

US 20150139966A1

(19) United States(12) Patent Application Publication

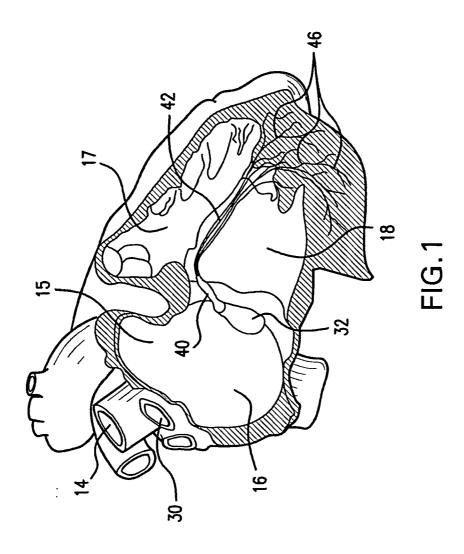
Sigg et al.

(10) Pub. No.: US 2015/0139966 A1 (43) Pub. Date: May 21, 2015

(54) METHODS OF USING HCN GENES TO TREAT CARDIAC ARRHYTHMIAS

- (71) Applicant: Medtronic, Inc., Minneapolis, MN (US)
- Inventors: Daniel Sigg, St. Paul, MN (US); James
 A. Coles, JR., Columbia, MD (US);
 Erica TenBroek, Roseville, MN (US)
- (21) Appl. No.: 14/509,629
- (22) Filed: Oct. 8, 2014

Related U.S. Application Data


(63) Continuation of application No. 11/022,172, filed on Dec. 22, 2004, now Pat. No. 8,859,273. (60) Provisional application No. 60/532,764, filed on Dec. 24, 2003.

Publication Classification

- (51) Int. Cl. *C07K 14/705* (2006.01) *A61K 35/34* (2006.01)

(57) **ABSTRACT**

The subject invention is directed to methods of treating cardiac pacing dysfunction by administering HCN genes, alone or in combination with other genes.

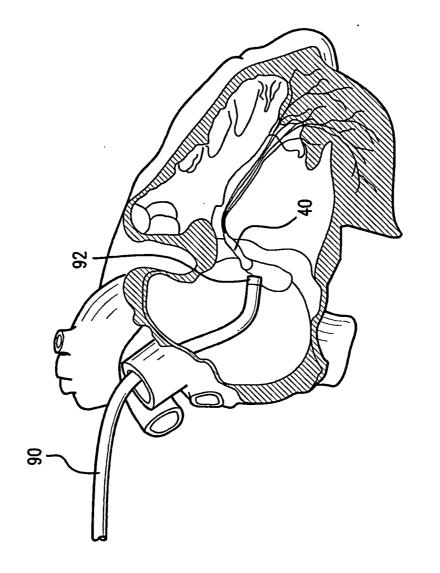
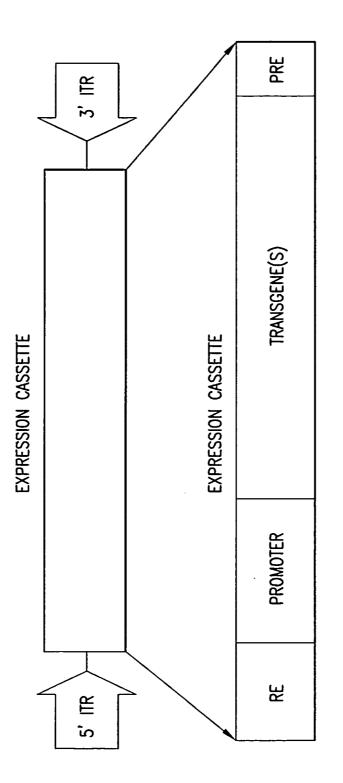



FIG.2

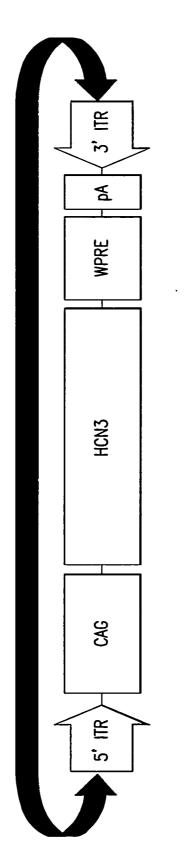


FIG.4

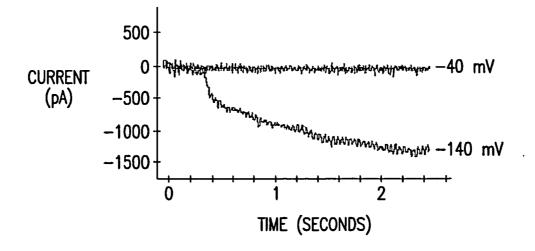


FIG.5

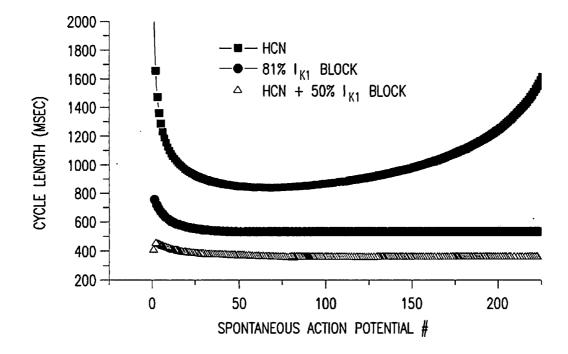
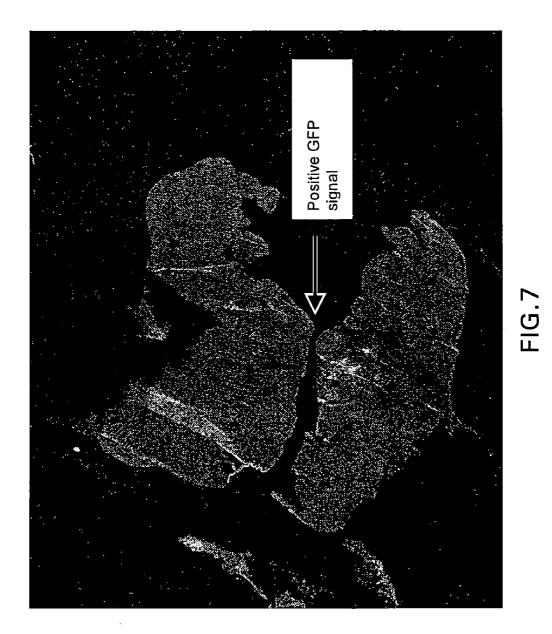
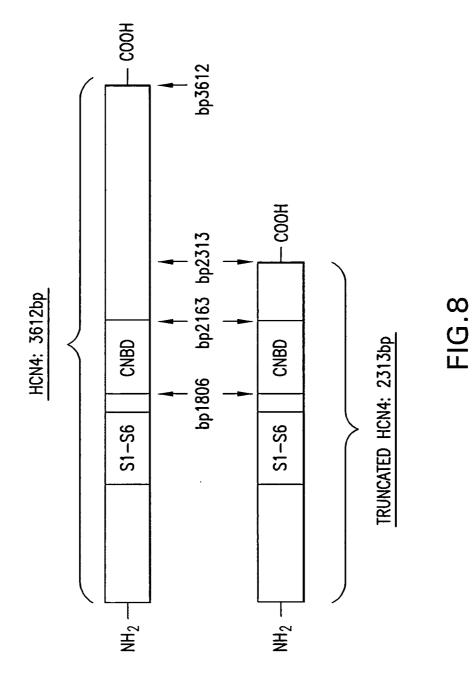




FIG.6

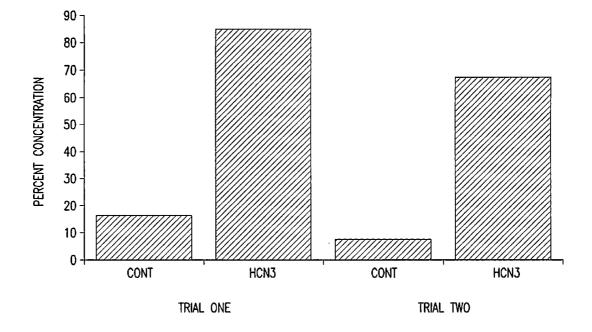


FIG.9

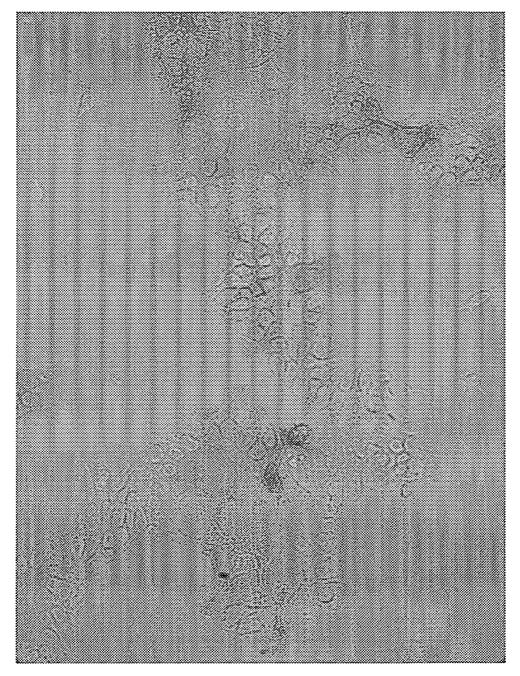
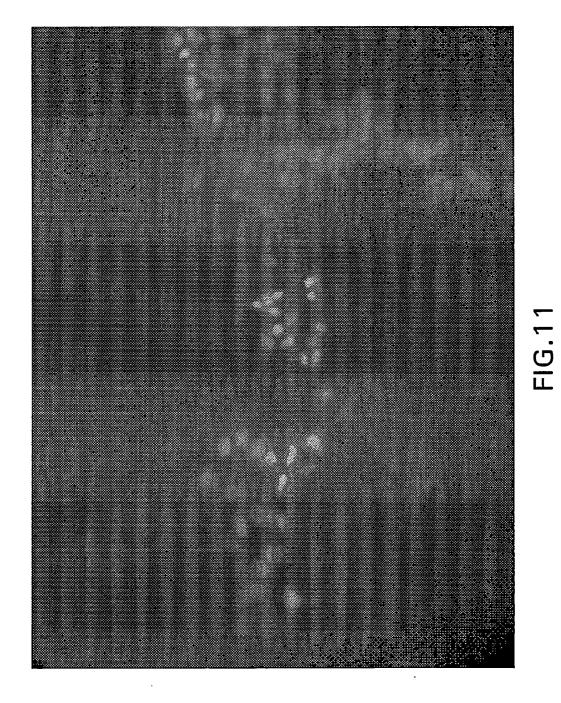
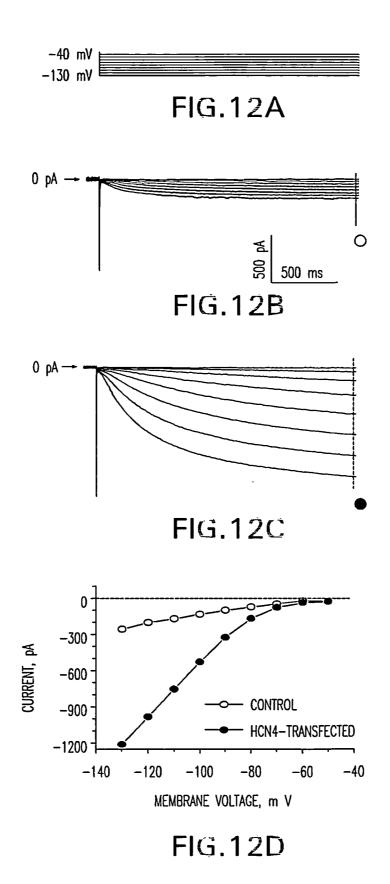
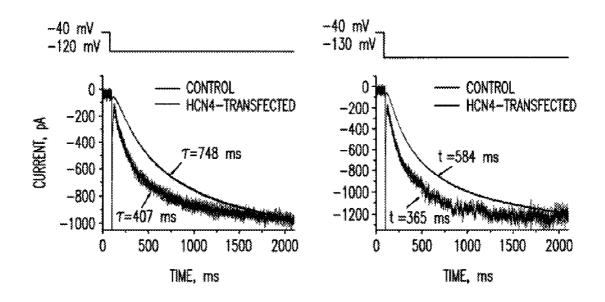
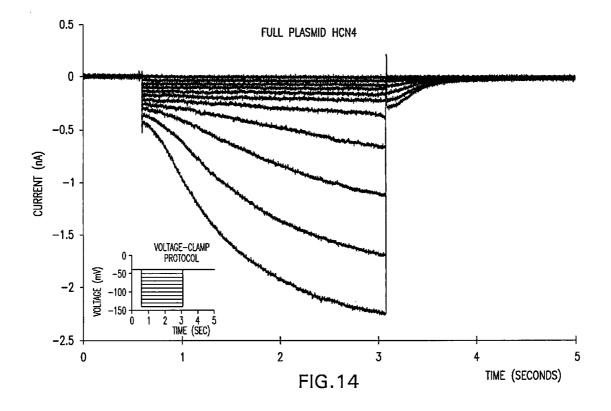
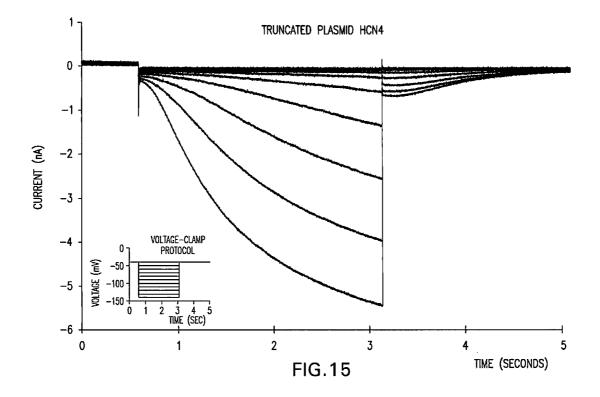
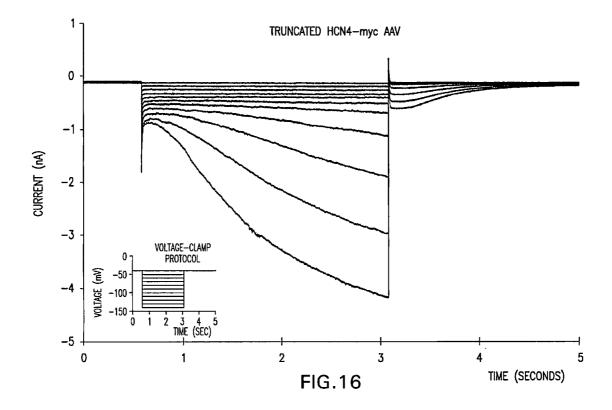
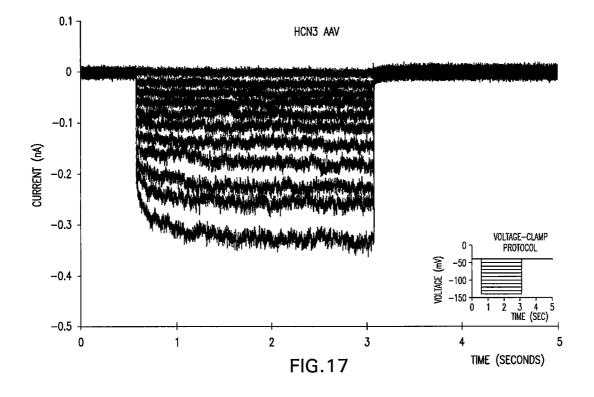





