/%

/4

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 8 May 1996 (08.05.96)
(30) Priority Data:
08/438,550 10 May 1995 (10.05.95) Us

(71) Applicant: THE 3DO COMPANY [US/US]; 600 Galveston
Drive, Redwood City, CA 94063 (US).

(72) Inventor: SELL, John, V.; 11111 Mora Drive, Los Altos, CA
94024 (US).

(74) Agent: WOLFELD, Warren, S.; Fliesler, Dubb, Meyer and
Lovejoy, Suite 400, Four Embarcadero Center, San Fran-
cisco, CA 94111-4156 (US).

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/35995
GOG6F 13/16 Al
(43) International Publication Date: 14 November 1996 (14.11.96)
(21) International Application Number: PCT/US96/06480 | (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,
E, DK

CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS,
JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, S, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO
patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, DE, DK, ES, FI, FR, GB, GR, [E, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(57) Abstract

A plurality of "snoop advisory" bits, each corresponds to a
page of the memory address space (114), are maintained by snoop
management circuitry (140) externally to a processor (110). Three
processes take place with these bits. First, in response to each cache
line fill operation with intent to modify by the processor, snoop
management circuitry writes a "snoop yes" into the bit corresponding
to the page of the processor’s access. Second, in response to each
access by another device (124) the bit which corresponds to the page
being accessed is checked. If the bit contains the "snoop yes" then a
snoop request is issued to the processor. Otherwise, no snoop request
is issued. Third, on a recurrent basis, the processor’s internal cache
is synchronized with the memory (i.e. writing back modified data,
and/or invalidating each line in the cache) and writing a "snoop no"
into each of the bits.

(54) Title: METHOD AND APPARATUS FOR MANAGING SNOOP REQUESTS USING SNOOP ADVISORY CELLS

116
HOST A BN D
o BUS BUS BUS
{122 1126
135 s 124 128
procesoR [AT Ao =7
GBL | sTATE [L} DEVICE |0 h ey
TS| MACHINE [Retry
ARTRY TA(7:26) LELAN
DATA
v e e sl -] e | umioRY
b3} : wras)| [2
HOST SupAdYGoSup MREQ
BUS MONT] \ MD(0:63)
ARBITER ! N
TTcru MOBIN | yeory o
13811 CPU oo | MA(7:28)
A(7:29) |BUS .
A(7:17)
T] swoo 0
-t ADVISORY
SoAGER MODULE | otbni_pocROACk 118
e B N
053\...‘ &
S|E|8(] 420
EEES
\os) BLEIBI= DIGITAL
S 10 VIDED
Wroto ENCODER 12
9.} ACCESS r
Rdbata_| MoDULE |14
1
OTHER
1/0
MODULES

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AM

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

FOR THE PURPOSES OF INFORMATION ONLY

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi
Mexico
Niger
Netherlands
Norway

New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore
Slovenia
Slovakia
Senegal
Swaziland
Chad

Togo
Tajikistan
Trinidad and Tobago
Ukraine
Uganda

United States of America

Uzbekistan
Viet Nam

R 4

P

WO 96/35995 ' PCT/US96/06480

10

15

20

25

30

35

-1 -
METHOD AND APPARATUS FOR MANAGING SNOOP REQUESTS

USING SNOOP ADVISORY CELLS

BACKGROUND
1. Field of the Invention

The invention relates to cache coherency mechanisms
in a multiple processor enviromment, and more
particularly, to a mechanism for reducing the number of
snoops required of a processor structure which includes
a cache memory.

2. Description of Related Art
Many computer systems include at least one level of
cache memory. A cache memory is a high-speed memory

that is positioned between a central processing unit
(CPU) and main memory in a computer system in order to
improve system performance. Cache memories (or caches)
store copies of portions of main memory data that are
actively being used by the CPU while a program is
running. Since the access time of a cache can be
faster than that of main memory, the overall access
time for accesses by the CPU can be reduced.
Descriptions of various uses of and methods of
employing caches appear in the following articles:
Kaplan, "Cache-based Computer Systems, " Computer, 3/73
at 30-36; Rhodes, "Caches Keep Main Memories From
Slowing Down Fast CPUs," Electronic Design, Jan. 21,
1982, at 179; Strecker, "Cache Memories for PDP-11
Family Computers," in Bell, "Computer Engineering"
(Digital Press), at 263-67, and Intel, "i486 Processor
Hardware Reference Manual" (1990) at 6-1 through 6-11,
all incorporated herein by reference. |

Many microprocessor-based systems implement a
"direct mapped" cache memory. In general, a direct

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

-2 -

mapped cache memory comprises a high speed data Random
Access Memory (RAM) and a parallel high speed tag RAM.
The RAM address of each line in the data cache is the
same as the low-order portion of the main memory line
address to which the entry corresponds, the high-order
portion of the main memory address being stored in the
tag RAM. Thus, if main memory is thought of as 20
blocks of 2" "lines" of one or more bytes each, the i’th
line in the cache data RAM will be a copy of the i’th
line of one of the 2" blocks in main memory. The
identity of the main memory block that the line came
from is stored in the i’th location in the tag RAM.
When a CPU requests data from memory, the low-order
portion of the line address is supplied as an address
to both the cache data and cache tag RAMs. The tag for
the selected cache entry is compared with the high-
order portion of ‘the CPU’s address and, if it matches,
then a "cache hit" is indicated and the data from the
cache data RAM is enabled onto a data bus of the
system. If the tag does not match the high-order
portion of the CPU’'s address, or the tag data is
invalid, then a "cache miss" is indicated and the data
is fetched from main memory. It is also placed in the
cache for potential future use, overwriting the
previous entry. Typically, an entire line is read from
main memory and placed in the cache on a cache miss,
even if only a byte is requested. On a data write from
the CPU, either the cache RAM or main memory or both
may be updated, it being understood that flags may be
necessary to indicate to one that a write has occurred
in the other. _
Accordingly, in a direct mapped cache, each "line"
of secondary memory can be mapped to one and only one
line in the cache. 1In a "fully associative" cache, a
particular line of secondary memory may be mapped to

WO 96/35995 . PCT/US96/06480

10

15

20

25

30

35

-3 -

any of the lines in the cache; in this case, in a
cacheable access, all of the tags must be compared to
the address in order to determine whether a cache hit
or miss has occurred. ‘"k-way set associative" cache
architectures also exist which represent a compromise
between direct mapped caches and fully associative
caches. In a k-way set associative cache architecture,
each line of secondary memory may be mapped to any of
k lines in the cache. 1In this case, k tags must be
compared to the address during a cacheable secondary
memory access in order to determine whether a cache hit
or miss has occurred. Caches may also be "sector
buffered" or "sub-block" type caches, in which several
portions of a cache data line, each with its own valid
bit, correspond to a single cache tag RAM entry.

When the CPU executes instructions that modify the
contents of the cache, these modifications must also be
made in the main memory or the data in main memory will
become "stale." There are two primary techniques for
keeping the contents of the main memory consistent with
that of the cache -- (1) the write-through method and
(2) the write-back or copy-back method. In the write-
through method, on a cache write hit, data is written
to the main memory immediately after or while data is
written into the cache. This enables the contents of
the main memory always to be valid and consistent with
that of the cache. In the write-back method, on a
cache write hit, the system writes data into the cache
only and sets a "dirty bit" (or enters a "modified"
state) which indicates that a data word has been
written into the cache but not into the main memory .
On a subsequent cache read miss, which requires a cache
line to be replaced (filled) with new data from memory,
a cache controller checks for a dirty bit before
overwriting any line of data in the cache. If the

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 4 -

dirty bit for the cache 1line is set, the cache
controller writes the line of data out to main memory
before loading the cache with new data.

A computer system can have more than one level of
cache memory for a given address space. For example,
in a two-level cache system, the "level one" (L1) cache
is logically adjacent to the host processor. The
second level (L2) cache is logically behind the first
level cache, and other memory (which in this case can
be referred to as tertiary memory), typically DRAM or
SDRAM, is located logically behind the second level
cache. When the host processor performs an access to
an address in the memory addresé space, the first level
cache responds if possible. If the first level cache
cannot respond (for example, because of an L1 cache
miss), then the second level cache responds if
possible. If the second 1level cache also cannot
respond, then the access is made to the tertiary
memory. The host processor does not need to know how
many levels of caching are present in the system or
indeed that any caching exists at all. Similarly, the
first level cache does not need to know whether a
second level of caching exists prior to the tertiary
memory. Thus, to the CPU, the combination of both
caches and tertiary memory is considered merely as a
single main memory "structure'. Similarly, to the L1
cache, the combination of the L2 cache and tertiary
memory is considered simply as a single main memory
structure. In fact, a third level (L3) of caching
could be included behind the L2 cache, and the L2 cache
would still consider the combination of L3 and
subsequent memory as a single main memory structure.

The PowerPC™ 603 microprocessor, available from IBM
and Motorola, is an example of a microprocessor which
has an on-chip, two-way set associative cache memory.

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 5 -

The PowerPC 603 microprocessor also includes a level
one cache on-chip. This cache is divided into a data
cache and a separate instruction cache. The data cache
on a PowerPC 603 is a write-back cache. The cache is
actually programmable based on the address specified to
follow a write-through or a write-back policy, but
special precautions must be taken externally to the
chip as long as even one line is able to follow a
write-back policy as further explained below. Thus, as
used herein, a "write-back cache" is a cache memory,
any part of which can hold data which is inconsistent
with that in the external memory subsystem.

