

US00RE48960E

(19) United States

(12) Reissued Patent

Wilton et al.

(54) ANTISENSE OLIGONUCLEOTIDES FOR INDUCING EXON SKIPPING AND METHODS OF USE THEREOF

- (71) Applicant: The University of Western Australia, Crawley (AU)
- (72) Inventors: Stephen Donald Wilton, Applecross
 (AU); Sue Fletcher, Bayswater (AU);
 Graham McClorey, Bayswater (AU)
- (73) Assignee: The University of Western Australia, Crawley (AU)
- (*) Notice: This patent is subject to a terminal disclaimer.
- (21) Appl. No.: 16/721,681
- (22) Filed: Dec. 19, 2019

Related U.S. Patent Documents

Reissue of:

(64)	Patent No.:	8,524,880
	Issued:	Sep. 3, 2013
	Appl. No.:	12/837,356
	Filed:	Jul. 15, 2010

- U.S. Applications:
- (63) Continuation of application No. 11/570,691, filed as application No. PCT/AU2005/000943 on Jun. 28, 2005, now Pat. No. 7,807,816.

(30) Foreign Application Priority Data

Jun. 28, 2004 (AU) 2004903474

(51) Int. Cl. *C12N 15*

15/113	(2010.01)
--------	-----------

- (52) U.S. Cl.
 CPC C12N 15/113 (2013.01); C12N 2310/11 (2013.01); C12N 2310/315 (2013.01); C12N 2310/321 (2013.01); C12N 2310/3233 (2013.01); C12N 2310/33 (2013.01); C12N 2310/3341 (2013.01); C12N 2310/3519 (2013.01); C12N 2320/30 (2013.01); C12N 2320/33 (2013.01)
- (58) Field of Classification Search CPC C12N 15/113; C12N 2310/3341; A61P 21/00

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

5,034,506	A	7/1991	Summerton et al 528/391
5,142,047	Α	8/1992	Summerton et al 544/118
5,149,797	A	9/1992	Pederson et al 536/27
5,166,315	A	11/1992	Summerton et al 528/406
5,185,444	Α	2/1993	Summerton et al 544/81
5,217,866	A	6/1993	Summerton et al 435/6
5,506,337	A	4/1996	Summerton et al 528/391
5,521,063	Α	5/1996	Summerton et al 435/6
5,627,274	A	5/1997	Kole et al 536/23.1
5,665,593	A	9/1997	Kole et al 435/375
5,869,252	A	2/1999	Bouma et al.
5,892,023	A	4/1999	Pirotzky et al 536/24.5
6,153,436	A	11/2000	Hermonat et al.
6,210,892	B1	4/2001	Bennett et al 435/6
6,653,466	B2	11/2003	Matsuo

(10) Patent Number: US RE48,960 E

(45) Date of Reissued Patent: *Mar. 8, 2022

6,653,467	B1	11/2003	Matsuo et al.
6,656,732	B1	12/2003	Bennett et al 435/375
6,727,355	B2	4/2004	Matsuo et al.
6,784,291	B2	8/2004	Iversen et al 536/24.5
7,070,807	B2	7/2006	Mixson 424/484
7,163,695	B2	1/2007	Mixson 424/486
7,250,289	B2	7/2007	Zhou 435/287.2
7,314,750	B2	1/2008	Zhou
7,468,418	B2	12/2008	Iversen et al 530/300
7,534,879	B2	5/2009	van Deutekom C12Q 1/6883
			536/24.5
7,655,785	B1	2/2010	Bentwich
7,807,816	B2	10/2010	Wilton et al 536/24.5
7,902,160	B2	3/2011	Matsuo et al.
7,960,541	B2	6/2011	Wilton et al.
7,973,015	B2	7/2011	van Ommen et al.
8,084,601	B2	12/2011	Popplewell et al.
8,324,371	B2	12/2012	Popplewell et al.
9,447,415	B2 *	9/2016	Wilton C12N 15/113
2002/0156235	A1	10/2002	Manoharan et al.
2003/0224353	A1	12/2003	Stein et al 435/5
2004/0248833	A1	12/2004	Emanuele et al 514/44
2004/0254137	A1	12/2004	Ackermann et al.
2005/0026164	A1	2/2005	Zhou
2005/0153935	A1	7/2005	Iversen et al.
2006/0099616	A1	5/2006	van Ommen et al.
2006/0147952	A1	7/2006	van Ommen et al.
2007/0082861	A1	4/2007	Matsuo et al 514/44
2008/0209581	A1	8/2008	van Ommen et al.
2009/0228998	A1	9/2009	Van Ommen et al.
2009/0269755	A1	10/2009	Aartsma-Rus et al.
2009/0312532	A1	12/2009	Van Deutekom et al.
2010/0130591	A1	5/2010	Sazani et al 514/44 A
2011/0015253	A1	1/2011	Wilton et al 514/44 R
2011/0015258	A1	1/2011	Wilton et al.
2011/0046203	A1	2/2011	Wilton et al 514/44 A
2011/0046360	A1	2/2011	Matsuo et al.
2011/0263682	A1	10/2011	De Kimpe et al.
2011/0294753	Al	12/2011	De Kimpe et al.
2011/0312086	Al	12/2011	Van Deutekom
2012/0022134	Al	1/2012	De Kimpe et al.
2012/0108652	Al	5/2012	Popplewell et al.
2012/0108653	Al	5/2012	Popplewell et al.
2012/0172415	A1	7/2012	Voit et al.

FOREIGN PATENT DOCUMENTS

AU	780517	11/2001
AU	2003284638 A1	6/2004
	(Cont	inued)

OTHER PUBLICATIONS

Dunckley et al., "Modulation of Splicing in the DMD Gene By Antisense Oligoribonucleotides," *Nucleosides & Nucleotides* 16(7-9):1665-1668, 1997.

(Continued)

Primary Examiner — Padmashri Ponnaluri

(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein & Fox P.L.L.C.

(57) **ABSTRACT**

An antisense molecule capable of binding to a selected target site to induce exon skipping in the dystrophin gene, as set forth in SEQ ID NO: 1 to 202.

13 Claims, 22 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

FOREIGN PATENT DOCUMENTS

CA	2 507 125	A1		6/2004		
EP	1054058	A1		11/2000		
EP	1160318	A2		12/2001		
EP	1 191 097	A1		3/2002		
EP	1191098	A2		3/2002		
EP	1544297	A2		6/2005		
EP	1568769	A1		8/2005		
EP	1619249	Al		1/2006		
EP	1 766 010			3/2007		
EP		A 1		11/2007		
	1857548	Al				
EP	2135948	A2		12/2009		
EP	2284264	A1		2/2011		
\mathbf{EP}	2374885	A2		10/2011		
EP	2386636	A2		11/2011		
EP	2392660	A2		12/2011		
EP	2530153	Al		12/2012		
EP	2530154	Al		12/2012		
EP	2530155	Al		12/2012		
EP	2530156	A1		12/2012		
WO	93/20227	A1		10/1993		
WO	WO 94/02595	A1		2/1994		
WO	WO 96/10391	A1		4/1996		
WO	WO 96/10392	A1		4/1996		
WO	WO 97/30067	A1		8/1997		
wõ	WO 97/34638	Al		9/1997		
wõ	WO 00/44897	Al		8/2000		
WO				7/2000		
	WO 01/49775	A2				
WO	WO 01/83740	A2		11/2001		
WO	WO 02/024906	A1		3/2002		
WO	WO 02/24906	A1		3/2002		
WO	03/053341	A2		7/2003		
WO	WO-03053341	A2	*	7/2003	 C12N	15/1137
WO	WO 2004/048570	A1		6/2004		
WÕ	WO 2004/083432	Al		9/2004		
wo	WO 2004/083446	A2		9/2004		
wo	WO 2006/000057			1/2004		
		Al				
WO	06/112705	A2		10/2006		
WO	07/135105	A1		11/2007		
WO	09/054725	A2		4/2009		
WO	09/101399	A1		8/2009		
WO	09/139630	A2		11/2009		
WO	10/050801	A1		5/2010		
WO	10/050802	A2		5/2010		
WO	10/115993	Al		10/2010		
wŏ	10/123369	Al		10/2010		
wo	10/12000	Al		12/2010		
WO	2010/150231	Al		12/2010		
WO	11/024077	A2		3/2011		
WO	2011/024077	A2		3/2011		
WO	11/057350	A1		5/2011		
WO	2011/057350	A1		5/2011		
WO	12/001941	A1		1/2012		
WO	2012/001941	Al		1/2012		
wŏ	12/029986	Al		3/2012		
wo	2012/029986	Al		3/2012		
WO						
WO	12/109296 2012/109296	Al		8/2012		
	7017/109796	Al		8/2012		

OTHER PUBLICATIONS

Gennaro, Alfonso R., (ed.), *Remington's Pharmaceutical Studies,* 18th Edition, Mack Publishing, Co., Eastern, PA. 1990.

International Search Report for International Application No. PCT/ US01/14410, dated Mar. 6, 2002, 5 pages. Cirak, Sebahattin et al., "Exon skipping and dystrophin restoration

Cirak, Sebahattin et al., "Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study," Lancet, vol. 378(9791):595-605 (2011).

Dominski, Zbigniew et al., "Identification and Characterization by Antisense Oligonucleotides of Exon and Intron Sequences Required for Splicing," Molecular and Cellular Biology, vol. 14(11):7445-7454 (1994).

Dominski,	Zbigniew	et al.	, "Restoration	of correct	splicing in
thalassemic	pre-mRN.	A by a	ntisense oligoi	nucleotides,'	' Proc. Natl.
Acad. Sci. U	USA, vol.	90:86	73-8677 (1993).	

Fall, Abbie M. et al., "Induction of revertant fibres in the mdx mouse using antisense oligonucleotides," Genetics Vaccines and Therapy, vol. 4:3, doi:10.1186/1479-0556-4-3, 12 pages (2006).

Fletcher, Susan et al., "Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide," J. Gene Med., vol. 8:207-216 (2006).

Fletcher, Susan et al., "Gene therapy and molecular approaches to the treatment of hereditary muscular disorders," Curr. Opin. Neurol., vol. 13:553-560 (2000).

Kaye, Ed, "Results of the Eteplirsen Phase 2b and Phase 2b Extension Study in Duchenne Muscular Dystrophy," 8th Annual Meeting of the Oligonucleotide Therapeutics Society, Session 9: Advances in Oligonucleotide Clinical Development II, p. 48 (2012). Kinali, Maria et al., "Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study," Lancet Neurol., vol. 8:918-928 (2009).

Matsuo, Masafumi et al., "Treatment of Duchenne Muscular Dystrophy with Oligonucleotides against an Exonic Splicing Enhancer Sequence," Basic Appl. Myol., vol. 13(6):281-285 (2003).

McClorey, G. et al., "Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD," Gene Therapy, vol. 13:1373-1381 (2006).

McClorey, G. et al., "Induced dystrophin exon skipping in human muscle explants," Neuromuscular Disorders, vol. 16:583-590 (2006). McClorey, Graham et al., "Splicing intervention for Duchenne muscular dystrophy," Current Opinion in PHarmacology, vol. 5:529-534 (2005).

Mitrpant, Chalermchai et al., "Rational Design of Antisense Oligomers to Induce Dystrophin Exon Skipping," Molecular Therapy, vol. 17(8):1418-1426 (2009).

Wilton, Stephen D. et al., "Antisense oligonucleotides in the treatment of Duchenne muscular dystrophy: where are we now?" Neuromuscular Disorders, vol. 15:399-402 (2005).

European Search Report for Application No. 10004274.6, 12 pages, dated Jan. 2, 2013.

Partial European Search Report for Application No. 10004274.6, 6 pages, dated Oct. 2, 2012.

Partial European Search Report for Application No. 12162995.0, 6 pages, dated Oct. 2, 2012.

European Search Report for Application No. 12162995.0, 11 pages, dated Jan. 15, 2013.

Aartsma-Rus et al., "Antisense-Induced Multiexon Skipping for Duchenne Muscular Dystrophy Makes More Sense," *Am. J. Hum. Genet.* 74:83-92, 2004.

Aartsma-Rus et al., "Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients," *Human Molecular Genetics* 12(8):907-914, 2003.

Aartsma-Rus et al., "Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy," *Neuromuscular Disorders* 12:S71-S77, 2002.

Abbs et al., "A convenient multiplex PCR system for the detection of dystrophin gene deletions: a comparative analysis with cDNA hybridisation shows mistyping by both methods," *J. Med. Genet.* 28:304-311, 1991.

Agrawal et al., "Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus," *Proc. Natl. Acad. Sci. USA* 85:7079-7083, Oct. 1988.

Akhtar et al., "Cellular uptake and intracellular fate of antisense oligonucleotides," *Trends in Cell Biology* 2:139-144, May 1992.

Akhtar, Saghir, (ed.), Delivery Strategies for Antisense Oligonucleotide Therapeutics, CRC Press, Boca Raton, Florida, 1995.

Anderson, "Human Gene Therapy," Science 256:808-813, May 8, 1992.

Asvadi et al., "Expression and functional analysis of recombinant scFv and diabody fragments with specificity for human RhD," *Journal of Molecular Recognition* 15:321-330, 2002.

Berge et al., "Pharmaceutical Salts," *Journal of Pharmaceutical Sciences* 66(1):1-19, Jan. 1977.

(56) **References Cited**

OTHER PUBLICATIONS

Brown et al., "Dystrophic phenotype induced in vitro by antibody blockade of muscle α -dystroglycan-laminin interaction," *Journal of Cell Science* 112:209-216, 1999.

Collins et al., "Duchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies," *International Journal of Experimental Pathology* 84:165-172, 2003.

De Angelis et al., "Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Δ 48-50 DMD cells," *Proc. Natl. Acad. Sci. USA* 99(14):9456-9461, Jul. 9, 2002.

DelloRusso et al., "Functional correction of adult *mdx* mouse muscle using gutted adenoviral vectors expressing full-length dystrophin," Proc. Natl. Acad. Sci. USA 99(20):12979-12984, Oct. 2002.

Dirksen et al., "Mapping the SF2/ASF Binding Sites in the Bovine Growth Hormone Exonic Splicing Enhancer," *The Journal of Biological Chemistry* 275(37):29170-29177, 2000.

Dunckley et al., "Modification of splicing in the dystrophin gene in cultured *Mdx* muscle cells by antisense oligoribonucleotides," *Human Molecular Genetics* 5(1):1083-1090, 1995.

Dunkley et al., "Modulation of Splicing in the *DMD* Gene by Antisense Oligoribonucleotides," *Nucleosides &Nucleotides* 16(7-9):1665-1668, 1997.

Errington et al., "Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene," *The Journal of Gene Medicine* 5:518-527, 2003.

"Exon 51 Sequence of Dystrophin," Document D19 as filed in Opposition of European Patent EP1619249, filed Jun. 23, 2009, 7 pages.

Friedmann, "Progress Toward Human Gene Therapy," Science 244:1275-1281, Jun. 16, 1989.

Gebski et al., "Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in *mdx* mouse muscle," *Human Molecular Genetics* 12(15):1801-1811, 2003.

Giles et al., "Antisense Morpholino Oligonucleotide Analog Induces Missplicing of C-myc mRNA," Antisense &Nucleic Acid Drug Development 9:213-220, 1999.

Gennaro, Alfonso R., (ed.), *Remington's Pharmaceutical Studies*, 18^{th 1} Edition, Mack Publishing, Co., Eastern, PA. 1990.

Harel-Bellan et al., "Specific Inhibition of *c-myc* Protein Biosynthesis Using an Antisense Synthetic Deoxy-Oligonucleotide in Human T Lymphocytes," *The Journal of Immunology* 140(7):2431-2435, Apr. 1, 1988.

Hussey et al., "Analysis of five Duchenne muscular dystrophy exons and gender determination using conventional duplex polymerase chain reaction on single cells," *Molecular Human Reproduction* 5(11):1089-1094, 1999.

International Search Report for International Application No. PCT/US01/14410, mailed Mar. 6, 2002, 5 pages.

Karras et al., "Deletion of Individual Exons and Induction of Soluble Murine Interleukin-5 Receptor- α , Chain Expression through Antisense Oligonucleotide-Mediated Redirection of Pre-mRNA Splicing," *Molecular Pharmacology* 58:380-387, 2000.

Liu et al., "Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins," *Genes &Development* 12:1998-2012, 1998.

Lu et al., "Massive Idiosyncratic Exon Skipping Corrects the Nonsense Mutation in Dystrophic Mouse Muscle and Produces Functional Revertant Fibers by Clonal Expansion," *The Journal of Cell Biology* 148(5):985-995, Mar. 6, 2000.

Lu et al., "Functional amounts of dystrophin produced by skipping the mutated exon in the *mdx* dystrophic mouse," *Nature Medicine* 9(8):1009-1014, Aug. 2003.

Mann et al., "Antisense-induced exon skipping and synthesis of dystrophin in the *mdx* mouse," *Proc. Natl. Acad. Sci. USA* 98(1):42-47, Jan. 2, 2001.

Mann et al., "Improved antisense oligonucleotide induced exon skipping in the *mdx* mouse model of muscular dystrophy," *The Journal of Gene Medicine* 4:644-654, 2002.

Matsuo et al., "Exon Skipping during Splicing of Dystrophin mRNA Precursor due to an intraexon Deletion in the Dystrophin Gene of Duchenne Muscular Dystrophy Kobe," *J. Clin. Invest.* 87:2127-2131, Jun. 1991.

Matsuo, "Duchenne/Becker muscular dystrophy: from molecular diagnosis to gene therapy," *Brain&Development* 18:167-172, 1996. Matsuo, "Duchenne and Becker Muscular Dystrophy: From Gene Diagnosis to Molecular Therapy," *IUBMB Life* 53:147-152, 2002. Monaco et al., "An Explanation for the Phenotypic Differences between Patients Bearing Partial Deletions of the DMD Locus," *Genomics* 2:90-95, 1988.

Patentee's Response to European Patent Application No. 05076770. 6, dated Jul. 28, 2006, 4 pages.

Pramono et al., "Induction of Exon Skipping of the Dystrophin Transcript in Lymphoblastoid Cells by Transfecting an Antisense Oligodeoxynucleotide Complementary to an Exon Recognition Sequence," *Biochemical and Biophysical Research Communications* 226:445-449, 1996.

Roberts et al., "Exon Structure of the Human Dystrophin Gene," *Genomics* 16:536-538, 1993.

Rosso et al., "An *Arabidopsis thaliana* T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics," *Plant Molecular Biology* 53:247-259, 2003.

Shapiro et al., "RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression," *Nucleic Acids Research* 15(17):7155-7174, 1987.

Sherratt et al., "Exon Skipping and Translation in Patients with Frameshift Deletions in the Dystrophin Gene," *Am. J. Hum. Genet.* 53:1007-1015, 1993.

Shiga et al., "Disruption of the Splicing Enhancer Sequence within Exon 27 of the Dystrophin Gene by a Nonsense Mutation Induces Partial Skipping of the Exon and is Responsible for Becker Muscular Dystrophy," *J. Clin. Invest.* 100(9):2204-2210, Nov. 1997.

Sierakowska et al., "Repair of thalassemic human β -globin mRNA in mammalian cells by antisense oligonucleotides," *Proc. Natl. Acad. Sci. USA* 93:12840-12844, Nov. 1996.

Summerton et al., "Morpholino Antisense Oligomers: Design, Preparation, and Properties," *Antisense*&*Nucleic Acid Drug Development* 7:187-195, 1997.

Takeshima et al., "Modulation of In Vitro Splicing of the Upstream Intron by Modifying an Intra-Exon Sequence Which Is Deleted from the Dystrophin Gene in Dystrophin Kobe," *J. Clin. Invest.* 95:515-520, Feb. 1995.

Tanaka et al., "Polypurine Sequences within a Downstream Exon Function as a Splicing Enhancer," *Molecular and Cellular Biology* 14(2):1347-1354, Feb. 1994.

Thanh et al., "Characterization of Revertant Muscle Fibers in Duchenne Muscular Dystrophy, Using Exon-Specific Monoclonal Antibodies against Dystrophin," *Am. J. Hum. Genet.* 56:725-731, 1995.

van Deutekom et al., "Advances in Duchenne Muscular Dystrophy Gene Therapy," *Nature Reviews Genetics* 4:774-783, Oct. 2003.

van Deutekom et al., "Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells," *Human Molecular Genetics* 10(15):1547-1554, 2001.

Volloch et al., "Inhibition of Pre-mRNA Splicing by Antisense RNA In Vitro: Effect of RNA Containing Sequences Complementary to Exons," *Biochemical and Biophysical Research Communications* 179(3):1593-1599, Sep. 30, 1991.

Watakabe et al., "The role of exon sequences in splice site selection," *Genes & Development* 7:407-418, 1993.

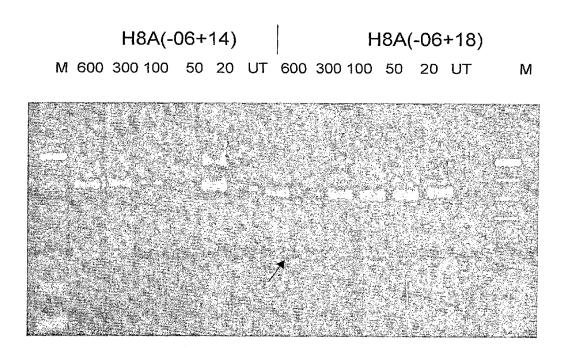
Wilton et al., "Specific removal of the nonsense mutation from the *mdx* dystrophin mRNA using antisense oligonucleotides," *Neuromuscular Disorders* 9:330-338, 1999.

* cited by examiner

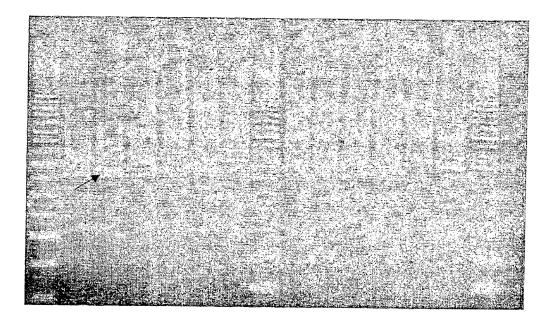
Donor ESE FIGURE 1 Acceptor

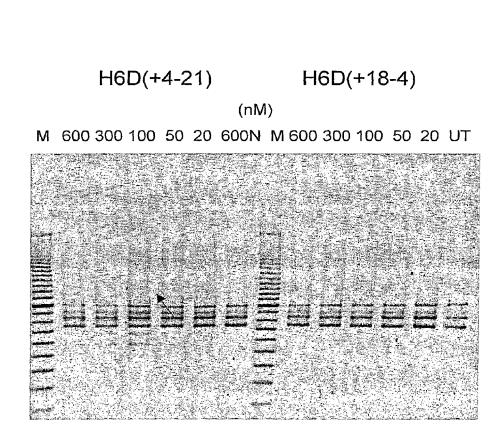
dq

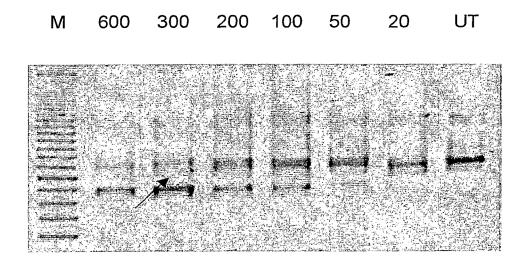
ucaugcacugagugaccucuuucucgcagGCGCUAGCUGGAGCA/////CCGUGCAGACUGACGgucucau

