CH),
 130.66 (CH), 122.15 (CH), 111.79 (C), 103.09 (C), 91.16 (C), 87.63 (CH), 85.12 (CH), 80.31 (CH), 71.80 (CH), 63.36 (CH₂), 62.53 (CH₂), 39.76 (CH₂), 34.41 (CH), 18.00 (CH₃), 17.20 (CH₃).

7-{(R)-1-[4-(3-Trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-methyl-

- propyloxy}methyl-7-deaza-2'-deoxyadenosine (dA.35): A solution of compound dA.34 (33 mg, 0.056 mmol), N-propargyltrifluoroacetylamide (25 mg, 0.168 mmol), tetrakis(triphenylphosphine)-palladium(0) (7 mg, 0.0065 mmol), CuI (2 mg, 0.0112 mmol), and Et₃N (16 μL, 0.050 mmol) in anhydrous DMF (3 mL) was stirred at room temperature for four hours. The mixture was concentrated *in vacuo* and purified by silica gel column chromatography to yield 7-{(R)-1-[4-(3-trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2-
- 30 chromatography to yield 7-{(R)-1-[4-(3-trifluoroacetamido-1-propynyl)-2-nitrophenyl]-2methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine **dA.35** (34 mg, 99%) as a waxy solid. ${}^{1}HNMR$ (400 MHz, DMSO-d_6): δ 10.11 (br t, 1 H, D₂O exchangeable, NHTFA), 8.12 (br s, 1 H, H-2), 7.94 (d, J = 1.6 Hz, 1 H, Ph-H), 7.71 (AB dd, J = 8.0 and 1.6 Hz, 1 H, Ph-H), 7.62

(AB d, J = 8.4 Hz, 2 H, Ph-H), 7.28 (s, 1 H, H-8), 6.95 (bs, 2 H, D₂O exchangeable, 6-NH₂), 6.42 (dd, J = 8.0 and 6.0 Hz, 1 H, H-1'), 5.25 (br s, 1 H, D₂O exchangeable, 3'-OH), 4.98 (br s, 1 H, D₂O exchangeable, 5'-OH), 4.60 (d, J = 6.0 Hz, 1 H, Ph-C<u>H</u>), 4.51 (AB dd, J = 12.8 Hz, 1 H, 7-CH₂a), 4.45 (AB dd, J = 12.4 Hz, 1 H, 7-CH₂b), 4.30 (m, 3 H, CH₂NH and H-3'),

3.78 (m, 1 H, H-4'), 3.47 (m, 2 H, H-5'a and H-5'b), 2.39 (m, 1 H, H-2'a), 2.14 (m, 1 H, H-2'b), 1.95 (m, 1 H, CH), 0.88 (d, J = 6.8 Hz, 3 H, CH₃), 0.76 (d, J = 6.8 Hz, 3 H, CH₃); ¹³C *NMR (100 MHz, CD₃OD):* δ 157.62 (C), 151.15 (CH), 150.05 (C), 149.47 (C), 136.64 (C), 135.03 (CH), 129.34 (CH), 126.31 (CH), 122.68 (C), 122.14 (CH), 115.02 (C), 111.84 (C), 87.59 (CH), 85.83 (C), 85.01 (CH), 80.28 (CH), 80.13 (C), 81.42 (CH), 71.74 (CH), 64.28 (CH₂), 62.49 (CH₂), 39.73 (CH₂), 34.50 (CH), 29.07 (CH₂), 18.03 (CH₃), 17.18 (CH₃).

7-{(R)-1-[4-(3-Amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy}methyl-7-

deaza-2'-deoxyadenosine-5'-triphosphate (dA.36): POCl₃ (8 μ L, 0.089 mmol) was added to a solution of compound **dA.35** (27 mg, 0.045 mmol) and proton sponge (19 mg, 0.089 mmol) in trimethylphosphate (0.4 mL) and the reaction was stirred at 0°C under a nitrogen

- 15 atmosphere for two hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-*n*-butylamine (120 μL) in anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (10 mL), filtered, and purified by anion exchange
- 20 chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% 0.1 M triethylammonium bicarbonate (TEAB) to 25% acetonitrile/75% 1.5 M TEAB over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to dryness. The residue was dissolved in water (5 mL) and treated with concentrated ammonium hydroxide (2 mL, 27%) at room temperature for one hour to yield 7-
- 25 {(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl-propyloxy} methyl-7-deaza-2'deoxyadenosine-5'-triphosphate **dA.36**, which was purified by reverse phase HPLC on a Perkin Elmer Aquapore OD-300 column (7 μm, 250 × 4.6 mm). Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

6-FAM labeled 7-{(R)-1-[4-(3-amino-1-propynyl)-2-nitrophenyl]-2-methyl30 propyloxy}methyl-7-deaza-2'- deoxyadenosine-5'-triphosphate (WW6p028): A solution of 6FAM-SE (4 mg, 8.4 μmol) in anhydrous DMSO (80 μL) was added to a solution of triphosphate dA.36 (2.6 μmol) in Na₂CO₃/NaHCO₃ buffer (0.1 M, pH 9.2, 1.6 mL). The mixture was left at room temperature for one hour. The dye labeled triphosphate was first

135

in water/CH₃CN (30:70).

5

purified by anion exchange HPLC using a PerkinElmer AX-300 column (7 μ m, 250 × 4.6 mm). Mobile phase: A, 25% CH₃CN /75% 0.1 M TEAB; B, 25% CH₃CN/75% 1.5 M TEAB. The product was further purified by reverse-phase HPLC using a Perkin Elmer OD-300 column (7 μ m, 4.6 × 250 mm) to yield 6-FAM labeled triphosphate **WW6p028**. Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water (pH 7.0); B, 100 mM TEAA

Synthesis of 7-[1-(2,6-dinitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-

 Scheme 28. Synthesis of 7-[1-(2,6-dinitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'deoxyadenosine-5'-triphosphate. (i) 1-(2,6-dinitrophenyl)-2-methyl-propanol (racemic), neat, vacuum, 108°C, 33% (dA.37a) and 11% (da.37b); (ii) *n*-Bu₄NF, THF; NH₃, 1,4dioxane/MeOH, 90-100°C, 86%; (iv) POCl₃, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

9-[β-D-3'-O-(tert-Butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[1-(2,6dinitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine (dA.37a) and 9-[β-D-2'deoxyribofuranosyl]-6-chloro-7-[1-(2,6-dinitrophenyl)-2-methyl-propyloxy]methyl-7-

deazapurine (dA.37b): Compound dA.30 (109 mg, 0.201 mmol) and 1-(2,6-dinitrophenyl)-2-

5 methyl-propanol (448 mg, 1.863 mmol) were dissolved in anhydrous dichloromethane (10 mL). The solvent was removed in vacuo, and the residue was heated at 108°C in vacuo for 30 minutes, then dissolved in ethyl acetate and purified by silica gel chromatography to yield 9-[β-D-3'-O-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[1-(2,6-dinitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine dA.37a (42 mg, 33%, 1:1 mixture of

- diastereomers) and 9-[β-D-2'-deoxyribofuranosyl]-6-chloro-7-[1-(2,6-dinitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine dA.37b (13 mg, 11%, 1:1 mixture of diastereomers). ¹H NMR (400 MHz, CDCl₃) for dA.37a (1:1 mixture of diastereomers): δ 8.59 (s, 1 H, H-2), 7.78 (m, 2 H, Ph-H), 7.63 (m, 1 H, Ph-H), 7.38 (s, 1 H, H-8), 6.39 (m, 1 H, H-1'), 5.01 (2 br s, 1 H, 5'-OH), 4.72 (m, 4 H, Ph-CH, 7-CH₂, and H-3'), 4.11 (m, 1 H, H-4'),
- 15 3.91 (AB d, 1 H, H-5'a), 3.85 (m, 1 H, H-5'b), 2.96 (m, 1 H, CH(CH₃)₂), 2.40 (m, 2 H, H-2'),
 1.08 (m, 3 H, CH₃), 0.91 (s, 9 H, (CH₃)₃CSi), 0.78 (2 d, J = 6.8 Hz, 3 H, CH₃), 0.13 (s, 6 H, (CH₃)₂Si);

¹³C NMR (100 MHz, CDCl₃) for **dA.37a** (1:1 mixture of diastereomers): δ 152.60 and 152.47 (C), 150.92 and 150.66 (C), 150.47 and 150.28 (C), 151.84 (CH), 150.28 and 150.21 (C),

129.72 and 129.69 (CH), 129.18 (CH), 128.77 (C), 128.63 and 128.54 (CH), 126.69 (CH), 117.57 and 117.29 (C), 110.84 and 110.59 (C), 89.39 and 89.18 (CH), 88.70 and 88.80 (CH), 82.00 and 81.84 (CH), 73.47 and 73.35 (CH), 64.56 and 64.34 (CH₂), 63.10 and 63.05 (CH₂), 41.12 (CH₂), 34.86 (CH), 25.81 ((CH₃)₃Si), 19.13 (CH₃), 18.36 (CH₃), 18.08 (C), -4.67 (CH₃Si), -4.76 (CH₃Si).

25

¹*H* NMR (400 MHz, CD₃OD) for **dA.37b** (1:1 mixture of diastereomers): δ 8.57 and 8.56 (2 s, 1 H, H-2), 7.96 (m, 2 H, Ph-H), 7.45 (m, 2 H, Ph-H and H-8), 6.39 (m, 1 H, H-1'), 4.78 (m, 2 H, Ph-CH, 7-CH₂a), 4.56 (m, 2 H, 7-CH₂b and H-3'), 4.02 (m, 1 H, H-4'), 3.78 (m, 2 H, H-5'), 2.62 (m, 1 H, C<u>H</u>(CH₃)₂), 2.44 (m, 1 H, H-2'a), 2.30 (m, 1 H, H-2'b), 1.02 and 0.95 (2 d, *J* = 6.4 Hz, 3 H, CH₃), 0.71 and 0.69 (2 d, *J* = 7.2 Hz, 3 H, CH₃).

30

7-[1-(2,6-Dinitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine(*dA.38*): A solution of *n*-Bu₄NF (44 mg, 0.140 mmol) in THF (2 mL) was added to a solution of **dA.37a** (42 mg, 0.066 mmol) in THF (5 mL) at 0°C. The reaction was gradually warmed to room temperature and stirred for two hours. The mixture was concentrated *in vacuo*, and a

10

15

solution of dA.37b (12 mg, 0.022 mmol) in 1,4-dioxane (4 mL) was added, followed by 7N NH₃ in methanol solution (18 mL). The mixture was transferred to a sealed tube and stirred at 90-100°C for 36 hours, then cooled down, concentrated in vacuo, and the residue was purified by silica gel chromatography to yield 7-[1-(2,6-dinitrophenyl)-2-methylpropyloxy]methyl-7-deaza-2'-deoxyadenosine dA.38 (38 mg, 86%, 1:1 mixture of diastereomers) as a viscous oil. ¹H NMR (400 MHz, DMSO- d_6) for diastereomers: δ 8.17 (m, 1 H, Ph-H), 8.07 and 8.06 (2 s, 1 H, H-2), 7.85 (m, 1 H, Ph-H), 7.69 (m, 1 H, Ph-H), 7.20 and 7.18 (2 s, 1 H, H-8), 6.57 (bs, 2 H, D₂O exchangeable, 6-NH₂), 6.46 (m, 1 H, H-1'), 5.26 (d, J = 3.6 Hz, 1 H, D₂O exchangeable, 3'-OH), 5.01 (m, 1 H, D₂O exchangeable, 5'-OH), 4.60 (m, 2 H, Ph-CH and 7-CH₂a), 4.29 (m, 1 H, 7-CH₂b), 4.13 (m, 1 H, H-3'), 3.80 (m, 1 H, H-4'), 3.51 (m, 2 H, H-5'a and H-5'b), 2.49 (m, 1 H, CH(CH₃)₃), 2.16 (m, 1 H, H-2'a and H-2'b), 0.91 (m, 3 H, CH₃), 0.65 (m, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD) for diastereomers: δ 157.73 (C), 151.33 and 151.18 (CH), 150.39 (C), 150.22 (C), 130.45 and 130.49 (CH), 127.25 and 127.13 (C), 126.90 (CH), 128.20 and 128.15 (CH), 123.45 and 123.32 (CH), 110.32 and 110.23 (CH), 103.03 and 102.75 (C), 87.74 and 87.58 (CH), 85.43 and 84.73 (CH), 79.94 and 79.37 (CH), 71.88 and 71.64 (CH), 64.08 and 63.71 (CH₂), 62.67 and 62.32

(CH₂), 40.95 and 39.82 (CH₂), 34.24 and 34.16 (CH), 19.63 (CH₃), 17.49 (CH₃). *ToF-MS* (*ESI*): For the molecular ion $C_{22}H_{27}N_6O_8 [M+H]^+$, the calculated mass was 503.1890, and the observed mass was 503.2029.

- 20 7-[1-(2,6-Dinitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2 'deoxyadenosine-5'triphosphate (WW6p057 ds1 & ds2): POCl₃ (11 μL, 0.12 mmol) was added to a solution of compound dA.38 (30 mg, 0.06 mmol) in trimethylphosphate (0.4 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for four hours. A solution of bis-tri-nbutylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-n-butylamine (120 μL) in
 25 anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (10 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 20 cm) with a linear gradient of 25% acetonitrile/75% 0.1 M
- 30 triethylammonium bicarbonate (TEAB) to 25% acetonitrile/75% 1.5 M TEAB over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 7-[1-(2,6-dinitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine-5'-

triphosphate WW6p057 as mixture of two diastereomers which were separated by reverse

phase HPLC on a PerkinElmer Aquapore OD-300 column (7 μ m, 250 × 4.6 mm) to yield the single diastereomer **WW6p057 ds1** (fast eluting) and **WW6p057 ds2** (slow eluting). Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

5

10

Synthesis of 7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine-5'-triphosphate

Scheme 29. Synthesis of 7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7deaza-2'-deoxyadenosine-5'-triphosphate. (i) 1-(4-methoxy-2-nitrophenyl)-2-methylpropanol (racemic), neat, vacuum, 108°C, 33% (dA.39a) and 21% (da.39b); (ii) *n*-Bu₄NF, THF; NH₃, 1,4-dioxane/MeOH, 90-100°C, 61%; (iv) POCl₃, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃. 9-[β-D-3',5'-O-Bis-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[1-(4methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine (dA.39a) and 9-[β-D-3'-O-(tert-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6-chloro-7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine (dA.39b): Compound dA.30 (103 mg, 0.19 mmol)

- 5 and 1-(4-methoxy-2-nitrophenyl)-2-methyl-propanol (428 mg, 1.90 mmol) were dissolved in anhydrous dichloromethane (3 mL). The solvent was removed in vacuo, and the residue was heated at 108°C in vacuo for 30 minutes, then dissolved in ethyl acetate and purified by silica gel chromatography to 9-[β -D-3',5'-O-bis-(*tert*-butyldimethylsilyl)-2'-deoxyribofuranosyl]-6chloro-7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deazapurine **dA.39a**
- 10 (46 mg, 33%, 1:1 mixture of diastereomers) and 9-[β -D-3'-O-(tert-butyldimethylsilyl)-2'deoxyribofuranosyl]-6-chloro-7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7deazapurine **dA.39b** (25 mg, 21%, 1:1 mixture of diastereomers). ¹H NMR (400 MHz, CDCl₃) for **dA.39a** (1:1 mixture of diastereomers): δ 8.60 and 8.59 (2 s, 1 H, H-2), 7.64 and 7.62 (2 d, J = 6.4 Hz, 1 H, Ph-H), 7.47 and 7.45 (2 s, 1 H, H-8), 7.32 (m, 1 H, Ph-H), 7.12 (m,
- 15 1 H, Ph-H), 6.71 (m, 1 H, H-1'), 4.62 (m, 4 H, Ph-CH, 7-CH₂, and H-3'), 3.99 (m, 1 H, H-4'),
 3.87 and 3.86 (2 s, 3 H, MeO), 3.70 (AB d, 1 H, H-5'a and H-5'b), 2.50 (m, 1 H, H-2'a), 2.35 (m, 1 H, H-2'a), 1.93 (m, 1 H, C<u>H</u>(CH₃)₂), 1.00 and 0.97 (2 d, J = 6.8 Hz, 3 H, CH₃), 0.93 and
 0.92 (2 s, 9 H, (CH₃)₃CSi), 0.91 and 0.89 (2 s, 9 H, (CH₃)₃CSi), 0.80 and 0.76 (2 d, J = 6.8 Hz, 3 H, CH₃), 0.12 and 0.10 (2 s, 6 H, (CH₃)₂Si), 0.08, 0.07, 0.06 and 0.05 (4 s, 6 H,
- (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃) for dA.39a (1:1 mixture of diastereomers): δ 158.82
 (C), 151.82 and 151.46 (C), 151.32 and 151.16 (C), 150.85 (CH), 150.27 and 150.08 (C), 130.16 (CH), 128.95 and 129.80 (C), 126.56 and 126.22 (CH), 119.60 (CH), 112.49 and 122.22 (C), 108.21 and 108.14 (CH), 87.64 and 87.58 (CH), 83.69 (CH), 80.68 and 79.98 (CH), 72.42 and 72.27 (CH), 63.26 and 63.17 (CH₂), 63.03 and 62.80 (CH₂), 55.80 (CH₃),
- 41.04 (CH₂), 35.08 (CH), 25.95 ((CH₃)₃Si), 25.80 ((CH₃)₃Si), 25.66 ((CH₃)₃Si), 19.12 and 19.05 (CH₃), 18.42 (CH₃), 18.05 (C), -3.75 (CH₃Si), -4.66 and -4.76 (CH₃Si), -5.36 (CH₃Si), -5.46 and -5.50 (CH₃Si).

