(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

30 May 2014 (30.05.2014)

(10) International Publication Number WO 2014/079789 A1

(51) International Patent Classification:

A01N 43/90 (2006.01) A01N 43/10 (2006.01) A01N 43/653 (2006.01) A01N 43/80 (2006.01)

A01N 43/54 (2006.01) A01N 37/18 (2006.01) A01N 43/42 (2006.01)

(21) International Application Number:

PCT/EP2013/074016

(22) International Filing Date:

18 November 2013 (18.11.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12193962.3 23 November 2012 (23.11.2012)

EP

- (71) Applicant: BAYER CROPSCIENCE AG [DE/DE]; Alfred-Nobel-Str. 50, 40789 Monheim (DE).
- (72) Inventors: SEITZ, Thomas; Rietherbach 10b, 40764 Langenfeld (DE). DAHMEN, Peter; Altebrückerstr. 61, 41470 Neuss (DE). WACHENDORFF-NEUMANN, Ulrike; Oberer Markenweg 85, 56566 Neuwied (DE).
- (74) Agent: BIP PATENTS; c/o Bayer Intellectual Property GmbH, Creative Campus Monheim, Alfred-Nobel-Str. 10, 40789 Monheim (DE).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available); ARIPO (BW. GH. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(57) Abstract: The present invention relates to active compound combinations, in particular within a fungicide composition, which comprises (A) a dithiino-tetracarboximide of formula (I) and a further fungicidally active compound (B). Moreover, the invention relates to a method for curatively or preventively controlling the phytopathogenic fungi of plants or crops, to the use of a combination according to the invention for the treatment of seed, to a method for protecting a seed and not at least to the treated seed.

Active compound combinations

5

20

25

30

The present invention relates to active compound combinations, in particular within a fungicide composition, which comprises (A) a dithiino-tetracarboximide of formula (I) and a further fungicidally active compound (B). Moreover, the invention relates to a method for curatively or preventively controlling the phytopathogenic fungi of plants or crops, to the use of a combination according to the invention for the treatment of seed, to a method for protecting a seed and not at least to the treated seed.

Dithiino-tetracarboximides as such are already known. It is also known, that these compounds can be used as anthelmintics and insecticides (cf. US 3,364,229). Furthermore the fungicidal use of such dithiino-tetracarboximides is known (WO 2010/043319).

Since the environmental and economic requirements imposed on modern-day crop protection compositions are continually increasing, with regard, for example, to the spectrum of action, toxicity, selectivity, application rate, formation of residues, and favourable preparation ability, and since, furthermore, there may be problems, for example, with resistances, a constant task is to develop new compositions, in particular fungicidal agents, which in some areas at least help to fulfil the abovementioned requirements.

15 The present invention provides active compound combinations/compositions which in some aspects at least achieve the stated objective.

It has now been found, surprisingly, that the combinations according to the invention not only bring about the additive enhancement of the spectrum of action with respect to the phytopathogen to be controlled that was in principle to be expected but achieves a synergistic effect which extends the range of action of the component (A) and of the component (B) in two ways. Firstly, the rates of application of the component (A) and of the component (B) are lowered whilst the action remains equally good. Secondly, the combination still achieves a high degree of phytopathogen control even where the two individual compounds have become totally ineffective in such a low application rate range. This allows, on the one hand, a substantial broadening of the spectrum of phytopathogens that can be controlled and, on the other hand, increased safety in use.

In addition to the fungicidal synergistic activity, the active compound combinations according to the invention have further surprising properties which, in a wider sense, may also be called synergistic, such as, for example: broadening of the activity spectrum to other phytopathogens, for example to resistant strains of plant diseases; lower application rates of the active compounds; sufficient control of pests with the aid of the active compound combinations according to the invention even at application rates where the individual compounds show no or virtually no activity; advantageous behaviour during formulation or during use, for example during grinding, sieving, emulsifying, dissolving or dispensing; improved storage stability and light stability; advantageous residue formation; improved toxicological or ecotoxicological behaviour; improved properties of the plant, for example better growth, increased harvest yields, a better developed root system, a larger leaf area, greener leaves, stronger shoots, less seed required, lower phytotoxicity, mobilization of the defence sys-

tem of the plant, good compatibility with plants. Thus, the use of the active compound combinations or compositions according to the invention contributes considerably to keeping young cereal stands healthy, which increases, for example, the winter survival of the cereal seed treated, and also safeguards quality and yield. Moreover, the active compound combinations according to the invention may contribute to enhanced systemic action. Even if the individual compounds of the combination have no sufficient systemic properties, the active compound combinations according to the invention may still have this property. In a similar manner, the active compound combinations according to the invention may result in higher long term efficacy of the fungicidal action.

Accordingly, the present invention provides a combination comprising:

10 (A) at least one dithiino-tetracarboximide of formula (I)

$$R^{1} \longrightarrow N \longrightarrow S \longrightarrow N \longrightarrow R^{2}$$
 (I)

in which R^1 and R^2 are identical and represent methyl, ethyl, n-propyl or isopropyl, and n represents 0 or 1, or an agrochemically acceptable salt thereof,

and

25

5

- 15 (B) at least one further active compound selected from the following group consisting of
 - (1) 2-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione,
 - (2) 1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole-5-thiol,
- 20 (3) 1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate,
 - (4) 2-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione,
 - (5) 2-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione,
 - (6) 1-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate,
 - (7) 1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate,
- 30 (8) 2-(6-benzylpyridin-2-yl)quinazoline,
 - (9) 2-[6-(3-fluoro-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazoline,

- (10) 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline,
- (11) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline,
- (12) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline,

5

10

15

- (13) N-[1-(4-isopropoxy-2-methylphenyl)-2-methyl-1-oxopropan-2-yl]-3-methylthiophene-2-carboxamide,
- (14) N-methyl-alpha-methoxy-2-[(2,5-dimethylphenoxy)methyl]phenylacetamide,
- (15) [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol,
- (16) (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol,
- (17) (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol.

Preference is given to combinations comprising at least one compound of the formula (I) selected from the group consisting of

- (I-1) 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone (i.e. $R^1 = R^2 = methyl$, n = 0)
- (I-2) 2,6-diethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone (i.e. $R^1 = R^2 = ethyl$, n = 0)
- 20 (I-3) 2,6-dipropyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone (i.e. $R^1 = R^2 = \text{propyl}$, n = 0)
 - (I-4) 2,6-diisopropyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone (i.e. $R^1=R^2=isopropyl, n=0$)
- (I-5) 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone 4-oxide (i.e. $R^1=R^2=methyl, n=1$).

Preference is further given to combinations comprising the compound (I-1) and one further active compound selected from compounds (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18).

Preference is further given to combinations comprising the compound (I-2) and one further active compound selected from compounds (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18). Preference is further given to combinations comprising the compound (I-3) and one further active compound selected from compounds (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18).

Preference is further given to combinations comprising the compound (I-4) and one further active compound selected from compounds (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18).

WO 2014/079789 - 4 - PCT/EP2013/074016

Preference is further given to combinations comprising the compound (I-5) and one further active compound selected from compounds (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18).

More preference is given to combinations comprising

10

15

25

30

$$5 (I-1) + (1); (I-1) + (2); (I-1) + (3); (I-1) + (4); (I-1) + (5); (I-1) + (6); (I-1) + (7); (I-1) + (8); (I-1) + (9); (I-1) + (10); (I-1) + (11); (I-1) + (12); (I-1) + (13); (I-1) + (14); (I-1) + (15); (I-1) + (16); (I-1) + (17); (I-1) + (18).$$

Most preferred are combinations according to the invention comprising compound (I-1).

If the active compounds in the active compound combinations according to the invention are present in certain weight ratios, the synergistic effect is particularly pronounced. However, the weight ratios of the active compounds in the active compound combinations can be varied within a relatively wide range.

In the combinations according to the invention the compounds (A) and (B) are present in a synergistically effective weight ratio of A:B in a range of 100:1 to 1:100, preferably in a weight ratio of 50:1 to 1:50, most preferably in a weight ratio of 20:1 to 1:20. Further ratios of A:B which can be used according to the present invention with increasing preference in the order given are: 95:1 to 1:95, 90:1 to 1:90, 85:1 to 1:85, 80:1 to 1:80, 75:1 to 1:75, 70:1 to 1:70, 65:1 to 1:65, 60:1 to 1:60, 55:1 to 1:55, 45:1 to 1:45, 40:1 to 1:40, 35:1 to 1:35, 30:1 to 1:30, 25:1 to 1:25, 15:1 to 1:15, 10:1 to 1:10, 5:1 to 1:5, 4:1 to 1:4, 3:1 to 1:3, 2:1 to 1:2.

Most preferable weight ratio of A:B are 10:1 to 1:10, 5:1 to 1:5, 4:1 to 1:4, 3:1 to 1:3, 2:1 to 1:2.