In systems having multiple devices which share a
common address space, a cache coherency protocol is
implemented in order to provide the same image of
memory to all such devices. Such a protocol allows
synchronization and cooperative .use of shared
resources. Otherwise, multiple copies of a memory
location, some containing stale values, could exist in
a system and errors could result. One popular write-
back cache coherency protocol is known as the MEST
(modified/ exclusive/shared/invalid) protocol. The
MESI protocol is described in "Intel, "Pentium
Processor User’s Manual, Vol. 1: Pentium Processor
Databook" (1993), incorporated herein by reference,
especially at pp. 3-20 through 3-21. A superset of the
MESI protocol, known as MOESI, is described in Thorson,
"Multiprocessor Cache Coherency", Microprocessor
Report, pp. 12-15 (June 20, 1990), also incorporated by
reference. 1In the MESI protocol, each cache data line
is accompanied by a pair of bits which indicate the
status of the line. Specifically, if a 1line is in
state M, then it is "modified" (has been written to
since it was retrieved from main memory). An M-state
line can be accessed (read or written) by the CPU

WO 96/35993 PCT/US96/06480

10

15

20

25

30

35

-6 -

without sending a cycle out on an external bus to
higher levels of the memory sSubsystem. '

If a cache line is in state E ("exclusive"), then
it is not "modified" (i.e. it contains the same data as
subsequent levels of the memory subsystem). 1In shared

cache systems, state E also indicates that the cache
line is available in only one of the caches. The CPU
can access (read or write) an E-state line without
generating a bus cycle to higher levels of the memory
subsystem, but when the CPU performs a write access to

an E-state line, the line then becomes "modified"

(state M).

A line in state S ("shared") may exist in more than
one cache. A read access by the CPU to an S-state line
will not generate bus activity, but a write access to
an S-state line will cause a write-through cycle to
higher levels of the memory subsystem in order to
permit the sharing cache to potentially invalidate its
own corresponding line. The write will also update the
data in the data cache line.

A line in state I is invalid. It is not available
in the cache. A read access by the CPU to an I-state
line will generate a "cache miss" and may cause the
cache to execute a line fill (fetch the entire line
into the cache from higher 1levels of the memory
subsystem). A write access by the CPU to an I-state
line will cause the cache to execute a write-through
cycle to higher levels of the memory subsystem.

The PowerPC 603 implements a cache coherency
protocol which is a coherent susbset of the MESI
protocol omitting the shared (S) state. Since data
cannot be shared, the PowerPC signals all cache line
fills as if they were cache write misses (reads with
intent to modify), thereby flushing the corresponding
copies of the data in all caches external to the

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 7 -

PowerPC prior to the PowerPC’'s cache 1line fill
operation. Following the cache line fill, the PowerPC
is the exclusive owner of the data and may write to it
without a bus broadcast transaction (state E).

Computer system cache memories typically cache main
memory data for the CPU. If the cache uses a write-
back protocol, then frequently the cache memory will
contain more current data than the corresponding lines
in main memory. This poses a problem for other devices
which share the same address space in the memory,
because these devices do not know whether the main
memory version is the most current version of the data.
Similarly, for both write-back and write-through
caches, even if the data in the cache is not modified
with respect to that in memory, the CPU must be kept
informed of write accesses to memory by external
devices. Otherwise, the CPU would not know whether the
cached version is the most current copy of the data.
Cache controllers, therefore, typically support inquire
cycles (also known as snoop cycles), in which a device
essentially asks the cache memory to indicate whether
it has a more current copy of the data.

In PowerPC-based systems, a device issues a sSnoop
cycle by driving the snoop address onto the CPU bus and
asserting the processor’s TS and GBL control signals.
The processor responds by asserting its ARTRY output if
the specified data line is present in the internal
cache and the specified cache line is in the M
(modified) state. (If the specified data 1line is
present in the internal cache but it is unmodified
(state E), then the processor merely invalidates the
line in the cache. Similarly, if the specified data
line is present in the internal cache but the snoop
cycle is for a write access to the entire line, then
the processor merely invalidates the line in the cache.

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 8 -

In either case, ARTRY is not asserted.) Thus, ARTRY,
when asserted, indicates that the internal cache
contains a more current copy of the data than is in
main memory. The processor then automatically conducts
a write-back cycle while the external device waits. By
this process, therefore, the external device will be
able to access the desired line in main memory without
any further concern that the processor’s internal cache
contains a more current copy of the data.

The time required to perform the snoop cycle,
however, is significant. This is a problem not only
because of the CPU bus bandwidth occupied by snoop
cycles, but also because of the delays they impose on
memory accesses by the external device. 1In systems in
which the external devices are performance-critical,
such as in graphics coprocessor arrangements, the need
Lo snoop every memory access can substantially impact
performance.

One technique that has been used in the past to
minimize the number of snoops required by an external
device, is simply to designate parts of the memory
address space as being dedicated to the external
device. For example, in systems having a graphics
coprocessor, an area of the memory address space may be
designated the frame buffer and dedicated to the
coprocessor. The coprocessor never needs to snoop the
CPU’s cache because only the coprocessor, and not the
CPU, can read or write to the frame buffer. But this
solution greatly limits the flexibility of the system:
it may be most desirable, for example, for the CPU to
render some parts of an image while the coprocessor
renders other parts of the same image. Dedicating the
frame buffer to the coprocessor precludes such
flexibility. Moreover, this solution avoids the
question of how to minimize Snoops when an external

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

-9 -

device accesses shared regions of the memory address
space; dedicating an area of memory exclusively to the
external device renders it no longer shared.

Another technique to minimize snoops of a
processor’s internal cache, has been used only on high-
end systems which include a second-level (L2) cache
extend to the processor. Specifically, the system
enforces a rule that data cannot be cached in the
processor’s internal cache, unless it is also cached in
the L2 cache. 1In such a system, the external device
first snoops the L2 cache, and then snoops the
processor’s internal cache only if there is an L2 cache
hit. The device does not need to snoop the processor’s
internal cache if there is an L2 cache miss. But this
solution is expensive in that it requires a second-
level cache external to the processor.

Accordingly, a definite need continues to exist for
an alternative mechanism for reducing the number of
snoop cycles required to a processor structure having
an internal cache memory.

SUMMARY OF THE INVENTION

According to the invention, roughly described, a
plurality of "snoop advisory" bits are maintained by
Snoop management circuitry externally to the processor
Sstructure. Each snoop advisory bit corresponds to a
respective "snoop advisory page" (e.g. 16k or 32k
bytes) of the memory address space. Three parallel
processes take place with respect to these bits.
First, in response to each read access by the processor
structure, if the read access is of a predetermined
type (such as a cache line fill operation with intent
to modify), the snoop management circuitry writes a
"snoop yes" wvalue into the snoop advisory cell
corresponding to the snoop advisory page which includes

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 10 -

the address of the processor’s access. Second, in
response to each access by another device which shares
the address space with the processor structure, the
Snoop management circuitry issues a snoop request to
the processor structure if the snoop advisory cell
corresponding to the snoop advisory page which includes
the address of the device’s access, contains the "snoop
yes" value. If it does not contain the "snoop yes"
value, the device is allowed to perform its access
directly to the memory structure without issuing a
snoop request. Third, on a recurrent basis, the
processor internal cache is synchronized with the
memory structure and the system writes a "snoop no"
value into each of the snoop advisory bits to clear
them. Synchronization can involve performing a
write-back on each cache line which is in a modified
state, and/or invalidating each line in the cache.

Although the invention is described herein with
respect to a PowerPC-based system, its usefulness is
not limited to such systems. The invention is useful
whenever a cache is present which can use a write-back
protocol, and which supports snoop cycles. The
invention is useful also for write-through caches,
although the performance advantage of the invention
typically would apply only for write accesses by the
external devices. Read accesses do not require
snooping of a write-through cache even in conventional
systems, in most cases, so a mechanism to minimize
snoops would not produce any performance advantage for
read accesses. However, in graphics systems, a
graphics coprocessor typically performs many more write
accesses than read accesses.

Viewed another way, it is known that write-back
caches have many performance advantages relative to
write-through caches for many kinds of code. But the

WO 96/35993 PCT/US96/06480

10

15

20

25

30

35

- 11 -

data coherency problem partially handicaps these
advantages when multiple processors share a common
memory space. The invention makes write-back caches
more practical in such system by reducing the
requirements for snooping.

BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described with respect to
particular embodiments thereof, and reference will be

made to the drawings, in which:

Fig. 1 is an overall block diagram illustrating
pertinent features of a computer system incorporating
the invention;

Fig. 2 is a block diagram of pertinent parts of the
host processor of Fig. 1;

Fig. 3 is a functional block diagram of the snoop
advisory module of Fig. 1; _

Fig. 4 is a flow chart of the steps performed by
the circuitry of Fig. 1 when a device issues a read
access request; and

Fig. 5 is a flow chart of a routine which clears
the snoop advisory bits in Fig. 1.

DETATLED DESCRIPTION
I. HARDWARE OVERVIEW
Fig. 1 is a simplified overall block diagram
illustrating pertinent features of a computer system
incorporating the invention. The system includes a
processor structure 110 which may be one of the PowerPC

series of RISC microprocessors available from IBM
Microelectronics or Motorola. Except as mentioned
herein, the processor 110 is the same, in all pertinent
respects, as the PowerPC 603 described in IBM
Microelectronics and Motorola "PowerPC 603 RISC
Microprocessor’s User Manual" (1994), incorporated by

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 12 -

reference herein in its entirety.

The host processor 110 has a multiplexed set of I/O
pins, which in one phase carry 64 bits of data and in
another phase carry 32 address bits plus control
signals. The multiplexed nature of these I/0 pins is
unimportant to an understanding of the invention, and
in a different embodiment, the host processor 110 can
have dedicated address, data and control leads, such as
in the PowerPC 603. Since the multiplexed nature of
the I/0 leads on the host processor 110 is unimportant
for an understanding of the invention, the description
herein is simplified by assuming separate dedicated
data, address and control leads.