FIG.10









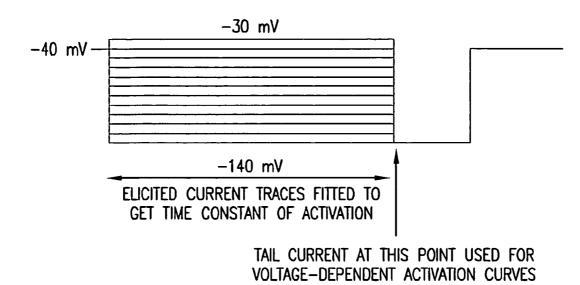


FIG.18

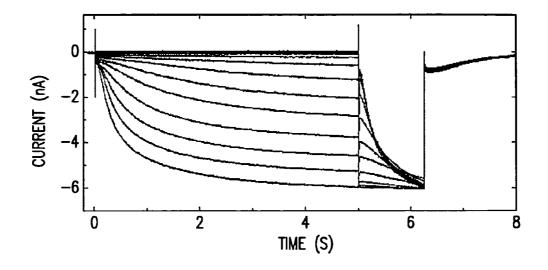


FIG.19

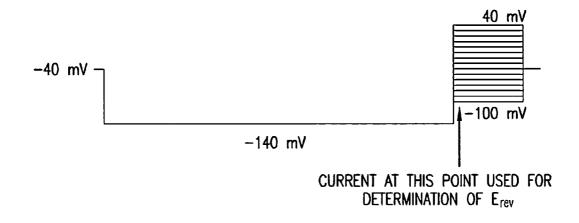


FIG.20

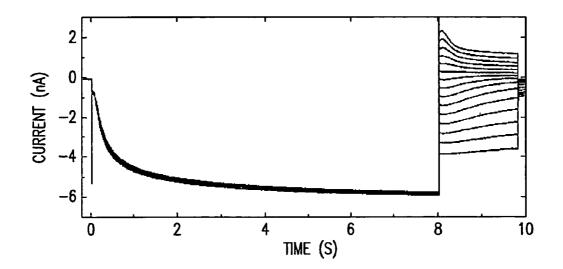


FIG.21

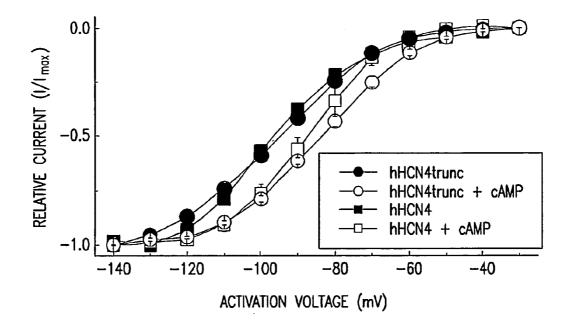


FIG.22

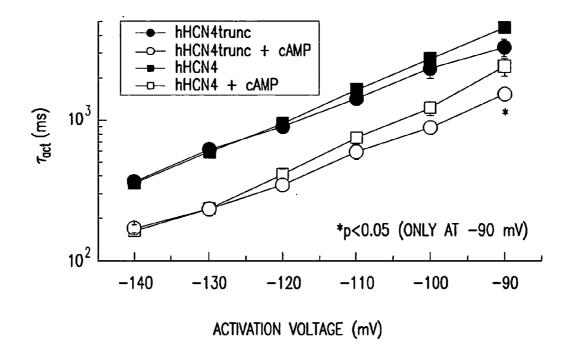


FIG.23

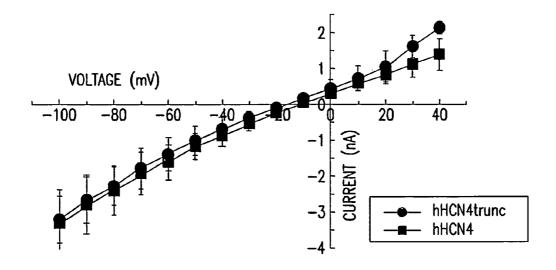


FIG.24

METHODS OF USING HCN GENES TO TREAT CARDIAC ARRHYTHMIAS

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] The present application is a continuation application of U.S. application Ser. No. 11/022,172 filed Dec. 22, 2004 which claims priority under Title 35, United States Code, .sctn.119 to provisional application U.S. Patent application Ser. No. 60/532,764 filed Dec. 24, 2003.

FIELD OF INVENTION

[0002] The present invention relates to compositions and methods for treating cardiac (brady-) arrhythmias, and more particularly to systems and methods involving the application of gene and cell therapy to treat cardiac pacing dysfunction.

BACKGROUND OF THE INVENTION

[0003] In a normal human heart, cardiac contraction is initiated by the spontaneous excitation of the sinoatrial ("SA") node that is located in the right atrium. The electrical current generated by the SA node travels to the atrioventricular ("AV") node where it is then transmitted to the bundle of His and Purkinje network, which branches in many directions to facilitate coordinated contraction of the left and right ventricles.

[0004] The cellular basis for the aforementioned electrical impulse is the action potential (AP). The AP is conventionally divided into five phases (phases 0-4) in which each phase is defined by the cellular membrane potential and the activity of potassium, sodium, chloride, and calcium ion channel proteins that affect that potential. These channels, embedded in cell membranes, allow for electrical impulses to occur as they permit charged ions to rush through them. Propagation of electrical activity from an individual cardiac cell to surrounding cardiac tissue takes place through gap junctions, small pore-like structures that connect cardiac muscle cells to each other. The role of ion channels in cardiac electrical conduction is analogous to electrical conduction in other tissues such as skeletal muscle.

[0005] Some channels or gates have their own "non-provoked" rhythmic excitation also known as automaticity. The generation of cardiac automaticity is based on a complex interplay between at least four different channels of cationic (positive ion) nature: T- and L-type calcium channels, a cation channel named I_{f} and potassium channels. The I_{f} channel has been termed the pacemaker channel. I, channels have unique properties such as: 1) I_r channels open upon membrane hyperpolarization; 2) I_f channels allow for mixed cation current (Na+ and K+); 3) cyclic AMP (cAMP-cyclic adenosine monophosphate which serves as an intracellular messenger molecule) binds to the cytoplasmic site of the channel thereby accelerating its activation kinetics and shifting the voltage dependence of the cell to more positive voltages; and lastly 4) I_f channels are susceptible to blockade by extracellular Cs⁺ (cesium ion). The genes responsible for the I_r channel currents have recently been identified and belong to the HCN (hyperpolarization-activated cyclic nucleotide-gated) family. Four different isoforms have been identified in vertebrates (HCN1, HCN2, HCN3 and HCN4) and all except HCN3 have been found in the heart. HCN3 is specifically expressed in neurons. [0006] HCN channels directly interact with intracellular cAMP so that an increase in cAMP levels results in increased If and more positive activation potentials. This increase thereby accelerates the heart rate (HR) in response to sympathetic stimulation. In contrast, muscarinic stimulation slows the heart rate in part due to a decrease in cAMP levels and a resulting reduction of I_f and more negative activation potentials. Ludwig, A. et al.; "Two pacemaker channels from human heart with profoundly different activation kinetics." EMBO J. (1999) 18 (9):2323-2329. The importance of the HCN genes in regulating heart rate has recently been shown in a patient who suffered from mutation in his HCN4 gene. This mutation consisted of a complete deletion of the C-terminus of the gene which included the cAMP binding domain. This patient suffered from symptomatic bradycardia and an electronic pacemaker needed to implanted. These mutations were recreated in vitro experiments, and the mutated channel was expressed in a cell line. The mutated HCN4 channel was completely inresponsive to cAMP. See, J Clin Invest. 2003 May: 111(10):1537-45.

[0007] HCN1 is primarily expressed in the brain and shows little dependence on cAMP. HCN1 is also expressed in the rabbit SA node and displays properties of brain h-channels in that it has a short AP. HCN2 and HCN4 are predominantly expressed in the heart, as well as in the brain, and produce currents similar to I_c HCN1 is the fastest activating channel (25-300 ms), followed by HCN2 and HCN3 (180-500 ms), and lastly HCN4 (a few hundred ms to seconds). All four subunits induce pacemaker current similar to I_f if the units are expressed in heterologous expression systems. In addition, the four isoforms can interact with one another to form tetramers (couplings whereby the two isomers join to create a functionally different structure). The heteromerization of the isoforms changes pacemaker electrophysiology via altered activation kinetics (e.g., allows for modulation (increase or decrease) of heart rate). (Much B et al. J of Biol Chem; 44 (31): 43781-43786). While the exact stoichiometry of the heteromerized HCN channels has not been described yet, it is considered that these channels may form heteromers with a 3:1 ratio, but ratios of 1:1 or 1:3 are also possible as the HCN channels are known to form tetramers. In related rod photoreceptor cyclic nucleotide-gated channels, an asymmetrical stoichiometry of the two subunits present in the tetramers of 3:1 was determined. Zhong H et al. Nature 2002; 420: 193-196. Weitz D et al. Neuron 2002; 36: 881-889. Zheng J et al. Neuron 2002; 36: 891-896.

[0008] To avoid misunderstandings due to different naming of the same proteins, isoform nomenclature for the mouse brain is as follows: HCN1 corresponds to HAC2 (mBCNG-1), HCN2 corresponds to HAC1 (mBCNG-2) and HCN3 corresponds to HAC3 (mBCNG4).

[0009] In certain diseased states, the heart's ability to pace properly is compromised. For example, failure of SA nodal automaticity, resulting in an insufficient number of electrical impulses emanating from the SA node, is the most common cause of bradyarrhythmias (heart rhythm that is too slow). If slowing is enough so that the resultant heart rate is insufficient to meet the body's demand, symptoms result. Symptomatic bradycardia originating from the sinus node is part of a clinical syndrome characterized by brady- and tachyarrhythmias originating from a diseased sinus node, commonly referred to as sick sinus syndrome. Clinically, sick sinus syndrome is a very common problem and accounts for approximately 70% of all pacemaker implants in the general population. Other bradyarrhythmic disease states due to slowed or absent impulse propagation include the various degrees of AV block (e.g. 1^{st} , 2^{nd} , or 3^{rd}). Tachyarrhythmias (heart rhythm that is too fast) and fibrillation are also a concern. These conditions present major problems ranging from cost of treatment to diminished quality of life and even death.

[0010] Currently, bradyarrhythmias are most commonly treated by the implantation of (exogenously driven) electronic pacemaker. While improving the lives of many patients, implantable pacemakers have a limited lifetime and consequently may expose a patient to multiple surgeries to replace the implantable pacemaker. Biological methods of influencing the pacing rate of cardiac cells, however, have recently been developed, including the use of various drugs and pharmacological compositions. Developments in genetic engineering have resulted in methods for genetically modifying cardiac cells to influence their intrinsic pacing rate. For example, U.S. Pat. No. 6,214,620 describes a method for suppressing excitability of ventricular cells by over-expressing (e.g. K⁺ channels) or under-expressing certain ion channels (e.g. Na⁺ and Ca²⁺ channels). PCT Publication No. WO 02/087419 describes methods and systems for modulating electrical behavior of cardiac cells by genetic modification of inwardly rectifying K^+ channels (specifically, I_{K1}) in quiescent ventricular cells.

[0011] Of particular import to those who suffer from bradyarrhythmias due to insufficient production of I_{fi} PCT Publication No. WO 02/098286 describes methods for regulating pacemaker function of cardiac cell via modulation of HCN channels (HCN 1, 2, or 4 isoforms). See also U.S. Patent Application No. 2002/0187948, PCT Application No. WO 02/087419 A2, U.S. Patent Application Publication No. US 2002/0155101A1 and U.S. Pat. No. 6,214,620.

[0012] Still, there is a need to improve current methods of using HCN to treat cardiac patients and create pacemaker current capable of being turned on, off and modulated as well as having the capability to react to physiological stimuli to ultimately restore physiological heart rates in patients suffering from arrhythmias.

SUMMARY OF THE INVENTION

[0013] The present invention is directed to methods of using HCN genes, variants or subunits thereof to treat a cardiac pacing dysfunction. The various isoforms of HCN that include HCN1, HCN2, HCN3 and HCN4, and modified HCN genes (e.g. truncated HCN4) may be combined to induce a pacemaker current and treat a patient in need thereof. In addition, HCN genes can be combined with other types of genes including genes that promote beta-adrenergic receptors or genes that suppress I_{k1} current to treat cardiac pacing dysfunction.

[0014] Specifically, genes that suppress or block I_{K1} may be combined with HCN genes including variants or subunits of the HCN isoforms. This combination may prevent an instable cycle length created by the HCN gene alone. Further, one or more HCN genes may be combined together with other channel-focused genes that encode beta-adrenergic receptors to create biopacemakers with physiological heart rate and rate responses. Modifying the ratios and doses of the aforementioned genes can modify the gene-based biological pacemaker to induce different pacemaker currents.

[0015] The subject invention includes a method of using HCN3 alone or in combination with other isoforms of HCN and/or other genes to treat cardiac pacing dysfunction. The subject invention further includes a method of using a trun-

cated HCN4 gene alone or in combination with other isoforms and/or variants of HCN and/or other genes to treat cardiac pacing dysfunction.

[0016] Genes may be delivered to the heart via a construct that is transfected into a cell in vitro, or via gene therapy in vivo. The HCN gene induces a slow depolarizing diastolic pacemaker current in atrial, ventricular or conductive tissue. [0017] Further, genes may be introduced into cells via a viral vector or comparable delivery system. The genes can be transfected into target cells such as endogenous cardiac cells (e.g., atrial or ventricular myocytes, cells of the conduction system including SAV, AVN and Purkinje system, cardiac fibroblasts, etc.), stem cells (e.g. autologeous, allogeneic or xenogeneic adult, fetal or embryonic stem cells), myoblasts or other cells. Endogenous cells such as atrial or ventricular cells are transfected using local delivery of a genetic therapy via catheter, direct injection, or equivalent delivery means. Other cells may be transfected outside of the body and then delivered to the heart using a catheter or equivalent means. For example, genetically modified cells may be delivered to the heart via self-fixating scaffolds.

[0018] Finally, by altering the molecular composition of the gene construct (e.g., adding certain promoters or regulatory elements to the HCN gene), the location, amount and characteristics of induced pacemaker current may be modified. Consequently, methods of subject invention may be specific for targeted cells instead of accidentally influencing, for example, a non-cardiac cell (e.g., a brain cell). Also, the pacemaker current can be regulated by controlling the expression of the transfected gene using, for example, pharmaceuticals that are directed towards the promoters of the transfected gene.

[0019] The foregoing has outlined rather broadly the features of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:

[0021] FIG. 1 is a diagram of a human heart.

[0022] FIG. **2** is a diagram of the right side of a heart in which a guiding catheter is positioned for delivery of the genetic construct of the invention.

[0023] FIG. **3** depicts an example of a generic viral vector expression cassette that includes a promotor, regulatory elements and a transgene.

[0024] FIG. 4 depicts an example of a specific viral vector expression cassette that includes a promotor, regulatory element and the HCN3 gene for transfection.

[0025] FIG. **5** is a recording of induced pacemaker current obtained from experiments using human embryonic kidney cells transfected with human HCN3 gene.

[0026] FIG. **6** is a recording of spontaneous action potential cycle lengths induced by HCN, I_{k1} -block and a combination HCN expression and I_{k1} -block.

[0027] FIG. 7 depicts an image showing green fluorescent expression four weeks after injection of recombinant adenoassociated virus encoding enhanced green fluorescent protein (rAAV-eGFP) in canine myocardium. **[0028]** FIG. **8** depicts the complete length of native HCN4 compared to truncated HCN4.

[0029] FIG. **9** depicts the expression data of two trials of HCN3 as transfected Human Embryonic Kidney (HEK) 293 cells by Quantitative Real-time Polymerase Chain Reaction (Q RT PCR).

[0030] FIG. **10** depicts immunolabeling (c-myc antibody) of HEK 293 cells co-transduced cells with AAV1/2 HCN4tr and AAV1/2 eGFP.

[0031] FIG. **11** depicts eGFP-labeling of the HEK 293 cells shown in FIG. **11** co-transduced cells with AAV1/2-HCN4tr and AAV1/2-eGFP.

[0032] FIGS. 12A-D depict whole cell voltage clamp current traces of I_f recorded from HL-5 cells.

[0033] FIGS. **13**A-B depict comparisons of activation kinetics of I_f recorded in control and cardiac HL-5 cells transfected with rAAV-HCN4tr.

[0034] FIG. **14** depicts HCN4 whole cell voltage-clamp electrophysiology data recorded from HEK 293 cells transfected with full plasmid HCN4.

[0035] FIG. **15** depicts HCN4 whole cell voltage-clamp electrophysiology data recorded from HEK 293 cells transfected with truncated plasmid HCN4.

[0036] FIG. **16** depicts HCN4 whole cell voltage-clamp electrophysiology data recorded from HEK 293 cells transfected with truncated HCN4-myc AAV.

[0037] FIG. **17** depicts HCN3 whole voltage-clamp electrophysiology data recorded from HEK 293 cells transfected with HCN3 AAV.

[0038] FIG. **18** depicts a pulse protocol for determining activation kinetics.

[0039] FIG. **19** depicts current recordings obtained using the protocol of FIG. **18** from truncated hHCN4 in pIRES2-EGFP.

[0040] FIG. **20** depicts another pulse protocol for determining reversal potential.

[0041] FIG. **21** depicts current recordings obtained using the protocol of FIG. **19** from truncated hHCN4 in pIRES2-EGFP.

[0042] FIG. **22** depicts voltage-dependent activation curves for HCN4 and HCN4 truncated.

[0043] FIG. 23 depicts time constants of activation τ_{act} at certain activation voltages for HCN4 and HCN4 truncated. [0044] FIG. 24 depicts the reversal potential for both the full-length and truncated hHCN4.

DETAILED DESCRIPTION OF THE INVENTION

[0045] The subject invention is directed to methods of treating patients with cardiac dysfunction by administering one or more HCN genes or variants thereof, alone or in combination with other genes.

DEFINITIONS

[0046] The following definitions are provided to facilitate an understanding of the invention.

[0047] "AAV" is an adeno-associated virus vector. These viruses cause no known disease in humans, hold long-term expression, and theoretically integrate at specific sites.

[0048] "AdV" is an adenovirus vector. These viruses cause the common cold. They have efficient entry into most cell types and can infect non-dividing cells. For gene therapy, these vectors are made replication-deficient by specifically deleting viral genes (e.g., E1, E2, E3 and/or E4). These genetically engineered vectors do not cause the common cold, although immune reactions to viral genes expressed in host cells can be observed.

[0049] "cDNA" includes all nucleic acids that share the arrangement of sequence elements found in native mature messenger ribonucleic acid (RNA) species, where sequence elements are exons (e.g., sequences encoding open reading frames of the encoded polypeptide) and 3' and 5' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns removed by nuclear RNA splicing, to create a continuous open reading frame encoding the polypeptide of interest.