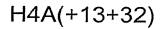

SEQ ID NO:213

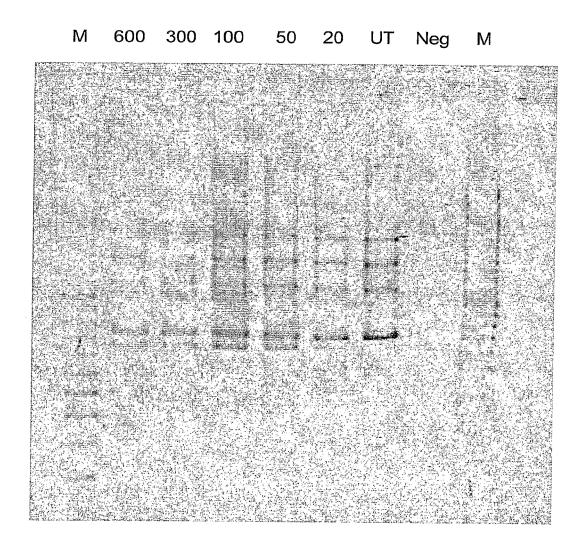
SEQ ID NO:214



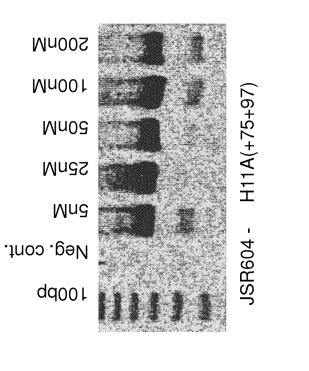
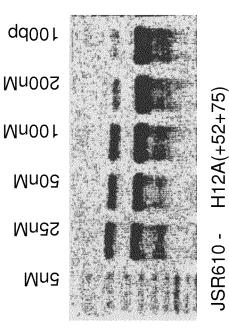
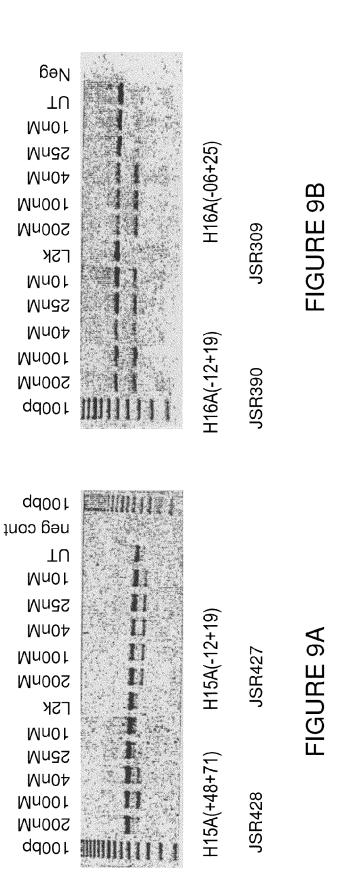
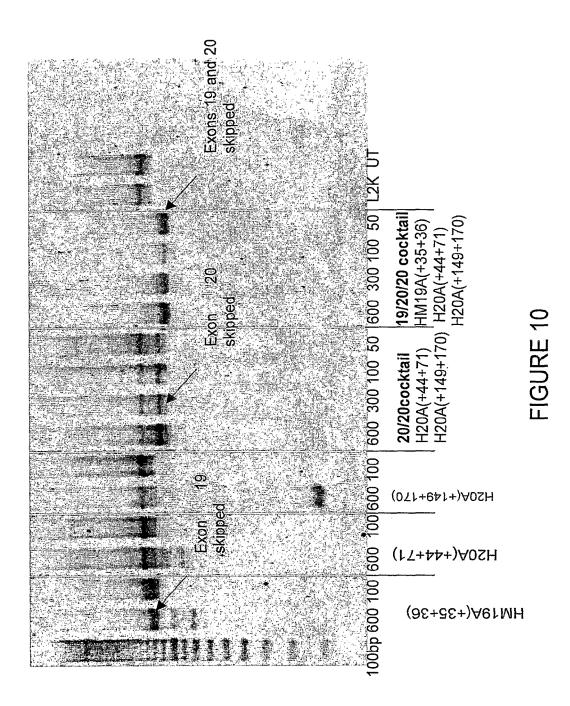


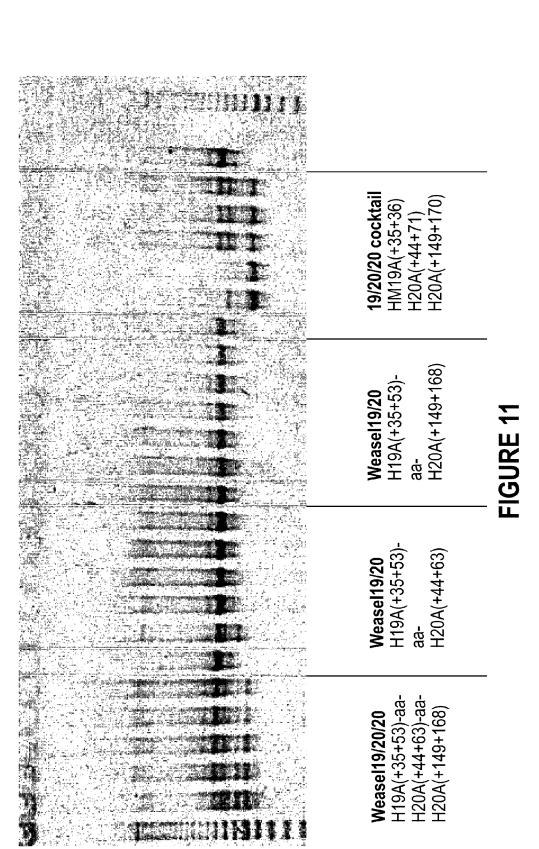


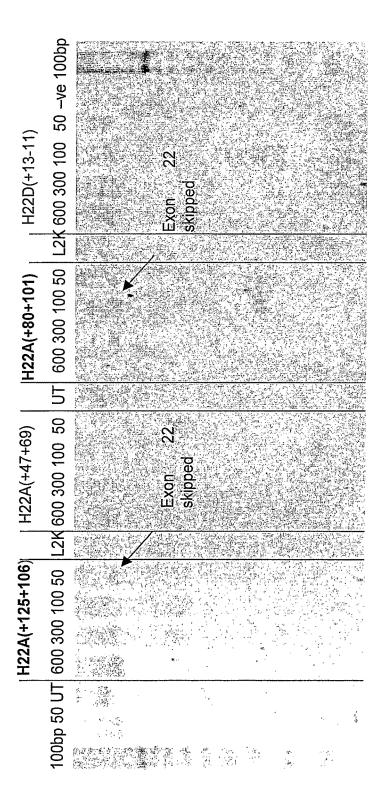

H7A(+45+67) H7A(+2+26) M 600 300 100 50 20 600N M 600 300 100 50 20 600N M



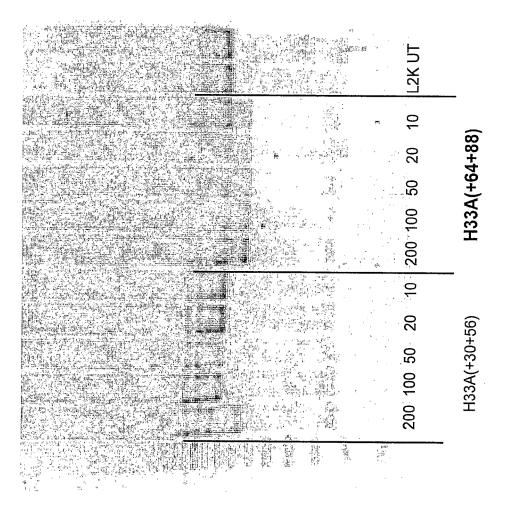
6A(+69+91)

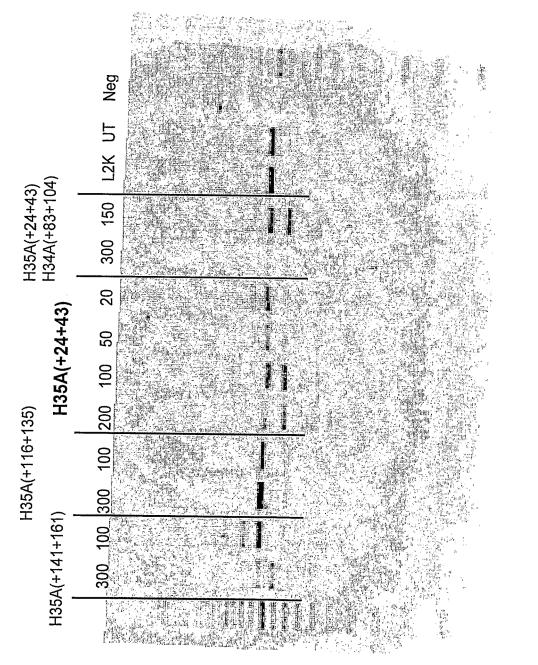





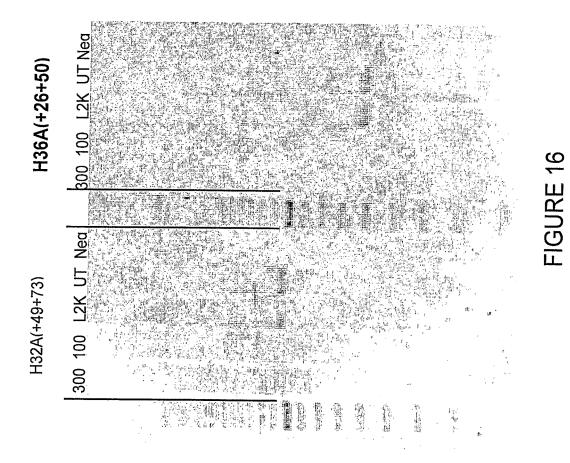


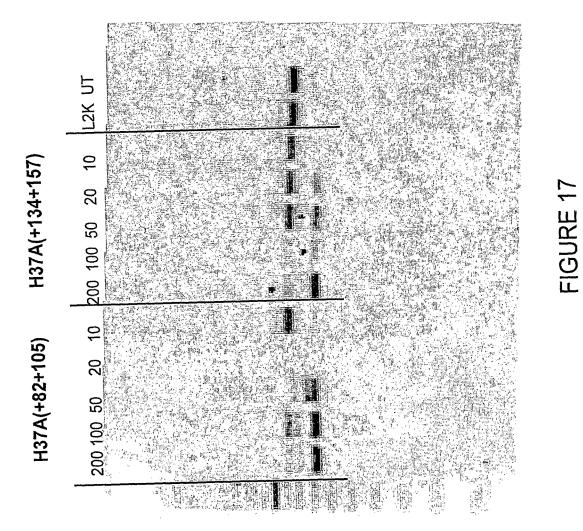

FIGURE 8B

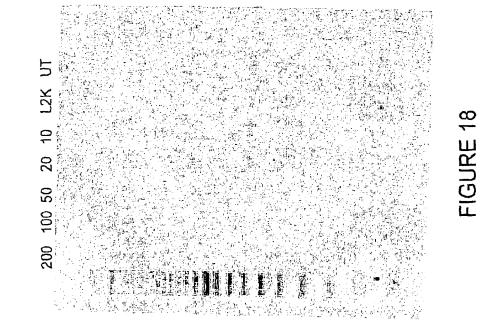


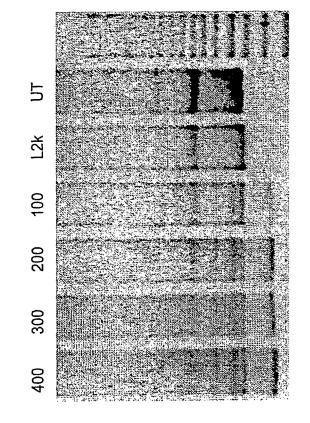








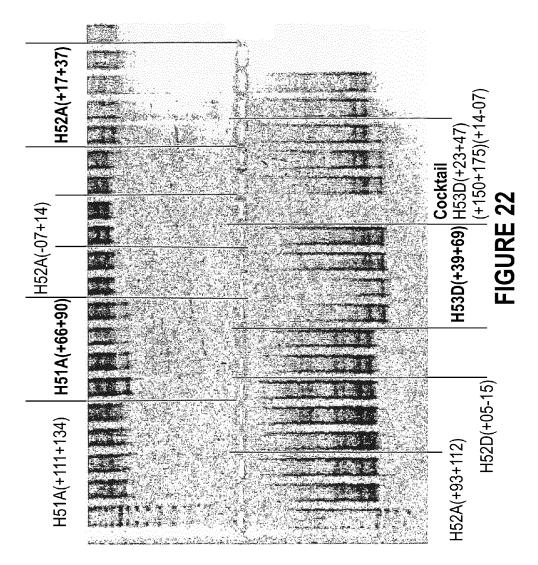






H38A(+88+112)

H40A(-05+17)



H42A(-4+23)

H46A(+86+115)

ANTISENSE OLIGONUCLEOTIDES FOR INDUCING EXON SKIPPING AND METHODS OF USE THEREOF

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held 10 invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a reissue of U.S. patent application Ser. No. 12/837,356, filed on Jul. 15, 2010, now U.S. Pat. No. 8,524,880 B2 issued on Sep. 3, 2013, which is a continuation of U.S. patent application Ser. No. 11/570,691, filed Jan. 15, 2008 (now U.S. Pat. No. 7,807,816 B2), which is a 35 U.S.C. § 371 National Phase Application of PCT/AU2005/000943, filed Jun. 28, 2005, which claims priority to Australian Patent Application No. 2004903474, filed Jun. 28, 2004; these applications are incorporated herein by reference in 25 their entireties.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant number R01 NS044146 awarded by the National Institutes of Health. The government has certain rights in the invention.

STATEMENT REGARDING SEQUENCE LISTING

The Sequence Listing associated with this application is provided *electronically* in text format in lieu of a paper copy, ⁴⁰ and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is [SequenceListing.txt] 4140_015REI3_ Seqlisting_ST25. The text file is [61 KB] 61,885 bytes, was created on [Feb. 4, 2013] *Dec. 4, 2019*, and is being ⁴⁵ submitted electronically via EFS-Web.

FIELD OF THE INVENTION

The present invention relates to novel antisense com- ⁵⁰ pounds and compositions suitable for facilitating exon skipping. It also provides methods for inducing exon skipping using the novel antisense compounds as well as therapeutic compositions adapted for use in the methods of the invention. ⁵⁵

BACKGROUND ART

Significant effort is currently being expended researching methods for suppressing or compensating for disease-causing mutations in genes. Antisense technologies are being developed using a range of chemistries to affect gene expression at a variety of different levels (transcription, splicing, stability, translation). Much of that research has focused on the use of antisense compounds to correct or compensate for abnormal or disease-associated genes in a myriad of different conditions. 2

Antisense molecules are able to inhibit gene expression with exquisite specificity and because of this many research efforts concerning oligonucleotides as modulators of gene expression have focused on inhibiting the expression of targeted genes such as oncogenes or viral genes. The antisense oligonucleotides are directed either against RNA (sense strand) or against DNA where they form triplex structures inhibiting transcription by RNA polymerase II. To achieve a desired effect in specific gene down-regulation, the oligonucleotides must either promote the decay of the targeted mRNA or block translation of that mRNA, thereby effectively preventing de novo synthesis of the undesirable target protein.

Such techniques are not useful where the object is to 15 up-regulate production of the native protein or compensate for mutations which induce premature termination of translation such as nonsense or frame-shifting mutations. Furthermore, in cases where a normally functional protein is prematurely terminated because of mutations therein, a means for restoring some functional protein production through antisense technology has been shown to be possible through intervention during the splicing processes (Sierakowska H, et al., (1996) Proc Natl Acad Sci USA 93, 12840-12844; Wilton S D, et al., (1999) Neuromusc Disorders 9, 330-338; van Deutekom J C et al., (2001) Human Mol Genet 10, 1547-1554). In these cases, the defective gene transcript should not be subjected to targeted degradation so the antisense oligonucleotide chemistry should not promote target mRNA decay.

In a variety of genetic diseases, the effects of mutations on the eventual expression of a gene can be modulated through a process of targeted exon skipping during the splicing process. The splicing process is directed by complex multiparticle machinery that brings adjacent exon-intron junc-35 tions in pre-mRNA into close proximity and performs cleavage of phosphodiester bonds at the ends of the introns with their subsequent reformation between exons that are to be spliced together. This complex and highly precise process is mediated by sequence motifs in the pre-mRNA that are relatively short semi-conserved RNA segments to which bind the various nuclear splicing factors that are then involved in the splicing reactions. By changing the way the splicing machinery reads or recognises the motifs involved in pre-mRNA processing, it is possible to create differentially spliced mRNA molecules. It has now been recognised that the majority of human genes are alternatively spliced during normal gene expression, although the mechanisms invoked have not been identified. Using antisense oligonucleotides, it has been shown that errors and deficiencies in a coded mRNA could be bypassed or removed from the mature gene transcripts.

In nature, the extent of genetic deletion or exon skipping in the splicing process is not fully understood, although many instances have been documented to occur, generally at 55 very low levels (Sherrat T G, et al., (1993) Am J Hum Genet 53, 1007-1015). However, it is recognised that if exons associated with disease-causing mutations can be specifically deleted from some genes, a shortened protein product can sometimes be produced that has similar biological 60 properties of the native protein or has sufficient biological activity to ameliorate the disease caused by mutations associated with the target exon (Lu Q L, et al., (2003) Nature Medicine 9, 1009-1014; Aartsma-Rus A et al., (2004) Am J Hum Genet 74: 83-92).

This process of targeted exon skipping is likely to be particularly useful in long genes where there are many exons and introns, where there is redundancy in the genetic constitution of the exons or where a protein is able to function without one or more particular exons (e.g. with the dystrophin gene, which consists of 79 exons; or possibly some collagen genes which encode for repeated blocks of sequence or the huge nebulin or titin genes which are 5 comprised of ~80 and over 370 exons, respectively).

Efforts to redirect gene processing for the treatment of genetic diseases associated with truncations caused by mutations in various genes have focused on the use of antisense oligonucleotides that either: (1) fully or partially overlap 10 with the elements involved in the splicing process; or (2) bind to the pre-mRNA at a position sufficiently close to the element to disrupt the binding and function of the splicing factors that would normally mediate a particular splicing reaction which occurs at that element (e.g., binds to the 15 pre-mRNA at a position within 3, 6, or 9 nucleotides of the element to be blocked).

For example, modulation of mutant dystrophin premRNA splicing with antisense oligoribonucleotides has been reported both in vitro and in vivo. In one type of 20 dystrophin mutation reported in Japan, a 52-base pair deletion mutation causes exon 19 to be removed with the flanking introns during the splicing process (Matsuo et al., (1991) J Clin Invest. 87:2127-2131). An in vitro minigene splicing system has been used to show that a 31-mer 25 2'-O-methyl oligoribonucleotide complementary to the 5' half of the deleted sequence in dystrophin Kobe exon 19 inhibited splicing of wild-type pre-mRNA (Takeshima et al. (1995), J. Clin. Invest., 95, 515-520). The same oligonucleotide was used to induce exon skipping from the native 30 dystrophin gene transcript in human cultured lymphoblastoid cells.

Dunckley et al., (1997) Nucleosides & Nucleotides, 16, 1665-1668 described in vitro constructs for analysis of splicing around exon 23 of mutated dystrophin in the mdx 35 mouse mutant, a model for muscular dystrophy. Plans to analyse these constructs in vitro using 2' modified oligonucleotides targeted to splice sites within and adjacent to mouse dystrophin exon 23 were discussed, though no target sites or sequences were given. 40

2'-O-methyl oligoribonucleotides were subsequently reported to correct dystrophin deficiency in myoblasts from the mdx mouse from this group. An antisense oligonucleotide targeted to the 3' splice site of murine dystrophin intron 22 was reported to cause skipping of the mutant exon as well 45 as several flanking exons and created a novel in-frame dystrophin transcript with a novel internal deletion. This mutated dystrophin was expressed in 1-2% of antisense treated mdx myotubes. Use of other oligonucleotide modifications such as 2'-O-methoxyethyl phosphodiesters are 50 described (Dunckley et al. (1998) Human Mol. Genetics, 5, 1083-90).

Thus, antisense molecules may provide a tool in the treatment of genetic disorders such as Duchenne Muscular Dystrophy (DMD). However, attempts to induce exon skip- 55 ping using antisense molecules have had mixed success. Studies on dystrophin exon 19, where successful skipping of that exon from the dystrophin pre-mRNA was achieved using a variety of antisense molecules directed at the flanking splice sites or motifs within the exon involved in exon 60 definition as described by Errington et al. (2003) J Gen Med 5, 518-527".

In contrast to the apparent ease of exon 19 skipping, the first report of exon 23 skipping in the mdx mouse by Dunckley et al., (1998) is now considered to be reporting 65 only a naturally occurring revertant transcript or artefact rather than any true antisense activity. In addition to not 4

consistently generating transcripts missing exon 23, Dunckley et al., (1998) did not show any time course of induced exon skipping, or even titration of antisense oligonucleotides, to demonstrate dose dependent effects where the levels of exon skipping corresponded with increasing or decreasing amounts of antisense oligonucleotide. Furthermore, this work could not be replicated by other researchers.

The first example of specific and reproducible exon skipping in the mdx mouse model was reported by Wilton et al., (1999) Neuromuscular Disorders 9, 330-338. By directing an antisense molecule to the donor splice site, consistent and efficient exon 23 skipping was induced in the dystrophin mRNA within 6 hours of treatment of the cultured cells. Wilton et al., (1999), also describe targeting the acceptor region of the mouse dystrophin pre-mRNA with longer antisense oligonucleotides and being unable to repeat the published results of Dunckley of al., (1998). No exon skipping, either 23 alone or multiple removal of several flanking exons, could be reproducibly detected using a selection of antisense oligonucleotides directed at the acceptor splice site of intron 22.

While the first antisense oligonucleotide directed at the intron 23 donor splice site induced consistent exon skipping in primary cultured myoblasts, this compound was found to be much less efficient in immortalized cell cultures expressing higher levels of dystrophin. However, with refined targeting and antisense oligonucleotide design, the efficiency of specific exon removal was increased by almost an order of magnitude (see Mann C J et al., (2002) J Gen Med 4, 644-654).

Thus, there remains a need to provide antisense oligonucleotides capable of binding to and modifying the splicing of a target nucleotide sequence. Simply directing the antisense oligonucleotides to motifs presumed to be crucial for splicing is no guarantee of the efficacy of that compound in a therapeutic setting.

SUMMARY OF THE INVENTION

The present invention provides antisense molecule compounds and compositions suitable for binding to RNA motifs involved in the splicing of pre-mRNA that are able to induce specific and efficient exon skipping and a method for their use thereof.

The choice of target selection plays a crucial role in the efficiency of exon skipping and hence its subsequent application of a potential therapy. Simply designing antisense molecules to target regions of pre-mRNA presumed to be involved in splicing is no guarantee of inducing efficient and specific exon skipping. The most obvious or readily defined targets for splicing intervention are the donor and acceptor splice sites although there are less defined or conserved motifs including exonic splicing enhancers, silencing elements and branch points. The acceptor and donor splice sites have consensus sequences of about 16 and 8 bases respectively (see FIG. 1 for schematic representation of motifs and domains involved in exon recognition, intron removal and the splicing process).

According to a first aspect, the invention provides antisense molecules capable of binding to a selected target to induce exon skipping.

For example, to induce exon skipping in exons 3 to 8, 10 to 16, 19 to 40, 42 to 44, 46, 47, and 50 to 53 in the Dystrophin gene transcript the antisense molecules are preferably selected from the group listed in Table 1A.

In a further example, it is possible to combine two or more antisense oligonucleotides of the present invention together

55

to induce multiple exon skipping in exons 19-20, and 53. This is a similar concept to targeting of a single exon. A combination or "cocktail" of antisense oligonucleotides are directed at adjacent exons to induce efficient exon skipping.

In another example, to induce exon skipping in exons 5 19-20, 31, 34 and 53 it is possible to improve exon skipping of a single exon by joining together two or more antisense oligonucleotide molecules. This concept is termed by the inventor as a "weasel", an example of a cunningly designed antisense oligonucleotide. A similar concept has been 10 described in Aartsma-Rus A et al., (2004) Am J Hum Genet. 74:83-92).

According to a second aspect, the present invention provides antisense molecules selected and or adapted to aid in the prophylactic or therapeutic treatment of a genetic 15 disorder comprising at least an antisense molecule in a form suitable for delivery to a patient.

According to a third aspect, the invention provides a method for treating a patient suffering from a genetic disease wherein there is a mutation in a gene encoding a particular 20 protein and the affect of the mutation can be abrogated by exon skipping, comprising the steps of: (a) selecting an antisense molecule in accordance with the methods described herein; and (b) administering the molecule to a patient in need of such treatment.

The invention also addresses the use of purified and isolated antisense oligonucleotides of the invention, for the manufacture of a medicament for treatment of a genetic disease.

The invention further provides a method of treating a 30 condition characterised by Duchenne muscular dystrophy, which method comprises administering to a patient in need of treatment an effective amount of an appropriately designed antisense oligonucleotide of the invention, relevant to the particular genetic lesion in that patient. Further, the 35 invention provides a method for prophylactically treating a patient to prevent or at least minimise Duchene muscular dystrophy, comprising the step of: administering to the patient an effective amount of an antisense oligonucleotide or a pharmaceutical composition comprising one or more of 40 these biological molecules.

The invention also provides kits for treating a genetic disease, which kits comprise at least an antisense oligonucleotide of the present invention, packaged in a suitable container and instructions for its use.

Other aspects and advantages of the invention will become apparent to those skilled in the art from a review of the ensuing description, which proceeds with reference to the following figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 Schematic representation of motifs and domains involved in exon recognition, intron removal and the splicing process (SEQ ID NO: 213 and SEQ ID NO: 214).

FIG. 2 Diagrammatic representation of the concept of antisense oligonucleotide induced exon skipping to by-pass disease-causing mutations (not drawn to scale). The hatched box represents an exon carrying a mutation that prevents the translation of the rest of the mRNA into a protein. The solid 60 black bar represents an antisense oligonucleotide that prevents inclusion of that exon in the mature mRNA

FIG. 3 Gel electrophoresis showing differing efficiencies of two antisense molecules directed at exon 8 acceptor splice site. The preferred compound [H8A(-06+18)] induces 65 strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured normal human

6

muscle cells. The less preferred antisense oligonucleotide [H8A(-06+14)] also induces efficient exon skipping, but at much higher concentrations. Other antisense oligonucleotides directed at exon 8 either only induced lower levels of exon skipping or no detectable skipping at all (not shown).

FIG. 4 Gel electrophoresis showing differing efficiencies of two antisense molecules directed at internal domains within exon 7, presumably exon splicing enhancers. The preferred compound [H7A(+45+67)] induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells. The less preferred antisense oligonucleotide [H7A(+2+26)] induces only low levels of exon skipping at the higher transfection concentrations. Other antisense oligonucleotides directed at exon 7 either only induced lower levels of exon skipping or no detectable skipping at all (not shown).

