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EFFICIENT MULTI-RESOLUTION
SPACE-TIME ADAPTIVE PROCESSOR

BACKGROUND OF THE INVENTION

Field of the Invention:

The present invention relates to radar and electro-optic image data processing
systems and techniques. More specifically, the present invention relates to space time
adaptive array processing systems and techniques for use in radar and electro-optic

image data processing applications.

Description of the Related Art:

Active and passive imaging technologies are employed in diverse applications
where there is a need to track an object as it moves through space. In military and
commercial applications, for example, radar is often used to track targets and other
aircraft. Electro-optic technologies including laser based systems are also used for
such applications.

Unfortunately, as is well known in the art, tracking of targets including aircraft
and spacecraft using radar and electro-optic techniques and the tracking of vessels
using sonar may be problematic due to the presence of clutter and other sources of
interference. Clutter is often due to the detection of objects other than a desired target
and may result from natural as well as artificial objects. Further, the clutter may vary

in size and number and may be static or dynamic. Interference may be intentional and,
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if so, it may be designed to overpower the sensing technology or it may be designed to
cause a malfunction or misread of a true target location.

Accordingly, the elimination of clutter and other sources of interference has
received considerable attention from designers of passive and active tracking systems.
One technique which offers the promise of being of use for such applications is called
space time adaptive array processing or “STAP”. Considered for use with systems that
employ an array of sensing elements, STAP would involve the creation of a
covariance matrix in the vicinity of the target. The covariance matrix would be used to
provide an estimate of the clutter. The estimate would then be used to remove the
clutter in a gate around the target.

STAP attempts to suppress spatio-temporal interference, hence covariance
matrix estimates must be updated in real time to handle rapidly changing interference
statistics. Unfortunately, clutter is often nonstationary due to movement or jamming.
As a result, the steps of estimating the covariance matrix and canceling the clutter
using STAP would be computationally intensive. Hence, the data processing
requirements for current applications are often considerable, e.g., on the order of ten
billion floating point operations per second (10 GFLOPS).

Accordingly, there is a need in the art for an efficient system and method for
processing sensor outputs to eliminate clutter and interference for current and future

military, commercial and industrial applications.
SUMMARY OF THE INVENTION

The need in the art is addressed by the image processing system and method of
the present invention. In accordance with the inventive method, adapted for use in an
illustrative image processing application, a first composite input signal is provided
based on plurality of data values output from a sensor in response to a scene including
a target and clutter. The composite signal is processed to provide a plurality of tap
weights. The tap weights are generated by the matrix of data values which is first

filtered by a wavelet transform to provide a set of coefficients. The coefficients are
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sparsened to provide a sparse matrix. The sparse matrix is then inverse wavelet
transformed to provide the tap weights. Finally, the tap weights are applied to the
composite signal to yield a clutter reduced output signal.

In the illustrative implementation, the matrix is a covariance matrix. However,
a method for implementing the teachings of the invention in the data domain is also
disclosed. In the illustrative implementation, the sparsed matrix is inverted and a set
of steering vectors is applied to create the tap weights.

The invention affords an enhanced Signal-to-Interference+Noise Ratio (SINR)
because (i) wavelets provide better bases for nonstationary processes and therefore
offer improved sample support performance and (ii) coefficient thresholding in

wavelet domain removes noisy data that is difficult to estimate.
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows an Electronic Counter Countermeasure (ECCM) scenario that
may occur in advanced air-to-air encounters.

Fig. 2a shows how a notch can be placed at the location of the jammer in the
main antenna beam and indicates how the effects of the jammer can be canceled.

Fig. 2b illustrates how aperture-limited resolution provided by conventional
nonadaptive processing is enhanced to provide subbeamwidth resolution that permits
the separation of the two closely spaced targets.

Fig. 3 illustrates range doppler spread in a terrain scattered interference
jamming scenario.

Fig. 4 is a block diagram illustrative of the efficient multi-resolution space
time adaptive processing system and method of the present invention.

Fig. 5 illustrates a pyramidal algorithm.

Fig. 6 illustrates an extension of a one-dimensional pyramidal algorithm to
two dimensions.

Fig. 7 represents a wavelet coefficient mapping of a decomposed matrix and

clearly shows the multiple resolutions.
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Fig. 8 is a diagram illustrating a sparsening of a covariance matrix using a
discrete wavelet transform in accordance with the method of the present invention.

Fig. 9a shows a sample covariance matrix.

Fig. 9b show a discrete wavelet transform of the sample covariance matrix of
Fig 9a.

Fig. 10 depicts SNR as function of degree of sparsening of covariance matrix.

