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Estimating A Performance
Characteristic Of A Job Using A Performance Model

Background
[0001] Many enterprises (such as companies, educational organizations, and

government agencies) employ relatively large volumes of data that are often subject
to analysis. A substantial amount of the data of an enterprise can be unstructured
data, which is data that is not in the format used in typical commercial databases.
Existing infrastructure may not be able to efficiently handle the processing of

relatively large volumes of unstructured data.

Brief Description Of The Drawings

[0002] Some embodiments are described with respect to the following figures:

Fig. 1 is a block diagram of an example arrangement that incorporates some

implementations;

Figs. 2A-2B are graphs illustrating map tasks and reduce tasks of a job in a

MapReduce environment, according to some examples; and

Fig. 3 is a flow diagram of a process of estimating a performance

characteristic of a job, according to some implementations.

Detailed Description

[0003] For processing relatively large volumes of unstructured data, a
MapReduce framework provides a distributed computing platform can be employed.
Unstructured data refers to data not formatted according to a format of a relational
database management system. An open-source implementation of the MapReduce
framework is Hadoop. The MapReduce framework is increasingly being used across
an enterprise for distributed, advanced data analytics and to provide new
applications associated with data retention, regulatory compliance, e-discovery,
litigation, or other issues. Diverse applications can be run over the same data sets

to efficiently utilize the resources of large distributed systems.
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[0004] Generally, the MapReduce framework includes a master node and
multiple slave nodes. A MapReduce job submitted to the master node is divided into
multiple map tasks and multiple reduce tasks, which are executed in parallel by the
slave nodes. The map tasks are defined by a map function, while the reduce tasks
are defined by a reduce function. Each of the map and reduce functions are user-
defined functions that are programmable to perform target functionalities.

[0005] The map function processes corresponding segments of input data to
produce intermediate results, where each of the multiple map tasks (that are based
on the map function) process corresponding segments of the input data. For
example, the map tasks process input key-value pairs to generate a set of
intermediate key-value pairs. The reduce tasks (based on the reduce function)
produce an output from the intermediate results. For example, the reduce tasks
merge the intermediate values associated with the same intermediate key.

[0006] More specifically, the map function takes input key-value pairs (ky, v4) and
produces a list of intermediate key-value pairs (k», v2). The intermediate values
associated with the same key k> are grouped together and then passed to the reduce
function. The reduce function takes an intermediate key k> with a list of values and

processes them to form a new list of values (v3), as expressed below.

maplk,,v,) — list(k,,v,)
reducelk,,list(v,))— list(v,)

[0007] Although reference is made to the MapReduce framework in some
examples, it is noted that techniques or mechanisms according to some
implementations can be applied in other distributed processing frameworks. More
generally, map tasks are used to process input data to output intermediate results,
based on a predefined function that defines the processing to be performed by the
map tasks. Reduce tasks take as input partitions of the intermediate results to
produce outputs, based on a predefined function that defines the processing to be
performed by the reduce tasks. The map tasks are considered to be part of a map
stage, whereas the reduce tasks are considered to be part of a reduce stage. In
addition, although reference is made to unstructured data in some examples,
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techniques or mechanisms according to some implementations can also be applied
to structured data formatted for relational database management systems.

[0008] Fig. 1 illustrates an example arrangement that provides a distributed
processing framework that includes mechanisms according to some implementations
for estimating performance characteristics of jobs to be executed in the distributed
processing framework. As depicted in Fig. 1, a storage subsystem 100 includes
multiple storage modules 102, where the multiple storage modules 102 can provide
a distributed file system 104. The distributed file system 104 stores multiple
segments 106 of input data across the multiple storage modules 102. The
distributed file system 104 can also store outputs of map and reduce tasks.

[0009] The storage modules 102 can be implemented with storage devices such
as disk-based storage devices or integrated circuit storage devices. In some
examples, the storage modules 102 correspond to respective different physical
storage devices. In other examples, plural ones of the storage modules 102 can be
implemented on one physical storage device, where the plural storage modules

correspond to different partitions of the storage device.