The data, address and control leads of the
processor 110 are connected to respective leads on a
host bus 112 which is external to the host processor
110. The system also includes a memory 114 and an ASIC
116, both of which are external to the processor 110.
The memory can be of any type, including combinations
of different types. It can, for example, incude DRAM,
SDRAM, SGRAM, etc. Memory 114 is essentially opaque
for the purposes of the present embodiment, and other
memory structures may be included as well. For
example, a second-level cache may be included in the
memory structure. Also, as is well known, while the
memory address space is contiguous in the system of
Fig. 1, physical memory location storage need not be
present or contiguous in the memory structure for all
of the memory locations in that address space. Storage
for some addresses, for example, may be held in a ROM
(not shown).

The ASIC 116 includes a number of devices which
share memory 114 with the processor 110, including a
triangle engine, a digital signal processor, an MPEG
decoder and a video output processor ("VPP"). The VPP

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 13 -

is illustrated in Fig. 1 as 118. It produces a digital
video output stream in response to data in an image
buffer in memory 114, and provides the stream to a
digital video encoder (DVE) 120. The output of DVE 120
is connected to a video display 122. If the display
122 is a television set, then the DVE output signal can
be in the form of NTSC or PAL video. Software
executing in the host processor 110 causes the VPP 118
to refresh the display 122 at the appropriate refresh
rate which, for a field of NTSC video, occurs every
1/60 seconds.

Several of the devices in the ASIC 116 which share
memory 114 with the host processor 110 operate in a
similar manner with respect to the present invention.
A typical one of these devices is illustrated in Fig.
1l as 124.

The device 124 has an address bus output connected
to bits 7:29 of an internal address (IA) bus 126
internal to the ASIC 116. It also has what, for the
purposes of the present invention, can be considered to
be a 64-bit wide data port connected to a 64-bit memory
data (MD) bus 128, which is also connected to memory
114. The MD bus 128 is further coupled bi-
directionally to the 64-bit data portion of the host
bus 112 via tristate buffers (not shown).

Bits 7:29 of the IA bus 126 are provided to an
address input port of a memory controller 130 on the
ASIC 116, which also receives address bits 7:29 from
the host bus 112. The memory controller 130, which
performs memory arbitration services for the devices
124 and the processor 110, has a memory address (MA)
output port connected to the address leads of memory
114. The address port of memory 114 actually carries
multiplexed row and column addresses, but a non-
multiplexed interface is illustrated in Fig. 1 for

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

simplicity.

The device 124 further has a memory request (MREQ)
output signal 132 which is connected to an input of the
memory controller 130, for memory arbitration. The
memory controller 130 in turn has a memory grant (MGNT)
output signal 134 which is connected back to the device
124. The device 124 also has a snoop request output
snpReq connected to a snoop state machine 136, which
also receives bits 7:26 (sufficient to specify a cache
line address for the processor'llo’s internal caéhe)
from the IA bus 126. Snoop state machine 136 has a
snoop request acknowledge output snpReqgAck which is
connected back to the device 124. The snoop state
machine 136 also has a RETRY output which is connected
back to device 124.

The snoop state machine 136 is the unit on the ASIC
116 which issues snoop cycles to the host processor
110. It provides a cache line address (bits 7:26) to
the address leads of the host bus 112 via three-state
buffers (not shown). The snoop state machine 136 is
also connected to the GBL and TS control signals on
host bus 112, and monitors the ARTRY control signal on
the host bus 112.

Control of the host bus 112 is arbitrated by a host
bus arbiter 138, also on the ASIC 116. It receives a
request (req) signal from the snoop state machine 136,
and at an appropriate time, returns a grant sighal
(gnt) to the snoop state machine 136.

The ASIC 116 also includes a snoop advisory module
140, the purpose of which is to advise devices such as
124 whether a snoop of the processor 110 internal cache
should be issued for the address of a particular access
to the memory 114 which the device desires to perform.
The snoop advisory module 140 is coupled to receive
bits 7:17 (sufficient to specify a "snoop advisory page

WO 96/35995 ' PCT/US96/06480

10

15

20

25

30

35

- 15 -

address", for pages of minimum configurable size) of
the IA bus 126. It also receives a timing signal
bmi_pbcRdAck from the memory controlleér 130 indicating
when the data requested by the processor 110 is
actually being read from the memory 114. The sSnoop
advisory module 140 is also coupled to receive bits
7:17 from the address leads of the host bus 112, as
well as a number of control signals C.

The ASIC 116 also includes an I/0 access module
142, which is coupled to receive bits 7:29 from the
address leads of the host bus 112. It is also coupled
bi-directionally with the 64-bit data leads of the host
bus 112, via lines shown separately in Fig. 1 as write
data lines (WrData) and read data lines (RdData). The
I/0 access module 142 handles accesses from the host
110 to the I/O control space, mainly implemented in the
form of individual control registers in the various
functional units of the ASIC 116. In addition to being
coupled to a number of other I/0 modules 144, the I/O
access module 142 also provides to the snoop advisory
module 140 a number of signals including bits 27:29 of
the host bus 112 address leads, a latch enable signal
cntlLe, and a write data bus cntlWrData. It also
receives a control read data bus cntlRdData from the
snoop advisory module 140.

The host processor 110 can enable or disable Snoop
advising by the snoop advisory module 140, by
programming a snpAdvEnbl bit in a register bit (not
shown) accessible via the I/0 access module 142.
Additionally, the snoop advisory module 140 can be
configured to provide snoop advising services for
either a four megabyte address space or an eight
megabyte address space of the memory 114. The host 110
makes this selection by programming a snpAdv8meg bit in
a register (not shown) accessible via the I/O access

WO 96/35995 : PCT/US96/06480

10

15

20

25

30

35

- 16 -

module 142. Finally, when the snoop advisory module
140 determines whether a snoop of a particular cache
line address is appropriate, it outputs a snpAdvGoSnp
signal, either asserted or negated at a predetermined
time, back to the device 124.

Several of the individual functional units in the
system of Fig. 1 will now be described in more detail.

A. Host Processor

Fig. 2 is a block diagram of pertinent parts of the
host processor 110. It comprises a CPU 210 which
communicates with an internal cache 212. The internal
cache 212 contains separate instruction and data caches
214 and 216, respectively. The internal cache 212
communicates with the address and data lines of host
bus 112, as well as several of the control lines of
host bus 112. Two of the control lines are shown

specifically in Fig. 2, namely, GBL and ARTRY . The
internal cache 212 caches data in a main memory address
space for the CPU 210. Although the internal cache 212
and the CPU 210 are both fabricated together on a
single chip in the host processor 110, in a different
embodiment they may occupy two or more chips.

More particularly, note that different embodiments
of the invention can have a wide variety of different
kinds of host processors 110. For example, they can
include a "level 0" cache between the CPU and the
"internal" cache 212; they can include one or multiple
processors; they can include bridges between the host
bus 112 and a bus protocol expected by a CPU 210, and
so on. As a group, however, all the components of the
host processor use internal cache 212 to cache at least
some lines of the memory address space. Because of the
possibility of these variations, the host processor 110

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 17 -

is sometimes referred to herein as a "processor
structure".

Returning to the embodiment of Fig. 2, the
instruction cache and data cache each have a 32-byte
line size and are two-way set associative. Each is 4k
bytes long. The data cache is configurable at a page
and line level for cacheability, write-back or write-
through policy, and memory coherency. (A cache line is
the unit of memory at which coherency is maintained.)

The data cache 216 is configured as 64 sets of two
lines each. Each entry includes the 32-byte cache data
line, two state bits and an address tag. The two state
bits implement the MEI cache coherency protocol
described above. The instruction cache also is
configured as 64 sets of two lines each, and each entry
includes the 32-byte cache data line, an address tag
and a valid bit. It does not implement the modified
state (state M) of the MEI protocol. Only a line f£fill
operation on a cache read miss can write data into the
instruction cache. The instruction cache is not
snooped, and cache coherency must be maintained by
software.

On a cache miss, the host processor 110 performs
line fills in four beats of 64 bits each. The burst
£fill is performed as a "critical-double-word-first"
operation.

As bus operations are performed on the host bus 112
by other bus masters, the bus snooping logic of the
host processor 110 monitors the addresses that are
referenced. If GBL is asserted in the same clock cycle
a¥S™ is asserted, the processor’s bus snooping logic
compares the address with those resident in the data
cache tag RAM. If there is a snoop hit, and the cache
data line is in the modified state (state M), then the
processor’s bus snooping logic asserts its ARTRY output

WO 96/35995 PCT/US96/06480

10

15

20

25

30

- 18 -

at a predetermined time. The processor also
automatically performs a "cache push" to write back the
referenced cache data line to memory, and invalidates
that cache line (state I). If the referenced cache
line is in the exclusive state (state E), then the
processor 110 merely marks the cache line as invalid
(state I). ARTRY is not asserted. The same is true if
the snoop cycle is for writing to the entire line.

(In an embodiment in which the processor uses the
full MESI cache coherency protocol, if the device 124's
desired access is a read access and not a write access,
and the referenced data is cached unmodified (state E)
in the processor’s 110 internal cache, then the
processor 110 may change the state of the cache entry
to state S (shared) rather than I (invalid). The
processor would not assert ARTRY (or its equivalent for
that processor), but the external interface for the
processor would need to include a way for the snoop
state machine 136 to indicate to the host processor 110
that the device 124's access is a read access rather
than a write access.)