Fig. 11 depicts a 2-D histogram of significant wavelet coefficients.

Figs. 12a and 12b depict SNR vs. sparsening using a coefficient template.
DESCRIPTION OF THE INVENTION

Tlustrative embodiments and exemplary applications will now be described
with reference to the accompanying drawings to disclose the advantageous teachings
of the present invention.

While the present invention is described herein with reference to illustrative
embodiments for particular applications, it should be understood that the invention is
not limited thereto. Those having ordinary skill in the art and access to the teachings
provided herein will recognize additional modifications, applications, and
embodiments within the scope thereof and additional fields in which the present
invention would be of significant utility.

Fig. 1 shows an Electronic Counter Countermeasure (ECCM) scenario 10 that
may occur in advanced air-to-air encounters. Two particular jamming possibilities are
illustrated: (i) a Stand Off Jammer (SOJ) 12 or 14 that places a jamming signal in the
mainlobe 16 of an antenna beam from a missile 20; and (ii) two closely spaced targets
22 and 24 residing within the mainlobe 16. Both of these threats can be addressed
with adaptive processing techniques. Case (i) is illustrated in Fig. 2a which shows
how a notch can be placed at the location of the jammer in the main antenna beam and
indicates how the effects of the jammer can be canceled. Case (ii), which is an
example of superresolution, e.g., the MUSIC algorithm, is shown in Fig. 2b and

illustrates how the aperture-limited resolution provided by conventional nonadaptive
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processing is enhanced to provide subbeamwidth resolution that permits the
separation of the two closely spaced targets. ‘

Fig. 3 illustrates range doppler spread in a terrain scattered interference
jamming scenario. In the typical jamming scenario illustrated in Fig. 3, the Terrain
Scattered Interference (TSI) has a significant spread in range and doppler. The
extraction of targets from nonstationary clutter may thus require the use of Space-
Time-Doppler Adaptive Processing (STAP). In this case, the faithful representation of
the covariance matrix requires a large number of degrees of freedom. It may also be
possible to handle the highly nonstationary clutter environment by using fewer
degrees of freedom, but processing at a much faster update rate. Either of the
scenarios require multi-GFLOP processing.

The purpose of adaptive processing is to remove the interference to extract
obscured targets. STAP works by estimating the covariance matrices from sample
data that does not contain the target.

Fig. 4 is a block diagram illustrative of the efficient multi-resolution space
time adaptive processing system and method of the present invention. The system 30
includes a sensor 32 and a STAP processor 40. The sensor 32 is typically
electromagnetic, e.g., radar, or electro-optic, e.g., laser. The STAP processor 40 is
implemented in accordance with the present teachings preferably in an application
specific integrated circuit (ASIC) or a field programmable gate array (FPGA). The
STAP processor 40 is implemented within a digital processing system (not shown)
provided between the sensor 32 and a system (not shown) for providing track
processing, control or display as will be appreciated by those skilled in the art. The
sensor 32 outputs an electrical data signal that represents a target and interference.
The sensor output is input to a filter bank 33 and a covariance estimator 34. A set of
weight vectors, W, is output by the estimator 34 from a sample covariance matrix, A,
and a set of steering vectors, S,. The steering vectors S, is supplied by a cueing system
36 as is common in the art. The tap weights are used by the filter bank to filter the
clutter from the sensor output in a conventional manner. The system 40 solves, in real

time, the matrix equation:
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W, =A"S, [1]

In accordance with conventional teachings, this is a numerically intensive
process that drives the STAP throughput requirements. However, as set forth below,

the present invention reduces the computational requirements of STAP processing.

STAP Processing Using Wavelet Transforms

The present invention treats the matrices that arise in RF STAP - Range
Doppler Maps, Data Matrices and Covariance Matrices - as images and then exploit
techniques that have been developed in multiresolution image analysis. Specific
properties of the wavelet transform that are useful include: sparsening, denoising,
edge detection and efficient bases for nonstationary processes. A brief introduction to
wavelets and wavelet packets is provided below to facilitate an understanding of the
present invention. The reader is referred to a number of excellent papers for more
detailed information. (See for example, “Ten Lectures on Wavelets,” by L
Daubeshies, SIAM, Philadelphia, PA, 1992 and “A theory for Multiresolution Signal
Decomposition: The Wavelet Representation,” by S. Mallat, IEEE Trans., Pattern
Anal. Mach. Intel., Vol. 11, pp. 674-693, 1989.)

Introduction to Wavelets and Wavelet Packets

The wavelet transform is characterized by a dilation parameter and a
translation parameter. Continuous wavelet transforms have the properties that they
possess a decomposition of the identity and are overcomplete. For this reason, they
are not efficient computationally and thus have not found widespread engineering
applications.