FIG. 5 Gel electrophoresis showing an example of low efficiency exon 6 skipping using two non-preferred antisense molecules directed at human exon 6 donor splice site. Levels of induced exon 6 skipping are either very low [H6D(+04-21)] or almost undetectable [H6D(+18-04)]. These are examples of non-preferred antisense oligonucleotides to demonstrate that antisense oligonucleotide design plays a crucial role in the efficacy of these compounds.

FIG. 6 Gel electrophoresis showing strong and efficient human exon 6 skipping using an antisense molecule [H6A (+69+91)] directed at an exon 6 internal domain, presumably an exon splicing enhancer. This preferred compound induces consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells.

FIG. 7 Gel electrophoresis showing strong human exon 4 skipping using an antisense molecule H4A(+13+32) directed at an exon 6 internal domain, presumably an exon splicing enhancer. This preferred compound induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells.

FIG. 8 Gel electrophoresis showing (8B) strong human exon 11 skipping using antisense molecule H11A(+75+97) directed at an exon 11 internal domain; and (8A) strong human exon 12 skipping using antisense molecule H12A(+ 52+75) directed at exon 12 internal domain.

FIG. 9 Gel electrophoresis showing (9A) strong human exon 15 skipping using antisense molecules H15A (+48+71) 45 H15A(-12+19) directed at an exon 15 internal domain; and (9B) strong human exon 16 skipping using antisense molecules H16A(-12+19) H16A(-06+25).

FIG. 10 Gel electrophoresis showing human exon 19/20 skipping using antisense molecules H20A(+44+71) and 50 H20A(+149+170) directed at an exon 20 and a "cocktail" of antisense oligonucleotides H19A(+35+65, H20A (+44+71) H20A (+149+170) directed at exons 19/20.

FIG. 11 Gel electrophoresis showing human exon 19/20 skipping using "weasels" directed at exons 19 and 20.

FIG. 12 Gel electrophoresis showing exon 22 skipping using antisense molecules H22A (+125+106), H22A(+47+ 69), H22A(+80+101) and H22D(+13-11) directed at exon 22.

FIG. 13 Gel electrophoresis showing exon 31 skipping using antisense molecules H31D(+01-25) and H31D(+03-22); and a "cocktail" of antisense molecules directed at exon 31.

FIG. 14 Gel electrophoresis showing exon 33 skipping using antisense molecules H33A(+30+56) H33A(+64+88) at exon 33.

FIG. 15 Gel electrophoresis showing exon 35 skipping using antisense molecules H35A(+141+161), H35A(+116+

15

25

30

35

135), and H35A(+24+43) and a "cocktail of two antisense molecules, directed at exon 35.

FIG. 16 Gel electrophoresis showing exon 36 skipping using antisense molecules H32A(+49+73) H36A(+26+50) at 36.

FIG. 17 Gel electrophoresis showing exon 37 skipping using antisense molecules H37A(+82+105) and H37A(+ 134+157) directed at exon 37.

FIG. 18 Gel electrophoresis showing exon 38 skipping 10 using antisense molecule H38A(+88+112) directed at exon 38

FIG. 19 Gel electrophoresis showing exon 40 skipping using antisense molecule H40A(-05+17) directed at exon 40.

FIG. 20 Gel electrophoresis showing exon 42 skipping using antisense molecule H42A(-04+23) at exon 42.

FIG. 21 Gel electrophoresis showing exon 46 skipping using antisense molecule H46A(+86+115) directed at exon 46 20

FIG. 22 Gel electrophoresis showing exon 51, exon 52 and exon 53 skipping using various antisense molecules directed at exons 51, 52 and 53, respectively. A "cocktail" of antisense molecules is also shown directed at exon 53.

BRIEF DESCRIPTION OF THE SEQUENCE LISTINGS

TABLE 1A

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos, these U bases may be shown as "T"

											4
SEQ ID	SEQUENCE	NUC	LEOT	IDE S	SEQUI	ENCE	(5'	-3')		40	
1	H8A(-06+18)	GAU	AGG	UGG	UAU	CAA	CAU	CUG	UAA		-
2	H8A(-03+18)	GAU	AGG	UGG	UAU	CAA	CAU	CUG			
3	H8A(-07+18)	GAU G	AGG	UGG	UAU	CAA	CAU	CUG	UAA	45	13
4	H8A(-06+14)	GGU	GGU	AUC	AAC	AUC	UGU	AA			3
5	H8A(-10+10)	GUA	UCA	ACA	UCU	GUA	AGC	AC		50	
6	H7A(+45+67)	UGC	AUG	UUC	CAG	UCG	UUG	UGU	GG	30	1
7	H7A(+02+26)	CAC G	UAU	UCC	AGU	CAA	AUA	GGU	CUG		11
8	H7D(+15-10)	AUU A	UAC	CAA	CCU	UCA	GGA	UCG	AGU	55	1.1 1.1
9	H7A(-18+03)	GGC	CUA	ААА	CAC	AUA	CAC	AUA			
10	C6A(-10+10)	CAU	ບບບ	UGA	CCU	ACA	UGU	GG			1
11	C6A(-14+06)	υυυ	GAC	CUA	CAU	GUG	GAA	AG		60	1.1
12	C6A(-14+12)	UAC AG	AUU	ບບບ	GAC	CUA	CAU	GUG	gaa		1.1
13	C6A(-13+09)	AUU	υυυ	GAC	CUA	CAU	GGG	ААА	G	65	4
14	CH6A(+69+91)	UAC	GAG	UUG	AUU	GUC	GGA	CCC	AG		-

TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos, these U bases may be shown as "T"

SEQ ID	SEQUENCE	NUCI	LEOT	DE :	SEQUI	ENCE	(5'	-3')	
15	C6D(+12-13)	GUG G	GUC	UCC	UUA	CCU	AUG	ACU	GUG
16	C6D(+06-11)	GGU	CUC	CUU	ACC	UAU	GA		
17	H6D(+04-21)	UGU	CUC	AGU	AAU	CUU	CUU	ACC	UAU
18	H6D(+18-04)	UCU	UAC	CUA	UGA	CUA	UGG	AUG	AGA
19	H4A(+13+32)	GCA	UGA	ACU	CUU	GUG	GAU	СС	
20	H4D(+04-16)	CCA	GGG	UAC	UAC	UUA	CAU	UA	
21	H4D(-24-44)	AUC	GUG	UGU	CAC	AGC	AUC	CAG	
22	H4A(+11+40)	UGU AUC		GGG	CAU	GAA	CUC	UUG	UGG
23	H3A(+30+60)		GAG ACU		CCU	CCC	AUC	CUG	UAG
24	H3A(+35+65)		UCU AGG	AGG U	AGG	CGC	CUC	CCA	UCC
25	H3A(+30+54)	GCG G	CCU	CCC	AUC	CUG	UAG	GUC	ACU
26	H3D(+46-21)	CUU UC	CGA	GGA	GGU	CUA	GGA	GGC	GCC
27	H3A(+30+50)	CUC	CCA	UCC	UGU	AGG	UCA	CUG	
28	H3D(+19-03)	UAC	CAG	UUU	UUG	CCC	UGU	CAG	G
29	H3A(-06+20)	UCA AA	AUA	UGC	UGC	UUC	CCA	AAC	UGA
30	H3A(+37+61)	CUA G	GGA	GGC	GCC	UCC	CAU	CCU	GUA
31	H5A(+20+50)		UGA CUU	UUU C	CCA	UCU	ACG	AUG	UCA
32	H5D(+25-05)		ACC AAA		CAG	UGG	AGG	AUU	AUA
33	H5D(+10-15)	CAU G	CAG	GAU	UCU	UAC	CUG	CCA	GUG
34	H5A(+10+34)	CGA C	UGU	CAG	UAC	UUC	CAA	UAU	UCA
35	H5D(-04-21)	ACC	AUU	CAU	CAG	GAU	UCU		
36	H5D(+16-02)	ACC	UGC	CAG	UGG	AGG	AUU		
37	H5A(-07+20)	CCA UAA	AUA	UUC	ACU	AAA	UCA	ACC	UGU
38	H5D(+18-12)		GAU UAU	ບດບ	UAC	CUG	CCA	GUG	GAG
39	H5A(+05+35)		AUG AAA		GUA	CUU	CCA	AUA	UUC
40	H5A(+15+45)		UCC AAU		UAC	GAU	GUC	AGU	ACU

TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos.

such as peptide nucleic acids or morpholinos,

TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos. such as peptide nucleic acids or morpholinos, these U bases may be shown as "T".

	these U bas							IIIOD	<i>'</i>	_	5	these U ba							11105	'
										10										
SEQ ID	SEQUENCE	NUCL	JEOTI	IDE S	SEQUE	ENCE	(5'	-3')		_	SEQ ID	SEQUENCE	NUC	LEOTI	DE S	SEQUE	ENCE	(5'-	-3')	
41	H10A(-05+16)	CAG	GAG	CUU	CCA	AAU	GCU	GCA			71	H16A(-07+19)	CUA AA	GAU	CCG	CUU	UUA	AAA	CCU	GUU
42	H10A(-05+24)	CUU CUG		UUC	AGG	AGC	UUC	CAA	AUG	15	72	H16A(-07+13)	CCG	CUU	UUA	AAA	CCU	GUU	AA	
43	H10A(+98+119)	UCC	UCA	GCA	GAA	AGA	AGC	CAC	G		73	H16A(+12+37)	UGG CC	AUU	GCU	ບບບ	UCU	ບບບ	CUA	GAU
	H10A(+130+149)									20	74	H16A(+92+116)	CAU	GCU	UCC	GUC	UUC	UGG	GUC	ACU
45	H10A(-33-14)	UAA	AUU	GGG	UGU	UAC	ACA	AU		20			G							
46	H11D(+26+49)	CCC	UGA	GGC	AUU	CCC	AUC	UUG	AAU		75	H16A(+45+67)	GΑ	ບບັບບັ	JG UI	JU GA	AG UC	JA AU	JA CA	AG U
47	H11D(+11-09)	AGG	ACU	UAC	UUG	CUU	UGU	υυ			76	H16A(+105+126)	GUU	AUC	CAG	CCA	UGC	UUC	CGU	С
48	H11A(+118+140)	CUU	GAA	טטט	AGG	AGA	UUC	AUC	UG	25	77	H16D(+05-20)	UGA G	UAA	UUG	GUA	UCA	CUA	ACC	UGU
49	H11A(+75+97)	CAU	CUU	CUG	AUA	AUU	UUC	CUG	UU		78	H16D(+12-11)	GUA	UCA	CUA	ACC	UGU	GCU	GUA	с
50	H12A(+52+75)	UCU	UCU	GUU	υυυ	GUU	AGC	CAG	UCA		79	H19A(+35+53)	CUG	CUG	GCA	ບຕບ	UGC	AGU	υ	
51	H12A(-10+10)	UCU	AUG	UAA	ACU	GAA	AAU	υυ		30	80	H19A(+35+65)	GCC	UGA	GCU	GAU	CUG	CUG	GCA	UCU
52	H12A(+11+30)	UUC	UGG	AGA	UCC	AUU	AAA	AC					UGC	AGU	U					
	H13A(+77+100)	CAG							UAG		81	H20A(+44+71)	CUG GUU	GCA C	GAA	UUC	GAU	CCA	CCG	GCU
54	H13A(+55+75)	UUC	AUC	AAC	UAC	CAC	CAC	CAU		35	82	H20A(+147+168)	CAG	CAG	UAG	UUG	UCA	ບຕບ	GCU	С
55	H13D(+06-19)	CUA G	AGC	AAA	AUA	AUC	UGA	CCU	UAA		83	H20A(+185+203)	UGA	UGG	GGU	GGU	GGG	UUG	G	
56	H14A(+37+64)	CUU CUG		AAA	GAA	ссс	AGC	GGU	CUU		84	H20A(-08+17)	AUC G	UGC	AUU	AAC	ACC	CUC	UAG	AAA
		003	0							40			G							
57	H14A(+14+35)	CAU	CUA	CAG	AUG	טטט	GCC	CAU	С		85	H20A(+30+53)	CCG	GCU	GUU	CAG	UUG	UUC	UGA	GGC
58	H14A(+51+73)	GAA	GGA	UGU	CUU	GUA	AAA	GAA	CC		86	H20A(-11+17)	AUC GAA	UGC A	AUU	AAC	ACC	CUC	UAG	AAA
59	H14D(-02+18)	ACC	UGU	UCU	UCA	GUA	AGA	CG		45	87	H20D(+08-20)	GAA	GGA	gaa	GAG	AUU	CUU	ACC	UUA
60	H14D(+14-10)	CAU	GAC	ACA	CCU	GUU	CUU	CAG	UAA				CAA	A						
61	H14A(+61+80)	CAU	UUG	AGA	AGG	AUG	UCU	UG			88	H20A(+44+63)	AUU	CGA	UCC	ACC	GGC	UGU	UC	
62	H14A(-12+12)	AUC	UCC	CAA	UAC	CUG	GAG	AAG	AGA	50	89	H20A(+149+168)	CAG	CAG	UAG	UUG	UCA	UCU	GC	
63	H15A(-12+19)	GCC AGA			UAA	ААА	GGC	ACU	GCA		90	H21A(-06+16)	GCC	GGU	UGA	CUU	CAU	CCU	GUG	С
64	H15A(+48+71)	UCU	UUA	AAG	CCA	GUU	GUG	UGA	AUC		91	H21A(+85+106)	CUG	CAU	CCA	GGA	ACA	UGG	GUC	С
65	H15A(+08+28)	טטט	CUG	ААА	GCC	AUG	CAC	UAA		55	92	H21A(+85+108)	GUC	UGC	AUC	CAG	GAA	CAU	GGG	UC
66	H15D(+17-08)	GUA	CAU	ACG	GCC	AGU	טטט	UGA	AGA	55	93	H21A(+08+31)	GUU	GAA	GAU	CUG	AUA	GCC	GGU	UGA
		С									94	H21D(+18-07)	UAC	UUA	CUG	UCU	GUA	GCU	CUU	UCU
67	H16A(-12+19)	CUA AAA			CUU	UUA	AAA	CCU	GUU	60	95	H22A(+22+45)	CAC	UCA	UGG	UCU	CCU	GAU	AGC	GCA
68	H16A(-06+25)	UCU CCU			GAU	CCG	CUU	UUA	AAA		96	H22A(+125+146)	CUG	CAA	UUC	CCC	GAG	ບຕບ	CUG	С
60	$H_{163}(-06, 19)$				CITT	ליווז	277	CCU	CITT		97	H22A(+47+69)	ACU	GCU	GGA	CCC	AUG	UCC	UGA	UG
69	H16A(-06+19)	A	GAU	CCG	00	UUA	мнн	ιιυ	900	65	98	H22A(+80+101)	CUA	AGU	UGA	GGU	AUG	GAG	AGU	
70	H16A(+87+109)	CCG	UCU	UCU	GGG	UCA	CUG	ACU	UA		99	H22D(+13-11)	UAU	UCA	CAG	ACC	UGC	AAU	UCC	CC

	these U bas	ses n	nay k	be sh	nown	as '	Ϋ́Τ".		
SEQ	CROURNOR	NUG					(51	21)	
ID 71	SEQUENCE H16A(-07+19)			IDE S CCG	~			-3') CCU	GUU
		AA							
72	H16A(-07+13)			UUA					
73	H16A(+12+37)	UGG CC	AUU	GCU	υυυ	UCU	υυυ	CUA	GAU
74	H16A(+92+116)	CAU G	GCU	UCC	GUC	UUC	UGG	GUC	ACU
75	H16A(+45+67)	G A	ບເປ	JG UI	JU G	AG U	GA AI	JA CA	AG U
76	H16A(+105+126)	GUU	AUC	CAG	CCA	UGC	UUC	CGU	С
77	H16D(+05-20)	UGA G	UAA	UUG	GUA	UCA	CUA	ACC	UGU
78	H16D(+12-11)	GUA	UCA	CUA	ACC	UGU	GCU	GUA	С
79	H19A(+35+53)	CUG	CUG	GCA	UCU	UGC	AGU	U	
80	H19A(+35+65)	GCC UGC	UGA AGU		GAU	CUG	CUG	GCA	UCU
81	H20A(+44+71)	CUG GUU		GAA	UUC	GAU	CCA	CCG	GCU
82	H20A(+147+168)	CAG	CAG	UAG	UUG	UCA	UCU	GCU	С
83	H20A(+185+203)	UGA	UGG	GGU	GGU	GGG	UUG	G	
84	H20A(-08+17)	AUC G	UGC	AUU	AAC	ACC	CUC	UAG	ААА
85	H20A(+30+53)	CCG	GCU	GUU	CAG	UUG	UUC	UGA	GGC
86	H20A(-11+17)	AUC GAA		AUU	AAC	ACC	CUC	UAG	AAA
87	H20D(+08-20)	GAA CAA		gaa	GAG	AUU	CUU	ACC	UUA
88	H20A(+44+63)	AUU	CGA	UCC	ACC	GGC	UGU	UC	
89	H20A(+149+168)	CAG	CAG	UAG	UUG	UCA	UCU	GC	
90	H21A(-06+16)	GCC	GGU	UGA	CUU	CAU	CCU	GUG	С
91	H21A(+85+106)	CUG	CAU	CCA	GGA	ACA	UGG	GUC	С
92	H21A(+85+108)	GUC	UGC	AUC	CAG	GAA	CAU	GGG	UC
93	H21A(+08+31)	GUU	gaa	GAU	CUG	AUA	GCC	GGU	UGA
94	H21D(+18-07)	UAC	UUA	CUG	UCU	GUA	GCU	CUU	UCU
95	H22A(+22+45)	CAC	UCA	UGG	UCU	CCU	GAU	AGC	GCA
96	H22A(+125+146)	CUG	CAA	UUC	CCC	GAG	UCU	CUG	С
97	H22A(+47+69)	ACU	GCU	GGA	CCC	AUG	UCC	UGA	UG

TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos, these U bases may be shown as "T".

										10	
SEQ ID	SEQUENCE	NUCI	LEOT:	IDE S	SEQUI	ENCE	(5'·	-3')			SEQ ID
100	H23A(+34+59)	ACA CC	GUG	GUG	CUG	AGA	UAG	UAU	AGG	•	127
101	H23A(+18+39)		GCC	ACU	UUG	UUG	CUC	UUG	с	15	128
102	H23A(+72+90)	UUC	AGA	GGG	CGC	ບບບ	CUU	с			129
103	H24A(+48+70)	GGG	CAG	GCC	AUU	CCU	CCU	UCA	GA		130
104	H24A(-02+22)	UCU	UCA	GGG	ບບບ	GUA	UGU	GAU	UCU	20	131
105	H25A(+9+36)	CUG CUG	GGC	UGA	AUU	GUC	UGA	AUA	UCA		132
106	H25A(+131+156)		UUG	GCA	CAU	GUG	AUC	CCA	CUG	25	133
107	H25D(+16-08)	GUC	UAU	ACC	UGU	UGG	CAC	AUG	UGA		134
108	H26A(+132+156)	UGC U	טטט	CUG	UAA	UUC	AUC	UGG	AGU		135
109	H26A(-07+19)		CCU	UUC	UGG	CAU	AGA	CCU	UCC	30	136
		AC									137
110	H26A(+68+92)	UGU G	GUC	AUC	CAU	UCG	UGC	AUC	UCU		138
111	H27A(+82+106)	UUA G	AGG	CCU	ຕບບ	GUG	CUA	CAG	GUG	35	139
112	H27A(-4+19)	GGG	CCU	CUU	CUU	UAG	CUC	UCU	GA		140
113	H27D(+19-03)	GAC	UUC	CAA	AGU	CUU	GCA	υυυ	С	40	110
114	H28A(-05+19)	GCC	AAC	AUG	CCC	AAA	CUU	CCU	AAG		141
115	H28A(+99+124)	CAG GA	AGA	υυυ	CCU	CAG	CUC	CGC	CAG		142
116	H28D(+16-05)	CUU	ACA	UCU	AGC	ACC	UCA	GAG		45	143
117	H29A(+57+81)	UCC C	GCC	AUC	UGU	UAG	GGU	CUG	UGC		144
118	H29A(+18+42)	AUU	UGG	GUU	AUC	CUC	UGA	AUG	UCG		145
		С								50	146
119	H29D(+17-05)	CAU	ACC	UCU	UCA	UGU	AGU	UCC	C		147
120	H30A(+122+147)	CAU UG	UUG	AGC	UGC	GUC	CAC	CUU	GUC		148
121	H30A(+25+50)		UGG	GCA	GAC	UGG	AUG	CUC	UGU	55	148
		UC									150
	H30D(+19-04)			GGG							151
	H31D(+06-18)			AAU						60	
124	H31D(+03-22)	UAG G	UUU	CUG	AAA	UAA	CAU	AUA	CCU		152
125	H31A(+05+25)	GAC	UUG	UCA	AAU	CAG	AUU	GGA		65	153
126	H31D(+04-20)	GUU	UCU	GAA	AUA	ACA	UAU	ACC	UGU	05	154

12

TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos, these U bases may be shown as "T".

_	-		chese o bar	5C5 II	iciy r	16 51	IOWII	ao	<u> </u>		
_	10	SEQ ID	SEQUENCE	NUCI	JEOTI	IDE S	SEQUI	ENCE	(5'-	-3')	
;	•	127	H32D(+04-16)	CAC	CAG	ААА	UAC	AUA	CCA	CA	
	15	128	H32A(+151+170)	CAA	UGA	טטט	AGC	UGU	GAC	UG	
		129	H32A(+10+32)	CGA	AAC	UUC	AUG	GAG	ACA	UCU	UG
		130	H32A(+49+73)	CUU C	GUA	GAC	GCU	GCU	CAA	AAU	UGG
r	20	131	H33D(+09-11)	CAU	GCA	CAC	ACC	υυυ	GCU	CC	
		132	H33A(+53+76)	UCU	GUA	CAA	UCU	GAC	GUC	CAG	UCU
ł	25	133	H33A(+30+56)	GUC GAC	υυυ	AUC	ACC	AUU	UCC	ACU	UCA
7	25	134	H33A(+64+88)	CCG G	UCU	GCU	טטט	UCU	GUA	CAA	UCU
ſ		135	H34A(+83+104)	UCC	AUA	ບບບ	GUA	GCU	GCC	AGC	С
	30	136	H34A(+143+165)	CCA	GGC	AAC	UUC	AGA	AUC	CAA	AU
r		137	H34A(-20+10)		CUG GAA	UUA	CCU	GAA	AAG	AAU	UAU
•	35	138	H34A(+46+70)	CAU G	UCA	υυυ	CCU	UUC	GCA	ບຕບ	UAC
		139	H34A(+95+120)	UGA UG	UCU	CUU	UGU	CAA	UUC	CAU	AUC
	40	140	H34D(+10-20)	UUC CCC	AGU CAG	GAU	AUA	GGU	υυυ	ACC	υυυ
;		141	H34A(+72+96)	CUG AG	UAG	CUG	CCA	GCC	AUU	CUG	UCA
		142	H35A(+141+161)	UCU	UCU	GCU	CGG	GAG	GUG	ACA	
	45	143	H35A(+116+135)	CCA	GUU	ACU	AUU	CAG	AAG	AC	
!		144	H35A(+24+43)	UCU	UCA	GGU	GCA	CCU	UCU	GU	
ţ	50	145	H36A(+26+50)	UGU A	GAU	GUG	GUC	CAC	AUU	CUG	GUC
		146	H36A(-02+18)	CCA	UGU	GUU	UCU	GGU	AUU	CC	
		147	H37A(+26+50)	CGU A	GUA	GAG	UCC	ACC	υυυ	GGG	CGU
	55	148	H37A(+82+105)	UAC	UAA	υυυ	CCU	GCA	GUG	GUC	ACC
1		149	H37A(+134+157)	UUC	UGU	GUG	AAA	UGG	CUG	CAA	AUC
		150	H38A(-01+19)	CCU	UCA	AAG	GAA	UGG	AGG	CC	
!	60	151	H38A(+59+83)	UGC U	UGA	AUU	UCA	GCC	UCC	AGU	GGU
ſ		152	H38A(+88+112)	UGA C	AGU	CUU	CCU	CUU	UCA	GAU	UCA
	65	153	H39A(+62+85)	CUG	GCU	UUC	UCU	CAU	CUG	UGA	UUC