¹H NMR (400 MHz, CDCl₃) for dA.39b (1:1 mixture of diastereomers): δ 8.59 and 8.57 (2 s, 1 H, H-2), 7.62 and 7.60 (2 d, J = 6.4 Hz, 1 H, Ph-H), 7.33 and 7.32 (2 d, J = 2.4
Hz, 1 H, Ph-H), 7.30 and 7.29 (2 s, 1 H, H-8), 7.14 and 7.10 (2 dd, J = 8.8, 2.4 Hz, 1 H, Ph-H), 6.28 (m, 1 H, H-1'), 5.06 (br t, 1 H, 5'-OH), 4.64 (m, 4 H, Ph-CH, 7-CH₂, and H-3'), 4.11 (m, 1 H, H-4'), 3.94 (AB d, J = 10.8 Hz, 1 H, H-5'a), 3.87 and 3.85 (2 s, 3 H, MeO), 3.76 (m, 1 H, H-5'b), 2.93 (m, 1 H, H-2'a), 2.25 (m, 1 H, H-2'b), 1.96 (sep, J = 6.4 Hz, 1 H,

C<u>H</u>(CH₃)₂), 0.95 (m, 3 H, CH₃), 0.94 (s, 9 H, (CH₃)₃CSi), 0.80 (m, 3 H, CH₃), 0.13 (s, 6 H, (CH₃)₂Si).

7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-

- deoxyadenosine (dA.40): A solution of n-Bu₄NF (68 mg, 0.217 mmol) in THF (2 mL) was
 added to a solution of dA.39a (46 mg, 0.063 mmol) and dA.39b (25 mg, 0.040 mmol) in THF (8 mL) at 0°C. The reaction was gradually warmed to room temperature and stirred for 30 minutes. The mixture was concentrated *in vacuo*, dissolved in 1,4-dioxane (8 mL), followed by addition of 7N NH₃ in methanol (24 mL). The mixture was transferred to a sealed tube and stirred at 90-100°C for 16 hours, then cooled down, concentrated *in vacuo*, and the residue was purified by silica gel chromatography to yield 7-[1-(4-methoxy-2-nitrophenyl)-2-
- methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine **dA.40** (38 mg, 61%, 1:1 mixture of diastereomers) as a viscous oil. ¹*H NMR* (400 *MHz*, *DMSO-d*₆) for diastereomers: δ 8.06 and 8.05 (2 s, 1 H, H-2), 7.57 and 7.54 (2 d, J = 8.8 Hz, 1 H, Ph-H), 7.47 and 7.44 (2 d, J = 2.6 Hz, 1 H, Ph-H), 7.33 and 7.27 (2 dd, J = 8.8, 2.6 Hz, 1 H, Ph-H), 7.18 and 7.15 (2 s, 1 H, H-
- 8), 6.63 (bs, 2 H, D₂O exchangeable, 6-NH₂), 6.43 (m, 1 H, H-1'), 5.24 (m, 1 H, D₂O exchangeable, 3'-OH), 5.03 (m, 1 H, D₂O exchangeable, 5'-OH), 4.55 (m, 2 H, Ph-CH, 7-CH₂a), 4.30 (m, 2 H, 7-CH₂b and H-3'), 3.86 and 3.84 (2 s, 3 H, MeO), 3.78 (m, 1 H, H-4'), 3.48 (m, 2 H, H-5'), 2.45 (m, 1 H, H-2'a), 2.12 (m, 1 H, H-2'b), 1.93 (m, 1 H, C<u>H</u>(CH₃)₂), 0.88 (m, 3 H, CH₃), 0.74 and 0.71 (2 d, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD)
- for diastereomers: δ 158.46 and 158.40 (C), 158.40 (C), 150.28 and 150.25 (CH), 149.97 and 149.78 (C), 149.28 (C), 129.19 and 129.16 (CH), 126.69 and 126.56 (C), 121.36 and 121.02 (CH), 118.11 and 117.99 (CH), 111.20 and 110.95 (C), 107.27 and 107.20 (CH), 102.40 and 102.36 (C), 86.87 and 86.83 (CH), 84.42 and 84.25 (CH), 79.47 and 78.73 (CH), 70.97 (CH), 63.00 and 62.46 (CH₂), 61.73 and 61.64 (CH₂), 54.30 (CH₃), 39.16 and 38.99 (CH₂), 33.71 and 33.68 (CH), 17.29 (CH₃), 16.71 and 16.66 (CH₃). *ToF-MS (ESI):* For the molecular ion C₂₃H₃₀N₅O₇ [M+H]⁺, the calculated mass was 488.2145, and the observed mass was 488.2466.

7-[1-(4-Methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-

deoxyadenosine-5'-triphosphate (WW6p087 ds1 & ds2): POCl₃ (11 μL, 0.12 mmol) was
added to a solution of compound dA.40 (28 mg, 0.06 mmol) in trimethylphosphate (0.35 mL), and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (237 mg, 0.5 mmol) and tri-*n*-butylamine (100 μL) in anhydrous DMF (1.0 mL) was added. After 10 minutes of stirring,

triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (10 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5×20 cm) with a linear gradient of 25% acetonitrile/75% 0.1 M

- 5 triethylammonium bicarbonate (TEAB) to 25% acetonitrile/75% 1.5 M TEAB over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 7-[1-(4-methoxy-2-nitrophenyl)-2-methyl-propyloxy]methyl-7-deaza-2'-deoxyadenosine-5'triphosphate WW6p087 as mixture of two diastereomers, which were separated by reverse phase HPLC on a Perkin Elmer Aquapore OD-300 column (7 μm, 250 × 4.6 mm) to yield the
- 10 single diastereomer WW6p087 ds1 (fast eluting) and WW6p087 ds2 (slow eluting). Mobile phase: A, 100 mM triethylammonium acetate (TEAA) in water; B, 100 mM TEAA in water/CH₃CN (30:70).

Example 9 – Synthesis of Chemically Cleavable Analogs

Synthesis of 5-(benzyloxy)methyl-2'-deoxyuridine-5'-triphosphate

WW5p145

15

Scheme 30. Synthesis of 5-(benzyloxy)methyl-2'-deoxyuridine-5'-triphosphate. (i) benzyl alcohol, neat, 112°C, 44%; (ii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

5-(Benzyloxy)methyl-2'-deoxyuridine (dU.n1): Compound dU.x0 (381 mg, 0.586 5 mmol) and benzyl alcohol (634 mg, 5.864 mmol) were heated neat at 112°C for 30 minutes under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of dichloromethane, and purified by silica gel chromatography to yield 5-(benzyloxy)methyl-2'-deoxyuridine dU.n1 (89 mg, 44%). It is noted that dU.n1 is known (e.g., see Mel'nik et al., 1991, which is incorporated herein by reference), but it was obtained in a different way than reported here). ¹H NMR (400 MHz, DMSO- d_6): δ 11.40 (s, 1 H, D₂O 10 exchangeable, 3-NH), 7.94 (s, 1 H, H-6), 7.30 (m, 5 H, Ph-H), 6.17 (t, 1 H, J = 6.8 Hz, H-1'), 5.26 (d, J = 4.2 Hz, 1 H, D₂O exchangeable, 3'-OH), 5.04 (t, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.49 (s, 2 H, PhCH₂), 4.24 (m, 1 H, H-3'), 4.17 (m, 2 H, 5-CH₂a and 5-CH₂b), 3.79 (m, 1 H, H-4'), 3.57 (m, 2 H, H-5'a and H-5'b), 2.10 (m, 2 H, H-2'a and H-2'b); ¹³C NMR (100 MHz. CD₃OD): δ 165.29 (C), 152.24 (C), 141.23 (CH), 139.62 (C), 129.52 15 (CH), 129.05 (CH), 128.84 (CH), 112.44 (C), 89.04 (CH), 86.73 (CH), 73.69 (CH₂), 72.27 (CH), 65.95 (CH₂), 62.92 (CH₂), 41.50 (CH₂).

5-(Benzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (WW5p145): POCl₃ (8 μL, 0.086 mmol) was added to a solution of compound **dU.n1** (15 mg, 0.043 mmol) and proton 20 sponge (18 mg, 0.086 mmol) in trimethylphosphate (0.35 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. A solution of bis-tri-*n*-butylammonium pyrophosphate (237 mg, 0.5 mmol) and tri-*n*-butylamine (100 μL) in anhydrous DMF (1 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then

- 25 concentrated *in vacuo*. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 5-(benzyloxy)methyl-2'-deoxyuridine-
- 5'-triphosphate WW5p145. ¹H NMR (400 MHz, D₂O): δ 7.82 (s, 1 H, H-6), 7.26 (m, 5 H, Ph-H), 6.14 (t, J = 6.8 Hz, 1 H, H-1'), 4.51 (m, 1 H, H-3'), 4.5 (s, 2 H, Ph-CH₂), 4.31 (2 d, 2 H, 5-CH₂), 4.08 (m, 3 H, H-4' and H-5'), 2.21 (m, 2 H, H-2'); ³¹P NMR (162 Hz, D₂O): δ -9.79 (d, J = 19.4 Hz), -11.67 (d, J = 21.0 Hz), -23.13 (t, J = 21.0 Hz).
Synthesis of 5-(1-phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine-5'-

triphosphate

WW5p143

Scheme 31. Synthesis of 5-(1-phenyl-2-methyl-propoxy)methyl-2'-deoxyuridine-5'triphosphate. (i) 2-methyl-1-phenyl-1-propanol, neat, 108-114°C, 12%; (ii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

5-(1-Phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine (dU.n2): Compound dU.x0 (0.331 g, 0.51 mmol) and 2-methyl-1-phenyl-1-propanol (1.238 g, 8.24 mmol) were heated neat at 108-114°C for one hour under a nitrogen atmosphere. The mixture was cooled down 10 to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 5-(1-phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine dU.n2 (26 mg, 12%, 1:1 mixture of diastereomers). 3',5'-O-Bis-(tert-butyldimethylsilyl)-5-(1-phenyl-2methyl-propyloxy)methyl-2'-deoxy-uridine (77 mg, 24%, 1:1 mixture of diastereomers) and (3' 5')-O-(tert-butyldimethylsilyl)-5-(1-phenyl-2-methyl-propyloxy)methyl-2'or 15 deoxyuridine (46 mg, 18%, 1:1 mixture of diastereomers) were also obtained from the reaction. ¹H NMR (400 MHz, DMSO- d_6) for **dU.n2** (1:1 mixture of diastereomers): δ 11.31 (br s, 1 H, D₂O exchangeable, 3-NH), 7.77 (2 s, 1 H, H-6), 7.29 (m, 5 H, Ph-H), 6.14 (m, 1 H, H-1'), 5.25 (d, J = 4.4 Hz, 1 H, D₂O exchangeable, 3'-OH), 4.98 (m, 1 H, D₂O exchangeable,

5'-OH), 4.22 (m, 1 H, H-3'), 4.00 (m, 1 H, PhCH), 3.91 (m, 2 H, 5-CH₂a and 5-CH₂b), 3.77 (m, 1 H, H-4'), 3.54 (m, 2 H, H-5'a and H-5'b), 2.06 (m, 2 H, H-2'a and H-2'b), 1.83 (m, 2 H, C<u>H</u>(CH₃)₂), 0.88 (d, *J* = 6.8 Hz, 3 H, CH₃), 0.66 (d, *J* = 6.8 Hz, 3 H, CH₃).

- ¹H NMR (400 MHz, CDCl₃) for 3',5'-O-bis-(tert-butyldimethylsilyl)-5-(1-phenyl-2methyl-propyloxy)methyl-2'-deoxyuridine (1:1 mixture of diastereomers): δ 9.07 and 9.06 (2 s, 1 H, 3-NH), 7.95 and 7.53 (2 s, 1 H, H-6), 7.29 (m, 5 H, Ph-H), 6.29 (m, 1 H, H-1'), 4.24 (m, 1 H, H-3'), 4.03 (m, 4 H, 5-CH₂a, 5-CH₂b, PhCH, and H-4'), 3.77 (AB dd, J = 11.2 and 3.4 Hz, 1 H, H-5'a), 3.75 (AB dd, J = 11.2 and 4.4 Hz, 1 H, H-5'b), 2.29 (m, 1 H, H-2'a), 1.98 (m, 1 H, H-2'b), 1.04 and 1.01 (2 d, J = 6.4 and 6.8 Hz, 3 H, CH₃), 0.90 (s, 9 H, (CH₃)₃C),
 0.89 and 0.88 (2 s, 9 H, (CH₃)₃C), 0.74 and 0.73 (2 d, J = 6.8 and 6.4 Hz, 3 H, CH₃) 0.10 and 0.09 (2 s, 6 H, CH₃Si), 0.08 and 0.07 (2 s, 3 H, CH₃Si), 0.06 and 0.05 (2 s, 3 H, (CH₃)₂Si);
 ¹³C NMR (100 MHz, CDCl₃) for 3',5'O-bis-(tert-butyldimethylsilyl)-5-(1-phenyl-2-methylpropyloxy)methyl-2'-deoxyuridine (1:1 mixture of diastereomers): δ 162.51 (C), 150.20 and 150.15 (C), 140.83 and 140.79 (C), 137.28 and 137.19 (CH), 128.15 and 128.11 (CH), 127.54
- (CH), 127.45 (CH), 112.41 (C), 88.40 and 88.31 (CH), 87.83 and 87.78 (CH), 85.38 and 85.30 (CH), 72.49 and 72.41 (CH), 63.64 and 63.57 (CH₂), 63.22 (CH₂), 40.79 (CH₂), 34.82 and 34.79 (CH), 25.93 and 25.92 (C(CH₃)₃), 25.76 and 25.72 (C(CH₃)₃), 19.20 and 19.17 (CH₃), 19.00 (CH₃), 18.38 (C), 18.00 (C), -4.65 (CH₃), -4.80 (CH₃), -5.35 and -5.38 (CH₃), -5.40 and -5.44 (CH₃).
- ¹*H* NMR (400 MHz, CDCl₃) for (3' or 5')-O-(tert-butyldimethylsilyl)-5-(1-phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine (1:1 mixture of diastereomers): δ 9.09 (s, 1 H, 3-NH), 7.61 (s, 1 H, H-6), 7.28 (m, 5 H, Ph-H), 6.18 (m, 1 H, H-1'), 4.51 (m, 1 H, H-3'), 4.09 (s, 2 H, 5-CH₂a, 5-CH₂b), 3.98 (d, *J* = 7.2 Hz, 1 H, PhCH), 3.93 (m, 1 H, H-4'), 3.90 (m, 1 H, H-5'a), 3.73 (m, 1 H, H-5'b), 2.50 (br, 1 H, 3'- or 5'-OH), 2.30 (m, 1 H, H-2'a), 1.98 (m, 2 H, H-2'b and CH(CH₃)₂), 1.01 (d, *J* = 6.4 Hz, 3 H, CH₃), 0.91 (s, 9 H, (CH₃)₃C), 0.74 (d, *J* = 6.8 Hz, 3 H, CH₃), 0.10 (s, 3 H, CH₃Si), 0.07 and 0.06 (2 s, 3 H, CH₃Si).