[0050] "Channel protein" or "Ion channel protein" refers to proteins that transportions across cell membranes.

[0051] "Chromosomes" are DNA molecules and their associated proteins. A gene is a unit of inheritance which occupies a specific locus on a chromosome and which has a specific sequence of nitrogenous bases. A genome is the total set of genes carried by an organism or cell.

[0052] "Construct" is a recombinant nucleic acid, generally recombinant DNA that has been generated for the expression of a specific nucleotide sequence(s), or is to be used in the construction of other recombinant nucleotide sequences.

[0053] "DNA," deoxyribonucleic acid, has a sugar group (deoxyribose) with the following nucleotide bases: adenine (A), guanine (G), thymine (T), and cytosine (C). RNA, ribonucleic acid, has ribose as the sugar group, and the same nucleotide bases, except uracil (U) replaces thymine. A single strand of DNA has a sequence of bases A, G, T, and C. When forming a DNA double-helix, for example, this secondary structure is held together by hydrogen bonds between bases on the neighboring strands. Note that in such base pairing, A always bonds to T and C always bonds to G.

[0054] "Coding sequence" refers to a nucleic acid sequence that is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide, in vitro or in vivo, when placed under control of the appropriate regulatory sequences. **[0055]** "Gap junction" refers to small pore-like proteins that connect cardiac muscle cells to each other.

[0056] "Gene" is a piece of DNA that encodes genetic traits and information.

[0057] "Gene cloning" is the process of identifying the gene responsible for a particular disease and synthesizing copies of it for use in treatment.

[0058] "Gene expression" describes the process by which a gene's coded information is converted into the structures present and operating in the cell. Expressed genes include those that are transcribed into mRNA and then translated into protein and those that are transcribed into RNA but not translated into protein (e.g., transfer and ribosomal RNAs).

[0059] "Gene therapy" is a technique for correcting genetic problems by introducing a "correct" copy of the gene into the patient's cells to compensate for their own defective gene. An alternative definition for "gene therapy" is the introduction of recombinant DNA into mammalian cells with the goal of modulating protein function (e.g., by expressing, replacing or suppressing a protein) for therapeutic purposes.

[0060] "Genome" is the complete set of genes in the chromosomes of each cell.

[0061] "Lentivirus" is a virus, such as HIV, that incorporates its passenger genes into non-dividing cells.

[0062] "Liposome" is a cationic lipid that is an artificially produced non-viral molecule vector that may transmit DNA to a cell. Sometimes this method is called facilitated DNA.

[0063] "Messenger ribonucleotide acid" or "mRNA" refers to RNA that serves as a template for protein synthesis.

[0064] "Nucleic acid" is a linear polymer of nucleotides (as in an oligomer, but longer) linked by 3',5' phosphodiester linkages.

[0065] "Nucleoside" is a purine or pyrimidine base linked glycosidically to ribose or deoxyribose.

[0066] "Nucleotide" is a phosphate ester of a nucleoside.[0067] "Oligonucleotide" is a linear sequence of nucle-

otides, or mers, joined by phosphodiester bonds.

[0068] "PCR," or "polymerase chain reaction," is a system for in vitro amplification of DNA wherein two synthetic oligonucleotide primers, which are complimentary to two regions of the target DNA (one for each strand) to be amplified, are added to the target DNA in the presence of excess deoxynucleotides and Taq polymerase, a heat stable DNA polymerase. In a series of temperature cycles, the DNA is repeatedly denatured, annealed to the primers, and a daughter strand extended from the primers. As the daughter strands act as templates in subsequent cycles, amplification occurs in an exponential fashion. Since "traditional" PCR is a semi-quantative method at best, more recently, real-time (RT) PCR has been developed to allow quantification of RNA or DNA.

[0069] "Plasmid DNA" is circular DNA molecules typically found in bacteria.

[0070] "Polynucleotide" is an oligonucleotide, nucleotide, and fragments or portions thereof, as well as to peptide nucleic acids (PNA), fragments, portions or antisense molecules thereof, and DNA or RNA of genomic or synthetic origin which can be single- or double-stranded, and represent the sense or antisense strand.

[0071] "Promoter" is a minimal nucleotide sequence sufficient to direct transcription in a recombinant cell. "Promoter" is also meant to encompass those elements sufficient for promoter-dependent gene expression controllable for cell-type specific, tissue-specific or inducible by external signals or agents. Such elements may be located in the 5' or 3' regions of the native gene (e.g., enhancer elements).

[0072] "Regulatory gene or agent" is a gene with the primary function of controlling the rate of synthesis of the products of one or several other genes or pathways.

[0073] "Retrovirus" is a class of viruses that infects cells by inserting its own DNA into the genetic material of a host cell. [0074] "Stem cells" are cells having the ability to divide for indefinite periods in culture and to give rise to specialized cells. Adult stem cells are undifferentiated cells found in a differentiated tissue that can renew itself and, with certain limitations, differentiate to yield all the specialized cell types of the tissue from which it originated. For example, adult resident cardiac stem cells have been identified. Bone marrow stromal cells are stem cells found in bone marrow that generate bone, cartilage, fat, and fibrous connective tissue. Mesenchymal stem cells are cells from the immature embryonic connective tissue. A number of cell types come from mesenchymal stem cells, including cardiac myocytes. Another example of adult stem cells are skeletal muscle progenitor cells. Embryonic stem cells are primitive, undifferentiated cells from the embryo that have the potential to become a wide variety of specialized cell types.

[0075] "Transformation", "transduction" or "transfection" refers to a permanent or transient genetic change induced in a cell following incorporation of a new nucleic acid (e.g., DNA or RNA exogenous to the cell). Genetic change can be accomplished either by incorporation of the new nucleic acid into

the genome of the host cell, or by transient or stable maintenance of the new DNA as an episomal element.

[0076] "Transformed cell", "transfected cell" or "transduced cell" refers to a cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a DNA molecule encoding a protein of interest.

[0077] "Transgene" is a gene that has other DNA inserted into it.

[0078] "Vector" refers to a means of transfecting cells with genetic material either in vivo or in vitro. Many such vectors are modified viruses.

The Cardiac Conduction System

[0079] FIG. 1 is a schematic diagram of a right side of a heart having an anterior-lateral wall peeled back to present a portion of a heart's intrinsic conduction system and chambers of a right atrium ("RA") 16 and a right ventricle ("RV") 18. Pertinent elements of the heart's intrinsic conduction system, illustrated, in FIG. 1, include a SA node 30, an AV node 32, a bundle of His 40, a right bundle branch 42, left bundle branches (not shown) and Purkinje fibers 46. SA node 30 is shown at a junction between a superior vena cava 14 and RA 16. An electrical impulse initiated at SA node 30 travels rapidly through RA 16 and a left atrium (not shown) to AV node 32. At AV node 32, the impulse slows to create a delay before passing on through a bundle of His 40, which branches, in an interventricular septum 17, into a right bundle branch 42 and a left bundle branch (not shown) and then, apically, into Purkinje fibers 46. Following the AVN delay, the impulse travels rapidly throughout RV 18 and a left ventricle (not shown). Flow of the electrical impulse described herein creates an orderly sequence of atrial and ventricular contraction and relation to efficiently pump blood through the heart. When a portion of the heart's intrinsic conduction system becomes dysfunctional, efficient pumping is compromised, potentially leading to symptoms which range from mild to life-threatening.

[0080] Typically, a patient, whose SA node **30** has become dysfunctional, may have an implantable pacemaker system implanted wherein lead electrodes are placed in an atrial appendage **15**. The lead electrodes stimulate RA **16** downstream of dysfunctional SA node **30** and the stimulating pulse travels on to AV node **32**, bundle of His **40**, and Purkinje fibers **46** to restore physiological contraction of the heart. If a patient has a dysfunctional AV node **32**, however, pacing in atrial appendage **15** will not be effective, since it is upstream of a block caused by the damage. In this situation, multiple chamber pacemaker system may be implanted (e.g. one pacemaker lead in the atrium, one in the ventricle), allowing for coordinated electromechanical activation of atria and ventricles.

[0081] Pacing at the bundle of His **40** provides the advantage of utilizing the normal conduction system of the heart to carry out ventricular depolarizations. In other words, stimulation provided at the bundle of His will propagate rapidly to the entire heart via the right bundle **42**, the left bundle (not shown), and the Purkinje fibers. This provides synchronized and efficient ventricular contraction that is not replicated when the pacing is performed from the apex of the right ventricle because the electrical activity propagates via slowly conducting myocardial tissue as opposed to the rapidly conducting Purkinje network. By implanting biological pacemakers in or close to areas of physiological conduction (e.g. SAN, atrial septum, AVN, HIS bundle, Purkinje system), this principle could be applied to the current invention.

[0082] On the cellular level, electrical wave propagation occurs when cardiac cells allow a controlled flow of ions across the membranes through ion channels. This ion movement across the cell membrane results in changes in transmembrane potential (i.e., depolarization), which is a trigger for cell contraction. The heart cells can be categorized into several cell types (e.g. atrial, ventricular, etc.) and each cell type has its own characteristic variation in membrane potential. For example, ventricular cells have a resting potential of -85 mV. In response to an incoming depolarization wave front, these cells fire an action potential with a peak value of -20 mV and then begin to repolarize, which takes -350 ms to complete. In contrast, SA nodal cells do not have a stable resting potential and instead begin to spontaneously depolarize when their membrane potential reaches -50 mV. Cells, such as SA nodal cells, that do not have a stable resting transmembrane potential, but instead increase spontaneously to the threshold value, causing regenerative, repetitive depolarization, are said to display automacity.

[0083] Cardiac muscle cells are structurally connected to each other via small pore-like structures known as gap junctions. When a few cardiac cells depolarize, they act as a current source to adjacent cells causing them to depolarize as well; and these cells in turn impose on further adjacent cells, and so on. Once depolarization begins within a mass of cardiac cells, it spreads rapidly by cell-to-cell conduction until the entire mass is depolarized causing a mass of cardiac cells to contract in a coordinated fashion.

[0084] The cells in the SA node are specialized pacemaker cells and have the highest firing rate. Depolarization from these cells spreads across the atria. Since atrial muscle cells are not connected intimately with ventricular muscle cells, conduction does not spread directly to the ventricle. Instead, atrial depolarization enters the AV node, and after a brief delay, is passed on to the ventricles via the bundle of His and Purkinje network, initiating cellular depolarization along the endocardium. Depolarization then spreads by cell-to-cell conduction throughout the entire ventricular mass.

[0085] The SA node's unique cells include a combination of ion channels that endow it with its automacity. Some of the unique features of the SA node cells, relative to other myocardial cells, include the absence of Na⁺ channels (I_{Na}) and inwardly rectifying K^+ (I_{K1}) channels. In the absence of sodium current, the upstroke of SA node action potential is primarily mediated by L-type Ca^{2+} channels (I_{caL}). SA node cells do not have a stable resting potential because of their unique distribution of ion channels (e.g. lack of I_{K1} , HCN expression). Consequently, they begin to depolarize immediately after the repolarization phase of the action potential is complete. The maximum diastolic potential for SA node cells is approximately -50 mV compared to -78 mV and -85 mV for atrial and ventricular cells, respectively. The slow depolarization phase is partially mediated by activation of the hyperpolarization-activated cyclic nucleotide channels (I_f current) and T-type Ca2+ channels and deactivation of slow and rapid potassium channels (I_{Ks} and I_{Kr} , respectively), in conjunction with a lack of I_{K1} current which serves in nonautomatic atrial and ventricular cardiac myocytes as a membrane potential stabilizing current. The rate of pacemaker discharge in the SA node in a normally functioning heart is approximately in the range of about 60 to 100 beats per minute at rest.

[0086] In a heart with dysfunctional SA node pacemaker function, the other structures of the heart with intrinsic pacemaking activity can take over the pacing function. The ectopically-driven escape rhythm produced by these structures, however, is slow (bradycardia) and normally not sufficient to support normal circulation (symptomatic bradycardia). A symptomatic bradycardia can manifest itself as syncope (temporary loss of consciousness) which may be life-threatening.

[0087] A method of the present invention includes genetically modifying the atrial cells, ventricular cells or cells of the cardiac conduction system, such as the Purkinje fibers, to modify the electrophysiology and pacing rate to resemble more closely the electrophysiology and pacing rate of the specialized pacemaker cells of the troubled SA or AV nodes. FIGS. **14** through **17** depict HCN3 and HCN4 single cell patch-clamp electrophysiology data for cells transduced with constructs containing HCN3, HCN4 and HCN4 truncated ("HCN4tr").

[0088] Native cells could also be transduced in a similar fashion. Subsequently their previously stable resting potential would be characterized by slow repeated phase 4 depolarizations and ultimately leading as the dominant pacemaker site of the heart. Similarly, cells could be stabily transduced with the constructs described in FIGS. **14-17**, and then transplanted to the myocardium. These cells could, once electrically coupled to native cardiac cells, depolarize the native cells and induce biological pacemaking as described with the more classical gene therapy approach. If the transplanted cells are of a cardiac phenotype (such as c-kit positive cardiac stem cells), then these cells could act as pacemaker cells themselves since they would express the necessary ion channel proteins for action potential generation as well as electrical coupling (e.g. gap junction channel proteins).

Selection of Gene Construct

[0089] The human SA node does not consist of a group of uniform sinoatrial node cells embedded in atrial muscle. Instead, the SA node is a heterogeneous tissue with multiple cells types and a complex structure. From the periphery to the center of the SA node, there is a gradient in action potential shape, pacemaking, ionic current densities and connexin expression. In short, the SA node is a complex structure that, when afflicted with any level of dysfunction, may need to be augmented or replaced with several different types of genetic therapy to address the various problematic ion channels.

[0090] As previously noted, the HCN isoforms (e.g., HCN2 by itself instead of coupled to HCN4 in a functional heteromer) have different activation kinetics that consequently result in different HR ranges. Therefore, to simulate the complex SA node and its complex current, a variety of transfected genes may be required in a gene or cell therapy aimed at pacing dysfunction. Such a variety of genes can be obtained by using any one of the four different HCN isoforms, combinations of HCN isoforms in the form of heteromers or as multiple independent isoforms, or combinations of an HCN isoform or heteromer with other genes that affect heart rate. The heteromerization of the isoforms changes pacemaker electrophysiology via altered activation kinetics (e.g., allows for modulation (increase or decrease) of heart rate). Much B et al. J of Biol Chem; 44 (31): 43781-43786. While the exact stoichiometry of the heteromerized HCN channels has not been described yet, it is considered that these channels may form heteromers with a 3:1 ratio, but ratios of 1:1 or 1:3 are also possible as the HCN channels are known to form tetramers. In related rod photoreceptor cyclic nucleotide-gated channels, an asymmetrical stoichiometry of the two subunits present in the tetramers of 3:1 was determined. See, Zhong H et al. Nature 2002; 420: 193-196; See also, Weitz D et al. Neuron 2002; 36: 881-889 and Zheng J et al. Neuron 2002; 36: 891-896.

[0091] HCN3, or subunits thereof, is delivered to the heart in order to induce a slow depolarizing diastolic pacemaker current in atrial, ventricular or conductive tissue. See SEQ ID NO: 3. While HCN3 has not previously been considered as a gene therapy for pacing dysfunction, HCN3 can be used in a biopacemaker because, in part, HCN3 has similar kinetics to HCN2 (which is found in the heart). In fact, the homology between the two genes is approximately 86%. More importantly, the small current that is associated with HCN3 is significant in allowing for precise manipulation of biopacemaker current. Much et al., Role of Subunit Heteromerization and N-Linked Glycosylation in the Formation of Functional Hyperpolarization-activated Cyclic Nucleotide-Gated Channels, J. Biol. Chem. (2003) 278: 43781-43786. Furthermore, HCN3 is smaller in size than HCN1, HCN2 or HCN4. Consequently, it fits easily in a viral vector with limited "transgene carrying capacity" such as AAV. In addition, overexpression of HCN3 can strengthen the small current normally associated with the gene. Also, because HCN3 is not naturally present in the heart, but rather in the brain, a successful transfection of the gene into cardiac tissue is more readily identifiable than channels induced by, for example, HCN2, which are commonplace in cardiac tissue.

[0092] Various combinations of HCN genes (e.g., HCN3 and HCN4) may be delivered to the heart in order to induce a pacemaker current. See SEQ ID NOS: 1, 2 and 4. The HCN genes may work independently of one another or as functional heteromers. Different heteromers result in different voltage activation thresholds and channel kinetics that in turn result in different heart rate capacities. Other characteristic changes occur in the resultant AP associated with the transfected tissue. For example, certain HCN isoforms, such as HCN1, are not very responsive to cAMP whereas combining isoforms may result in a heteromeric channel which is more sensitive to cAMP.

[0093] Regarding heteromer formation, only one pair of channel subunits, HCN2 and HCN3, do not form a functional heteromer. HCN3 is resistant to forming heteromers. Therefore, as a consequence, expression is more predictable. Coexpression of HCN2 and HCN3 produces a current density less than that of cells that only express HCN2. The following combinations may all be used to vary the resultant current density: HCN1/HCN2, HCN1/HCN3, HCN1/HCN4, HCN2/HCN3, HCN2/HCN4 and HCN3/HCN4. When no heteromer is created, co-expression of two HCN genes still produces current levels that may be needed to obtain a desired pacemaker current. Coexpression of three or more subunits allows for further still more complicated channels with varying resultant pacemaker currents.