H39A(+39+58) GUU GUA AGU UGU CUC CUC UU

TABLE 1A-continued

UUC UAG

14 TABLE 1A-continued

		-	
antisense oligon to date to study the processing Since thes oligonucleotides uracil. With such as peptide	2'-O-methyl phosphorothioate ucleotides that have been used / induced exon skipping during of the dystrophin pre-mRNA. se 2'-O-methyl antisense are more RNA-like, U represents other antisense chemistries nucleic acids or morpholinos, ses may be shown as "T".	5	Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos, these U bases may be shown as "T".
SEQ ID SEQUENCE	NUCLEOTIDE SEQUENCE (5'-3')	10	SEQ ID SEQUENCE NUCLEOTIDE SEQUENCE (5'-3')
155 H39A(+102+121)	UUG UCU GUA ACA GCU GCU GU	-	182 H51D(+08-17) AUC AUU UUU UCU CAU ACC UUC UGC U
156 H39D(+10-10)	GCU CUA AUA CCU UGA GAG CA	15	
157 H40A(-05+17)	CUU UGA GAC CUC AAA UCC UGU U		183 H51A/D(+08-17) AUC AUU UUU UCU CAU ACC UUC UGC
158 H40A(+129+153)	CUU UAU UUU CCU UUC AUC UCU GGG C		184 H51A(+175+195) CAC CCA CCA UCA CCC UCU GUG
159 H42A(-04+23)	AUC GUU UCU UCA CGG ACA GUG UGC	20	185 H51A(+199+220) AUC AUC UCG UUG AUA UCC UCA A
100 11211(01120)	UGG		186 H52A(-07+14) UCC UGC AUU GUU GCC UGU AAG
160 H42A(+86+109)	GGG CUU GUG AGA CAU GAG UGA UUU		187 H52A(+12+41) UCC AAC UGG GGA CGC CUC UGU UCC AAA UCC
161 H42D(+19-02)	A CCU UCA GAG GAC UCC UCU UGC	25	188 H52A(+17+37) ACU GGG GAC GCC UCU GUU CCA
162 H43D(+10-15)	UAU GUG UUA CCU ACC CUU GUC GGU C		189 H52A(+93+112) CCG UAA UGA UUG UUC UAG CC
163 H43A(+101+120)	GGA GAG AGC UUC CUG UAG CU		190 H52D(+05-15) UGU UAA AAA ACU UAC UUC GA
164 H43A(+78+100)	UCA CCC UUU CCA CAG GCG UUG CA	30	191 H53A(+45+69) CAU UCA ACU GUU GCC UCC GGU UCU G
165 H44A(+85+104)	UUU GUG UCU UUC UGA GAA AC		192 H53A(+39+62) CUG UUG CCU CCG GUU CUG AAG GUG
166 H44D(+10-10)	AAA GAC UUA CCU UAA GAU AC		193 H53A(+39+69) CAU UCA ACU GUU GCC UCC GGU UCU
167 H44A(-06+14)	AUC UGU CAA AUC GCC UGC AG	35	GAA GGU G
168 H46D(+16-04)	UUA CCU UGA CUU GCU CAA GC		194 H53D(+14-07) UAC UAA CCU UGG UUU CUG UGA
169 H46A(+90+109)	UCC AGG UUC AAG UGG GAU AC		195 H53A(+23+47) CUG AAG GUG UUC UUG UAC UUC AUC C
170 H47A(+76+100)	GCU CUU CUG GGC UUA UGG GAG CAC U	40	- 196 H53A(+150+176) UGU AUA GGG ACC CUC CUU CCA UGA CUC
171 H47D(+25-02)	ACC UUU AUC CAC UGG AGA UUU GUC UGC		197 H53D(+20-05) CUA ACC UUG GUU UCU GUG AUU UUC U
172 H47A(-9+12)	UUC CAC CAG UAA CUG AAA CAG	45	198 H53D(+09-18) GGU AUC UUU GAU ACU AAC CUU GGU
173 H50A(+02+30)	CCA CUC AGA GCU CAG AUC UUC UAA		
	CUU CC		199 H53A(-12+10) AUU CUU UCA ACU AGA AUA AAA G
174 H50A(+07+33)	CUU CCA CUC AGA GCU CAG AUC UUC UAA	50	200 H53A(-07+18) GAU UCU GAA UUC UUU CAA CUA GAA U
175 H50D(+07-18)	GGG AUC CAG UAU ACU UAC AGG CUC C		201 H53A(+07+26) AUC CCA CUG AUU CUG AAU UC
176 H51A(-01+25)	ACC AGA GUA ACA GUC UGA GUA GGA		202 H53A(+124+145) UUG GCU CUG GCC UGU CCU AAG A
	GC	55	203 H46A(+86+115) CUC UUU UCC AGG UUC AAG UGG GAU ACU AGC
177 H51D(+16-07)	CUC AUA CCU UCU GCU UGA UGA UC		204 H46A(+107+137) CAA GCU UUU CUU UUA GUU GCU GCU
178 H51A(+111+134)	UUC UGU CCA AGC CCG GUU GAA AUC		CUU UUC C
179 H51A(+61+90)	ACA UCA AGG AAG AUG GCA UUU CUA GUU UGG	60	205 H46A(-10+20) UAU UCU UUU GUU CUU CUA GCC UGG AGA AAG
180 H51A(+66+90)	ACA UCA AGG AAG AUG GCA UUU CUA G		206 H46A(+50+77) CUG CUU CCU CCA ACC AUA AAA CAA AUU C
181 H51A(+66+95)	CUC CAA CAU CAA GGA AGA UGG CAU	65	207 H45A(-06+20) CCA AUG CCA UCC UGG AGU UCC UGU

AA

25

50

55

60

FABLE	1A-continued
-------	--------------

Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries

such as peptide nucleic acids or morpholinos, these U bases may be shown as "T"

SEO										10
ID	SEQUENCE	NUCLEOTIDE SEQUENCE (5'-3')								
208	H45A(+91+110)	UCC	UGU	AGA	AUA	CUG	GCA	UC		
209	H45A(+125+151)	UGC UCA	AGA	CCU	CCU	GCC	ACC	GCA	GAU	15
210	H45D(+16-04)	CUA	CCU	CUU	ບບບ	UCU	GUC	UG		
211	H45A(+71+90)	UGU	טטט	UGA	GGA	UUG	CUG	AA		20

TABLE 1B

Description of `a cocktail of 2'-O-methyl				
phosphorothioate antisense oligonucleotides				
that have been used to date to study induced				
exon skipping during the processing of				
the dystrophin pre-mRNA.				

SEQ ID	SEQUENCE	NUCLEOTIDE SEQUENCE (5'-3')	30
81	H20A(+44+71)	CUG GCA GAA UUC GAU CCA CCG GCU GUU C	
82	H20A(+147+168)	CAG CAG UAG UUG UCA UCU GCU C	
80	H19A(+35+65)	GCC UGA GCU GAU CUG CUG GCA UCU UGC	35
81	H20A(+44+71)	AGU U	
82	H20A(+147+168)	CUG GCA GAA UUC GAU CCA CCG GCU GUU C	
		CAG CAG UAG UUG UCA UCU GCU C	40
194	H53D(+14-07)	UAC UAA CCU UGG UUU CUG UGA	
195	H53A(+23+47)	CUG AAG GUG UUC UUG UAC UUC AUC C	
196	H53A(+150+176)	UGU AUA GGG ACC CUC CUU CCA UGA CUC	45

TABLE 1C

Description of a "weasel" of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA

SEQ ID	SEQUENCE	NUCLEOTIDE SEQUENCE (5'-3')
81	H2OA(+44+71)-	CUG GCA GAA UUC GAU CCA CCG GCU GUU C-
82	H20A(+147+168)	CAG CAG UAG UUG UCA UCU GCU C
80	H19A(+35+65)-	GCC UGA GCU GAU CUG CUG GCA
88	H20A(+44+63)-	UCU UGC AGU U
79	H20A(+149+168)	-AUU CGA UCC ACC GGC UGU
		UC- CUG CUG GCA UCU UGC
		AGU U
80	H19A(+35+65)-	GCC UGA GCU GAU CUG CUG GCA

TABLE	1C-continued
	TC CONCINCU

Description of a "weasel" of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA

SEQ ID	SEQUENCE	NUCLEOTIDE SEQUENCE (5'-3')
88	H20A(+44+63)	UCU UGC AGU U -AUU CGA UCC ACC GGC UGU UC-
	H19A(+35+65)- H20A(+149+168)	
138	H34A(+46+70)-	CAU UCA UUU CCU UUC GCA UCU UAC G-
139	H34A(+94+120)	UGA UCU CUU UGU CAA UUC CAU AUC UG
124	H31D(+03-22)- UU-	UAG UUU CUG AAA UAA CAU AUA CCU G- UU-
144	H35A(+24+43)	UCA GGU GCA CCU UCU GU
195 196	H53A(+23+47)- AA- H53A(+150+176)-	AUC C- UGU AUA GGG ACC CUC CUU CCA UGA CUC-
	AA- H53D(+14-07)	UAC UAA CCU UGG UUU CUG UGA
_ 212	Aimed at exons 19/20/20	CAGCAGUAGUUGUCAUCUGCUCAACUGGCAGAAUUCGAUCCACCGGCUGUUCAAGCCUGAGCUGAUCUGCUCGCAUCUUGCAGU

DETAILED DESCRIPTION OF THE INVENTION

General

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations 45 and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in the specification, individually or collectively and any and all combinations or any two or more of the steps or features.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purpose of exemplification only. Functionally equivalent products, compositions and methods are clearly within the scope of the invention as described herein.

Sequence identity numbers (SEQ ID NO:) containing nucleotide and amino acid sequence information included in this specification are collected at the end of the description and have been prepared using the programme PatentIn Version 3.0. Each nucleotide or amino acid sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, etc.). The length, type of sequence and source organism for each nucleotide or amino acid sequence are 65 indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide and amino acid sequences referred to in the specification are

defined by the information provided in numeric indicator field <400> followed by the sequence identifier (e.g. <400>1, <400>2, etc.).

An antisense molecules nomenclature system was proposed and published to distinguish between the different 5 antisense molecules (see Mann et al., (2002) J Gen Med 4, 644-654). This nomenclature became especially relevant when testing several slightly different antisense molecules, all directed at the same target region, as shown below:

H # A/D (x:y).

The first letter designates the species (e.g. H: human, M: murine, C: canine) "#" designates target dystrophin exon number.

"A/D" indicates acceptor or donor splice site at the beginning and end of the exon, respectively.

(x y) represents the annealing coordinates where "-" or "+" indicate intronic or exonic sequences respectively. As an example, A(-6+18) would indicate the last 6 bases of the intron preceding the target exon and the first 18 bases of the target exon. The closest splice site would be the acceptor so 20these coordinates would be preceded with an "A". Describing annealing coordinates at the donor splice site could be D(+2-18) where the last 2 exonic bases and the first 18 intronic bases correspond to the annealing site of the antisense molecule. Entirely exonic annealing coordinates that 25 would be represented by A(+65+85), that is the site between the 65^{th} and 85^{th} nucleotide from the start of that exon.

The entire disclosures of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby 30 incorporated by reference. No admission is made that any of the references constitute prior art or are part of the common general knowledge of those working in the field to which this invention relates.

As used necessarily herein the term "derived" and 35 "derived from" shall be taken to indicate that a specific integer may be obtained from a particular source albeit not directly from that source.

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "com- 40 prises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Other definitions for selected terms used herein may be found within the detailed description of the invention and 45 apply throughout. Unless otherwise defined, all other scientific and technical terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the invention belongs.

DESCRIPTION OF THE PREFERRED EMBODIMENT

When antisense molecule (s) targeted to nucleotide sequences involved in splicing in exons within pre-mRNA 55 sequences, normal splicing of the exon may be inhibited causing the splicing machinery to by-pass the entire mutated exon from the mature mRNA. The concept of antisense oligonucleotide induced exon skipping is shown in FIG. 2. In many genes, deletion of an entire exon would lead to the 60 production of a non-functional protein through the loss of important functional domains or the disruption of the reading frame. In some proteins, however, it is possible to shorten the protein by deleting one or more exons, without disrupting the reading frame, from within the protein with- 65 out seriously altering the biological activity of the protein. Typically, such proteins have a structural role and or possess

functional domains at their ends. The present invention describes antisense molecules capable of binding to specified dystrophin pre-mRNA targets and re-directing processing of that gene.

Antisense Molecules

According to a first aspect of the invention, there is provided antisense molecules capable of binding to a selected target to induce exon skipping. To induce exon skipping in exons of the Dystrophin gene transcript, the antisense molecules are preferably selected from the group of compounds shown in Table 1A. There is also provided a combination or "cocktail" of two or more antisense oligonucleotides capable of binding to a selected target to induce exon skipping. To induce exon skipping in exons of the Dystrophin gene transcript, the antisense molecules in a "cocktail" are preferably selected from the group of compounds shown in Table 1B. Alternatively, exon skipping may be induced by antisense oligonucleotides joined together "weasels" preferably selected from the group of compounds shown in Table 1C.

Designing antisense molecules to completely mask consensus splice sites may not necessarily generate any skipping of the targeted exon. Furthermore, the inventors have discovered that size or length of the antisense oligonucleotide itself is not always a primary factor when designing antisense molecules. With some targets such as exon 19, antisense oligonucleotides as short as 12 bases were able to induce exon skipping, albeit not as efficiently as longer (20-31 bases) oligonucleotides. In some other targets, such as murine dystrophin exon 23, antisense oligonucleotides only 17 residues long were able to induce more efficient skipping than another overlapping compound of 25 nucleotides.

The inventors have also discovered that there does not appear to be any standard motif that can be blocked or masked by antisense molecules to redirect splicing. In some exons, such as mouse dystrophin exon 23, the donor splice site was the most amenable to target to re-direct skipping of that exon. It should be noted that designing and testing a series of exon 23 specific antisense molecules to anneal to overlapping regions of the donor splice site showed considerable variation in the efficacy of induced exon skipping. As reported in Mann et al., (2002) there was a significant variation in the efficiency of bypassing the nonsense mutation depending upon antisense oligonucleotide annealing ("Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy". J Gen Med 4:644-654). Targeting the acceptor site of exon 23 or several internal domains was not found to induce any 50 consistent exon 23 skipping.

In other exons targeted for removal, masking the donor splice site did not induce any exon skipping. However, by directing antisense molecules to the acceptor splice site (human exon 8 as discussed below), strong and sustained exon skipping was induced. It should be noted that removal of human exon 8 was tightly linked with the co-removal of exon 9. There is no strong sequence homology between the exon 8 antisense oligonucleotides and corresponding regions of exon 9 so it does not appear to be a matter of cross reaction. Rather the splicing of these two exons is inextricably linked. This is not an isolated instance as the same effect is observed in canine cells where targeting exon 8 for removal also resulted in the skipping of exon 9. Targeting exon 23 for removal in the mouse dystrophin pre-mRNA also results in the frequent removal of exon 22 as well. This effect occurs in a dose dependent manner and also indicates close coordinated processing of 2 adjacent exons.

10

In other targeted exons, antisense molecules directed at the donor or acceptor splice sites did not induce exon skipping while annealing antisense molecules to intra-exonic regions (i.e. exon splicing enhancers within human dystrophin exon 6) was most efficient at inducing exon skipping. Some exons, both mouse and human exon 19 for example, are readily skipped by targeting antisense molecules to a variety of motifs. That is, targeted exon skipping is induced after using antisense oligonucleotides to mask donor and acceptor splice sites or exon splicing enhancers.

To identify and select antisense oligonucleotides suitable for use in the modulation of exon skipping, a nucleic acid sequence whose function is to be modulated must first be identified. This may be, for example, a gene (or mRNA transcribed form the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. Within the context of the present invention, preferred target site(s) are those involved in mRNA splicing (i.e. splice donor sites, splice acceptor 20 sites, or exonic splicing enhancer elements). Splicing branch points and exon recognition sequences or splice enhancers are also potential target sites for modulation of mRNA splicing.

Preferably, the present invention aims to provide anti- 25 sense molecules capable of binding to a selected target in the dystrophin pre-mRNA to induce efficient and consistent exon skipping. Duchenne muscular dystrophy arises from mutations that preclude the synthesis of a functional dystrophin gene product. These Duchenne muscular dystrophy 30 gene defects are typically nonsense mutations or genomic rearrangements such as deletions, duplications or microdeletions or insertions that disrupt the reading frame. As the human dystrophin gene is a large and complex gene with the 79 exons being spliced together to generate a mature mRNA 35 with an open reading frame of approximately 11,000 bases, there are many positions where these mutations can occur. Consequently, a comprehensive antisense oligonucleotide based therapy to address many of the different diseasecausing mutations in the dystrophin gene will require that 40 many exons can be targeted for removal during the splicing process.

Within the context of the present invention, preferred target site(s) are those involved in mRNA splicing (i.e. splice donor sites, splice acceptor sites or exonic splicing enhancer 45 elements). Splicing branch points and exon recognition sequences or splice enhancers are also potential target sites for modulation of mRNA splicing.

The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corre- 50 sponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridisable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific 55 binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense molecule need not be 100% complementary to that of its target sequence to be specifically hybridisable. An antisense molecule is specifically hybridisable when binding 60 of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under condi- 65 tions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or thera-

peutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

While the above method may be used to select antisense molecules capable of deleting any exon from within a protein that is capable of being shortened without affecting its biological function, the exon deletion should not lead to a reading frame shift in the shortened transcribed mRNA. Thus, if in a linear sequence of three exons the end of the first exon encodes two of three nucleotides in a codon and the next exon is deleted then the third exon in the linear sequence must start with a single nucleotide that is capable of completing the nucleotide triplet for a codon. If the third exon does not commence with a single nucleotide there will be a reading frame shift that would lead to the generation of truncated or a non-functional protein.

It will be appreciated that the codon arrangements at the end of exons in structural proteins may not always break at the end of a codon, consequently there may be a need to delete more than one exon from the pre-mRNA to ensure in-frame reading of the mRNA. In such circumstances, a plurality of antisense oligonucleotides may need to be selected by the method of the invention wherein each is directed to a different region responsible for inducing splicing in the exons that are to be deleted.

The length of an antisense molecule may vary so long as it is capable of binding selectively to the intended location within the pre-mRNA molecule. The length of such sequences can be determined in accordance with selection procedures described herein. Generally, the antisense molecule will be from about 10 nucleotides in length up to about 50 nucleotides in length. It will be appreciated however that any length of nucleotides within this range may be used in the method. Preferably, the length of the antisense molecule is between 17 to 30 nucleotides in length.

In order to determine which exons can be connected in a dystrophin gene, reference should be made to an exon boundary map. Connection of one exon with another is based on the exons possessing the same number at the 3' border as is present at the 5' border of the exon to which it is being connected. Therefore, if exon 7 were deleted, exon 6 must connect to either exons 12 or 18 to maintain the reading frame. Thus, antisense oligonucleotides would need to be selected which redirected splicing for exons 7 to 11 in the first instance or exons 7 to 17 in the second instance. Another and somewhat simpler approach to restore the reading frame around an exon 7 deletion would be to remove the two flanking exons. Induction of exons 6 and 8 skipping should result in an in-frame transcript with the splicing of exons 5 to 9. In practise however, targeting exon 8 for removal from the pre-mRNA results in the co-removal of exon 9 so the resultant transcript would have exon 5 joined to exon 10. The inclusion or exclusion of exon 9 does not alter the reading frame. Once the antisense molecules to be tested have been identified, they are prepared according to standard techniques known in the art. The most common method for producing antisense molecules is the methylation of the 2' hydroxyribose position and the incorporation of a phosphorothioate backbone produces molecules that superficially resemble RNA but that are much more resistant to nuclease degradation.

To avoid degradation of pre-mRNA during duplex formation with the antisense molecules, the antisense molecules used in the method may be adapted to minimise or prevent cleavage by endogenous RNase H. This property is highly preferred as the treatment of the RNA with the unmethylated oligonucleotides either intracellularly or in crude extracts that contain RNase H leads to degradation of the pre-mRNA: antisense oligonucleotide duplexes. Any form of modified antisense molecules that is capable of by-passing or not inducing such degradation may be used in the present method. An example of antisense molecules which when duplexed with RNA are not cleaved by cellular 5 RNase H is 2'-O-methyl derivatives. 2'-O-methyl-oligoribonucleotides are very stable in a cellular environment and in animal tissues, and their duplexes with RNA have higher Tm values than their ribo- or deoxyribo-counterparts.

Antisense molecules that do not activate RNase H can be 10 made in accordance with known techniques (see, e.g., U.S. Pat. No. 5,149,797). Such antisense molecules, which may be deoxyribonucleotide or ribonucleotide sequences, simply contain any structural modification which sterically hinders or prevents binding of RNase H to a duplex molecule 1 containing the oligonucleotide as one member thereof, which structural modification does not substantially hinder or disrupt duplex formation. Because the portions of the oligonucleotide involved in duplex formation are substantially different from those portions involved in RNase H 20 binding thereto, numerous antisense molecules that do not activate RNase H are available. For example, such antisense molecules may be oligonucleotides wherein at least one, or all, of the inter-nucleotide bridging phosphate residues are modified phosphates, such as methyl phosphonates, methyl 25 phosphorothioates, phosphoromorpholidates, phosphoropiperazidates and phosphoramidates. For example, every other one of the internucleotide bridging phosphate residues may be modified as described. In another non-limiting example, such antisense molecules are molecules wherein at 30 least one, or all, of the nucleotides contain a 2' lower alkyl moiety (e.g., C1-C4, linear or branched, saturated or unsaturated alkyl, such as methyl, ethyl, ethenyl, propyl, 1-propenyl, 2-propenyl, and isopropyl). For example, every other one of the nucleotides may be modified as described. 35

While antisense oligonucleotides are a preferred form of the antisense molecules, the present invention comprehends other oligomeric antisense molecules, including but not limited to oligonucleotide mimetics such as are described below.

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural inter-nucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phospho-45 rus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be 50 oligonucleosides.

In other preferred oligonucleotide mimetics, both the sugar and the inter-nucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appro-55 priate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugarbackbone of an oligonucleotide is replaced with an amide 60 containing backbone, in particular an aminoethylglycine backbone. The nucleo-bases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.

Modified oligonucleotides may also contain one or more 65 substituted sugar moieties. Oligonucleotides may also include nucleobase (often referred to in the art simply as

"base") modifications or substitutions. Certain nucleo-bases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds that are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense molecules, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the increased resistance to nuclease degradation, increased 40 cellular uptake, and an additional region for increased binding affinity for the target nucleic acid.

Methods of Manufacturing Antisense Molecules

The antisense molecules used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). One method for synthesising oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066.

Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. In one such automated embodiment, diethyl-phosphoramidites are used as starting materials and may be synthesized as described by Beaucage, et al., (1981) Tetrahedron Letters, 22:1859-1862.

The antisense molecules of the invention are synthesised in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules. The molecules of the invention may also be mixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption.

Therapeutic Agents

The present invention also can be used as a prophylactic or therapeutic, which may be utilised for the purpose of treatment of a genetic disease.

Accordingly, in one embodiment the present invention ⁵ provides antisense molecules that bind to a selected target in the dystrophin pre-mRNA to induce efficient and consistent exon skipping described herein in a therapeutically effective amount admixed with a pharmaceutically acceptable carrier, diluent, or excipient.

The phrase "pharmaceutically acceptable" refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similarly untoward reaction, such as gastric upset and the like, when administered to a patient. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as 20 peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in Martin, Remington's. Pharmaceutical Sciences, 25 18th Ed., Mack Publishing Co., Easton, Pa., (1990).

In a more specific form of the invention there are provided pharmaceutical compositions comprising therapeutically effective amounts of an antisense molecule together with pharmaceutically acceptable diluents, preservatives, solubi- 30 lizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength and additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic 35 acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol). The material may be incorporated into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. Hylauronic 40 acid may also be used. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Martin, Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages 45 1435-1712 that are herein incorporated by reference. The compositions may be prepared in liquid form, or may be in dried powder, such as lyophilised form.

It will be appreciated that pharmaceutical compositions provided according to the present invention may be admin- 50 istered by any means known in the art. Preferably, the pharmaceutical compositions for administration are administered by injection, orally, or by the pulmonary, or nasal route. The antisense molecules are more preferably delivered by intravenous, intra-arterial, intraperitoneal, intramus- 55 cular, or subcutaneous routes of administration. Antisense Molecule Based Therapy

Also addressed by the present invention is the use of antisense molecules of the present invention, for manufacture of a medicament for modulation of a genetic disease. 60

The delivery of a therapeutically useful amount of antisense molecules may be achieved by methods previously published. For example, intracellular delivery of the antisense molecule may be via a composition comprising an admixture of the antisense molecule and an effective amount 65 of a block copolymer. An example of this method is described in US patent application US 20040248833.

Other methods of delivery of antisense molecules to the nucleus are described in Mann C J et al., (2001) ["Antisenseinduced exon skipping and the synthesis of dystrophin in the mdx mouse". Proc., Natl. Acad. Science, 98(1) 42-47] and in Gebski et al., (2003). Human Molecular Genetics, 12(15): 1801-1811.

A method for introducing a nucleic acid molecule into a cell by way of an expression vector either as naked DNA or complexed to lipid carriers, is described in U.S. Pat. No. 6,806,084.

It may be desirable to deliver the antisense molecule in a colloidal dispersion system. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-inwater emulsions, micelles, mixed micelles, and liposomes or liposome formulations.

Liposomes are artificial membrane vesicles which are useful as delivery vehicles in vitro and in vivo. These formulations may have net cationic, anionic or neutral charge characteristics and are useful characteristics with in vitro, in vivo and ex vivo delivery methods. It has been shown that large unilamellar vesicles (LUV), which range in size from 0.2-4.0 ϕm can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. RNA, and DNA can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., 6:77, 1981).

In order for a liposome to be an efficient gene transfer vehicle, the following characteristics should be present: (1) encapsulation of the antisense molecule of interest at high efficiency while not compromising their biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of genetic information (Mannino, et al., Biotechniques, 6:682, 1988).

The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.

Alternatively, the antisense construct may be combined with other pharmaceutically acceptable carriers or diluents to produce a pharmaceutical composition. Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline. The composition may be formulated for parenteral, intramuscular, intravenous, subcutaneous, intraocular, oral or transdermal administration.