[0010] The system of Fig. 1 further includes a master node 110 that is connected
to slave nodes 112 over a network 114. The network 114 can be a private network
(e.g., a local area network or wide area network) or a public network (e.g., the
Internet), or some combination thereof. The master node 110 includes one or more
central processing units (CPUs) 124. Each slave node 112 also includes one or
more CPUs (not shown). Although the master node 110 is depicted as being
separate from the slave nodes 112, it is noted that in alternative examples, the
master node 112 can be one of the slave nodes 112.

[0011] A “node” refers generally to processing infrastructure to perform
computing operations. A node can refer to a computer, or a system having multiple
computers. Alternatively, a node can refer to a CPU within a computer. As yet
another example, a node can refer to a processing core within a CPU that has
multiple processing cores. More generally, the system can be considered to have

multiple processors, where each processor can be a computer, a system having
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multiple computers, a CPU, a core of a CPU, or some other physical processing
partition.

[0012] In accordance with some implementations, the master node 110 is
configured to perform scheduling of jobs on the slave nodes 112. The slave nodes
112 are considered the working nodes within the cluster that makes up the

distributed processing environment.

[0013] Each slave node 112 has a fixed number of map slots and reduce slots,
where map tasks are run in respective map slots, and reduce tasks are run in
respective reduce slots. The number of map slots and reduce slots within each
slave node 112 can be preconfigured, such as by an administrator or by some other
mechanism. The available map slots and reduce slots can be allocated to the jobs.
The map slots and reduce slots are considered the resources used for performing
map and reduce tasks. A “slot” can refer to a time slot or alternatively, to some other
share of a processing resource that can be used for performing the respective map
or reduce task. Depending upon the load of the overall system, the number of map

slots and number of reduce slots that can be allocated to any given job can vary.

[0014] The slave nodes 112 can periodically (or repeatedly) send messages to
the master node 110 to report the number of free slots and the progress of the tasks
that are currently running in the corresponding slave nodes. Based on the
availability of free slots (map slots and reduce slots) and the rules of a scheduling
policy, the master node 110 assigns map and reduce tasks to respective slots in the
slave nodes 112.

[0015] Each map task processes a logical segment of the input data that
generally resides on a distributed file system, such as the distributed file system 104
shown in Fig. 1. The map task applies the map function on each data segment and
buffers the resulting intermediate data. This intermediate data is partitioned for input
to the multiple reduce tasks.

[0016] The reduce stage (that includes the reduce tasks) has three phases:

shuffle phase, sort phase, and reduce phase. In the shuffle phase, the reduce tasks



WO 2012/105969 PCT/US2011/023438

-5-

fetch the intermediate data from the map tasks. In the sort phase, the intermediate
data from the map tasks are sorted. An external merge sort is used in case the
intermediate data does not fit in memory. Finally, in the reduce phase, the sorted
intermediate data (in the form of a key and all its corresponding values, for example)
is passed on the reduce function. The output from the reduce function is usually
written back to the distributed file system 104.

[0017] The master node 110 of Fig. 1 includes a job profiler 120 that is able to
create a job profile for a given job, in accordance with some implementations. The
job profile describes characteristics of the given job to be performed by the system of
Fig. 1. A job profile created by the job profiler 120 can be stored in a job profile
database 122. The job profile database 122 can store multiple job profiles, including

job profiles of jobs that have executed in the past.

[0018] In other implementations, the job profiler 120 and/or profile database 122
can be located at another node.

[0019] The master node 110 also includes a performance characteristic estimator
116 according to some implementations. The estimator 116 is able to produce an
estimated performance characteristic, such as an estimated completion time, of a
job, based on the corresponding job profile and resources (e.g., numbers of map
slots and reduce slots) allocated to the job. The estimated completion time refers to
either a total time duration for the job, or an estimated time at which the job will
complete. In other examples, other performance characteristics of a job can be
estimated, such as cost of the job, error rate of the job, and so forth.

