
MT
US 20200145393A9

(19) United States
(12) Patent Application Publication

Fiedler

(10) Pub . No .: US 2020/0145393 A9
(48) Pub . Date : May 7 , 2020

CORRECTED PUBLICATION

Publication Classification (54) METHODS OF BIDIRECTIONAL PACKET
EXCHANGE OVER NODAL PATHWAYS

(71) Applicant : Network Next , Inc. , Santa Monica , CA
(US)

(72) Inventor : Glenn Alexander Fiedler , Santa
Monica , CA (US)

(73) Assignee : Network Next , Inc. , Santa Monica , CA
(US)

(51) Int . Cl .
H04L 29/06 (2006.01)
G06F 1730 (2006.01)
H04L 9/32 (2006.01)
H04L 9/30 (2006.01)
H04L 9/14 (2006.01)
H04L 12/741 (2006.01)
H04L 29/12 (2006.01)
H04L 12/26 (2006.01)

(52) U.S. CI .
CPC H04L 63/0485 (2013.01) ; G06F 17/308 76

(2013.01) ; H04L 9/3213 (2013.01) ; H04L
43/106 (2013.01) ; H04L 9/14 (2013.01) ;
H04L 45/745 (2013.01) ; H04L 61/2007

(2013.01) ; H04L 9/30 (2013.01)

(21) Appl . No .: 15 / 974,305

(22) Filed : May 8 , 2018

Prior Publication Data

(15) Correction of US 2018/0255036 A1 Sep. 6 , 2018
See (60) Related U.S. Application Data . (57) ABSTRACT

(65) US 2018/0255036 A1 Sep. 6 , 2018

Related U.S. Application Data
(63) Continuation - in - part of application No. 15 / 656,454 ,

filed on Jul . 21 , 2017 , now Pat . No. 9,979,550 .
(60) Provisional application No. 62 / 503,808 , filed on May

9 , 2017 , provisional application No. 62 / 524,705 , filed
on Jun . 26 , 2017 , provisional application No. 62/462 ,
224 , filed on Feb. 22 , 2017 .

A node system implements a method for node relay com
munication . A description of a flow entry including an
address in a flow and a private key is received . The flow
entry and the private key are stored in a database indexed to
a flow ID . A packet comprising an authentication code and
packet data including packet sequence information and a
Flow ID is received . A look up in the database of a flow entry
corresponding to the Flow ID of the packet is performed .
The packet is either ignored or forwarded to the address in
the flow , depending on the result of the look - up .

Relays

ri
Dedicated Servers

ra

S2 S

13

104

102

101

103

Patent Application Publication May 7 , 2020 Sheet 1 of 15 US 2020/0145393 A9

Relays

2 ?
Dedicated Servers

S2 S ,

104

102

101

103

Figure 1

Patent Application Publication May 7 , 2020 Sheet 2 of 15 US 2020/0145393 A9

Relays

62
Dedicated Servers

OT
ri

201

102

101

103

Figure 2

Patent Application Publication May 7 , 2020 Sheet 3 of 15 US 2020/0145393 A9

Relays

Go Dedicated Servers
TA

? ... O 51

ri
13

102
101

302

301
103

Figure 3

Patent Application Publication May 7 , 2020 Sheet 4 of 15 US 2020/0145393 A9

Relays

12
Dedicated Servers

TA

? ... OG S

102

101

401

402

103

Figure 4

Patent Application Publication May 7 , 2020 Sheet 5 of 15 US 2020/0145393 A9

Route to Server

Nade 0
(Client)

Node 2
(Relay)

Node 2
(Relay)

Node n - 1
(Server)

Flow tokens

Figure 5A

Flow token

Token Data

Flow D

Flow Version
Expiration timestamp

Previous Node IP Next Node ip
address + port address + port

Flow private key

Figure 5B

Patent Application Publication May 7 , 2020 Sheet 6 of 15 US 2020/0145393 A9

Relays
604

?
Dedicated Servers

14

1 Ol 51
605

603

102
101

602

103

601

Figure 6

Patent Application Publication May 7 , 2020 Sheet 7 of 15 US 2020/0145393 A9

Relays
702

703

Dedicated Servers

Ol 51
13

701

102
101

704

705

103

Figure 7

Patent Application Publication May 7 , 2020 Sheet 8 of 15 US 2020/0145393 A9

Key Value

{ Flow ID , Flow Version) Entry

Figure 8A

Entry Data

Token Data Runtime Data

Expiration timestamp Timestamp of last packet received (previous)
Timestamp of last packet received (next) Previous Node IP Next Node IP

address tport address it port
Flow private key Previous node replay protection

Next node replay protection

Figure 8B

Patent Application Publication May 7 , 2020 Sheet 9 of 15 US 2020/0145393 A9

Key Value

FlowID Entry

Figure 9A

Entry Data

Token Data Runtime Data

Expiration timestamp Timestamp of last packet received

Previous Node address + port Packet sequence number
Flow private key Replay protection

Flow Version

Figure 9B

Patent Application Publication May 7 , 2020 Sheet 10 of 15 US 2020/0145393 A9

Relays

?
Dedicated Servers

S ; Ol S1
1003

102
101

1002
1001

103

Figure 10

Patent Application Publication May 7 , 2020 Sheet 11 of 15 US 2020/0145393 A9

Relays

r2
Dedicated Servers

TA

Si ..OT S1
mi

1003

102
101

1101

1102

103

Figure 11

Patent Application Publication May 7 , 2020 Sheet 12 of 15 US 2020/0145393 A9

Relays

2
Dedicated Servers

ra

000
13

1003

102

101

103

1201

Figure 12

Patent Application Publication May 7 , 2020 Sheet 13 of 15 US 2020/0145393 A9

Relays

?
Dedicated Servers

ct . S ; Ol S1
1301

102

101

103

1302

Figure 13

Patent Application Publication May 7 , 2020 Sheet 14 of 15 US 2020/0145393 A9

Session Initiation Token

Public (Signed)
Information

Private
(Encrypted)
Information
Dedicated Server IP
address and port
Session Sequence
Number
Session ID
Bandwidth up limit
Bandwidth down
limit

IP address and
port of Relay
Expiry
timestamp

.

Session Token
Session

Continuation
Token
Private

(Encrypted)
Information

Session
Sequence
Number
Session ID

Figure 14

Patent Application Publication May 7 , 2020 Sheet 15 of 15 US 2020/0145393 A9

1500

1525
1 1511

1/0 w

1

1513
User

Interface 1

1501 1 PROCESSOR PIS
1 1503 1515 PROGRAM 1

CLK 1
*

1517
w 1509 t

CACHE 1

MEMORY 1505 1519 MASS
STORE

1503 PROGRAM

1507 1521 DATA PACKET DISPLAY

1508 DATABASE NETWORK
INTERFACE

1523

1510 KEY DATA

1527 1550

NETWORK

FIG . 15

US 2020/0145393 A9 May 7 , 2020

METHODS OF BIDIRECTIONAL PACKET
EXCHANGE OVER NODAL PATHWAYS

[0001] This application claims the priority benefit of U.S.
Provisional Patent Application No. 62 / 503,808 filed May 9 ,
2017 , the entire contents of which are incorporated by
reference in their entirety .
[0002] This application also claims the priority benefit of
U.S. Provisional Patent Application No. 62 / 524,705 filed
Jun . 26 , 2017 , the entire contents of which are incorporated
herein by reference .
[0003] This application is a continuation - in - part of U.S.
patent application Ser . No. 15 / 656,454 to Glenn Alexander
Fiedler , filed Jul . 21 , 2017 , the entire contents of which are
incorporated herein by reference . U.S. patent application
No. 15 / 656,454 claims the priority benefit of U.S. Provi
sional Patent Application No. 62 / 462,224 filed Feb. 22 ,
2017 , the entire contents of which are incorporated herein by
reference .

[0013] FIG . 2 illustrates relays reporting information to
the master server .
[0014] FIG . 3 illustrates a client requesting to connect to
a dedicated server .
[0015] FIG . 4 illustrates a master server returning an array
of flow routes to the client .
[0016] FIG . 5A illustrates a flow route .
[0017] FIG . 5B illustrates a flow token .
[0018] FIG . 6 illustrates a client sending a request packet
to a dedicated server .
[0019] FIG . 7 illustrates a response packet sent to a client
in response to a request packet received from that client .
[0020] FIG . 8A illustrates a relay's cache .
[0021] FIG . 8B illustrates the entry data in a relay's cache .
[0022] FIG . 9A illustrates a server's cache .
[0023] FIG . 9B illustrates the token data in a server's
cache .
[0024] FIG . 10 illustrates a client requesting an updated
flow route .
[0025] FIG . 11 illustrates a master server sending an
updated flow route to a client .
[0026] FIG . 12 illustrates a request packet for the updated
route passing from client to server while the existing route
is maintained for payload packets .
[0027] FIG . 13 illustrates a response packet being sent to
a client in response to an updated request packet being
received from that client .
[0028] FIG . 14 illustrates a Session Token according to
aspects of the present disclosure .
[0029] FIG . 15 illustrates a system that may be used to
implement a node relay communication method according to
one aspect of the present disclosure .

FIELD OF THE DISCLOSURE

[0004] The field of the disclosure is network communica
tions .