Where a compound (A) or a compound (B) can be present in tautomeric form, such a compound is understood hereinabove and hereinableow also to include, where applicable, corresponding tautomeric forms, even when these are not specifically mentioned in each case.

Compounds (A) or compounds (B) having at least one basic centre are capable of forming, for example, acid addition salts, e.g. with strong inorganic acids, such as mineral acids, e.g. perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids, such as unsubstituted substituted, e.g. halo-substituted, C₁-C₄ alkanecarboxylic acids, e.g. acetic acid, saturated or unsaturated dicarboxylic acids, e.g. oxalic, malonic, succinic, maleic, fumaric and phthalic acid, hydroxycarboxylic acids, e.g. ascorbic, lactic, malic, tartaric and citric acid, or benzoic acid, or with organic sulfonic acids, such as unsubstituted or substituted, e.g. halo-substituted, C₁-C₄alkane- or aryl-sulfonic acids, e.g. methane- or p-toluene-sulfonic acid. Compounds (A) or compounds (B) having at least one acid group are capable of forming, for example, salts with bases, e.g. metal salts, such as alkali metal or alkaline earth metal salts, e.g. sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, e.g. ethyl-, diethyl-, triethyl- or dimethyl-propylamine, or a mono-, di- or tri-hydroxy-lower alkylamine, e.g. mono-, di- or tri-ethanolamine. In addition, cor-

responding internal salts may optionally be formed. In the context of the invention, preference is given to agrochemically advantageous salts. In view of the close relationship between the compounds (A) or the compounds (B) in free form and in the form of their salts, hereinabove and herein below any reference to the free compounds (A) or free compounds (B) or to their salts should be understood as including also the corresponding salts or the free compounds (A) or free compounds (B), respectively, where appropriate and expedient. The equivalent also applies to tautomers of compounds (A) or compounds (B) and to their salts.

5

10

15

25

30

According to the invention the expression "combination" stands for the various combinations of compounds (A) and (B), for example in a single "ready-mix" form, in a combined spray mixture composed from separate formulations of the single active compounds, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. Preferably the order of applying the compounds (A) and (B) is not essential for working the present invention.

The present invention furthermore relates to compositions for combating/controlling undesirable microorganisms comprising the active compound combinations according to the invention. Preferably, the compositions are fungicidal compositions comprising agriculturally suitable auxiliaries, solvents, carriers, surfactants or extenders.

Furthermore the invention relates to a method of combating undesirable microorganisms, characterized in that the active compound combinations according to the invention are applied to the phytopathogenic fungi and/or their habitat.

- According to the invention, carrier is to be understood as meaning a natural or synthetic, organic or inorganic substance which is mixed or combined with the active compounds for better applicability, in particular for application to plants or plant parts or seeds. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture.
 - Suitable solid or liquid carriers are: for example ammonium salts and natural ground minerals, such as kaolins, clays, tale, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral oils and vegetable oils, and also derivatives thereof. It is also possible to use mixtures of such carriers. Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks.
 - Suitable liquefied gaseous extenders or carriers are liquids which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellants, such as butane, propane, nitrogen and carbon dioxide.
- Tackifiers, such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules and latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, or else natural phospholip-

WO 2014/079789 - 6 - PCT/EP2013/074016

ids, such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Other possible additives are mineral and vegetable oils and waxes, optionally modified.

If the extender used is water, it is also possible for example, to use organic solvents as auxiliary solvents. Suitable liquid solvents are essentially: aromatic compounds, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic compounds or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and also ethers and esters thereof, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and also water.

5

10

15

20

25

30

35

The compositions according to the invention may comprise additional further components, such as, for example, surfactants. Suitable surfactants are emulsifiers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surfactants. Examples of these are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates. The presence of a surfactant is required if one of the active compounds and/or one of the inert carriers is insoluble in water and when the application takes place in water. The proportion of surfactants is between 5 and 40 per cent by weight of the composition according to the invention.

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide, Prussian blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

If appropriate, other additional components may also be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestering agents, complex formers. In general, the active compounds can be combined with any solid or liquid additive customarily used for formulation purposes.

In general, the compositions according to the invention comprise between 0.05 and 99 per cent by weight, 0.01 and 98 per cent by weight, preferable between 0.1 and 95 per cent by weight, particularly preferred between 0.5 and 90 per cent by weight of the active compound combination according to the invention, very particularly preferable between 10 and 70 per cent by weight.

The active compound combinations or compositions according to the invention can be used as such or, depending on their respective physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible lig-

uids, foams, pastes, pesticide-coated seed, suspension concentrates, suspoemulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for the treatment of seed, wettable powders, natural products and synthetic substances impregnated with active compound, and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold-fogging and warm-fogging formulations.

5

10

15

20

25

30

The formulations mentioned can be prepared in a manner known per se, for example by mixing the active compounds or the active compound combinations with at least one additive. Suitable additives are all customary formulation auxiliaries, such as, for example, organic solvents, extenders, solvents or diluents, solid carriers and fillers, surfactants (such as adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers), dispersants and/or binders or fixatives, preservatives, dyes and pigments, defoamers, inorganic and organic thickeners, water repellents, if appropriate siccatives and UV stabilizers, gibberellins and also water and further processing auxiliaries. Depending on the formulation type to be prepared in each case, further processing steps such as, for example, wet grinding, dry grinding or granulation may be required.

The compositions according to the invention do not only comprise ready-to-use compositions which can be applied with suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use.

The active compound combinations according to the invention can be present in (commercial) formulations and in the use forms prepared from these formulations as a mixture with other (known) active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and Semiochemicals.

The treatment of the plants and plant parts with the compositions according to the invention is carried out directly or by acting on the environment, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, misting, evaporating, dusting, fogging, scattering, foaming, painting on, spreading, injecting, drenching, trickle or drip irrigation and, in the case of propagation material, in particular in the case of seed, furthermore by the dry seed treatment method, the wet seed treatment method, the slurry treatment method, by encrusting, by coating with one or more coats and the like. It is furthermore possible to apply the active substances by the ultra-low volume method or to inject the active substance preparation or the active substance itself into the soil.

A preferred direct treatment of the plants is the leaf application treatment, i.e. the compositions according to the invention are applied to the foliage, it being possible for the treatment frequency and the application rate to be matched to the infection pressure of the pathogen in question.

In the case of systemically active compounds, the compositions according to the invention reach the plants via the root system. In this case, the treatment of the plants is effected by allowing the compositions according to the invention to act on the environment of the plant. This can be done for example by drenching,

incorporating in the soil or into the nutrient solution, i.e. the location of the plant (for example the soil or hydroponic systems) is impregnated with a liquid form of the compositions according to the invention, or by soil application, i.e. the compositions according to the invention are incorporated into the location of the plants in solid form (for example in the form of granules). In the case of paddy rice cultures, this may also be done by metering the compositions according to the invention into a flooded paddy field in a solid use form (for example in the form of granules).

5

10

15

20

25

30

35

The invention furthermore comprises a method for treating seed. The invention furthermore relates to seed treated according to one of the methods described in the preceding paragraph.

The active compounds or compositions according to the invention are especially suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggered by an infection of the seed during storage or after sowing as well as during and after germination of the plant. This phase is particularly critical since the roots and shoots of the growing plant are particularly sensitive, and even small damage may result in the death of the plant. Accordingly, there is great interest in protecting the seed and the germinating plant by using appropriate compositions.

The control of phytopathogenic fungi by treating the seed of plants has been known for a long time and is the subject of continuous improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with the additional application of crop protection agents after sowing or after the emergence of the plants or which at least considerably reduce additional application. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide maximum protection for the seed and the germinating plant from attack by phytopathogenic fungi, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic fungicidal properties of transgenic plants in order to achieve optimum protection of the seed and the germinating plant with a minimum of crop protection agents being employed.

Accordingly, the present invention also relates in particular to a method for protecting seed and germinating plants against attack by phytopathogenic fungi by treating the seed with a composition according to the invention. The invention also relates to the use of the compositions according to the invention for treating seed for protecting the seed and the germinating plant against phytopathogenic fungi. Furthermore, the invention relates to seed treated with a composition according to the invention for protection against phytopathogenic fungi.

The control of phytopathogenic fungi which damage plants post-emergence is carried out primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the concerns regarding a possible impact of the crop protection composition on the environment and the health of humans and animals, there are efforts to reduce the amount of active compounds applied.

One of the advantages of the present invention is that, because of the particular systemic properties of the compositions according to the invention, treatment of the seed with these compositions not only protects the seed itself, but also the resulting plants after emergence, from phytopathogenic fungi. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

It is also considered to be advantageous that the mixtures according to the invention can be used in particular also for transgenic seed where the plant growing from this seed is capable of expressing a protein which acts against pests. By treating such seed with the active compound combinations or compositions according to the invention, even by the expression of the, for example, insecticidal protein, certain pests may be controlled. Surprisingly, a further synergistic effect may be observed here, which additionally increases the effectiveness of the protection against attack by pests.