[0020] Figs. 2A and 2B illustrate differences in completion times of performing
map and reduce tasks of a given job due to different allocations of map slots and
reduce slots. Fig. 2A illustrates an example in which there are 64 map slots and 64
reduce slots allocated to the given job. The example also assumes that the total
input data to be processed for the given job can be separated into 64 partitions.
Since each partition is processed by a corresponding different map task, the given
job includes 64 map tasks. Similarly, 64 partitions of intermediate results output by

the map tasks can be processed by corresponding 64 reduce tasks. Since there are
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64 map slots allocated to the map tasks, the execution of the given job can be

completed in a single map wave.

[0021] As depicted in Fig. 2A, the 64 map tasks are performed in corresponding
64 map slots 202, in a single wave (represented generally as 204). Similarly, the 64
reduce tasks are performed in corresponding 64 reduce slots 206, also in a single
reduce wave 208, which includes shuffle, sort, and reduce phases represented by
different line patterns in Fig. 2A.

[0022] A “map wave” refers to an iteration of the map stage. If the number of
allocated map slots is greater than or equal to the number of map tasks, then the
map stage can be completed in a single iteration (single wave). However, if the
number of map slots allocated to the map stage is less than the number of map
tasks, then the map stage would have to be completed in multiple iterations (multiple
waves). Similarly, the number of iterations (waves) of the reduce stage is based on
the number of allocated reduce slots as compared to the number of reduce tasks.

[0023] Fig. 2B illustrates a different allocation of map slots and reduce slots.
Assuming the same given job (input data that is divided into 64 partitions), if the
number of resources allocated is reduced to 16 map slots and 22 reduce slots, for
example, then the completion time for the given job will change (increase). Fig. 2B
illustrates execution of map tasks in the 16 map slots 210. In Fig. 2B, instead of
performing the map tasks in a single wave as in Fig. 2A, the example of Fig. 2B
illustrates four waves 212A, 212B, 212C, and 212D of map tasks. The reduce tasks
are performed in the 22 reduce slots 214, in three waves 216A, 216B, and 216C.
The completion time of the given job in the Fig. 2B example is greater than the
completion time in the Fig. 2A example, since a smaller amount of resources was

allocated to the given job in the Fig. 2B example than in the Fig. 2A example.

[0024] Thus, it can be observed from the examples of Figs. 2A and 2B that it can
be difficult to predict the execution time of any given job when different amounts of
resources are allocated to the job.
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[0025] In accordance with some implementations, mechanisms are provided to
estimate a job completion time of a job as a function of allocated resources. By
being able to estimate a job completion time as a function of allocated resources, the
master node 110 (Fig. 1) is able to determine whether the given job is able to
achieve a performance goal associated with the given job. In some examples, the
performance goal is expressed as a specific deadline, or some other indication of a
time duration within which the job should be executed. Other performance goals can
be used in other examples. For example, a performance goal can be expressed as
a service level objective (SLO), which specifies a level of service to be provided
(expected performance, expected time, expected cost, etc.).

[0026] Fig. 3 is a flow diagram of a process according to some implementations.
The process includes receiving (at 302) a job profile that includes characteristics of a
particular job. Receiving the job profile can refer to a given node (such as the
master node 110) receiving the job profile that was created at another node.
Alternatively, receiving the job profile can involve the given node creating the job

profile, such as by the job profiler 120 in Fig. 1.

[0027] Next, a performance model is produced (at 304) based on the job profile
and allocated amount of resources for the job (e.g., allocated number of map slots
and allocated number of reduce slots). Using the performance model, a
performance characteristic of the job is estimated (at 306). For example, this
estimation can be performed by the performance characteristic estimator 116 in Fig.
1. In some implementations, the estimated performance characteristic is an
estimated completion time of the job (an amount of time for the job to complete
execution) given the allocated resources (e.g., number of map slots and number of
reduce slots). Alternatively, in other implementations, other performance
characteristics of the job on a given set of resources can be estimated.

[0028] In some implementations, the particular job is executed in a given
environment (including a system having a specific arrangement of physical machines

and respective map and reduce slots in the physical machines), and the job profile
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and performance model are applied with respect to the particular job in this given

environment.

[0029]

A job profile reflects performance invariants that are independent of the

amount of resources assigned to the job over time, for each of the phases of the job:

map, shuffle, sort, and reduce phases.