[0094] In mammalian hearts, different isoforms of HCN are being expressed. See review in Trends Cardiovasc Med. 2002 July; 12(5):206-12. For example, HCN2 is considered to be the primary isoform in atria and ventricles, while HCN4 is predominantly expressed in sinoatrial and atrioventricular nodal cells. Therefore, by administering an exogenous HCN isoform via gene therapy, it is very likely that heterodimer formation does occur in vivo. To proof this, we studied hyper-

polarization activated (If) current in HL-5 cells, a cardiac cell line. See FIGS. **12** and **13**. This cell line is a clone from HL-1 cells. In these cells, HCN expression has been shown, with the strongest signals for HCN2 mRNA, followed by HCN1 and little HCN3, and no HCN4. See, Journal of Physiology. 2002 545(1):81-92. Expression of HCN4 clearly changes the activation kinetics of If. See e.g., FIG. **12**. The activation kinetics of endogenous HCN channels is distinct from HL-5 cells expressing HCN4-truncated. The resulting activation kinetics is also distinct from truncated HCN4 expressing HEK 293 cells. This suggests that heterodimer formation occurs also in vivo. This could be exploited therapeutically, for example by choosing different isoforms based on the specific delivery site (e.g. Purkinje system, AVN may require a different isoform than right atrial septum)

[0095] HCN genes or various combinations of HCN genes may also be combined with other genes and delivered to the heart in order to induce a pacemaker current. In addition, the non-HCN genes may be supplied independently of HCN genes. The non-HCN genes may, for example, increase the expression of a particular ion channel or suppress, in whole or in part, the expression of function of an ion channel. Such non-HCN genes can be made by traditional PCR-based amplification and known cloning techniques. Alternatively, such a gene or polynucleotide can be made by automated procedures that are well known in the art. Such a polynucleotide should include a start codon to initiate transcription and a stop codon to terminate translation.

[0096] One example of such a non-HCN gene encodes beta-adrenergic receptors (e.g., types 1 and 2) that increase HR when exposed to circulating catecholamines or norepinephrine that is released from sympathetic neurons. See SEQ ID NOS: 5-6.

[0097] Another example involves DNA that will suppress the KCNJ2 gene encoding for the inward potassium rectifier channel 2.1 (Kir2.1) that regulates I_{k1} current. See SEQ ID NO: 10. Voltage-gated potassium (K_V) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a small integral membrane subunit that assembles with the KCNJ2 gene product, a pore-forming protein, to alter its function. This gene is expressed in the heart and its mutations are associated with cardiac arrhythmia.

[0098] The import of using this gene is expression of HCN in the ventricle leads to an unstable cycle length in silico. If I_{k1} expression is decreased by about 50%, however, a stable cycle length (heart rate) is seen. See, FIG. **6**. Moreover, if expression of I_{K1} is further decreased to levels at or below 20%, then automaticity occurs in normal ventricular or atrial myocytes. This latter approach is described in detail in concurrently filed U.S. patent application claiming priority to U.S. Pat. App. Ser. No. 60/532,764. By combining the suppression of I_{k1} with HCN expression, risks of action potential prolongation, increased dispersion of repolarization, ventricular tachycardia or fibrillation. and arrhythmogenesis may be further avoided. Therefore, a combination approach expression of HCN and suppression of I_{K1} is beneficial.

[0099] Other regulatory proteins include muscarinic (M2) and/or (M3) receptors for enhanced parasympathetic control

that can result in a decreased HR. See SEQ ID NOS: 11-12. Muscarinic receptors influence many effects of acetylcholine in the central and peripheral nervous system. The muscarinic cholinergic receptor 2 is involved in mediation of bradycardia and a decrease in cardiac contractility. The muscarinic cholinergic receptors belong to a larger family of G proteincoupled receptors. A typical control signal mediated via the vagus nerve leads to a local release of acetylcholine (Ach) in the sinoatrial and atrioventricular nodes. Ach then binds to the M2 receptor, activates an inhibitory G protein (G.alpha.i), and essentially decreases the activity of adenylate cyclase, which directly leads to opening of K+ channels. In the sinoatrial node, vagal stimulation tends to flatten the diastolic depolarization, which then induces a slowing of heart rate (bradycardia, negative chronotropic effect), not only via the effects of reduced cAMP availability on if current (hyperpolarization activated cyclic nucleotide-gated channel), but also via activation of a potassium outward current. In the atrioventricular nodal tissue, vagal stimulation also activates an inhibitor G protein, which causes a slowing conduction velocity via a decreased calcium influx through L-type calcium channels. Clinically, the effects of vagal stimulation on the atrioventricular node are detected as increased atrioventricular nodal conduction times (e.g., prolonged PR interval).

[0100] In addition, the cells of the conduction system are genetically modified to increase the inward Ca²⁺ current by delivering a bio-pacemaker composition to these cells. As a specific example, for the Purkinje fibers, the composition includes a coding sequence that encodes a T-type Ca²⁺ channel resulting in the exogenous expression of T-type Ca2+ channels. More specifically, as an example, genes that promote T-type calcium channel overexpression (e.g., CaV3.1) are another example of this additional gene. Alpha-1 subunits of Ca(2+) channels, such as CACNA1H, consist of 4 homologous repeat domains. Each domain has six transmembrane segments, a highly conserved pore loop, and a distinctive voltage sensor. The voltage dependence and fast inactivation of CACNA1H results in transient, or T-type, electrical currents. See SEQ ID NOS: 7-8. Exogenous expression of this channel will facilitate the depolarization characteristics of, for example, Purkinje fiber cells necessary to increase their intrinsic pacing rate.

[0101] Another suitable polynucleotide encodes human voltage-gated channel (KCND3). See SEQ ID NO: 14. This is one of the subunits responsible for I_{to} (transient outward current). It is beneficial to suppress this gene (e.g., via siRNA, via dominant negative approaches, via ribozyme) to prolong action potential durations thereby mimicking the electrophysiology of SA nodal cells.

[0102] Yet another gene is the Human K_{ν} channel interacting protein 2, SEQ ID NO: 15. This presents another option for modulating I_{to} by suppressing this protein.

[0103] Non-human protein examples include, but are not limited to, Rabbit minK-related peptide, SEQ ID NO: 9, and HCN1, SEQ ID NO: 24, Rat HCN1-HCN4, SEQ ID NOS: 16-19, Mouse HCN1-HCN4, SEQ ID NOS: 20-23 and Rainbow Trout HCN1, SEQ ID NO: 25.

[0104] Other suitable polynucleotides useful in connection with the invention can be obtained from a variety of sources including, without limitation, GenBank (National Center for Biotechnology Information (NCBI)), EMBL data library, SWISS-PROT (University of Geneva, Switzerland), the PIR-International database; the American Type Culture Collection (ATCC) (10801 University Boulevard, Manassas, Va. 20110-

2209); National Center of Biotechnology Information (http:// www.ncbi.nlm.nih.gov/) and PubMed (http://www.ncbi.nim. nih.gov/entrez/query.fcgi?db=PubMed), both associated with the National Library of Medicine and National Institute of Health; PubMed.

Controlling the Selected Gene Construct

[0105] For site-specific expression of the transgene, tissuespecific promoters are made a part of the expression system. This tissue-specific expression significantly enhances the safety of the gene therapy as expression in non-target tissue becomes very unlikely.

[0106] For example, cardiac tissue specific promoters allow cardiac myocyte specific expression of the transgene of interest (including expression in stem cells with cardiac phenotype). As an example of one such promoter, a myosin heavy chain or myosin light chain promoter could be part of the expression system allowing transgene (e.g., HCN4) expression only in tissue containing this promoter (i.e., cardiac myocytes). Other examples of cardiac tissue specific promoters include, as examples, cardiac ankyrin repeat protein (U.S. Pat. No. 6,451,594), alpha-myosin heavy chain gene, betamyosin heavy chain gene, myosin light chain 2 v gene a myosin light chain enhancer followed by either a myosinheavy chain promoter or a viral promoter and a polynucleotide sequence (U.S. Published Patent Application 2002/ 025577 A1), myosin light chain 2a gene, cardiac alpha-actin gene, cardiac M2 muscarinic acetylcholine gene, ANF (ANP) atrial natriuretic factor (or peptide), cardiac troponin C, cardiac troponin I, cardiac troponin T or cardiac sarcoplasmic reticulum Ca-ATPase gene.

[0107] Specific promoters for the conductive system could also be employed if the site of the biological pacemaker is targeted at the cardiac conduction system. As an example, constructs of the present invention can be targeted to cells of the Purkinje network by methods known to those skilled in the art. Advantage can be taken of the expression of cell surface receptors unique to specific cells. For instance, one such receptor, preferentially expressed on the surface of Purkinje cells, is the cysteinyl leukotriene 2 receptor (CysLT₂). This receptor distinguishes Purkinje cells from neighboring cells such as ventricular cells and can be utilized to target constructs of the invention preferentially to Purkinje cells. In the practice of the present invention, however, any receptor specific to Purkinje cells may be utilized for specific targeting.

[0108] Targeted delivery requires the modification of the vehicle delivering the construct (which will be more fully developed below). Several methods for modification of such vehicles are possible. For example, viral protein capsids or proteins of the viral envelope may be biotinylated for subsequent coupling to a biotinylated antibody directed against a specific receptor or ligand via a strepavidin bridge.

[0109] Alternatively, the viral delivery vehicle may be genetically modified so that it expresses a protein ligand for a specific receptor. The gene for the ligand is introduced within the coding sequence of a viral surface protein by, for example, insertional mutagenesis, such that a fusion protein including the ligand is expressed on the surface of the virus. For details on this technique see Han et al., "Ligand-Directed Retroviral Targeting of Human Breast Cancer Cells," Proc. Natl. Acad. Sci., 92:9747-9751 (1995). Viral delivery vehicles may also be genetically modified to express fusion proteins displaying, at a minimum, the antigen-binding site of an antibody

directed against the target receptor. See e.g., Jiang et al., "Cell-Type-Specific Gene Transfer into Human Cells with

Retroviral Vectors That Display Single-Chain Antibodies," J. Virol., 72: 10148-10156 (1998).[0110] An embodiment of the invention may also involve

regulation of the transgene via regulatory elements such as drug-sensitive elements (e.g., a drug-inducible suppressor or promoter). Drug-responsive promoters may induce or suppress gene expression. For example, a tetracycline responsive element (TRE) that binds doxycycline is present within the promoter construct. When doxycycline is removed, transcripton from the TRE is turned off in a highly dose-dependent manner. Examples of inducible drug-responsive promoters are the ecdysone-inducible promoter (U.S. Pat. No. 6,214, 620) and rapamycin-dependent expression (U.S. Pat. No. 6,506,379). See Discher et al., J. Biol. Chem. (1998) 273: 26087-26093; Prentice et al., Cardiovascular Res. (1997) 35: 567-576.

[0111] Other promoters, for example, would be sensitive to electrical stimulus that could be provided from, for example, an implantable device. Electrical stimulation can promote gene expression (U.S. Patent Application No. 2003/0204206 A1). This would allow for turning automaticity of the cells on and off, or modulating there between.

Delivering the Selected Gene Construct

[0112] The gene construct may be transfected into target cells such as endogenous cardiac cells (e.g., myocytes), stem cells, myoblasts or other cells. Endogenous cells such as atrial or ventricular cells or cells of the conduction system are transfected using local delivery of a genetic therapy via catheter, direct injection, or equivalent delivery means. Other cells may be transfected outside of the body and then delivered to the heart using a catheter or equivalent means. For example, as will be appreciated by those skilled in the art, cardiac myocardial cells derived from stem cells may be treated with the genetic procedures described herein and implanted into a region of the conduction system (e.g. Purkinje fiber) with a catheter or by direct injection to Purkinje fiber tissue.

[0113] The genetic construct can be delivered into a cell by, for example, transfection or transduction procedures. Transfection and transduction refer to the acquisition by a cell of new genetic material by incorporation of added nucleic acid molecules. Transfection can occur by physical or chemical methods. Many transfection techniques are known to those of ordinary skill in the art including, without limitation, calcium phosphate DNA co-precipitation, DEAE-dextrin DNA transfection, electroporation, naked plasmid adsorption, and cationic liposome-mediated transfection. Transduction refers to the process of transferring nucleic acid into a cell using a DNA or RNA virus. Suitable viral vectors for use as transducing agents include, but are not limited to, retroviral vectors, adeno associated viral vectors, vaccinia viruses, adenoviral viruses, epstein barr viruses, coxsackie viruses and sendai viruses.

[0114] The selection of a delivery means at the cellular level should address the length of desired expression. For example, where permanent pacing therapy is desired, an adeno-associated virus (AAV) encoding HCN4 and an additional AAV encoding regulatory receptor proteins, such as beta-adrenergic or muscarinic receptors, is implemented. AAVs have good long-term expression qualities because of

their ability to integrate their genome into non-dividing cells in addition to their minimal immune response.

[0115] AAV vectors can be constructed using techniques well known in the art. Typically, the vector is constructed so as to provide operatively linked components of control elements. For example, a typical vector includes a transcriptional initiation region, a nucleotide sequence of the protein to be expressed, and a transcriptional termination region. Often, such an operatively linked construct will be flanked at its 5' and 3' regions with AAV ITR sequences, which are required viral cis elements. The control sequences can often be provided from promoters derived from viruses such as, polyoma, Adenovirus 2, cytomegalovirus, and Simian Virus 40. Viral regulatory sequences can be chosen to achieve a high level of expression in a variety of cells. Alternatively, ubiquitous expression promoters, such as the early cytomegalovirus promoter can be utilized to accomplish expression in any cell type. A third alternative is the use of promoters that drive tissue specific expression (addressed above). This approach is particularly useful where expression of the desired protein in non-target tissue may have deleterious effects. Thus, according to another preferred embodiment, the vector contains the proximal human brain natriuretic brain (hBNP) promoter that functions as a cardiac-specific promoter. For details on construction of such a vector. See, LaPointe et al., "Left Ventricular Targeting of Reporter Gene Expression In Vivo by Human BNP Promoter in an Adenoviral Vector," Am. J. Physiol. Heart Circ. Physiol., 283:H1439-45 (2002).

[0116] Vectors may also contain cardiac enhancers to increase the expression of the transgene in the targeted regions of the cardiac conduction system. Such enhancer elements may include the cardiac specific enhancer elements derived from Csx/Nkx2.5 regulatory regions disclosed in the published U.S. Patent Application 2002/0022259.

[0117] The subject invention may utilize an adeno-associated virus (AAV) but could also use a 2^{nd} or 3^{rd} generation adenovirus or others such as chimeric adeno-associated virus (AAV1/2) which is the chimeric product of AAV1 and AAV2 vectors. The AAV1 and AAV2 serotypes differ in composition of their capsid protein coat with resultant varying characteristics. The AAV2, for example, can be beneficial due to its known receptor binding and known approach for purification. AAV1 allows for good muscle transfection. Cross-packaging of a single AAV type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. AAV 1/2 combines the advantages of these two vectors regarding, for example, purification and muscle transfection. FIG. 10 depicts an image of truncated HCN as expressed in cells that were transduced with constructs containing AAV1/2.

[0118] In one example of the invention, human HCN3 gene, SEQ ID NO: 3, can be cloned into a chimeric adenoassociated virus (AAV1/2) with the following sequence: AAV-CAG-humanHCN3-WPRE-BGHpolyA. A control vector encoding GFP is an adeno-associated virus (AAV1/2) with the following sequence: AAV-CAG-eGFP-WPRE-BGHpolyA. A CAG promoter (hybrid chicken B-actin/CMV enhancer) is used to achieve high transgene expression. Also, as a post-regulatory element, woodchuck postregulatory regulatory element (WPRE) can be used thereby allowing for increased transgene expression levels. Other common vectors are provided in U.S. Pat. Application No. US 2002/ 0155101A1. Suitable vectors can be obtained at GeneDetect. Com, 1455 Tallevast Road, Suite L8299, Sarasota, Fla. 34243 as well as other organizations known in the art. [0119] When selecting a vector, using an AAV for example, a problem can arise if the HCN transgene does not fit into common AAV expression cassettes. Such problems are amplified when promoters and additional regulatory elements are included in the cassette. See, FIGS. 3 and 4. For example, when using GeneDetect's rAVE cassette, this problem is overcome with HCN3 (2,334 base pairs ("bp") by removing a regulatory element (e.g., SAR) from the cassette. For HCN2 (2,670 bp), an additional element (e.g., WPRE) can be left out. For large genes such as HCN4 (3,612 bp), however, the transgene size must be further reduced by truncating the very large C-terminus. In one embodiment, truncation of the sequence occurs not before the cAMP binding site which still allows for a functional gene. For example, with HCN2, by 2161-2670 may be truncated. Bp 1654-2010 is the cAMP binding site. As another example, with HCN3 bp 1813-2325 may be truncated. Bp 1306-1662 is the cAMP binding site. As an additional example, as depicted in FIG. 8, HCN4 may be truncated from base pair 3612 to base pair 2313. Here, base pairs 1807-2163 represent the cAMP binding site. As an additional example, with HCN1 the C-terminus, including the cAMP binding site, may also be truncated as this protein isoform demonstrates very little responsiveness to cAMP binding.