5-(1-Phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine-5'-triphosphate (**WW5p143**): POCl₃ (6 μ L, 0.063 mmol) was added to a solution of compound **dU.n2** (15 mg, 0.032 mmol) and proton sponge (14 mg, 0.063 mmol) in trimethylphosphate (0.4 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. Additional POCl₃ (6 μ L, 0.063 mmol) was added twice in one hour intervals. A solution of bis-tri-*n*-butylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-*n*-butylamine (120 μ L) in anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5×10 cm) with a linear

5 gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 5-(1-phenyl-2-methylpropyloxy)methyl-2'-deoxyuridine-5-'triphosphate WW5p143 (1:1)of mixture diastereomers); ³¹P NMR (162 Hz, D₂O): δ -10.88 (m), -11.33 (m), -23.08 (m).

10

Synthesis of 5-(2-methylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate

Scheme 32. Synthesis of 5-(2-methylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate. (i) 2-methylbenzyl alcohol, neat, 110°C; (ii) *n*-Bu₄NF, THF, room temperature, 38%; (iii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

15

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-(2-methylbenzyloxy)methyl-2'-deoxyuridine (dU.n3) and (3' or 5')-O-(tert-butyldimethylsilyl)-5-(2-methylbenzyloxy)methyl-2'deoxyuridine (dU.n4): Compound dU.x0 (0.438 g, 0.67 mmol) and 2-methylbenzyl alcohol (0.823 g, 6.74 mmol) were heated neat at 110°C for 45 minutes under a nitrogen atmosphere. The mixture was cooled down to room temperature and purified by silica gel chromatography to yield 3',5'-O-bis-(tert-butyldimethylsilyl)-5-(2-methylbenzyloxy)methyl-2'-deoxyuridine **dU.n3** (20 mg, 5%) and (3' or 5')-O-(tert-butyldimethylsilyl)-5-(2-methylbenzyloxy)methyl-2'-deoxyuridine **dU.n4** (43 mg, 14%). ¹H NMR (400 MHz, CDCl₃) for **dU.n3**: δ 8.42 (s, 1 H,

- NH), 7.66 (s, 1 H, H-6), 7.30 (m, 1 H, Ph-H), 7.18 (m, 3 H, Ph-H), 6.28 (t, 1 H, H-1'), 4.59 (2 d, 2 H, Ph-CH₂), 4.38 (m, 1 H, H-3'), 4.27 (2 d, 2 H, 5-CH₂), 3.94 (m, 1 H, H-4'), 3.75 (m, 2 H, H-5'), 2.34 (s, 3 H, CH₃), 2.26 (m, 1 H, H-2'a), 2.0 (m, 1 H, H-2'b), 0.89 and 0.90 (2 s, 18 H, (CH₃)₃CSi), 0.09 and 0.08 (2 s, 6 H, (CH₃)₂Si), 0.07 and 0.06 (2 s, 6 H, (CH₃)₂Si); ¹H NMR (400 MHz, CDCl₃) for dU.n4: δ 8.67 (s, 1 H, NH), 7.73(s, 1 H, H-6), 7.33 (m, 1 H, Ph-10 H), 7.22 (m, 3 H, Ph-H), 6.16 (t, 1 H, J = 6.4 Hz, H-1'), 4.6 (s, 2 H, Ph-CH₂), 4.46 (m, 1 H, H-3'), 4.34 (2 d, 2 H, 5-CH₂), 3.92 (m, 1 H, H-4'), 3.81 (m, 1 H, H-5'a), 3.67 (m, 1 H, H-5'b),
- 2.35 (s, 3 H, CH₃), 2.30 (m, 1 H, H-2'a), 2.24 (m, 1 H, H-2'b), 0.89 (1 s, 9 H, (CH₃)₃CSi),
 0.07 (2 s, 6 H, (CH₃)₂Si).
- 5-(2-Methylbenzyloxy)methyl-2'-deoxyuridine (dU.n5): A solution of compound
 dU.n3 (20 mg, 0.034 mmol) in THF (2 mL) was treated with n-Bu₄NF (32 mg, 0.1 mmol) at room temperature for three hours. Separately a solution of compound dU.n4 (43 mg, 0.09 mmol) in THF (4 mL) was also treated with n-Bu₄NF (64 mg, 0.2 mmol) at room temperature for three hours. The two reaction mixtures were combined, concentrated *in vacuo*, and purified by silica gel column chromatography to yield 5-(2-methylbenzyloxy)methyl-2'deoxyuridine dU.n5 (17 mg, 38%). ¹H NMR (400 MHz, DMSO-d₆): δ 11.38 (s, 1 H, D₂O exchangeable, NH), 7.93 (s, 1 H, H-6), 7.29 (m, 1 H, Ph-H), 7.15 (m, 3 H, Ph-H), 6.15 (t, 1
 - H, *J* = 6.8 Hz, H-1'), 5.24 (d, *J* = 4.4 Hz, 1 H, D₂O exchangeable, 3'-OH), 5.02 (t, 1 H, *J* = 5.2 Hz, D₂O exchangeable, 5'-OH), 4.46 (s, 2 H, Ph-CH₂), 4.22 (m, 1 H, H-3'), 4.16 (2 d, 2 H, 5-CH₂), 3.77 (m, 1 H, H-4'), 3.55 (m, 2 H, H-5'), 2.24 (s, 1 H, CH₃), 2.08 (m, 2 H, H-2').
- 5-(2-Methylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (WW147): POCl₃ (8 μL, 0.083 mmol) was added to a solution of compound dU.n5 (15 mg, 0.041 mmol) and proton sponge (18 mg, 0.083 mmol) in trimethylphosphate (0.35 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. Additional POCl₃ (4 μL, 0.041 mmol) was added and the mixture was stirred for another two hours at 0°C. A solution of *bis*-30 tri-*n*-butylammonium pyrophosphate (237 mg, 0.5 mmol) and tri-*n*-butylamine (100 μL) in anhydrous DMF (1 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in water (5 mL),

filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 \times 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 5-(2-

5 methylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate WW5p147. ¹H NMR (400 MHz, D₂O): δ 7.96 (s, 1 H, H-6), 7.32 (m, 1 H, Ph-H), 7.24 (m, 3 H, Ph-H), 6.28 (t, J = 6.8 Hz, 1 H, H-1'), 4.63 (m, 3 H, Ph-CH₂ and H-3'), 4.43 (2 d, 2 H, 5-CH₂), 4.20 (m, 3 H, H-4' and H-5'), 2.36 (m, 2 H, H-2'), 2.31 (s, 3 H, CH₃); ³¹P NMR (162 Hz, D₂O): δ -7.29 (m), -10.66 (d, J = 17.8 Hz), -21.4 (m).

10

Synthesis of 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate

WW5p149

Scheme 33. Synthesis of 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (i) *n*-BuLi, formaldehyde minus 78°C, 59%; (ii) 2-isopropylbenzyl alcohol, neat, 110-112°C,

12%; (iii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

2-Isopropylbenzyl alcohol: To a solution of 1-bromo-2-isopropylbenzene (2.50 g, 12.56 mmol) in anhydrous THF (40 mL), 2,2'-dipyridyl (ca 2 mg) was added under nitrogen 5 atmosphere (Zhi et al., 2003, which is incorporated herein by reference). The mixture was cooled down minus 78°C, and a solution of *n*-butyllithium (5.52 mL, 2.5 M in hexanes, 13.82 mmol) was added dropwise via syringe within the period of ten minutes. Upon addition, the mixture was stirred for 30 minutes, then warmed up to minus 30°C, and a flow of formaldehyde (generated from 1.77 g of paraformaldehyde by heating at 160°C) was passed 10 through the solution until the deep red color disappeared completely. The mixture was quenched with saturated ammonium chloride (5 mL), then poured into brine (15 mL). Organic layer was separated; aqueous layer was extracted twice with dichloromethane (20 mL each); combined extracts were dried over anhydrous Na₂SO₄, evaporated, and purified by silica gel chromatography to yield 2-isopropylbenzyl alcohol (1.11 g, 59%) as an oil. ¹HNMR 15 (400 MHz, CDCl₃): § 7.30 (m, 3 H, Ph-H), 7.18 (m, 3 H, Ph-H), 4.75 (s, 2 H, CH₂OH), 3.27

(sep, J = 6.6 Hz, 1 H, C<u>H</u>(CH₃)₂), 1.53 (s, 1 H, CH₂O<u>H</u>), 1.26 (d, J = 6.6 Hz, 1 H, CH(C<u>H</u>₃)₂).

5-(2-Isopropylbenzyloxy)methyl-2'-deoxyuridine (dU.n6): Compound dU.x0 (0.331 g,

0.51 mmol) and 2-isopropylbenzyl alcohol (1.238 g, 8.24 mmol) were heated neat at 110-112°C for 1.5 hours under nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in ethyl acetate, and purified by silica gel chromatography to yield 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine dU.n6 (33 mg, 12%). 3',5'-O-bis-(*tert*-butyldimethylsilyl)-5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine (134 mg, 29%) and (3' or 5')-O-(*tert*-butyldimethylsilyl)-5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine (98 mg, 26%) were also obtained from the reaction. ¹H NMR (400 MHz, DMSO-d₆) for dU.n6: δ 11.41 (s, 1 H, D₂O exchangeable, NH), 7.94 (s, 1 H, H-6), 7.29 (m, 3 H, Ph-H), 7.14 (m, 1 H, Ph-H), 6.16 (t, 1 H, J = 6.8 Hz, H-1'), 5.26 (t, J = 4.4 Hz, 1 H, D₂O exchangeable, 5'-OH), 5.03 (t, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.51 (s, 2 H, CH₂O), 4.24 (m, 1 H, H-3'), 4.18 (AB d, J = 12.7 Hz, 1 H, 5-CH₂a), 4.15 (AB d, J = 12.7 Hz, 1 H, 5-CH₂b), 3.78 (m, 1 H,

H-4'), 3.56 (m, 2 H, H-5'a and H-5'b), 3.15 (sep, J = 6.8 Hz, 1 H, CH(CH₃)₂), 2.09 (m, 2 H, H-2'a and H-2'b), 1.15 (d, J = 6.8 Hz, 6 H, CH(CH₃)₂); ¹³C NMR (100 MHz, CD₃OD) for dU.n6: δ 163.77 (C), 150.77 (C), 147.85 (C), 139.85 (CH), 134.29 (C), 129.41 (CH), 128.19

(CH), 125.19 (CH), 125.03 (CH), 110.97 (C), 87.56 (CH), 85.22 (CH), 70.85 (CH), 70.35 (CH₂), 64.29 (CH₂), 61.47 (CH₂), 40.01 (CH₂), 28.39 (CH), 23.09 (CH₃).

^IH NMR (400 MHz, CDCl₃) for 3',5'-O-bis-(tert-butyldimethylsilyl)-5-(2isopropylbenzyloxy)methyl-2'-deoxyuridine: δ 9.60 (s, 1 H, 3-NH), 7.64 (s, 1 H, H-6), 7.28 5 (m, 3 H, Ph-H), 7.28 (dt, J = 7.1 and 1.8 Hz, 1 H, Ph-H), 6.29 (dd, J = 7.7 and 5.9 Hz, 1 H, H-1'), 4.64 (s, 2 H, CH₂O), 4.38 (m, 1 H, H-3'), 4.31 (AB d, *J* = 12.7 Hz, 1 H, 5-CH₂a), 4.27 (AB d, J = 12.7 Hz, 1 H, 5-CH₂b), 3.93 (m, 1 H, H-4'), 3.74 (m, 2 H, H-5'a and H-5'b), 3.24 $(\text{sep}, J = 6.8 \text{ Hz}, 1 \text{ H}, \text{CH}(\text{CH}_3)_2), 2.28 \text{ (m}, 1 \text{ H}, \text{H}-2'a), 2.00 \text{ (m}, 1 \text{ H}, \text{H}-2'b), 1.23 \text{ (d}, J = 6.8 \text{ Hz})$ Hz, 6 H, CH(CH₃)₂), 0.89 (s, 9 H, (CH₃)₃C), 0.88 (s, 9 H, (CH₃)₃C), 0.09 (s, 3 H, CH₃Si), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si), 0.05 (s, 3 H, CH₃Si); ¹³C NMR (100 MHz, CDCl₃) 10 for 3',5'-O-bis-(tert-butyldimethylsilyl)-5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine: δ 162.94 (C), 150.29 (C), 147.74 (C), 138.11 (CH), 134.27 (C), 129.41 (CH), 128.40 (CH), 125.54 (CH), 125.38 (CH), 111.90 (C), 87.81 (CH), 85.28 (CH), 72.24 (CH), 71.08 (CH₂), 64.44 (CH₂), 62.99 (CH₂), 41.08 (CH₂), 28.63 (CH), 25.92 (C(CH₃)₃), 25.74 (C(CH₃)₃), 23.99 15 (CH₃), 18.36 (C), 17.98 (C), -4.67 (CH₃), -4.84 (CH₃), -5.44 (CH₃), -5.52 (CH₃).

¹*H* NMR (400 MHz, DMSO-d₆) for (3' or 5')-O-(tert-butyldimethylsilyl)-5-(2isopropylbenzyloxy)methyl-2'-deoxyuridine: δ 11.42 (s, 1 H, D₂O exchangeable, NH), 7.89 (s, 1 H, H-6), 7.28 (m, 3 H, Ph-H), 7.12 (m, 1 H, Ph-H), 6.14 (t, 1 H, J = 6.8 Hz, H-1'), 5.07 (t, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.51 (s, 2 H, CH₂O), 4.41 (m, 1 H, H-3'), 4.31

- 20 (AB d, J = 12.7 Hz, 1 H, 5-CH₂a), 4.15 (AB d, J = 12.7 Hz, 1 H, 5-CH₂b), 3.76 (m, 1 H, H-4'), 3.56 (m, 2 H, H-5'a and H-5'b), 3.14 (sep, J = 6.8 Hz, 1 H, CH(CH₃)₂), 2.16 (m, 1 H, H-2'a), 2.09 (m, 1 H, H-2'b), 1.14 (d, J = 6.8 Hz, 6 H, CH(CH₃)₂), 0.86 (s, 9 H, (CH₃)₃C), 0.06 (s, 6 H, (CH₃)₂Si); ¹³C NMR (100 MHz, CDCl₃) for (3 'or 5 ')-O-(tert-butyldimethylsilyl)-5-(2-isopropylbenzyloxy)methyl-2'-deoxy-uridine: δ 162.77 (C), 150.30 (C), 147.76 (C), 138.79
- (CH), 134.26 (C), 129.32 (CH), 128.54 (CH), 125.60 (CH), 125.48 (CH), 111.92 (C), 87.77 (CH), 87.14 (CH), 71.72 (CH), 71.03 (CH₂), 64.40 (CH₂), 61.98 (CH₂), 40.68 (CH₂), 28.68 (CH), 25.71 (C(CH₃)₃), 23.99 (CH₃), 17.93 (C), -4.73 (CH₃), -4.88 (CH₃).

Compounds 3',5'-O-bis-(tert-butyldimethylsilyl)-5-(2-isopropylbenzyl-oxy)methyl-2'deoxyuridine (134 mg, 0.22 mmol) and (3' or 5')-O-(tert-butyldimethylsilyl)-5-(2isopropylbenzyloxy)methyl-2'-deoxyuridine (98 mg, 0.19 mmol) were dissolved in THF (5 mL), and a solution of tetra-*n*-butylammonium fluoride trihydrate (323 mg, 1.05 mmol) in THF (2 mL) was added. The mixture was stirred at room temperature for one hour, then concentrated *in vacuo* and purified by silica gel column chromatography to give 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine **dU.n6** (108 mg, 67%).

5-(2-Isopropylbenzyloxy)methyl-2'-deoxyuridine-5'triphosphate (WW5p149): POCl₃
(15 μL, 0.164 mmol) was added to a solution of compound dU.n6 (32 mg, 0.082 mmol) and
proton sponge (35 mg, 0.164 mmol) in trimethylphosphate (0.5 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for 2 hours. A solution of *bis*-tri-*n*-butylammonium pyrophosphate (356 mg, 0.75 mmol) and tri-*n*-butylamine (150 μL) in anhydrous DMF (1.5 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at

- 10 room temperature and then concentrated *in vacuo*. The residue was dissolved in a mixture of water (5 mL) and acetonitrile (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were
- combined and lyophilized to yield 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate WW5p149. ¹H NMR (400 MHz, D₂O): δ 7.98 (s, 1 H, H-6), 7.36 (m, 3 H, Ph-H), 7.21 (m, 1 H, Ph-H), 6.27 (t, J = 6.8 Hz, 1 H, H-1'), 4.64 (m, 3 H, Ph-CH₂ and H-3'), 4.43 (AB d, 1 H, J = 12 Hz, 5-CH₂a), 4.39 (AB d, 1 H, J = 12 Hz, 5-CH₂b), 4.25 (m, 3 H, H-4' and H-5'), 2.34 (m, 2 H, H-2'), 1.15 (d, 3 H, J = 6.8 Hz, CH₃); ³¹P NMR (162 Hz, D₂O): δ -
- 20 5.11 (d, J = 21.0 Hz), -10.5 (d, J = 19.4 Hz), -20.94 (t, J = 21.0 Hz).