[0030]

The map stage includes a number of map tasks. To characterize the

distribution of the map task durations and other invariant properties, the following

metrics can be specified in some examples:

input

(M M, .M. AvgSize,, Selectivity,, ),where

min? ¥ avg * ¥ max 1

M., is the minimum map task duration. Since the shuffle phase starts when
the first map task completes, M, is used as an estimate for the shuffle phase

beginning.

M, is the average duration of map tasks to indicate the average duration of

avg

a map wave.

M., is the maximum duration of a map task. Since the sort phase of the
reduce stage can start only when the entire map stage is complete, i.e., all the
map tasks complete, M, ., is used as an estimate for a worst map wave

completion time.

AvgSize,™ is the average amount of input data for a map stage. This

parameter is used to estimate the number of map tasks to be spawned for a
new data set processing.

Selectivity,,is the ratio of the map data output size to the map data input size.
It is used to estimate the amount of intermediate data produced by the map
stage as the input to the reduce stage (note that the size of the input data to

the map stage is known).
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[0031] The duration of the map tasks is affected by whether the input data is
local to the machine running the task (local node), or on another machine on the
same rack (local rack), or on a different machine of a different rack (remote rack).
These different types of map tasks are tracked separately. The foregoing metrics
can be used to improve the prediction accuracy of the performance model and

decision making when the types of available map slots are known.

[0032] As described earlier, the reduce stage includes the shuffle, sort and
reduce phases. The shuffle phase begins only after the first map task has
completed. The shuffle phase (of any reduce wave) completes when the entire map
stage is complete and all the intermediate data generated by the map tasks have

been shuffled to the reduce tasks.

[0033] The completion of the shuffle phase is a prerequisite for the beginning of
the sort phase. Similarly, the reduce phase begins only after the sort phase is
complete. Thus the profiles of the shuffle, sort, and reduce phases are represented
by their average and maximum time durations. In addition, for the reduce phase, the

reduce selectivity, denoted as Selectivity , , is computed, which is defined as the

ratio of the reduce data output size to its data input size.

[0034] The shuffle phase of the first reduce wave may be different from the
shuffle phase that belongs to the subsequent reduce waves (after the first reduce
wave). This can happen because the shuffle phase of the first reduce wave overlaps
with the map stage and depends on the number of map waves andtheir durations.

Therefore, two sets of measurements are collected: (Sh1 Shﬂnax)for a shuffle phase

avg

of the first reduce wave (referred to as the “first shuffle phase”), and (Sht”’ Sh¥ )for

avg max

the shuffle phase of the subsequent reduce waves (referred to as “typical shuffle
phase”). Since techniques according to some implementations are looking for the
performance invariants that are independent of the amount of allocated resources to
the job, a shuffle phase of the first reduce wave is characterized in a special way and

the parameters (Sh1 and Sh'! ) reflect only durations of the non-overlapping

avg max

portions (non-overlapping with the map stage) of the first shuffle. In other words, the
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durations represented by Sh] and Sh!

vg max

represent portions of the duration of the

shuffle phase of the first reduce wave that do not overlap with the map stage.

[0035] Thus, the job profile in the shuffle phase is characterized by two pairs of

measurements:

(sh.,.Sh.. ), (Shte,shy

avg? avg’ max ) .

[0036] If the job execution has only a single reduce wave, the typical shuffle
phase duration is estimated using the sort benchmark (since the shuffle phase
duration is defined entirely by the size of the intermediate results output by the map

stage).

[0037] Once the job profile is provided, then a performance model that is based
on the job profile can be produced (304 in Fig. 3). In some implementations, the
performance model is based on the job profile and lower and upper bounds of time
durations of different phases of the job. The performance model is also produced
based on an allocated amount of resources for the job (e.g., allocated number of
map slots and allocated number of reduce slots). Such a performance model can be
used for predicting the job completion time as a function of the job input data set and
the allocated resources, where the job input data set refers to the input data to the
job that is to be performed.