In 1989, Mallat introduced a pyramidal algorithm for the discrete wavelet
transform (DWT) that, like the FFT, is a fast, linear operation that operates on a data

vector.
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Fig. 5 illustrates the pyramidal algorithm introduced by Mallat. A Quadrature

Mirror Filter pair, g(n) and h(n), is first constructed. The data vector V° is then

processed into a smoothed portion, V‘n , and a details portion, W‘n. The first octave

smoothed vector is again decomposed into the second octave smoothed and detail data
vector. The process is repeated for each smoothed vector; the result is an S(n)
orthogonal subspace decomposition of the data vector with no redundancy. The
decomposition of the vector into a series of orthogonal vector spaces allows each
octave to be processed independently. This so-called multi-resolution decomposition
is the basis for many proposed applications.

Fig. 6 illustrates an extension of a one-dimensional pyramidal algorithm to
two dimensions. The 2-D DWT shown here is separable; it is the tensor product of
two 1-D DWTs: T(x,y) = T(x) ® T(y). The 2-D DWT is used to decompose and
reconstruct a two dimensional data vector, i.e., a matrix.

Fig. 7 represents a wavelet coefficient mapping of a decomposed matrix and
clearly shows the multiple resolutions. This multi-resolution property may provide a
useful approach to target discrimination based on feature extraction since many target
characteristics appear differently at each resolution level.

The discrete wavelet packet (DWP) is a generalization of the DWT in that
both the details and smoothed portions of the data vector are filtered at each octave.
The DWP tree is then pruned and a ‘best basis’ is selected based on entropy or similar
criteria.

While both the FFT and DWT map the data vector from one vector space into
another, their basis functions are significantly different. The basis function for the
FFT are complex exponentials, which are localized in frequency but not in time; the
basis functions for the DWT are much more general and are localized in both
frequency and time. It is this dual localization that renders large classes of functions

sparse in the wavelet domain.
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STAP Implementation using the DWT

Fig. 8 is a diagram illustrating a sparsening of a covariance matrix using a
discrete wavelet transform in accordance with the method of the present invention.
The present invention uses the wavelet transform to solve Eq. [1] in a computationally
efficient manner. As shown schematically in Fig. 8, the sample covariance matrix A is
first transformed using a Discrete Wavelet Transform (DWT) into A. Next, the

transformed matrix A,, is sparsed. During the sparsing operation, small coefficients

are thresholded to zero, resulting in a sparsened matrix /A\,;‘. The sparsened matrix

~

A, is then inverted to yield Aw_l and transformed using an Inverse DWT (IDWT) to

yield A~'. This value A" is then inserted into equation [1] above to calculate the tap
weights. Those skilled in the art will appreciate that the invention is not limited to the
thresholding technique employed in the sparsening operation. A number of
thresholding techniques can be employed, including global thresholding, zero trees,
and vector quantization. See “Image Coding Using Wavelet Transform,” by Antonini,
M. Barlaud, P. Mathieu, and I. Daubechies, IEEE, Trans. Image Processing, Vol. 1,
pp. 205-220, 1992 and “Image Coding Using Vector Quantization: A Review,” by
Nasrabadi and R. King, IEEE, Trans. Commun., Vol. 36, Aug. 1988.

Fig. 9a shows a sample covariance matrix. Fig. 9b show a discrete wavelet
transform of the sample covariance matrix of Fig 9a. The physical environment 1s
representative of TSI and was generated from a high fidelity simulation. A banding
structure, indicative of a sparse matrix, is clearly present in the transformed sample
covariance matrix. This banding structure is known to be a rather general property of
many types of scattering and does not depend on the specific details of the TSI model.

While significant sparsening can clearly be achieved, there are two major
concerns with working in the DWT domain: performance degradation and transform

overhead. These issues are addressed below.
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Performance Evaluation

Fig. 10 depicts SNR as function of degree of sparsening of covariance matrix.
An appropriate metric for evaluating the wavelet transform is the SNR as a function of
sparsening of the sample covariance matrix. From Fig. 10, it can be seen that a
sparsening of approximately 90% can be achieved without materially degrading the
SNR. Interestingly, a slight increase in SNR is evident for some sparsening; there are
several interpretations of this: de-noising, improved training data, etc. The ability to
achieve significant sparsening is an indication that the DWT is in some sense a close

approximation to a data independent Karhunen-Loeve Transform.