Synthesis of 5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate

Scheme 34. Synthesis of 5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate.
(i) NaNO₂, HBr, 5 -10°C, then Cu(0), 50°C, 27%; (ii) *n*-BuLi, formaldehyde, minus 78°C, 75%; (iii) 2-*tert*-butylbenzyl alcohol, neat, 115-118°C; (iv) *n*-Bu₄NF, THF, room temperature, 70%; (v) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

10

5

15.6 mL) in hydrobromic acid (40% w/w, 15 mL) cooled at <5°C (ice/salt bath), a solution of 7.55 g (0.11 mol) of sodium nitrite in 10 mL of water was added at a rate that the temperature did not exceed 10°C (*ca* two hour addition time). When the diazotization was completed, 0.20 g of copper powder was added. (CAUTION: *the solution was refluxed very cautiously because of vigorous gas evolution*!). When the vigorous evolution of nitrogen subsided, the

1-Bromo-2-tert-butylbenzene: To a solution of 2-tert-butylaniline (7.46 g, 50 mmol

system was kept at 50°C for 30 minutes and was then diluted with 80 mL of water and extracted three times with diethyl ether (100 mL each). The organic layer was washed with 10% solution of KOH; dried over Na₂SO₄, concentrated *in vacuo*, and purified by chromatography on silica gel chromatography. The product obtained was further distilled at 85°C (3 mm Hg) to yield 1-bromo-2-*tert*-butylbenzene (2.88 g, 27%). ¹H NMR (400 MHz, CDCl₃): δ 7.58 (m, 1 H, Ph-H), 7.45 (m, 1 H, Ph-H), 7.24 (m, 1 H, Ph-H), 7.02 (m, 1 H, Ph-

H), 1.51 (s, 9 H, C(CH₃)₃).

5

2-tert-Butylbenzyl alcohol: To a solution of 1-bromo-2-tert-butylbenzene (2.88 g, 13.51 mmol) in anhydrous THF (45 mL) 2,2'-dipyridyl (ca 10 mg) was added under a nitrogen atmosphere. The mixture was cooled down minus 78°C, and a solution of *n*-butyllithium (2.5 M in hexanes, 5.94 mL, 14.86 mmol) was added dropwise via syringe within the period of ten minutes. Upon addition, the mixture was stirred for 30 minutes, then warmed up to minus 30°C, and a flow of formaldehyde (generated from 1.91 g of paraformaldehyde by heating at over 160°C) was passed through the solution until the deep

15 red color disappeared completely. The mixture was quenched with saturated ammonium chloride solution (5 mL), then poured into a mixture of dichloromethane (100 mL) and water (50 mL). The organic phase was separated and the aqueous phase was extracted with dichloromethane (20 mL) twice. The combined organic phase was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by silica gel chromatography to yield 2-*tert*-

20 butylbenzyl alcohol (1.67 g, 75%) as an oil. ¹H NMR (400 MHz, CDCl₃): δ 7.50 (m, 1 H, Ph-H), 7.41 (m, 1 H, Ph-H), 7.24 (m, 2 H, Ph-H), 4.93 (d, J = 4.8 Hz, 2 H, CH₂OH), 1.54 (br, 1 H, CH₂OH), 1.43 (s, 1 H, C(CH₃)₃).

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine

- (dU.n7) and (3' or 5)-O-(tert-butyldimethylsilyl)-5-(2-tert-butylbenzyloxy)methyl-2'deoxyuridine (dU.n8): Compound dU.x0 (230 mg, 0.36 mmol) and 2-tert-butylbenzyl alcohol (0.49 g, 3.60 mmol) were heated neat at 118-122°C for one hour under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 3',5'-O-bis-(tert-butyldimethylsilyl)-5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine dU.n7 (32 mg, 17%)
 and (3' or 5')-O-(tert-butyldimethylsilyl)-5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine
- **dU.n8** (28 mg, 19%). ¹H NMR (400 MHz, CDCl₃) for **dU.n7**: δ 9.28 (s, 1 H, 3-NH), 7.77 (s, 1 H, H-6), 7.43 (m, 2 H, Ph-H), 7.25 (m, 2 H, Ph-H), 6.16 (t, J = 6.6 Hz, 1 H, H-1'), 4.84 (AB d, J = 11.2 Hz, 1 H, 5-CH₂a), 4.81 (AB d, J = 11.2 Hz, 1 H, 5-CH₂b), 4.40 (m, 1 H, H-3'),

4.36 (s, 2 H, CH₂O), 3.91 (m, 1 H, H-4'), 3.76 (AB d, *J* = 12.0 Hz, 1 H, H-5'a), 3.64 (AB d, *J* = 12.0 Hz, 1 H, H-5'b), 2.27 (m, 2 H, H-2'a and H-2'b), 1.40 (s, 9 H, C(CH₃)₃), 0.89 (s, 9 H, SiC(CH₃)₃), 0.88 (s, 9 H, (CH₃)₃CSi), 0.09 (s, 3 H, CH₃Si), 0.07 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si), 0.05 (s, 3 H, CH₃Si); ¹H NMR (400 MHz, DMSO-d₆) for dU.n8: δ 11.42 (s, 1 H, D₂O exchangeable, NH), 7.93 (s, 1 H, H-6), 7.42 (m, 1 H, Ph-H), 7.35 (m, 1 H, Ph-H), 7.18 (m, 2 H, Ph-H), 6.15 (t, 1 H, J = 6.8 Hz, H-1'), 5.08 (t, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.66 (s, 2 H, CH₂O), 4.41 (m, 1 H, H-3'), 4.26 (AB d, *J* = 11.6 Hz, 1 H, 5-CH₂a), 4.21 (AB d, J = 11.6 Hz, 1 H, 5-CH₂b), 3.78 (m, 1 H, H-4'), 3.56 (m, 2 H, H-5'a and H-5'b), 2.18 (m, 2 H, H-2'a and H-2'b), 1.34 (s, 9 H, (CH₃)₃C), 0.85 (s, 9 H, (CH₃)₃CSi), 0.07 (s, 6 H, (CH₃)₂Si).

10

15

5

5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine (dU.n9): Compounds dU.n7 (32 mg, 0.050 mmol) and dU.n8 (27 mg, 0.052 mmol) were dissolved in THF (4 mL), and a solution of tetra-n-butylammonium fluoride trihydrate (65 mg, 0.204 mmol) in THF (2 mL) was added. The mixture was stirred at room temperature for one hour, then concentrated in vacuo and purified by silica gel column chromatography to give 5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine dU.n9 (108 mg, 67%). ¹H NMR (400 MHz, CD₃OD): δ 8.10 (s, 1 H, H-6), 7.46 (m, 1 H, Ph-H), 7.39 (m, 1 H, Ph-H), 7.20 (m, 1 H, Ph-H), 6.28 (t, 1 H, J = 6.6 Hz, H-1'), 4.79 (s, 2 H, CH₂O), 4.37 (m, 3 H, 5-CH₂a, 5-CH₂b, and H-3'), 3.92 (m, 1 H, H-4'), 3.76 (AB dd, J = 12.4 and 3.2 Hz, 1 H, H-5'a), 3.70 (AB dd, J = 12.4 and 3.6 Hz, 1 H, H-5'a, H-

5'b), 2.22 (m, 2 H, H-2'a and H-2'b), 1.39 (s, 9 H, C(CH₃)₃).

20

5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (WW6p024): POCl₃ (10 µL, 0.11 mmol) was added to a solution of compound dU.n9 (30 mg, 0.074 mmol) and proton sponge (32 mg, 0.15 mmol) in trimethylphosphate (0.4 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. A solution of *bis*-tri-*n*butylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-n-butylamine (120 µL) in 25 anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated in vacuo. The residue was dissolved in a mixture of water (5 mL) and acetonitrile (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5×10 cm) with a linear gradient of 25% 30 acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75%

TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 5-(2-tert-butylbenzyloxy)methyl-2'-deoxyuridine-5'triphosphate WW6p024. ¹H NMR (400 MHz, D_2O): δ 7.89 (s, 1 H, H-6), 7.34 (d, 1 H, J = 1.6 Hz, Ph-H), 7.32 (d, 1 H, J = 2.0 Hz, Ph-H), 7.15 (m, 2 H, Ph-H), 6.17 (t, J = 6.8 Hz, 1 H, H-1'), 4.64 (2 d, 2 H, Ph-CH₂), 4.48 (m, 1 H, H-3'), 4.32 (2 d, 2 H, 5-CH₂), 4.04 (m, 3 H, H-4' and H-5'), 2.23 (m, 2 H, H-2'), 1.20 (s, 9 H, C(CH₃)₃); ³¹*P NMR* (162 Hz, *D*₂*O*): δ -11.76 (m), -12.41 (d, J = 19.4 Hz), -24.0 (t, J = 19.4 Hz).

5

Synthesis of 5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate

WW6p010

Scheme 35. Synthesis of 5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (i) 2biphenylmethanol, neat, 118-122°C, 15%; (ii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

10

15

5-(2-Phenylbenzyloxy)methyl-2'-deoxyuridine (dU.n10): Compound dU.x0 (0.916 g, 1.41 mmol) and 2-biphenylmethanol (2.596 g, 14.10 mmol) were heated neat at 118 -122°C for 1.5 hours under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in ethyl acetate, and purified by silica gel chromatography to yield 5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine dU.n10 (87 mg, 15%). 3',5'-O-Bis-(*tert*-butyldimethylsilyl)-5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine (134 mg, 19%) and (3' or 5')-O-(*tert*-butyldimethylsilyl)-5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine (263 mg, 36%) were also obtained from the reaction. ¹H NMR (400 MHz, DMSO-d₆) for dU.n10: δ 11.40 (s, 1 H, D₂O exchangeable, NH), 7.91 (s, 1 H, H-6), 7.39 (m, 9 H, Ph-H), 6.14 (t, 1 H, J = 6.8

Hz, H-1'), 5.25 (t, J = 4.4 Hz, 1 H, D₂O exchangeable, 5'-OH), 5.02 (t, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.33 (s, 2 H, CH₂O), 4.21 (m, 1 H, H-3'), 4.15 (AB d, J = 11.6 Hz, 1 H, 5-CH₂a), 4.08 (AB d, J = 12.7 Hz, 1 H, 5-CH₂b), 3.78 (m, 1 H, H-4'), 3.55 (m, 2 H, H-5'a and H-5'b), 2.05 (m, 2 H, H-2'a and H-2'b); ^{*I*}H NMR (400 MHz, CDCl₃) for 3',5'-O-bis-(tert-

- butyldimethylsilyl)-5-(2-phenylbenzyloxy)methyl-2 'deoxyuridine: δ 8.75 (s, 1 H, 3-NH), 7.63 (s, 1 H, H-6), 7.37 (m, 9 H, Ph-H), 6.29 (dd, J = 7.6 and 6.0 Hz, 1 H, H-1'), 4.49 (s, 2 H, CH₂O), 4.39 (m, 1 H, H-3'), 4.24 (AB d, J = 12.7 Hz, 1 H, 5-CH₂a), 4.19 (AB d, J = 12.7 Hz, 1 H, 5-CH₂b), 3.96 (m, 1 H, H-4'), 3.76 (m, 2 H, H-5'a and H-5'b), 2.28 (m, 1 H, H-2'a), 2.03 (m, 1 H, H-2'b), 0.91 (s, 9 H, (CH₃)₃C), 0.89 (s, 9 H, (CH₃)₃C), 0.09 (s, 3 H, CH₃Si), 0.06 (s,
- 3 H, CH₃Si), 0.05 (s, 3 H, CH₃Si), 0.02 (s, 3 H, CH₃Si): ¹H NMR (400 MHz, DMSO-d₆) for (3' or 5)-O-(tert-butyldimethylsilyl)-5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine: δ 11.42 (s, 1 H, D₂O exchangeable, NH), 7.86 (s, 1 H, H-6), 7.39 (m, 9 H, Ph-H), 6.13 (t, 1 H, J = 6.8 Hz, H-1'), 5.08 (t, J = 5.2 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.39 (m, 1 H, H-3'), 4.33 (s, 2 H, CH₂O), 4.15 (AB d, J = 11.6 Hz, 1 H, 5-CH₂a), 4.09 (AB d, J = 11.6 Hz, 1 H, 5-CH₂b),
 3 77 (m, 1 H, H-4'), 3 54 (m, 2 H, H-5'a and H-5'b), 2.08 (m, 2 H, H-2'a and H-2'b), 0.87 (s)
- 3.77 (m, 1 H, H-4'), 3.54 (m, 2 H, H-5'a and H-5'b), 2.08 (m, 2 H, H-2'a and H-2'b), 0.87 (s, 9 H, (CH₃)₃C), 0.07 (2 s, 6 H, (CH₃)₂Si).

5-(2-Phenylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (WW6p010): POCl₃ (9 μL, 0.1 mmol) was added to a solution of compound dU.n10 (28 mg, 0.066 mmol) and proton sponge (28 mg, 0.13 mmol) in trimethylphosphate (0.4 mL) and the reaction was
stirred at 0°C under a nitrogen atmosphere for two hours. A solution of *bis*-tri-*n*-butylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-*n*-butylamine (120 μL) in anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in a mixture of water (6 mL) and acetonitrile (4 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were

triphosphate WW6p010. ¹H NMR (400 MHz, D₂O): δ 7.77 (s, 1 H, H-6), 7.56 (m, 1 H, Ph-H), 7.44 (m, 2 H, Ph-H), 7.39 (m, 3 H, Ph-H), 7.27 (m, 3 H, Ph-H), 6.25 (t, J = 6.8 Hz, 1 H, H-1'), 4.62 (m, 1 H, H-3'), 4.41 (AB d, 1 H, J = 11.2 Hz, 5-CH₂a), 4.36 (AB d, 1 H, J = 12

combined and lyophilized to yield 5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine-5'-

Hz, 5-CH₂b), 4.24 (m, 1 H, H-4'), 4.17 (m, 2 H, H-5'), 2.30 (m, 2 H, H-2'); ${}^{31}P$ NMR (162 Hz, D_2O): δ -5.59 (d, J = 19.4 Hz), -10.6 (d, J = 19.4 Hz), -21.04 (t, J = 19.4 Hz).

Synthesis of 5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate

WW6p015

Scheme 36. Synthesis of 5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate:
(i) BH₃(SMe₂), THF, reflux, 51%; (ii) 2,6-dimethylbenzyl alcohol, neat, 118-120°C, 80%;
(iii) *n*-Bu₄NF, THF, room temperature, 67%; (iv) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

2,6-dimethylbenzyl alcohol: 2,6-Dimethylbenzyl alcohol was prepared according to
Beaulieu *et al.* (2000, which is incorporated herein by reference), but was unsuccessful, so a different reducing agent was used. To a suspension of 2,6-dimethylbenzoic acid (1.00 g, 6.65 mmol) in anhydrous THF (10 mL) a solution of BH₃(SMe₂) in THF was cautiously added

under nitrogen atmosphere. The mixture was heated at reflux for 16 hours, then quenched with saturated ammonium chloride (5 mL) and 2 M HCl (10 mL). (CAUTION: *vigorous gas evolution*!). Organic layer was separated; aqueous layer was extracted three times with ethyl acetate (45 mL each); combined extracts were washed twice with saturated sodium bicarbonate (20 mL each), dried over anhydrous Na₂SO₄, evaporated, and purified by silica

bicarbonate (20 mL each), dried over anhydrous Na₂SO₄, evaporated, and purified by silica gel chromatography to yield 2,6-dimethylbenzyl alcohol (0.50 g, 51%) as an white solid. ¹*H NMR (400 MHz, CDCl₃):* δ 7.08 (m, 3 H, Ph-H), 4.70 (s, 2 H, Ph-CH₂), 4.05 (br s, 1 H, OH), 2.40 (s, 6 H, CH₃).