[0038] In some implementations, the performance model is characterized by
lower and upper bounds for a makespan (a completion time of the job) of a given set
of n (n > 1) tasks that are processed by k (k > 1) servers (or by k slots in a
MapReduce environment). Let T4, To, ..., T, be the durations of n tasks of a given job.
Let k be the number of slots that can each execute one task at a time. The
assignment of tasks to slots is done using a simple, online, greedy algorithm, e.g.,

assign each task to the slot with the earliest finishing time.

[0039] Let u = (27:17-")/” and A=max, {T,} be the mean and maximum

durations of the n tasks, respectively. The makespan of the greedy task assignment

is at least n - u/kand at most (n—1)- u/k + 4. The lower bound is trivial, as the
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best case is when all n tasks are equally distributed among the k slots (or the overall
amount of work n-uis processed as fast as it can by k slots). Thus, the overall
makespan (completion time of the job) is at least n - u/k (lower bound of the

completion time).

[0040] For the upper bound of the completion time for the job, the worst case
scenario is considered, i.e., the longest task (T )e(T,,T,,...,T, ) with duration Ais the

last task processed. In this case, the time elapsed before the last task is scheduled
is (Z::T, )/k <(n-1)-u/k . Thus, the makespan of the overall assignment is at most

(n—1)- u/k + 2. These bounds are particularly useful when 1 <<n - u/k , in other

words, when the duration of the longest task is small as compared to the total

makespan.

[0041] The difference between lower and upper bounds (of the completion time)
represents the range of possible job completion times due to non-determinism and
scheduling. As discussed below, these lower and upper bounds, which are part of
the properties of the performance model, are used to estimate a completion time for

a corresponding job J.

[0042] The given job J has a given profile created by the job profiler 120 (Fig. 1)
or extracted from the profile database 122. Let J be executed with a new input
dataset that can be partitioned into Ny map tasks and Ng reduce tasks. Let Sy and
Sr be the number of map slots and the number of reduce slots, respectively,
allocated to job J.

[0043] Let M, ,and M, be the average and maximum time durations of map

tasks (defined by the job J profile). Then, based on the Makespan theorem, the

lower and upper bounds on the duration of the entire map stage (denoted as T, and

T,/ , respectively) are estimated as follows:

T =N, /S, - M

avg?
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7% =(N,, —1)/SM M, +M

max *

[0044] Stated differently, the lower bound of the duration of the entire map stage

is based on a product of the average duration (M, ) of map tasks multiplied by the

avg
ratio of the number map tasks (Ny) to the number of allocated map slots (Sy). The
upper bound of the duration of the entire map stage is based on a sum of the

maximum duration of map tasks (M., ) and the product of M, with (N,, —1)/S,, .

Thus, it can be seen that the lower and upper bounds of durations of the map stage
are based on properties of the job J profile relating to the map stage, and based on

the allocated number of map slots.

[0045] The reduce stage includes shuffle, sort and reduce phases. Similar to
the computation of the lower and upper bounds of the map stage, the lower and

upper bounds of time durations for each of the shuffle phase (T&o",T4?), sort phase

(Tov, Te ), and reduce phase (7", T2°) are computed. The computation of the

Makespan theorem is based on the average and maximum durations of the tasks in
these phases (respective values of the average and maximum time durations of the
shuffle phase, the average and maximum time durations of the sort phase, and the
average and maximum time duration of the reduce phase) and the numbers of

reduce tasks Ng and allocated reduce slots Sg, respectively. The formulae for

calculating (T2, TP, (Tow T ), and (T2, T4 ) are similar to the formulate for

calculating T,”and T,/ set forth above, except variables associated with the reduce

tasks and reduce slots and the respective phases of the reduce stage are used

instead.