Because the entire 32-byte cache line is affected
by a snoop cycle, the snoop address omits bits 27:31.
The address bits having a higher order than bit 27 are
sufficient to identify a "line address". As used
herein, a line address is the portion of an address
necessary to uniquely identify a data unit of the size
of one cache line (32 bytes for the processor 110).
Similarly, a "byte address" includes all address bits
since they are all needed to uniquely identify a
desired byte, and, in general, a "data unit address"
includes whatever address bits are required to uniquely
specify a unit of memory having the number of bytes in
the data unit.

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 19 -

Also as used herein, a line of data in secondary
memory is "cached" if data identified to that line in
memory is temporarily stored in a cache memory. The
data stored in the cache memory can either be the same
as or different from the data stored in the
corresponding line of secondary memory. If the
processing unit for which the cache is caching the line
of data has modified the version of the data stored in
the cache, then the data is referred to as "cached
modified".

When the host processor 110 performs a read
operation on the host bus 112, it can be either a
single-beat bus transaction or a burst transaction.
Single-beat bus transactions can transfer from one to
eight bytes at a time, and in read operations, can
occur only if caching is inhibited. Burst transactions
always transfer eight words (32 bytes) at a time, and
are recognizable externally by the assertion of the
procesadd’s TBST™ (transfer burst) output signal.
All cache line fill operations are performed using
burst transactions.

Note that the operation performed by the host
processor 110 in response to a cache snoop is different
from the operation performed by the host processor 110
in response to a CPU 210 access to the memory address
space which results in a cache read miss or cache write
miss. First, for a Snoop operation, the address comes
from the host bus 112, whereas for a cache miss, the
address comes from the CPU 210. Second, for a snoop
operation, the processor 110 asserts its ARTRY output
signal if the referenced data line is cached modified
in the host processor 110, whereas for a cache miss
operation, the processor 110 need not assert any
special signal external to the processor. Third,
whereas a cache read miss results in a write-back

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 20 -

operation on the host bus 112 (if the cache line was in
the modified state) followed by a line fill operation,
a snoop hit does not produce a line £ill operation.

B. Snoop Advisory Module

Fig. 3 is a functional block diagram of the sSnoop
advisory module 140 (Fig. 1). It comprises an I/O
write logic block 302, for performing host processor-
initiated writes into a 256 x 1-bit array 304 of snoop
advisory bit cells. I/0O address space writes appear to
the ASIC 116 (Fig. 1) as normal data write operations
on the host bus 112, except that the processor 110
asserts an XATS signal rather than the TS signal to
signify a transfer start. I/O address space writes are
detected by the I/O access module 142 (Fig. 1), which
decodes the address on the host bus A(7:29) bits. If
the address décodes to any of the eight word addresses
assigned to snoop advisory module 140, then bits
A(27:29) are provided to the snoop advisory module 140
as a cntlAddr and a 32-bit wide write data word from
the host bus 112 is provided to the snoop advisory
module 140 as cntlWrData. The I/0 access module 142
asserts a cntlLe signal to the snoop advisory module
140 for one clock cycle.

Inside the snoop advisory module 140, cntlWrData is
provided to one data input port of a write data mux
logic block 306, described below. The 3-bit wide
cntlAddr bus is provided to I/0 write logic 302, as is
the cntlle signal. I/0 write logic 302 decodes the 3-
bit cntlAddr and qualifies it with cntlle to assert one
of eight latch enable signals regLe0...regLe?
(collectively, regle) to the write data mux logic 306.

The snoop advisory module 140 also monitors read
accesses from the host processor 110. The address
A(7:17) of the read access is monitored to determine
whether it is within a predefined subset of addresses

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 21 -

of the memory address space which are shared by the
devices 124 (Fig. 1). This subset is programmable by
the processor 110, via a register in the I/O address
space, to be either the first four megabytes of the
memory address space or the first eight megabytes of
the memory address space. A(7:17) is provided to host
bus monitor write logic 308 in the snoop advisory
module 140 as memRdAddr(7:17) (Fig. 3), and the
selection of four or eight megabytes is provided as a
snpAdv8meg signal.

The host bus monitor write logic 308 also tests
processor read accesses to determine whether they are
of a type which may constitute a cache line fill of a
line in the data cache. That is, only cache line fill
operations, for the data cache, indicate that
subsequent device accesses to the same memory addresses
should initiate a snoop operation; other kinds of
processor read accesses, for example cache-inhibited
read accesses, do not update the processor’s internal
cache and do not therefore require that subsequent
device accesses to the same memory address initiate a
snoop operation. The host processor 110, when it
performs a transaction on the host bus 112, indicates
the transfer type by driving five control bits
TTO0...TT4. The meaning of these bits is described in
the above-incorporated PowerPc 603 manual at pages 9-11
through 9-13. The processor 110 also drives a TBST
signal to indicate whether the transfer is a burst
transfer or a single-beat transfer. All cache 1line
fill operations from the processor 110 use a transfer
type TTO0:4 = 01110 and TBST asserted. Other bus
operations from the processor 110 may also use this
transfer type, but the host bus monitor write logic 308
is sure to detect at Ileast all cache line £ill
operations by testing for these values.

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 22 -

Note that in other embodiments, the host bus
monitor write logic may not be able to determine with
precision whether a particular read access is a cache
line £ill operation. In such cases, the host bus
monitor write logic 308 might, for example, test for
all processor read accesses having a length which is at
least as large as a line of the processor’s internal
cache. 1In general, the host bus monitor write logic
308 should determine from the signals provided by the
processor whether it is possible that the read data
will be written into the internal cache. This test can
be overinclusive, for example if the processor does not
provide sufficient signals to indicate the transaction
type precisely, and for some processors may even need
to include all processor read accesses. But to be
safe, the test should never be underinclusive.

Logic in the ASIC 116, not shown, generates a
memRdCpuDataBlk signal for the host bus monitor write
logic 308. This signal is asserted only when the
transaction type is as indicated above, the source of
the transaction is the host processor 110, the
transaction is a burst transaction (TBIT asserted), the
access is a read access, and the access is for the data
(as opposed to instruction) cache (processor 110
asserts transfer code TC(0:1) = 00 -- see page 9-15 of
the above-incorporated PowerPC 603 manual). This
transfer type qualification is actually even narrower
than TT0:4 = 01110 and TBST asserted, yet it still does
not underinclude.

The host bus monitor write logic 308 also receives
a bmi_pbcRdAck signal from the memory controller 130
(Fig. 1). This is a timing signal indicating when the
appropriate snoop advisory bit should be set, assuming
all qualifications are satisfied. bmi_pbcRdAck is
asserted only when the memory controller 130 has

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 23 -

actually granted control of the line of memory 114 to
the host processor 110, and no other device can
supersede it. |

The host bus monitor write logic 308 produces an
eight-bit rdaddr, indicating which of the 256 sSnoop
advisory bits should be set, and at the proper time
asserts a setSnpAdvBit signal. These signals are
provided to the write data mux logic 306, along with
the logic 1 to be written into the selected bit at the
selected time. Host bus monitor write logic 308
generates rdAddr as the low-order eight bits of the
snoop advisory page address portion of memRdAddr. A
page is 16k bytes long if the subset of the memory
address space which is subject to snoop advising is

- four megabytes long (snpAdv8meg = 0), and is 32k bytes

long if the subset of addresses in the memory address
space which is subject to snoop advising is eight
megabytes long (snpAdv8meg = 1). Accordingly, host bus
monitor write logic 308 produces rdAddr as
memRAAddr (10:17) if snpAdv8meg = 0, and memRdAddAr (9:16)
if snpAdvBmeg = 1. Host bus monitor write logic 308
geénerates setSnpAdvBit signal according to the Boolean
equation:
setSnpAdvBit = memRdCpuDataBlk - rdAddrInRange - bmi_pbcRdAck

where rdAddrInRange is high only if the wvalue of
memRAAddr is within the sharable memory address range
(4 megabyte for snpAdv8meg = 0 or 8 megabyte for
SnpAdv8meg = 1).

The values in the snoop advisory bit cell array 304
are updated in parallel in every clock cycle, and the
purpose of write data mux logic 306 is to provide the
next-state values for the snoop advisory bit cell array
304. The write data mux logic 306 has a 256-bit wide
data output port, which is connected to the 256-bit
wide data input port of the snoop advisory bit cell

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 24 -

array 304. The 256-bit wide data output port of the
snoop advisory bit cell array 304 is also connected
back to an input port of write data mux logic 306.
Most of the time this information is passed directly
back to the input port of snoop advisory bit cell array
304, thereby 1leaving the contents of the array
unchanged. However, if regLe0 from the I/0 write logic
302 is asserted on a given clock cycle, the write data
mux logic 306 replaces the contents of snoop advisory
bits 0:31 with the value on the cntlWrData bus from the
I/0 access module 142 (Fig. 1). Similarly, if regLel
is asserted on a given clock cycle, the write data mux
logic 306 replaces the values in snoop advisory bits
32:63 with the value on cntlWrData. All other values
in the ‘snoop advisory bit cell array 304 remain
unchanged. Thus, each regle signal corresponds to a
respective 32-bit segment (seen by the processor 110 as
a 32-bit "register" in the I/O address space), and when
asserted causes the write data mux logic to replace the
contents of the selected segment with the value on
cntlWrData.

If the host bus monitor write logic 308 asserts
setSnpAdvBit on a given clock cycle, then the write
data mux logic 306 writes a logic 1 (the "snoop yes"
value) into the snoop advisory bit cell designated by
rdAddr. The values in all of the snoop advisory bits
which are not affected by reglhe_ or setSnpAdvBit are
left unchanged.