BACKGROUND

DETAILED DESCRIPTION

[0005] The background description includes information
that may be useful in understanding the present invention . It
is not an admission that any of the information provided in
this application is prior art or relevant to the presently
claimed invention , or that any publication specifically or
implicitly referenced is prior art .
[0006] Real - time multiplayer gaming in general operates
by sending unreliable - unordered packets over the Internet ,
for example , as UDP packets , in a bidirectional flow pattern
where packets sent in both directions , from client to server
and server to client , at some rate like 10 , 20 , 30 or 60 packets
per - second .
[0007] Packets exchanged between the client and server
are extremely sensitive to latency , jitter , and / or packet loss .
Collectively known as quality of service or “ QoS . ”
[0008] In general , clients connect to dedicated servers by
sending and receiving packets directly to the server's IP
address , but this leaves dedicated servers vulnerable to
DDoS attack because the server's IP address is exposed .
[0009] Also , when packets are sent over the public inter
net , the route that packets take between the client and server
is not under the direct control of the client or server . Packets
make take a route that is cheapest , rather than a route that
optimizes Qos .
[0010) Similarly , while packets are exchanged over the
internet , if the route that packets take between a client and
server degrades , or a better route becomes available , the
client or server have no way to adjust the route that packets
take between the client and the server .
[0011] Thus , there exists a need for improved methods of
connecting clients with dedicated servers that does not
expose the IP address of the server and provides some
degree of control over the route taken by packets between
the client and server .

[0030] The following discussion provides example
embodiments of the inventive subject matter . Although each
embodiment represents a single combination of inventive
elements , the inventive subject matter is considered to
include all possible combinations of the disclosed elements .
Thus if one embodiment comprises elements A , B , and C ,
and a second embodiment comprises elements B and D , then
the inventive subject matter is also considered to include
other remaining combinations of A , B , C , or D , even if not
explicitly disclosed .
[0031] As used in the description in this application and
throughout the claims that follow , the meaning of “ a , " " an , "
and “ the ” includes plural reference unless the context clearly
dictates otherwise . Also , as used in the description in this
application , the meaning of “ in ” includes “ in ” and “ on ”
unless the context clearly dictates otherwise .
[0032] Also , as used in this application , and unless the
context dictates otherwise , the term " coupled to ” is intended
to include both direct coupling (in which two elements that
are coupled to each other contact each other) and indirect
coupling (in which at least one additional element is located
between the two elements) . Therefore , the terms " coupled
to " and " coupled with ” are used synonymously .
[0033] In some embodiments , the numbers expressing
quantities of ingredients , properties such as concentration ,
reaction conditions , and so forth , used to describe and claim
certain embodiments of the invention are to be understood as
being modified in some instances by the term “ about . ”
Accordingly , in some embodiments , the numerical param
eters set forth in the written description and attached claims

BRIEF DESCRIPTION OF THE DRAWING

[0012] FIG . 1 illustrates dedicated servers reporting infor
mation to the matchmaker .

US 2020/0145393 A9 May 7 , 2020
2

are approximations that can vary depending upon the desired
properties sought to be obtained by a particular embodiment .
In some embodiments , the numerical parameters should be
construed in light of the number of reported significant digits
and by applying ordinary rounding techniques . Notwith
standing that the numerical ranges and parameters setting
forth the broad scope of some embodiments of the invention
are approximations , the numerical values set forth in the
specific examples are reported as precisely as practicable .
The numerical values presented in some embodiments of the
invention may contain certain errors necessarily resulting
from the standard deviation found in their respective testing
measurements . Moreover , and unless the context dictates the
contrary , all ranges set forth in this application should be
interpreted as being inclusive of their endpoints and open
ended ranges should be interpreted to include only commer
cially practical values . Similarly , all lists of values should be
considered as inclusive of intermediate values unless the
context indicates the contrary .
[0034] It should be noted that any language directed to a
computer should be read to include any suitable combination
of computing devices , including servers , interfaces , systems ,
databases , agents , peers , Engines , controllers , or other types
of computing devices operating individually or collectively .
One should appreciate the computing devices comprise a
processor configured to execute software instructions stored
on a tangible , non - transitory computer readable storage
medium (e.g. , hard drive , solid state drive , RAM , flash ,
ROM , etc.) . The software instructions preferably configure
the computing device to provide the roles , responsibilities ,
or other functionality as discussed below with respect to the
disclosed apparatus . In especially preferred embodiments ,
the various servers , systems , databases , or interfaces
exchange data using standardized protocols or algorithms ,
possibly based on HTTP , HTTPS , AES , public - private key
exchanges , web service APIs , known financial transaction
protocols , or other electronic information exchanging meth
ods . Data exchanges preferably are conducted over a packet
switched network , the Internet , LAN , WAN , VPN , or other
type of packet switched network . The following description
includes information that may be useful in understanding the
present invention . It is not an admission that any of the
information provided in this application is prior art or
relevant to the presently claimed invention , or that any
publication specifically or implicitly referenced is prior art .
[0035] The inventive subject matter encompasses systems
and methods of connecting two computers via a flow route
such that neither of the two computers has any way of
knowing the IP address of the other . It is contemplated that
the inventive subject matter can be implemented in the area
of online gaming as a protective measure to ensure that no
client (e.g. , a gamer) can know the IP address of the
dedicated server (e.g. , the game hosted server) .
[0036] To ensure clients cannot know the identity or
location (e.g. , IP address and port) of a server , at least one
relay can be implemented as a go - between to facilitate packet exchange . By having a relay positioned in between
the client and the server , the client only ever needs to know
that it must send packets to the relay , and the relay in turn
knows that it receives packets from the client and sends
packets to the server . The server , in the same manner , only
knows that it receives packets from the relay and in turn
sends packets to the relay .

[0037] It can be advantageous to include additional relays .
In systems that include more than one relay , relays , the
client , and the server can all be called “ nodes . ” The ultimate
goal is to enable packet exchange between a client and a
server via a flow route in such a way that the client never
knows the IP address and port of the server while also
optimizing the route according to some metric .
[0038] More specifically , embodiments of the inventive
subject matter provide optimized routes between clients and
dedicated servers , by pinning the route to “ relays ” in
between over the public internet . Routes can be optimized
to , for example , reduce latency , reduce packet loss , or
improve any other QoS (quality of service) metric as
desired . As long as multiple relay routes between client and
server exist and each relay route has different characteristics ,
the best route can be selected . This is analogous to route
finding software such as Google maps , Apple maps , Waze ,
etc. in that the desired end result is to select and establish the
fastest route to a destination .
[0039] Embodiments of the inventive subject matter also
provide DDoS protection by hiding the IP address of a
dedicated server from the clients that are in communication
with it . This makes it impossible to attack the dedicated
server in a traditional DDoS attack . Embodiments also
provide the ability to dynamically change routes while a
client continues to exchange packets with a dedicated server .
For example , if a better route becomes available , or if the
current route has a relay along the way that is under DDoS
attack , then by dynamically changing the route without
ceasing packet exchange between the client and the server
over the existing route , a client's session (e.g. , gaming
session) can continue uninterrupted on a dedicated server ,
even though it has dynamically adjusted its route .
[0040] Embodiments of the inventive subject matter also
improve security . Malicious 3rd parties are unable to hijack
relays of the inventive subject matter to send packets across
them . The inventive subject matter makes it trivial for a
system to reject packets that do not originate from a valid
client or server .
[0041] FIGS . 1 and 2 show several background polling
operations . Periodically (e.g. , at regular or irregular inter
vals) , the dedicated servers (e.g. , a dedicated game server
that is headless version of the game running in a data center
such as a private cloud (e.g. , a data center , or “ bare metal ”) ,
or a public cloud such as Google Compute , Amazon EC2 , or
Microsoft Azure) report their IP addresses , ports , and public
keys to the matchmaker . FIG . 1 shows the dedicated servers
Si S2 s ; reporting 104 their IP addresses and ports along
with their public keys back to the matchmaker 101. Report
ing occurs periodically (e.g. , at regular or irregular inter
vals) . For example , each dedicated server si S2
report 104 its IP address and port to the matchmaker 101
once every 1-5 minutes . It is also contemplated that dedi
cated servers Si S2 · s ; can report to the matchmaker 101
at other intervals including every 1-30 seconds , 30-59 sec
onds , or even multiple times per second (e.g. , 2-10 Hz) .
Periodic reporting 104 enables an optimized microservices
architecture based around a queue to handle a large number
of dedicated servers .
[0042] The matchmaker 101 maintains this list , and
updates it as necessary (e.g. , if a dedicated server si S2 ...
s ; ceases to report , the matchmaker 101 takes that dedicated
server out of its maintained list , or if a new dedicated server
reports with a new IP address and port , the matchmaker adds

S ; can

US 2020/0145393 A9 May 7 , 2020
3

rate . Packets sent over the network in embodiments of the
inventive subject matter are prefixed with one byte identi
fying the type of packet . There are four packet types : 0 , 1 ,
2 , and 3. Packet type 0 indicates a request packet . Packet
type 0 has the form [0] [flow token 0 , flow token 1 , flow
token n - 1] and corresponds to the flow route data structure
prefixed by a zero byte . Packet type 1 indicates a response
packet . Packet type 2 indicates a payload packet that passes
from client to server . Packet type 3 indicates a payload
packet that passes from server to client . Packet sequence
numbers only apply to response packets and payload pack
ets . Packet types 1 has the form : [1] [packet sequence] [Flow
ID] [flow version] [hmac] , while packet types 2 and 3 have
the form : [1,2 or 3] [packet sequence] (Flow ID] [flow ver
sion] [hmac] (payload data) .