[0046] The subtlety lies in estimating the duration of the shuffle phase. As noted
above, the first shuffle phase is distinguished from the task durations in the typical
shuffle phase (which is a shuffle phase subsequent to the first shuffle phase). As
noted above, the first shuffle phase includes measurements of a portion of the first
shuffle phase that does not overlap the map stage. The portion of the typical shuffle
phase in the subsequent reduce waves (after the first reduce wave) is computed as

follows:
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N
Tlw —| 2R _q|.Sh
5 -]

avg ?
R

Tsn = [Ng - 1] - Sh2 +Sh¥>

avg max *
R

where Sh” is the average duration of a typical shuffle phase, and Sh*” is the

avg max

average duration of the typical shuffle phase. The formulae for the lower and upper
bounds of the overall completion time of job J are as follows:

low __ low 1 low low low
T=T"+Sh,, +Tg" " +Ter+T",

avg

up up 1 up up up
TP =T,"+Sh  +Tsh+Ter. +T5",

max

1
max

where Sh! is the average duration of the first shuffle phase, and Sh!_ is the

avg

maximum duration of the first shuffle phase. T,°*and T /”represent optimistic and

pessimistic predictions (lower and upper bounds) of the job J completion time. Thus,
it can be seen that the lower and upper bounds of durations of the job J are based
on properties of the job J profile and based on the allocated numbers of map and

reduce slots. The properties of the performance model, which include T, and T,”

in some implementations, are thus based on both the job profile as well as allocated

numbers of map and reduce slots.

[0047] In some implementations, estimates based on the average value between
the lower and upper bounds tend to be closer to the measured duration. Therefore,

T7"is defined as follows:
T2 =(T% +) TP /2.

[0048] In some implementations, the value T;*is considered the estimated
completion time for job J (estimated at 306 in Fig. 3). In other implementations,

other estimated time duration based on T °* and T, can be derived, such as a
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weighted average or the application of some other predefined function based on the

lower and upper bounds (T, and T,”).

[0049] The estimation of a performance characteristic of a job, such as its
completion time, can be computed relatively quickly, since the calculations as
discussed above are relatively simple. As a result, the master node 110 (Fig. 1) or
other decision maker in a distributed processing framework (such as a MapReduce
framework) can quickly obtain such performance characteristic information of a job to
make decisions, such as scheduling decisions, resource allocation decisions, and so
forth.

[0050] Machine-readable instructions of modules described above (including

116, 120, 122 in Fig. 1) are loaded for execution on one or more CPUs (such as 124
in Fig. 1). A CPU can include a microprocessor, microcontroller, processor module
or subsystem, programmable integrated circuit, programmable gate array, or another

control or computing device.

[0051] Data and instructions are stored in respective storage devices, which are
implemented as one or more computer-readable or machine-readable storage
media. The storage media include different forms of memory including
semiconductor memory devices such as dynamic or static random access memories
(DRAMs or SRAMSs), erasable and programmable read-only memories (EPROMS),
electrically erasable and programmable read-only memories (EEPROMSs) and flash
memories; magnetic disks such as fixed, floppy and removable disks; other magnetic
media including tape; optical media such as compact disks (CDs) or digital video
disks (DVDs); or other types of storage devices. Note that the instructions discussed
above can be provided on one computer-readable or machine-readable storage
medium, or alternatively, can be provided on multiple computer-readable or
machine-readable storage media distributed in a large system having possibly plural
nodes. Such computer-readable or machine-readable storage medium or media is
(are) considered to be part of an article (or article of manufacture). An article or
article of manufacture can refer to any manufactured single component or multiple

components. The storage medium or media can be located either in the machine
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running the machine-readable instructions, or located at a remote site from which

machine-readable instructions can be downloaded over a network for execution.

[0052] In the foregoing description, numerous details are set forth to provide an
understanding of the subject disclosed herein. However, implementations may be
practiced without some or all of these details. Other implementations may include
modifications and variations from the details discussed above. It is intended that the

appended claims cover such modifications and variations.
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What is claimed is:

1. A method comprising:

receiving (302), in a system having a plurality of processors, a job profile that
includes characteristics of a job to be executed, wherein the characteristics of the job
profile relate to map tasks and reduce tasks of the job, wherein the map tasks
produce intermediate results based on segments of input data, and the reduce tasks
produce an output based on the intermediate results;

producing (304), by the system, a performance model based on the job profile
and an allocated amount of resources for the job; and

estimating (306), by the system, a performance characteristic of the job using
the performance model.

2. The method of claim 1, further comprising:
determining, by the system based on the estimated performance

characteristic, whether a performance goal of the job will be satisfied.