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine

- (*dU.n11*): Compound *dU.x0* (230 mg, 0.36 mmol) and 2,6-dimethylbenzyl alcohol (0.49 g, 3.60 mmol) were heated neat at 118-122°C for one hour under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 3',5'-O-bis-(*tert*-butyldimethylsilyl)-5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine *dU.n11* (170 mg, 80%). ¹*H NMR* (400 *MHz*, *CDCl₃*): δ 8.94 (s, 1 H, 3-NH), 7.63 (s, 1 H, H-6), 7.07 (m, 3 H, Ph-H), 6.28 (dd, *J* = 7.6 and 5.6 Hz, 1 H, H-1'), 4.63 (s, 2 H, CH₂O), 4.38 (m, 1 H, H-3'), 4.32 (AB d, *J* = 11.6 Hz, 1 H, 5-CH₂a), 4.27 (AB d, *J* = 11.6 Hz, 1 H, 5-CH₂b), 3.92 (m, 1 H, H-4'), 3.74 (m, 2 H, H-5'a and H-5'b), 2.39 (s, 6 H, 2 CH₃), 2.24 (m, 1 H, H-2'a), 2.00 (m, 1 H, H-2'b), 0.90 (s, 9 H, (CH₃)₃C), 0.89 (s, 9 H, (CH₃)₃C), 0.11 (s, 3 H, CH₃Si), 0.09 (s, 3 H,
- 20 CH₃Si), 0.08 (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si).

25

5-(2,6-Dimethylbenzyloxy)methyl-2'-deoxyuridine (dU.n12): To a solution of compound dU.n11 (131 mg, 0.22 mmol) in THF (4 mL), a solution of tetra-*n*-butylammonium fluoride trihydrate (171 mg, 0.54 mmol) in THF (2 mL) was added. The mixture was stirred at room temperature for 30 minutes, then concentrated *in vacuo* and purified by silica gel column chromatography to give 5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine dU.n12 (108 mg, 67%). ¹H NMR (400 MHz, CD₃OD): δ 8.08 (s, 1 H, H-6), 7.02 (m, 3 H, Ph-H), 6.26 (t, 1 H, J = 6.8 Hz, H-1'), 4.61 (s, 2 H, CH₂O), 4.38 (m, 1 H, H-3'), 4.33 (AB d, J = 11.6 Hz, 1 H, 5-CH₂a), 4.15 (AB d, J = 11.6 Hz, 1 H, 5-CH₂b), 3.91 (m, 1 H, H-4'), 3.77 (AB dd, J = 12.0 and 3.2 Hz, 1 H, H-5'a), 3.70 (AB dd, J = 12.0 and 3.6 Hz, 1 H,

H-5'a, H-5'b), 2.36 (s, 6 H, CH₃), 2.24 (m, 2 H, H-2'a and H-2'b); ¹³C NMR (100 MHz, CD₃OD): δ 163.80 (C), 150.76 (C), 140.85 (CH), 137.81 (C), 133.73 (C), 127.81 (CH), 127.72 (CH), 110.82 (C), 87.56 (CH), 85.22 (CH), 70.74 (CH), 66.33 (CH₂), 64.47 (CH₂), 61.38 (CH₂), 40.02 (CH₂), 18.36 (CH₃).

WO 2009/152353

5

10

5-(2,6-Dimethylbenzyloxy)methyl-2'-deoxyuridine-5'-triphosphate (WW6p015): POCl₃ (11 μL, 0.12 mmol) was added to a solution of compound **dU.n12** (30 mg, 0.08 mmol) and proton sponge (34 mg, 0.16 mmol) in trimethylphosphate (0.4 mL) and the reaction was stirred at 0°C under a nitrogen atmosphere for two hours. A solution of *bis*-tri-*n*butylammonium pyrophosphate (285 mg, 0.5 mmol) and tri-*n*-butylamine (120 μL) in anhydrous DMF (1.2 mL) was added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) was added. The reaction was stirred for one hour at room temperature and then concentrated *in vacuo*. The residue was dissolved in a mixture of water (5 mL) and acetonitrile (5 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 10 cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate were combined and lyophilized to yield 5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine-5'triphosphate WW6p015. ¹H NMR (400 MHz, D₂O): δ 8.0 (s, 1 H, H-6), 7.16 (m, 1 H, Ph-H),

15 7.07 (m, 3 H, Ph-H), 6.30 (t, 1 H, J = 7.2 Hz, H-1'), 4.64 (m, 3 H, Ph-CH₂ and H-3'), 4.47 (AB d, 1 H, J = 7.2 Hz, 5-CH₂a), 4.40 (AB d, 1 H, J = 7.2 Hz, 5-CH₂b), 4.20 (m, 3 H, H-4' and H-5'), 2.38 (m, 2 H, H-2'), 2.33 (s, 6 H, CH₃); ³¹P NMR (162 Hz, D₂O): δ -8.94 (d, J = 19.4 Hz), -10.78 (d, J = 19.4 Hz), -22.08 (d, J = 19.4 Hz).

Synthesis of 5-(3-phenyl-2-propenyloxy)methyl-2'-deoxyuridine and reaction to its 5'-triphosphate

Scheme 37. Synthesis of 5-(3-phenyl-2-propenyloxy)methyl-2'-deoxyuridine-5'-triphosphate.
(i) cinnamoyl alcohol, neat, 104°C, 36%; (ii) *n*-Bu₄NF, THF, room temperature, 76%; (iii) POCl₃, proton sponge, (MeO)₃PO, 0°C; (*n*-Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF; 1 M HNEt₃HCO₃.

3',5'-O-Bis-(tert-butyldimethylsilyl)-5-(3-phenyl-2-propenyloxy)methyl-2'-

- deoxyuridine (dU.n13): Compound dU.x0 (500 mg, 0.77 mmol) and cinnamyl alcohol (331
 mg, 2.17 mmol) was heated neat at 104°C for one hour under a nitrogen atmosphere. The mixture was cooled down to room temperature, dissolved in minimum amount of ethyl acetate, and purified by silica gel chromatography to yield 3',5'-O-bis-(*tert*-butyldimethylsilyl)-5-(3-phenyl-2-propenyloxy)methyl-2'-deoxyuridine dU.n13 (169 mg, 36%). ¹H NMR (400 MHz, CDCl₃): δ 8.32 (s, 3-NH), 7.68 (s, 1 H, H-6), 7.31 (m, 5 H, Ph-H),
- 6.64 (d, J = 16.0 Hz, 1 H, =CH), 6.28 (m, 2 H, H-1' and =CH), 4.40 (m, 1 H, H-3'), 4.28 (m, 2 H, 5-CH₂a and 5-CH₂b), 4.23 (m, 2 H, CH₂O), 3.94 (m, 1 H, H-4'), 3.80 (AB dd, J = 11.2 and 3.2 Hz, 1 H, H-5'a), 3.75 (AB dd, J = 11.2 and 3.2 Hz, 1 H, H-5'b), 2.27 (m, 1 H, H-2'a),

2.01 (m, 1 H, H-2'b), 0.90 (s, 9 H, (CH₃)₃C), 0.88 (s, 9 H, (CH₃)₃C), 0.08 (s, 3 H, CH₃Si), 0.07 (s, 3 H, CH₃Si), 0.05 (2 s, 6 H, (CH₃)₂Si); ^{*I*3}*C NMR (100 MHz, CDCl₃):* δ 162.56 (C), 150.04 (C), 138.34 (CH), 136.58 (C), 133.06 (CH), 128.54 (CH), 127.76 (CH), 126.55 (CH), 125.60 (CH), 111.80 (C), 87.92 (CH), 85.28 (CH), 72.27 (CH), 71.67 (CH₂), 64.40 (CH₂), 62.99 (CH₂), 41.24 (CH₂), 25.96 (C(CH₃)₃), 25.76 (C(CH₃)₃), 18.42 (C), 18.01 (C), -4.65 (CH₃), -4.82 (CH₃), -5.40 (CH₃), -5.50 (CH₃).

5-(3-Phenyl-2-propenyloxy)methyl-2'-deoxyuridine (dU.n14): To a solution of compound dU.n13 (138 mg, 0.23 mmol) in THF (2 mL) a solution of tetra-n-butylammonium fluoride trihydrate (321 mg, 0.73 mmol) in THF (2 mL) was added. The mixture was stirred at room temperature for one hour, then concentrated *in vacuo* and purified by silica gel column chromatography to give 5-(3-phenyl-2-propenyloxy)methyl-2'-deoxyuridine dU.n14 (65 mg, 76%) as a waxy solid. ¹H NMR (400 MHz, DMSO-d₆): δ 11.39 (br s, 1 H, D₂O exchangeable, NH), 7.93 (s, 1 H, H-6), 7.44 (m, 2 H, Ph-H), 7.32 (m, 2 H, Ph-H), 7.23 (m, 1 H, Ph-H), 6.64 (d, J = 16.0 Hz, 1 H, =CH), 6.34 (dt, J = 16.0 and 5.7 Hz, 1 H, =CH), 6.16 (t, 1 H, J = 6.7 Hz, H-1'), 5.24 (d, J = 3.9 Hz, 1 H, D₂O exchangeable, 3'-OH), 5.04 (t, J = 4.9 Hz, 1 H, D₂O exchangeable, 5'-OH), 4.22 (m, 1 H, H-3'), 4.18 (s, 2 H, 5-CH₂a and 5-CH₂b), 4.11 (d, J = 5.7 Hz, 2 H, CH₂), 3.77 (m, 1 H, H-4'), 3.57 (m, 2 H, H-5'a and H-5'b), 2.09 (dd, J = 6.5 and 4.9 Hz, 2 H, H-2'a and H-2'b).

- 5-(3-Phenyl-2-propenyloxy)methyl-2'-deoxyuridine-5'-triphosphate: This compound
 has not been made, but it may be synthesized according the following method, or a modified version thereof: POCl₃ (9 μL, 0.1 mmol) could be added to a solution of compound dU.n14 (28 mg, 0.066 mmol) and proton sponge (28 mg, 0.13 mmol) in trimethylphosphate (0.4 mL), and the reaction could then be stirred at 0°C under a nitrogen atmosphere for two hours. A solution of *bis*-tri-*n*-butylammonium pyrophosphate (285 mg, 0.6 mmol) and tri-*n*-butylamine
- 25 (120 μL) in anhydrous DMF (1.2 mL) could then be added. After 30 minutes of stirring, triethylammonium bicarbonate buffer (1 M, pH 7.5; 10 mL) could be added. The reaction could then be stirred for one hour at room temperature and then concentrated *in vacuo*. The residue could then be dissolved in a mixture of water (6 mL) and acetonitrile (4 mL), filtered, and purified by anion exchange chromatography using a Q Sepharose FF column (2.5 × 10
- cm) with a linear gradient of 25% acetonitrile/75% triethylammonium bicarbonate (TEAB, 0.1M) to 25% acetonitrile/75% TEAB (1.5 M) over 240 min at 4.5 ml/min. The fractions containing triphosphate could then be combined and lyophilized to yield 5-(3-phenyl-2-propenyloxy)methyl-2'-deoxyuridine-5'-triphosphate WW6p014.

10

Example 10 – Chemical Cleavage Results of dU Analogs

Scheme 38. Chemical cleavage of 5-(benzyloxy)methyl-2'-deoxyuridine. (i) H₂, Pd/C, ethanol, 30 minutes, 88%; (ii) H₂, Na₂PdCl₄, anhydrous ethanol, 20 minutes.

Chemical cleavage using heterogenous palladium catalyst: To a solution of 5-(benzyloxy)methyl-2'-deoxyuridine (29 mg, 0.082 mmol) in absolute ethanol (2 mL) under a nitrogen atmosphere was added 10 mg of palladium on activated carbon (10 wt. %, 10 mg) (CAUTION: flammable solid! Ensure handling in oxygen-free atmosphere). The mixture was flushed with hydrogen gas and stirred at room temperature for 30 minutes while being monitored by TLC every five minutes. The mixture was filtered, concentrated under reduced pressure, and dried under vacuum to yield thymidine (18 mg, 88%) that was identified by comparison to the authentic sample (TLC and ¹H NMR).

Chemical cleavage using homogenous palladium catalyst: To a solution of 5-15 (benzyloxy)methyl-2'-deoxyuridine (3.48 mg, 0.01 mmol) in absolute ethanol (0.1 mL) under a nitrogen atmosphere a solution of sodium tetrachloropalladate (II) (0.6 mg, 0.002 mmol) in absolute ethanol (0.9 mL) was added. The mixture was flushed with hydrogen gas and stirred at room temperature while being monitored by TLC every five minutes. After 20 minutes TLC indicated complete disappearance of starting material. The sole cleavage product was

20 identified to be thymidine by comparison to the authentic sample on TLC.

Chemical cleavage of 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine

Scheme 39. Chemical cleavage of 5-(2-isopropylbenzyloxy)methyl-2'-deoxyuridine (i) H₂, Pd/C, ethanol, 5 minutes.

Chemical cleavage using heterogenous palladium catalyst: To a solution of 5-(2isopropylbenzyloxy)methyl-2'-deoxyuridine in absolute ethanol (10 mM, 1 mL) under a nitrogen atmosphere was added of palladium on activated carbon (10 wt. %, 2 mg) (CAUTION: flammable solid! Ensure handling in oxygen-free atmosphere). The mixture was flushed with hydrogen gas and stirred at room temperature for five minutes while being monitored by TLC every one minute. After five minutes TLC indicated complete

10 monitored by TLC every one minute. After five minutes TLC indicated complete disappearance of starting material. The sole cleavage product was identified to be thymidine by comparison to the authentic sample on TLC.

Scheme 40. Chemical cleavage of 5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine (i) H₂,
 Pd/C, ethanol, 5 minutes.

Chemical cleavage using heterogenous palladium catalyst: To solution of 5-(2-phenylbenzyloxy)methyl-2'-deoxyuridine in absolute ethanol (10 mM, 1 mL) under a nitrogen atmosphere was added palladium on activated carbon (10 wt. %, 2 mg) (CAUTION:

flammable solid! Ensure handling in oxygen-free atmosphere). The mixture was flushed with hydrogen gas and stirred at room temperature for five minutes while being monitored by TLC every 1 minute. After five minutes TLC indicated complete disappearance of starting material. The sole cleavage product was identified to be thymidine by comparison to the authentic sample on TLC.

Chemical Cleavage of 5-(2,6-dimethylbenzyloxy)methyl-2'-deoxyuridine

Scheme 41. Chemical cleavage of 5-(2,6-dimethylbenzyloxy) methyl-2'-deoxyuridine (i) H₂, Pd/C, ethanol, 5 minutes.

Chemical cleavage using heterogenous palladium catalyst: To a solution of 5-(2,6dimethylbenzyloxy)methyl-2'-deoxyuridine in absolute ethanol (10 mM, 1 mL) under a nitrogen atmosphere was added palladium on activated carbon (10 wt. %, 2 mg) (CAUTION: flammable solid! Ensure handling in oxygen-free atmosphere). The mixture was flushed with hydrogen gas and stirred at room temperature for five minutes while being monitored by

15 TLC every 1 minute. After five minutes TLC indicated complete disappearance of starting material. The sole cleavage product was identified to be thymidine by comparison to the authentic sample on TLC.

10

Chemical cleavage of 5-(benzyloxy)methyl-2'-deoxyuridine

Scheme 42. Catalytic hydrogenolysis of 5-benzyloxymethyl-2'-deoxyuridine

To a solution of 5-benzyloxy-2'-deoxyuridine (10 mg) in ethanol (1 mL) was added
Pd/C (10%, 10 mg), and the mixture was stirred for five minutes. Hydrogen was introduced to the system via a balloon and the reaction mixture was stirred at room temperature. Aliquots (5 μL) were taken out from the reaction mixture at various time point intervals and were analyzed by thin layer chromatography and HPLC. Complete cleavage to thymidine was observed after ten minutes at room temperature (Scheme 42 and FIG. 4). The intermediate of
the cleavage was identified to be 5-hydroxymethyl-dU generated from initial removal of benzyl group, and HOMedU was further reduced to thymidine.