[0120] At the macro level (i.e., non-cellular level), various catheter means may be employed to deliver the gene construct to the heart tissue. FIG. 2 shows a guide catheter 90 being positioned for delivery of the genetic construct of the invention. A venous access site (not shown) for the catheter 90 may be in a cephalic or subclavian vein. Means used for venous access are well known in the art and include the Seldinger technique performed with a standard percutaneous introducer kit. The guide catheter 90 includes a lumen (not shown) extending from a proximal end (not shown) to a distal end 92 that slideably receives the delivery system 80. The guide catheter 90 may have an outer diameter between approximately 0.115 inches and 0.170 inches and be of a construction well known in the art. The distal end 92 of the guide catheter 90 may include an electrode (not shown) for mapping electrical activity in order to direct the distal end 92 to an implant site near certain pacing areas in the heart. Alternatively, a separate mapping catheter may be used within the lumen of the guide catheter 90 to direct the distal end 92 to an application site near certain areas of the heart. This method is well known in the art. Other catheter means are described in commonly-assigned co-pending U.S. patent application Ser. No. 10/262,046, filed Oct. 2, 2002; and Ser. No. 10/423,116, filed Apr. 23, 2003, both of which are incorporated herein by reference.

[0121] In short, delivery of a genetic construct can be carried out according to any method known in the art (e.g., syringe injection). It is only necessary that the genetic construct reach a small portion of the cells that are targeted for gene manipulation (e.g. cells of the Purkinje fibers). The genetic construct may be injected directly into the myocardium as described by R. J. Guzman et al., Circ. Res., 73:1202-1207 (1993). The delivery step may further include increasing microvascular permeability using routine procedures, including delivering at least one permeability agent prior to or during delivery of the genetic construct. Perfusion protocols useful with the methods of the invention are generally sufficient to deliver the genetic construct to at least about 10% of cardiac myocytes in the mammal. Methods for targeting nonviral vector genetic constructs to solid organs, for example,

the heart, have been developed such as those described in U.S. Pat. No. 6,376,471. Additional non-injection methods for gene delivery include, but are not limited to, polymer-based gene-delivery (e.g. via coated devices, via biodegradable scaffolds), gene delivery via cells attached to a device or to a biodegradable scaffold, gene delivery via vascular or transvascular delivery into selected myocardial regions, gene delivery via aid of electroporation or gene delivery via other means.

[0122] As an example of solution concentrations and dosage levels, concentrations of 1×10^7 to 1×10^{13} parts gene construct per 100 microliters of solution of phosphate buffered saline may be used in dosages of 20-200 microliters. Also, 1:1 concentrations of different HCN isoforms and other genes may be used (e.g., HCN4 and genes encoding beta-adrenergic receptors). Still, other concentrations and dosage levels will be apparent to those skilled in the art as the effective dose of the gene construct will be a function of the particular expressed gene(s), the particular cardiac arrhythmia to be targeted, the desired heart rate (e.g., 60-90 beats per minute at rest and appropriate modulation of heart rate during stress or exercise as well as during sleep), the patient and his or her clinical condition, weight, age and sex. Other examples include administering several dosages in several locations. For example, a primary biological pacemaker in the atrial septum may be utilized, and in case of AVN conduction block, a backup pacemaker (with a lower intrinsic rate) in the ventricle (e.g. myocardial cells of Purkinje system).

Verification of Enhanced Pacemaker Current

[0123] Methods for detecting modulation of the cells of the conduction system of the heart by electrophysiological assay methods relates to any conventional test used to determine the cardiac action potential characteristics, such as action potential duration (APD). Briefly, a standard electrophysiological assay includes the following steps: providing a mammalian heart (in vivo or ex vivo), delivering to the heart a genetic construct or modified cells of the invention, transferring the genetic construct and/or modified cells into the heart under conditions which can allow expression of an encoded amino acid sequence, and detecting the increase of electrical properties in the cells of the heart to which the genetic construct and/or modified cells were delivered, wherein at least one property is the pacing rate of the cells, relative to a baseline value. Baseline values will vary with respect to the particular target region chosen in the conduction system.

[0124] Additionally, modulation of cardiac electrical properties obtained with the methods of the invention may be observed by performing a conventional electrocardiogram (ECG) before and after administration of the genetic construct of the invention and inspecting the ECG results. ECG patterns from a heart's electrical excitation have been well studied. Various methods are known for analyzing ECG records to measure changes in the electrical potential in the heart associated with the spread of depolarization and repolarization through the heart muscle. A preferred method of monitoring the proper function of a biological pacemaker may be via an implantable pacemaker/defibrillator or an implantable loop-recorder (e.g. Medtronic's RevealTM). Other methods include placement of endocardial mapping electrode catheters to various locations in the heart, and record an intrinsic local electrical signal (EGM). These procedures require venous or arterial access to the endocardium of the atrial or ventricular tissue. These mapping catheters can

be used in conjunction with analog or digital systems which range from simple electrophysiological assessments (e.g. GE Prucka system) to more complex electroanatomical maps of the heart (e.g. Carto or Endocardial Solutions systems). Such mapping procedures are well known in the art.

[0125] For whole-cell voltage-clamp experiments, using the following as an example, experiments may be conducted at room temperature using traditional instrumentation known in the art such as, but without limitation, an Axon Instruments 200A amplifier and Nikon Inverted Microscope (100T). Borosilicate glass microelectrodes (1-3 Megaohms) can be sealed to the lipid bilayer membrane of cells and the transmembrane currents at various holding potentials can be measured via a small rupture within the seal. The cells can be bathed in an extracellular-like solution that may include, but is not limited to, the following reagents and concentrations (in millimolar): NaCl (110), MgCl2 (0.5), KCl (30), CaCl2 (1.8), Hepes (5), and pH=7.4 (w/NaOH). Likewise, the microelectrode inner lumen may contain, but is not limited to, the following reagents and concentrations (in millimolar): NaCl (10), MgCl2 (0.5), KCl (130), EGTA (1), Hepes (5), and pH=7.4 (w/KOH).

[0126] The voltage clamp protocol involves a holding potential of -40 mV (1 second) and then conducting sweeps (3 second duration) in -10 mV steps from -40 mV to -140 mV. The last step of the protocol is either holding it at -40 mV or at -140 mV for 1 second.

[0127] FIG. **5** shows one example of the aforementioned patch clamp experimentation. The recordings were obtained from whole-cell patch clamp experiments using human embryonic kidney 293 (HEK 293) cells that were co-transfected with an adeno-associated virus encoding enhanced green fluorescent protein (AAV1/2-CAG-eGFP) and an adeno-associated virus encoding the human HCN3 gene (AAV1/2-CAG-HCN3). When the cells were hyperpolarized to -140 mV, a slowly activating inward current was detected that was characteristic of HCN channels. No inward current was detected in control cells (not transfected cells) or cells transfected only with AAV-eGFP when the voltage was held at -140 mV (data not shown).

[0128] FIG. 7 depicts a fluorescence microscopic image demonstrating positive GFP expression four weeks after injection of rAAV-eGFP into canine myocardium.

Example I

[0129] HL-5 cells at passage 73 were cultured in gelatinfibronectin coated 33 mm culture dishes. Cells were maintained in the medium (JRH Biosciences, Lenexa, Kans., USA), supplemented with 10% fetal bovine serum, 4 mM L-glutamine, 10 .mu.M noradrenaline (norepinephrine; Sigma Aldrich, St. Louis, USA) and penicillin-streptomycin. The medium was changed every 24 h. HL-5 cells at different passages (from 75 to 98) were splitted when they reached a state of confluence. Dissociated cells were either re-plated for a new passage or used for patch clamp experiments. Some cells were transfected with rAAV-HCN4tr-cmyc. Cells were cultured at 37° C. under an atmosphere of 5% CO₂ and 95% air with approximately 95% humidity.

[0130] After dissociation from a culture dish, cells were plated on gelatin/fibronectin-coated coverslips for patchlamp experiments. During an experiment HL-5 cells plated on a coverslip were transported to a chamber mounted on the stage of a Nikon microscope. The chamber was continuously superfused (1 ml/min) with the Tyrode's solution, which contained (in mM): 140 NaCl, 5.4 KCl, 1.8 CaCl₂, 1 MgCl₂, 10 HEPES, and 10 glucose (pH 7.4 adjusted with NaOH). The whole-cell configuration of the patch-clamp technique (Hamill et al. 1981) was applied in the experiments. Briefly, glass electrodes (World Precision Instruments, Sarasota, Fla.) with 2-4 M.OMEGA. resistance were connected via a Ag-AgCl wire to an Axopatch 200A amplifier interfaced with a DigiData 1320 acquisition system. After forming a conventional "gigaohm" seal, electrode capacitance was compensated. Whole-cell configuration was achieved by rupturing the membrane with additional suction. Membrane capacitance and series resistance were compensated to reduce artifactual distortion. A perfusion system (Warner Instruments, Inc., Hamden, Conn., USA) was used to change the extracellular solution. Data were collected with the pCLAMP software (version 9.2, Axon Instruments, Foster City, Calif.). Experiments were conducted at room temperature (23° C.).

[0131] Before electrical compensation, cell membrane capacitance (C_m) was measured in each patched cells with the pCLAMP program. During recordings, the cells were superfused with the modified Tyrode's solution to measure Ir. The bath solution contained (mM): NaCl 140; KCl 5.4; CaCl₂ 1.8; MgCl₂ 1; D-glucose 10; Hepes 10 (pH adjusted to 7.4 with NaOH) and supplemented with (mM): NiCl 2; BaCl₂ 2; CdCl 0.2; 4-aminopyridine 1 to eliminate Ca²⁺ current (T- and L-type), inward rectifier K^+ current, I_{K1} and transient outward K⁺ current, I_{r0} , respectively. KCl was increased to 25 mM to amplify I_c. Pipette solution contained (mM): K-glutamate 130; KCl 15; NaCl 5; MgATP 5; MgCl₂ 1; EGTA 5; CaCl₂ 1; Hepes 10 (pH adjusted to 7.2 with KOH). I_f currents were evoked by 2 to 6 s hyperpolarizing steps to potentials ranging from -50 to -130 mV from a holding potential of -40 mV. A single-exponential fit of the current traces evoked at different potentials allowed derivation of time constants (.tau.) of current activation. The initial delay of the current was excluded from the fitting.

[0132] The reversal potential of I_f was evaluated by tail currents recorded by 1.2 s 'tail' steps to membrane potentials ranging from -80 to 0 mV in 10 mV step intervals followed a 2 s conditioning potential step to -120 mV. The holding potential was set at -40 mV. The amplitudes of tail currents were then plotted against the test potentials. The current-voltage (1-V) relationship was fitted with a linear regression equation and the intersection on the x-axis was the reversal potential of I. The activation of I_f was calculated by tail currents elicited by 3 s 'tail' pulses to -120 mV followed 5 s conditioning pulses from -130 mV to -60 mV in 10 mV increments every 10 s. The holding potential was -40 mV. The amplitudes of tail currents were then normalized to the maximal current and plotted against the conditional pulses. Activation data were fitted by a Boltzmann function.

[0133] As shown in FIG. **12**, current traces of I_f recorded from HL-5 cells. A, the voltage-clamp protocol. B, superimposed I_f traces were recorded from a non-transfected HL-5 cell. C, superimposed I_f traces were recorded from a HCN4-transfected HL-5 cell. D, current-voltage relationships of I_f were plotted according to the values measured at the places of the vertical dotted lines for the control (\odot) and HCN4-transfected ($\textcircled{\bullet}$) HL-5 cells. Test pulses from -50 mV to -130 mV in 10 mV increments were applied. The holding potential was -40 mV and stimulation rate was 0.2 Hz. The arrows in panel A and B indicate the zero current level.

[0134] FIG. **13** provides a comparison of activation kinetics of I_f recorded in control and HCN4-transfected HL-5 cells (using rAAV-HCN4tr-cmyc). Superimposed current traces were elicited by test pulses (see the insets) from -40 mV to -120 mV (A) and from -40 mV to -130 mV (B) for the control (black trace) and HCN4-transfected (red trace) HL-5 cells. The maximal currents recorded from the control cell were normalized (by 5.4-fold for -120 mV and 5.1-fold for -130 mV) close to the maximal current of the HCN4-transfected cell. Time constants (.tau.) of activation of I_f were fitted with the equation of single exponential decay.

Example II

hHCN4-Channel Truncated Versus Full-Length hHCN4 Channel

[0135] Experiments were carried out to characterize the hHCN4-channel truncated 16 amino acids after the end of the cyclic nucleotide binding domain (CNBD). The truncated hHCN4 was compared to the full-length hHCN4 channel. See e.g., SEQ ID NOS. 4, 28 and 29. Electrophysiological experiments were carried out as described in Ludwig A., Zong X., Stieber J., Hullin R., Hofmann F. and Biel M., Two Pacemaker Channels From Human Heart With Profoundly Different Activation Kinetics, EMBO J. 1999, 19 (9):2323-2329 and Stieber J., Thomer A., Much B., Schneider A., Biel M. and Hofmann F., Molecular Basis For The Different Activation Kinetics of The Pacemaker Channels HCN2 and HCN4, J Biol Chem 2003, 278 (36):33672-33680.

[0136] Using the FuGENE6 transfection reagent (Roche), HEK 293 cells were transiently transfected with one of the following cDNA constructs: (1) hHCN4 in the expression vector pcDNA3; (2) hHCN4 in the expression vector pIRES2-EGFP (bicistronic); (3) hHCN4, truncated 16 amino acids after the end of the CNBD, in the expression vector pcDNA3; or (4) hHCN4, truncated 16 amino acids after the end of the CNBD, in the expression vector pIRES2-EGFP (bicistronic).

[0137] HEK 293-cells were cultured in Quantum 286 complete medium (PAA Laboratories) on polylysated glass coverslips and kept at 37° C., 6% CO₂ until ready to use. Two to three days after transfection currents were recorded in the whole cell recording technique at a temperature of $22\pm1^{\circ}$ C. **[0138]** The bath solution contained the following constituents in mM: 120 NaCl, 20 KCl, 1 MgCl₂, 1.8 CaCl₂, 10 HEPES, 10 Glucose, pH adjusted to 7.4 with NaOH. The pipette solution contained (in mM): 10 NaCl, 30 KCl, 90 K-Asp, 1 MgSO₄, 5 EGTA, 10 HEPES, pH adjusted to 7.4 with KOH. Patch pipettes were pulled from borosilicate glass and had a resistance of 2-5 M.OMEGA. when filled with this pipette solution.

[0139] For determination of the effect of cAMP on the channels, 100 .mu.M 8-Br-cAMP (Sigma) was added to the bath solution. Data were acquired using an Axopatch 200B amplifier and pClamp7-software (Axon Instruments) and low-pass filtered at 2 kHz with an 8-pole Bessel filter (LPBF-48DG, npi). Data were evaluated using the Origin 6.0 software (Microcal). All values are provided as mean±SEM (standard error of the mean); 11-19 measurements (n) were evaluated per channel. Statistical differences were determined using Student's unpaired t-test; p-values<0.05 were considered significant.

[0140] To characterize the basic properties of the channels, the following was determined: (1) voltage-dependent activa-

tion curves with half-maximal activation ($V_{1/2}$); (2) voltage dependence of activation time constants T (activation kinetics) (both in the presence and absence of 100 .mu.M cAMP); and (3) current—voltage relation with reversal potential (E_{rev}).

[0141] To determine activation curves and activation kinetics, a pulse protocol was used as shown in FIG. **18** where the holding potential was -40 mV and 10 mV-step pulses of 5 seconds duration from -140 mV to -30 mV, followed by a step to -140 mV for 2 seconds; 30 seconds between consecutive activation steps.

[0142] With the protocol shown in FIG. **18**, example current recordings were obtained from the truncated hHCN4 in pIRES2-EGFP and are shown in FIG. **19**.

[0143] Time constants of activation (T_{act}) were obtained by fitting the current traces of the -140 to -90 mV steps after the initial lag with the sum of two exponential functions

 $y = A_1 e^{(x/\tau 1)} + A_2 e^{(-x/\tau 2)},$

where T_1 and T_2 are the fast and slow time constants of activation, respectively; T_1 is consequently referred to as T_{acr} since A_1 accounts for most of the current amplitude.

[0144] To obtain voltage-dependent steady-state activation curves, tail currents measured immediately after the final step to -140 mV were normalized by the maximal current (I_{max}) and plotted as a function of the preceding membrane potential. The curves were fitted with the Boltzmann function:

$$(I-I_{min})/(I_{man}-I_{min})=(A_1-A_2)/(1+e^{(V-V1/2K)})+A_2,$$

where I_{min} is an offset caused by a nonzero holding current and is not included in the current amplitude, V is the test potential, $V_{1/2}$ is the membrane potential for half-maximal activation, and K is the slope factor.

[0145] To determine reversal potential, a pulse protocol was used as shown in FIG. **20** where the holding potential was -40 mV, the full activation of the channels held at -140 mV for 8 seconds, and 10 mV-step pulses to -100 mV to +40 mV and 30 seconds between consecutive activation steps.

[0146] With the protocol shown in FIG. **20**, example current recording was obtained from the truncated hHCN4 in pIRES2-EGFP and is shown in FIG. **21**.