5

10

15

20

25

30

35

The compositions according to the invention are suitable for protecting seed of any plant variety employed in agriculture, in the greenhouse, in forests or in horticulture or viticulture. In particular, this takes the form of seed of cereals (such as wheat, barley, rye, triticale, millet, oats), maize (corn), cotton, soya bean, rice, potatoes, sunflowers, beans, coffee, beets (e.g. sugar beets and fodder beets), peanuts, oilseed rape, poppies, olives, coconuts, cacao, sugar cane, tobacco, vegetables (such as tomatoes, cucumbers, onions and lettuce), lawn and ornamental plants (also see below). The treatment of seeds of cereals (such as wheat, barley, rye, triticale, and oats), maize (corn) and rice is of particular importance.

As also described further below, the treatment of transgenic seed with the active compound combinations or compositions according to the invention is of particular importance. This refers to the seed of plants containing at least one heterologous gene which allows the expression of a polypeptide or protein having insecticidal properties. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. Preferably, this heterologous gene is from Bacillus sp., the gene product having activity against the European corn borer and/or the Western corn rootworm. Particularly preferably, the heterologous gene originates from Bacillus thuringiensis.

In the context of the present invention, the active compound combinations or compositions according to the invention are applied on their own or in a suitable formulation to the seed. Preferably, the seed is treated in a state in which it is sufficiently stable so that the treatment does not cause any damage. In general, treatment of the seed may take place at any point in time between harvesting and sowing. Usually, the seed used is separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. Thus, it is possible to use, for example, seed which has been harvested, cleaned and dried to a moisture content of less than 15 % by weight. Alternatively, it is also possible to use seed which, after drying, has been treated, for example, with water and then dried again.

When treating the seed, care must generally be taken that the amount of the composition according to the invention applied to the seed and/or the amount of further additives is chosen in such a way that the germina-

WO 2014/079789 - 10 - PCT/EP2013/074016

tion of the seed is not adversely affected, or that the resulting plant is not damaged. This must be borne in mind in particular in the case of active compounds which may have phytotoxic effects at certain application rates.

The compositions according to the invention can be applied directly, that is to say without comprising further components and without having been diluted. In general, it is preferable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for the treatment of seed are known to the person skilled in the art and are described, for example, in the following documents: US 4,272,417, US 4,245,432, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675, WO 2002/028186.

5

15

20

25

30

35

The active compound combinations which can be used according to the invention can be converted into customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.

These formulations are prepared in a known manner by mixing the active compounds or active compound combinations with customary additives, such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water as well.

Suitable colorants that may be present in the seed dressing formulations which can be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamine B, C.I. Pigment Red 112, and C.I. Solvent Red 1.

Suitable wetting agents that may be present in the seed dressing formulations which can be used according to the invention include all substances which promote wetting and are customary in the formulation of active agrochemical substances. With preference it is possible to use alkylnaphthalene-sulphonates, such as diisopropyl- or diisobutylnaphthalene-sulphonates.

Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations which can be used according to the invention include all nonionic, anionic, and cationic dispersants which are customary in the formulation of active agrochemical substances. With preference, it is possible to use nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers, and tristyrylphenol polyglycol ethers, and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic salts, and arylsulphonate-formaldehyde condensates.

Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemically active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.

WO 2014/079789 - 11 - PCT/EP2013/074016

Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.

5

10

15

20

25

35

Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (= gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- and Schädlingsbekämpfungsmittel" [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

The seed dressing formulations which can be used according to the invention may be used directly or after dilution with water beforehand to treat seed of any of a very wide variety of types. The seed dressing formulations which can be used according to the invention or their dilute preparations may also be used to dress seed of transgenic plants. In this context, synergistic effects may also arise in interaction with the substances formed by expression.

Suitable mixing equipment for treating seed with the seed dressing formulations which can be used according to the invention or the preparations prepared from them by adding water includes all mixing equipment which can commonly be used for dressing. The specific procedure adopted when dressing comprises introducing the seed into a mixer, adding the particular desired amount of seed dressing formulation, either as it is or following dilution with water beforehand, and carrying out mixing until the formulation is uniformly distributed on the seed. Optionally, a drying operation follows.

The inventive compositions have potent microbicidal activity and can be used for control of unwanted microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials.

The invention also relates to a method for controlling unwanted microorganisms, characterized in that the inventive active ingredients are applied to the phytopathogenic fungi, phytopathogenic bacteria and/or their habitat.

Fungicides can be used in crop protection for control of phytopathogenic fungi. They are characterized by an outstanding efficacy against a broad spectrum of phytopathogenic fungi, including soilborne pathogens, which are in particular members of the classes *Plasmodiophoromycetes*, *Peronosporomycetes* (Syn. *Oomycetes*), *Chytridiomycetes*, *Zygomycetes*, *Ascomycetes*, *Basidiomycetes* and *Deuteromycetes* (Syn. *Fungi*

WO 2014/079789 - 12 - PCT/EP2013/074016

imperfecti). Some fungicides are systemically active and can be used in plant protection as foliar, seed dressing or soil fungicide. Furthermore, they are suitable for combating fungi, which inter alia infest wood or roots of plant.

Bactericides can be used in crop protection for control of *Pseudomonadaceae*, *Rhizobiaceae*, *Enterobacte-*5 *riaceae*, *Corynebacteriaceae* and *Streptomycetaceae*.

Non-limiting examples of pathogens of fungal diseases which can be treated in accordance with the invention include:

diseases caused by powdery mildew pathogens, for example *Blumeria* species, for example *Blumeria* graminis; *Podosphaera* species, for example *Podosphaera leucotricha*; *Sphaerotheca* species, for example *Sphaerotheca fuliginea*; *Uncinula* species, for example *Uncinula necator*;

10

diseases caused by rust disease pathogens, for example *Gymnosporangium* species, for example *Gymnosporangium* sabinae; *Hemileia* species, for example *Hemileia* vastatrix; *Phakopsora* species, for example *Phakopsora* pachyrhizi and *Phakopsora* meibomiae; *Puccinia* species, for example *Puccinia* recondite, *P.* triticina, *P.* graminis or *P.* striiformis; *Uromyces* species, for example *Uromyces* appendiculatus;

- diseases caused by pathogens from the group of the *Oomycetes*, for example *Albugo* species, for example *Algubo candida*; *Bremia* species, for example *Bremia lactucae*; *Peronospora* species, for example *Peronospora pisi* or *P. brassicae*; Phytophthora species, for example *Phytophthora infestans*; *Plasmopara* species, for example *Plasmopara viticola*; *Pseudoperonospora* species, for example *Pseudoperonospora humuli* or *Pseudoperonospora cubensis*; Pythium species, for example *Pythium ultimum*;
- 20 leaf blotch diseases and leaf wilt diseases caused, for example, by Alternaria species, for example Alternaria solani; Cercospora species, for example Cercospora beticola; Cladiosporium species, for example Cladiosporium cucumerinum; Cochliobolus species, for example Cochliobolus sativus (conidia form: Drechslera, Syn: Helminthosporium), Cochliobolus miyabeanus; Colletotrichum species, for example Colletotrichum lindemuthanium; Cycloconium species, for example Cycloconium oleaginum; Diaporthe species, for example 25 Diaporthe citri; Elsinoe species, for example Elsinoe fawcettii; Gloeosporium species, for example Gloeosporium laeticolor; Glomerella species, for example Glomerella cingulata; Guignardia species, for example Guignardia bidwelli; Leptosphaeria species, for example Leptosphaeria maculans, Leptosphaeria nodorum; Magnaporthe species, for example Magnaporthe grisea; Marssonia species, for example Marssonia coronaria; Microdochium species, for example Microdochium nivale; Mycosphaerella species, for example My-30 cosphaerella graminicola, M. arachidicola and M. fijiensis; Phaeosphaeria species, for example Phaeosphaeria nodorum; Pyrenophora species, for example Pyrenophora teres, Pyrenophora tritici repentis; Ramularia species, for example Ramularia collo-cygni, Ramularia areola; Rhynchosporium species, for example Rhynchosporium secalis; Septoria species, for example Septoria apii, Septoria lycopersii; Typhula species, for example Typhula incarnata; Venturia species, for example Venturia inaequalis;

WO 2014/079789 - 13 - PCT/EP2013/074016

root and stem diseases caused, for example, by *Corticium* species, for example *Corticium graminearum*; *Fusarium* species, for example *Fusarium oxysporum*; *Gaeumannomyces* species, for example *Gaeumannomyces graminis*; *Rhizoctonia* species, such as, for example *Rhizoctonia solani*; *Sarocladium* diseases caused for example by *Sarocladium oryzae*; *Sclerotium* diseases caused for example by *Sclerotium oryzae*; *Tapesia* species, for example *Tapesia acuformis*; *Thielaviopsis* species, for example *Thielaviopsis basicola*;