Temporal Stability of the DWT Coefficients and Data Domain Processing

In this section, the difficult problem of reducing the overhead required when
constructing and implementing the DWT is considered. Two techniques are examined

separately: temporal stability and data domain processing.

Temporal Stabili

This section discusses the investigation into temporal stability of the wavelet
coefficients. Those skilled in the art will appreciate that although the magnitude of the
significant wavelet coefficients could change rapidly in time. their location might not.
It turns out that this is indeed the case, as illustrated in Fig. 11.

Fig. 11 depicts a 2-D histogram of significant wavelet coefficients. What is
plotted here is a histogram of significant wavelet coefficients across 128 Pulse
Repetition Intervals (PRIs). The majority of the histogram values were either 0 or 128,
indicating that the coefficients were either significant or insignificant for all PRIs.
This was further borne out (c.f., Fig. 12) by calculating the SNR as a function of
sparsening by forming a template on the first PRI and using that for all remaining
PRIs.

Figs. 12a and 12b depict SNR vs. sparsening using a coefficient template.
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Data Domain Processing
In practice, STAP calculations may be performed in the data (voltage) domain

using the MxM sample covariance matrix, A, computed as

2| -

[2]

where A is an NxM data matrix.

Using QR-decomposition:

A=QR=>A"A=R'Q'OR=R'R 3]
where R is an MxM upper triangular matrix.

Similarly, one can factor the covariance matrix using Cholesky

decomposition; to within a scale factor:

"

A=LL (4]
Eq. [1] can now be written as:

Aw, =LLw, =5, = L(p") : p,=Lw, ' [5]

Since L is lower triangular, the solution is found by two back-substitutions.
The wavelet transform can be applied to the data matrix A and coefficient
thresholding applied. Using this approach, only the significant elements of A need be
computed. Similarly, we know from the previous section that only certain covariance
matrix elements are significant in the wavelet domain. These can be related to the

data domain through Eq. 2:

10
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[6]
DWT and Block Toeplitz Symmetry

5 In this section, the inventive method by which the wavelet transformation can
be constructed to preserve a block Toeplitz structure is disclosed. Consider the
example of A being a 32x32 matrix of 8x8 Toeplitz subblocks. We first define an

orthogonal 8x8 wavelet transform, Q, and then form the tensor product Q:

QO O 0 O 7;) T—I T—2 T—3
0= 0 @ 0 0_ A= L I, T, T,
1o 0 g o0f o5 T
10 0 0 0 @ L, T T [7]
It is easily shown that Q is orthogonal and preserves the block Toeplitz
structure of A:
o 0 0 o (g 0 0 0
0 = 0 O 0 0| |0 o o_1 0o
0 0 Q O o 0 o' 0 J
* i -1
15 0 0 0 @, 0 0 0 O 8]
g 0 0 O0fA Ay A, ALJQ, O 0 0
._OQ:,OOA,AOA_,A_ZOQ)OO_
OA=l 0 5 g ofa A A AfO 0 0 Of
0 0 0 gJA A A A0 0 0 G (9]
gAQ, 0N G OA0 OnQ] [A Ry K, R,
Q;AIQ) Q;AoQo Q;A-xQo Q;A—ZQ) — i\x ﬁo /}1 ﬁ—z =7\
GG, OMG OAQG OAQ| A A A A,
orD, OAG GAG OAG | (A A A A

11
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Thus, a2 novel scheme for the efficient implementation of multiresolution
STAP is disclosed. In addition to potential throughput reductions, the multiresolution
formulation affords much broader and more flexible processing capabilities.
The present invention has been described herein with reference to a particular
5 embodiment for a particular application. Those having ordinary skill in the art and
access to the present teachings will recognize additional modifications applications
and embodiments within the scope thereof.
It is therefore intended by the appended claims to cover any and all such
applications, modifications and embodiments within the scope of the present
10  invention.

Accordingly,

WHAT IS CLAI :

12
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CLAIMS

1. An image processing system characterized by:

a sensor (32) for providing a plurality of data values corresponding to a scene
including a target and clutter and providing a first composite input signal in response
thereto;

5 an estimation mechanism (34) for processing said composite signal and
providing a plurality of tap weights in response thereto, said estimation mechanism
(34) including:
a circuit (34) for providing a matrix of said data values,
a circuit (34) for performing a wavelet transformation of said matrix
10 and providing a set of coefficients in response thereto,
a circuit (34) for sparsing said coefficients to provide a sparsed matrix,
and
a circuit (34) for performing an inverse wavelet transformation of said
sparsed matrix to provide said tap weights; and
15 a circuit (33) for applying said tap weights to said composite signal to provide

a clutter reduced output signal.

13
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