[0147] To determine the reversal potential, the tail currents obtained immediately after the step to the test voltages were plotted against the voltage. Thus, E, is the potential where the current is 0.

[0148] The voltage-dependent activation results are shown in FIG. 22. Generally, the truncated hHCN4-channel ("hHCN4trunc", black circles) is voltage-dependently activated like the full-length hHCN4 ("hHCN4", blue squares). $V_{1/2}$ (half-maximal activation or midpoint of activation) does not differ significantly between hHCN4 and hHCN4trunc, being about -96 mV for both. In addition, both channels are modulated by cAMP (open symbols) to the same extent, i.e. 100 .mu.M cAMP induces a shift of the activation curve of -13 mV towards more positive activation potentials. However, the slope factor k differs significantly, both between the two unmodulated and between the two cAMP-modulated curves. Thus, the slope of the full-length hHCN4 is slightly steeper than that of the truncated channel, implying that the truncated channel may be activated over a broader range of potentials. This is particularly important for the present invention because it suggests that the truncated human HCN4 channel is more responsive to cAMP at physiological voltages, thereby making it a more desirable gene candidate for a biological pacemaker therapy.

	hHCN4, full length n = 19	hHCN4, truncated n = 17	Significance of difference (p-value)
	unmodula	ted	
$V_{1/2}$	-96.7 mV	-96.1 mV	P > 0.5
SD	4.01	3.44	1 . 0.5
SEM		5.11	
Slope factor K	11.0	14.3	P < 0.001
SD	1.15	2.45	
SEM	0.31	0.71	
	cAMP - mod	ulated	
•••			D
V _{1/2}	-83.7 mV	-83.2 mV	P > 0.5
$^{\rm SD}$	6.22	3.73	
SEM	2.54	1.18	
Slope factor K	9.1	12.7	P < 0.001
SD	1.33	2.11	
SEM	0.47	0.67	
	Shift induced by 100 µ	M 8-Br-cAMP:	
	+13.0 mV	+12.9 mV	

[0149] The following table gives the key parameters of the voltage-dependent activation:

[0150] Time constants of activation T_{act} at activation voltages from -140 mV to -90 mV (note logarithmic scale of y-axis) are shown in FIG. **23**. Both channels are modulated by cAMP, i.e., the time constants of activation over the whole range of potentials measured are shifted to smaller values. Therefore, the channels are 2- to 3-fold faster activated in the presence of cAMP. Comparing T_{act} for each activation potential reveals that at potentials positive to -120 mV, the truncated hHCN4-channel tends to activate slightly faster than the full-length channel. This difference becomes significant only at -90 mV, both under nonmodulated and cAMP-modulated conditions.

[0151] As shown in FIG. **24**, the reversal potential for both the full-length and truncated hHCN4 was determined in 20 mM extracellular potassium, without cAMP. It is -11.5 mV for hHCN4 and -16.2 mV for hHCN4trunc. The difference is not significant.

[0152] The human HCN4 channel, which is truncated 16 amino acids after the end of the cyclic nucleotide binding domain, can be well expressed in HEK 293-cells. The number

SEQUENCE LISTING

<160> NUMBER OF SEO ID NOS: 29 <210> SEO TD NO 1 <211> LENGTH: 2673 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(2673) <223> OTHER INFORMATION: hyperpolarization activated cyclic nucleotide-gated potassium channel 1 (HCN1) (Accession: NM 021072) <400> SEQUENCE: 1 atggaaggag geggeaagee caactetteg tetaacagee gggaegatgg caacagegte 60 ttccccgcca aggcgtccgc gacgggcgcg gggccggccg cggccgagaa gcgcctgggc 120

of successfully transfected, i.e. HCN4-channel (current) and EGFP-(constructs in the pIRES2-EGFP-vector) expressing cells is approximately the same for all 4 tested constructs. Green-fluorescent cells can be well selected e.g. using excitation (filter) at .lamda.=450-490 nm and detection at A=505-530 nm).

[0153] Both the full-length and truncated constructs display similar, HCN4-like currents. The currents are of comparable amplitude and can be modulated by cAMP to the same extent. cAMP shifts the activation curve of both channels about 13 mV to more positive activation potentials and accelerates the activation about 2-3-fold (voltage dependent).

[0154] There is a slight but significant difference between the full-length and truncated hHCN4-channels. The slope of the voltage-dependent activation curve is steeper for the full-length channel. This could mean that the truncated hHCN4 channel can be activated over a broader range of membrane potentials even though this is not reflected in the value of the midpoint of activation $V_{1/2}$ which is about -96 mV for both channels.

[0155] In addition to this difference in the voltage-dependent activation, there is a tendency for the truncated hHCN4-channel towards faster time constants of activation. This difference, however, is only significant at an activation potential of -90 mV.

[0156] All patents and publications referenced herein are hereby incorporated by reference. Referenced web sites are not incorporated by reference. It will be understood that certain of the above-described structures, functions and operations of the above-described preferred embodiments are not necessary to practice the present invention and are included in the description simply for completeness of an example embodiment or embodiments. In addition, it will be understood that specific structures, functions and operations set forth in the above-referenced patents and publications can be practiced in conjunction with the present invention, but they are not essential to its practice. It is therefore to be understood that within the scope of the claims, the invention may be practiced otherwise than as specifically described without actually departing from the spirit and scope of the present invention.

-cont	1 11 1	1ed

				-contir	nued		
accccgccgg	ggggcggcgg	ggccggcgcg	aaggagcacg	gcaactccgt	gtgcttcaag	180	
gtggacggcg	gtggcggcgg	tggcggcggc	ggcggcggcg	gcgaggagcc	ggcgggggggc	240	
ttcgaagacg	ccgaggggcc	ccggcggcag	tacggcttca	tgcagaggca	gttcacctcc	300	
atgctgcagc	ccggggtcaa	caaattctcc	ctccgcatgt	ttgggagcca	gaaggcggtg	360	
gaaaaggagc	aggaaagggt	taaaactgca	ggcttctgga	ttatccaccc	ttacagtgat	420	
ttcaggtttt	actgggattt	aataatgett	ataatgatgg	ttggaaatct	agtcatcata	480	
ccagttggaa	tcacattctt	tacagagcaa	acaacaacac	catggattat	tttcaatgtg	540	
gcatcagata	cagttttcct	attggacctg	atcatgaatt	ttaggactgg	gactgtcaat	600	
gaagacagtt	ctgaaatcat	cctggacccc	aaagtgatca	agatgaatta	tttaaaaagc	660	
tggtctgtgg	ttgacttcat	ctcatccatc	ccagtggatt	atatctttct	tattgtagaa	720	
aaaggaatgg	attctgaagt	ttacaagaca	gccagggcac	ttcgcattgt	gaggtttaca	780	
aaaattctca	gtctcttgcg	tttattacga	ctttcaaggt	taattagata	catacatcaa	840	
tgggaagaga	tattccacat	gacatatgat	ctcgccagtg	cagtggtgag	aatttttaat	900	
ctcatcggca	tgatgctgct	cctgtgccac	tgggatggtt	gtcttcagtt	cttagtacca	960	
ctactgcagg	acttcccacc	agattgctgg	gtgtctttaa	atgaaatggt	taatgattct	1020	
tggggaaagc	agtattcata	cgcactcttc	aaagctatga	gtcacatgct	gtgcattggg	1080	
tatggageee	aagccccagt	cagcatgtct	gacctctgga	ttaccatgct	gagcatgatc	1140	
gtcggggcca	cctgctatgc	catgtttgtc	ggccatgcca	ccgctttaat	ccagtctctg	1200	
gattettega	ggcggcagta	tcaagagaag	tataagcaag	tggaacaata	catgtcattc	1260	
cataagttac	cagctgatat	gcgtcagaag	atacatgatt	actatgaaca	cagataccaa	1320	
ggcaaaatct	ttgatgagga	aaatattete	aatgaactca	atgatcctct	gagaggggag	1380	
atagtcaact	tcaactgtcg	gaaactggtg	gctacaatgc	ctttatttgc	taatgcggat	1440	
cctaattttg	tgactgccat	gctgagcaag	ttgagatttg	aggtgtttca	acctggagat	1500	
tatatcgtac	gagaaggagc	cgtgggtaaa	aaaatgtatt	tcattcaaca	cggtgttgct	1560	
ggtgtcatta	caaaatccag	taaagaaatg	aagctgacag	atggctctta	ctttggagag	1620	
atttgcctgc	tgaccaaagg	acgtcgtact	gccagtgttc	gagctgatac	atattgtcgt	1680	
ctttactcac	tttccgtgga	caatttcaac	gaggtcccgg	aggaatatcc	aatgatgagg	1740	
agagcetttg	agacagttgc	cattgaccga	ctagatcgaa	taggaaagaa	aaattcaatt	1800	
cttctgcaaa	agttccagaa	ggatetgaae	actggtgttt	tcaacaatca	ggagaacgaa	1860	
atcctcaagc	agattgtgaa	acatgacagg	gagatggtgc	aggcaatcgc	tcccatcaat	1920	
tatcctcaaa	tgacaaccct	gaattccgca	tcgtctacta	cgaccccgac	ctcccgcatg	1980	
aggacacaat	ctccaccggt	gtacacagcg	accagcctgt	ctcacagcaa	cctgcactcc	2040	
cccagtccca	gcacacagac	cccccagcca	tcagccatcc	tgtcaccctg	ctcctacacc	2100	
accgcggtct	gcagccctcc	tgtacagagc	cctctggccg	ctcgaacttt	ccactatgcc	2160	
tcccccaccg	cctcccagct	gtcactcatg	caacagcagc	cgcagcagca	ggtacagcag	2220	
tcccagccgc	cgcagactca	gccacagcag	ccgtccccgc	agccacagac	acctggcagc	2280	
tccacgccga	aaaatgaagt	gcacaagagc	acgcaggcgc	ttcacaacac	caacctgacc	2340	
cgggaagtca	ggccactctc	cgcctcgcag	ccctcgctgc	cccatgaggt	gcccactctg	2400	

				-contir	lueu		
atttccagac	ctcatcccac	tgtgggcgag	tccctggcct	ccatccctca	acccgtgacg	2460	
gcggtccccg	gaacgggcct	tcaggcaggg	ggcaggagca	ctgtcccgca	gcgcgtcacc	2520	
ctcttccgac	agatgtcgtc	gggagccatc	cccccgaacc	gaggagtccc	tccagcaccc	2580	
cctccaccag	cagctgctct	tccaagagaa	tcttcctcag	tcttaaacac	agacccagac	2640	
gcagaaaagc	cacgatttgc	ttcaaattta	tga			2673	
<220> FEAT <221> NAME <222> LOCA <223> OTHE	TH: 2670 : DNA NISM: Homo S URE: /KEY: gene TION: (1) R INFORMATIC	(2670) DN: Hyperpo:			yclic ession: NM_0	01194)	
<400> SEQU	ENCE: 2						
atggacgcgc	gcggggggggg	cgggcggccc	ggggagagcc	cgggcgcgac	ccccgcgccg	60	
gggccgccgc	cgccgccgcc	gcccgcgccc	ccccaacagc	agccgccgcc	gccgccgccg	120	
cccgcgcccc	ccccgggccc	cgggcccgcg	cccccccagc	acccgccccg	ggccgaggcg	180	
ttgcccccgg	aggcggcgga	tgagggcggc	ccgcgggggcc	ggctccgcag	ccgcgacagc	240	
tcgtgcggcc	gccccggcac	cccgggcgcg	gcgagcacgg	ccaagggcag	cccgaacggc	300	
gagtgeggge	gcggcgagcc	gcagtgcagc	cccgcgggggc	ccgagggccc	ggcgcgggggg	360	
cccaaggtgt	cgttctcgtg	ccgcgggggcg	gcctcggggc	ccgcgccggg	gccggggccg	420	
gcggaggagg	cgggcagcga	ggaggcgggc	ccggcggggg	agccgcgcgg	cagccaggcc	480	
agcttcatgc	agcgccagtt	cggcgcgctc	ctgcagccgg	gcgtcaacaa	gttctcgctg	540	
cggatgttcg	gcagccagaa	ggccgtggag	cgcgagcagg	agcgcgtcaa	gtcggcgggg	600	
gcctggatca	tccacccgta	cagcgacttc	aggttctact	gggacttcac	catgctgctg	660	
ttcatggtgg	gaaacctcat	catcatccca	gtgggcatca	ccttcttcaa	ggatgagacc	720	
actgccccgt	ggatcgtgtt	caacgtggtc	tcggacacct	tcttcctcat	ggacctggtg	780	
ttgaacttcc	gcaccggcat	tgtgatcgag	gacaacacgg	agatcatcct	ggaccccgag	840	
aagatcaaga	agaagtatct	gcgcacgtgg	ttcgtggtgg	acttcgtgtc	ctccatcccc	900	
gtggactaca	tcttccttat	tgtggagaag	ggcattgact	ccgaggtcta	caagacggca	960	
cgcgccctgc	gcatcgtgcg	cttcaccaag	atcctcagcc	tcctgcggct	gctgcgcctc	1020	
tcacgcctga	tccgctacat	ccatcagtgg	gaggagatct	tccacatgac	ctatgacctg	1080	
gccagcgcgg	tgatgaggat	ctgcaatctc	atcagcatga	tgctgctgct	ctgccactgg	1140	
gacggctgcc	tgcagttcct	ggtgcctatg	ctgcaggact	tcccgcgcaa	ctgctgggtg	1200	
tccatcaatg	gcatggtgaa	ccactcgtgg	agtgaactgt	actccttcgc	actcttcaag	1260	
gccatgagcc	acatgctgtg	catcgggtac	ggccggcagg	cgcccgagag	catgacggac	1320	
atctggctga	ccatgctcag	catgattgtg	ggtgccacct	gctacgccat	gttcatcggc	1380	
cacgccactg	ccctcatcca	gtcgctggac	tcctcgcggc	gccagtacca	ggagaagtac	1440	
	agcagtacat					1500	
	atgagcaccg					1560	
						1620	
yayercaacg	ggcccctgcg	yyayyagate	greaacttca	accyceggaa	gerggrggee	1020	

15

tecatgeege tgttegeeaa egeegaeeee aaettegtea eggeeatget gaeeaagete	1680
aagttegagg tetteeagee gggtgaetae ateateegeg aaggeaeeat egggaagaag	1740
atgtacttca tccagcacgg cgtggtcagc gtgctcacta agggcaacaa ggagatgaag	1800
ctgtccgatg gctcctactt cggggagatc tgcctgctca cccggggccg ccgcacggcg	1860
agcgtgcggg ccgacaccta ctgccgcctc tattcgctga gcgtggacaa cttcaacgag	1920
gtgctggagg agtaccccat gatgcggcgc gccttcgaga cggtggccat cgaccgcctg	1980
gaccgcatcg gcaagaagaa ttccatcctc ctgcacaagg tgcagcatga cctcaactcg	2040
ggcgtattca acaaccagga gaacgccatc atccaggaga tcgtcaagta cgaccgcgag	2100
atggtgcagc aggccgaget gggtcagege gtgggeetet teeegeegee geegeegeeg	2160
ccgcaggtca cctcggccat cgccacgctg cagcaggcgg cggccatgag cttctgcccg	2220
caggtggcgc ggccgctcgt ggggccgctg gcgctcggct cgccgcgcct cgtgcgccgc	2280
cogeceegg ggeeegeace tgeegeegee teaceeggge eeeegeeeee egeeageeee	2340
ccgggcgcgc ccgccagccc ccgggcaccg cggacctcgc cctacggcgg cctgcccgcc	2400
gececcettg etgggeeege cetgeeegeg egeegeetga geegegegte gegeeeaetg	2460
teegeetege ageeeteget geeteaegge geeeeeggee eegeggeete cacaegeeeg	2520
gccagcaget ceaeaeegeg ettgaggeee acgeeegetg eeegggeege egegeeeage	2580
ccggaccgca gggactcggc ctcacccggc gccgccggcg gcctggaccc ccaggactcc	2640
gcgcgctcgc gcctctcgtc caacttgtga	2670
<pre><210> SEQ ID NO 3 <211> LENGTH: 2325 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(2325) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 3 (HCN3) (Accession: NM_020)</pre>	1897)
<400> SEQUENCE: 3	
atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag	60
geggtgeete eegttgetee eeegeetgeg acegeggeet eaggteegat eeeeaatet	120
gggcctgagc ctaagaggag gcaccttggg acgctgctcc agcctacggt caacaagttc	180
tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagcg ggtgaagtca	240
gcggggggcct ggatcatcca cccctacagc gacttccggt tttactggga cctgatcatg	300
ctgctgctga tggtgggggaa cctcatcgtc ctgcctgtgg gcatcacctt cttcaaggag	360
gagaactccc cgccttggat cgtcttcaac gtattgtctg atactttctt cctactggat	420
ctggtgctca acttccgaac gggcatcgtg gtggaggagg gtgctgagat cctgctggca	480
ccgcgggcca tccgcacgcg ctacctgcgc acctggttcc tggttgacct catctcttct	540
atccctgtgg attacatctt cctagtggtg gagctggagc cacggttgga cgctgaggtc	600
tacaaaacgg cacgggccct acgcatcgtt cgcttcacca agatcctaag cctgctgagg	660
ctgctccgcc tctcccgcct catccgctac atacaccagt gggaggagat ctttcacatg	720
acctatgacc tggccagtgc tgtggttcgc atcttcaacc tcattgggat gatgctgctg	780