5

10

15

20

25

30

35

ear and panicle diseases (including corn cobs) caused, for example, by *Alternaria* species, for example *Alternaria* spp.; *Aspergillus* species, for example *Aspergillus flavus*; *Cladosporium* species, for example *Cladosporium cladosporioides*; *Claviceps* species, for example *Claviceps purpurea*; *Fusarium* species, for example *Fusarium culmorum*; *Gibberella* species, for example *Gibberella zeae*; *Monographella* species, for example *Monographella nivalis*; *Septoria* species, for example *Septoria nodorum*;

diseases caused by smut fungi, for example *Sphacelotheca* species, for example *Sphacelotheca reiliana*; *Tilletia* species, for example *Tilletia caries*, *T. controversa*; *Urocystis* species, for example *Urocystis occulta*; *Ustilago* species, for example *Ustilago nuda*, *U. nuda tritici*;

fruit rot caused, for example, by *Aspergillus* species, for example *Aspergillus flavus*; *Botrytis* species, for example *Botrytis cinerea*; *Penicillium* species, for example *Penicillium expansum* and *P. purpurogenum*; *Sclerotinia* species, for example *Sclerotinia sclerotiorum*; *Verticilium* species, for example *Verticilium alboatrum*;

seed and soilborne decay, mould, wilt, rot and damping-off diseases caused, for example, by Alternaria species, caused for example by Alternaria brassicicola; Aphanomyces species, caused for example by Aphanomyces euteiches; Ascochyta species, caused for example by Ascochyta lentis; Aspergillus species, caused for example by Aspergillus flavus; Cladosporium species, caused for example by Cladosporium herbarum; Cochliobolus species, caused for example by Cochliobolus sativus; (Conidiaform: Drechslera, Bipolaris Syn: Helminthosporium); Colletotrichum species, caused for example by Colletotrichum coccodes; Fusarium species, caused for example by Fusarium culmorum; Gibberella species, caused for example by Gibberella zeae; Macrophomina species, caused for example by Macrophomina phaseolina; Monographella species, caused for example by Monographella nivalis; Penicillium species, caused for example by Penicillium expansum; Phoma species, caused for example by Phoma lingam; Phomopsis species, caused for example by *Phomopsis sojae*; *Phytophthora* species, caused for example by *Phytophthora* cactorum; Pyrenophora species, caused for example by Pyrenophora graminea; Pyricularia species, caused for example by Pyricularia oryzae; Pythium species, caused for example by Pythium ultimum; Rhizoctonia species, caused for example by Rhizoctonia solani; Rhizopus species, caused for example by Rhizopus oryzae; Sclerotium species, caused for example by Sclerotium rolfsii; Septoria species, caused for example by Septoria nodorum; Typhula species, caused for example by Typhula incarnata; Verticillium species, caused for example by Verticillium dahliae;

cancers, galls and witches' broom caused, for example, by Nectria species, for example Nectria galligena;

wilt diseases caused, for example, by Monilinia species, for example Monilinia laxa;

leaf blister or leaf curl diseases caused, for example, by *Exobasidium* species, for example *Exobasidium* vexans;

Taphrina species, for example Taphrina deformans;

decline diseases of wooden plants caused, for example, by Esca disease, caused for example by *Phaemoniella* clamydospora, *Phaeoacremonium aleophilum* and *Fomitiporia mediterranea*; Eutypa dyeback, caused for example by *Eutypa lata*; Ganoderma diseases caused for example by *Ganoderma boninense*; Rigidoporus diseases caused for example by *Rigidoporus lignosus*;

diseases of flowers and seeds caused, for example, by Botrytis species, for example Botrytis cinerea;

diseases of plant tubers caused, for example, by *Rhizoctonia* species, for example *Rhizoctonia solani*; *Helminthosporium* species, for example *Helminthosporium solani*;

Club root caused, for example, by *Plasmodiophora* species, for example *Plamodiophora* brassicae;

diseases caused by bacterial pathogens, for example *Xanthomonas* species, for example *Xanthomonas* campestris pv. oryzae; Pseudomonas species, for example Pseudomonas syringae pv. lachrymans; Erwinia species, for example Erwinia amylovora.

The following diseases of soya beans can be controlled with preference:

15

20

25

30

Fungal diseases on leaves, stems, pods and seeds caused, for example, by *Alternaria* leaf spot (*Alternaria* spec. atrans tenuissima), Anthracnose (*Colletotrichum gloeosporoides dematium var. truncatum*), brown spot (*Septoria glycines*), cercospora leaf spot and blight (*Cercospora kikuchii*), choanephora leaf blight (*Choanephora infundibulifera trispora* (Syn.)), dactuliophora leaf spot (*Dactuliophora glycines*), downy mildew (*Peronospora manshurica*), drechslera blight (*Drechslera glycini*), frogeye leaf spot (*Cercospora sojina*), leptosphaerulina leaf spot (*Leptosphaerulina trifolii*), phyllostica leaf spot (*Phyllosticta sojaecola*), pod and stem blight (*Phomopsis sojae*), powdery mildew (*Microsphaera diffusa*), pyrenochaeta leaf spot (*Pyrenochaeta glycines*), rhizoctonia aerial, foliage, and web blight (*Rhizoctonia solani*), rust (*Phakopsora pachyrhizi*, *Phakopsora meibomiae*), scab (*Sphaceloma glycines*), stemphylium leaf blight (*Stemphylium botryosum*), target spot (*Corynespora cassiicola*).

Fungal diseases on roots and the stem base caused, for example, by black root rot (*Calonectria crotalariae*), charcoal rot (*Macrophomina phaseolina*), fusarium blight or wilt, root rot, and pod and collar rot (*Fusarium oxysporum*, *Fusarium orthoceras*, *Fusarium semitectum*, *Fusarium equiseti*), mycoleptodiscus root rot (*Mycoleptodiscus terrestris*), neocosmospora (*Neocosmospora vasinfecta*), pod and stem blight (*Diaporthe phaseolorum*), stem canker (*Diaporthe phaseolorum var. caulivora*), phytophthora rot (*Phytophthora megasperma*), brown stem rot (*Phialophora gregata*), pythium rot (*Pythium aphanidermatum*, *Pythium ir-*

WO 2014/079789 - 15 - PCT/EP2013/074016

regulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root rot, stem decay, and damping-off (*Rhizoctonia solani*), sclerotinia stem decay (*Sclerotinia sclerotiorum*), sclerotinia southern blight (*Sclerotinia rolfsii*), thielaviopsis root rot (*Thielaviopsis basicola*).

The inventive fungicidal compositions can be used for curative or protective/preventive control of phytopathogenic fungi. The invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the inventive active ingredients or compositions, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow.

5

10

15

20

25

30

35

The fact that the active ingredients are well tolerated by plants at the concentrations required for controlling plant diseases allows the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.

According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.

As has already been mentioned above, all plants and their parts may be treated in accordance with the invention. In a preferred embodiment, plant species and plant varieties, and their parts, which grow wild or which are obtained by traditional biological breeding methods such as hybridization or protoplast fusion are treated. In a further preferred embodiment, transgenic plants and plant varieties which have been obtained by recombinant methods, if appropriate in combination with traditional methods (genetically modified organisms), and their parts are treated. The term "parts" or "parts of plants" or "plant parts" has been explained hereinabove. Plants of the plant varieties which are in each case commercially available or in use are especially preferably treated in accordance with the invention. Plant varieties are understood as meaning plants with novel traits which have been bred both by traditional breeding, by mutagenesis or by recombinant DNA techniques. They may take the form of varieties, races, biotypes and genotypes.

The inventive compositions, when they are well tolerated by plants, have favourable homeotherm toxicity and are well tolerated by the environment, are suitable for protecting plants and plant organs, for enhancing harvest yields, for improving the quality of the harvested material. They can preferably be used as crop protection compositions. They are active against normally sensitive and resistant species and against all or some stages of development.

WO 2014/079789 - 16 - PCT/EP2013/074016

5

10

15

20

25

30

35

Plants which can be treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as Brassica napus (e.g. canola, rapeseed), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, Arecaceae sp. (e.g. oilpalm, coconut), rice, wheat, sugar beet, sugar cane, oats, rye, barley, millet and sorghum, triticale, flax, nuts, grapes and vine and various fruit and vegetables from various botanic taxa, e.g. Rosaceae sp. (e.g. pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and berry fruits such as strawberries, raspberries, red and black currant and gooseberry), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp. (e.g. olive tree), Actinidaceae sp., Lauraceae sp. (e.g. avocado, cinnamon, camphor), Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp. (e.g. tea), Sterculiceae sp., Rutaceae sp. (e.g. lemons, oranges, mandarins and grapefruit); Solanaceae sp. (e.g. tomatoes, potatoes, peppers, capsicum, aubergines, tobacco), Liliaceae sp., Compositae sp. (e.g. lettuce, artichokes and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g. carrots, parsley, celery and celeriac), Cucurbitaceae sp. (e.g. cucumbers – including gherkins, pumpkins, watermelons, calabashes and melons), Alliaceae sp. (e.g. leeks and onions), Cruciferae sp. (e.g. white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and chinese cabbage), Leguminosae sp. (e.g. peanuts, peas, lentils and beans – e.g. common beans and broad beans), Chenopodiaceae sp. (e.g. Swiss chard, fodder beet, spinach, beetroot), Linaceae sp. (e.g. hemp), Cannabeacea sp. (e.g. cannabis), Malvaceae sp. (e.g. okra, cocoa), Papaveraceae (e.g. poppy), Asparagaceae (e.g. asparagus); useful plants and ornamental plants in the garden and woods including turf, lawn, grass and Stevia rebaudiana; and in each case genetically modified types of these plants.