Client States

[0050] To begin , a client can exist in several states :

2
1

FLOW_CLIENT_STATE_INVALID_FLOW_ROUTE
FLOW_CLIENT STATE_TIMED_OUT
FLOW_CLIENT_STATE_STOPPED
FLOW_CLIENT_STATE_REQUESTED
FLOW_CLIENT_STATE_ESTABLISHED

that information to its database) . Data per - dedicated server
contains at minimum , the IP address , port , and public key for
each dedicated server , but may also include other criteria
useful to determine which dedicated servers best satisfy a
client's request (e.g. , game version number , number of
players currently connected to the server , total players
allowed to connect to the server , region the server is located
in , game mode the server is currently running , for example
“ CTF ” or “ Deathmatch , ” the skill level of players currently
connected to the server , etc.) .
[0043] The matchmaker 101 can be operated by , for
example , a video game company . The matchmaker 101 has
some authentication that allows it to communicate with the
master server 102 , which is otherwise not publicly acces
sible . The role of the matchmaker 101 is to take a client's
103 request to play the game , and find the set of dedicated
server IP addresses and ports for the client to connect to that
satisfy that client's request . This could be for example ,
servers running the same game mode the client requested or
servers in the same region as the client 103 , with a the same
game version number and a set of players of similar skill to
the client player , or any other criteria .
[0044] For purposes of this application , a “ flow route ” is
a nodal pathway linking a client to a server . A " flow "
describes the packets that are exchanged over a “ flow route ”
once it is established .
[0045] FIG . 2 shows the relays r1 , r2 · r ; reporting their
IP addresses and ports along with their public keys to the
master server . The master server performs 102 the same
functions as the matchmaker 101 in this capacity : it stores
the IP addresses and ports along with the public keys for the
relays r? , and it updates this information as needed . As with
the matchmaker 101 , reporting 201 occurs periodically (e.g. ,
at regular or irregular intervals) . For example , each relay r? ,
r2 ... r ; can report 201 its IP address and port to the master
server once every 1-5 minutes . It is also contemplated that
relays can report 201 to the master server 102 at other
intervals including every 1-30 seconds , 30-59 seconds , or
even multiple times per second (e.g. , 2-10 Hz) . Periodic
reporting 201 enables an optimized microservices architec
ture based around a queue to handle a large number of
relays .
[0046] It is additionally contemplated that relays r? , r2 ..
. r ; can authenticate with a master server 102 to ensure
unauthorized relays are not able to register themselves with
the master server 102 .
[0047] At minimum , data per - relay includes the IP
address + port and public key of that relay , but may also
contain additional information that can be used in the
creation of flow routes that are optimized based on different
criteria (e.g. , longitude / latitude of each relay , nearby relays ,
current measured round trip times to nearby relays , etc.) .
[0048] The master server's 102 role is to generate flow
routes between two endpoints (e.g. , a pathway from a client
to a dedicated server via a series of relays) . Nodal pathways
can be identified algorithmically in an effort to identify a
flow route that is optimized based on one or more factors
(e.g. , to minimize latency , minimize packet loss , minimize
jitter , or any combination thereof) . The master server 102 is
available for the matchmaker 101 to query using , for
example , a REST API .
[0049] Before discussing the process of establishing a
flow , it is important to introduce the different packet types
that embodiments of the inventive subject matter incorpo

[0051] Clients begin in the “ stopped ” state (state 0) , and
when a user needs to establish a flow , the user passes the
flow route to the client . The client then attempts to decrypt
the first flow token in the flow route with its private key , and
the public key of the master server (which it knows) . If the
flow token fails to decrypt , has expired , or is invalid for any
reason , the client goes to invalid flow route state (state - 2) .
Otherwise , the client goes into the “ requesting ” state (state
1) . While in this state , the client sends request packets at
some frequency (e.g. , 10 Hz) to the first relay . If while in the
“ requesting ” state , the client receives a “ response packet ”
from the first relay , the client transitions to the “ established ”
state (state 2) . While in the " established state ” the client
stops sending “ request packets . ” If the client while in
“ requesting ” or “ established ” states doesn't receive a packet
from the first relay for some amount of time (e.g. , 1-10
seconds) , it times out and goes to “ timed out ” state .
[0052] If the client is in the “ requested ” state or the
" established ” state , a user can send payload packets from the
client to the server and potentially receive any payload
packets sent from the server to the client . This allows the
client to optimistically send payload packets before the flow
has been confirmed as fully established . In addition , when
the client sends payload packets toward the server , for each
packet it generates a “ flow header " with the packet sequence
number , the Flow ID , Flow version , and HMAC (e.g. , signed
with a flow private key from the flow token) , and it then
passes that packet to the first relay . Then , the client increases
the packet sequence number , which starts at 0 and increases
by 1 with each packet sent toward the server . The flow
private key is a stand - alone symmetric key used to secure the
flow against unauthorized packets . The flow private key may
be randomly generated for each flow granted by the master
server 102 .
[0053] When the client receives payload packets from the
server , it compares their packet sequence number against the
replay protection buffer . Packets are discarded if they have
already been received or are too old . This avoids a class of

US 2020/0145393 A9 May 7 , 2020
4

protocol level attacks called “ replay ” attacks , where valid
packets already exchanged across the system are replayed by
an attacker in an attempt to break the protocol . Many of
these concepts are described more fully below .

Relay Behaviors
[0054] Relays across embodiments can have some com
mon behaviors . For example , when packets are received
over the network by a relay , if the first byte in the packet is
0 , indicating a “ request packet , ” the relay in some embodi
ments will take several actions : (1) the relay will decrypt the
first flow token in the packet (e.g. , the token corresponding
to that relay in the flow route) using the relay private key and
the master server public key ; (2) if the flow token fails to
decrypt , the relay ignores the packet ; (3) the relay tests if the
flow token has expired , and ignores the packet if the token
is expired ; (4) the relay searches for a flow entry corre
sponding to the Flow ID and Flow version (e.g. , the { Flow
ID , Flow version } tuple) in the flow token ; (5) if the entry
already exists , the relay updates the timestamp the last
packet was received from the previous node to the current
timestamp ; (6) if the entry does not already exist in the
relay's cache , the relay creates a new entry for this flow ,
indexed by Flow ID and Flow version (e.g. , the { Flow ID ,
Flow version) tuple) with the timestamp of packets last
received from previous and current nodes set to the current
timestamp , (6a) if the previous address in the flow token is
marked as “ none ” , then the previous address and port in the
new flow entry is set to the IP address + port that the request
packet was sent from , allowing clients without fixed public
IP address and port (eg . clients behind NAT) to participate
in flow routes ; (7) in both cases 5 and 6 , the relay takes the
request packet and removes both the prefix byte (which is 0
for this packet type) and the first flow token ; (8) the relay
then adds a new prefix byte of 0 in front of the remainder of
the request packet , and passes this modified packet to the
next node in the flow route (e.g. , the next relay , or if the
server is next , the server) .
[0055] The relay private key referred to above may be
randomly generated for each relay . Each relay private key
has a corresponding public key . The relay private key allows
the master server 102 to communicate flow tokens to that
relay securely , knowing only the public key of that relay . In
some implementations nodes at the ends of each flow , e.g. ,
clients and servers , may also have their own randomly
generated private keys . The term “ node private key " is
sometimes used herein to refer generally to private keys for
relays and other types of nodes , such as clients and servers .
[0056] If the packet first byte is 1 , indicating a “ response
packet , ” in some embodiments the relay will take several
actions : (1) it looks up the flow entry corresponding to the
Flow ID and Flow version (e.g. , the { Flow ID , Flow
version } tuple) in the packet ; (2) if no flow entry exists , the
relay ignores the packet ; (3) the relay checks that the HMAC
of the packet indicates that the packet data (Sequence
number , Flow ID , Flow version) was signed with the flow
private key (which was sent to the relay in the flow token ,
in the request packet) ; (4) if the signature does not match , the
relay ignores the packet ; (5) the relay tests the packet
sequence number against the replay protection buffer for
packets received from the next node , and if the packet has
already been received , or is old (e.g. , the packet is outside of
replay protection buffer) , the relay ignores the packet ; (6)
otherwise , the packet is valid , and the relay forwards the