-continued	
ctatgtcact gggatggctg tctgcagttc ctggtgccca tgctgcagga cttccctccc	840
gactgctggg tctccatcaa ccacatggtg aaccactcgt ggggccgcca gtattcccat	900
gccctgttca aggccatgag ccacatgctg tgcattggct atgggcagca ggcacctgta	960
ggcatgcccg acgtctggct caccatgctc agcatgatcg taggtgccac atgctacgcc	1020
atgttcatcg gccatgccac ggcactcatc cagtccctgg actcttcccg gcgtcagtac	1080
caggagaagt acaagcaggt ggagcagtac atgtccttcc acaagctgcc agcagacacg	1140
cggcagcgca tccacgagta ctatgagcac cgctaccagg gcaagatgtt cgatgaggaa	1200
agcateetgg gegagetgag egageegett egegaggaga teattaaett eaeetgtegg	1260
ggcctggtgg cccacatgcc gctgtttgcc catgccgacc ccagcttcgt cactgcagtt	1320
ctcaccaage tgegetttga ggtetteeag eeggggggate tegtggtgeg tgagggetee	1380
gtggggagga agatgtactt catccagcat gggctgctca gtgtgctggc ccgcggcgcc	1440
cgggacacac gcctcaccga tggatcctac tttggggaga tctgcctgct aactaggggc	1500
cggcgcacag ccagtgttcg ggctgacacc tactgccgcc tttactcact cagcgtggac	1560
cattteaatg etgtgettga ggagtteece atgatgegee gggeetttga gaetgtggee	1620
atggategge tgeteegeat eggeaagaag aatteeatae tgeageggaa gegeteegag	1680
ccaagtccag gcagcagtgg tggcatcatg gagcagcact tggtgcaaca tgacagagac	1740
atggeteggg gtgttegggg tegggeeeeg ageaeaggag eteagettag tggaaageea	1800
gtactgtggg agccactggt acatgcgccc cttcaggcag ctgctgtgac ctccaatgtg	1860
gccattgecc tgactcatca geggggeeet etgeceetet eccetgacte tecagecace	1920
ctccttgctc gctctgcttg gcgctcagca ggctctccag cttccccgct ggtgcccgtc	1980
cgagetggee catgggeate caecteeege etgeeegeee caectgeeeg aaceetgeae	2040
gccageetat eeegggcagg gegeteeeag gteteeetge tgggteeeee teeaggagga	2100
ggtggacggc ggctaggacc tcggggccgc ccactctcag cctcccaacc ctctctgcct	2160
cagcgggcaa caggcgatgg ctctcctggg cgtaagggat caggaagtga gcggctgcct	2220
ccctcagggc teetggeeaa aceteeaagg acageeeage eeecaggee aceagtgeet	2280
gagecageca caeceegggg tetecagett tetgecaaca tgtaa	2325
<210> SEQ ID NO 4 <211> LENGTH: 3612 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(3612) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Accession: NM_005477)	
<400> SEQUENCE: 4	
atggacaagc tgccgccgtc catgcgcaag cggctctaca gcctcccgca gcaggtgggg	60
gccaaggcgt ggatcatgga cgaggaagag gacgccgagg aggaggggggc cgggggccgc	120
caagacccca gccgcaggag catccggctg cggccactgc cctcgccctc cccctcggcg	180
gccgcgggtg gcacggagtc ccggagctcg gccctcgggg cagcggacag cgaagggccg	240
gcccgcggcg cgggcaagtc cagcacgaac ggcgactgca ggcgcttccg cgggagcctg	300

				-concin	lucu		
gcctcgctgg	gcagccgggg	cggcggcagc	ggcggcacgg	ggagcggcag	cagtcacgga	360	
cacctgcatg	actccgcgga	ggagcggcgg	ctcatcgccg	agggcgacgc	gtcccccggc	420	
gaggacagga	cgcccccagg	cctggcggcc	gagcccgagc	gccccggcgc	ctcggcgcag	480	
cccgcagcct	cgccgccgcc	gccccagcag	ccaccgcagc	cggcctccgc	ctcctgcgag	540	
cagccctcgg	tggacaccgc	tatcaaagtg	gagggaggcg	cggctgccgg	cgaccagatc	600	
ctcccggagg	ccgaggtgcg	cctgggccag	gccggcttca	tgcagcgcca	gttcgggggcc	660	
atgctccaac	ccggggtcaa	caaattctcc	ctaaggatgt	tcggcagcca	gaaagccgtg	720	
gagegegaae	aggagagggt	caagtcggcc	ggattttgga	ttatccaccc	ctacagtgac	780	
ttcagatttt	actgggacct	gaccatgctg	ctgctgatgg	tgggaaacct	gattatcatt	840	
cctgtgggca	tcaccttctt	caaggatgag	aacaccacac	cctggattgt	cttcaatgtg	900	
gtgtcagaca	cattetteet	catcgacttg	gtcctcaact	tccgcacagg	gatcgtggtg	960	
gaggacaaca	cagagatcat	cctggacccg	cagcggatta	aaatgaagta	cctgaaaagc	1020	
tggttcatgg	tagatttcat	ttcctccatc	cccgtggact	acatcttcct	cattgtggag	1080	
acacgcatcg	actcggaggt	ctacaagact	gcccgggccc	tgcgcattgt	ccgcttcacg	1140	
aagatcctca	gcctcttacg	cctgttacgc	ctctcccgcc	tcattcgata	tattcaccag	1200	
tgggaagaga	tcttccacat	gacctacgac	ctggccagcg	ccgtggtgcg	catcgtgaac	1260	
ctcatcggca	tgatgctcct	gctctgccac	tgggacggct	gcctgcagtt	cctggtaccc	1320	
atgctacagg	acttccctga	cgactgctgg	gtgtccatca	acaacatggt	gaacaactcc	1380	
tgggggaagc	agtactccta	cgcgctcttc	aaggccatga	gccacatgct	gtgcatcggc	1440	
tacgggcggc	aggcgcccgt	gggcatgtcc	gacgtctggc	tcaccatgct	cagcatgatc	1500	
gtgggtgcca	cctgctacgc	catgttcatt	ggccacgcca	ctgccctcat	ccagtccctg	1560	
gactcctccc	ggcgccagta	ccaggaaaag	tacaagcagg	tggagcagta	catgtccttt	1620	
cacaagctcc	cgcccgacac	ccggcagcgc	atccacgact	actacgagca	ccgctaccag	1680	
ggcaagatgt	tcgacgagga	gagcatcctg	ggcgagctaa	gcgagcccct	gcgggaggag	1740	
atcatcaact	ttaactgtcg	gaagctggtg	gcctccatgc	cactgtttgc	caatgcggac	1800	
cccaacttcg	tgacgtccat	gctgaccaag	ctgcgtttcg	aggtcttcca	gcctggggac	1860	
tacatcatcc	gggaaggcac	cattggcaag	aagatgtact	tcatccagca	tggcgtggtc	1920	
agcgtgctca	ccaagggcaa	caaggagacc	aagctggccg	acggctccta	ctttggagag	1980	
atctgcctgc	tgacccgggg	ccggcgcaca	gccagcgtga	gggccgacac	ctactgccgc	2040	
ctctactcgc	tgagcgtgga	caacttcaat	gaggtgctgg	aggagtaccc	catgatgcga	2100	
agggccttcg	agaccgtggc	gctggaccgc	ctggaccgca	ttggcaagaa	gaactccatc	2160	
ctcctccaca	aagtccagca	cgacctcaac	tccggcgtct	tcaactacca	ggagaatgag	2220	
atcatccagc	agattgtgca	gcatgaccgg	gagatggccc	actgcgcgca	ccgcgtccag	2280	
gctgctgcct	ctgccacccc	aacccccacg	cccgtcatct	ggaccccgct	gatccaggca	2340	
ccactgcagg	ctgccgctgc	caccacttct	gtggccatag	ccctcaccca	ccaccctcgc	2400	
ctgcctgctg	ccatcttccg	ccctccccca	ggatctgggc	tgggcaacct	cggtgccggg	2460	
cagacgccaa	ggcacctgaa	acggctgcag	tccctgatcc	cttctgcgct	gggeteegee	2520	
tcgcccgcca	gcagcccgtc	ccaggtggac	acaccgtctt	catcctcctt	ccacatccaa	2580	

	2640
tecceacece eeggggeetg tggeteecee teggeteeca caccateage tggegtagee	2700
gccaccacca tagccgggtt tggccacttc cacaaggcgc tgggtggctc cctgtcctcc	2760
teegaetete eeetgeteae eeegetgeag eeaggegeee geteeeegea ggetgeeeag	2820
ccatctcccg cgccacccgg ggcccgggga ggcctgggac tcccggagca cttcctgcca	2880
cccccaccct catccagatc cccgtcatct agecccgggc agetgggeca gecteccggg	2940
gagttgtccc taggtctggc cactggccca ctgagcacgc cagagacacc cccacggcag	3000
cctgagccgc cgtcccttgt ggcaggggcc tctggggggg cttcccctgt aggctttact	3060
ccccgaggag gtctcagccc ccctggccac agcccaggcc ccccaagaac cttcccgagt	3120
geccegecce gggeetetgg etcecaegga teettgetee tgecaeetge atceageece	3180
ccaccacccc aggtcccccca gcgccggggc acacccccgc tcacccccgg ccgcctcacc	3240
caggacetea ageteatete egegteteag ceagecetge eteaggaegg ggegeagaet	3300
ctccgcagag cctccccgca ctcctcaggg gagtccatgg ctgccttccc gctcttcccc	3360
agggetgggg gtggeagegg gggeagtggg ageagegggg geeteggtee eeetgggagg	3420
ccctatggtg ccatccccgg ccagcacgtc actctgcctc ggaagacatc ctcaggttct	3480
ttgccacccc ctctgtcttt gtttgggggca agagccacct cttctggggg gccccctctg	3540
actgctggac cccagaggga acctggggcc aggcctgagc cagtgcgctc caaactgcca	3600
tccaatctat ga	3612
<210> SEQ ID NO 5	
<210> SEQ ID NO 5 <211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684)	nce
<211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen	lce
<211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684)	1ce 60
<211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5	
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen</pre>	60
<pre><211> LENGTH: 1434 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen</pre>	60 120
<211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5 atgggggggg gggtgctcgt cctgggcgcc tccgagcccg gtaacctgtc gtcggccgca ccgctccccg acggcgggc caccgcggcg cggctgctgg tgcccgcgtc gccgccgcc tcgttgctgc ctcccgccag cgaaagcccc gagccgctgt ctcagcagtg gacagcgggc	60 120 180
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5 atgggcgcgg gggtgctcgt cctgggcgcc tccgagcccg gtaacctgtc gtcggccgca ccgctccccg acggcgcggc caccgcggcg cggctgctgg tgcccgcgtc gccgcccgc</pre>	60 120 180 240
<211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5 atgggegegg gggtgetegt cetgggegee teegageeeg gtaacetgte gteggeegea cegeteeeeg acggegegge cacegeggeg eggetgetgg tgeeegete geegeeegea tegttgetge etceegeeag egaaageeee gageegetgt etcageagtg gacageggge atgggtetge tgatggeget categtgetg etcategtgg eggecaatgt getggtgate gtggceateg ceaagaegee geggetgeag acgeteacea acetetteat catgteeetg	60 120 180 240 300
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5 atgggcgcgg gggtgctcgt cctgggcgcc tccgagcccg gtaacctgtc gtcggccgca ccgctccccg acggcgcggc caccgcggcg cggctgctgg tgcccgcgtc gccgcccgc</pre>	60 120 180 240 300 360
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5 atgggcgcgg gggtgctcgt cctgggcgcc tccgagcccg gtaacctgtc gtcggccgca ccgctccccg acggcgcggc caccgcggcg cggctgctgg tgcccgcgtc gccgcccgc</pre>	60 120 180 240 300 360 420
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen</pre>	60 120 180 240 300 360 420 480
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen (Accession: NM 000684) <400> SEQUENCE: 5 atgggcgcgg gggtgctcgt cctgggcgcc tccgagcccg gtaacctgtc gtcggccgca ccgctccccg acggcgcggc caccgcggcg cggctgctgg tgcccgcgtc gccgcccgc</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1434 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen</pre>	60 120 180 240 300 360 420 480 540 600
<pre><11> LENGTH: 1434 <12> TYPE: DNA <13> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1434) <223> OTHER INFORMATION: beta-1 adrenergic receptor, coding sequen</pre>	60 120 180 240 300 360 420 480 540 600 660

-continued

900 ctggccaacg ggcgtgcggg taagcggcgg ccctcgcgcc tcgtggccct acgcgagcag 960 aaggegetea agaegetggg cateateatg ggegtettea egetetgetg getgeeette 1020 ttcctggcca acgtggtgaa ggccttccac cgcgagctgg tgcccgaccg cctcttcgtc 1080 ttetteaact ggetgggeta egecaacteg geetteaace ceateateta etgeegeage 1140 cccgacttcc gcaaggcctt ccagggactg ctctgctgcg cgcgcagggc tgcccgccgg 1200 cgccacgcga cccacggaga ccggccgcgc gcctcgggct gtctggcccg gcccggaccc 1260 ccgccatcgc ccggggccgc ctcggacgac gacgacgacg atgtcgtcgg ggccacgccg 1320 1380 cccqcqcqcc tqctqqaqcc ctqqqccqqc tqcaacqqcq qqqcqqcqqc qqacaqcqac tegageetgg acgageegtg eegeeeegge ttegeetegg aateeaaggt gtag 1434 <210> SEQ ID NO 6 <211> LENGTH: 1242 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(1242) <223> OTHER INFORMATION: beta-2 adrenergic receptor, coding sequence (Accession: NM 000024) <400> SEOUENCE: 6 atggggcaac ccgggaacgg cagcgcette ttgetggeac ccaatagaag ceatgegeeg 60 gaccacgacg tcacgcagca aagggacgag gtgtgggtgg tgggcatggg catcgtcatg 120 teteteateg teetggeeat egtgtttgge aatgtgetgg teateaeage eattgeeaag 180 ttcgagcgtc tgcagacggt caccaactac ttcatcactt cactggcctg tgctgatctg 240 gtcatgggcc tggcagtggt gccctttggg gccgcccata ttcttatgaa aatgtggact 300 tttggcaact tctggtgcga gttttggact tccattgatg tgctgtgcgt cacggccage 360 attgagaccc tgtgcgtgat cgcagtggat cgctactttg ccattacttc acctttcaag 420 480 taccagagcc tgctgaccaa gaataaggcc cgggtgatca ttctgatggt gtggattgtg tcaggcetta ceteettett geceatteag atgeaetggt acegggeeae ceaeeaggaa 540 gccatcaact gctatgccaa tgagacctgc tgtgacttct tcacgaacca agcctatgcc 600 attgeetett ceategtgte ettetaegtt eeeetggtga teatggtett egtetaetee 660 agggtettte aggaggeeaa aaggeagete cagaagattg acaaatetga gggeegette 720 780 catqtccaqa accttaqcca qqtqqaqcaq qatqqqcqqa cqqqqcatqq actccqcaqa tettecaagt tetgettgaa ggageacaaa geeetcaaga egttaggeat cateatggge 840 actttcaccc tctgctggct gcccttcttc atcgttaaca ttgtgcatgt gatccaggat 900 aacctcatcc gtaaggaagt ttacatcctc ctaaattgga taggctatgt caattctggt 960 ttcaatcccc ttatctactq ccqqaqccca qatttcaqqa ttqccttcca qqaqcttctq 1020 tgcctgcgca ggtcttcttt gaaggcctat gggaatggct actccagcaa cggcaacaca 1080 ggggagcaga gtggatatca cgtggaacag gagaaagaaa ataaactgct gtgtgaagac 1140 ctcccaggca cggaagactt tgtgggccat caaggtactg tgcctagcga taacattgat 1200 1242 tcacaaggga ggaattgtag tacaaatgac tcactgctgt aa