The 256-bit data output port of snoop advisory bit
cell array 304, in addition to be connected back to the
write data mux logic 306, is also connected to a data
input port of an I/O read logic 310. I/O read logic
310 also receives the three-bit cntlAddr value from the
I/0 access module 142. When the processor 110 performs
a read access in the I/0 address space corresponding to

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 25 -

any of the eight 32-bit segments of the snoop advisory
bit cell array 304, I/O read logic 310 selects the
designated 32 bits in accordance with the value on
cntlAddr. The selected 32-bit wide value is provided
via the cntlRdData bus back to the I/0 access module
142 for return via the host bus 112 to the host
processor 110. The ability to read the snoop advisory
bit cell array is provided primarily for diagnostic
purposes.

The 256-bit data output port of the snoop advisory
bit cell array 304 is also connected to a data input
port of a snoop decision logic 312. Snoop decision
logic 312 also receives the snpAdvEn signal (indicating
whether snoop advising is enabled) and the snpAdv8meg
signal. Snoop decision logic 312 also receives the
page portion of the address provided by a device 124
(Fig. 1), appearing in the snoop advisory module 140 as
SnpAdVAddr(7:17). Snoop decision logic 312 generates
the snpAdvGoSnp signal back to the device 124 in
accordance with the Boolean equation:

SnpAdvGoSnp = !snpAdvEnbl + !snpAddrInRange + snpAdvBit (snpAddr),

where

snpAddrInRange is high only if the value of
snpAdvAddr is within the sharable memory address
range (4 megabyte for snpAdvemeg = 0 or 8 megabyte
for snpAdv8meg = 1);

SnpAdvBit (snpAddr) is the wvalue of the snoop
advisory bit designated by snpAddr in the Snoop
advisory bit cell array 304;

snpAddr is snpAdvAddr(10:17) if snpAdv8meg = 0, or
SnpAdvAddr (9:16) if snpAdvBmeg = 1; and

! indicates logical negation.

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 26 -

II. SYSTEM OPERATION

In order to implement snoop advising, three
processes are performed on the snoop advisory bit cell
array 304 (Fig. 3) in parallel. First, the ASIC 116
monitors the activity on the host bus 112, and whenever
it detects a transaction that might constitute a cache
line fill, it writes a logic 1 into the snoop advisory
bit cell corresponding to the snoop advisory "page"
within which the address was located. A logic one in
the snoop advisory cells is referred to sometimes
herein as a "snoop yes" value, whereas in logic 0 it is
referred to sometimes herein as a "snoop no" value.
The values corresponding to "snoop yes" and "snoop no"
couid, of course, be different in a different
embodiment. Also in a different embodiment, each snoop
advisory cell could contain more than one bit and could
contain additional information.

The second process that takes place with respect to
the snoop advisory bits is that whenever the devices
124 access an address in memory space shared with the
host processor 110, the snoop advisory module 140
indicates to the device whether a snoop cycle to the
host processor 110 can safely be avoided. If not, the
device 124 then initiates such a snoop cycle.

If the above two processes were left to operate
alone, then the host processor monitoring process would
eventually set all of the snoop advisory bits with the
"snoop yes" value and the device 124 would always be
told that a snoop cycle cannot be avoided. The third
process, therefore, recurrently clears (writes "snoop
no" values into) the snoop advisory bits in conjunction
with data synchronization of the corresponding cache
data line entries.

The host processor monitoring process used in the
system of Fig. 1 has been described in detail above.

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 27 -

The snoop decision process and the snoop advisory bit
clearing process are described below.

A. Snoop Decision Process

Fig. 4 is a flow chart of the steps performed by
the circuitry of Fig. 1 when a device 124 issues a read
access request. Initially, the device 124 arbitrates
for control of the memory 114 in the memory controller
130 by asserting an MREQ signal to the memory
controller 130. After arbitration, the memory
controller 130 returns MGNT to the device 124, and the
device 124 drives the word address for the read access
onto IA(7:29). The requested data is returned to the
device 124 from memory 114 via MD bus 128 (step 402).

At the same time, when the device drives the read
address onto IA bus 126, snoop advisory module 140
receives the snoop advisory page address IA(7:17).
Through snoop decision logic 312 (Fig. 3), the Snoop
advisory module 140 returns snpAdvGoSnp to the device
124 (step 404).

If snpAdvGoSnp was negated (steps 406 and 407),
then the device 124 does not initiate a snoop of the
host processor 110, and the data, when eventually
returned from the memory, 114 is considered valid (step
408). If snpAdvGoSnp was returned asserted, then the
device issues a snoop request snpReq to the snoop state
machine 136 (step 410). When the data is eventually
received from memory, it is retained for the purposes
described below.

After arbitration with other snoop requesters, the
snoop state machine 136 issues a request reg to the
host bus arbiter 138 for control of the host bus 112
(step 412). After arbitration, the host bus arbiter
138 returns grant to the snoop state machine 136, and
the snoop state machine 136 returns a Snoop request
acknowledge signal snpRepAck to the device 124. The

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 28 -

snoop state machine 136 also at this time issues the
snoop cycle on the host bus 112, by driving the cache
line address IA(7:26) on to the address lines of the
host bus by asserting TS and GBL (step 414).

In step 416, two clock cycles later, the host
processor returns ARTRY either asserted or negated.
The snoop state machine returns Retry to the device
124. The device 124 samples Retry at a fixed time
after having received snpReqgAck.

In step 418, if Retry was negated, then there is no
conflict between the memory and the cache, and the data
that was obtained from memory 114 is considered valid
(step 420). If Retry was asserted, then the device 124
aborts and starts again with its read access.

In step 422, after asserting ARTRY , the host
processor 110 automatically arbitrates for the host bus
112 and memory 114 in order to perform a cache line
push (write-back) operation for the referenced cache
line. At this point the host processor 110 has a
higher priority in these arbitrations than does the
device 124, so the host processor 110 will typically be
able to complete the write-back operation before the
next attempt of the device 124 to read the data.
Eventually, after the write-back is complete, the
memory controller 130 will grant the device 124 access
to the memory 114 (step 402). The snoop advisory
module 140 will typically still advise snooping (step
406), but since the referenced cache line is no longer
cached modified in the host processor 110, ARTRY and
hence Retry will be returned to the device 124
unasserted (step 418). The device 124 will know at
this point that the data obtained from memory 114 is
valid, and can proceed with further operations.

A device write access to shared memory operates in
& manner similar to a read access. Specifically, the

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 29 -

device writes the data to memory 114 concurrently with
analysis by the snoop advisory module. If a full 32-
byte line was written, then the memory operation is
complete because even if there is a snoop. hit, no
write-back will take place. If less than a full 32-
byte line was written, and the processor returns ARTRY,
then the device repeats its write to memory 114 after
the processor’s write-back operation completes.
B. Snoop Advisory Bit Clearing Process

As the operation of the system of Fig. 1 proceeds,
and the host processor 110 makes more cache line fill
accesses to cache lines in different snoop advisory
pages of the memory 114, the host processor monitoring
process will eventually fill all of the snoop advisory
bit cells with the "snoop yes" value. Therefore, the
embodiment described herein clears the snoop advisory
bits on a recurrent basis. It is not necessary that
snoop advisory bit clearing take place at regular
intervals (periodically), only that they take place
recurrently. It is also not necessary that they all be
cleared at the same time, or that they all be cleared
at the same periodic rate, or that the intervals at
which different ones of these bits are cleared be
related to each other in any manner at all. However,
they should be cleared only in conjunction with a data
synchronization with memory 114 of all cache lines
which are affected. In the present embodiment, such
data synchronization involves a write-back (if
modified) and invalidation of all cache lines in the
data cache 216 (Fig. 2) which contain data from the
snoop advisory page corresponding to the particular
snoop advisory bit to be cleared.

The interval at which the snoop advisory bit
clearing process clears .snoop advisory bits, in an
abstract sense, is a tradeoff between the amount of

WO 96/35995 PCT/US96/06480

10

15

20

25

30

- 30 -

time necessary to perform any necessary cache line
write-back operations and the reduction, as the host
processor monitoring process sets more and more of the
snoop advisory bits, of the performance gain obtained
through the use of snoop advisory bits. However, in
many practical systems, a favorable time to clear the
advisory bits is when a major reallocation occurs in
the use of areas of memory, or when major changes occur
in the set of CPU processes which are active. 1In the
system of Fig. 1, both of these happen most often at
the vertical retrace time of the display 122. At this
time the frame buffers usually switch, and operating
system Kernel software executing in the host processor
110 needs to reprogram the VPP 118 (Fig. 1). Thus, the
snoop advisory bit clearing process is performed in the
present embodiment according to software executing in
the host processor 110, as part of the interrupt code
of the operating system kernel which executes in
conjunction with every vertical retrace of the display
122. Placing the snoop advisory bit clearing process
software here provides the additional advantage that,
since it is already part of an interrupt procedure, it
cannot itself be interrupted. Thus for an NTSC display
122, the snoop advisory bits are cleared every 1/60 of
a second, or every 16.6 milliseconds.

Fig. 5 is flow chart of the routine which clears
the snoop advisory bits on every vertical retrace of
the display 122. 1In a step 502, the routine begins a
loop through the lowest 4096 bytes of the memory
address space, incrementing by 32 bytes each iteration.
This lowest 4k bytes of main memory address space is
chosen because the CPU never writes to this region
during normal operation of the system, and because it
is predetermined that none of the other devices that

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 31 -

share memory address space with the host processor 110
ever write to addresses within this range.