packet , without modification , to the previous node (e.g. , the
previous relay or the client if the relay is the first relay in the
flow route) ; (7) updates the timestamp of the last packet
received from the next node in the entry to the current
timestamp .
[0057] If the packet first byte is 2 , indicating a “ client to
server packet , ” in some embodiments the relay will take
several actions : (1) the relay looks up a flow entry corre
sponding to the Flow ID and Flow version (e.g. , the { Flow
ID , Flow version) tuple) in the packet ; (2) if no flow entry
exists , the relay ignores the packet ; (3) the relay checks that
the HMAC of the packet indicates that the packet data
(Sequence number , Flow ID , Flow version) was signed with
the flow private key (which was sent to the relay in the flow
token , in the request packet) ; (4) if the signature does not
match , the relay ignores the packet ; (5) test the packet
sequence number against the replay protection buffer for
packets received from previous node , and if the packet has
already been received or is old (e.g. , outside of replay
protection buffer) , the relay ignores the packet ; (6) other
wise , the packet is valid , and the relay forwards the packet ,
without modification , to the next node (e.g. , the next relay ,
or the server , if this relay is the last relay before the server) ;
and (7) updates the timestamp of the last packet received
from the previous node to the current timestamp .
[0058] If the packet first byte is 3 , indicating a “ server to
client packet , ” in some embodiments the relay will take
several actions : (1) the relay looks up a flow entry corre
sponding to the Flow ID and Flow version (e.g. , the { Flow
ID , Flow version } tuple) in the packet ; (2) if no flow entry
exists , the relay ignores the packet ; (3) the relay checks that
the HMAC of the packet indicates that the packet data
(Sequence number , Flow ID , Flow version) was signed with
the flow private key (which was sent to the relay in the flow
token , in the request packet) ; (4) if the signature does not
match , the relay ignores the packet ; (5) the relay tests the
packet sequence number against the replay protection buffer
for packets from the next node , and if the packet has already
been received , or is old (e.g. , outside of replay protection
buffer) , ignores the packet ; (6) otherwise , the packet is valid ,
and the relay forwards the packet , without modification , to
the previous node in the flow route (which is the previous
relay , or the client , for the first relay node in the flow) ; and
(7) updates the timestamp of the last packet received from
the next node to the current timestamp .
[0059] If at any time an entry in the relay cache has not
received packets from the previous node for some period of
time (for example , 5 seconds) , or , has not received packets
from the next node for some period of time (for example , 5
seconds) , that flow entry indexed by the { Flow ID , Flow
version } tuple times out , and is removed from the relay
cache . At this point the relay ceases to forward packets for
the Flow IDentified by { Flow ID , Flow version } in either
direction .

Server Behaviors

[0060] Like relays , servers across embodiments can have
common behaviors . Servers listen for packets and creates
entries for client sessions . Entries are indexed by Flow ID so
the server can “ update ” a client session when it comes in
with a more recent Flow version , (e.g. , an updated flow route
has been established for a client) . This allows for seamless
transition from one flow route to another .

US 2020/0145393 A9 May 7 , 2020
5

[0061] If the packet first byte is 0 , it is a “ request packet . ”
Servers in some embodiments will take the following
actions : (1) the server will decrypt the first flow token in the
packet using the server private key and the public key of the
master server ; (2) if the flow token fails to decrypt , the server
ignores the packet ; (3) if the flow token has expired , the
server ignores the packet ; (4) otherwise , the server looks up
an entry with the Flow ID in the token ; (5) if an entry already
exists , and the flow version number is the same , the server
updates the timestamp that the last packet was received in
that entry to the current timestamp ; (6) if an entry already
exists , but the flow version number is greater in the request
packet than the entry value , the server copies across the new
flow data (e.g. , as if it were a new client session) and updates
the timestamp that the last packet was received in that entry
to the current timestamp ; (7) otherwise , the server adds a
new flow entry , indexed by Flow ID , with the timestamp the
last packet was received in that entry set to the current
timestamp ; (8) in all cases above (5 , 6 , and 7) , the server
replies with a “ response packet ” to the previous relay with
the packet sequence number for this entry with the high bit
set to 1 (e.g. , to avoid repetition of the same nonce value
between client to server packets and server to client pack
ets) ; and (9) after the server sends the response packet to the
previous node , the packet sequence number for this flow
entry is incremented .
[0062] If the packet first byte is 2 , it is a " client to server
packet . ” Servers in some embodiments will take the follow
ing actions : (1) the server looks up the corresponding flow
entry for the Flow ID in the packet ; (2) if no flow entry
exists , the server ignores the packet ; (3) the server checks
the HMAC in the packet to make sure the signature check passes according to the flow private key corresponding to
this flow entry , and if it doesn't , the server ignores the
packet ; (4) the server delivers the packet payload to the user .
This allows the client to send data across the flow route to
the server , as if it were directly connected to the server .
[0063] A user can send payload packets from the server to
the client by specifying the Flow ID that packets should be
sent to . When the server sends payload packets to a client ,
the server looks up the entry in its cache for that Flow ID .
The server then generates a “ flow header ” with the packet
sequence number from that flow entry , the Flow ID , Flow
version , and HMAC (e.g. , signed with a flow private key
from the flow token) , and passes that packet to the previous
relay in the flow route for that flow entry . As with response
packets , the server sets the high bit of the packet sequence
number to 1 , to ensure that packet sequence numbers
(nonce) values are unique across client to server and server
to client packets for a particular flow . The server then
increases the packet sequence number for that flow entry ,
which starts at 0 and increases by 1 with each packet sent to
the client in that flow .
[0064] If at any time a flow entry in the server's cache has
not received a packet for some amount of time (for example ,
5 seconds) , that entry indexed by Flow ID times out and is
removed from the cache . At this point the server stops being
able to receive packets sent from the client corresponding to
that Flow ID , and being able to send packets to the client
corresponding to that Flow ID .
[0065] The following discussion describes how these cli
ent , server , and relay behaviors operate in the context of
establishing a flow between a server and client . Although
some of the descriptions below may include different details ,

it is contemplated that any of the behaviors described above
can be implemented where necessary in the processes or
steps described below .
[0066] FIG . 3 shows the first steps in establishing a flow
route . In the context of a game , for example , the matchmaker
101 is a server owned by a game company that keeps track
of all of the dedicated servers S , S2 · · S ; that are operating
to host the game . The client's request to the matchmaker
includes a set of parameters (e.g. , game type , number of
players , game map , etc.) along with the client's public key ,
as shown in 301. The client's request 301 to the matchmaker
101 can be conducted over , for example , a REST API . This
request 301 includes passing up to the matchmaker the
client's public key .
[0067] Because the matchmaker 101 knows the client's
desired server parameters , it can identify servers s? S2 ... S ;
that satisfies the client's request 101. With a set of dedicated
servers Si S2 • · S ; identified , the matchmaker 101 can create
a route request and send it to the master server 102 , as shown
in 302 .
[0068] A route request 302 includes the public key of the
client , as well as the public keys and IP addresses and ports
of the dedicated servers S S2 S ; that satisfy the client's
initial request 301 (keeping in mind that a plurality of
dedicated server is not necessary in a route request) . It is not
necessary to know the client's IP address in this process .
Instead , the master server 102 needs to know the client's
public key at a minimum , because the client's address in the
flow route is set to “ none ” and can be determined by the first
relay r? as the address which the request packet was sent
from .
[0069] The master server 102 receives the route requests
302 from the matchmaker 101 (e.g. , via REST API) , and the
master server 102 identifies the best routes for each of the
dedicated servers S1 S2 • S ; identified by the matchmaker 101 according to some criteria (for example , minimum
latency , packet loss , jitter , etc.) . The master server 102 then
responds to the matchmaker 101 with an array of routes from
the client to servers 401 , each route corresponding one
server in the list of dedicated servers in the route request , as
shown in FIG . 4. In alternative embodiments of the present
invention the Master server 102 may respond to the Match
maker's request by sending a Session ID and an array of
Session Tokens to the Matchmaker 101. Each Session Token
corresponds to an identified Dedicated Server , and the
Session ID identifies the Client's session . In some embodi
ments , the Session ID is number (e.g. , a 64 - bit number , a
128 - bit number , etc.) . While not a requirement , it is prefer
able that each Session ID is unique .
[0070] Each flow route has flow tokens . The first flow
token corresponds to the client 103. It is encrypted with the
client's public key and the master server's private key .
Tokens coming after the client token but before the server
token (the last token) correspond to relays , and are each
encrypted with master server's private key and the public
key of the corresponding relay . The last flow token in each
flow route is encrypted with server's public key and the
master server's private key . The encrypted flow tokens are
then transmitted 402 to the client 103 by the matchmaker
101 .
[0071] By having the master server send the array of
routes to server to the matchmaker instead of directly to the
client , the client never gains access to information about the
master server (e.g. , the IP address) . This helps to protect the