The fact that the active compounds, at the concentrations required for the controlling of plant diseases, are well tolerated by plants permits the treatment of aerial plant parts, of vegetative propagation material and seed, and of the soil.

The active compounds of the invention, in combination with good plant tolerance and favourable toxicity to warm-blooded animals and being tolerated well by the environment, are suitable for protecting plants and plant organs, for increasing the harvest yields, for improving the quality of the harvested material. They may be preferably employed as crop protection agents. They are active against normally sensitive and resistant species and against all or some stages of development.

The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology, RNA interference – RNAi – technology or microRNA – miRNA - technology). A heterologous gene that is located in the ge-

nome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.

5

10

15

20

25

30

At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.

Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.

Examples of nematode or insect resistant plants are described in e.g. U.S. Patent Applications 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947,

WO 2014/079789 - 18 - PCT/EP2013/074016

12/252,453, 12/209,354, 12/491,396, 12/497,221, 12/644,632, 12/646,004, 12/701,058, 12/718,059, 12/721,595, 12/638,591.

Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.

5

10

15

20

25

30

35

Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in *Brassica* species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and US 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.

5

10

15

20

25

30

35

Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Science 1983, 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Curr. Topics Plant Physiol. 1992, 7, 139-145), the genes encoding a Petunia EPSPS (Science 1986, 233, 478-481), a Tomato EPSPS (J. Biol. Chem. 1988, 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO 02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/036782, WO 03/092360, WO 05/012515 and WO 07/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturallyoccurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. U.S. Patent Applications 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205, 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. U.S. Patent Applications 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.

Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. Patent Application 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from *Streptomyces* species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Patents 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and 7,112,665.

Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). HPPD is an enzyme that catalyze the reaction in which

para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, WO 99/24586, WO 09/144079, WO 02/046387, or US 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 04/024928. Further, plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 07/103567 and WO 08/150473.

5

10

15

20

30

Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyoxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (*Weed Science* 2002, *50*, 700-712), but also, in U.S. Patents 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Patents 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 04/040012, WO 04/106529, WO 05/020673, WO 05/093093, WO 06/007373, WO 06/015376, WO 06/024351, and WO 06/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 07/024782 and U.S. Patent Application 61/288958.

Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 97/41218, for sugar beet in US 5,773,702 and WO 99/057965, for lettuce in US 5,198,599, or for sunflower in WO 01/065922.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.

An "insect-resistant transgenic plant", as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:

an insecticidal crystal protein from *Bacillus thuringiensis* or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (*Microbiology and Molecular Biology Reviews* 1998, 62, 807-813), updated by Crickmore et al. (2005) at the *Bacillus thuringiensis* toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, Cry1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP-A 1 999 141 and WO 07/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. Patent Application 12/249,016; or

5

- a crystal protein from *Bacillus thuringiensis* or a portion thereof which is insecticidal in the presence of a second other crystal protein from *Bacillus thuringiensis* or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (*Nat. Biotechnol.* 2001, *19*, 668-72; *Applied Environm. Microbiol.* 2006, *71*, 1765-1774) or the binary toxin made up of the Cry1A or Cry1F proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618); or
- a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from *Bacillus thuringiensis*, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.105 protein produced by corn event MON89034 (WO 07/027777); or
- a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species,
 and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or
 - 5) an insecticidal secreted protein from *Bacillus thuringiensis* or *Bacillus cereus*, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at:
- http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or
 - a secreted protein from *Bacillus thuringiensis* or *Bacillus cereus* which is insecticidal in the presence of a second secreted protein from *Bacillus thuringiensis* or *B. cereus*, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
- a hybrid insecticidal protein comprising parts from different secreted proteins from *Bacillus thurin- giensis* or *Bacillus cereus*, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or

WO 2014/079789 - 22 - PCT/EP2013/074016

a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or

5

10

25

- a secreted protein from *Bacillus thuringiensis* or *Bacillus cereus* which is insecticidal in the presence of a crystal protein from *Bacillus thuringiensis*, such as the binary toxin made up of VIP3 and Cry1A or Cry1F (U.S. Patent Applications 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618).
- a protein of 9) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)
- Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insectresistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.

An "insect-resistant transgenic plant", as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 07/080126, WO 06/129204, WO 07/074405, WO 07/080127 and WO 07/035650.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:

plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO 06/045633, EP-A 1 807 519, or EP-A 2 018 431.

- 23 -WO 2014/079789 PCT/EP2013/074016

2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 04/090140.

3) plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP-A 1 794 306, WO 06/133827, WO 07/107326, EP-A 1 999 263, or WO 07/107326.

5

10

20

25

30

35

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:

- 1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, 15 the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP-A 0 571 427, WO 95/04826, EP-A 0 719 338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO 99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 04/056999, WO 05/030942, WO 05/030941, WO 05/095632, WO 05/095617, WO 05/095619, WO 2005/095618, WO 05/123927, WO 06/018319, WO 06/103107, WO 06/108702, WO 07/009823, WO 00/22140, WO 06/063862, WO 06/072603, WO 02/034923, WO 08/017518, WO 08/080630, WO 08/080631, EP 07090007.1, WO 08/090008, WO 01/14569, WO 02/79410, WO 03/33540, WO 04/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, US 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 05/002359, US 5.824.790, US 6.013.861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 97/20936, WO 10/012796, WO 10/003701,
 - 2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP-A 0 663 956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4-glucans as disclosed in WO 95/31553, US 2002031826, US 6,284,479, US 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249,

WO 2014/079789 - 24 - PCT/EP2013/074016

plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, EP 06077301.7, US 5,908,975 and EP-A 0 728 213,

3) transgenic plants which produce hyaluronan, as for example disclosed in WO 06/032538, WO 07/039314, WO 07/039315, WO 07/039316, JP-A 2006-304779, and WO 05/012529.

5

30

4) transgenic plants or hybrid plants, such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS), as described in U.S. Patent Applications 12/020,360 and 61/054,026.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering)
which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:

- a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549.
- 15 b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 04/053219.
 - Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333.
- d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO
 20 02/45485.
 - e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective β-1,3-glucanase as described in WO 05/017157, or as described in WO 09/143995.
- f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 06/136351.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:

WO 2014/079789 - 25 - PCT/EP2013/074016

a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947

- b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in US 6,270,828, US 6,169,190, or US 5,965,755
- 5 c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in US 5,434,283 or U.S. Patent Application 12/668303

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Application 61/135,230, WO 09/068313 and WO 10/006732.

10

15

20

25

30

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as Tobacco plants, with altered post-translational protein modification patterns, for example as described in WO 10/121818 and WO 10/145846.

Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non-regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS (4700 River Road, Riverdale, MD 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/not_reg.html).

Additional particularly useful plants containing single transformation events or combinations of transformation events are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).

Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or a combination of transformation events, and that are listed for example in the databases for various national or regional regulatory agencies including Event 1143-14A (cotton, insect control, not deposited, described in WO 06/128569); Event 1143-51B (cotton, insect control, not deposited, described in WO 06/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US-A 2002-120964 or WO 02/034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO 10/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO 10/117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in WO 05/103266 or US-A 2005-216969); Event 3006-210-23 (cotton, insect control - herbicide

WO 2014/079789 - 26 - PCT/EP2013/074016

5

10

15

20

25

30

35

tolerance, deposited as PTA-6233, described in US-A 2007-143876 or WO 05/103266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in WO 06/098952 or US-A 2006-230473); Event 40416 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11508, described in WO 11/075593); Event 43A47 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11509, described in WO 11/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561, described in WO 10/077816); Event ASR-368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US-A 2006-162007 or WO 04/053062); Event B16 (corn, herbicide tolerance, not deposited, described in US-A 2003-126634); Event BPS-CV127-9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in WO 10/080829); Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US-A 2009-217423 or WO 06/128573); Event CE44-69D (cotton, insect control, not deposited, described in US-A 2010-0024077); Event CE44-69D (cotton, insect control, not deposited, described in WO 06/128571); Event CE46-02A (cotton, insect control, not deposited, described in WO 06/128572); Event COT102 (cotton, insect control, not deposited, described in US-A 2006-130175 or WO 04/039986); Event COT202 (cotton, insect control, not deposited, described in US-A 2007-067868 or WO 05/054479); Event COT203 (cotton, insect control, not deposited, described in WO 05/054480); Event DAS40278 (corn, herbicide tolerance, deposited as ATCC PTA-10244, described in WO 11/022469); Event DAS-59122-7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA 11384, described in US-A 2006-070139); Event DAS-59132 (corn, insect control - herbicide tolerance, not deposited, described in WO 09/100188); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA-10442, described in WO 11/066384 or WO 11/066360); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US-A 2009-137395 or WO 08/112019); Event DP-305423-1 (soybean, quality trait, not deposited, described in US-A 2008-312082 or WO 08/054747); Event DP-32138-1 (corn, hybridization system, deposited as ATCC PTA-9158, described in US-A 2009-0210970 or WO 09/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as ATCC PTA-8287, described in US-A 2010-0184079 or WO 08/002872); Event EE-1 (brinjal, insect control, not deposited, described in WO 07/091277); Event FI117 (corn, herbicide tolerance, deposited as ATCC 209031, described in US-A 2006-059581 or WO 98/044140); Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US-A 2005-086719 or WO 98/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US-A 2005-188434 or WO 98/044140); Event GHB119 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8398, described in WO 08/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC PTA-6878, described in US-A 2010-050282 or WO 07/017186); Event GJ11 (corn, herbicide tolerance, deposited as ATCC 209030, described in US-A 2005-188434 or WO 98/044140); Event GM RZ13 (sugar beet, virus resistance, deposited as NCIMB-41601, described in WO 10/076212); Event H7-1 (sugar beet, herbicide tolerance, deposited as NCIMB 41158 or NCIMB 41159, described in US-A 2004-172669 or WO 04/074492); Event JOPLIN1 (wheat, disease tolerance, not deposited, described in US-A 2008-064032); Event LL27 (soybean, herbicide tolerance, deposited as NCIMB41658, described in WO 06/108674 or US-A 2008-320616); Event LL55 (soybean, herbicide tolerance, deposited as NCIMB 41660, described in WO 06/108675 or US-A 2008-196127); Event WO 2014/079789 - 27 - PCT/EP2013/074016

5

10

15

20

25

30

35

LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in WO 03/013224 or US-A 2003-097687); Event LLRICE06 (rice, herbicide tolerance, deposited as ATCC-23352, described in US 6,468,747 or WO 00/026345); Event LLRICE601 (rice, herbicide tolerance, deposited as ATCC PTA-2600, described in US-A 2008-2289060 or WO 00/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in US-A 2007-028322 or WO 05/061720); Event MIR162 (corn, insect control, deposited as PTA-8166, described in US-A 2009-300784 or WO 07/142840); Event MIR604 (corn, insect control, not deposited, described in US-A 2008-167456 or WO 05/103301); Event MON15985 (cotton, insect control, deposited as ATCC PTA-2516, described in US-A 2004-250317 or WO 02/100163); Event MON810 (corn, insect control, not deposited, described in US-A 2002-102582); Event MON863 (corn, insect control, deposited as ATCC PTA-2605, described in WO 04/011601 or US-A 2006-095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO 11/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in WO 09/111263 or US-A 2011-0138504); Event MON87701 (soybean, insect control, deposited as ATCC PTA-8194, described in US-A 2009-130071 or WO 09/064652); Event MON87705 (soybean, quality trait - herbicide tolerance, deposited as ATCC PTA-9241, described in US-A 2010-0080887 or WO 10/037016); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA9670, described in WO 11/034704); Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in WO 10/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA-8911, described in US-A 2011-0067141 or WO 09/102873); Event MON88017 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-5582, described in US-A 2008-028482 or WO 05/059103); Event MON88913 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in WO 04/072235 or US-A 2006-059590); Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO 07/140256 or US-A 2008-260932); Event MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US-A 2006-282915 or WO 06/130436); Event MS11 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO 01/031042); Event MS8 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO 01/041558 or US-A 2003-188347); Event NK603 (corn, herbicide tolerance, deposited as ATCC PTA-2478, described in US-A 2007-292854); Event PE-7 (rice, insect control, not deposited, described in WO 08/114282); Event RF3 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO 01/041558 or US-A 2003-188347); Event RT73 (oilseed rape, herbicide tolerance, not deposited, described in WO 02/036831 or US-A 2008-070260); Event T227-1 (sugar beet, herbicide tolerance, not deposited, described in WO 02/44407 or US-A 2009-265817); Event T25 (corn, herbicide tolerance, not deposited, described in US-A 2001-029014 or WO 01/051654); Event T304-40 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8171, described in US-A 2010-077501 or WO 08/122406); Event T342-142 (cotton, insect control, not deposited, described in WO 06/128568); Event TC1507 (corn, insect control - herbicide tolerance, not deposited, described in US-A 2005-039226 or WO 04/099447); Event VIP1034 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-3925., described in WO 03/052073), Event 32316 (corn, insect control-herbicide tolerance, deposited as

WO 2014/079789 - 28 - PCT/EP2013/074016

PTA-11507, described in WO 11/084632), Event 4114 (corn, insect control-herbicide tolerance, deposited as PTA-11506, described in WO 11/084621).

In material protection the substances of the invention may be used for the protection of technical materials against infestation and destruction by undesirable fungi and/or microorganisms.

5

10

15

20

25

30

35

Technical materials are understood to be in the present context non-living materials that have been prepared for use in engineering. For example, technical materials that are to be protected against micro-biological change or destruction by the active materials of the invention can be adhesives, glues, paper and cardboard, textiles, carpets, leather, wood, paint and plastic articles, cooling lubricants and other materials that can be infested or destroyed by micro-organisms. Within the context of materials to be protected are also parts of production plants and buildings, for example cooling circuits, cooling and heating systems, air conditioning and ventilation systems, which can be adversely affected by the propagation of fungi and/or microorganisms. Within the context of the present invention, preferably mentioned as technical materials are adhesives, glues, paper and cardboard, leather, wood, paints, cooling lubricants and heat exchanger liquids, particularly preferred is wood. The combinations according to the invention can prevent disadvantageous effects like decaying, dis- and decoloring, or molding. The active compound combinations and compositions according to the invention can likewise be employed for protecting against colonization of objects, in particular ship hulls, sieves, nets, buildings, quays and signalling installations, which are in contact with sea water or brackish water.

The method of treatment according to the invention can also be used in the field of protecting storage goods against attack of fungi and microorganisms. According to the present invention, the term "storage goods" is understood to denote natural substances of vegetable or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired. Storage goods of vegetable origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted. Also falling under the definition of storage goods is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Storage goods of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably "storage goods" is understood to denote natural substances of vegetable origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.

Microorganisms capable of degrading or changing the industrial materials which may be mentioned are, for example, bacteria, fungi, yeasts, algae and slime organisms. The active compounds according to the invention preferably act against fungi, in particular moulds, wood-discolouring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae. Microorganisms of the following genera may be mentioned as examples: Alternaria, such as Alternaria tenuis, Aspergillus, such as Aspergillus niger, Chaetomium, such

as Chaetomium globosum, Coniophora, such as Coniophora puetana, Lentinus, such as Lentinus tigrinus, Penicillium, such as Penicillium glaucum, Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans, Sclerophoma, such as Sclerophoma pityophila, Trichoderma, such as Trichoderma viride, Escherichia, such as Escherichia coli, Pseudomonas, such as Pseudomonas aeruginosa, and Staphylococcus, such as Staphylococcus aureus.

5

10

15

20

25

30

In addition, the compounds of the formula (I) according to the invention also have very good antimycotic activity. They have a very broad antimycotic activity spectrum in particular against dermatophytes and yeasts, moulds and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata) and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, Microsporon species such as Microsporon canis and audouinii. The list of these fungi by no means limits the mycotic spectrum which can be covered, but is only for illustration.

When applying the compounds according to the invention the application rates can be varied within a broad range. The dose of active compound/application rate usually applied in the method of treatment according to the invention is generally and advantageously

- for treatment of part of plants, e.g. leaves (foliar treatment): from 0.1 to 10,000 g/ha, preferably from 50 to 1,000 g/ha, more preferably from 100 to 750g/ha; in case of drench or drip application, the dose can even be reduced, especially while using inert substrates like rockwool or perlite;
- for seed treatment: from 2 to 250 g per 100 kg of seed, preferably from 3 to 200 g per 100 kg of seed, more preferably from 2.5 to 50 g per 100 kg of seed, even more preferably from 2.5 to 25 g per 100 kg of seed;
 - for soil treatment: from 0.1 to 10,000 g/ha, preferably from 1 to 5,000 g/ha.

The doses herein indicated are given as illustrative examples of the method according to the invention. A person skilled in the art will know how to adapt the application doses, notably according to the nature of the plant or crop to be treated.