The routes of administration described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and any dosage for any particular animal and condition. Multiple approaches for introducing functional new genetic material into cells, both in vitro and in vivo have been attempted (Friedmann (1989) Science, 244:1275-1280). Expression vectors derived from viruses such as vaccinia virus, adenoassociated virus (AAV), herpesvirus, bovine papilloma virus, and others offer features that may make them attractive for some applications of long-term genetic modification of mammalian cells. Human AAV viruses have a number of potential advantages over retrovirus vectors, including the fact that they are ubiquitous in humans and can be concentrated to titers exceeding 10⁹ infectious units per milliliter. These approaches include integration of the gene to be

expressed into modified retroviruses (Friedmann (1989) supra; Rosenberg (1991) Cancer Research 51(18), suppl.: 5074S-5079S); integration into non-retrovirus vectors (Rosenfeld, et al. (1992) Cell, 68:143-155: Rosenfeld, et al. (1991) Science, 252:431-434); or delivery of a transgene ⁵ linked to a heterologous promoter-enhancer element via liposomes (Friedmann (1989), supra; Brigham, et al. (1989) Am. J. Med. Sci., 298:278-281; Nabel, et al. (1990) Science, 249:1285-1288; Hazinski, et al. (1991) Am. J. Resp. Cell Molec. Biol., 4:206-209; and Wang and Huang (1987) Proc. Natl. Acad. Sci. (USA), 84:7851-7855); coupled to ligandspecific, cation-based transport systems (Wu and Wu (1988) J. Biol. Chem., 263:14621-14624) or the use of naked DNA, expression vectors (Nabel et al. (1990), supra); Wolff et al. 15 (1990) Science, 247:1465-1468). Direct injection of transgenes into tissue produces only localized expression (Rosenfeld (1992) supra); Rosenfeld et al. (1991) supra; Brigham et el. (1989) supra; Nabel (1990) supra; and Hazinski et al. (1991) supra). The Brigham et al. group (Am. J. Med. Sci. 20 (1989) 298:278-281 and Clinical Research (1991) 39 (abstract)) have reported in vivo transfection only of lungs of mice following either intravenous or intratracheal administration of a DNA liposome complex. An example of a review article of human gene therapy procedures is: Anderson, 25 Science (1992) 256:808-813.

The antisense molecules of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing 30 (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such pro-drugs, and other bioequivalents. 35

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inor- 45 ganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, 50 ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bro- 55 mine, and iodine. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes 60 including rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, (including by nebulizer, intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular 65 injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at

least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product. Kits of the Invention

The invention also provides kits for treatment of a patient with a genetic disease which kit comprises at least an antisense molecule, packaged in a suitable container, together with instructions for its use.

In a preferred embodiment, the kits will contain at least one antisense molecule as shown in Table 1A, or a cocktail of antisense molecules as shown in Table 1B or a "weasel" compound as shown in Table 1C. The kits may also contain peripheral reagents such as buffers, stabilizers, etc.

Those of ordinary skill in the field should appreciate that applications of the above method has wide application for identifying antisense molecules suitable for use in the treatment of many other diseases.

EXAMPLES

The following Examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these Examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. The references cited herein are expressly incorporated by reference.

Methods of molecular cloning, immunology and protein chemistry, which are not explicitly described in the following examples, are reported in the literature and are known by those skilled in the art. General texts that described conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art, included, for example: Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Glover ed., DNA Cloning: A Practical Approach, Volumes I and II, MRL Press, Ltd., Oxford, U.K. (1985); and Ausubel, F., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K. Current Protocols in Molecular Biology. Greene Publishing Associates/Wiley Intersciences, New York (2002).

Determining Induced Exon Skipping in Human Muscle Cells

Attempts by the inventors to develop a rational approach in antisense molecules design were not completely successful as there did not appear to be a consistent trend that could be applied to all exons. As such, the identification of the most effective and therefore most therapeutic antisense molecules compounds has been the result of empirical studies.

These empirical studies involved the use of computer programs to identify motifs potentially involved in the splicing process. Other computer programs were also used to identify regions of the pre-mRNA which may not have had extensive secondary structure and therefore potential sites for annealing of antisense molecules. Neither of these

approaches proved completely reliable in designing antisense oligonucleotides for reliable and efficient induction of exon skipping.

Annealing sites on the human dystrophin pre-mRNA were selected for examination, initially based upon known or 5 predicted motifs or regions involved in splicing. 2OMe antisense oligonucleotides were designed to be complementary to the target sequences under investigation and were synthesised on an Expedite 8909 Nucleic Acid Synthesiser. Upon completion of synthesis, the oligonucleotides were 10 cleaved from the support column and de-protected in ammonium hydroxide before being desalted. The quality of the oligonucleotide synthesis was monitored by the intensity of the trityl signals upon each deprotection step during the synthesis as detected in the synthesis log. The concentration 15 of the antisense oligonucleotide was estimated by measuring the absorbance of a diluted aliquot at 260 nm.

Specified amounts of the antisense molecules were then tested for their ability to induce exon skipping in an in vitro assay, as described below.

Briefly, normal primary myoblast cultures were prepared from human muscle biopsies obtained after informed consent. The cells were propagated and allowed to differentiate into myotubes using standard culturing techniques. The cells were then transfected with the antisense oligonucleotides by 25 delivery of the oligonucleotides to the cells as cationic lipoplexes, mixtures of antisense molecules or cationic liposome preparations.

The cells were then allowed to grow for another 24 hours, after which total RNA was extracted and molecular analysis 30 commenced. Reverse transcriptase amplification (RT-PCR) was undertaken to study the targeted regions of the dystrophin pre-mRNA or induced exonic re-arrangements.

For example, in the testing of an antisense molecule for inducing exon 19 skipping the RT-PCR test scanned several 35 exons to detect involvement of any adjacent exons. For example, when inducing skipping of exon 19, RT-PCR was carried out with primers that amplified across exons 17 and 21. Amplifications of even larger products in this area (i.e. exons 13-26) were also carried out to ensure that there was 40 minimal amplification bias for the shorter induced skipped transcript. Shorter or exon skipped products tend to be amplified more efficiently and may bias the estimated of the normal and induced transcript.

The sizes of the amplification reaction products were 45 estimated on an agarose gel and compared against appropriate size standards. The final confirmation of identity of these products was carried out by direct DNA sequencing to establish that the correct or expected exon junctions have been maintained.

Once efficient exon skipping had been induced with one antisense molecule, subsequent overlapping antisense molecules may be synthesized and then evaluated in the assay as described above. Our definition of an efficient antisense molecule is one that induces strong and sustained exon 55 skipping at transfection concentrations in the order of 300 nM or less.

Antisense Oligonucleotides Directed at Exon 8

Antisense oligonucleotides directed at exon 8 were prepared and tested for their ability to induce exon skipping in 60 human muscle cells using similar methods as described above.

FIG. **3** shows differing efficiencies of two antisense molecules directed at exon 8 acceptor splice site. H8A(-06+18) [SEQ ID NO:1], which anneals to the last 6 bases of intron 65 7 and the first 18 bases of exon 8, induces substantial exon 8 and 9 skipping when delivered into cells at a concentration

of 20 nM. The shorter antisense molecule, H8A(-06+14) [SEQ ID NO: 4] was only able to induce exon 8 and 9 skipping at 300 nM, a concentration some 15 fold higher than H8A(-06+18), which is the preferred antisense molecule.

This data shows that some particular antisense molecules induce efficient exon skipping while another antisense molecule, which targets a near-by or overlapping region, can be much less efficient. Titration studies show one compound is able to induce targeted exon skipping at 20 nM while the less efficient antisense molecules only induced exon skipping at concentrations of 300 nM and above. Therefore, we have shown that targeting of the antisense molecules to motifs involved in the splicing process plays a crucial role in the overall efficacy of that compound.

Efficacy refers to the ability to induce consistent skipping of a target exon. However, sometimes skipping of the target exons is consistently associated with a flanking exon. That is, we have found that the splicing of some exons is tightly linked. For example, in targeting exon 23 in the mouse model of muscular dystrophy with antisense molecules directed at the donor site of that exon, dystrophin transcripts missing exons 22 and 23 are frequently detected. As another example, when using an antisense molecule directed to exon 8 of the human dystrophin gene, all induced transcripts are missing both exons 8 and 9. Dystrophin transcripts missing only exon 8 are not observed.

Table 2 below discloses antisense molecule sequences that induce exon 8 (and 9) skipping.

TABLE 2

(SEQ ID NOS 1-5, respectively, in order of appearance)					
Antisense Oligonucleotide name	Sequence	Ability to induce skipping			
H8A(-06+18)	5'-GAU AGG UGG UAU CAA CAU CUG UAA	Very strong to 20 nM			
H8A(-03+18)	5'-GAU AGG UGG UAU CAA CAU CUG	Very strong skipping to 40 nM			
H8A(-07+18)	5'-GAU AGG UGG UAU CAA CAU CUG UAA G	Strong skipping to 40 nM			
H8A(-06+14)	5'-GGU GGU AUC AAC AUC UGU AA	Skipping to 300 nM			
H8A(-10+10)	5'-GUA UCA ACA UCU GUA AGC AC	Patchy/ weak skipping to 100 nm			

Antisense Oligonucleotides Directed at Exon 7

Antisense oligonucleotides directed at exon 7 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. **4** shows the preferred antisense molecule, H7A(+ 45+67) [SEQ ID NO: 6], and another antisense molecule, H7A (+2+26) [SEQ ID NO: 7], inducing exon 7 skipping. Nested amplification products span exons 3 to 9. Additional products above the induced transcript missing exon 7 arise from amplification from carry-over outer primers from the RT-PCR as well as heteroduplex formation.

40

60

65

Table 3 below discloses antisense molecule sequences for induced exon 7 skipping.

TABLE 3

	ID NOS 6-9, respectiv n order of appearance)	-	-
Antisense Oligonucleotid name	e Sequence	Ability to induce skipping	1
H7A(+45+67)	5'-UGC AUG UUC CAG UCG UUG UGU GG	Strong skipping to 20 nM	
H7A(+02+26)	5'-CAC UAU UCC AGU CAA AUA GGU CUG G	Weak skipping at 100 nM	1
H7D(+15-10)	5'-AUU UAC CAA CCU UCA GGA UCG AGU A	A Weak skipping to 300 nM	2
H7A(-18+03)	5'-GGC CUA AAA CAC AUA CAC AUA	Weak skipping to 300 nM	2

TABLE 4-continued

	(SEQ ID NOS 10-18, respectively, in order of appearance)					
5	Antisense Oligonucleotide name	Sequence	Ability to induce skipping			
0	CH6A(+69+91)	5' UAC GAG UUG AUU GUC GGA CCC AG	Strong skipping to 20 nM			
	C6D(+12-13)	5' GUG GUC UCC UUA CCU AUG ACU GUG G	Weak skipping at 300 nM			
5	C6D(+06-11)	5' GGU CUC CUU ACC UAU GA	No skipping			
	H6D(+04-21)	5' UGU CUC AGU AAU CUU CUU ACC UAU	Weak skipping to 50 nM			
20	H6D(+18-04)	5' UCU UAC CUA UGA CUA UGG AUG AGA	Very weak skipping to 300 nM			

Antisense Oligonucleotides Directed at Exon 6

Antisense oligonucleotides directed at exon 6 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 5 shows an example of two non-preferred antisense $_{30}$ molecules inducing very low levels of exon 6 skipping in cultured human cells. Targeting this exon for specific removal was first undertaken during a study of the canine model using the oligonucleotides as listed in Table 4, below. Some of the human specific oligonucleotides were also 35 evaluated, as shown in FIG. 5. In this example, both antisense molecules target the donor splice site and only induced low levels of exon 6 skipping. Both H6D(+4-21) [SEQ ID NO: 17] and H6D(+18-4) [SEQ ID NO: 18] would be regarded as non-preferred antisense molecules.

One antisense oligonucleotide that induced very efficient exon 6 skipping in the canine model, C6A(+69+91) [SEQ ID NO: 14], would anneal perfectly to the corresponding region in human dystrophin exon 6. This compound was evaluated, found to be highly efficient at inducing skipping of that 45 target exon, as shown in FIG. 6 and is regarded as the preferred compound for induced exon 6 skipping. Table 4 below discloses antisense molecule sequences for induced exon 6 skipping.

TABLE 4

(SEQ ID NOS 10-18, respectively, in order of appearance)				
Antisense Oligonucleotide name	e Sequence	Ability to induce skipping		
C6A(-10+10)	5' CAU UUU UGA CCU ACA UGU GG	No skipping		
C6A(-14+06)	5' UUU GAC CUA CAU GUG GAA AG	No skipping		
C6A(-14+12)	5' UAC AUU UUU GAC CUA CAU GUG GAA AG	No skipping		
C6A(-13+09)	5' AUU UUU GAC CUA CAU GGG AAA G	No skipping		

Antisense Oligonucleotides Directed at Exon 4

Antisense oligonucleotides directed at exon 4 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 7 shows an example of a preferred antisense molecule inducing skipping of exon 4 skipping in cultured human cells. In this example, one preferred antisense compound, H4A(+13+32) [SEQ ID NO:19], which targeted a presumed exonic splicing enhancer induced efficient exon skipping at a concentration of 20 nM while other nonpreferred antisense oligonucleotides failed to induce even low levels of exon 4 skipping. Another preferred antisense molecule inducing skipping of exon 4 was H4A(+111+40) [SEQ ID NO: 22], which induced efficient exon skipping at a concentration of 20 nM.

Table 5 below discloses antisense molecule sequences for inducing exon 4 skipping.

TABLE 5

45		, 22, 20, and 21, resp order of appearance)	ectively,				
	Antisense Oligonucleotide name	Sequence	Ability to induce skipping				
50	H4A(+13+32)	5' GCA UGA ACU CUU GUG GAU CC	Skipping to 20 nM				
	H4A(+11+40)	5' UGU UCA GGG CAU GAA CUC UUG UGG AUC CUU	Skipping to 20 nM				
55	H4D(+04-16)	5' CCA GGG UAC UAC UUA CAU UA	No skipping				
	H4D(-24-44)	5' AUC GUG UGU CAC AGC AUC CAG	No skipping				

Antisense Oligonucleotides Directed at Exon 3

Antisense oligonucleotides directed at exon 3 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H3A(+30+60) [SEQ ID NO:23] induced substantial exon 3 skipping when delivered into cells at a concentration of 20

45

50

55

nM to 600 nM. The antisense molecule, H3A(+35+65) [SEQ ID NO: 24] induced exon skipping at 300 nM.

Table 6 below discloses antisense molecule sequences that induce exon 3 skipping.

TABLE 6

(SEQ ID NOS 23-30, respectively, in order of appearance)				
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	10	
H3A(+30+60)	UAG GAG GCG CCU CCC AUC CUG UAG GUC ACU G	Moderate skipping to 20 to 600 nM	15	
H3A(+35+65)	AGG UCU AGG AGG CGC CUC CCA UCC UGU AGG U	Working to 300 nM		
H3A(+30+54)	GCG CCU CCC AUC CUG UAG GUC ACU G	Moderate 100-600 nM	20	
H3D(+46-21)	CUU CGA GGA GGU CUA GGA GGC GCC UC	No skipping		
H3A(+30+50)	CUC CCA UCC UGU AGG UCA CUG	Moderate 20-600 nM	25	
H3D(+19-03)	UAC CAG UUU UUG CCC UGU CAG G	No skipping		
H3A(-06+20)	UCA AUA UGC UGC UUC CCA AAC UGA AA	No skipping	30	
H3A(+37+61)	CUA GGA GGC GCC UCC CAU CCU GUA G	No skipping		

Antisense Oligonucleotides Directed at Exon 5

Antisense oligonucleotides directed at exon 5 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. 40

H5A(+20+50) [SEQ ID NO:31] induces substantial exon 5 skipping when delivered into cells at a concentration of 100 nM. Table 7 below shows other antisense molecules tested. The majority of these antisense molecules were not as effective at exon skipping as H5A(+20+50). However, H5A (+15+45) [SEQ ID NO: 40] was able to induce exon 5 skipping at 300 nM.

Table 7 below discloses antisense molecule sequences that induce exon 5 skipping.

TABLE 7

(SEQ ID NOS 31-40, respectively, in order of appearance)				
Antisense Oligonucleotide name	Sequence	Ability to induce skipping		
H5A(+20+50)	UUA UGA UUU CCA UC ACG AUG UCA GUA CU C	· · · · · · · · · · · · · · · · · · ·		
H5D(+25-05)	CUU ACC UGC CAG UG AGG AUU AUA UUC CA A			
H5D(+10-15)	CAU CAG GAU UCU UA CUG CCA GUG G	C Inconsistent at 300 nM		

32 TABLE 7-continued

	(SEQ ID NOS 31-40, respectively, in order of appearance)							
	Antisense Oligonucleotide name		ience	e			Ability to induce skipping	
	H5A(+10+34)		UGU UAU			UUC	Very weak	
,	H5D(-04-21)	ACC UCU	AUU	CAU	CAG	GAU	No skipping	
	H5D(+16-02)	ACC AUU	UGC	CAG	UGG	AGG	No skipping	
5	H5A(-07+20)		AUA ACC			AAA	No skipping	
	H5D(+18-12)		GAU GUG				No skipping	
)	H5A(+05+35)		AUG AUA				No skipping	
5	H5A(+15+45)		UCC AGU				Working to 300 nM	

Antisense Oligonucleotides Directed at Exon 10

Antisense oligonucleotides directed at exon 10 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H10A(-05+16) [SEQ ID NO:41] induced substantial exon 10 skipping when delivered into cells. Table 8 below
shows other antisense molecules tested. The antisense molecules' ability to induce exon skipping was variable. Table 8 below discloses antisense molecule sequences that induce exon 10 skipping.

TABLE 8

	(SEQ I) ir) NOS						7.,
5	Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping
	H10A(-05+16)	CAG GCA	GAG	CUU	CCA	AAU	GCU	Not tested
)	H10A(-05+24)		GUC AUG			AGC	UUC	Not tested
	H10A(+98+119)	UCC CAC	UCA G	GCA	GAA	AGA	AGC	Not tested
5	H10A(+130+149)	UUA GC	GAA	AUC	UCU	CCU	UGU	No skipping
	H10A(-33-14)	UAA AU	AUU	GGG	UGU	UAC	ACA	No skipping

60 Antisense Oligonucleotides Directed at Exon 11

Antisense oligonucleotides directed at exon 11 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

65 FIG. 8B shows an example of H11A(+75+97) [SEQ ID NO:49] antisense molecule inducing exon 11 skipping in cultured human cells. H11A(+75+97) induced substantial

10

15

25

40

exon 11 skipping when delivered into cells at a concentration of 5 nM. Table 9 below shows other antisense molecules tested. The antisense molecules' ability to induce exon skipping was observed at 100 nM.

TABLE 9

(SEQ ID NOS 46-49 and 49, respectively, in order of appearance)				
Antisense Oligonucleotide name	Sequence	Ability to induce skipping		
H11D(+26+49)	CCC UGA GGC AUU CCC AUC UUG AAU	Skipping at 100 nM		
H11D(+11-09)	AGG ACU UAC UUG CUU UGU UU	Skipping at 100 nM		
H11A(+118+140)	CUU GAA UUU AGG AGA UUC AUC UG	Skipping at 100 nM		
H11A(+75+97)	CAU CUU CUG AUA AUU UUC CUG UU	Skipping at 100 nM		
H11A(+75+97)	CAU CUU CUG AUA AUU UUC CUG UU	Skipping at 5 nM		

Antisense Oligonucleotides Directed at Exon 12

Antisense oligonucleotides directed at exon 12 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H12A(+52+75) [SEQ ID NO:50] induced substantial exon 12 skipping when delivered into cells at a concentra-55 tion of 5 nM, as shown in FIG. **8**A. Table 10 below shows other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. The antisense molecules' ability to induce exon skipping was variable.

TABLE 10

(SEQ ID NOS 50-52, respectively, in order of appearance)			
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	45
H12A(+52+75)	UCU UCU GUU UUU GUU AGC CAG UCA	Skipping at 5 nM	50
H12A(-10+10)	UCU AUG UAA ACU GAA AAU UU	Skipping at 100 nM	50
H12A(+11+30)	UUC UGG AGA UCC AUU AAA AC	No skipping	

Antisense Oligonucleotides Directed at Exon 13

Antisense oligonucleotides directed at exon 13 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. 60

H13A(+77+100) [SEQ ID NO:53] induced substantial exon 13 skipping when delivered into cells at a concentration of 5 nM. Table 11 below includes two other antisense molecules tested at a concentration range of 5, 25, 50, 100, 65 200 and 300 nM. These other antisense molecules were unable to induce exon skipping.

	TABLE 11			
	D NOS 53-55, respectivel n order of appearance)	У,		
Antisense Oligonucleotide name	Sequence	Ability to induce skipping		
H13A(+77+100)	CAG CAG UUG CGU GAU CUC CAC UAG	Skipping at 5 nM		
H13A(+55+75)	UUC AUC AAC UAC CAC CAC CAU	No skipping		
H13D(+06-19)	CUA AGC AAA AUA AUC UGA CCU UAA G	No skipping		

Antisense Oligonucleotides Directed at Exon 14

Antisense oligonucleotides directed at exon 14 were prepared and tested for their ability to induce exon skipping in ²⁰ human muscle cells using similar methods as described above.

H14A(+37+64) [SEQ ID NO:56] induced weak exon 14 skipping when delivered into cells at a concentration of 100 nM. Table 12 below includes other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. The other antisense molecules were unable to induce exon skipping at any of the concentrations tested.

TABLE 12

(SEQ ID NOS 56-62, respectively, in order of appearance)										
Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping			
H14A(+37+64)		GUA CUU			CCC	AGC	Skipping at 100 nM			
H14A(+14+35)	CAU CAU		CAG	AUG	υυυ	GCC	No skipping			
H14A(+51+73)	gaa gaa		UGU	CUU	GUA	AAA	No skipping			
H14D(-02+18)	ACC CG	UGU	ບບບ	UCA	GUA	AGA	No skipping			
H14D(+14-10)		GAC UAA	ACA	CCU	GUU	CUU	No skipping			
H14A(+61+80)	CAU UG	UUG	AGA	AGG	AUG	UCU	No skipping			
H14A(-12+12)		UCC AGA	CAA	UAC	CUG	GAG	No skipping			

55 Antisense Oligonucleotides Directed at Exon 15

Antisense oligonucleotides directed at exon 15 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H15A(-12+19) [SEQ ID NO:63] and H15A(+48+71) [SEQ ID NO:64] induced substantial exon 15 skipping when delivered into cells at a concentration of 10 Nm, as shown in FIG. **9**A. Table 13 below includes other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 Nm. These other antisense molecules were unable to induce exon skipping at any of the concentrations tested.

10

15

25

TABLE	1	3
-------	---	---

	63-65, 63, and 66, resp n order of appearance)	ectively,
Antisense Oligonucleotide name	Ability to induce skipping	
H15A(-12+19)	GCC AUG CAC UAA AAA GG ACU GCA AGA CAU U	C Skipping at 5 nM
H15A(+48+71)	UCU UUA AAG CCA GUU GU UGA AUC	G Skipping at 5 nM
H15A(+08+28)	UUU CUG AAA GCC AUG CA UAA	.C No skipping
H15A(-12+19)	GCC AUG CAC UAA AAA GG ACU GCA AGA CAU U	C Skipping at 10 nM
H15D(+17-08)	GUA CAU ACG GCC AGU UU UGA AGA C	W No skipping

Antisense Oligonucleotides Directed at Exon 16

Antisense oligonucleotides directed at exon 16 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H16A(-12+19) [SEQ ID NO:67] and H16A(-06+25) [SEQ ID NO:68] induced substantial exon 16 skipping when delivered into cells at a concentration of 10 nM, as shown in FIG. 9B. Table 14 below includes other antisense molecules tested. H16A(-06+19) [SEQ ID NO:69] and H16A(+87+ 109) [SEO ID NO:70] were tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. These two antisense molecules were able to induce exon skipping at 25 nM and 100 nM, respectively. Additional antisense molecules were 35 tested at 100, 200 and 300 nM and did not result in any exon skipping.

TABLE 14

(SEQ ID NOS 67-78, respectively, in order of appearance)								
Antisense Oligonucleotide name	Sequence	Ability to induce skipping 4						
H16A(-12+19)	CUA GAU CCG CUU UUA AAA CCU GUU AAA ACA A	Skipping at 5 nM						
H16A(-06+25)	UCU UUU CUA GAU CCG CUU UUA AAA CCU GUU A	Skipping at 5 nM 5						
H16A(-06+19)	CUA GAU CCG CUU UUA AAA CCU GUU A							
H16A(+87+109)	CCG UCU UCU GGG UCA CUG ACU UA	at 100 nM						
H16A(-07+19)	CUA GAU CCG CUU UUA AAA CCU GUU AA	5. No skipping						
H16A(-07+13)	CCG CUU UUA AAA CCU GUU AA	No skipping						
H16A(+12+37)	UGG AUU GCU UUU UCU UUU CUA GAU CC	No ⁶⁰ skipping						
H16A(+92+116)	CAU GCU UCC GUC UUC UGG GUC ACU G	No skipping						
H16A(+45+67)	G AUC UUG UUU GAG UGA AUA CAG U	No 6. skipping						

	Tž	ABLI	S 14	-cc	nti	nue	d			
	(SEQ ID NOS 67-78, respectively, in order of appearance)									
	Antisense Ability to Oligonucleotide induce name Sequence skipping									
	H16A(+105+126)	GUU CGU	AUC C	CAG	CCA	UGC	UUC	No skipping		
)	H16D(+05-20)		UAA UGU		GUA	UCA	CUA	No skipping		
	H16D(+12-11)	GUA GUA	UCA C	CUA	ACC	UGU	GCU	No skipping		

Antisense Oligonucleotides Directed at Exon 19

Antisense oligonucleotides directed at exon 19 were prepared and tested for their ability to induce exon skipping in 20 human muscle cells using similar methods as described above.