US 2020/0145393 A9 May 7 , 2020
6

master server (which can be owned / operated by , for
example , a separate entity than the entity that owns / operates
the matchmaker) from attack .
[0072] In alternative embodiments Session Tokens are
used to maintain a secure connection . The contents of a
Session Token are seen in FIG . 14. Session Tokens include
two sub - tokens : a Session Initiation Token and a Session
Continuation Token . The Session Initiation Token includes
both private and public information . Private information is
encrypted asymmetrically , such that it can be created only by
the Master Server , and read only by the corresponding
Relay . Public information is readily readable , but it is signed
such that its authenticity can be verified by a recipient . The
private information in the Session Initiation Token includes ,
for example , a Dedicated Server IP address and port , a
Session Sequence Number , the Session ID , a bandwidth up
limit , and a bandwidth down limit . The public information
in the Session Continuation Token includes , for example , an
IP address of a Relay and an expiry timestamp . The Session
Continuation Token has private information including a
Session Sequence Number and a Session ID .
[0073] FIG . 5A shows an embodiment of a flow route .
Within each flow route are a series of flow tokens , each flow
token corresponding to a particular node . Node 0 always
corresponds to the client , and the last node (e.g. , node n - 1)
always corresponds to the dedicated server . All nodes in
between (e.g. , nodes 1 through n - 2) correspond to relays ,
and are ordered in a sequence indicating a desired flow
route . FIG . 5B shows an embodiment of a flow token , which
includes : Flow ID , Flow version , expiration timestamp ,
previous node IP address + port , next node IP address + port ,
and a flow private key . In some embodiments , the previous
node IP + address + port in the flow token , may be substituted
with a “ none ” entry , indicating that the relay corresponding
to that token should use the address that the request packet
was sent from as the previous IP address + port for that flow
entry .
[0074] FIGS . 6 & 7 illustrate how a flow can become
established between a client 103 and a server s ; via any
number of relays r? , r2 ... P? . Although the embodiment
shown in the figures incorporate three relays , it is contem
plated that any number of relays can be implemented using
embodiments of the inventive subject matter .
[0075] FIGS . 6 & 7 demonstrate the actions undertaken
for a single flow route . In embodiments where the array of
routes to server S ; includes more than one route , the client
iterates through each flow route until a flow is established .
For example , if the client 103 and server s ; are unable to
establish a flow using the first flow route in some amount of
time (for example , 1 second) , the client 103 moves on to the
second flow route to attempt to establish the flow that the
second flow route contains , and does the same for the third
route , etc. In some embodiments , the client 103 attempts to
establish a flow using all of the flow routes simultaneously ,
and accepts the first flow that is established . In other
embodiments , a client 103 can attempt to establish a flow
using subgroups of routes to server Similarly in alternative
embodiments using Session Tokens the Client 103 receives
the session tokens from the Matchmaker 101 and can iterate
through the set of Session Tokens , attempting to use each
Session Token to establish a connection with a Dedicated
Server via one or more relays . The client ceases to iterate
through Session Tokens after it successfully establishes a
connection with a Dedicated Server via one or more Relays .

[0076] Just like each node (e.g. , client , relay , or server) of
the inventive subject matter has a public key and private key
pair , the master server 102 also has a public key and private
key pair . Each time a flow route is created , each flow token
within that route is encrypted using the master server's
private key and the public key of the corresponding node , be
that node a client , a relay or a server) . Thus , each flow token
can only be generated by the master server and cannot be
modified by any third party , and can only be decrypted by
the particular node it was generated for .
[0077] Thus , 601 shows that the client 103 receives a flow
route and decrypts the first token , replacing the first token
with a request packet type indicator , a prefix of a single “ 0 ”
byte , creating a request packet . For context , FIG . 6 shows
that there are “ i ” relays . This notation is used to indicate that ,
in the context of FIG . 6 , i is any number between 4 and an
arbitrary high number that is limited only by a number of
relays that can reasonably be deployed in the real world
(e.g. , as physical or virtual devices) . It is thus contemplated
that there can be any number of relays between 1 and that
arbitrary high number .
[0078] The client 103 is able to decrypt the first flow token
in the flow route because it was encrypted using the client's
public key and the master server's private key . With the first
token (e.g. , the token corresponding to node 0 as illustrated
in FIG . 5A) replaced by a packet type indicator (e.g. , 0) , the
flow route is converted into a request packet . The request
packet thus includes one fewer tokens , and the first token in
the request packet now corr orresponds to node 1 , which is the
first relay ry in the flow route . The Client then sends a series
of this request packet to the first relay r , indicated in the flow
route (and whose address is contained in the client's flow
token as the next node IP address + port) with the ultimate
goal of establishing a flow . In some embodiments , the series
of request packets are sent at some frequency (e.g. , 10 Hz)
for a period of time (e.g. , 5 seconds) , while in other
embodiments , a quantity of request packets is sent (e.g. ,
100) irrespective of time . This applies any time a node sends
“ a series ” of packets .
[0079] In embodiments that Utilize a Session token con
nections are established in phases . Once the Client has
begun to send packets to a Relay (e.g. , the Relay indicated
in the Session Token) , the Client goes through two packet
sending phases . In a first packet - sending phase , the Client
sends packets to the identified Relay that is prefixed with the
Session Initiation Token . These packets are sent for an
amount of time (e.g. , 1-2 sec , 2-3 sec , 3-4 sec , 4-5 sec , 5-10
sec , 10-15 sec) . After that amount of time expires , in the
second packet - sending phase , the packets are prefixed with
a Session Continuation Token instead of with a Session
Initiation Token .

[0080] The first relay r? (which corresponds to node 1 in
the flow route) receives at least one of the request packets
sent from the Client 103 , as shown 602. The first relay
r_decrypts the first token of the request packet before
replacing both the first token and the existing packet type
indicator with a request packet type indicator (e.g. , 0 in this
case since the packet is a request packet) . Because the client
103 already decrypted the original “ first ” token and replaced
it with a request packet type indicator , the new “ first ” token
is a token that the first relay r? (and only the first relay) can
decrypt as it was encrypted using the first relay's public key
and the master server's private key .

US 2020/0145393 A9 May 7 , 2020
7

[0081] Whenever a flow token refers to the client 103 as
the previous node (e.g. , the flow token corresponding to the
first relay in a flow route) , the client will have an address
type of 0 (where type 0 indicates an unknown or “ none ”
address , type 1 indicates an IPv4 address , and type 2
indicates an IPv6 address) . Anytime a request packet comes
in and the corresponding token has a previous address of
type 0 , it is replaced with the address + port that the request
packet was sent from . Thus , there is never a need for the
address of the client to be included in a relay's token . This
is primarily used to handle situations where the client 103 is
behind network address translation (NAT) (e.g. , the public
IP address + port of that client is dynamically generated by a
router) , but the concept can be extended and used in relation
to any node where a previous node has an address type of 0 .
This can be useful for situations where some nodes along the
route are on a private network and don't expose or neces
sarily know their public IP addresses ahead of time .
[0082] The first relay r? then checks to see if the Flow ID
and Flow version in that token already exist in the Relay's
cache and where to send the packet next . If the Flow ID and
Flow version are new , then the Flow ID and other contents
of the token are stored in the Relay's cache . The modified
request packet is then passed on to the next node in the flow
route .
[0083] In embodiments utilizing Session Tokens . Session
Initiation Tokens are prefixed onto packets for a limited
amount of time to make certain that the Relay receives the
Session Initiation Token . When a Relay receives a packet
prefixed with a Session Initiation Token , the Relay first
checks the expiry timestamp (which is stored as public data) .
If the Session Initiation Token has expired , the packet is
ignored . Next , the Relay runs a signature and authentication
check to make sure that the Session Initiation Token is valid
and was generated by the Master Server . After this it
decrypts the Session Initiation Token .
[0084] Once decrypted , the Relay then checks to see if the
Session ID in the Session Initiation Token already exists in
the Relay’s cache . The Relay can also check the bandwidth
up / down limits for the session (as indicated in the Session
Initiation Token) , and terminates the session if the band
width exceeds the limits in either direction for some period
of time (e.g. , 1-5 seconds , 5-10 seconds , 10-15 seconds , or
another specified time) . This way even if a Client has a valid
Session Token , that Client still cannot DDoS the Dedicated
Server .
[0085] If the Session ID is new , then the Session ID and
other contents of the Session Initiation Token (e.g. , all or
some of the public and private information in the Session
Initiation Token) are stored in the Relay’s cache before
sending the packet to the Dedicated Server or another relay .
Before sending the packet to the Dedicated Server or another
relay , the Relay strips the prefix (e.g. , the Session Initiation
Token) from the packet and replaces it with the Session ID
and Session Sequence Number before passing the packet to
the Dedicated Server s ; or relay r ; that was identified in the
Session Token .
[0086] If the Relay finds that the Session ID in a Session
Initiation Token already exists in its cache (indicating that a
packet prefixed with a Session Initiation Token has already
been received and recorded) , then the packet is passed to the
Dedicated Server or another relay . Again , before sending the
packet to the Dedicated Server or another , the Relay strips
the prefix (e.g. , the Session Initiation Token) from the packet