Cleavage of 5-(1-phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine using catalytic hydrogenolysis: To a solution of 5-(1-phenyl-2-methyl-propyloxy)methyl-2'-deoxyuridine (13 mg) in ethanol (3 mL) was added Pd/C (10%, 15 mg) and the mixture was stirred for five

- 15 minutes. Hydrogen was introduced to the system via a balloon and the reaction mixture was stirred at room temperature. Aliquots (5 μL) were taken out from the reaction mixture various time point intervals and were analyzed by thin layer chromatography and HPLC. Complete cleavage to thymidine was observed after 240 minutes at room temperature (Scheme 43 and FIG. 5). The slow cleavage of the α-isopropyl substituted 5-benzyloxymethyl-dU may be
- 20 caused by the steric hindrance presented by the substitution when the compound binds to the catalyst surface. Thus, the rate of chemical cleavage is substantially reduced for 5-benzyloxymethyluridine analogs when substituted of the α -carbon, which otherwise is important for termination and discrimination properties of these compounds. Without being bound by theory substitution of the 2-position of the benzyl ring, but not the α -carbon
- 25 position can also affect termination properties (see Table 2), which provide faster cleaving nucleotides.

Scheme 43. Catalytic hydrogenolysis of 5-(1-phenyl-2-methyl-propyloxy)methyl-2'deoxyuridine

* * * * * * * * * * * * *

5

All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the 10 concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

REFERENCES

The following references, and those listed in the Appendix, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

5

- U.S. Patent 4,439,356
- U.S. Patent 5,151,507
- U.S. Patent 5,188,934
- U.S. Patent 5,770,367

10

Barone *et al.*, *Nucleosides, Nucleotides, and Nucleic Acids*, 20:1141-1145, 2001.
Bartholomew and Broom, *J. Chem. Soc. Chem. Commun.*, 38, 1975.
Beaulieu *et al.*, *J. Med. Chem.*, 43:1094–1108, 2000.
Cameron and Frechet, *J. Am. Chem. Soc.*, 113:4303-4313, 1991.

- Chaulk and MacMillan, *Nucleic Acids Res.*, 26:3173-3178, 1998.
 Dong *et al.*, *Org. Lett.*, 7:1043-1045, 2005.
 Dressman *et al.*, *Proc. Natl. Acad. Sci. USA*, 100:8817-8822, 2003.
 European Patent Appln. 87310256.0
 Flack, *Acta Cryst.*, A39:876-881, 1983.
- Green and Wuts, *Protective Groups in organic Synthesis*, 3rd Ed. Wiley, NY, 1999.
 Harris *et al.*, *Science*, 320:106-109, 2008.
 Hasan *et al.*, *Tetrahedron*, 53:4247-4264, 1997.
 Herm *et al.*, *Chem. Eur. J.*, 8:1485-1499, 2002.
 Hunkapiller *et al.*, *Science*, 254:59-67, 1991.
- 25 Iafrate *et al.*, *Nature Genet.*, 36:949-951, 2004.
 International Human Genome Sequencing Consortium., *Nature*, 409:860-921, 2001.
 Johnson *et al.*, *Org. Lett.*, 6:4643-46, 2004.
 Ju *et al.*, *Proc. Natl. Acad. Sci. USA*, 103:19635-40, 2006.
 Kanie *et al.*, *Angew. Chem. Int. Ed.*, 39:4545-4547, 2000.
- Kobayashi *et al.*, *Science*, 304:1305-1308, 2004.
 Lehninger, In: *Principles of Biochemistry*, 273-305, W.H. Feeman and Co., NY, 2005.
 Levy *et al.*, *PLoS Biol.*, 5:e254, 2007.
 March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 2007.

Margulies et al, *Nature*, 437:376-380, 2005. Mel'nik *et al.*, *Bioorganicheskaya Khimiya*, 17:1101-1110, 1991. Metzker *et al.*, *Biotechniques*, 25:446-462, 1998. Metzker *et al.*, *Nucleic Acids Res.*, 22:4259-4267, 1994.

- Metzker, Genome Res., 15:1767-1776, 2005.
 Ohtsuka et al., Nucleic Acids Res., 1:1351-1357, 1974.
 PCT Appln. PCT/US90/05565
 Pease et al., Proc. Natl. Acad. Sci. USA, 91:5022-5026, 1994.
 Pillai, Synthesis, 1-26, 1980.
- Redon et al., Nature, 444:444-454, 2006.
 Reichmanis et al., J. Polymer Sci., 23:1-8, 1985.
 Ronaghi et al., Science, 281:363-365, 1998.
 Sanger et al., Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1997.
 Sapountzis et al., J. Org. Chem., 70:2445-2454, 2005.
- Sebat *et al.*, *Science*, 305:525-528, 2004.
 Seela and Peng, *J. Org. Chem.*, 71:81-90, 2006.
 Service, *Science*, 282:1020-1021, 1998.
 Smith *et al.*, *J. Org. Chem.*, 55:2543-2545, 1990.
 Stranger *et al.*, *Science*, 315:848-853, 2007.
- 20 Tuzun et al., Nature Genet., 37:727-732, 2005.
 Wu et al., Nucleic Acids Res., 35:6339–6349, 2007.
 Wu et al., Org. Lett., 6:2257-2260, 2004.
 Zhi et al., J. Med. Chem., 46:4104–4112, 2003.

CLAIMS

1. A compound of formula:

wherein:

5	Z is -O-, -S-, -NH-, -OC(O)O-, -NHC(O)O-, -OC(O)NH- or -NHC(O)NH-;
	R ₁ is hydroxy, monophosphate, diphosphate, triphosphate or polyphosphate;
	R ₂ is hydrogen or hydroxy;
	R_3 and R_4 are each independently:
10	hydrogen, hydroxy, halo or amino; or
	$alkyl_{(C\leq 12)}$, $alkenyl_{(C\leq 12)}$, $alkynyl_{(C\leq 12)}$, $aryl_{(C\leq 12)}$, $aralkyl_{(C\leq 12)}$, hetero-
	$aryl_{(C \le 12)}, heteroaralkyl_{(C \le 12)}, alkoxy_{(C \le 12)}, aryloxy_{(C \le 12)},$
	aralkoxy _(C\leq12) , heteroaryloxy _(C\leq12) , heteroaralkoxy _(C\leq12) , alkyl-
	amino _(C\leq12) , dialkylamino _(C\leq12) , arylamino _(C\leq12) ,
15	aralkylamino _(C\leq12) , or a substituted version of any of these
	groups; or
	R_5 , R_6 , R_7 , R_8 and R_9 are each independently:
	hydrogen, hydroxy, halo, amino, nitro, cyano or mercapto;
	$alkyl_{(C \le 12)}$, $alkenyl_{(C \le 12)}$, $alkynyl_{(C \le 12)}$, $aryl_{(C \le 12)}$, $aralkyl_{(C \le 12)}$, hetero-
20	$aryl_{(C \le 12)}$, heteroaralkyl _(C \le 12) , $acyl_{(C \le 12)}$, $alkoxy_{(C \le 12)}$, $alkenyl$ -
	$oxy_{(C \le 12)}$, alkynyl $oxy_{(C \le 12)}$, aryl $oxy_{(C \le 12)}$, aralk $oxy_{(C \le 12)}$, hetero-
	aryloxy _(C≤12) , heteroaralkoxy _(C≤12) , $acyloxy_{(C≤12)}$,
	alkylamino _(C\leq12) , dialkylamino _(C\leq12) , alkoxyamino _(C\leq12) ,
	alkenylamino _(C\leq12) , alkynylamino _(C\leq12) , arylamino _(C\leq12) ,
25	aralkylamino _(C\leq12) , heteroarylamino _(C\leq12) ,

heteroaralkylamino_(C≤12), alkylsulfonylamino_(C≤12), amido_(C≤12), alkylthio_(C≤12), alkenylthio_(C≤12), alkynylthio_(C≤12), arylthio_(C≤12), aralkylthio_(C≤12), heteroarylthio_(C≤12), heteroaralkylthio_(C≤12), acylthio_(C≤12), thioacyl_(C≤12), alkylsulfonyl_(C≤12), arylsulfonyl_(C≤12), alkylammonium_(C≤12), alkylsulfonium_(C≤12), alkylsilyl_(C≤12), or a substituted version of any of these groups;

a group of formula:

wherein

X is

-O-, -S-, or -NH-; or

alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups;

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12);

n is an integer from 0-12; and

m is an integer from 0–12; or

a -linker-reporter;

or a salt, esters, hydrates, solvates, tautomers, prodrugs, or optical isomers thereof.

2. The compound of claim 1, further defined as a compound of formula A.

3. The compound of claim 1, further defined as a compound of formula B.

- 25 4. The compound according to any of claims of claims 1-3, wherein Z is -O-.
 - 5. The compound according to any of claims of claims 1-4, wherein R_1 is hydroxy.

170

10

15

- 6. The compound according to any of claims of claims 1-4, wherein R_1 is a monophosphate.
- 7. The compound according to any of claims of claims 1-4, wherein R_1 is a diphosphate.
- 8. The compound according to any of claims of claims 1-4, wherein R_1 is a triphosphate.
- 5 9. The compound according to any of claims of claims 1-4, wherein R_1 is a polyphosphate.
 - 10. The compound according to any one of claims 1-9, wherein R_2 is hydrogen.
 - 11. The compound according to any one of claims 1-9, wherein R_2 is hydroxy.
 - 12. The compound according to any of claims 1-11, wherein R₃ is hydrogen.
- 10 13. The compound according to any of claims 1-11, wherein R_3 is $alkyl_{(C\leq 12)}$ or a substituted version thereof.
 - 14. The compound of claim 13, wherein R_3 is alkyl_(C ≤ 8).
 - 15. The compound of claim 14, wherein R_3 is alkyl_(C ≤ 6).
 - 16. The compound of claim 15, wherein R₃ is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl.
 - 17. The compound of claim 16, wherein R_3 is methyl.
 - 18. The compound of claim 15, wherein R_3 is alkyl_(C2-6).
 - 19. The compound of claim 18, wherein R_3 is alkyl_(C3-5).
 - 20. The compound of claim 19, wherein R_3 is isopropyl.
- 20 21. The compound of claim 19, wherein R_3 is *tert*-butyl.
 - 22. The compound according to any of claims of claims 1-21, wherein R_4 is hydrogen.
 - 23. The compound according to any of claims 1-21, wherein R_4 is $alkyl_{(C \le 12)}$ or a substituted version thereof.

WO 2009/152353

PCT/US2009/047071

- 24. The compound of claim 23, wherein R_4 is alkyl_(C≤8).
- 25. The compound of claim 24, wherein R_4 is alkyl_(C ≤ 6).
- 26. The compound of claim 25, wherein R_4 is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl.
- 5 27. The compound of claim 26, wherein R_4 is methyl.
 - 28. The compound of claim 25, wherein R_4 is alkyl_(C2-6).
 - 29. The compound of claim 28, wherein R_4 is alkyl_(C3-5).
 - 30. The compound of claim 29, wherein R_4 is isopropyl.
 - 31. The compound of claim 29, wherein R_4 is *tert*-butyl.
- 10 32. The compound according to any of claims of claims 1-31, wherein R_5 is hydrogen.
 - 33. The compound according to any of claims of claims 1-31, wherein R_5 is cyano.
 - 34. The compound according to any of claims 1-31, wherein R_5 is $alkoxy_{(C \le 12)}$ or a substituted version thereof.
 - 35. The compound of claim 34, wherein R_5 is alkoxy_(C ≤ 8).
- 15 36. The compound of claim 35, wherein R_5 is alkoxy_(C \le 6).
 - 37. The compound of claim 36, wherein R_5 is alkoxy_(C \leq 3).
 - 38. The compound of claim 37, wherein R_5 is methoxy.
 - 39. The compound according to any of claims 1-31, wherein R_5 is a group of formula:

wherein

X is

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and

n is an integer from 0–12.

- 40. The compound of claim 39, wherein X is alkynediyl_(C ≤ 12).
- 41. The compound of claim 40, wherein X is alkynediyl_(C2-8).
- 10 42. The compound of claim 41, wherein X is $-C \equiv C^-$.
 - 43. The compound according to any of claims 39-42, wherein n is zero.
 - 44. The compound according to any of claims 1-31, wherein R_5 is a group of formula:

wherein

X is

15

5

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups;

20 Y is $-O^-$, $-NH^-$, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12); n is an integer from 0-12; and m is an integer from 0-12.

- 45. The compound of claim 44, wherein X is alkynediyl_(C ≤ 12).
- 46. The compound of claim 45, wherein X is alkynediyl_(C2-8).
- 25 47. The compound of claim 46, wherein X is $-C \equiv C -$.

WO 2009/152353

- 48. The compound according to any of claims 44-47, wherein Y is $-CH_2-$.
- 49. The compound according to any of claims 44-48, wherein n is zero.
- 50. The compound according to any of claims 44-49, wherein m is zero.
- 51. The compound according to any of claims 1-32, wherein R_6 is a -linker-reporter.
- 5 52. The compound of claim 51, wherein the linker is:

wherein

X is

-O-, -S-, or -NH-; or

10

alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and

n is an integer from 0–12.

- 53. The compound of claim 52, wherein X is alkynediyl_(C \leq 12).
- 15 54. The compound of claim 53, wherein X is alkynediyl_(C2-8).
 - 55. The compound of claim 54, wherein X is $-C \equiv C^{-}$.
 - 56. The compound according to any of claims 52-55, wherein n is zero.
 - 57. The compound of claim 51, wherein the linker is:

10

20

25

	wherein
	X is
	–O–, –S–, or –NH–; or
	$alkanediyl_{(C \le 12)}, alkenediyl_{(C \le 12)}, alkynediyl_{(C \le 12)}, are nediyl_{(C \le 12)},$
	heteroarenediyl _(C\leq12) , or a substituted version of any of these
	groups;
	Y is $-O-$, $-NH-$, alkanediyl _(C \le 12) or substituted alkanediyl _(C \le 12) ;
	n is an integer from $0-12$; and
	m is an integer from $0-12$.
58.	The compound of claim 57, wherein X is alkynediyl _(C≤ 12) .
59.	The compound of claim 58, wherein X is alkynediyl _(C2-8) .

- 60. The compound of claim 59, wherein X is $-C \equiv C^{-}$.
- 61. The compound according to any of claims 57-60, wherein Y is $-CH_2-$.
- 62. The compound according to any of claims 57-61, wherein n is zero.
- 15 63. The compound according to any of claims 57-62, wherein m is zero.
 - 64. The compound of claim 51, wherein the linker is:

wherein

X is

-O-, -S-, or -NH-; or

alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups;

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12);

m is an integer from 0-12.

15

- 65. The compound of claim 64, wherein X is alkynediyl_(C ≤ 12).
- 66. The compound of claim 65, wherein X is alkynediyl_(C2-8).
- 67. The compound of claim 66, wherein X is $-C \equiv C^{-}$.
- 68. The compound according to any of claims 64-67, wherein Y is $-CH_2-$.
- 5 69. The compound according to any of claims 64-68, wherein n is zero.
 - 70. The compound according to any of claims 64-69, wherein m is zero.
 - 71. The compound according to any of claims 51-70, wherein the reporter is based on a dye, wherein the dye is zanthene, fluorescein, rhodamine, BODIPY, cyanine, coumarin, pyrene, phthalocyanine, phycobiliprotein, ALEXA FLUOR® 350, ALEXA FLUOR® 405, ALEXA FLUOR® 430, ALEXA FLUOR® 488, ALEXA FLUOR® 514, ALEXA FLUOR® 532, ALEXA FLUOR® 546, ALEXA FLUOR® 555, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 594, ALEXA FLUOR® 610, ALEXA FLUOR® 633, ALEXA FLUOR® 647, ALEXA FLUOR® 660, ALEXA FLUOR® 680, ALEXA FLUOR® 700, ALEXA FLUOR® 750, or a squaraine dye.
 - 72. The compound according to any of claims 51-70, wherein the reporter is:

73. The compound according to any of claims 1-72, wherein R_6 is hydrogen.

- 74. The compound according to any of claims 1-72, wherein R_6 is $alkoxy_{(C \le 12)}$ or a substituted version thereof.
- 75. The compound of claim 74, wherein R_6 is alkoxy_(C≤8).
- 76. The compound of claim 75, wherein R_6 is alkoxy_(C ≤ 6).
- 5 77. The compound of claim 76, wherein R_6 is alkoxy_(C ≤ 3).
 - 78. The compound of claim 77, wherein R_6 is methoxy.
 - 79. The compound according to any of claims 1-72, wherein R_6 is a group of formula:

wherein

-O-, -S-, or -NH-; or

X is

alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups; and n is an integer from 0–12.