H19A(+35+65) [SEQ ID NO:79] induced substantial exon 19 skipping when delivered into cells at a concentration of 10 nM. This antisense molecule also showed very strong exon skipping at concentrations of 25, 50, 100, 300 and 600 nM.

FIG. 10 illustrates exon 19 and 20 skipping using a "cocktail" of antisense oligonucleotides, as tested using gel electrophoresis. It is interesting to note that it was not easy to induce exon 20 skipping using single antisense oligonucleotides H20A(+44+71) [SEQ ID NO:81] or H20A(+ 149+170) [SEQ ID NO:82], as illustrated in sections 2 and 3 of the gel shown in FIG. 10. Whereas, a "cocktail" of antisense oligonucleotides was more efficient as can be seen in section 4 of FIG. 10 using a "cocktail" of antisense oligonucleotides H20A(+44+71) and H20A(+149+170). When the cocktail was used to target exon 19, skipping was even stronger (see section 5, FIG. 10).

FIG. 11 illustrates gel electrophoresis results of exon 19/20 skipping using "weasels". The "weasels" were effective in skipping exons 19 and 20 at concentrations of 25, 50, 100, 300 and 600 nM. A further "weasel" sequence is shown ⁴⁵ in the last row of Table 3C. This compound should give good results.

Antisense Oligonucleotides Directed at Exon 20

Antisense oligonucleotides directed at exon 20 were pre-50 pared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

None of the antisense oligonucleotides tested induced exon 20 skipping when delivered into cells at a concentration of 10, 25, 50, 300 or 600 nM (see Table 15). Antisense molecules H20A(-11+17) [SEQ ID NO:86] and H20D(+ 08-20) [SEQ ID NO:87] are yet to be tested.

However, a combination or "cocktail" of H20A(+44+71) 60 [SEQ ID NO: 81] and H20A(+147+168) [SEQ ID NO:82] in a ratio of 1:1, exhibited very strong exon skipping at a concentration of 100 nM and 600 nM. Further, a combination of antisense molecules H19A(+35+65) [SEQ ID NO:80], H20A (+44+71) [SEQ ID NO:81] and H20A(+ 65 147+168) [SEQ ID NO:82] in a ratio of 2:1:1, induced very strong exon skipping at a concentration ranging from 10 nM to 600 nM.

10

40

45

TABLE 15

(SEQ ID NOS 81-87, 81-82, and 80-82, respectively, in order of appearance)									
Antisense Abili Oligonucleotide inc name Sequence skip									
H2OA(+44+71)			GAA GUU		GAU	CCA	No skipping		
H20A(+147+168)	CAG GCU		UAG	UUG	UCA	ບຕບ	No skipping		
H20A(+185+203)	UGA G	UGG	GGU	GGU	GGG	UUG	No skipping		
H20A(-08+17)		UGC AAA	AUU G	AAC	ACC	CUC	No skipping		
H2OA(+30+53)		GCU GGC	GUU	CAG	UUG	UUC	No skipping		
H2OA(-11+17)			AUU GAA		ACC	CUC	Not tested yet		
H2OD(+08-20)			GAA CAA		AUU	CUU	Not tested yet		
H20A(+44+71) &			GAA GUU		GAU	CCA	Very strong		
H20A(+147+168)	CAG GCU		UAG	UUG	UCA	UCU	skipping		
H19A(+35+65)			GCU UGC			CUG	Very strong		
H20A(+44+71)			GAA GUU		GAU	CCA	skipping		
H20A(+147+168)	CAG GCU		UAG	UUG	UCA	ບຕບ			

Antisense Oligonucleotides Directed at Exon 21

Antisense oligonucleotides directed at exon 21 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H21A(+85+108) [SEQ ID NO:92] and H21A(+85+106) [SEQ ID NO:91] induced exon 21 skipping when delivered into cells at a concentration of 50 nM. Table 16 below includes other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping

TABLE 16

(SEQ ID NOS 90-94, respectively, in order of appearance)										
Antisense Ability Oligonucleotide induce name Sequence skippin										
H21A(-06+16)	GCC GG GUG C	J UGA	CUU	CAU	CCU	Skips at 600 nM				
H21A(+85+106)	CUG CA GUC C	J CCA	GGA	ACA	UGG	Skips at 50 nM				
H21A(+85+108)	GUC UG GGG UC	C AUC	CAG	gaa	CAU	Skips at 50 nM				
H21A(+08+31)	GUU GA. GGU UG.		CUG	AUA	GCC	Skips faintly to				
H21D(+18-07)	UAC UU. CUU UC		UCU	GUA	GCU	No skipping				

Antisense Oligonucleotides Directed at Exon 22

Antisense oligonucleotides directed at exon 22 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 12 illustrates differing efficiencies of two antisense molecules directed at exon 22 acceptor splice site. H22A(+ 125+106) [SEQ ID NO:96] and H22A(+80+101) [SEQ ID NO: 98] induce strong exon 22 skipping from 50 nM to 600 nM concentration.

H22A(+125+146) [SEQ ID NO: 96] and H22A(+80+101) [SEQ ID NO:98] induced exon 22 skipping when delivered into cells at a concentration of 50 nM. Table 17 below shows other antisense molecules tested at a concentration range of 50, 100, 300 and 600 nM. These antisense molecules ¹⁵ showed a variable ability to induce exon skipping.

TABLE 17

20	(SEQ I ir	D NO: 1 ord			-		-	<i>t</i> ,
	Antisense Oligonucleotide name		ience	e				Ability to induce skipping
25	H22A(+22+45)		UCA GCA	UGG	UCU	CCU	GAU	No skipping
	H22A(+125+146)	CUG CUG	CAA C	UUC	CCC	GAG	UCU	Skipping to 50 nM
30	H22A(+47+69)	ACU UGA	GCU UG	GGA	CCC	AUG	UCC	Skipping to 300 nM
	H22A(+80+101)	CUA AGU	AGU	UGA	GGU	AUG	GAG	Skipping to 50 nM
35	H22D(+13-11)	UAU UCC	UCA CC	CAG	ACC	UGC	AAU	No skipping

Antisense Oligonucleotides Directed at Exon 23

Antisense oligonucleotides directed at exon 23 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Table 18 below shows antisense molecules tested at a concentration range of 25, 50, 100, 300 and 600 nM. These antisense molecules showed no ability to induce exon skipping or are yet to be tested.

TABLE 18

50	(SEQ ID in		100. ler o					ly,
50	Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping
55	H23A(+34+59)		GUG AGG		CUG	AGA	UAG	No skipping
	H23A(+18+39)	UAG UUG	GCC C	ACU	UUG	UUG	CUC	No Skipping
60	H23A(+72+90)	UUC C	AGA	GGG	CGC	טטט	CUU	No Skipping

Antisense Oligonucleotides Directed at Exon 24

Antisense oligonucleotides directed at exon 24 were prepared using similar methods as described above. Table 19 65 below outlines the antisense oligonucleotides directed at exon 24 that are yet to be tested for their ability to induce exon 24 skipping.

15

25

30

35

45

TABLE 19)
----------	---

(SEQ ID NOS 103-104, respectively, in order of appearance)										
Antisense Oligonucleotide name	Sequence	Ability to 5 induce skipping								
H24A(+48+70)	GGG CAG GCC AUU CCU CCU UCA GA	J Needs testing	0							
H24A(-02+22)	UCU UCA GGG UUU GUA UGU GAU UCU		,							

Antisense Oligonucleotides Directed at Exon 25

Antisense oligonucleotides directed at exon 25 were prepared using similar methods as described above. Table 20 below shows the antisense oligonucleotides directed at exon 25 that are yet to be tested for their ability to induce exon 25 skipping.

TABLE 20

(SEQ ID in	NOS ord				-		ly,
Antisense Oligonucleotide name	Sequ	lence	e				Ability to induce skipping
H25A(+9+36)		GGC UCA	UGA CUG	AUU	GUC	UGA	Needs testing
H25A(+131+156)		UUG CUG	GCA AG	CAU	GUG	AUC	Needs testing
H25D(+16-08)		UAU UGA	ACC	UGU	UGG	CAC	Needs testing

Antisense Oligonucleotides Directed at Exon 26

Antisense oligonucleotides directed at exon 26 were prepared using similar methods as described above. Table 21 40 below outlines the antisense oligonucleotides directed at exon 26 that are yet to be tested for their ability to induce exon 26 skipping.

TABLE 21

Antisense Oligonucleotide nameSequenceAbility to induce skippingH26A(+132+156)UGC UUU CUG UAA UUC AUC UGG AGU UNeeds testingH26A(-07+19)CCU CCU UUC UGG CAU AGA CCU UCC ACNeeds testing	_	-У,		-) NOS n ord	(SEQ ID ir
UGG AGU U testing H26A(-07+19) CCU CCU UUC UGG CAU AGA Needs	>					ē	ience		Oligonucleotide
	-		AUC	UUC	UAA				H26A(+132+156)
			AGA	CAU	UGG				H26A(-07+19)
H26A(+68+92) UGU GUC AUC CAU UCG UGC Faint AUC UCU G skipping at 600 nM			UGC	UCG	CAU				H26A(+68+92)

Antisense Oligonucleotides Directed at Exon 27

Antisense oligonucleotides directed at exon 27 were prepared using similar methods as described above. Table 22 below outlines the antisense oligonucleotides directed at 65 exon 27 that are yet to be tested for their ability to induce exon 27 skipping.

(SEQ ID in		111. er o					Ly,
Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping
H27A(+82+106)		AGG GUG		CUU	GUG	CUA	Needs testing
H27A(-4+19)	GGG UCU	CCU GA	CUU	CUU	UAG	CUC	Faint skipping at 600 and 300 nM
H27D(+19-03)	GAC UUU	UUC C	CAA	AGU	CUU	GCA	v. strong skipping at 600 and 300 nM

²⁰ Antisense Oligonucleotides Directed at Exon 28

Antisense oligonucleotides directed at exon 28 were prepared using similar methods as described above. Table 23 below outlines the antisense oligonucleotides directed at exon 28 that are yet to be tested for their ability to induce exon 28 skipping.

TABLE 23

(SEQ ID	NOS 1 ord						Ly,
Antisense Oligonucleotide name	Sequ	lence	e				Ability to induce skipping
H28A(-05+19)		AAC AAG	AUG	CCC	ААА	CUU	v. strong skipping at 600 and 300 nM
H28A(+99+124)		AGA CAG	UUU GA	CCU	CAG	CUC	Needs testing
H28D(+16-05)	CUU GAG	ACA	UCU	AGC	ACC	UCA	v. strong skipping at 600 and 300 nM

Antisense Oligonucleotides Directed at Exon 29

Antisense oligonucleotides directed at exon 29 were prepared using similar methods as described above. Table 24 50 below outlines the antisense oligonucleotides directed at exon 29 that are yet to be tested for their ability to induce exon 29 skipping.

TABLE 24

	NOS 117-119, respecti order of appearance)	.vely,
Antisense Oligonucleotide name	Sequence	Ability to induce skipping
H29A(+57+81)	UCC GCC AUC UGU UAG C CUG UGC C	GGU Needs testing
H29A(+18+42)	AUU UGG GUU AUC CUC (AUG UCG C	JGA v. strong skipping at 600

T2	ABLE 24-continued		
	NOS 117-119, respective order of appearance)	ly,	
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	5
H29D(+17-05)	CAU ACC UCU UCA UGU AGU UCC C	v. strong skipping at 600 and 300 nM	10

Antisense Oligonucleotides Directed at Exon 30

Antisense oligonucleotides directed at exon 30 were prepared using similar methods as described above. Table 25 ¹⁵ below outlines the anti sense oligonucleotides directed at exon 30 that are yet to be tested for their ability to induce exon 30 skipping.

TABLE 25

	NOS 120-122, respective order of appearance)	ly,	
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	25
H30A(+122+147)	CAU UUG AGC UGC GUC CAC CUU GUC UG	Needs testing	
H30A(+25+50)	UCC UGG GCAGAC UGG AUG CUC UGU UC	Very strong skipping at 600 and 300 nM.	30
H30D(+19-04)	UUG CCU GGG CUU CCU GAG GCA UU	Very strong skipping at 600 and 300 nM.	35

Antisense Oligonucleotides Directed at Exon 31

Antisense oligonucleotides directed at exon 31 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. **13** illustrates differing efficiencies of two antisense molecules directed at exon 31 acceptor splice site and a "cocktail" of exon 31 antisense oligonucleotides at varying concentrations. H31D(+03–22) [SEQ ID NO:124] substantially induced exon 31 skipping when delivered into cells at a concentration of 20 nM. Table 26 below also includes other antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping.

TABLE 26

	NOS 123-126, respectiv	vely,	
Antisense Oligonucleotide name	order of appearance) Sequence	Ability to induce skipping	60
H31D(+06-18)	UUC UGA AAU AAC AUA UA CUG UGC	C Skipping to 300 nM	
H31D(+03-22)	UAG UUU CUG AAA UAA CA AUA CCU G	U Skipping to 20 nM	65

Λ	2
	-

a a m t d m u a d

	-17	АВГЕ	5 26	-cc	ntı	nue	a	
	(SEQ ID ir	ly,						
	Antisense Oligonucleotide name	Sequ	lence	e				Ability to induce skipping
	H31A(+05+25)	GAC GGA	UUG	UCA	AAU	CAG	AUU	No skipping
,	H31D(+04-20)	GUU ACC		GAA	AUA	ACA	UAU	Skipping to 300 nM

Antisense Oligonucleotides Directed at Exon 32

Antisense oligonucleotides directed at exon 32 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H32D(+04–16) [SEQ ID NO:127] and H32A(+49+73) ²⁰ [SEQ ID NO:130] induced exon 32 skipping when delivered into cells at a concentration of 300 nM. Table 27 below also shows other antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules did not show an ability to induce exon skipping.

TABLE 27

(SEQ ID in					spect		ly,
Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping
H32D(+04-16)	CAC CA	CAG	AAA	UAC	AUA	CCA	Skipping to 300 nM
H32A(+151+170)	CAA UG	UGA	ບບບ	AGC	UGU	GAC	No skipping
H32A(+10+32)	CGA UCU		UUC	AUG	GAG	ACA	No skipping
H32A(+49+73)	CUU AAU	GUA UGG		GCU	GCU	CAA	Skipping to 300 nM

Antisense Oligonucleotides Directed at Exon 33

Antisense oligonucleotides directed at exon 33 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 14 shows differing efficiencies of two antisense 50 molecules directed at exon 33 acceptor splice site. H33A(+ 64+88) [SEQ ID NO:134] substantially induced exon 33 skipping when delivered into cells at a concentration of 10 nM. Table 28 below includes other antisense molecules tested at a concentration of 100, 200 and 300 nM. These 55 antisense molecules showed a variable ability to induce exon skipping.

TABLE 28

60		NOS 131-134, respective n order of appearance)	ly,
	Antisense Oligonucleotide name	Sequence	Ability to induce skipping
65	H33D(+09-11)	CAU GCA CAC ACC UUU GCU CC	No skipping

20

30

55

60

65

TADT.T	28-continued	
TABLE	zs-concinuea	

	NOS 131-134, respective n order of appearance)	ly,	5
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	3
H33A(+53+76)	UCU GUA CAA UCU GAC GUC CAG UCU	Skipping to 200 nM	10
H33A(+30+56)	GUC UUU AUC ACC AUU UCC ACU UCA GAC	Skipping to 200 nM	
H33A(+64+88)	CCG UCU GCU UUU UCU GUA CAA UCU G	Skipping to 10 nM	15

Antisense Oligonucleotides Directed at Exon 34

Antisense oligonucleotides directed at exon 34 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

25 Table 29 below includes antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping.

TABLE 29

(SEQ ID NOS 135-141, respectively, in order of appearance)						
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	35			
H34A(+83+104)	UCC AUA UCU GUA GCU GCC AGC C	No skipping				
H34A(+143+165)	CCA GGC AAC UUC AGA AUC CAA AU	No skipping 4	40			
H34A(-20+10)	UUU CUG UUA CCU GAA AAG AAU UAU AAU GAA	Not tested				
H34A(+46+70)	CAU UCA UUU CCU UUC GCA UCU UAC G	J	45			
H34A(+95+120)	UGA UCU CUU UGU CAA UUC CAU AUC UG	Skipping to 300 nM				
H34D(+10-20)	UUC AGU GAU AUA GGU UUU ACC UUU CCC CAG	Not tested 5	50			
H34A(+72+96)	CUG UAG CUG CCA GCC AUU CUG UCA AG	No skipping				

Antisense Oligonucleotides Directed at Exon 35

Antisense oligonucleotides directed at exon 35 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 15 shows differing efficiencies of antisense molecules directed at exon 35 acceptor splice site. H35A(+24+ 43) [SEQ ID NO:144] substantially induced exon 35 skipping when delivered into cells at a concentration of 20 nM. Table 30 below also includes other antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules showed no ability to induce exon skipping.

	(SEQ ID in	ly,						
	Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping
)	H35A(+141+161)	UCU ACA	UCU	GCU	CGG	GAG	GUG	Skipping to 20 nM
	H35A(+116+135)	CCA AC	GUU	ACU	AUU	CAG	AAG	No skipping
5	H35A(+24+43)	UCU GU	UCA	GGU	GCA	CCU	UCU	No skipping

Antisense Oligonucleotides Directed at Exon 36

Antisense oligonucleotides directed at exon 36 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Antisense molecule H36A(+26+50) [SEQ ID NO:145] induced exon 36 skipping when delivered into cells at a concentration of 300 nM, as shown in FIG. 16.

Antisense Oligonucleotides Directed at Exon 37

Antisense oligonucleotides directed at exon 37 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 17 shows differing efficiencies of two antisense molecules directed at exon 37 acceptor splice site. H37A(+ ³⁵ 82+105) [SEQ ID NO:148] and H37A(+134+157) [SEQ ID NO:149] substantially induced exon 37 skipping when delivered into cells at a concentration of 10 nM. Table 31 below shows the antisense molecules tested.

TABLE 31

		NOS 147-149, respectivel order of appearance)	.У,
45	Antisense Oligonucleotide name	Sequence	Ability to induce skipping
	H37A(+26+50)	CGU GUA GAG UCC ACC UUU GGG CGU A	No skipping
50	H37A(+82+105)	UAC UAA UUU CCU GCA GUG GUC ACC	Skipping to 10 nM
	H37A(+134+157)	UUC UGU GUG AAA UGG CUG CAA AUC	Skipping to 10 nM

Antisense Oligonucleotides Directed at Exon 38

Antisense oligonucleotides directed at exon 38 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 18 illustrates antisense molecule H38A(+88+112) [SEQ ID NO:152], directed at exon 38 acceptor splice site. H38A(+88+112) substantially induced exon 38 skipping when delivered into cells at a concentration of 10 nM. Table 32 below shows the antisense molecules tested and their ability to induce exon skipping.

55

60

TABLE	32
TABLE	32

	NOS 150-152, respective n order of appearance)	ly,
Antisense Oligonucleotide name	Sequence	Ability to induce skipping
H38A(-01+19)	CCU UCA AAG GAA UGG AGG CC	No skipping
H38A(+59+83)	UGC UGA AUU UCA GCC UCC AGU GGU U	Skipping to 10 nM
H38A(+88+112)	UGA AGU CUU CCU CUU UCA GAU UGA C	Skipping to 10 nM

Antisense Oligonucleotides Directed at Exon 39

Antisense oligonucleotides directed at exon 39 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described $_{20}$ above.

H39A(+62+85) [SEQ ID NO:153] induced exon 39 skipping when delivered into cells at a concentration of 100 nM. Table 33 below shows the antisense molecules tested and their ability to induce exon skipping.

TABLE 33

	NOS 153-156, respective n order of appearance)	• ·	30
Antisense Oligonucleotide name	Sequence	Ability to induce skipping	
H39A(+62+85)	CUG GCU UUC UCU CAU CUG UGA UUC	Skipping to 100 nM j	35
H39A(+39+58)	GUU GUA AGU UGU CUC CUC UU	No skipping	
H39A(+102+121)	UUG UCU GUA ACA GCU GCU GU	No skipping	40
H39D(+10-10)	GCU CUA AUA CCU UGA GAG CA	Skipping to 300 nM	

Antisense Oligonucleotides Directed at Exon 40

Antisense oligonucleotides directed at exon 40 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. **19** illustrates antisense molecule H40A(-05+17) ⁵⁰ [SEQ ID NO:157] directed at exon 40 acceptor splice site. H40A(-05+17) and H40A(+129+153) [SEQ ID NO:158] both substantially induced exon 40 skipping when delivered into cells at a concentration of 5 nM.

Antisense Oligonucleotides Directed at Exon 42

Antisense oligonucleotides directed at exon 42 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. 20 illustrates antisense molecule H42A(-04+23) [SEQ ID NO:159], directed at exon 42 acceptor splice site. H42A(-4+23) and H42D(+19-02) [SEQ ID NO:161] both induced exon 42 skipping when delivered into cells at a concentration of 5 nM. Table 34 below shows the antisense 65 molecules tested and their ability to induce exon 42 skipping.

46

		TABLE 34	
		NOS 159-160, respective n order of appearance)	ly,
5	Antisense Oligonucleotide name	Sequence	Ability to induce skipping
10	H42A(-4+23)	AUC GUU UCU UCA CGG ACA GUG UGC UGG	Skipping to 5 nM
10	H42A(+86+109)	GGG CUU GUG AGA CAU GAG UGA UUU	Skipping to 100 nM
	H42D(+19-02)	A CCU UCA GAG GAC UCC UCU UGC	Skipping to 5 nM

Antisense Oligonucleotides Directed at Exon 43

Antisense oligonucleotides directed at exon 43 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H43A(+101+120) [SEQ ID NO:163] induced exon 43 skipping when delivered into cells at a concentration of 25 nM. Table 35 below includes the antisense molecules tested 25 and their ability to induce exon 43 skipping.

TABLE 35

	(SEQ ID NOS 162-164, respective) in order of appearance)						Ly,	
	Antisense Oligonucleotide name	Sequ	ience	è				Ability to induce skipping
	H43D(+10-15)		GUG GGU	UUA C	CCU	ACC	CUU	Skipping to 100 nM
	H43A(+101+120)	GGA CU	GAG	AGC	UUC	CUG	UAG	Skipping to 25 nM
I	H43A(+78+100)	UCA UUG		טטט	CCA	CAG	GCG	Skipping to 200 nM

Antisense Oligonucleotides Directed at Exon 44

Antisense oligonucleotides directed at exon 44 were prepared using similar methods as described above. Testing for the ability of these antisense molecules to induce exon 44 skipping is still in progress. The antisense molecules under review are shown as SEQ ID Nos: 165 to 167 in Table 1A. Antisense Oligonucleotides Directed at Exon 45

Antisense oligonucleotides directed at exon 45 were prepared using similar methods as described above. Testing for the ability of these antisense molecules to induce exon 45 skipping is still in progress. The antisense molecules under review are shown as SEQ ID Nos: 207 to 211 in Table 1A.

Antisense Oligonucleotides Directed at Exon 46

Antisense oligonucleotides directed at exon 46 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

FIG. **21** illustrates the efficiency of one antisense molecule directed at exon 46 acceptor splice site. Antisense oligonucleotide H46A(+86+115) [SEQ ID NO:203] showed very strong ability to induce exon 46 skipping. Table 36 below includes antisense molecules tested. These antisense molecules showed varying ability to induce exon 46 skipping.

10

15

20

25

30

45

50

TABLE	36

-	68-169 and 203-206, resp n order of appearance)	ectively,
Antisense Oligonucleotide name	Sequence	Ability to induce skipping
H46D(+16-04)	UUA CCU UGA CUU GCU CAA GC	. No skipping
H46A(+90+109)	UCC AGG UUC AAG UGG GAU AC	No skipping
H46A(+86+115)	CUC UUU UCC AGG UUC AAG UGG GAU ACU AGC	Good skipping to 100 nM
H46A(+107+137)	CAA GCU UUU CUU UUA GUU GCU GCU CUU UUC C	Good skipping to 100 nM
H46A(-10+20)	UAU UCU UUU GUU CUU CUA GCC UGG AGA AAG	. Weak skipping
H46A(+50+77)	CUG CUU CCU CCA ACC AUA AAA CAA AUU C	. Weak skipping

Antisense Oligonucleotides Directed at Exon 47

Antisense oligonucleotides directed at exon 47 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

H47A(+76+100) [SEQ ID NO: 170] and H47A(-09+12) [SEQ ID NO:172] both induced exon 47 skipping when delivered into cells at a concentration of 200 nM. H47D(+ 25-02) [SEQ ID NO: 171] is yet to be prepared and tested.

Antisense Oligonucleotides Directed at Exon 50

Antisense oligonucleotides directed at exon 50 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Antisense oligonucleotide molecule H50(+02+30) [SEQ ID NO: 173] was a strong inducer of exon skipping. Further, H50A(+07+33) [SEQ ID NO:174] and H50D(+07-18) [SEQ ID NO:175] both induced exon 50 skipping when delivered into cells at a concentration of 100 nM.