The combination according to the invention can be used in order to protect plants within a certain time range after the treatment against pests and/or phytopathogenic fungi and/or microorganisms. The time range, in which protection is effected, spans in general 1 to 28 days, preferably 1 to 14 days, more preferably 1 to 10 days, even more preferably 1 to 7 days after the treatment of the plants with the combinations or up to 200 days after the treatment of plant propagation material.

The application of the compositions according to the invention on growing plants or plant parts can also be used to protect plants or plant parts after harvesting.

According to the invention, post-harvest and storage diseases may be caused for example by the following fungi: Colletotrichum spp., e.g. Colletotrichum musae, Colletotrichum gloeosporioides, Colletotrichum

WO 2014/079789 - 30 - PCT/EP2013/074016

coccodes; Fusarium spp., e.g. Fusarium semitectum, Fusarium moniliforme, Fusarium solani, Fusarium oxysporum; Verticillium spp., e.g. Verticillium theobromae; Nigrospora spp.; Botrytis spp., e.g. Botrytis cinerea; Geotrichum spp., e.g. Geotrichum candidum; Phomopsis spp., Phomopsis natalensis; Diplodia spp., e.g. Diplodia citri; Alternaria spp., e.g. Alternaria citri, Alternaria alternata; Phytophthora spp., e.g. Phytophthora citrophthora, Phytophthora fragariae, Phytophthora cactorum, Phytophthora parasitica; Septoria spp., e.g. Septoria depressa; Mucor spp., e.g. Mucor piriformis; Monilinia spp., e.g. Monilinia fructigena, Monilinia laxa; Venturia spp., e.g. Venturia inaequalis, Venturia pyrina; Rhizopus spp., e.g. Rhizopus stolonifer, Rhizopus oryzae; Glomerella spp., e.g. Glomerella cingulata; Sclerotinia spp., e.g. Sclerotinia fruiticola; Ceratocystis spp., e.g. Ceratocystis paradoxa; Penicillium spp., e.g. Penicillium funiculosum, Penicillium expansum, Penicillium digitatum, Penicillium italicum; Gloeosporium spp., e.g. Gloeosporium album, Gloeosporium perennans, Gloeosporium fructigenum, Gloeosporium singulata; Phlyctaena spp., e.g. Phlyctaena vagabunda; Cylindrocarpon spp., e.g. Cylindrocarpon mali; Stemphyllium spp., e.g. Stemphyllium vesicarium; Phacydiopycnis spp., e.g. Phacydiopycnis malirum; Thielaviopsis spp., e.g. Thielaviopsis paradoxy; Aspergillus spp., e.g. Aspergillus niger, Aspergillus carbonarius; Nectria spp., e.g. Nectria galligena; Pezicula spp.

5

10

15

According to the invention, post-harvest storage disorders are for example scald, scorch, softening, senescent breakdown, lenticel spots, bitter pit, browning, water core, vascular breakdown, CO₂ injury, CO₂ deficiency and O₂ deficiency.

Furthermore combinations and compositions according to the invention may also be used to reduce the contents of mycotoxins in plants and the harvested plant material and therefore in foods and animal feed stuff made therefrom. Especially but not exclusively the following mycotoxins can be specified: Deoxynivalenole (DON), Nivalenole, 15-Ac-DON, 3-Ac-DON, T2- und HT2- Toxins, Fumonisines, Zearalenone Moniliformine, Fusarine, Diaceotoxyscirpenole (DAS), Beauvericine, Enniatine, Fusaroproliferine, Fusarenole, Ochratoxines, Patuline, Ergotalkaloides und Aflatoxines, which are caused for example by the following fungal diseases: Fusarium spec., like Fusarium acuminatum, F. avenaceum, F. crookwellense, F. culmorum, F. graminearum (Gibberella zeae), F. equiseti, F. fujikoroi, F. musarum, F. oxysporum, F. proliferatum, F. poae, F. pseudograminearum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. sporotrichoides, F. langsethiae, F. subglutinans, F. tricinctum, F. verticillioides and others but also by Aspergillus spec., Penicillium spec., Claviceps purpurea, Stachybotrys spec. and others.

The good fungicidal activity of the active compound combinations according to the invention is evident from the example below. While the individual active compounds exhibit weaknesses with regard to the fungicidal activity, the combinations have an activity which exceeds a simple addition of activities.

A synergistic effect of fungicides is always present when the fungicidal activity of the active compound combinations exceeds the total of the activities of the active compounds when applied individually.

The expected activity for a given combination of two active compounds can be calculated as follows (cf. Colby, S.R., "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", *Weeds* 1967, *15*, 20-22):

If

5 X is the efficacy when active compound A is applied at an application rate of m ppm (or g/ha),

Y is the efficacy when active compound B is applied at an application rate of n ppm (or g/ha),

E is the efficacy when the active compounds A and B are applied at application rates of \underline{m} and \underline{n} ppm (or g/ha), respectively, and

then
$$E = X + Y - \frac{X \cdot Y}{100}$$

The degree of efficacy, expressed in % is denoted. 0 % means an efficacy which corresponds to that of the control while an efficacy of 100 % means that no disease is observed.

If the actual fungicidal activity exceeds the calculated value, then the activity of the combination is superadditive, i.e. a synergistic effect exists. In this case, the efficacy which was actually observed must be greater than the value for the expected efficacy (E) calculated from the abovementioned formula. A further way of demonstrating a synergistic effect is the method of Tammes (cf. "Isoboles, a graphic representation of synergism in pesticides" in *Neth. J. Plant Path.*, 1964, 70, 73-80).

The invention is illustrated by the examples below. However, the invention is not limited to the examples.

20

15

25 Example 1

Alternaria test (tomatoes) / preventive

Solvent: 24.5 parts by weight of acetone

24.5 parts by weight of dimethylacetamide

Emulsifier: 1 part by weight of alkylaryl polyglycol ether

WO 2014/079789 - 32 - PCT/EP2013/074016

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.

To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of *Alternaria solani*. The plants are then placed in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of 100%.

The test is evaluated 3 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control while an efficacy of 100% means that no disease is observed.

The table 1 below clearly shows that the observed activity of the active compound combination according to the invention is greater than the calculated activity, i.e. a synergistic effect is present.

Table 1 Alternaria test (tomatoes) / preventive

Active compounds		Application rate of active compound in ppm a.i.	Efficacy in %	
			found*	calc.**
(I-1)	2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone	100 50	26 29	
Ex 10	3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline	100	37	
Ex 11	3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline	50	38	
Ex 12	3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline	50	13	
Ex 13	N-[1-(4-isopropoxy-2-methylphenyl)-2-methyl-1-oxopropan-2-yl]-3-methylthiophene-2-carboxamide	20	52	
Ex 14	N-methyl-alpha-methoxy-2-[(2,5-dimethylphe-noxy)methyl]phenylacetamide	5	52	
Ex 15	[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol	5	24	
(I-1) + Ex 10 1:1		100 + 100	66	53
(I-1) + Ex 11 1:1		50 + 50	67	56
(I-1) + Ex 12 1:1		50 + 50	84	38
(I-1) + Ex 13 1:0.4		50 + 20	82	66
(I-1) +	Ex 14 1:0.1	50 + 5	74	66
(I-1) + Ex 15 1:0.1		50 + 5	61	46

found = activity found calc. = activity calculated using Colby's formula

WO 2014/079789 - 34 - PCT/EP2013/074016

Example 2

Botrytis test (beans) / preventive

Solvent: 24.5 parts by weight of acetone

24.5 parts by weight of dimethylacetamide

5 Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.

To test for preventive activity, young plants are sprayed with the preparation of active compound. After the spray coating has dried on, 2 small pieces of agar covered with growth of *Botrytis cinerea* are placed on each leaf. The inoculated plants are placed in a darkened chamber at 20 °C and a relative atmospheric humidity of 100%.

2 days after the inoculation, the size of the lesions on the leaves is evaluated. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.

15 The table 2 below clearly shows that the observed activity of the active compound combination according to the invention is greater than the calculated activity, i.e. a synergistic effect is present.

Botrytis test (beans) / preventive

Table 2

Active compounds		Application rate of active compound in ppm a.i.	Efficacy in %	
			found*	calc.**
(I-1)	2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone	25 12.5	33 15	
Ex 11	3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline	0.5	30	
Ex 12	3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline	0.5	35	
Ex 14	N-methyl-alpha-methoxy-2-[(2,5-dimethylphe-noxy)methyl]phenylacetamide	1.25	0	
Ex 15	[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol	2.5	0	
(I-1) + Ex 11 1:0.02		25 + 0.5	66	53
(I-1) + Ex 12 1:0.02		25 + 0.5	65	56
(I-1) + Ex 14 1:0.1		12.5 + 1.25	53	15
(I-1) + Ex 15 1:0.1		25 + 2.5	79	33

found = activity found calc. = activity calculated using Colby's formula

WO 2014/079789 - 36 - PCT/EP2013/074016

Example 3

Venturia test (apples) / preventive

Solvent: 24.5 parts by weight of acetone

24.5 parts by weight of dimethylacetamide

5 Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.