15

10

80. The compound of claim 79, wherein X is alkynediyl_(C ≤ 12).

- 81. The compound of claim 80, wherein X is alkynediyl_(C2-8).
- 82. The compound of claim 81, wherein X is $-C \equiv C -$.
- 83. The compound according to any of claims 79-82, wherein n is zero.
- 20 84. The compound according to any of claims 1-72, wherein R_6 is a group of formula:

	wherein
	X is
	-O-, -S-, or -NH-; or
	$alkanediyl_{(C \le 12)}, alkenediyl_{(C \le 12)}, alkynediyl_{(C \le 12)}, are nediyl_{(C \le 12)},$
	heteroarenediyl _(C≤ 12) , or a substituted version of any of these
	groups;
	Y is $-O-$, $-NH-$, alkanediyl _(C \le 12) or substituted alkanediyl _(C \le 12) ;
	n is an integer from $0-12$; and
	m is an integer from $0-12$.
85.	The compound of claim 84, wherein X is alkynediyl _(C≤ 12) .
86.	The compound of claim 85, wherein X is alkynediyl _(C2-8) .
87.	The compound of claim 86, wherein X is $-C \equiv C^{-}$.
88.	The compound according to any of claims 84-87, wherein Y is $-CH_2-$.
89.	The compound according to any of claims 84-88, wherein n is zero.
90.	The compound according to any of claims 84-89, wherein m is zero.

- 91. The compound according to any of claims 1-72, wherein R_6 is a -linker-reporter.
- 92. The compound of claim 91, wherein the linker is:

wherein

X is

20

25

5

10

15

-O-, -S-, or -NH-; or

alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and

n is an integer from 0–12.

93. The compound of claim 92, wherein X is alkynediyl_(C \leq 12).

WO 2009/152353

- 94. The compound of claim 93, wherein X is alkynediyl_(C2-8).
- 95. The compound of claim 94, wherein X is $-C \equiv C -$.
- 96. The compound according to any of claims 92-95, wherein n is zero.
- 97. The compound of claim 91, wherein the linker is:

5

10

wherein

X is

-O-, -S-, or -NH-; or

- alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups;
- Y is -O-, -NH-, alkanediyl_(C≤12) or substituted alkanediyl_(C≤12); n is an integer from 0–12; and m is an integer from 0–12.
- 15 98. The compound of claim 97, wherein X is alkynediyl_(C ≤ 12).
 - 99. The compound of claim 98, wherein X is alkynediyl_(C2-8).
 - 100. The compound of claim 99, wherein X is $-C \equiv C^{-}$.
 - 101. The compound according to any of claims 97-100, wherein Y is $-CH_2-$.
 - 102. The compound according to any of claims 97-101, wherein n is zero.
- 20 103. The compound according to any of claims 97-102, wherein m is zero.
 - 104. The compound of claim 91, wherein the linker is:

wherein					
X is	š				
–O–, –S–, or –NH–; or					
	$alkanediyl_{(C \leq 12)}, alkenediyl_{(C \leq 12)}, alkynediyl_{(C \leq 12)}, are nediyl_{(C \leq 12)},$				
heteroarenediyl _(C≤ 12) , or a substituted version of any of these					
	groups;				
Y is $-O-$, $-NH-$, alkanediyl _(C \le 12) or substituted alkanediyl _(C \le 12) ;					
n is an integer from $0-12$; and					
m is	s an integer from 0–12.				

- 10 105. The compound of claim 104, wherein X is alkynediyl_(C \leq 12).
 - 106. The compound of claim 105, wherein X is alkynediyl_(C2-8).
 - 107. The compound of claim 106, wherein X is $-C \equiv C^{-}$.
 - 108. The compound according to any of claims 104-107, wherein Y is $-CH_2-$.
 - 109. The compound according to any of claims 104-108, wherein n is zero.
- 15 110. The compound according to any of claims 104-109, wherein m is zero.
- 111. The compound according to any of claims 91-110, wherein the reporter is based on a dye, wherein the dye is zanthene, fluorescein, rhodamine, BODIPY, cyanine, coumarin, pyrene, phthalocyanine, phycobiliprotein, ALEXA FLUOR® 350, ALEXA FLUOR® 405, ALEXA FLUOR® 430, ALEXA FLUOR® 488, ALEXA FLUOR® 20 514, ALEXA FLUOR® 532, ALEXA FLUOR® 546, ALEXA FLUOR® 555, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 594, ALEXA FLUOR® 610, ALEXA FLUOR® 633, ALEXA FLUOR® 647, ALEXA FLUOR® 660, ALEXA FLUOR® 680, ALEXA FLUOR® 700, ALEXA FLUOR® 750, or a squaraine dye.

112. The compound according to any of claims 91-110, wherein the reporter is:

- 113. The compound according to any of claims 1-112, wherein R_7 is hydrogen.
- 5 114. The compound according to any of claims 1-113, wherein R_8 is hydrogen.
 - 115. The compound according to any of claims 1-113, wherein R_8 is nitro.
 - 116. The compound according to any of claims 1-113, wherein R_8 is $alkyl_{(C \le 12)}$ or a substituted version thereof.
 - 117. The compound of claim 116, wherein R_8 is alkyl_(C≤8).
- 10 118. The compound of claim 117, wherein R_8 is alkyl_(C ≤ 6).
 - 119. The compound of claim 118, wherein R_8 is alkyl_(C ≤ 3).
 - 120. The compound of claim 119, wherein R_8 is methyl.
 - 121. The compound according to any of claims 1-120, wherein R_9 is hydrogen.
 - 122. The compound according to any of claims 1-120, wherein R_9 is nitro.
- 15 123. The compound according to any of claims 1-120, wherein R_9 is $alkyl_{(C \le 12)}$ or a substituted version thereof.

PCT/US2009/047071

- 124. The compound of claim 123, wherein R_9 is alkyl_(C≤8).
- 125. The compound of claim 124, wherein R_9 is alkyl_(C ≤ 6).
- 126. The compound of claim 125, wherein R₉ is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl.
- 5 127. The compound of claim 126, wherein R_9 is methyl.
 - 128. The compound of claim 125, wherein R_9 is alkyl_(C2-6).
 - 129. The compound of claim 128, wherein R_9 is alkyl_(C3-5).
 - 130. The compound of claim 129, wherein R_9 is isopropyl.
 - 131. The compound of claim 129, wherein R_9 is *tert*-butyl.
- 10 132. The compound according to any of claims 1-120, wherein R_9 is $aryl_{(C \le 12)}$ or a substituted version thereof.
 - 133. The compound of claim 132, wherein R_9 is $aryl_{(C \le 8)}$.
 - 134. The compound of claim 133, wherein R_9 is phenyl.
 - 135. The compound of claim 2, further defined as:

15

or a salt thereof.

136. The compound of claim 2, further defined as:

or a salt thereof.

137. The compound of claim 136, further defined as:

5

or a salt thereof and substantially free from other optical isomers thereof.

138. The compound of claim 136, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

139. The compound of claim 2, further defined as:

or a salt thereof.

140. The compound of claim 139, further defined as:

5

or a salt thereof and substantially free from other optical isomers thereof.

141. The compound of claim 139, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

142. The compound of claim 2, further defined as:

or a salt thereof.

143. The compound of claim 142, further defined as:

5

or a salt thereof and substantially free from other optical isomers thereof.

144. The compound of claim 142, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

145. The compound of claim 2, further defined as:

or a salt thereof.

146. The compound of claim 145, further defined as:

5

or a salt thereof and substantially free from other optical isomers thereof.

147. The compound of claim 145, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

148. The compound of claim 2, further defined as:

or a salt thereof.

149. The compound of claim 148, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

150. The compound of claim 148, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

151. The compound of claim 3, further defined as:

or a salt thereof.

152. The compound of claim 3, further defined as:

or a salt thereof.

153. The compound of claim 152, further defined as:

5

or a salt thereof and substantially free from other optical isomers thereof.

154. The compound of claim 152, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

155. The compound of claim 3, further defined as:

or a salt thereof.

156. The compound of claim 155, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

157. The compound of claim 155, further defined as:

or a salt thereof and substantially free from other optical isomers thereof.

158. A compound of formula:

5

wherein:

Z is -O-, -S-, -NH-, -OC(O)O-, -NHC(O)O-, -OC(O)NH- or -NHC(O)NH-;

R₁ is hydroxy, monophosphate, diphosphate, triphosphate or polyphosphate;

10

R₂ is hydrogen or hydroxy;

R₃ and R₄ are each independently:

hydrogen, hydroxy, halo or amino; or

alkyl_(C≤12), alkenyl_(C≤12), alkynyl_(C≤12), aryl_(C≤12), aralkyl_(C≤12), heteroaryl_(C≤12), heteroaralkyl_(C≤12), alkoxy_(C≤12), aryloxy_(C≤12), aralkoxy_(C≤12), heteroaryloxy_(C≤12), heteroaralkoxy_(C≤12), alkylamino_(C≤12), dialkylamino_(C≤12), arylamino_(C≤12), aralkylamino_(C≤12), or a substituted version of any of these groups;

R₅, R₆, R₇ and R₈ are each independently:

a group of formula:

hydrogen, hydroxy, halo, amino, nitro, cyano or mercapto; or

alkyl_(C ≤ 12), alkenyl_(C ≤ 12), alkynyl_(C ≤ 12), aryl_(C ≤ 12), aralkyl_(C ≤ 12), hetero-10 $aryl_{(C \le 12)}$, heteroaralkyl_(C \le 12), $acyl_{(C \le 12)}$, $alkoxy_{(C \le 12)}$, alkenyl $oxy_{(C \le 12)}$, alkynyloxy_{(C \le 12)}, aryloxy_(C \le 12), aralkoxy_(C \le 12), heteroaryloxy_(C ≤ 12), heteroaralkoxy_(C ≤ 12), $acyloxy_{(C \le 12)}$, alkylamino_(C ≤ 12), dialkylamino_(C ≤ 12), alkoxyamino_(C ≤ 12), alkynylamino_(C \leq 12), arylamino_(C≤12), alkenylamino_(C≤12), 15 aralkylamino_(C ≤ 12), heteroarylamino_(C \leq 12), heteroaralkylamino_(C \leq 12), alkylsulfonylamino_(C \leq 12), amido_(C \leq 12), alkylthio_(C ≤ 12), alkenylthio_(C ≤ 12), alkynylthio_(C ≤ 12), arylthio_(C ≤ 12), aralkylthio_(C ≤ 12), heteroarylthio_(C ≤ 12), heteroaralkylthio_(C ≤ 12), thioacyl_(C \le 12), alkylsulfonyl_(C ≤ 12), acylthio_(C ≤ 12), aryl-20 sulfonyl_(C ≤ 12), alkylammonium_(C ≤ 12), alkylsulfonium_(C ≤ 12), alkyl $silyl_{(C \le 12)}$, or a substituted version of any of these groups; or

 $H_{2}N \underbrace{ \bigwedge_{n} X^{3}}_{n} (V), or$ $H_{2}N \underbrace{ \bigvee_{n} Y}_{n} \underbrace{ \bigvee_{n} X^{*}}_{0} \underbrace{ \bigvee_{n} X^{*}}_{m} (VI),$

10

20

wherein

X is

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups;

Y is –O–, –NH–, alkanediyl_(C ≤ 12) or substituted alkanediyl_(C ≤ 12);

n is an integer from 0-12; and

m is an integer from 0-12; or

a -linker-reporter; and

 R_9 is alkyl_(C≤12), aryl_(C≤12) or a substituted version of either of these groups; or a salt, esters, hydrates, solvates, tautomers, prodrugs, or optical isomers thereof.

15 159. The compound of claim 158, further defined as a compound of formula C.

- 160. The compound of claim 158, further defined as a compound of formula D.
- 161. The compound according to any of claims of claims 158-160, wherein Z is -O-.
- 162. The compound according to any of claims of claims 158-161, wherein R_1 is hydroxy.

163. The compound according to any of claims of claims 158-161, wherein R_1 is a monophosphate.

- 164. The compound according to any of claims of claims 158-161, wherein R_1 is a diphosphate.
- 165. The compound according to any of claims of claims 158-161, wherein R_1 is a triphosphate.
- 25 166. The compound according to any of claims of claims 158-161, wherein R_1 is a polyphosphate.
 - 167. The compound according to any one of claims 158-166, wherein R_2 is hydrogen.

- 168. The compound according to any one of claims 158-166, wherein R_2 is hydroxy.
- 169. The compound according to any of claims 158-168, wherein R_3 is hydrogen.
- 170. The compound according to any of claims 158-168, wherein R_3 is $alkyl_{(C \le 12)}$ or a substituted version thereof.
- 5 171. The compound of claim 170, wherein R_3 is alkyl_(C≤8).
 - 172. The compound of claim 171, wherein R_3 is alkyl_(C ≤ 6).
 - 173. The compound of claim 172, wherein R₃ is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl.
 - 174. The compound of claim 173, wherein R_3 is methyl.
- 10 175. The compound of claim 172, wherein R_3 is alkyl_(C2-6).
 - 176. The compound of claim 175, wherein R_3 is alkyl_(C3-5).
 - 177. The compound of claim 176, wherein R_3 is isopropyl.
 - 178. The compound of claim 176, wherein R_3 is *tert*-butyl.
 - 179. The compound according to any of claims of claims 158-178, wherein R_4 is hydrogen.
- 15 180. The compound according to any of claims 158-178, wherein R_4 is $alkyl_{(C \le 12)}$ or a substituted version thereof.
 - 181. The compound of claim 180, wherein R_4 is alkyl_(C≤8).
 - 182. The compound of claim 181, wherein R_4 is alkyl_(C ≤ 6).
 - 183. The compound of claim 182, wherein R_4 is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl.
 - 184. The compound of claim 183, wherein R_4 is methyl.

- 185. The compound of claim 182, wherein R_4 is alkyl_(C2-6).
- 186. The compound of claim 185, wherein R_4 is alkyl_(C3-5).

- 187. The compound of claim 186, wherein R_4 is isopropyl.
- 188. The compound of claim 186, wherein R_4 is *tert*-butyl.
- 189. The compound according to any of claims of claims 158-188, wherein R_5 is hydrogen.
- 190. The compound according to any of claims of claims 158-188, wherein R_5 is cyano.
- 5 191. The compound according to any of claims 158-188, wherein R_5 is alkoxy_(C≤12) or a substituted version thereof.
 - 192. The compound of claim 191, wherein R_5 is alkoxy_(C ≤ 8).
 - 193. The compound of claim 192, wherein R_5 is alkoxy_(C ≤ 6).
 - 194. The compound of claim 193, wherein R_5 is alkoxy_(C ≤ 3).
- 10 195. The compound of claim 194, wherein R_5 is methoxy.
 - 196. The compound according to any of claims 158-188, wherein R_5 is a group of formula:

$$H_2N$$
 (V) (V)

wherein

X is

15

–O–, –S–, or –NH–; or

alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and

n is an integer from 0–12.

- 20 197. The compound of claim 196, wherein X is alkynediyl_(C \leq 12).
 - 198. The compound of claim 197, wherein X is alkynediyl_(C2-8).
 - 199. The compound of claim 198, wherein X is $-C \equiv C -$.
 - 200. The compound according to any of claims 196-199, wherein n is zero.

201. The compound according to any of claims 158-188, wherein R_5 is a group of formula:

wherein

X is

5

10

alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups;

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12);

n is an integer from 0–12; and

m is an integer from 0–12.

202. The compound of claim 201, wherein X is alkynediyl_(C \leq 12).

-O-, -S-, or -NH-; or

- 203. The compound of claim 202, wherein X is alkynediyl_(C2-8).
- 204. The compound of claim 203, wherein X is $-C \equiv C^-$.
- 15 205. The compound according to any of claims 201-204, wherein Y is $-CH_2-$.
 - 206. The compound according to any of claims 201-205, wherein n is zero.
 - 207. The compound according to any of claims 201-206, wherein m is zero.
 - 208. The compound according to any of claims 158-189, wherein R₆ is a -linker-reporter.
 - 209. The compound of claim 208, wherein the linker is:

X is

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and

n is an integer from 0–12.

- 210. The compound of claim 209, wherein X is alkynediyl_(C \leq 12).
- 211. The compound of claim 210, wherein X is alkynediyl_(C2-8).
- 10 212. The compound of claim 211, wherein X is $-C \equiv C^-$.
 - 213. The compound according to any of claims 209-212, wherein n is zero.
 - 214. The compound of claim 208, wherein the linker is:

wherein

X is

15

5

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups;

20 Y is $-O^-$, $-NH^-$, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12); n is an integer from 0-12; and m is an integer from 0-12.

- 215. The compound of claim 214, wherein X is alkynediyl_(C ≤ 12).
- 216. The compound of claim 215, wherein X is alkynediyl_(C2-8).
- 25 217. The compound of claim 216, wherein X is $-C \equiv C^-$.