In step 504, the routine loads a word from the
current address. Usually, such a load operation will
produce a data cache read miss, resulting in a write-
back operation (if the entry was modified) and a line
£ill operation. If the load instruction does not
produce a cache read miss condition, then it is because
the cache already contains the data for the specified
address. 1In either case, the corresponding data cache
entry is now guaranteed to map to an entry in the low
4k bytes of memory 114. Additionally, since the CPU
never writes to this region, even if the 1load
instruction produced a cache read hit, the data in the
cache entry is guaranteed to be unmodified. (Note that
in a different embodiment, in which the CPU does write
to this region, unmodified data can be guaranteed by
forcing all CPU write accesses to this region to use a
write-through protocol.) Note that the first half of
the iterations through the loop 502 (addresses 0 to 2k)
makes a single traversal through all 64 sets in the
data cache 216 (Fig. 2), affecting only one of the two
cache data lines in each set. But since the internal
cache memory 212 uses a least-recently-used (LRU)
replacement policy for its caches, the second half of
the iterations of loop 502, which traverse the data
cache sets a second time, always affect the other cache
data line in each set. Accordingly, by the time all
iterations of the loop complete, it is guaranteed that
all entries in the data cache are mapped to addresses
in the lowest 4k of memory address space. Further,
since none of the entries in the data cache contain
dirty data, it is guaranteed that none of the devices
will retrieve stale data by reading data from the
memory in this address range. Moreover, since none of

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 32 -

the devices 124 (Fig. 1) ever writes data to addresses
within this address range, it is also guaranteed that
none of the devices will improperly write data into an
address in memory 114 which is currently cached in the
processor 110. ‘

Alternatively, either the software or the hardware
can require that the snoop advisory bit or bits
corresponding to the snoop advisory page or pages
containing any of these addresses, always contain the
"snoop yes" value. For example, if the lowest 4k bytes
of memory address space are traversed in_the loop, as
shown in Fig. 5, then the hardware or the software can
ensure that bit 0 of the snoop advisory bit cell array
304 (Fig. 3) is always set to 1.

Returning to Fig. 5, after the referenced word is
loaded from memory 114 in step 504, step 506 determines
whether the loop has completed yet. If not, then it
repeats back to step 502.

If the loop 502 has completed, then in step 508,
the routine begins another loop through the eight
32-bit "registers" of snoop advisory bit cells, as seen
by the host processor 110. In step 510, the routine
writes a word of all zeroes to the current register in
the I/0 address space, and step 512 determines whether
the loop has yet completed. If not, then the next
iteration proceeds in step 508. Note that if it is
desired to mandate snooping for device 124 accesses to
addresses within the first 4k of memory address space,
then step 510, when writing to the 0’th word of snoop
advisory bits, can write a word containing a "1" in the
highest order bit.

When the loop 508 completes (step 512), the routine
for clearing snoop advisory bits is done (step 514).

In addition to the variations mentioned above,
other variations are also possible in the routine to

WO 96/35995 PCT/US96/06480

10

15

20

25

30

35

- 33 -

clear snoop advisory bits. As one example, after the
loop 502 completes, the routine can execute
instructions to invalidate all entries of the data
cache. In the host processor 110, this can be done
with the mtspr instruction setting, and then clearing,
a cache invalidate signal. As another example, useful
mainly for larger caches, step 504 could be replaced by
instructions which test whether the current cache entry
is in the modified state and, only if so, perform a
write-back and invalidate operation. If not, only an
invalidate operation is performed.

III. VARIATIONS

In addition to the above-described embodiment, and
the several variations already mentioned above, several
other variations will now be mentioned. All are
considered to be within the scope of the invention.

As previously mentioned, the values stored in the
snoop advisory bit cell array are only advisory. A
"snoop no" value indicates that referenced address is
definitely not cached in the processor 110, but a
"snoop yes" value indicates only that so far as the
snoop advisory module 140 has been able to discern, the
referenced address may be cached in the processor 110.
The device 124 responds to all "snoop yes" advisories
by initiating a snoop operation, but in another
embodiment, the device 124 may decide for its own
reasons that the snoop is nevertheless unnecessary.

There are at least three senses in which a "snoop
yes" value in the snoop advisory cell is only advisory.
In one sense, it is advisory because each cell
corresponds to an entire snoop advisory page of the
memory address space, whereas the read access in
response to which the snoop advisory module set an
advisory cell, covered only one cache line in the

WO 96/35995 : PCT/US96/06480

10

15

20

25

30

35

- 34 -

memory address space. Thus a given snoop advisory cell
will indicate "snoop yes" for any device accesses to
any address in a 16k or 32k byte address range, even
though the only indication that the snoop advisory
module had that data may now be stored in the cache,
concerned only 32 bytes of that 16k or 32k byte range.

In a different embodiment, this source of
uncertainty in the "snoop yes" value can be reduced by
reducing the snoop advisory page size. Any reduction
in uncertainty in the "snoop yes" value can improve
performance by reducing the number of unnecessary Snoop
cycles. In the extreme, this source of uncertainty can
be eliminated entirely by implementing a snoop advisory
page size equal to the line size of the processor 110
internal cache (32 bytes). Any reduction in the snoop
adviséry page size, however, would have to be weighed
against the increased cost of a proportionally
increased number of snoop advisory bit cells, or a
reduction in the range of memory address space which is
shareable, or a combination of both. In this
connection, it is noteworthy that the snpAdv8meg bit in
the above-described embodiment allows a programmable
tradeoff between a 16k snoop advisory page size with a
4-megabyte shareable memory address space on the one
hand, and a 32k snoop advisory page size with an
8-megabyte shareable memory address space on the other
hand. Both options use the same snoop advisory bit
array size of 256 bit cells.

A second sense in which a "snoop yes" value is only
advisory, derives from imprecision in the ability of
the snoop advisory module to determine whether a given
processor-initiated read transaction constitutes a
cache 1line f£fill. The embodiment described herein
always errs on the side of overincluding rather than
underincluding, but it is quite possible that the snoop

WO 96/35995 PCT/US96/06480

10

15

20

25

30

- 35 -

advisory module will mark a given snoop advisory cell
"snoop yes", in response to a processor-originated read
transaction which did not actually fill a line of the
processor’s internal cache. In a given embodiment, the
ability to design host bust monitoring logic which
minimizes this source of uncertainty in a "snoop yes"
value, will depend on the processor chosen for the
design and the information which the processor provides
to external circuitry about the transactions that it
initiates.

A third sense in which a "snoop yes" value is only
advisory, derives from the fact that data from a given
line of memory may not actually remain cached for very
long. After a cache line fill transaction, detected by
the snoop advisory module and flagged in the
appropriate snoop advisory bit cell, the processor may
subsequently perform other cache line fills which
replace the data in the cache line. Or the processor
may for some reason invalidate the cache line. In
either case the snoop advisory cell will continue to
indicate a "snoop yes" value, even though the data
which the processor read, and which caused the "snoop
yes" value, is no longer in the cache.

The embodiment described herein limits this source
of "snoop yes" uncertainty by clearing the cache and
the snoop advisory bits at a periodic rate. 1In another
embodiment, this rate may be increased, thereby
reducing the uncertainty from this source and improving
the performance of the external devices. However, any
increase in this rate typically would have to be
weighed against the performance degradation which would
likely be experienced by the host processor from having
to perform cache and snoop advisory cell clearing
processes proportionally more often.

WO 96/35995 PCT/US96/066480

10

15

20

25

30

35

- 36 -

In yet another embodiment, the snoop advisory
module could monitor the host bus traffic for
indications that a data line is no longer cached in the
processor internal cache. Such indications can come in
part from the transaction type signals asserted by the
processor, for example. As another example,
immediately after an external device (external to the
processor structure) has written to or read from every
cache-line-sized region in a given area of memory, the
snoop advisory module knows that data in the given area
of memory has no possibility of being cached. Whenever
the snoop advisory module determines with certainty
that the cache is no longer caching any data from a
given snoop advisory page, the module can clear the
corresponding snoop advisory cell. Such an embodiment
may require a significant amount of additional
circuitry, however, and further requires a processor
which provides to external circuitry sufficient
information about processor-originated transactions to
enable such determinations.

The foregoing description of preferred embodiments
of the present invention has been provided for the
purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to
the precise forms disclosed. Obviously, many
modifications and variations will be apparent to
practitioners skilled in this art. The embodiments
were chosen and described in order to best explain the
principles of the invention and its practical
application, thereby enabling others skilled in the art
to understand the invention for various embodiments and
with various modifications as are suited to the
particular use contemplated. It is intended that the
scope of the invention be defined by the following
claims and their equivalents.

WO 96/35995 PCT/US96/06480

- 37 -

CLATIMS

1. A method for managing snoop requests to a
processor structure which accesses data in a memory
structure external to said processor structure, said
memory structure having a first address space and said
processor structure including a cache memory caching
data of said first address space for said processor
structure, for use with an additional device which also
accesses data in said first address space of said
memory structure, and for use further with a first
snoop advisory cell corresponding to a first subset of
addresses in said first address space, comprising the
steps of:

monitoring transactions originated by said
processor structure, and in response to each such
transaction which, according to a predetermined
monitoring test, indicates that data from said first
subset of addresses in said first address space may be
newly cached in said processor structure, writing a
"snoop yes" value into said first snoop advisory cell;

in response to each particular access by said
additional device to an address which is within said
first subset of addresses in said first address space,
issuing a snoop request to said processor structure for
the address of said particular access if said first
snoop advisory cell contains said "snoop yes" value,
and if said first snoop advisory cell does not contain
said "snoop yes" value, accessing said memory structure
without issuing said snoop request; and

recurrently performing the following steps in
conjunction with each other:

synchronizing with said memory structure all
data of said first subset of addresses which data
is cached in said cache memory, and

WO 96/35995 PCT/US96/06480

- 38 -

writing a "snoop no" value into said first
snoop advisory cell.

2. A method according to claim 1, wherein said
predetermined monitoring test tests for each given read
access by said processor structure which is of a
predetermined type and which is to an address which is
within said first subset of addresses in said first
address space.