and replaces it with the Session ID and Session Sequence
Number before passing the packet to the Dedicated Server s ;
or relay r ; that was identified in the Session Token .
[0087] If a Relay receives packets that are prefixed with a
Session Continuation Token , the Relay only checks if the
Session ID already exists in Cache . If the Session ID exists
in the Relay’s cache , the Relay proceeds to strip the prefix
and replaces it with the Session ID and Session Sequence
Number before passing the packet on to the Dedicated
Server . If the Session ID does not exist in cache , the packet
is ignored .
[0088] FIG . 8A illustrates content in a relay's cache as
needed for some embodiments of the inventive subject
matter . The cache for each relay includes a table having keys
and values , where a key includes the tuple { Flow ID , Flow
version } , and a value corresponding to each key includes an
entry . FIG . 8B shows example entry data broken into token
data and runtime data . Token data includes : expiration
timestamp , previous node address (e.g. , IP address and port) ,
next node address (e.g. , IP address and port) , and Flow
private key . Runtime data includes : the time a packet was
last received from a previous node , the time a packet was last
received from the next node , previous node replay protec
tion , and next node replay protection . Replay protection is
discussed in more detail below .
[0089] In some embodiments of the present disclosure the
second relay r4 (which corresponds to node 2 the flow route)
receives at least one of the request packets sent from node
1 (i.e. , relay r?) , as shown in 603. The second relay 14
decrypts the first token of the request packet before once
again replacing both the first token and the existing packet
type indicator with a request packet type indicator (e.g. , O in
this case since the packet is a request packet) . Because the
first relay r? already decrypted the previous “ first ” token and
replaced it with a request packet type indicator , the new
" first ” token is a token that the second relay r4 (and only the
second relay) can decrypt as it was encrypted using the
second relay's public key and the master server's private
key .
[0090] The second relay r4 then checks to see if the Flow
ID and Flow version in that token already exist in the
Relay's cache and where to send the packet next . If the Flow
ID and Flow version are new , then the Flow ID and other
contents of the token are stored in the Relay’s cache . The
modified request packet is then passed on to the next node
in the flow route .
[0091] The third relay rz (which corresponds to sequen
tially the next node after node 2 in the original flow route)
receives at least one of the request packets sent from node
2 (i.e. , relay r4) , as shown in 604. The third relay rz decrypts
the first token of the request packet before once again
replacing both the first token and the existing packet type
indicator with a request packet type indicator (e.g. , 0 in this
case since the packet is a request packet) . Because the
second relay r4 already decrypted the previous “ first ” token
and replaced it with a request packet type indicator , the new
“ first ” token will be a token that the third relay rz (and only
the third relay) can decrypt as it was encrypted using the
third relay's public key and the master server's private key .
[0092] The third relay rz then checks to see if the Flow ID
and Flow version in that token already exist in the Relay’s
cache and where to send the packet next . If the Flow ID and
Flow version are new , then the Flow ID and other contents
of the token are stored in the Relay's cache . The modified

US 2020/0145393 A9 May 7 , 2020
8

request packet is then passed on to the next node in the flow
route . Although in the figures the third relay rz is the final
relay , it is contemplated that as many or as few relays as
necessary can be used to find an optimal flow route .
[0093] Finally , a dedicated server s ; (which corresponds to
the final node in the request packet) receives at least one of
the request packets sent from node 3 (i.e. , relay rz) , as shown
in 605. The dedicated server s , decrypts the first token of the
request packet (which now corresponds to a flow token only
the server can decrypt , since it is encrypted with the master
server's private key and the server's public key) and checks
to see if the Flow ID in that token already exist in the
Dedicated Server's cache . If the Flow ID is new , then the
Flow ID and other contents of the token are stored in the
Dedicated Server's cache . The server responds to each valid
request packet with a response packet sent to the previous
node in the flow route .
[0094] For security reasons , packet types 1 , 2 , and 3 are
" signed with the flow private key , which is included in each
flow token , and is the same for each flow entry correspond
ing to this flow on every node involved (eg . the client , the
relays and the server) . This allows each node to trivially
reject packets sent by unauthorized parties (e.g. , parties that
don't know the flow private key) . It is important to note that
the response and payload packets (e.g. , types 1 , 2 , and 3) are
not encrypted , they are only signed . Thus , the contents are
readable by anyone , but a 3rd party cannot generate or
modify the Flow ID or Flow version number in the flow
header for these packet types . For these embodiments to
work , packet types 1 , 2 , and 3 must have a packet sequence
number (e.g. , a “ nonce ” number that is used only once) , and
a keyed - hash message authentication code (HMAC) . To
avoid the packet sequence number being used more than
once , packets of type 1 , 2 and 3 sent in the client to server
direction have the high bit of the 64 bit sequence number set
to 0 , and packets of type 1 , 2 and 3 sent in the server to client
direction have the high bit of the 64 bit sequence number set
to 1 .
[0095] A more secure connections may be process may be
obtained in the alternative embodiment utilizing Session
Tokens . In embodiment using Session Tokens it is contem
plated that each Relay has a corresponding public key /
private key pair . This facilitates encryption of tokens by the
Master Server to ensure tokens (e.g. Session Tokens) may
only be read by the Relay that the Master Server generated
the tokens for , via asymmetric encryption . This ensures that
if one Relay is compromised , it does not compromise all
other Relays in the system . In some embodiments , Relays
need a certificate to register with the Master Server , allowing
the certificate of compromised Relays to be revoked . In
some embodiments , Relays automatically generate new pub
lic key / private key pairs (e.g. , at regular or irregular intervals
such as 5-10 minutes , or every hour or any combination of
intervals within that range) . Each time a Relay generates a
new public key / private key pair , the Relay communicates its
new public key to the Master Server .
[009] Additionally in embodiments utilizing Session
Tokens according to aspects of the present disclosure , it is
contemplated that the Master Server also has its own public
key / private key pair . The Master Server gives its public key
to the Relays . Thus , Relays can decrypt , but cannot write ,
Session Tokens . It is also contemplated that a Relay can
sign , or encrypt and sign packets that it exchanges with a
Dedicated Server .

[0097] Much like relays , dedicated servers have a cache to
store data related to different flows . This enables a server to
keep track that a particular flow relates to a particular client ,
and so on . FIG . 9A shows an example of how a server can
store keys and values related to flows . A key includes the
Flow ID , and a value corresponding to each key includes an
entry . The entry has token data and runtime data , shown in
FIG . 9B . Token data includes : an expiration timestamp , a
previous node IP address + port , a flow private key , and a
Flow version . The runtime data includes the time the last
packet was received , a packet sequence number , and a replay
protection buffer .
[0098] With a valid request packet is received at the
dedicated server r ;, the dedicated server r ; replies with
response packets to the previous node rz , as shown in 701 .
Ultimately , the response packets are forwarded back to the
client 103 via the same flow route defined by the request
packet , but in reverse . It should be understood that the
reverse flow route need not be limited to the exact same
route as the forward flow and the reverse flow may take any
number of other
[0099] As shown in 702 , relay rz receives a response
packet from the dedicated server s , that is signed using a flow
private key (e.g. , the flow private key contained within the
token data that the dedicated server decrypted from the
request packet that ultimately arrived at the dedicated server
S ; passed along the set of relays in the flow route) . Relay rz
looks up the flow entry in its cache by flow ID and flow
version , then checks sees if the signature is valid . If the
signature is valid , the relay forwards the response packet to
the previous relay r4 .
[0100] As shown in 703 , relay r4 receives a response
packet from relay rz that is signed using the flow private key .
Relay r4 looks up the flow entry by flow ID and flow version ,
then sees if the signature is valid . If the signature is valid , the
relay forwards the response packet to previous relay
[0101] As shown in 704 , relay r? receives a response
packet from relay r4 that is signed using the flow private key .
Relay r? looks up the flow entry by flow ID and flow version ,
then sees if the signature is valid . If the signature is valid , the
relay forwards the response packets to the previous node (in
this case , the Client or node 0) .
[0102] When the client receives the response packet from
the first relay , the client does the same signature check that
all previous nodes completed , and if the packet passes , the
client considers the flow to be " established . ” Once a flow is
established , the client has confirmation that payload packets
(e.g. , packet types 2 and 3) can be exchanged between the
client and the server across the flow route . Payload packets ,
like response packets , have their flow header signed by the
flow private key , and can be structured as follows : [2 or
3] [packet sequence] [Flow ID] [flow version] [hmac] (payload
data) .
[0103] In some embodiments , the client can begin sending
payload packets to the dedicated server before receiving a
response packet from the dedicated server . This can help to
minimize latency to establish a flow since , in most cases the
request packets will arrive at each relay and the server before
the payload packet , thus “ punching ” through the flow route
so that packets moving from client to server can be for
warded immediately to the next node in the common case .
[0104] In some instances , the flow can become unreliable
or slow for any number of reasons (e.g. , a node comes under
attack , a node begins to slow down unexpectedly , packet loss

US 2020/0145393 A9 May 7 , 2020
9

becomes unacceptably high , etc.) . In other cases , the exist
ing flow route may still be of high quality , but a better flow
route has become available . In these instances , it can
become necessary for the flow route to be updated .
[0105] While payload packets continue to exchange
between the client and the dedicated server via the existing
flow route 1003 (using the original Flow ID and flow version
number corresponding to that flow route) , the client 103 can
request an updated flow route from the matchmaker 101 , as
shown in 1001. The request passes the client's Flow ID (e.g. ,
the ID corresponding to the existing flow linking the client
to the server) and Flow version to the matchmaker 101 so
that the server will recognize the new flow route as belong
ing to the same logical client session , but being more recent
(e.g. , an updated version of the existing flow) . In embodi
ments using Session tokens the relocation request passes the
Client's previous Session Token to the Matchmaker . It is
important to use the same Session Token so that a connec
tion can be maintained between the Client and the same
Dedicated Server that the Client is already connected to . The
only change that ultimately occurs is a change in Relay .
[0106] The matchmaker 101 , as shown in 1002 , then sends
the client's relocation request , along with the Flow ID and
Flow version , to the master server 102. The master server
102 , as shown in 1101 of FIG . 11 , then responds with a new
flow route having the same Flow ID , but with a new flow
route (e.g. , a different set of relays) leading to the same
Dedicated Server s ; and an incremented Flow version , so this
route can be determined to be more recent version of the
existing flow route . Similarly in embodiments using Session
Tokens the Matchmaker sends the relocation request , includ
ing the previous Session Token , to the Master Server . The
Master Server responds with a new Session Token having
the same properties as the previous Session Token , except
the new Session Token points to one or more new Relays
that have been selected by the Master Server , and the
Session Sequence Number is incremented .
[0107] Next , as shown in 1102 , the updated flow route (or
in some embodiments Session Token) is sent from the
matchmaker 101 to the client 103. From there , as shown in
FIG . 12 , the client 103 uses the updated flow route to create
a request packet 1201 , which it uses to undergo the same
process as described with respect to FIG . 6 to establish a new
flow . Once the client 103 receives a response packet from
the server s ; via the updated flow route 1302 , as shown in
FIG . 13 (and as described more fully with respect to FIG . 7) ,
the updated flow is established . Meanwhile , payload packet
exchange continues through the existing flow route only
until the dedicated server s ; receives the updated request
packet corresponding to the updated flow route transmitted
across the new set of relays r2 , 13 , 14 , in the updated route
1301. After receiving the request packet , the Dedicated
Server s ; begins sending payload packets to the client 103 via
the updated flow route 1302 , and receives packets for that
client session only from the updated flow route , ignoring any
packets sent from the client 103 along the previous flow
route . The client 103 for its part , immediately starts sending
client to server payload packets along the updated flow
route , while in the transition period it accepts server to client
payload packets from either the existing or updated route .
Once the updated route is established , the client times out
the previous route and stops accepting packets sent to it
along that route , and the updated route is fully established
and the transition to the updated flow route is complete .