- 218. The compound according to any of claims 214-217, wherein Y is $-CH_2-$.
- 219. The compound according to any of claims 214-218, wherein n is zero.
- 220. The compound according to any of claims 214-219, wherein m is zero.
- 221. The compound of claim 208, wherein the linker is:

5

10

25

wherein

X is

-O-, -S-, or -NH-; or

alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups;

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12); n is an integer from 0–12; and m is an integer from 0–12.

- 15 222. The compound of claim 221, wherein X is alkynediyl_(C ≤ 12).
 - 223. The compound of claim 222, wherein X is alkynediyl_(C2-8).
 - 224. The compound of claim 223, wherein X is $-C \equiv C -$.
 - 225. The compound according to any of claims 221-224, wherein Y is $-CH_2-$.
 - 226. The compound according to any of claims 221-225, wherein n is zero.

20 227. The compound according to any of claims 221-226, wherein m is zero.

228. The compound according to any of claims 208-227, wherein the reporter is based on a dye, wherein the dye is zanthene, fluorescein, rhodamine, BODIPY, cyanine, coumarin, pyrene, phthalocyanine, phycobiliprotein, ALEXA FLUOR® 350, ALEXA FLUOR® 405, ALEXA FLUOR® 430, ALEXA FLUOR® 488, ALEXA FLUOR® 514, ALEXA FLUOR® 532, ALEXA FLUOR® 546, ALEXA FLUOR® 555,

ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 594, ALEXA FLUOR® 610, ALEXA FLUOR® 633, ALEXA FLUOR® 647, ALEXA FLUOR® 660, ALEXA FLUOR® 680, ALEXA FLUOR® 700, ALEXA FLUOR® 750, or a squaraine dye.

5 229. The compound according to any of claims 208-227, wherein the reporter is:

230. The compound according to any of claims 158-229, wherein R_6 is hydrogen.

231. The compound according to any of claims 158-229, wherein R_6 is alkoxy_(C≤12) or a substituted version thereof.

10

232. The compound of claim 231, wherein R_6 is alkoxy_(C≤8).

- 233. The compound of claim 232, wherein R_6 is alkoxy_(C \le 6).
- 234. The compound of claim 233, wherein R_6 is alkoxy_(C≤3).
- 235. The compound of claim 234, wherein R_6 is methoxy.
- 15 236. The compound according to any of claims 158-229, wherein R_6 is a group of formula:

X is

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups; and

n is an integer from 0–12.

- 237. The compound of claim 236, wherein X is alkynediyl_(C ≤ 12).
- 238. The compound of claim 237, wherein X is alkynediyl_(C2-8).
- 10 239. The compound of claim 238, wherein X is $-C \equiv C^-$.
 - 240. The compound according to any of claims 236-239, wherein n is zero.
 - 241. The compound according to any of claims 158-229, wherein R_6 is a group of formula:

wherein

X is

15

5

-O-, -S-, or -NH-; or alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups;

20 Y is $-O^-$, $-NH^-$, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12); n is an integer from 0-12; and m is an integer from 0-12.

- 242. The compound of claim 241, wherein X is alkynediyl_(C ≤ 12).
- 243. The compound of claim 242, wherein X is alkynediyl_(C2-8).
- 25 244. The compound of claim 243, wherein X is $-C \equiv C^-$.

- 245. The compound according to any of claims 241-244, wherein Y is $-CH_2-$.
- 246. The compound according to any of claims 241-245, wherein n is zero.
- 247. The compound according to any of claims 241-246, wherein m is zero.
- 248. The compound according to any of claims 158-229, wherein R₆ is a -linker-reporter.
- 5 249. The compound of claim 248, wherein the linker is:

wherein

X is

-O-, -S-, or -NH-; or

10

alkanediyl_(C \leq 12), alkenediyl_(C \leq 12), alkynediyl_(C \leq 12), arenediyl_(C \leq 12), heteroarenediyl_(C \leq 12), or a substituted version of any of these groups; and

n is an integer from 0–12.

- 250. The compound of claim 249, wherein X is alkynediyl_(C \leq 12).
- 15 251. The compound of claim 250, wherein X is alkynediyl_(C2-8).
 - 252. The compound of claim 251, wherein X is $-C \equiv C^{-}$.

253. The compound according to any of claims 249-252, wherein n is zero.

254. The compound of claim 248, wherein the linker is:

	wherein					
	X is					
-O-, -S-, or -NH-; or						
	$alkanediyl_{(C \le 12)}, alkenediyl_{(C \le 12)}, alkynediyl_{(C \le 12)}, are nediyl_{(C \le 12)},$					
heteroarenediyl _(C\leq12) , or a substituted version of any of thes						
	groups;					
Y is $-O-$, $-NH-$, alkanediyl _(C \le 12) or substituted alkanediyl _(C \le 12) ;						
	n is an integer from $0-12$; and					
	m is an integer from 0–12.					

- 10 255. The compound of claim 254, wherein X is alkynediyl_(C \leq 12).
 - 256. The compound of claim 255, wherein X is alkynediyl_(C2-8).
 - 257. The compound of claim 256, wherein X is $-C \equiv C -$.
 - 258. The compound according to any of claims 254-257, wherein Y is $-CH_2-$.
 - 259. The compound according to any of claims 254-258, wherein n is zero.
- 15 260. The compound according to any of claims 254-259, wherein m is zero.
 - 261. The compound of claim 248, wherein the linker is:

wherein

20

25

X is

-O-, -S-, or -NH-; or

alkanediyl_(C≤12), alkenediyl_(C≤12), alkynediyl_(C≤12), arenediyl_(C≤12), heteroarenediyl_(C≤12), or a substituted version of any of these groups;

Y is -O-, -NH-, alkanediyl_(C \le 12) or substituted alkanediyl_(C \le 12);

m is an integer from 0–12.

15

- 262. The compound of claim 261, wherein X is alkynediyl_(C ≤ 12).
- 263. The compound of claim 262, wherein X is alkynediyl_(C2-8).
- 264. The compound of claim 263, wherein X is $-C \equiv C^-$.
- 265. The compound according to any of claims 261-264, wherein Y is $-CH_2-$.
- 5 266. The compound according to any of claims 261-265, wherein n is zero.
 - 267. The compound according to any of claims 261-266, wherein m is zero.
 - 268. The compound according to any of claims 248-267, wherein the reporter is based on a dye, wherein the dye is zanthene, fluorescein, rhodamine, BODIPY, cyanine, coumarin, pyrene, phthalocyanine, phycobiliprotein, ALEXA FLUOR® 350, ALEXA FLUOR® 405, ALEXA FLUOR® 430, ALEXA FLUOR® 488, ALEXA FLUOR® 514, ALEXA FLUOR® 532, ALEXA FLUOR® 546, ALEXA FLUOR® 555, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 568, ALEXA FLUOR® 594, ALEXA FLUOR® 610, ALEXA FLUOR® 633, ALEXA FLUOR® 647, ALEXA FLUOR® 660, ALEXA FLUOR® 680, ALEXA FLUOR® 700, ALEXA FLUOR® 750, or a squaraine dye.
 - 269. The compound according to any of claims 248-267, wherein the reporter is:

270. The compound according to any of claims 158-269, wherein R_7 is hydrogen.

- 271. The compound according to any of claims 158-270, wherein R_8 is hydrogen.
- 272. The compound according to any of claims 158-270, wherein R_8 is nitro.
- 273. The compound according to any of claims 158-270, wherein R_8 is $alkyl_{(C \le 12)}$ or a substituted version thereof.
- 5 274. The compound of claim 273, wherein R_8 is alkyl_(C \le 8).
 - 275. The compound of claim 274, wherein R_8 is alkyl_(C ≤ 6).
 - 276. The compound of claim 275, wherein R_8 is alkyl_(C≤3).
 - 277. The compound of claim 276, wherein R_8 is methyl.
 - 278. The compound according to any of claims 158-277, wherein R₉ is not hydrogen.
- 10 279. The compound according to any of claims 158-277, wherein R_9 is nitro.
 - 280. The compound according to any of claims 158-277, wherein R_9 is $alkyl_{(C \le 12)}$ or a substituted version thereof.
 - 281. The compound of claim 280, wherein R_9 is alkyl_(C \le 8).
 - 282. The compound of claim 281, wherein R_9 is alkyl_(C \le 6).
- 15 283. The compound of claim 282, wherein R₉ is selected from the group consisting of methyl, ethyl, *n*-propyl, isopropyl and *tert*-butyl.
 - 284. The compound of claim 283, wherein R_9 is methyl.
 - 285. The compound of claim 282, wherein R_9 is alkyl_(C2-6).
 - 286. The compound of claim 285, wherein R_9 is alkyl_(C3-5).
- 20 287. The compound of claim 286, wherein R_9 is isopropyl.
 - 288. The compound of claim 286, wherein R₉ is *tert*-butyl.
 - 289. The compound according to any of claims 158-277, wherein R_9 is $aryl_{(C \le 12)}$ or a substituted version thereof.

- 290. The compound of claim 289, wherein R_9 is $aryl_{(C \le 8)}$.
- 291. The compound of claim 290, wherein R_9 is phenyl.
- 292. The compound of claim 158, further defined as:

- or a salt thereof.
 - 293. The compound of claim 158, further defined as:

or a salt thereof.

294. The compound of claim 158, further defined as:

10

295. The compound of claim 158, further defined as:

or a salt thereof.

296. A compound of the formula selected from the group consisting of:

or a salt thereof.

297. The compound of claim 296, further defined as a diastereomer selected from the group consisting of:

or a salt of any of these diastereomers, wherein the compound is substantially free from other optical isomers thereof.

298. A compound of the formula selected from the group consisting of:

or a salt thereof.

299. The compound of claim 298, further defined as a diastereomer selected from the group consisting of:

or a salt of any of these diastereomers, wherein the compound is substantially free from other optical isomers thereof.

- 300. The compound of any of claim 1-299, wherein the compound is a salt.
- 5 301. The compound of claim 300, wherein the salt comprises a monovalent cation.
 - 302. The compound of claim 301, wherein the monovalent cation is lithium.
 - 303. The compound of claim 301, wherein the monovalent cation is sodium.
 - 304. The compound of claim 301, wherein the monovalent cation is potassium.
 - 305. The compound of claim 300, wherein the salt comprises a divalent cation.
- 10 306. The compound of claim 305, wherein the divalent cation is calcium, magnesium or manganese(II).
 - 307. The compound of claim 300, wherein the salt comprises a cation selected from the group consisting of ammonium, tri-*n*-butyl ammonium and $(HOCH_2)_3CNH_3^+$.
 - 308. A method of sequencing a target nucleic acid comprising the following steps:
- 15 (i) attaching the 5'-end of a primer to a solid surface;

PCT/US2009/047071

		(ii)	hybridizing a target nucleic acid to the primer attached
			to the solid surface;
		(iii)	adding a compound according to any of claims 1-307,
			with the proviso that where more than one type of base
5			is present, each base is attached to a different reporter
			group;
		(iv)	adding a nucleic acid replicating enzyme to the
			hybridized primer/target nucleic acid complex to
			incorporate the composition of step (iii) into the
10			growing primer strand, wherein the incorporated
			composition of step (iii) terminates the polymerase
			reaction at an efficiency of between about 70% to about
			100%;
		(v)	washing the solid surface to remove unincorporated
15			components;
		(vi)	detecting the incorporated reporter group to identify the
			incorporated composition of step (iii);
		(vii)	a cleavage step to remove the terminating moiety
			resulting in an extended primer with naturally-occurring
20			bases;
		(viii)	washing the solid surface to remove the cleaved
			terminating group; and
		(ix)	repeating steps (iii) through (viii) one or more times to
			identify the plurality of bases in the target nucleic acid.
25	309.	A method of	f sequencing a target nucleic acid comprising the following steps:
		(i)	attaching the 5'-end of a target nucleic acid to a solid
			surface;
		(ii)	hybridizing a primer to the target nucleic acid attached
			to the solid surface;
30		(iii)	adding a compound according to any of claims 1-307,
			with the proviso that where more than one type of base
			is present, each base is attached to a different reporter
			group;

25

	(iv)	adding a nucleic acid replicating enzyme to the
		hybridized primer/target nucleic acid complex to
		incorporate the composition of step (iii) into the
		growing primer strand, wherein the incorporated
5		composition of step (iii) terminates the polymerase
		reaction at an efficiency of between about 70% to about
		100%;
	(v)	washing the solid surface to remove unincorporated
		components;
10	(vi)	detecting the incorporated reporter group to identify the
		incorporated composition of step (iii);
	(vii)	optionally adding one or more chemical compounds to
		permanently cap unextended primers;
	(viii)	a cleavage step to remove the terminating moiety
15		resulting in an extended primer with naturally-occurring
		bases;
	(ix)	washing the solid surface to remove the cleaved
		terminating group; and
	(x)	repeating steps (iii) through (ix) one or more times to
20		identify the plurality of bases in the target nucleic acid.

310. The method according to either of claim 308 or 309, wherein the compound is incorporated by a nucleic acid replicating enzyme that is a DNA polymerase.

- 311. The method of claim 310, wherein the DNA polymerase is selected from the group consisting of *Taq* DNA polymerase, Klenow(exo-) DNA polymerase, *Bst* DNA polymerase, VENT® (exo-) DNA polymerase (DNA polymerase A cloned from *Thermococcus litoralis* and containing the D141A and E143A mutations), *Pfu*(exo-) DNA polymerase, and DEEPVENTTM (exo-) DNA polymerase (DNA polymerase A, cloned from the *Pyrococcus* species GB-D, and containing the D141A and E143A mutations).
- 30 312. The method of claim 310, wherein the DNA polymerase is selected from the group consisting of AMPLITAQ[®] DNA polymerase, FS (*Taq* DNA polymerase that contains the G46D and F667Y mutations), THERMOSEQUENASE[™] DNA

polymerase (*Taq* DNA polymerase that contains the F667Y mutation), THERMOSEQUENASETM II DNA polymerase (blend of THERMOSEQUENASETM DNA polymerase and *T. acidophilum* pyrophosphatase), THERMINATORTM DNA polymerase (DNA polymerase A, cloned from the *Thermococcus* species 9°N-7 and containing the D141A, E143A and A485L mutations), THERMINATORTM II DNA polymerase (THERMINATORTM DNA polymerase that contains the additional Y409V mutation), and VENT® (exo-) A488L DNA polymerase (VENT® (exo-) DNA polymerase that contains the A488L mutation).

313. The method according to any of claims 308-312, wherein the cleavage of the
terminating moiety is a chemical cleavage, a photo-cleavage, electrochemical or an enzymatic cleavage.

- 314. The method of claim 313, wherein the chemical cleavage is performed using a catalyst or stoichiometric reagent.
- 315. The method of claim 314, wherein the catalyst homogeneous or heterogeneous.
- 15 316. The method of claim 315, wherein the heterogeneous catalyst comprises Palladium.
 - 317. The method of claim 315, wherein the homogeneous catalyst comprises Palladium.
 - 318. The method of any of claims 315 to 317, wherein 85% to 100% of the photocleavable terminating moieties are removed by means of the photo-cleavage.
- 319. The method of claim 314, wherein the photo-cleavage is performed using awavelength of light ranging between 300 nm to 400 nm.
 - 320. The method of claim 319, wherein 85% to 100% of the photocleavable terminating moieties are removed by means of the photo-cleavage.
 - 321. A method of performing Sanger or Sanger-type sequencing using a compound according to any of claims 1-307.
- 25 322. A method of performing pyrosequencing or pyrosequencing-type sequencing using a compound according to any of claims 1-307.

FIG. 1

FIG. 2.

FIG. 3.

PCT/US2009/047071

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						? 4
			· · · · · · · · · · · · · · · · · · ·	7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8			c ę	2
	240	180	20	0	0 mir			5
116 r.m. 12				Ψ		0		
dç.ww		·····						
10 10			10 10 10 10 10 10 10 10 10 10 10 10 10 1				· · · · · · · · · · · · · · · · · · ·	5 2
WW5p116		5.000)			ų į
								24
Wi%i5p116 rx						★ 		4 9
4						sthyl 1-2'-(·····	2
w5p118 rsm						2-me nethy		9
\$\$						enyl- xy)n		
6p116 rxn_2	đ					1-ph ppylo		i 2
	· · · · · · · · · · · · · · · · · · ·	5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5-(prc		2
16 ram 0			·····	·····	}	<		à S
WW5p1					••••••		·····	2
۱ 								ă a