3. A method according to claim 2, wherein said
cache memory includes an instruction cache memory and
a data cache memory, and wherein said predetermined
type of read access includes all read accesses by said
processor structure for filling a line of said data
cache memory with intent to modify said line of said
data cache memory.

4. A method according to claim 1, wherein said
step of recurrently performing specified steps in
conjunction with each other comprises the step of
recurrently causing said processor structure to perform
said specified steps in conjunction with each other in
response to software instructions executing in said
processor structure.

5. A method for managing snoop requests to a
processor structure which accesses data in a memory
structure external to said processor structure, said
memory structure having a first address space and said
processor structure including a cache memory caching
data of said first address space for said processor
structure, for use with an additional device which also
accesses data in said first address space of said
memory structure, and for use further with a first
snoop advisory cell, comprising the steps of:

in response to each given read access by said
processor structure, if said given read access is to an

address which is within a first subset of addresses in

WO 96/35995 PCT/US96/66480

- 39 -

said first address space, if said given read access is
of a predetermined type, writing a "snoop yes" value
into said first snoop advisory cell;

in response to each particular access by said
additional device to an address which is within said
first subset of addresses in said first address space,
issuing a snoop request to said processor structure for
the address of said particular access if said first
snoop advisory cell contains said "snoop yes" value,
and if said first snoop advisory cell does not contain
said "snoop yes" value, accessing said memory structure
without issuing said snoop request; and

recurrently performing the following steps in
conjunction with each other:

causing said processor structure to synchronize
with said memory structure all data of said first
subset of addresses which data is cached in said
cache memory, and

writing a "snoop no" value into said first
snoop advisory cell.

6. A method according to claim 5, wherein said
first subset of addresses in said first address space
covers a contiguous range of data locations in said
memory structure.

7. A method according to claim 5, wherein said
cache memory includes an instruction cache memory and
a data cache memory, and wherein said predetermined
type of read access excludes all read accesses by said
processor structure for filling a line of said
instruction cache memory. |

8. A method according to claim 5, wherein said
cache memory includes an instruction cache memory and
a data cache memory, and wherein said predetermined
type of read access includes all read accesses by said
processor structure for filling a line of said data

WO 96/35995 PCT/US96/06480

- 40 -

cache memory with intent to modify said line of said
data cache memory.

9. A method according to claim 5, wherein said
recurrently performed steps are performed periodically.

10. A method according to claim 5, for use further
with a video display, and circuitry which refreshes
said display in response to information in said memory
structure at a periodic refresh rate, and wherein said
recurrently performed steps are performed in
conjunction with each of said refreshes of said
display.

11. A method according to claim 5, wherein said
cache memory follows a write-through cache coherency
protocol within said first subset of addresses,

and wherein said step of causing said processor
structure to synchronize with said memory structure all
data of said first subset of addresses which data is
cached in said cache memory, comprises the step of
causing said processor structure to invalidate in said
cache memory all data of said first subset of addresses
which data is cached in said cache memory.

12. A method according to claim 5, wherein said
cache memory follows a write-back cache coherency
protocol within said first subset of addresses,

and wherein said step of causing said processor
structure to synchronize with said memory structure all
data of said first subset of addresses which data is
cached in said cache memory, comprises the step of
causing said processor structure to write back to said
memory structure all data of said first subset of
addresses which data is cached modified in said cache
memory.

13. A method according to claim 12, wherein said
step of causing said processor structure to synchronize
with said memory structure all data of said first

wo 96/35995 PCT/US96/06480

- 41 -

subset of addresses which data is cached in said cache
memory, further comprises the step of causing said
processor structure to invalidate in said cache memory
all data of said first subset of addresses which data
is cached in said cache memory.

14. A method according to claim 5, wherein said
processor structure also accesses data in an I/0
address space distinct from said first address space,
wherein said first snoop advisory cell comprises a bit
cell in a register addressable by said processor
structure in said I/0 address space, and wherein said
step of writing a "snoop no" value into said first
snoop advisory cell comprises the step of said
processor structure writing said "snoop no" value into
said first snoop advisory cell under control of
software instructions executing in said processor
structure. ,

15. A method according to claim 5, for use further
with a second snoop advisory cell corresponding to a
second subset of addresses in said first address space,
said second subset of addresses being distinct from
said first subset of addresses, further comprising the
steps of:

in response to each identified read access by said
processor structure, if said identified read access is
to an address which is within said second subset of
addresses in said first address space, if said
identified read address is of said predetermined type,
writing said "snoop yes" value into said second Snoop
advisory cell;

in response to each detected access by said
additional device to an address which is within said
second subset of addresses in said first address space,
issuing a snoop request to said processor structure for
the address of said detected access if said second

WO 96/35995 PCT/US96/06480

- 42 -

snoop advisory cell contains said "snoop yes" value,
and if said second snoop advisory cell does not contain
said "snoop yes" value, accessing said memory structure
without issuing said snoop request; and

recurrently performing the following steps in
conjunction with each other:

causing said processor structure to synchronize
with said memory structure all data of said second
subset of addresses which data is cached in said
cache memory, and

writing a "snoop no" value into said second
snoop advisory cell.

16. A method for managing snoop requests to a
processor structure which accesses data in a memory
structure external to said processor structure, said
memory structure having a first address space and said
processor structure including a cache memory for
caching data of said first address space for said
processor structure, for use with an additional device
which also accesses data in said first address space of
said memory structure, and for use further with a
plurality of snoop advisory cells, each corresponding
to a respective distinct subset of said first address
space, comprising the steps of:

in response to each read access (a first read
access) by said processor structure, if said first read
access is to an address (a first address) which is
within one of said subsets (a first subset) of
addresses in said first address space, if said first
read access is of a predetermined type, writing a
"snoop yes" value into the snoop advisory cell (a first
snoop advisory cell) corresponding to said first subset
of addresses;

in response to each access (a second access) by
said additional device, if said second access is to an

WO 96/35995 : PCT/US96/66480

- 43 -

address (a second address) which is within one of said
subsets (a second subset) of addresses in said first
address space, issuing a snoop reéquest to said
processor structure for said second address if the
snoop advisory cell (a second snoop advisory cell)
corresponding to said second subset contains said
"snoop yes" value, and if said second snoop advisory
cell does not contain said "snoop yes" value, accessing
said memory structure without issuing said snoop
request; and

recurrently performing the following steps in
conjunction with each other:

causing said processor structure to synchronize
with said memory structure all data of each of said
subsets of addresses which data is cached in said
cache memory, and

writing "snoop no" values into each of said
snoop advisory cells.

17. A method according to claim 16, wherein each of
said subsets of said first address space covers a
contiguous range of data locations in said memory
structure.

18. A method according to claim 16, wherein said
recurrently performed steps are performed periodically.

19. A method according to claim 16, wherein said
cache memory follows a write-through cache coherency
protocol within each of said subsets of addresses,

and wherein said step of causing said processor
structure to synchronize with said memory structure all
data of each of said subsets of addresses which data is
cached in said cache memory, comprises the step of
causing said processor structure to invalidate in said
cache memory all data of each of said subsets of
addresses which data is cached in said cache memory.

WO 96/35995 PCT/US96/06480

- 44 -

20. A method according to claim 16, wherein said
cache memory follows a write-back cache coherency
protocol within at least one of said subsets of
addresses,

and wherein said step of causing said processor
Structure to synchronize with said memory structure all
data of each of said subsets of addresses which data is
cached in said cache memory, comprises the step of
causing said processor structure to write back to said
memory structure all data of each of said subsets of
addresses which data is cached modified in said cache
memory.

21. A method according to claim 20, wherein said
step of causing said processor structure to synchronize
with said memory structure all data of each of said
subsets of addresses which data is cached in said cache
memory, further comprises the step .of causing said
processor structure to invalidate in said cache memory
all data of each of said subsets of addresses which
data is cached in said cache memory.

22. A method according to claim 16, wherein said
processor structure also accesses data in an I/0O
address spéce distinct from said first address space,
said snoop advisory cells comprising respective bit
cells in registers addressable by said processor
structure in said I/O address space, and wherein said
step of writing "snoop no" values into each of said
snoop advisory cells comprises the step of said
processor structure writing said "snoop no" values into
each of said snoop advisory cells under control of
software instructions executing in said processor
structure.

23. A method according to claim 16, wherein said
cache memory follows a write-through cache coherency
protocol within said given subset of addresses,

WO 96/35995 PCT/US96/06480

- 45 -

and wherein said step of causing said processor
structure to synchronize with said memory structure all
data of said given subset of addresses which data is
cached in said cache memory, comprises the step of
causing said processor structure to invalidate in said
cache memory all data of said given subset of addresses
which data is cached in said cache memory.

24. A method according to claim 16, wherein said
cache memory follows a write-back cache coherency
protocol at least within said given subset of
addresses,

and wherein said step of causing said processor
structure to synchronize with said memory structure all
data of said given subset of addresses which data is
cached in said cache memory, comprises the step of
causing said processor structure to write back to said
memory structure all data of said given subset of
addresses which data is cached modified in said cache
memory.

25. A method according to claim 24, wherein said
step of causing said processor structure to synchronize
with said memory structure all data of said given
subset of addresses which data is cached in said cache
memory, further comprises the step of causing said
processor structure to invalidate in said cache memory
all data of said given subset of addresses which data
is cached in said cache memory.

26. A method according to claim 16, wherein said
cache memory includes an instruction cache'memory and
a data cache memory, and wherein said predetermined
type of read access includes all read accesses by said
processor structure for filling a line of said data
cache memory.

27. A method according to claim 16, wherein said
cache memory includes an instruction cache memory and

WO 96/35995 PCT/US96/06480

- 46 -

a data cache memory, and wherein said predetermined
type of read access includes all read accesses by said
processor structure for filling a line of said data
cache memory with intent to modify said line of said
data cache memory.