Antisense Oligonucleotides Directed at Exon 51

Antisense oligonucleotides directed at exon 51 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described ⁵⁵ above.

FIG. **22** illustrates differing efficiencies of two antisense molecules directed at exon 51 acceptor splice site. Antisense oligonucleotide H51A(+66+90) [SEQ ID NO:180] showed the stronger ability to induce exon 51 skipping. Table 37 below includes antisense molecules tested at a concentration range of 25, 50, 100, 300 and 600 nM. These antisense molecules showed varying ability to induce exon 51 skipping. The strongest inducers of exon skipping were antisense $_{65}$ oligonucleotide H51A(+61+90) [SEQ ID NO: 179] and H51A (+66+95) [SEQ ID NO: 179].

(SEQ ID in Antisense ligonucleotide name H51A(-01+25)	<u>ord</u> Sequ						-y, Ability to
ligonucleotide name	-	ience					Ability to
H51A(-01+25)			9				induce skipping
				ACA	GUC	UGA	Faint skipping
H51D(+16-07)			CCU	UCU	GCU	UGA	Skipping at 300 nM
51A(+111+134)			CCA	AGC	CCG	GUU	Needs re-testing
H51A(+61+90)				AAG	AUG	GCA	Very strong skippin
H51A(+66+90)				AAG	AUG	GCA	skipping
H51A(+66+95)					GGA	AGA	Very strong skipping
H51D(+08-17)				UCU	CAU	ACC	No skipping
151A/D(+08-17) & (-15+?)							No skipping
51A(+175+195)	CAC GUG	CCA	CCA	UCA	CCC	UCU	No skipping
51A(+199+220)			UCG	UUG	AUA	UCC	No skipping
	H51D(+16-07) (51A(+111+134)) H51A(+61+90) H51A(+66+90) H51A(+66+95) H51D(+08-17) (51A/D(+08-17)) & (-15+?) (51A(+175+195))	GUA H51D(+16-07) CUC UGA UUC (51A(+111+134)) UUC GAA UUU H51A(+61+90) ACA UUU ACA H51A(+66+90) ACA UUU UUU H51A(+66+95) CUC UUU UUU H51D(+08-17) AUC UUC UUC (51A/D(+08-17)) AUC UUC UUC (51A(+175+195)) CAC GUG USA(+199+220) AUC	GUA GGA H51D(+16-07) CUC AUA UGA UC UC 151A(+111+134) UUC UGU 151A(+111+134) UUC UGU H51A(+61+90) ACA UCA H51A(+66+90) ACA UCA H51A(+66+95) CUC CAA H51A(+66+95) CUC CAA H51D(+08-17) AUC AUU H51A/D(+08-17) AUC AUU UGC IS1A/D(+08-17) AUC IS1A(+175+195) CAC CCA	GUA GGA GC H51D(+16-07) CUC AUA CCU UGA UC CUC AUA CCU I51A(+111+134) UUC UGU CCA H51A(+61+90) ACA UCA AGG H51A(+66+90) ACA UCA AGG H51A(+66+95) CUC CAA CAU H51A(+66+95) CUC CAA CAU H51D(+08-17) AUC AUU UUU IS1A/D(+08-17) AUC AUU UUU IS1A(+175+195) CAC CCA CCA IS1A(+199+220) AUC AUC UCG	GUA GGA GC H51D(+16-07) CUC AUA CCU UCU (51A(+111+134) UUC UGU CCA AGC H51A(+61+90) ACA UCA AGG AAG H51A(+66+90) ACA UCA AGG AAG H51A(+66+90) ACA UCA AGG AAG H51A(+66+95) CUC CAA CAU CAA H51A(+66+95) CUC CAA CAU CAU H51D(+08-17) AUC AUU UUU UCU IS1A/D(+08-17) AUC AUU UUU UCU IS1A(+175+195) CAC CCA CCA UCA IS1A(+199+220) AUC AUC UCU UCU	GUA GGA GC H51D(+16-07) CUC AUA CCU UCU GCU I51A(+111+134) UUC UGU CCA AGC CCG H51A(+61+90) ACA UCA AGG AAG AUG H51A(+66+90) ACA UCA AGG AAG AUG H51A(+66+95) CUC CAA CAU CAA GGA GGA H51A(+66+95) CUC CAA CAU CAA GGA GGA H51A(+66+95) CUC CAA CAU CAA GGA GGA H51D(+08-17) AUC AUU UUU UCU CAU CAU I51A/D(+08-17) AUC AUU UUU UCU CAU CAU I51A(+175+195) CAC CCA CCA UCA CCA ICA I51A(+199+220) AUC AUC UCG UCA ICA ICA	GUAGGAGCH51D(+16-07)CUCAUACCUUCUGCUUGAUGAUCUCUUCUGCUUGAUGACCGCUUGAL51A(+111+134)UUCUGUUGUCCAAGCCCGGUUH51A(+61+90)ACAUCAAGGAAGAUGGCAH51A(+66+90)ACAUCAAGGAAGAUGGCAH51A(+66+95)CUCCAACAUCAAGGAAGAH51D(+08-17)AUCAUUUUUUCUCAUACCL51A/D(+08-17)AUCAUUUUUUCUCAUACC $\&$ (-15+?)UUCUGCCCACAACACCUCL51A(+175+195)CACCCACCAUCACCCUCUL51A(+199+220)AUCAUCUCGUUGAUAUCC

Antisense Oligonucleotides Directed at Exon 52

Antisense oligonucleotides directed at exon 52 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described 40 above.

FIG. **22** also shows differing efficiencies of four antisense molecules directed at exon 52 acceptor splice site. The most effective antisense oligonucleotide for inducing exon 52 skipping was H52A(+17+37) [SEQ ID NO:188].

Table 38 below shows antisense molecules tested at a concentration range of 50, 100, 300 and 600 nM. These antisense molecules showed varying ability to induce exon 50 skipping. Antisense molecules H52A(+12+41) [SEQ ID NO:187] and H52A(+17+37) [SEQ ID NO:188] showed the strongest exon 50 skipping at a concentration of 50 nM.

TABLE 38

;	(SEQ ID in		186- er o			-		Ly,
	Antisense Oligonucleotide name	Sequ	ience	e				Ability to induce skipping
1	H52A(-07+14)	UCC AAG	UGC	AUU	GUU	GCC	UGU	No skipping
	H52A(+12+41)		AAC UCC			CGC	CUC	Very strong skipping
	H52A(+17+37)	ACU CCA	GGG	GAC	GCC	UCU	GUU	Skipping to 50 nM

1

TABLE 38-continued					
(SEQ ID NOS 186-190, respectively, in order of appearance)					
Antisense Oligonucleotide name	Ability to induce skipping				
H52A(+93+112)	CCG UAA UGA UUG UUC UA CC	AG No skipping			
H52D(+05-15)	UGU UAA AAA ACU UAC UU GA	JC No skipping			

Antisense Oligonucleotides Directed at Exon 53

Antisense oligonucleotides directed at exon 53 were prepared and tested for their ability to induce exon skipping in ¹ human muscle cells using similar methods as described above.

FIG. **22** also shows antisense molecule H53A(+39+69) [SEQ ID NO:193] directed at exon 53 acceptor splice site. This antisense oligonucleotide was able to induce exon 53 2 skipping at 5, 100, 300 and 600 nM. A "cocktail" of three exon 53 antisense oligonucleotides: H53A(+23+47) [SEQ ID NO:195], H53A(+150+176) [SEQ ID NO:196] and H53D (+14–07) [SEQ ID NO:194], was also tested, as shown in FIG. **20** and exhibited an ability to induce exon 2 skipping.

Table 39 below includes other antisense molecules tested at a concentration range of 50, 100, 300 and 600 nM. These antisense molecules showed varying ability to induce exon 53 skipping. Antisense molecule H53A(+39+69) [SEQ ID NO:193] induced the strongest exon 53 skipping. ³

TABLE 39

(SEQ ID NOS 191-202, respectively, in order of appearance)				
Antisense Oligonucleotide name	Sequence	Ability to induce skipping		
H53A(+45+69)	CAU UCA ACU GUU GCC UCC GGU UCU G	Faint skipping at 50 nM	4(

			191. ler o				tive.	Ly,
5	Antisense Oligonucleotide name	Sequ	ience	9				Ability to induce skipping
.0	H53A(+39+62)		UUG GUG	CCU	CCG	GUU	CUG	Faint skipping at 50 nM
	H53A(+39+69)		UCA UCU				UCC	Strong skipping to 50 nM
.5	H53D(+14-07)	UAC UGA	UAA	CCU	UGG	טטט	CUG	Very faint skipping to 50 nM
20	H53A(+23+47)		AAG AUC		UUC	UUG	UAC	Very faint skipping to 50 nM
25	H53A(+150+176)		AUA UGA		ACC	CUC	CUU	Very faint skipping to 50 nM
	H53D(+20-05)		ACC UUC		GUU	ບດບ	GUG	Not made yet
80	H53D(+09-18)		AUC GGU		GAU	ACU	AAC	Faint at 600 nM
	H53A(-12+10)	AUU AAA	CUU G	UCA	ACU	AGA	AUA	No skipping
35	H53A(-07+18)		UCU GAA		UUC	טטט	CAA	No skipping
	H53A(+07+26)	AUC UC	CCA	CUG	AUU	CUG	AAU	No skipping
10	H53A(+124+145)	UUG AAG	GCU A	CUG	GCC	UGU	CCU	No skipping

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 214

- <210> SEQ ID NO 1
- <211> LENGTH: 24
- <212> TYPE: RNA
- <213> ORGANISM: Artificial Sequence
- <220> FEATURE:
- <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

<400> SEQUENCE: 1

gauagguggu aucaacaucu guaa

<210> SEQ ID NO 2

- <211> LENGTH: 21
- <212> TYPE: RNA
- <213> ORGANISM: Artificial Sequence
- <220> FEATURE:
- <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

(SEO ID NOS 191-202, respectively,

-continued

<400>	SEQUENCE: 2	
gauag	guggu aucaacaucu g	21
<210>	SEQ ID NO 3	
	LENGTH: 25	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	_
<223>	OTHER INFORMATION: Description of Artificial Sequence: Syntheti	.c
	Human 2'-O-methyl phosphorothioate antisense oligonucleotide	
<400>	SEQUENCE: 3	
gauag	guggu aucaacaucu guaag	25
<210>	SEQ ID NO 4	
<211>	LENGTH: 20	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Description of Artificial Sequence: Syntheti	.c
	Human 2'-O-methyl phosphorothioate antisense oligonucleotide	
<400>	SEQUENCE: 4	
aauaa	uauca acaucuquaa	20
55~55		
010		
	SEQ ID NO 5	
	LENGTH: 20	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Description of Artificial Sequence: Syntheti	.c
	Human 2'-O-methyl phosphorothioate antisense	
	oligonucleotide	
<400>	SEQUENCE: 5	
guauc	aacau cuguaagcac	20
<210>	SEQ ID NO 6	
	LENGTH: 23	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
		a
<223>	OTHER INFORMATION: Description of Artificial Sequence: Syntheti	.c
	Human 2'-O-methyl phosphorothioate antisense	
	oligonucleotide	
<400>	SEQUENCE: 6	
ugcau	annce adneannana naa	23
	SEQ ID NO 7	
	LENGTH: 25	
<212>	TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Description of Artificial Sequence: Syntheti	.c
	Human 2'-O-methyl phosphorothioate antisense	
	oligonucleotide	
<400>	SEQUENCE: 7	
cacua	uucca gucaaauagg ucugg	25
<210>	SEQ ID NO 8	
<211>	LENGTH: 25	
<212>	TYPE: RNA	

<211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 8 auuuaccaac cuucaggauc gagua 25 <210> SEQ ID NO 9 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 9 ggccuaaaac acauacacau a 21 <210> SEQ ID NO 10 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 10 cauuuuugac cuacaugugg 20 <210> SEQ ID NO 11 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 11 uuugaccuac auguggaaag 20 <210> SEQ ID NO 12 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-0-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 12 uacauuuuug accuacaugu ggaaag 26 <210> SEQ ID NO 13 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 13 auuuuugacc uacaugggaa ag 22

<210> SEQ ID NO 14 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 14 uacgaguuga uugucggacc cag 23 <210> SEQ ID NO 15 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 15 25 guggucuccu uaccuaugac ugugg <210> SEQ ID NO 16 <211> LENGTH: 17 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 16 ggucuccuua ccuauga 17 <210> SEQ ID NO 17 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 17 ugucucagua aucuucuuac cuau 24 <210> SEQ ID NO 18 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 18 24 ucuuaccuau gacuauggau gaga <210> SEQ ID NO 19 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

56

<400> SEQUENCE: 19	
gcaugaacuc uuguggaucc	20
<210> SEQ ID NO 20 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-0-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 20	
ccaggguacu acuuacauua	20
<210> SEQ ID NO 21 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 21	
aucguguguc acagcaucca g	21
<210> SEQ ID NO 22 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 22	
uguucaggge augaacucuu guggauccuu	30
<210> SEQ ID NO 23 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 23 uaggaggggg cucccauccu guaggucacu g	31
<210> SEQ ID NO 24 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	
<400> SEQUENCE: 24 aggucuagga ggcgccuccc auccuguagg u	31
aggacaagga ggegeeacee aaceagaagg a	
<210> SEQ ID NO 25 <211> LENGTH: 25 <212> TYPE: RNA	

-continued

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 25 gcgccuccca uccuguaggu cacug 25 <210> SEQ ID NO 26 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 26 cuucgaggag gucuaggagg cgccuc 26 <210> SEQ ID NO 27 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 27 21 cucccauccu guaggucacu g <210> SEQ ID NO 28 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 28 uaccaguuuu ugcccuguca gg 22 <210> SEQ ID NO 29 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 29 ucaauaugcu gcuucccaaa cugaaa 26 <210> SEQ ID NO 30 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 30

US RE48,960 E

61

<210> SEQ ID NO 31

-continued

<211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 31 uuaugauuuc caucuacgau gucaguacuu c 31 <210> SEQ ID NO 32 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 32 cuuaccugcc aguggaggau uauauuccaa a 31 <210> SEO ID NO 33 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 33 25 caucaggauu cuuaccugcc agugg <210> SEQ ID NO 34 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 34 cgaugucagu acuuccaaua uucac 25 <210> SEQ ID NO 35 <211> LENGTH: 18 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 35 18 accauucauc aggauucu <210> SEQ ID NO 36 <211> LENGTH: 18 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense

-continued	
------------	--

-continued		
oligonucleotide		
<400> SEQUENCE: 36		
accugccagu ggaggauu	18	
<210> SEQ ID NO 37 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence Human 2'-O-methyl phosphorothioate antisense oligonucleotide	: Synthetic	
<400> SEQUENCE: 37		
ccaauauuca cuaaaucaac cuguuaa	27	
<210> SEQ ID NO 38 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence Human 2'-O-methyl phosphorothioate antisense oligonucleotide	: Synthetic	
<400> SEQUENCE: 38		
caggauucuu accugccagu ggaggauuau	30	
<210> SEQ ID NO 39 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence Human 2'-O-methyl phosphorothioate antisense oligonucleotide	: Synthetic	
<400> SEQUENCE: 39		
acgaugucag uacuuccaau auucacuaaa u	31	
<210> SEQ ID NO 40 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence Human 2'-O-methyl phosphorothioate antisense oligonucleotide	: Synthetic	
<400> SEQUENCE: 40		
auuuccaucu acgaugucag uacuuccaau a	31	
<210> SEQ ID NO 41 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence Human 2'-O-methyl phosphorothioate antisense oligonucleotide	: Synthetic	
<400> SEQUENCE: 41		
caggagcuuc caaaugcugc a	21	
<210> SEQ ID NO 42		

<211> LENGTH: 29

US RE48,960 E

65

-continued

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 42 cuugucuuca ggagcuucca aaugcugca 29 <210> SEQ ID NO 43 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 43 22 uccucagcag aaagaagcca cg <210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 44 20 uuagaaaucu cuccuugugc <210> SEQ ID NO 45 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 45 uaaauugggu guuacacaau 20 <210> SEQ ID NO 46 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 46 cccugaggca uucccaucuu gaau 24 <210> SEQ ID NO 47 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 47

-continued

aggacuuacu ugcuuuguuu 20 <210> SEQ ID NO 48 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 48 cuugaauuua ggagauucau cug 23 <210> SEQ ID NO 49 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 49 23 caucuucuga uaauuuuccu guu <210> SEQ ID NO 50 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 50 ucuucuguuu uuguuagcca guca 24 <210> SEQ ID NO 51 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 51 ucuauguaaa cugaaaauuu 20 <210> SEQ ID NO 52 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 52 uucuggagau ccauuaaaac 20 <210> SEQ ID NO 53 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

-continued

Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 53 cagcaguugc gugaucucca cuag 24 <210> SEQ ID NO 54 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 54 21 uucaucaacu accaccacca u <210> SEQ ID NO 55 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEOUENCE: 55 25 cuaaqcaaaa uaaucuqacc uuaaq <210> SEQ ID NO 56 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 56 cuuguaaaag aacccagcgg ucuucugu 28 <210> SEQ ID NO 57 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 57 22 caucuacaga uguuugeeca ue <210> SEQ ID NO 58 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 58 gaaggauguc uuguaaaaga acc 23 <210> SEQ ID NO 59

-continued

<211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 59 accuguucuu caguaagacg 20 <210> SEQ ID NO 60 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 60 caugacacac cuguucuuca guaa 24 <210> SEQ ID NO 61 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 61 cauuugagaa ggaugucuug 20 <210> SEQ ID NO 62 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 62 aucucccaau accuggagaa gaga 24 <210> SEQ ID NO 63 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 63 gccaugcacu aaaaaggcac ugcaagacau u 31 <210> SEQ ID NO 64 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 64

-continued

ucuuuaaagc caguugugug aauc 24 <210> SEQ ID NO 65 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 65 21 uuucugaaag ccaugcacua a <210> SEQ ID NO 66 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 66 guacauacgg ccaguuuuug aagac 25 <210> SEQ ID NO 67 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 67 cuagaucege uuuuaaaace uguuaaaaca a 31 <210> SEQ ID NO 68 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 68 31 ucuuuucuag auccgcuuuu aaaaccuguu a <210> SEQ ID NO 69 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 69 cuagauccgc uuuuaaaacc uguua 25 <210> SEQ ID NO 70 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-continued

76

_

	-001	.c mueu		
<223>	OTHER INFORMATION: Description of Artificial Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Sequence:	Synthetic	
<400>	SEQUENCE: 70			
ccgucu	ucug ggucacugac uua		23	
<211> <212> <213> <220>	SEQ ID NO 71 LENGTH: 26 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Sequence:	Synthetic	
<400>	SEQUENCE: 71			
cuagau	iccgc uuuuaaaacc uguuaa		26	
<211> <212> <213> <220> <223>	SEQ ID NO 72 LENGTH: 20 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Human 2'-O-methyl phosphorothioate antisense oligonucleotide SEQUENCE: 72	Sequence :	Synthetic	
	uuuaa aaccuguuaa		20	
<211> <212> <213> <220> <223>	SEQ ID NO 73 LENGTH: 26 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Human 2'-O-methyl phosphorothioate antisense oligonucleotide SEQUENCE: 73	Sequence :	Synthetic	
	- Igcuu uuucuuuucu agaucc		26	
<211><212><213><2220>	SEQ ID NO 74 LENGTH: 25 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Sequence:	Synthetic	
<400>	SEQUENCE: 74			
caugcu	uuceg ueuueugggu eacug		25	
<211> <212> <213> <220> <223>	SEQ ID NO 75 LENGTH: 23 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Human 2'-O-methyl phosphorothioate antisense oligonucleotide SEQUENCE: 75	Sequence:	Synthetic	
	iguuu gagugaauac agu		23	
J	-Janaan Jangargananan angw		20	

-continued

<210> SEQ ID NO 76 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 76 guuauccagc caugeuuccg uc 22 <210> SEQ ID NO 77 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 77 ugauaauugg uaucacuaac cugug 25 <210> SEQ ID NO 78 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 78 guaucacuaa ccugugcugu ac 22 <210> SEQ ID NO 79 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 79 cugcuggcau cuugcaguu 19 <210> SEQ ID NO 80 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 80 gccugagcug aucugcuggc aucuugcagu u 31 <210> SEQ ID NO 81 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

80

-continued

<400> SEQUENCE: 81 cuggcagaau ucgauccacc ggcuguuc 28 <210> SEQ ID NO 82 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 82 cagcaguagu ugucaucugc uc 22 <210> SEQ ID NO 83 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 83 ugauggggug guggguugg 19 <210> SEQ ID NO 84 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 84 aucugcauua acacccucua gaaag 25 <210> SEQ ID NO 85 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 85 ccggcuguuc aguuguucug aggc 24 <210> SEQ ID NO 86 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 86 aucugcauua acacccucua gaaagaaa 28 <210> SEQ ID NO 87 <211> LENGTH: 28

<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 87 gaaggagaag agauucuuac cuuacaaa 28 <210> SEQ ID NO 88 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 88 auucgaucca ccggcuguuc 20 <210> SEQ ID NO 89 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 89 cagcaguagu ugucaucugc 20 <210> SEQ ID NO 90 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 90 geegguugae uucaueeugu ge 22 <210> SEQ ID NO 91 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 91 cugcauccag gaacaugggu cc 22 <210> SEQ ID NO 92 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 92 23 gucugcaucc aggaacaugg guc

<210> SEQ ID NO 93 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 93 guugaagauc ugauagccgg uuga 24 <210> SEQ ID NO 94 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 94 uacuuacugu cuguagcucu uucu 24 <210> SEQ ID NO 95 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 95 cacucauggu cuccugauag cgca 24 <210> SEQ ID NO 96 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 96 cugcaauucc ccgagucucu gc 22 <210> SEQ ID NO 97 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 97 23 acugcuggac ccauguccug aug <210> SEQ ID NO 98 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

<400> SEQUENCE: 98	
cuaaguugag guauggagag u	21
<210> SEQ ID NO 99 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 99	
uauucacaga ccugcaauuc ccc	23
<210> SEQ ID NO 100 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 100	
acaguggugc ugagauagua uaggcc	26
<210> SEQ ID NO 101 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 101	
uaggccacuu uguugcucuu gc	22
<210> SEQ ID NO 102 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 102	
uucagagggc gcuuucuuc	19
<210> SEQ ID NO 103 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 103	
gggcaggcca uuccuccuuc aga	23
<210> SEQ ID NO 104 <211> LENGTH: 24 <212> TYPE: RNA	

-continued

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 104 ucuucagggu uuguauguga uucu 24 <210> SEQ ID NO 105 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 105 27 cugggcugaa uugucugaau aucacug <210> SEQ ID NO 106 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 106 cuguuggcac augugauccc acugag 26 <210> SEQ ID NO 107 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 107 gucuauaccu guuggcacau guga 24 <210> SEQ ID NO 108 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 108 ugcuuucugu aauucaucug gaguu 25 <210> SEQ ID NO 109 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 109

US RE48,960 E

89

90

-continued

<210> SEQ ID NO 110 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 110 ugugucaucc auucgugcau cucug 25 <210> SEQ ID NO 111 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 111 uuaaggccuc uugugcuaca ggugg 25 <210> SEO ID NO 112 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 112 gggccucuuc uuuagcucuc uga 23 <210> SEQ ID NO 113 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 113 gacuuccaaa gucuugcauu uc 22 <210> SEQ ID NO 114 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 114 24 gccaacaugc ccaaacuucc uaag <210> SEQ ID NO 115 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense

oligonucleotide	
<400> SEQUENCE: 115	
cagagauuuc cucagcuccg ccagga	26
<210> SEQ ID NO 116 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 116	
cuuacaucua gcaccucaga g	21
<210> SEQ ID NO 117 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 117	
uccgccaucu guuagggucu gugcc	25
<210> SEQ ID NO 118 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 118	
auuuggguua uccucugaau gucgc	25
<210> SEQ ID NO 119 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-0-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 119	
cauaccucuu cauguaguuc cc	22
<210> SEQ ID NO 120 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense oligonucleotide	Synthetic
<400> SEQUENCE: 120	
cauuugagcu gcguccaccu ugucug	26
<210> SEQ ID NO 121 <211> LENGTH: 26	

-continued

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 121 uccugggcag acuggaugcu cuguuc 26 <210> SEQ ID NO 122 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 122 uugccugggc uuccugaggc auu 23 <210> SEQ ID NO 123 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 123 24 uucugaaaua acauauaccu gugc <210> SEQ ID NO 124 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 124 uaguuucuga aauaacauau accug 25 <210> SEQ ID NO 125 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 125 21 gacuugucaa aucagauugg a <210> SEQ ID NO 126 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 126

-continued

guuucugaaa uaacauauac cugu 24 <210> SEQ ID NO 127 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 127 caccagaaau acauaccaca 20 <210> SEQ ID NO 128 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 128 20 caaugauuua gcugugacug <210> SEQ ID NO 129 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 129 cgaaacuuca uggagacauc uug 23 <210> SEQ ID NO 130 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 130 cuuguagacg cugcucaaaa uuggc 25 <210> SEQ ID NO 131 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 131 caugcacaca ccuuugcucc 20 <210> SEQ ID NO 132 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