[0108] In the case of Session Token flow methods , relo
cation requests are handled like connection initiation with
Session Tokens as described above . Except that Packets are
sent to the relay identified by the Session Initiation token for
a limited amount of time . After that amount of time expires ,
in the second packet - sending phase , the packets are prefixed
with a new Session Continuation Token instead of with the
new Session Initiation Token . If a Relay receives a packet
that is prefixed with a Session Continuation Token , the
Relay runs a signature and authentication check to make
sure the Session Continuation Token is valid and was
generated by the Master Server , after this it decrypts the
Session Continuation Token . Once decrypted , the Relay then
checks to see if the Session ID in the Session Continuation
Token already exists in the Relay's cache .
[0109] In the case of the Session token connection
method , if the Session ID exists in a Relay's cache , the
Relay proceeds to strip the prefix (e.g. , the Session Con
tinuation Token) and replaces it with the Session ID and
Session Sequence Number before passing the packet on to
the Dedicated Server or one or more other relays . If the
Session ID does not exist in cache , the packet is ignored .
[0110] According to aspects of the Token Session Con
nection method of the present disclosure packets sent via the
new Relay will all have an incremented Session Sequence
Number , such that the Dedicated Server can compare the
previous Session Sequence Number and the new Session
Sequence Number to determine that the new Relay is more
recent than the old Relay . In other words , the Session
Sequence Number changes (e.g. , increments) each time a
Relay relocation occurs . For example , the Session Sequence
Number could count up from 1 to 2 after a Relay relocation
occurs . This allows the Dedicated Server to compare Session
Sequence Numbers and to only accept packets having the
most recent Session Sequence Number (i.e. , 2 , in this case) .
[0111] The Dedicated Server that the Client has connected
to running the Session Token connection method according
to alternative aspects of the present disclosure , will always
be checking the Session ID (e.g. , to know which client is
which) and also the Session Sequence Number . It is impor
tant for the Dedicated Server to check the Session Sequence
Number so that , in the event of a Session Relocation , the
Dedicated Server will know which packets to listen to and
which to ignore . For example , although packets will still be
sent from the Client to the Dedicated Server during the
process of relocating a connection to a Server via a new
Relay , as soon as packets begin to show up from the new
Relay , the packets received from the old Relay can be
ignored . The Dedicated Server will know which packets to
keep based on the Session Sequence Number based on
recency of that number . For example , if a Session Sequence
Number starts at 1 and increments to 2 after a Session
Relocation , the dedicated server (though for a time it may
receive packets from both Relays) will only listen to packets
with the most recent Session Sequence Number of 2 .
[0112] It is contemplated that timeouts can occur at any
node along a flow route . For example : if a client does not
receive any packets from the first relay for some duration of
time (e.g. , 1-10 and preferably 5 second) it times out ; if the
server does not receive any packets from the relay before it
for a particular flow for some duration of time (e.g. , 1-10 and
preferably 5 second) it times out and removes that flow
entry ; and if a relay does not receive any packets from the
previous node for some duration of time (e.g. , 1-10 and

US 2020/0145393 A9 May 7 , 2020
10

preferably 5 second) , or does not receive any previous
packets from the next node for some duration of time (e.g. ,
1-10 and preferably 5 second) , it times out and removes that
flow entry .
[0113] Replay protection , mentioned briefly in the preced
ing paragraphs , stops an attacker from recording a valid
packet and replaying it back later in an attack on a node (e.g. ,
a client , a relay , or a server) . To enable replay protection ,
several measures can be implemented . For example ,
encrypted and / or signed packets can be sent with 64 - bit
sequence numbers that start at zero and increment with each
packet sent . Sequence numbers can be included in the packet
header and can be read by the node receiving the packet
(e.g. , prior to decryption or signature check) . Moreover ,
sequence numbers can be used as the nonce for packet
encryption , so any modification to the sequence number fails
the encryption signature check .
[0114) Replay protection thus operates as follows . First ,
packets are received and stored in a node’s replay buffer
having a set replay buffer size . The replay buffer size
determines a quantity of packets that can be stored in the
replay buffer (e.g. , 64-128 , 128-256 , 256-512 , 512-1028
packets) . Replay buffer size is implementation specific . In
some embodiments , a few seconds worth of packets at a
typical send rate (20-60 Hz) is supported . For example , a
replay buffer size of 256 entries per - client should be suffi
cient for most applications . Each packet received has an
associated sequence number . Any packet having a sequence
number that is older than the most recent sequence number
received (e.g. , received with a packet) , minus the replay
buffer size , is discarded on the receiver side .
[0115] For example , if a replay buffer size is 100 , and the
most recent packet received has a sequence number of 600 ,
a packet having a sequence number of 599 or less (i.e. , 1 less
than 600 minus 100) would be discarded . When a new
packet arrives that has a more recent sequence number than
the previously most recent sequence number received , the
sequence number associated with the new packet is updated
on the receiver side and the new packet is accepted . If a
packet arrives that is within replay buffer size of the most
recent sequence number , it is accepted only if its sequence
number has not already been received . If a packet is received
having a sequence number that has already been received ,
that packet is ignored .

parallel saves valuable processing time , leading to a more
efficient and streamlined system for emotion recognition .
[0118] The memory 1505 may be in the form of an
integrated circuit , e.g. , RAM , DRAM , ROM , and the like .
The memory 1505 may also be a main memory that is
accessible by all of the processor modules . In some embodi
ments , the processor module 1501 may have local memories
associated with each core . A program 1503 may be stored in
the main memory 1505 in the form of processor readable
instructions that can be executed on the processor modules .
The program 1503 may be configured implement the method
for communication between nodes using tokens as described
above and in FIGS . 1 , through 13. The program 1503 may
be written in any suitable processor readable language , e.g. ,
C , C ++ , JAVA , Assembly , MATLAB , FORTRAN , and a
number of other languages . During operation of the Program
Data Packets 1507 may be stored in the memory before they
are transmitted to another node . The Program may cause a
Database 1508 to store Packet Data and be indexed accord
ing to Flow ID and / or a Flow Version in Memory 1505 .
Additionally the Database may store public keys or private
keys for decryption of tokens . In some embodiments where
the system 1500 is a Master Server the memory 1505 may
store a private key for the encryption of a token data .
Additionally in the case of a Master Server , the Program
1503 may cause the system to plot a flow route through the
network 1550 for a client device using the network interface
1523 and provide a series of flow tokens defining that flow
route . During execution of the program 1503 , portions of
program code and / or data may be loaded into the memory or
the local stores of processor cores for parallel processing by
multiple processor cores .
[0119] The apparatus 1500 may also include well - known
support functions 1509 , such as input / output (I / O) elements
1511 , power supplies (P / S) 1513 , a clock (CLK) 1515 , and
a cache 1517. The apparatus 1500 may optionally include a
mass storage device 5119 such as a disk drive , CD - ROM
drive , tape drive , or the like to store programs and / or data .
The apparatus 1500 may optionally include a display unit
1521 to facilitate interaction between the apparatus and a
user . The display unit 1521 may be in the form of a cathode
ray tube (CRT) or flat panel screen that displays text ,
numerals , graphical symbols or images . The user interface
1525 may include a keyboard , mouse , joystick , touch screen ,
touch pad , or other device that may be used in conjunction
with a graphical user interface (GUI) .
[0120] The components of the apparatus 1500 , including
the processor 1501 , memory 1505 , support functions 1509 ,
mass storage device 1519 , user interface 1525 , network
interface 1523 , and display 1521 may be operably connected
to each other via one or more data buses 1527. These
components may be implemented in hardware , software or
firmware or some combination of two or more of these .
[0121] Thus , specific compositions and methods of estab
lishing flows for bidirectional packet exchange have been
disclosed . It should be apparent , however , to those skilled in
the art that many more modifications besides those already
described are possible without departing from the inventive
concepts in this application . The inventive subject matter ,
therefore , is not to be restricted except in the spirit of the
disclosure . Moreover , in interpreting the disclosure all terms
should be interpreted in the broadest possible manner con
sistent with the context . In particular the terms " comprises ”
and “ comprising ” should be interpreted as referring to the