28. A method according to claim 16, wherein said
cache memory has a cache line size, further comprising
the step of writing "snoop no" values into a given one
of said snoop advisory cells in response to a write
access by said additional device which writes data into
each cache-line-sized memory region which is within the
subset of said first address space corresponding to
said given snoop advisory cell.

29. Snoop request management apparatus, for use
with a memory structure and a processor structure which
accesses data in said memory structure, said memory
structure having a first address . space and said
processor structure including a cache memory caching
data of said first address space for said processor
structure, for use with an additional device which also
accesses data in said first address space of said
memory structure, comprising:

a first snoop advisory cell;

processor monitoring circuitry coupled to said
processor structure and to said first snoop advisory
cell, said processor monitoring circuitry, in response
to each given read access by said processor structure,
if said given read access is to an address which is
within a first subset of addresses in said first
address space, 1if said given read access is of a
predetermined type, writing a "snoop yes" value into
said first snoop advisory cell;

clearing circuitry coupled to said first Snoop
advisory cell, said clearing circuitry writing a "snoop

WO 96/35995 PCT/US96/06480

- 47 -

no" value into said first snoop advisory cell at
predetermined times; and

snoop decision circuitry coupled to said first
snoop advisory cell and further coupled to detect
accesses by said additional device, said snoop decision
circuitry having a snoop decision output and, in
response to each particular access by said additional
device to an address which is within said first subset
of addresses in said first address space, asserting a
"snoop necessary" value on said snoop decision output
if said first snoop advisory cell contains said "snoop
yes" value and asserting a "snoop unnecessary" value on
said snoop decision output if said first snoop advisory
cell does not contain said "snoop yes" value.

30. Apparatus according to claim 29, further
comprising snoop issuing circuitry coupled to said
processor structure, which issues a snoop request to
said processor structure for the address of said
particular access in response to each assertion by said
snoop decision circuitry of said "snoop necessary"
value.

31. Apparatus according to claim 29, wherein said
cache memory includes an instruction cache memory and
a data cache memory, and wherein said predetermined
type of read access includes all read accesses by said
processor structure for filling a line of said data
cache memory with intent to modify said line of said
data cache memory.

32. Apparatus according to claim 29, for use
further with a wvideo display, further comprising
circuitry which refreshes said display in response to
information in said memory structure at a periodic
refresh rate, said predetermined times occurring in
conjunction with each of said refreshes of said
display.

WO 96/35995 PCT/US96/06480

- 48 -

33. Apparatus according to claim 29, wherein said
first snoop advisory cell is writable by said processor
structure, and wherein said clearing circuitry
comprises circuitry coupled to said processor structure
and to said first snoop advisory cell which detects
write accesses by said processor structure to said
first snoop advisory cell, and which in response
thereto, writes into said first snoop advisory cell a
value specified by said processor structure.

34. Apparatus according to claim 33, wherein said
memory structure includes software instructions which,
when executed by said processor structufe, perform a
write access to said first snoop advisory cell
specifying said "snoop no" value.

35. Apparatus according to «claim 29, further
comprising a second snoop advisory cell corresponding
to a second subset of addresses in said first address
space, said second subset of addresses being distinct
from said first subset of addresses,

said processor monitoring circuitry being coupled
further to said second snoop advisory cell and, in
response to each identified read access by said
processor structure, if said identified read access is
to an address which is within said second subset of
addresses in said first address space, if said given
read access is of said predetermined type, writing said
"snoop yes" value into said second snoop advisory cell;

said clearing circuitry being coupled further to
said second snoop advisory cell, said clearing
circuitry further writing said "snoop no" value into
said second snoop advisory cell at predetermined times;
and

said snoop decision circuitry being coupled further
to said second snoop advisory cell, said snoop decision
circuitry further in response to each detected access

WO 96/35995 PCT/US96/06480

- 49 -

by said additional device to an address which is within
said second subset of addresses in said first address
space, asserting said "snoop necessary" value on said
snoop decision output if said second snoop advisory
cell contains said "snoop yes" value and asserting said
"Snoop unnecessary" value on said snoop decision output
if said second snoop advisory cell does not contain
said "snoop yes" value.

WO 96/35995

110
r

HOST
PROCESSOR

DATA
CACHE

1/5

PCT/US96/06480

SUBSTITUTE SHEET (RULE 26)

115-\
HOST IA MD
BUS BUS BUS
1112 1126 1
136 . 124 128
ol A(7:26) A\ SupReq L 4
e SNOOP
GBL SupRegAck
—— STATE Ret DEVICE MD(0:63)
TS | MACHINE |Retry 2
ARTRY IA(7:26) 14
~ o 2 MEMORY
. ~]_
D(0:63) | 2| [
E%SST SupAdvGoSup MREQ (=4
ARBITER MCNT hﬁgg) 3)
Toro P08 | vewory [
138 ; MA(7:29)
OWNS CONTROLLER
A(7:29) |BUS)
A(7:17) ' L
c 7] snoop 130
#= ADVISORY
SnpAdvenbl] MODULE _=—bmi_pbcRdAck 115
SpAdvneg| 140 |TA(7:17) % VPP
o g -g \cc\’I/\\ A
=EHE 120
1) e lat= VIDED
RdData | MODULE |42
, DISPLAY
OTHER
1/0
MODULES
FI6. 1

WO 96/35995

2/5

PCT/US96/06480

110
HOST PROCESSOR o1z
210 L HOST ADDR BUS
cPU MEMORY HOST DATA BUS
ADDR L2 GBL
7 INSTRUCTION ARTRY
DATA CACHE
ADDR
DATA Ly« DATA
L. CACHE
\- 216
FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06480

WO 96/35995

(£L:2)4ppyApydus

bapwgapydus

ujApydus

P ——

dugogapydus

31901

NOISIOEd
dOONS

9G¢

3/5

m§m|\

(4
—_—s
D1DQPY Ul

JIO0T
av3yd

0/1

9G¢

1PPV|3ud

9G¢

o | M | £ "9I4
N
bawgapydus
}1gApydusyas 9I901 -
. M PRVPEIdTINg
78 1ppyp4 HOLINOW (24:¢)Ippypyuau:
R SNE LSOH [y goyogndopyusu
g0~
96z
/97bau 91907 97| 1ud
1X9S2 : TAM | E,
ST130 01907 091694 0/I | 4PPVIIud
119 XN 7
AMOSIAQY V1va 443
dOONS JLTHM ;
. Zc DIDQIMIud
e’ opr/ a0e”

SUBSTITUTE SHEET (RULE 28

WO 96/35995

PCT/US96/06480

4/5

Q)EVICE READ ACCESS)

1

SNOOP ADVISORY MODULE |/404 [AF
INDICATES WHETHER RE
SNOOPING IS ADVISED

/r402

IS MADE
Y.

412
1\

406

DEVICE ISSUES SNOOP
REQUEST TO SNOOP
STATE MACHINE

AFTER ARBITRATION WITH OTHER
SNOOP REQUESTORS, SNOOP STATE
MACHINE ISSUES REQUEST TO
HOST BUS ARBITER

414*\\\

AFTER RECEIVING HOST BUS
ARBITRATION GRANT, SNOOP STATE
MACHINE RETURNS SNOOP ACK TO

DEVICE AND ISSUES SNOOP CYCLE
ON HOST BUS

416
.\

!

2 CLOCK CYCLES LATER, SNOOP STATE
MACHINE SAMPLES ARTRY, AND RETURNS
RETRY BACK TO DEVICE.
RETRY FIXED TIME AFTER RECEIVING SNOOP GRANT.

DEVICE SAMPLES

AFTER ARBITRATION,
CPU PERFORMS WRITE-BACK

OPERATION ("CACHE LINE PUSH")

422

! FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 96/35995 PCT/US96/06480

5/5

(CLEAR SNOOP ADVISORY BITS j)

/*502

LOOP: ADDR = 0 TO 4064
BY 32 BYTES

504
/,

LOAD WORD
FROM ADDR

YES :
/‘ bos

LOOP: REG=0 TO 7

/—510

WRITE O WORD TO

REG'TH WORD OF SNOOP
ADVISORY BITS (IN

I/0 ADDRESS SPACE)

514 FIG. 5

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/06480

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 13/16
US CL :395/473, 472, 468

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 395/473, 472, 468, 445

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

search terms: snoop?, interrogat?, prevent?, reduc?, limit?, lessen?, decreas?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 5,325,503 (STEVENS ET AL) 28 June 1994 1-35

AP US, A, 5,446,863 (STEVENS ET AL) 29 August 1995 1-35

A US, A, 5,404,489 (WOODS ET AL) 4 April 1995 1-35

A US, A, 5,072,369 (THEUS ET AL) 10 December 1991 1-35

D Further documents are listed in the continuation of Box C.

D See patent family annex.

. Special categories of cited documents:

“AT document defining the geacral state of the art which is not considered
to be part of particular relevance

°E*® carlier document published on or after the international filing date

L document which may throw doubts on priority clmm(n) or which is
cited to establish the publication date of or other
special reason (as specnﬁed)

0" document referring to an oral disclosure, use, exhibition or other
means

Pt d d prior to the i ional filing date but later than

the pnonlv date claimed

T later d blished after the inter 1 filing date or priority
date and not in conflict with the application but cited to understand the

principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to invoive an inventive step
when the documnent is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d such bination
being obvious 1o a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

26 JUNE 1996

Date of mailing of the international search report

22 JUL 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized ofﬁccr !
v/u'U L’
KEVIN L ELLIS .o

/-&
Telephone No. (703) 305-9659

Form PCT/ISA/210 (second sheet)(July 1992)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