3. The method of claim 2, further comprising receiving an indication of the
allocated amount of resources for the job, wherein the allocated amount of resources
comprises an allocated number of map slots and number of reduce slots, wherein
the map tasks are performed in the map slots, and the reduce tasks are performed in
the reduce slots.

4. The method of claim 1, wherein estimating the performance characteristic

comprises estimating a completion time of the job.

5. The method of claim 1, wherein producing the performance model comprises
producing the performance model having a lower bound and an upper bound of the

performance characteristic.
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6. The method of claim 5, wherein the performance characteristic is a
completion time of a job, the method further comprising:

computing the lower bound based on a number of the map tasks, a number of
reduce tasks, a number of allocated map slots, a number of allocated reduce slots,
an average time duration of a map task, an average time duration of a shuffle phase
in a reduce stage, an average time duration of a sort phase in the reduce stage, and
an average time duration of a reduce phase in the reduce stage, wherein the reduce
stage includes the reduce tasks; and

computing the upper bound based on the number of the map tasks, the
number of reduce tasks, the number of allocated map slots, the number of allocated
reduce slots, the average time duration of a map task, a maximum time duration of a
map task, the average time duration of the shuffle phase, a maximum time duration
of the shuffle phase, the average time duration of the sort phase, a maximum time
duration of the sort phase, the average time duration of the reduce phase, and a

maximum time duration of the reduce phase.

7. The method of claim 1, wherein receiving the job profile including the
characteristics of the job includes receiving the job profile including plural ones of: a
minimum time duration of a map task, an average time duration of a map task, a
maximum time duration of a map task, an average size of input data for a map task,
an average time duration of a reduce task, and a maximum time duration of a reduce

task.

8. The method of claim 7, wherein the job profile further includes: a parameter
indicating a ratio between an output data size of a map stage that includes the map
tasks and an input data size to the map stage, and a parameter indicating a ratio
between an output data size and an input data size associated with a reduce stage
that includes the reduce tasks.
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9. An article comprising at least one machine-readable storage medium storing
instructions that upon execution cause a system having a processor to perform a

method according to any of claims 1-8.

10. A system comprising:
storage media (122) to store a job profile, wherein the job profile describes a
job including a map stage to produce an intermediate result based on input data, and
a reduce stage to produce an output based on the intermediate result; and
at least one processor (124) to:
produce parameters of a performance model based on the job profile
and an allocated amount of resources for the job; and
generate an estimated performance characteristic of the job using the
performance model.

11.  The system of claim 10, wherein the parameters include an upper bound of

the performance characteristic and a lower bound of the performance characteristic.

12.  The system of claim 10, wherein the performance characteristic is an
estimated completion time of the job.
13.  The system of claim 12, wherein the at least one processor is to further:

compute the lower bound based on a number of map tasks in the map stage,
a number of reduce tasks in the reduce stage, a number of allocated map slots, a
number of allocated reduce slots, an average time duration of a map task, an
average time duration of a shuffle phase in the reduce stage, an average time
duration of a sort phase in the reduce stage, and an average time duration of a
reduce phase in the reduce stage; and

compute the upper bound based on the number of the map tasks, the number
of the reduce tasks, the number of allocated map slots, the number of allocated
reduce slots, the average time duration of a map task, a maximum time duration of a
map task, the average time duration of the shuffle phase, a maximum time duration
of the shuffle phase, the average time duration of the sort phase, a maximum time
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duration of the sort phase, the average time duration of the reduce phase, and a

maximum time duration of the reduce phase.

14.  The system of claim 10, wherein the allocated amount of resources includes a
number of map slots and a number of reduce slots on physical machines, wherein
map tasks of the map stage are performed in the map slots, and reduce tasks of the
reduce stage are performed in the reduce slots.

15.  The system of claim 10, wherein the job profile includes parameters selected
from among a minimum time duration of a map task in the map stage, an average
time duration of a map task in the map stage, a maximum time duration of a map
task in the map stage, an average size of input data for a map task in the map stage,
an average duration of a phase of the reduce stage, and a maximum time duration of

a phase in the reduce stage.
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