To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the causal agent of apple scab (*Venturia inaequalis*) and then remain for 1 day in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of 100%.

The plants are then placed in a greenhouse at approximately 21 °C and a relative atmospheric humidity of approximately 90%.

15 The test is evaluated 10 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.

The table 3 below clearly shows that the observed activity of the active compound combination according to the invention is greater than the calculated activity, i.e. a synergistic effect is present.

Venturia test (apples) / preventive

Table 3

Active compounds		Application rate of active compound in ppm a.i.	Efficacy in %	
			found*	calc.**
(I-1)	2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone	50 25 12.5	62 15 0	
Ex 11 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline		1	0	
Ex 12	3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline	0.25	46	
Ex 13	N-[1-(4-isopropoxy-2-methylphenyl)-2-methyl-1-oxopropan-2-yl]-3-methylthiophene-2-carboxamide	10	64	
Ex 14	N-methyl-alpha-methoxy-2-[(2,5-dimethylphe-noxy)methyl]phenylacetamide	1.25	31	
Ex 15	[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol	5	60	
(I-1) + Ex 11 1:0.02		50 + 1	88	62
(I-1) + Ex 12 1:0.02		12.5 + 0.25	66	46
(I-1) + Ex 13 1:0.4		25 + 10	88	69
(I-1) + Ex 14 1:0.1		12.5 + 1.25	81	31
(I-1) + Ex 15 1:0.1		50 + 5	97	85

found = activity found calc. = activity calculated using Colby's formula

WO 2014/079789 - 38 - PCT/EP2013/074016

Example 4

Leptosphaeria nodorum test (wheat) / preventive

Solvent: 49 parts by weight of N,N-dimethylacetamide

Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.

To test for preventive activity, young plants are sprayed with the preparation of active compound or active compound combination at the stated rate of application.

After the spray coating has been dried, the plants are sprayed with a spore suspension of *Leptosphaeria nodorum*. The plants remain for 48 hours in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of approximately 100%.

The plants are placed in the greenhouse at a temperature of approximately 22 °C and a relative atmospheric humidity of approximately 80%.

15 The test is evaluated 8 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.

The table 4 below clearly shows that the observed activity of the active compound combination according to the invention is greater than the calculated activity, i.e. a synergistic effect is present.

Table 4 Leptosphaeria nodorum test (wheat) / preventive

Active compounds		Application rate of active compound in ppm a.i.	Efficacy in %	
			found*	calc.**
(I-1)	2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone	1000	0	
Ex 10	3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline	250	88	
Ex 11	3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline	250	75	
Ex 12	3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline	250	75	
Ex 13	N-[1-(4-isopropoxy-2-methylphenyl)-2-methyl-1-oxopropan-2-yl]-3-methylthiophene-2-carboxamide	250	25	
Ex 14	N-methyl-alpha-methoxy-2-[(2,5-dimethylphe-noxy)methyl]phenylacetamide	250	25	
Ex 15	[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol	250	88	
(I-1) + Ex 10 4:1		1000 + 250	100	88
(I-1) + Ex 11 4:1		1000 + 250	88	75
(I-1) + Ex 12 4:1		1000 + 250	100	75
(I-1) + Ex 13 4:1		1000 + 250	75	25
(I-1) + Ex 14 4:1		1000 + 250	75	25
(I-1) + Ex 15 4:1		1000 + 250	100	88

found = activity found calc. = activity calculated using Colby's formula

Patent Claims

- 1. Active compound combinations comprising
 - (A) at least one dithiino-tetracarboximide of formula (I)

$$\mathbb{R}^{1} \longrightarrow \mathbb{N}^{0} \longrightarrow \mathbb{N}^{0}$$

in which R¹ and R² are identical and represent methyl, ethyl, n-propyl or isopropyl, and n represents 0 or 1, or an agrochemically acceptable salt thereof,

and

5

10

15

20

- (B) at least one further active compound selected from the following group consisting of
 - (1) 2-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione,
 - $1-\{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl\}-1H-1,2,4-triazole-5-thiol, \\$
 - (3) 1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate,
- (4) 2-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione,
 - (5) 2-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione,
 - (6) 1-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate,
 - (7) 1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate,
 - (8) 2-(6-benzylpyridin-2-yl)quinazoline,
 - (9) 2-[6-(3-fluoro-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazoline,
- 25 (10) 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline,
 - (11) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline,
 - (12) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl) quinolinee,
 - (13) N-[1-(4-isopropoxy-2-methylphenyl)-2-methyl-1-oxopropan-2-yl]-3-methylthiophene-2-carboxamide,
- 30 (14) N-methyl-alpha-methoxy-2-[(2,5-dimethylphenoxy)methyl]phenylacetamide,
 - (15) [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol,
 - (16) (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol,

- (17) (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol.
- 2. Active compound combinations according to Claim 1, wherein the compound of the formula (I) is (I-1) 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone.
 - 3. Compositions comprising active compound combinations according to Claim 1 or 2 and further comprising auxiliaries, solvents, carriers, surfactants or extenders.
 - 4. Method for controlling phytopathogenic fungi in crop protection, characterized in that active compound combinations according to Claim 1 or 2 or compositions according to Claim 3 are applied to the seed, the plant, to fruits of plants or to the soil on which the plant grows or is supposed to grow.

10

- 5. Method according to Claim 4, characterized in that the plant, the fruits of plants or the soil on which the plant grows or is intended to grow are treated.
- 6. Method according to Claim 4, characterized in that in the treatment of leaves from 0.1 to 10 000 g/ha and in the treatment of seed from 2 to 200 g per 100 kg of seed are employed.
 - 7. Use of active compound combinations according to Claim 1 or 2 or of compositions according to Claim 3 for controlling unwanted phytopathogenic fungi in crop protection.
 - 8. Use of active compound combinations according to Claim 1 or 2 or of compositions according to Claim 3 for treating seed, seed of transgenic plants and transgenic plants.
- 20 9. Seed treated with active compound combinations according to Claim 1 or 2 or with compositions according to Claim 3.
 - 10. Method of treating plants in need of better growth, increased harvest yields, a better developed root system, a larger leaf area, greener leaves and/or stronger shoots comprising applying to said plants active compound combinations according to Claim 1 or 2 or compositions according to Claim 3.

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2013/074016

A. CLASSIFICATION OF SUBJECT MATTER
INV. A01N43/90 A01N43/653 INV. A01N43/54 A01N43/42 A01N43/10 A01N43/80 A01N37/18 ADD. According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1 - 10Χ WO 2012/130686 A2 (BAYER CROPSCIENCE AG [DE]; SEITZ THOMAS [DE]; WACHENDORFF-NEUMANN ULRI) 4 October 2012 (2012-10-04) claim 1: compound 2 1 - 10Χ WO 2011/029551 A2 (BAYER CROPSCIENCE AG [DE]; SEITZ THOMAS [DE]; WACHENDORFF-NEUMANN ULRÍ) 17 March 2011 (2011-03-17) see claim 1. compound (15) "other fungicides" Х Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 15/04/2014 21 January 2014 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Götz, Gerhard

International application No. PCT/EP2013/074016

INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-10(partially)
The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

- 1. claims: 1-10(partially)
 - Compound (A) and at least one of compounds (B) (1) to (7)
- 2. claims: 1-10(partially)
 - Compound (A) and at least one of compounds (B) (8) to (9)
- 3. claims: 1-10(partially)
 - Compound (A) and at least one of compounds (B) (10) to (12)
- 4. claims: 1-10(partially)
 - Compound (A) and compounds (B) (13)

- 5. claims: 1-10(partially)
 - Compound (A) and compound (B) (14)

- 6. claims: 1-10(partially)
 - Compound (A) and at least one of compounds (15) to (17)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2013/074016

	ocument arch report	Publication date	Patent family member(s)		Publication date	
WO 201	2130686 A2	04-10-2012	CA CN CO CR EP KR US WO	2830790 103607892 6801739 20130483 2688408 20140024336 2014073503 2012130686	A A2 A A2 A A1	04-10-2012 26-02-2014 29-11-2013 17-10-2013 29-01-2014 28-02-2014 13-03-2014 04-10-2012
WO 201	1029551 A2	17-03-2011	AR AU CA CO CR EA EP JP KR PE TW US	077956 2010294602 2773858 102595905 6511232 20120125 201290130 2477497 2013504526 20120090049 13562012 201121421 2011064827 2011029551	A1 A2 A1 A2 A1 A2 A A1 A	05-10-2011 01-03-2012 17-03-2011 18-07-2012 31-08-2012 03-08-2012 30-08-2012 25-07-2012 07-02-2013 16-08-2012 05-10-2012 01-07-2011 17-03-2011