Implementation
[0116] Aspects for the present disclosure may be imple
mented on a suitably configured computer apparatus such as
a server (e.g. Matchmaking Server , Master Server etc.) ,
personal computer , network relay and the like . FIG . 15
illustrates a block diagram of a system 1500 that may be
used to implement a node relay communication method
according to one aspect of the present disclosure . The
apparatus 1500 generally may include a processor module
1501 and a memory 1505 .
[0117] The processor module 1501 may include one or
more processor cores . The processor module 1501 may
include multiple processor cores , e.g. , if parallel processing
is to be implemented . Examples of suitable multi - core
processors , include , but are not limited to dual - core proces
sors , quad - core processors , processor architectures having a
main processor and one or more co - processors , cell proces
sor architectures , and the like . The ability to process data in

US 2020/0145393 A9 May 7 , 2020
11

elements , components , or steps in a non - exclusive manner ,
indicating that the referenced elements , components , or
steps can be present , or utilized , or combined with other
elements , components , or steps that are not expressly refer
enced .
What is claimed is :
1. A node system comprising ;
a processor
a memory
wherein the node system is configured to implement a
method for node relay communication comprising ;

a) receiving a description of a flow entry including an
address in a flow and a private key ;

b) storing the flow entry and the private key in a database
indexed to a flow ID ;

c) receiving a packet , wherein the packet comprises an
authentication code and packet data including packet
sequence information and a Flow ID ;

d) performing a look up in the database of a flow entry
corresponding to the Flow ID of the packet ; and

e) ignoring the packet or forwarding the packet to the
address in the flow , depending on the result of the
look - up .

2. The system of claim 1 wherein e) comprises ignoring
the packet if no flow entry exists .

3. The system of claim 1 wherein performing a lookup in
the database at d) further comprises checking that the
authentication code of the packet indicates that the packet
data was signed with a flow private key matching the private
key in the flow entry in the database .

4. The system of claim 3 wherein e) comprises ignoring
the packet if the packet data was not signed with a flow
private key matching the private key in the flow entry .
5. The system of claim 3 wherein e) further comprises

testing the packet sequence number against a replay protec
tion buffer for packets received from the next node , if the
packet data was signed with a flow private key matching the
private key in the flow entry in the database and if the packet
has already been received , or is old , ignoring the packet .
6. The system of claim 5 wherein e) further comprises

forwarding the packet without modification to a previous
node and / or next node in the flow , if the packet data was
signed with a flow private key matching the private key in
the flow entry in the database and the packet has not already
been received and the packet is not old .

7. The system of claim 6 further comprising updating the
timestamp in the flow entry of the last packet received to the
current timestamp .

8. The system of claim 6 wherein the packet is received
from the previous node and the system forwards the packet ,
without modification , to the next node .

9. The system of claim 6 wherein the packet is received
from the next node and the system forwards the packet ,
without modification , to the previous node .

10. The system of claim 6 further comprising f) removing
the flow entry from the database if packets with the Flow ID
corresponding to the flow entry have not been received for
a predetermined period of time from the previous node
and / or the next node , and ceasing to forward packets for
with the Flow ID corresponding to the removed flow entry .

11. The system of claim 1 wherein the database is also
indexed to a Flow Version .

12. The system of claim 1 wherein the packet includes a
Flow Version .

13. The system of claim 11 wherein performing the look
up in the database includes looking using a Flow Version in
the packet

14. The method of claim 1 wherein a) comprises receiving
the description of the flow entry from a master server .

15. The method of claim 1 , wherein a) comprises receiv
ing a the description of the flow entry in a packet from
another node containing one or more flow tokens , each flow
token including the flow ID , a flow version , address and port
information for one or more other nodes in the flow , and a
flow private key .

16. The method of claim 15 , wherein the packet from the
another node includes an expiration time stamp , a previous
node IP address and port , a next node IP address and port .

17. The method of claim 15 , further comprising attempt
ing to decrypt a first flow token in the packet from the
another node using a node private key and a master server
public key ; and
modifying the packet by removing the first flow token and
forwarding the resulting modified packet on to a next node
IP address and port in the first flow token when the attempt
to decrypt the first flow token succeeds .

18. A non - transitory computer readable medium having
computer readable instructions embodied therein , the com
puter readable instructions being configured to implement a
node relay communication method when executed the node
relay communication method comprising ;

a) receiving a description of a flow entry including an
address in a flow and a private key ;

b) storing the flow entry and the private key in a database
indexed to a flow ID ;

c) receiving a packet , wherein the packet comprises an
authentication code and packet data including a packet
sequence and a Flow ID ;

d) performing a look up in the database of a flow entry
corresponding to the Flow ID of the packet ; and

e) ignoring the packet or forwarding the packet to the
address in the flow , depending on the result of the
look - up .

19. The non - transitory computer readable medium of
claim 18 wherein e) comprises ignoring the packet if no flow
entry exists .

20. The non - transitory computer readable medium of
claim 15 wherein performing a lookup in the database at d)
further comprises checking that the authentication code of
the packet indicates that the packet data (Sequence number ,
Flow ID , Flow version) was signed with a flow private key
matching the private key in the flow entry in the database .

21. The non - transitory computer readable medium of
claim 20 wherein e) comprises ignoring the packet if the
packet data was not signed with a flow private key matching
the private key in the flow entry .

22. The non - transitory computer readable medium of
claim 20 wherein e) further comprises testing the packet
sequence number against a replay protection buffer for
packets received from the next node , if the packet data was
signed with a flow private key matching the private key in
the flow entry in the database and if the packet has already
been received , or is old , ignoring the packet .

23. The non - transitory computer readable medium of
claim 22 wherein e) further comprises forwarding the packet
without modification to the previous node and / or next node ,
if the packet data was signed with a flow private key

US 2020/0145393 A9 May 7 , 2020
12

matching the private key in the flow entry in the database
and the packet has not already been received and the packet
is not old .

24. The non - transitory computer readable medium of
claim 23 further comprising updating the timestamp in the
flow entry of the last packet received to the current time
stamp .

25. The non - transitory computer readable medium of
claim 23 wherein the packet is received from the previous
node and the system forwards the packet , without modifi
cation , to the next node .

26. The non - transitory computer readable medium of
claim 23 wherein the packet is received from the next node
and the system forwards the packet , without modification , to
the previous node .

27. The non - transitory computer readable medium of
claim 23 further comprising f) removing the flow entry from
the database if packets with the Flow ID corresponding to
the flow entry have not been received for a predetermined
period of time from the previous node and / or the next node ,
and ceasing to forward packets for with the Flow ID
corresponding to the removed flow entry .

28. The non - transitory computer readable medium of
claim 18 wherein the database is also indexed to a Flow
Version .

29. The non - transitory computer readable medium of
claim 18 wherein the packet includes a Flow Version .

30. The non - transitory computer readable medium of
claim 29 wherein performing the look up in the database
includes looking using a Flow Version in the packet

31. The non - transitory computer readable medium of
claim 18 wherein a) further comprises receiving the descrip
tion of the flow entry from a master server .

32. The non - transitory computer readable medium of
claim 18 , wherein a) comprises receiving a the description
of the flow entry in a packet from another node containing
one or more flow tokens , each flow token including the flow
ID , a flow version , address and port information for one or
more other nodes in the flow , and a flow private key .

33. The non - transitory computer readable medium of
claim 32 , wherein the packet from the another node includes
an expiration time stamp , a previous node IP address and
port , a next node IP address and port .

34. The non - transitory computer readable medium of
claim 32 , further comprising attempting to decrypt a first

flow token in the packet from the another node using a node
private key and a master server public key ; and
modifying the packet by removing the first flow token and
forwarding the resulting modified packet on to a next node
IP address and port in the first flow token when the attempt
to decrypt the first flow token succeeds .

35. A Master server system comprising :
a processor ;
a memory ;

wherein the Master server system is configured to imple
ment the method for node relay communication comprising :

a) receiving node information from nodes in a network ;
b) determining one or more flow routes between a begin

ning and end node from node information where in the
flow route includes one or more nodes in the network ;

c) sending flow route information to one or more nodes ,
wherein the flow route information includes one or
more flow tokens corresponding to each node of one or
more nodes in the flow route , and a flow token for the
server and wherein each flow token includes a flow ID ,
a flow version , an expiration time stamp , a flow private
key , and a next and / or previous node IP address and a
port .

30. A Matchmaker server system comprising :
a processor ;
a memory

wherein the Matchmaking server system is configured to
implement the method for node relay communication com
prising ;

a) receiving a request from a client to connect to one or
more servers ;

b) requesting one or more flow routes between the client
and one or more servers from a master server ;

b) receiving flow route information for one or more flow
routes between the client and the one or more servers
from the master server , wherein the flow route info
includes a flow token for the client , one or more flow
tokens corresponding to each relay of one or more
relays in the flow route , and a flow token for the server
and wherein each flow token includes a flow ID , flow
version , an expiration time stamp , a flow private key ,
previous and / or next node IP address and a port .