-continued

Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 132 ucuguacaau cugacgucca gucu 24 <210> SEQ ID NO 133 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 133 27 gucuuuauca ccauuuccac uucagac <210> SEQ ID NO 134 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEOUENCE: 134 25 ccqucuqcuu uuucuquaca aucuq <210> SEQ ID NO 135 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEOUENCE: 135 uccauaucug uagcugccag cc 22 <210> SEQ ID NO 136 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 136 ccaggcaacu ucagaaucca aau 23 <210> SEQ ID NO 137 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 137 30 uuucuguuac cugaaaagaa uuauaaugaa <210> SEQ ID NO 138

99

-continued

<211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 138 cauucauuuc cuuucgcauc uuacg 25 <210> SEQ ID NO 139 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 139 ugaucucuuu gucaauucca uaucug 26 <210> SEQ ID NO 140 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 140 uucagugaua uagguuuuac cuuuccccag 30 <210> SEQ ID NO 141 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 141 cuguagcugc cagccauucu gucaag 26 <210> SEQ ID NO 142 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 142 ucuucugcuc gggaggugac a 21 <210> SEQ ID NO 143 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 143

<220> FEATURE:

-continued

ccaguuacua uucagaagac 20 <210> SEQ ID NO 144 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 144 20 ucuucaggug caccuucugu <210> SEQ ID NO 145 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 145 ugugaugugg uccacauucu gguca 25 <210> SEQ ID NO 146 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 146 ccauguguuu cugguauucc 20 <210> SEQ ID NO 147 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 147 25 cguguagagu ccaccuuugg gcgua <210> SEQ ID NO 148 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 148 uacuaauuuc cugcaguggu cacc 24 <210> SEQ ID NO 149 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence

103

-continued

104

_

	- COI	ntinued		
Hu	HER INFORMATION: Description of Artificial man 2'-O-methyl phosphorothioate antisense igonucleotide	Sequence:	Synthetic	
<400> SE	QUENCE: 149			
uucugugu	ga aauggcugca aauc		24	
<211> LE <212> TY <213> OR <220> FE <223> OT Hu	PE: RNA GANISM: Artificial Sequence	Sequence:	Synthetic	
<400> SE	QUENCE: 150			
ccuucaaa	gg aauggaggcc		20	
<211> LE <212> TY <213> OR <220> FE <223> OT Hu	PE: RNA GANISM: Artificial Sequence	Sequence:	Synthetic	
<400> SE	QUENCE: 151			
ugcugaau	uu cagccuccag ugguu		25	
<211> LE <212> TY <213> OR <220> FE <223> OT Hu	PE: RNA GANISM: Artificial Sequence	Sequence:	Synthetic	
<400> SE	QUENCE: 152			
ugaagucu	uc cucuuucaga uucac		25	
<211> LE <212> TY <213> OR <220> FE <223> OT Hu	PE: RNA GANISM: Artificial Sequence	Sequence :	Synthetic	
<400> SE	QUENCE: 153			
cuggcuuu	cu cucaucugug auuc		24	
<211> LE <212> TY <213> OR <220> FE <223> OT Hu	GANISM: Artificial Sequence ATURE: HER INFORMATION: Description of Artificial man 2'-O-methyl phosphorothioate antisense			
	QUENCE: 154			
guuguaag	uu gucuccucuu		20	
<210> SE	Q ID NO 155			

-continued

<211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 155 uugucuguaa cagcugcugu 20 <210> SEQ ID NO 156 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 156 gcucuaauac cuugagagca 20 <210> SEQ ID NO 157 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 157 cuuugagacc ucaaauccug uu 22 <210> SEQ ID NO 158 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 158 cuuuauuuuc cuuucaucuc ugggc 25 <210> SEQ ID NO 159 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 159 aucguuucuu cacggacagu gugcugg 27 <210> SEQ ID NO 160 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 160

-continued

gggcuuguga gacaugagug auuu	24	
<210> SEQ ID NO 161 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide	ence: Synthetic	
<400> SEQUENCE: 161		
accuucagag gacuccucuu gc	22	
<210> SEQ ID NO 162 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide	ence: Synthetic	
<400> SEQUENCE: 162		
uauguguuac cuacccuugu cgguc	25	
<210> SEQ ID NO 163 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque	ence: Synthetic	
Human 2'-O-methyl phosphorothioate antisense oligonucleotide		
oligonucleotide	20	
oligonucleotide <400> SEQUENCE: 163		
oligonucleotide <400> SEQUENCE: 163 ggagagagu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense		
oligonucleotide <400> SEQUENCE: 163 ggagagagcu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide		
<pre>oligonucleotide <400> SEQUENCE: 163 ggagagagacu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 164 ucacccuuuc cacaggcguu gca </pre>	ence: Synthetic 23	
<pre>oligonucleotide <400> SEQUENCE: 163 ggagagagagu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 164 ucacccuuuc cacaggeguu gca <210> SEQ ID NO 165 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque kuman 2'-O-methyl phosphorothioate antisense oligonucleotide </pre>	ence: Synthetic 23	
<pre>oligonucleotide <400> SEQUENCE: 163 ggagagagagu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 164 ucacccuuuc cacaggcguu gca </pre>	ence: Synthetic 23 ence: Synthetic	
<pre>oligonucleotide <400> SEQUENCE: 163 ggagagagagu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 164 ucacccuuuc cacaggeguu gca <210> SEQ ID NO 165 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Seque kuman 2'-O-methyl phosphorothioate antisense oligonucleotide </pre>	ence: Synthetic 23	

<220> FEATURE:

-continued

109

110

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 166 aaagacuuac cuuaagauac 20 <210> SEQ ID NO 167 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 167 aucugucaaa ucgccugcag 20 <210> SEQ ID NO 168 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 168 uuaccuugac uugcucaagc 2.0 <210> SEQ ID NO 169 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 169 uccagguuca agugggauac 20 <210> SEQ ID NO 170 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 170 gcucuucugg gcuuauggga gcacu 25 <210> SEQ ID NO 171 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 171 accuuuaucc acuggagauu ugucugc 27

-continued

<210> SEQ ID NO 172 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 172 uuccaccagu aacugaaaca g 21 <210> SEQ ID NO 173 <211> LENGTH: 29 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 173 ccacucagag cucagaucuu cuaacuucc 29 <210> SEQ ID NO 174 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 174 cuuccacuca gagcucagau cuucuaa 27 <210> SEQ ID NO 175 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 175 gggauccagu auacuuacag gcucc 25 <210> SEQ ID NO 176 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 176 accagaguaa cagucugagu aggagc 26 <210> SEQ ID NO 177 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

-continued

	-conc.	Inuea		
<400> SEQU	JENCE: 177			
cucauaccuu	1 cugcuugaug auc		2	23
<220> FEAT <223> OTHE Huma	STH: 24 3: RNA ANISM: Artificial Sequence	equence:	Synthetic	
<400> SEQU	JENCE: 178			
uucuguccaa	a geeegguuga aaue		2	24
<220> FEAT <223> OTHE Huma	GTH: 30 3: RNA NNISM: Artificial Sequence FURE: BR INFORMATION: Description of Artificial Se an 2'-O-methyl phosphorothioate antisense gonucleotide	equence:	Synthetic	
	a agauggcauu ucuaguuugg		3	30
<220> FEAT <223> OTHE Huma	GTH: 25 S: RNA NNISM: Artificial Sequence FURE: SR INFORMATION: Description of Artificial Se an 2'-O-methyl phosphorothioate antisense gonucleotide	equence :	Synthetic	
	a agauggcauu ucuag		2	25
<pre><210> SEQ <211> LENC <212> TYPE <213> ORGP <220> FEAT <223> OTHE Huma</pre>	ID NO 181 STH: 30 E: RNA ANISM: Artificial Sequence FURE: ER INFORMATION: Description of Artificial Se an 2'-O-methyl phosphorothioate antisense gonucleotide	equence :	Synthetic	
cuccaacauc	c aaggaagaug gcauuucuag		3	30
<220> FEAT <223> OTHE Huma	GTH: 25 3: RNA ANISM: Artificial Sequence	equence:	Synthetic	
<400> SEQU				
aucauuuuuu	ı cucauaccuu cugcu		2	25
<210> SEQ <211> LENG <212> TYPE	GTH: 36			

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence

110	1	1	.5
-----	---	---	----

-continued

<220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 183 aucauuuuuu cucauaccuu cugcuaggag cuaaaa 36 <210> SEQ ID NO 184 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 184 cacccaccau cacccucugu g 21 <210> SEQ ID NO 185 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 185 aucaucucgu ugauauccuc aa 22 <210> SEQ ID NO 186 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 186 uccugcauug uugccuguaa g 21 <210> SEQ ID NO 187 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 187 uccaacuggg gacgccucug uuccaaaucc 30 <210> SEQ ID NO 188 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 188 21 acuggggacg ccucuguucc a

117

118

-continued

<210> SEQ ID NO 189 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 189 ccguaaugau uguucuagcc 20 <210> SEQ ID NO 190 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 190 20 uguuaaaaaa cuuacuucga <210> SEQ ID NO 191 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 191 cauucaacug uugccuccgg uucug 25 <210> SEQ ID NO 192 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 192 cuguugccuc cgguucugaa ggug 24 <210> SEQ ID NO 193 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 193 cauucaacug uugccuccgg uucugaaggu g 31 <210> SEQ ID NO 194 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

<400> \$	SEQUENCE: 194		
uacuaac	ccuu gguuucugug a	21	
<211> I <212> I <213> C <220> I <223> C H	SEQ ID NO 195 JENGTH: 25 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense Digonucleotide	Synthetic	
<400> \$	SEQUENCE: 195		
cugaago	gugu ucuuguacuu caucc	25	
<211> I <212> 7 <213> 0 <220> F <223> 0 F	SEQ ID NO 196 JENGTH: 27 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense Sligonucleotide	Synthetic	
	SEQUENCE: 196 ggga cccuccuucc augacuc	27	
<211> I <212> 7 <213> 0 <220> F <223> 0 F	SEQ ID NO 197 JENGTH: 25 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: Auman 2'-O-methyl phosphorothioate antisense oligonucleotide SEQUENCE: 197	Synthetic	
cuaaccu	uugg uuucugugau uuucu	25	
<211> I <212> T <213> C <220> F <223> C	GEQ ID NO 198 LENGTH: 27 TYPE: RNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: Human 2'-O-methyl phosphorothioate antisense Digonucleotide	Synthetic	
<400> \$	SEQUENCE: 198		
gguaucı	uug auacuaaccu ugguuuc	27	
<211> I <212> T <213> C <220> F <223> C H	SEQ ID NO 199 LENGTH: 22 TYPE: RNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: Juman 2'-O-methyl phosphorothioate antisense Digonucleotide	Synthetic	
	SEQUENCE: 199		
auucuuu	icaa cuagaauaaa ag	22	
<211> I	SEQ ID NO 200 JENGTH: 25 TYPE: RNA		

121

-continued

<220> H <223> C H	DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: S Human 2'-O-methyl phosphorothioate antisense Dligonucleotide	Synthetic
<400> \$	SEQUENCE: 200	
gauucug	gaau ucuuucaacu agaau	25
<211> I <212> J <213> C <220> H <223> C	SEQ ID NO 201 JENGTH: 20 TYPE: RNA DRGANISM: Artificial Sequence FEATURE: JTHER INFORMATION: Description of Artificial Sequence: S Human 2'-O-methyl phosphorothioate antisense Dligonucleotide	Synthetic
<400> \$	SEQUENCE: 201	
aucccac	cuga uucugaauuc	20
<211> I <212> J <213> C <220> H <223> C	SEQ ID NO 202 LENGTH: 22 TYPE: RNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: S Human 2'-O-methyl phosphorothioate antisense bligonucleotide	ynthetic
<400> \$	SEQUENCE: 202	
uuggcuo	cugg ccuguccuaa ga	22
<211> I <212> J <213> G <220> H <223> G	SEQ ID NO 203 LENGTH: 30 IYPE: RNA DRGANISM: Artificial Sequence FEATURE: JTHER INFORMATION: Description of Artificial Sequence: S Human 2'-O-methyl phosphorothioate antisense Dligonucleotide	Synthetic
<400> \$	SEQUENCE: 203	
cucuuuu	icca gguucaagug ggauacuagc	30
<211> I <212> 7 <213> C <220> E <223> C H	SEQ ID NO 204 LENGTH: 31 IYPE: RNA DRGANISM: Artificial Sequence FEATURE: JTHER INFORMATION: Description of Artificial Sequence: S Human 2'-O-methyl phosphorothioate antisense Dligonucleotide	Synthetic
<400> \$	SEQUENCE: 204	
caagcui	uuuc uuuuaguuge ugeueuuuue e	31
<211> I <212> 7 <213> C <220> F <223> C F	SEQ ID NO 205 LENGTH: 30 TYPE: RNA PRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Description of Artificial Sequence: S Human 2'-O-methyl phosphorothioate antisense bligonucleotide SEQUENCE: 205	ynthetic
		30

-continued

<210> SEQ ID NO 206 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 206 cugcuuccuc caaccauaaa acaaauuc 28 <210> SEQ ID NO 207 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 207 ccaaugccau ccuggaguuc cuguaa 26 <210> SEQ ID NO 208 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 208 uccuguagaa uacuggcauc 2.0 <210> SEQ ID NO 209 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 209 ugcagaccuc cugccaccgc agauuca 27 <210> SEQ ID NO 210 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 210 cuaccucuuu uuucugucug 20 <210> SEQ ID NO 211 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide

-continued

<400> SEQUENCE: 211	
uguuuuugag gauugcugaa	20
<210> SEQ ID NO 212	
<211> LENGTH: 84	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Description of Artificial Sequence: Synthet Human 2'-O-methyl phosphorothioate antisense oligonucleotide</pre>	lic
<400> SEQUENCE: 212	
cagcaguagu ugucaucugc ucaacuggca gaauucgauc caccggcugu ucaagccuga	60
gcugaucugc ucgcaucuug cagu	84
<210> SEQ ID NO 213	
<211> LENGTH: 44	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 213	
ucaugcacug agugaccucu uucucgcagg cgcuagcugg agca	44
<210> SEQ ID NO 214	
<211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 214	
ccgugcagac ugacggucuc au	22

The invention claimed is:

1. An isolated antisense oligonucleotide of 20 to [50 nucleotides in length comprising] 31 bases comprising a base sequence that is 100% complementary to consecutive bases of exon 45 of the human dystrophin pre-mRNA, wherein the base sequence comprises at least [17] 20 consecutive [nucleotides of] bases of CCA AUG CCA UCC UGG AGU UCC UGU AA (SEQ ID NO: 207), in which uracil bases are thymine bases, wherein the antisense oli-45 gonucleotide is a morpholino antisense oligonucleotide, and wherein the antisense oligonucleotide [specifically hybridizes to an exon 45 acceptor splice site of a human dystrophin gene, inducing] induces exon 45 skipping[, and wherein the uracil bases are optionally thymine bases]. 50

[2. The antisense oligonucleotide of claim 1, wherein the uracil bases are thymine bases.]

[3. The antisense oligonucleotide of claim 1 comprising SEQ ID NO: 207.]

[4. The antisense oligonucleotide of claim 1 consisting of 55 SEQ ID NO: 207.]

[5. The antisense oligonucleotide of claim 1 comprising SEQ ID NO: 207, wherein the uracil bases are thymine bases.]

[6. The antisense oligonucleotide of claim 1 comprising 60 25 nucleotides in length.]

[7. The antisense oligonucleotide of claim 1 comprising 17-30 nucleotides in length.]

[8. The antisense oligonucleotide of claim 1 comprising 20-31 nucleotides in length.] 65

[9. The antisense oligonucleotide of claim 1, wherein the oligonucleotide does not activate RNase H.]

[10. The antisense oligonucleotide of claim 1, comprising a non-natural backbone.]

[11. The antisense oligonucleotide of claim **10**, wherein the sugar moieties of the oligonucleotide backbone are replaced with non-natural moieties.]

[12. The antisense oligonucleotide of claim **11**, wherein the non-natural moieties are morpholinos.]

[13. The antisense oligonucleotide of claim **1**, wherein the inter-nucleotide linkages of the oligonucleotide backbone are replaced with non-natural inter-nucleotide linkages.]

[14. The antisense oligonucleotide of claim **13**, wherein the non-natural inter-nucleotide linkages are modified phosphates.]

[15. The antisense oligonucleotide of claim 1, wherein the sugar moieties of the oligonucleotide backbone are replaced with non-natural moieties and the inter-nucleotide linkages of the oligonucleotide backbone are replaced with non-natural inter-nucleotide linkages.]

[16. The antisense oligonucleotide of claim **15**, wherein the non-natural moieties are morpholinos and the non-natural internucleotide linkages are modified phosphates.]

[17. The antisense oligonucleotide of claim **16**, wherein the modified phosphates are methyl phosphonates, methyl phosphorothioates, phosphoromorpholidates, phosphoropiperazidates or phosphoroamidates.]

[18. The antisense oligonucleotide of claim 1, wherein the oligonucleotide is a 2'-O-methyl-oligoribonucleotide.]

[19. The antisense oligonucleotide of claim 1, wherein the oligonucleotide is a peptide nucleic acid.]

20. The antisense oligonucleotide of claim **1**, wherein the oligonucleotide is chemically linked to one or more moieties

or conjugates that enhance the activity, cellular distribution, or cellular uptake of the antisense oligonucleotide.

[21. The antisense oligonucleotide of claim **20**, wherein the oligonucleotide is conjugated to a polyamine.]

22. The antisense oligonucleotide of claim **20**, wherein 5 the oligonucleotide is chemically linked to a polyethylene glycol chain.

[23. An isolated antisense oligonucleotide of 20 to 50 nucleotides in length comprising at least 17 consecutive nucleotides complementary to an exon 45 target region of a 10 human dystrophin gene designated as annealing site H45A (-06+20), wherein the antisense oligonucleotide specifically hybridizes to the acceptor splice site inducing exon 45 skipping, and wherein uracil bases in the antisense oligonucleotide are optionally thymine bases.]

[24. The antisense oligonucleotide of claim 23, wherein the uracil bases are thymine bases.]

[25. The antisense oligonucleotide of claim **23** comprising 25 nucleotides in length.]

[26. The antisense oligonucleotide of claim **23** comprising 20 17-30 nucleotides in length.]

[27. The antisense oligonucleotide of claim 23 comprising 20-31 nucleotides in length.]

[28. The antisense oligonucleotide of claim **23** comprising at least 17 consecutive nucleotides 100% complementary to 25 the exon 45 target region.]

[29. The antisense oligonucleotide of claim **23** comprising 20-31 nucleotides in length and at least 17 consecutive nucleotides 100% complementary to the exon 45 target region.]

[30. The antisense oligonucleotide of claim **23** comprising at least 20 consecutive nucleotides complementary to the exon 45 target region.]

[31. The antisense oligonucleotide of claim 23 comprising at least 20 consecutive nucleotides 100% complementary to 35 the exon 45 target region.]

[32. The antisense oligonucleotide of claim **23** comprising 20-31 nucleotides in length and at least 20 consecutive nucleotides complementary to the exon 45 target region.]

[33. The antisense oligonucleotide of claim **23**, wherein 40 the oligonucleotide does not activate RNase H.]

[34. The antisense oligonucleotide of claim 23, comprising a non-natural backbone.]

[35. The antisense oligonucleotide of claim **34**, wherein the sugar moieties of the oligonucleotide backbone are 45 replaced with non-natural moieties.]

[36. The antisense oligonucleotide of claim 35, wherein the non-natural moieties are morpholinos.]

[37. The antisense oligonucleotide of claim **23**, wherein the inter-nucleotide linkages of the oligonucleotide back- 50 bone are replaced with non-natural inter-nucleotide linkages.]

[38. The antisense oligonucleotide of claim 37, wherein the non-natural inter-nucleotide linkages are modified phosphates.]

[39. The antisense oligonucleotide of claim **23**, wherein the sugar moieties of the oligonucleotide backbone are replaced with non-natural moieties and the inter-nucleotide linkages of the oligonucleotide backbone are replaced with non-natural inter-nucleotide linkages.]

[40. The antisense oligonucleotide of claim **39**, wherein the non-natural moieties are morpholinos and the non-natural internucleotide linkages are modified phosphates.]

[41. The antisense oligonucleotide of claim **40**, wherein the modified phosphates are methyl phosphonates, methyl 65 phosphorothioates, phosphoromorpholidates, phosphoroamidates.]

[42. The antisense oligonucleotide of claim **23**, wherein the oligonucleotide is a 2'-O-methyl-oligoribonucleotide.]

[43. The antisense oligonucleotide of claim **23**, wherein the oligonucleotide is a peptide nucleic acid.]

[44. The antisense oligonucleotide of claim **23**, wherein the oligonucleotide is chemically linked to one or more moieties or conjugates that enhance the activity, cellular distribution, or cellular uptake of the antisense oligonucleotide.]

[45. The antisense oligonucleotide of claim **44**, wherein the oligonucleotide is conjugated to a polyamine.]

[46. The antisense oligonucleotide of claim **44**, wherein the oligonucleotide is chemically linked to a polyethylene glycol chain.]

[47. An isolated antisense oligonucleotide of 20 to 50 nucleotides in length comprising at least 20 consecutive nucleotides of SEQ ID NO: 207, wherein the uracil bases are optionally thymine bases.]

[48. The antisense oligonucleotide of claim **47**, wherein the uracil bases are thymine bases.]

[49. The antisense oligonucleotide of claim **47** comprising 25 nucleotides in length.**]**

[50. The antisense oligonucleotide of claim **47** comprising 20-31 nucleotides in length.]

[51. The antisense oligonucleotide of claim **47**, wherein the oligonucleotide does not activate RNase H.]

[52. The antisense oligonucleotide of claim **47**, comprising a non-natural backbone.]

[53. The antisense oligonucleotide of claim **52**, wherein the sugar moieties of the oligonucleotide backbone are replaced with non-natural moieties.]

[54. The antisense oligonucleotide of claim **53**, wherein the non-natural moieties are morpholinos.]

[55. The antisense oligonucleotide of claim **47**, wherein the inter-nucleotide linkages of the oligonucleotide backbone are replaced with non-natural inter-nucleotide linkages.]

[56. The antisense oligonucleotide of claim **55**, wherein the non-natural inter-nucleotide linkages are modified phosphates.]

[57. The antisense oligonucleotide of claim **47**, wherein the sugar moieties of the oligonucleotide backbone are replaced with non-natural moieties and the inter-nucleotide linkages of the oligonucleotide backbone are replaced with non-natural inter-nucleotide linkages.]

[58. The antisense oligonucleotide of claim **57**, wherein the non-natural moieties are morpholinos and the non-natural internucleotide linkages are modified phosphates.]

[59. The antisense oligonucleotide of claim **58**, wherein the modified phosphates are methyl phosphonates, methyl phosphorothioates, phosphoromorpholidates, phosphoroamidates.]

[60. The antisense oligonucleotide of claim **47**, wherein 55 the oligonucleotide is a 2'-O-methyl-oligoribonucleotide.]

[61. The antisense oligonucleotide of claim 47, wherein the oligonucleotide is a peptide nucleic acid.]

[62. The antisense oligonucleotide of claim **47**, wherein the oligonucleotide is chemically linked to one or more 60 moieties or conjugates that enhance the activity, cellular distribution, or cellular uptake of the antisense oligonucleotide.]

[63. The antisense oligonucleotide of claim **62**, wherein the oligonucleotide is conjugated to a polyamine.]

[64. The antisense oligonucleotide of claim **62**, wherein the oligonucleotide is chemically linked to a polyethylene glycol chain.]

15

65. A pharmaceutical composition comprising an *isolated* antisense oligonucleotide of claim **1**, and a pharmaceutically acceptable carrier.

[66. A pharmaceutical composition comprising an antisense oligonucleotide of claim **23**, and a pharmaceutically ⁵ acceptable carrier.]

[67. A pharmaceutical composition comprising an antisense oligonucleotide of claim **47**, and a pharmaceutically acceptable carrier.]

68. A method of inducing exon-skipping of dystrophin exon 45, comprising administering a pharmaceutical composition of claim **65**.

69. A method of treating Duchenne muscular dystrophy, comprising administering to a patient in need thereof an effective amount of a pharmaceutical composition of claim **65**.

70. An injectable solution comprising:

an antisense oligonucleotide of 20 to 31 bases comprising a base sequence that is 100% complementary to consecutive bases of exon 45 of the human dystrophin ²⁰ pre-mRNA, wherein the base sequence comprises at least 20 consecutive bases of CCA AUG CCA UCC UGG AGU UCC UGUAA (SEQ ID NO: 207), in which uracil bases are thymine bases, wherein the antisense oligonucleotide is a morpholino antisense oligonucleotide, and wherein the antisense oligonucleotide induces exon 45 skipping; and

a pharmaceutically acceptable carrier or diluent;

wherein the injectable solution is formulated for intravenous administration.

71. The injectable solution of claim 70, wherein the pharmaceutically acceptable carrier or diluent comprises a saline solution.

72. The injectable solution of claim 70, wherein the antisense oligonucleotide is chemically linked to a polyethylene glycol chain.

73. A method of inducing exon-skipping of dystrophin exon 45, comprising administering the injectable solution of claim 70.

74. A method of treating Duchenne muscular dystrophy, comprising administering to a patient in need thereof the injectable solution of claim 70.

75. A method of treating Duchenne muscular dystrophy, comprising administering to a patient in need thereof an effective amount of an isolated antisense oligonucleotide of claim 1.

76. A method of inducing exon-skipping of dystrophin exon 45, comprising administering an effective amount of an isolated antisense oligonucleotide of claim 1.

* * * * *