-continued

<210> SEQ ID NO 7 <211> LENGTH: 7062 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(7062) <223> OTHER INFORMATION: T-type calcium channel alpha 1H subunit (CACNA1H), mRNA (Accession: AF051946) <400> SEQUENCE: 7 atgaccgagg gcgcacgggc cgccgacgag gtccgggtgc ccctgggcgc gccgcccct 60 ggccctgcgg cgttggtggg ggcgtccccg gagagccccg gggcgccggg acgcgaggcg 120 gageggggt cegagetegg egtgteacee teegagagee eggeggeega gegeggege 180 240 gagetgggtg cegaegagga geagegegte cegtaecegg cettggegge caeggtette ttctgcctcg gtcagaccac gcggccgcgc agctggtgcc tccggctggt ctgcaaccca 300 tggttcgagc acgtgagcat gctggtaatc atgctcaact gcgtgaccct gggcatgttc 360 420 cggccctgtg aggacgttga gtgcggctcc gagcgctgca acatcctgga ggcctttgac gccttcattt tcgccttttt tgcggtggag atggtcatca agatggtggc cttgggggtg 480 ttcgggcaga agtgttacct gggtgacacg tggaacaggc tggatttctt catcgtcgtg 540 600 gcgggcatga tggagtactc gttggacgga cacaacgtga gcctctcggc tatcaggacc 660 gtgegggtge tgeggeeeet eegegeeate aacegegtge etageatgeg gateetggte actctgctgc tggatacgct gcccatgctc gggaacgtcc ttctgctgtg cttcttcgtc 720 ttetteattt teggeategt tggegteeag etetgggetg geeteetgeg gaacegetge 780 tteetggaca gtgeetttgt caggaacaac aacetgaeet teetgeggee gtactaeeag 840 acggaggagg gcgaggagaa cccgttcatc tgctcctcac gccgagacaa cggcatgcag 900 aagtgetege acateeeegg eegeegegag etgegeatge eetgeaceet gggetgggag 960 gcctacacgc agccgcaggc cgagggggtg ggcgctgcac gcaacgcctg catcaactgg 1020 aaccagtact acaacgtgtg ccgctcgggt gactccaacc cccacaacgg tgccatcaac 1080 1140 ttcgacaaca tcggctacgc ctggatcgcc atcttccagg tgatcacgct ggaaggctgg gtggacatca tgtactacgt catggacgcc cactcattct acaacttcat ctatttcatc 1200 ctgctcatca tcgtgggctc cttcttcatg atcaacctgt gcctggtggt gattgccacg 1260 cagttetegg agaegaagea gegggagagt cagetgatge gggageageg ggeaegeeae 1320 ctgtccaacg acagcacgct ggccagcttc tccgagcctg gcagctgcta cgaagagctg 1380 ctgaagtacg tgggccacat attccgcaag gtcaagcggc gcagcttgcg cctctacgcc 1440 1500 cgctggcaga gccgctggcg caagaaggtg gaccccagtg ctgtgcaagg ccagggtccc gggcaccgcc agcgccgggc aggcaggcac acagcctcgg tgcaccacct ggtctaccac 1560 caccatcacc accaccacca ccactaccat ttcagccatg gcagcccccg caggcccggc 1620 cccgagccag gcgcctgcga caccaggctg gtccgagctg gcgcgccccc ctcgccacct 1680 tccccaggcc gcggaccccc cgacgcagag tctgtgcaca gcatctacca tgccgactgc 1740 cacatagagg ggccgcagga gagggcccgg gtggcacatg ccgcagccac tgctgctgcc 1800 ageetcagge tggccacagg getgggcace atgaactace ceaegateet geeetcaggg 1860 gtgggcagcg gcaaaggcag caccagcccc ggacccaagg ggaagtgggc cggtggaccg 1920

ccaggcaccg	ggggggcacgg	cccgttgagc	ttgaacagcc	ctgatcccta	cgagaagatc	1980
ccgcatgtgg	ccggggagca	tggactgggc	caagcccctg	gccatctgtc	gggcctcagt	2040
gtgccctgcc	ccctgcccag	ccccccagcg	ggcacactga	cctgtgagct	gaagagctgc	2100
ccgtactgca	cccgtgccct	ggaggacccg	gagggtgagc	tcagcggctc	ggaaagtgga	2160
gactcagatg	gccgtggcgt	ctatgaattc	acgcaggacg	tccggcacgg	tgaccgctgg	2220
gaccccacgc	gaccaccccg	tgcgacggac	acaccaggcc	caggcccagg	cageceecag	2280
cggcggggcac	agcagagggc	ageceeggge	gagccaggct	ggatgggccg	cctctgggtt	2340
accttcagcg	gcaagctgcg	ccgcatcgtg	gacagcaagt	acttcagccg	tggcatcatg	2400
atggccatcc	ttgtcaacac	gctgagcatg	ggcgtggagt	accatgagca	gcccgaggag	2460
ctgactaatg	ctctggagat	cagcaacatc	gtgttcacca	gcatgtttgc	cctggagatg	2520
ctgctgaagc	tgctggcctg	cggccctctg	ggctacatcc	ggaacccgta	caacatcttc	2580
gacggcatca	tcgtggtcat	cagcgtctgg	gagatcgtgg	ggcaggcgga	cggtggcttg	2640
tctgtgctgc	gcaccttccg	gctgctgcgt	gtgctgaagc	tggtgcgctt	tctgccagcc	2700
ctgcggcgcc	agctcgtggt	gctggtgaag	accatggaca	acgtggctac	cttctgcacg	2760
ctgctcatgc	tcttcatttt	catcttcagc	atcctgggca	tgcacctttt	cggctgcaag	2820
ttcagcctga	agacagacac	cggagacacc	gtgcctgaca	ggaagaactt	cgactccctg	2880
ctgtgggcca	tcgtcaccgt	gttccagatc	ctgacccagg	aggactggaa	cgtggtcctg	2940
tacaacggca	tggcctccac	ctcctcctgg	gccgccctct	acttcgtggc	cctcatgacc	3000
ttcggcaact	atgtgctctt	caacctgctg	gtggccatcc	tcgtggaggg	cttccaggcg	3060
gagggcgatg	ccaacagatc	cgacacggac	gaggacaaga	cgtcggtcca	cttcgaggag	3120
gacttccaca	agctcagaga	actccagacc	acagagctga	agatgtgttc	cctggccgtg	3180
acccccaacg	ggcacctgga	gggacgaggc	agcctgtccc	ctcccctcat	catgtgcaca	3240
gctgccacgc	ccatgcctac	ccccaagagc	tcaccattcc	tggatgcagc	ccccagcctc	3300
			ggggacccgc			3360
			ccctggggcc			3420
			gcccccagcc			3480
			ggcaagggca			3540
			accccactgc			3600
			cctaccaagt			3660
			cgcatcgaca			3720
			tgcctccgcc			3780
			gcctgggccc			3840
			atcacacaca			3900
ctcgtcttca	tcttcctcaa	ctgcgtcacc	atcgccctgg	agaggcctga	cattgatccc	3960
ggcagcaccg	agcgggtctt	cctcagcgtc	tccaattaca	tcttcacggc	catcttcgtg	4020
gcggagatga	tggtgaaggt	ggtggccctg	gggctgctgt	ccggcgagca	cgcctacctg	4080
cagagcagct	ggaacctgct	ggatgggctg	ctggtgctgg	tgtccctggt	ggacattgtc	4140
gtggccatgg	cctcggctgg	tggcgccaag	atcctgggtg	ttctgcgcgt	gctgcgtctg	4200

ctgcggaccc	tgcggcctct	gagggtcatc	agccgggccc	cgggcctcaa	gctggtggtg	4260
gagacgctga	tatcatcact	caggcccatt	gggaacatcg	tcctcatctg	ctgcgccttc	4320
ttcatcattt	ttggcatttt	gggtgtgcag	ctcttcaaag	ggaagttcta	ctactgcgag	4380
ggccccgaca	ccaggaacat	ctccaccaag	gcacagtgcc	gggccgccca	ctaccgctgg	4440
gtgcgacgca	agtacaactt	cgacaacctg	ggccaggccc	tgatgtcgct	gttcgtgctg	4500
tcatccaagg	atggatgggt	gaacatcatg	tacgacgggc	tggatgccgt	gggtgtcgac	4560
cagcagcctg	tgcagaacca	caacccctgg	atgctgctgt	acttcatctc	cttcctgctc	4620
atcgtcagct	tcttcgtgct	caacatgttc	gtgggcgtcg	tggtcgagaa	cttccacaag	4680
tgccggcagc	accaggaggc	ggaggaggcg	cggcggcgag	aggagaagcg	gctgcggcgc	4740
ctagagagga	ggcgcaggag	cactttcccc	agcccagagg	cccagcgccg	gccctactat	4800
gccgactact	cgcccacgcg	ccgctccatt	cactcgctgt	gcaccagcca	ctatctcgac	4860
ctcttcatca	ccttcatcat	ctgtgtcaac	gtcatcacca	tgtccatgga	gcactataac	4920
caacccaagt	cgctggacga	ggccctcaag	tactgcaact	acgtcttcac	catcgtgttt	4980
gtcttcgagg	ctgcactgaa	gctggtagca	tttgggttcc	gtcggttctt	caaggacagg	5040
tggaaccagc	tggacctggc	catcgtgctg	ctgtcactca	tgggcatcac	gctggaggag	5100
atagagatga	gcgccgcgct	gcccatcaac	cccaccatca	tccgcatcat	gcgcgtgctt	5160
cgcattgccc	gtgtgctgaa	gctgctgaag	atggctacgg	gcatgcgcgc	cctgctggac	5220
actgtggtgc	aagctctccc	ccaggtgggg	aacctgggcc	ttcttttcat	gctcctgttt	5280
tttatctatg	ctgcgctggg	agtggagctg	ttcgggaggc	tggagtgcag	tgaagacaac	5340
ccctgcgagg	gcctgagcag	gcacgccacc	ttcagcaact	tcggcatggc	cttcctcacg	5400
ctgttccgcg	tgtccacggg	ggacaactgg	aacgggatca	tgaaggacac	gctgcgcgag	5460
tgctcccgtg	aggacaagca	ctgcctgagc	tacctgccgg	ccctgtcgcc	cgtctacttc	5520
gtgaccttcg	tgctggtggc	ccagttcgtg	ctggtgaacg	tggtggtggc	cgtgctcatg	5580
aagcacctgg	aggagagcaa	caaggaggca	cgggaggatg	cggagctgga	cgccgagatc	5640
gagctggaga	tggcgcaggg	ccccgggagt	gcacgccggg	tggacgcgga	caggcctccc	5700
ttgccccagg	agagtccggg	cgccagggat	gccccaaacc	tggttgcacg	caaggtgtcc	5760
gtgtccagga	tgctctcgct	gcccaacgac	agctacatgt	tcaggcccgt	ggtgcctgcc	5820
teggegeeee	acccccgccc	gctgcaggag	gtggagatgg	agacctatgg	ggccggcacc	5880
cccttgggct	ccgttgcctc	tgtgcactct	ccgcccgcag	agtcctgtgc	ctccctccag	5940
atcccactgg	ctgtgtcgtc	cccagccagg	agcggcgagc	ccctccacgc	cctgtcccct	6000
cggggcacag	cccgctcccc	cagtctcagc	cggctgctct	gcagacagga	ggctgtgcac	6060
accgattcct	tggaagggaa	gattgacagc	cctagggaca	ccctggatcc	tgcagagcct	6120
ggtgagaaaa	ccccggtgag	gccggtgacc	cagggggggct	ccctgcagtc	cccaccacgc	6180
tccccacggc	ccgccagcgt	ccgcactcgt	aagcatacct	tcggacagcg	ctgcgtctcc	6240
agccggccgg	cggccccagg	cggagaggag	gccgaggcct	cggacccagc	cgacgaggag	6300
gtcagccaca	tcaccagete	cgcctgcccc	tggcagccca	cagccgagcc	ccatggcccc	6360
		cggcgagcgg				6420
		gggccgggca				6480
			J Jagoage	55-550000	55-55-5009	

ggcagcgggg agcctgggga ggcgaaggcc tggggccctg aggccgagcc cgctctgggt 6540 gcgcgcagaa agaagaagat gagccccccc tgcatctcgg tggaaccccc tgcggaggac 6600 gaggggtttg cgcggccctc cgcggcagag ggcggcagca ccacactgag gcgcaggacc 6660 ccgtcctgtg aggccacgcc tcacagggac tccctggagc ccacagaggg ctcaggcgcc 6720 ggggggggacc ctgcagccaa gggggagcgc tggggccagg cctcctgccg ggctgagcac 6780 ctgaccgtcc ccagctttgc ctttgagccg ctggacctcg gggtccccag tggagaccct 6840 ttettggaeg gtagecaeag tgtgaeceea gaateeagag etteetete aggggeeata 6900 gtgcccctgg aacccccaga atcagagcct cccatgcccg tcggtgaccc cccagagaag 6960 aggegggggc tgtacctcac agteceecag tgteetetgg agaaaceagg gteeeetea 7020 gccacccctg ccccaggggg tggtgcagat gaccccgtgt ag 7062 <210> SEQ ID NO 8 <211> LENGTH: 6417 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(6417) <223> OTHER INFORMATION: T-type calcium channel alpha 1H subunit (CACNA1H), mRNA (Accession: NM 000719) <400> SEQUENCE: 8 atggtcaatg agaatacgag gatgtacatt ccagaggaaa accaccaagg ttccaactat 60 gggagcccac gccccgccca tgccaacatg aatgccaatg cggcagcggg gctggcccct 120 gagcacatcc ccaccccggg ggctgccctg tcgtggcagg cggccatcga cgcagcccgg 180 caggetaage tgatgggeag egetggeaat gegaeeatet eeacagteag etceaegeag 240 cggaagcggc agcaatatgg gaaacccaag aagcagggca gcaccacggc cacacgcccg 300 ccccgagccc tgctctgcct gaccctgaag aaccccatcc ggagggcctg catcagcatt 360 gtcgaatgga aaccatttga aataattatt ttactgacta tttttgccaa ttgtgtggcc 420 480 ttagcgatct atattccctt tccagaagat gattccaacg ccaccaattc caacctggaa cgagtggaat atctctttct cataattttt acggtggaag cgtttttaaa agtaatcgcc 540 tatggactee tettteacee caatgeetae eteegeaaeg getggaaeet actagatttt 600 ataattgtgg ttgtggggct ttttagtgca attttagaac aagcaaccaa agcagatggg 660 gcaaacgctc tcggagggaa aggggccgga tttgatgtga aggcgctgag ggccttccgc 720 gtgetgegee eeetgegget ggtgteegga gteeeaagte teeaggtggt eetgaattee 780 atcatcaagg ccatggtccc cctgctgcac atcgccctgc ttgtgctgtt tgtcatcatc 840 atctacgcca tcatcggctt ggagctcttc atggggaaga tgcacaagac ctgctacaac 900 caggagggca tagcagatgt tccagcagaa gatgaccctt ccccttgtgc gctggaaacg 960 1020 ggccacgggc ggcagtgcca gaacggcacg gtgtgcaagc ccggctggga tggtcccaag cacggcatca ccaactttga caactttgcc ttcgccatgc tcacggtgtt ccagtgcatc 1080 accatggagg gctggacgga cgtgctgtac tgggtcaatg atgccgtagg aagggactgg 1140 ccctggatct attttgttac actaatcatc atagggtcat tttttgtact taacttggtt 1200 ctcggtgtgc ttagcggaga gttttccaaa gagagggaga aggccaaggc ccggggagat 1260

-continued	
ttccagaagc tgcgggagaa gcagcagcta gaagaggatc tcaaaggcta cctggattgg	1320
atcactcagg ccgaagacat cgatcctgag aatgaggacg aaggcatgga tgaggagaag	1380
ccccgaaaca tgagcatgcc caccagtgag accgagtccg tcaacaccga aaacgtggct	1440
ggaggtgaca tcgagggaga aaactgcggg gccaggctgg cccaccggat ctccaagtca	1500
aagttcagcc gctactggcg ccggtggaat cggttctgca gaaggaagtg ccgcgccgca	1560
gtcaagtcta atgtcttcta ctggctggtg attttcctgg tgttcctcaa cacgctcacc	1620
attgcctctg agcactacaa ccagcccaac tggctcacag aagtccaaga cacggcaaac	1680
aaggeeetge tggeeetgtt caeggeagag atgeteetga agatgtaeag eetgggeetg	1740
caggeetaet tegtgteeet etteaacege tttgaetget tegtegtgtg tggeggeate	1800
ctggagacca teetggtgga gaccaagate atgteeccae tgggeatete egtgeteaga	1860
tgcgtccggc tgctgaggat tttcaagatc acgaggtact ggaactcctt gagcaacctg	1920
gtggcateet tgetgaaete tgtgegetee ategeeteee tgeteettet eetetteete	1980
ttcatcatca tetteteect eetggggatg cagetetttg gaggaaagtt caaetttgat	2040
gagatgcaga cccggaggag cacattcgat aacttccccc agtccctcct cactgtgttt	2100
cagateetga eeggggagga etggaatteg gtgatgtatg atgggateat ggettatgge	2160
ggcccctctt ttccagggat gttagtctgt atttacttca tcatcctctt catctgtgga	2220
aactatatee taetgaatgt gttettggee attgetgtgg acaaeetgge tgatgetgag	2280
agceteacat etgeecaaaa ggaggaggaa gaggagaagg agagaaagaa getggeeagg	2340
actgccagcc cagagaagaa acaagagttg gtggagaagc cggcagtggg ggaatccaag	2400
gaggagaaga ttgagctgaa atccatcacg gctgacggag agtctccacc cgccaccaag	2460
atcaacatgg atgaceteca geecaatgaa aatgaggata agageeeeta eeceaaceea	2520
gaaactacag gagaagagga tgaggaggag ccagagatgc ctgtcggccc tcgcccacga	2580
ccactctctg agetteacet taaggaaaag geagtgeeea tgeeagaage eagegegttt	2640
ttcatcttca gctctaacaa caggtttcgc ctccagtgcc accgcattgt caatgacacg	2700
atottoacca acctgatect ettetteatt etgeteagea geattteeet ggetgetgag	2760
gaccoggtoc ageacacete etteaggaae eatattetgt tttattttga tattgttttt	2820
accaccattt tcaccattga aattgctctg aagatgactg cttatggggc tttcttgcac	2880
aagggttett tetgeeggaa etaetteaae ateetggaee tgetggtggt eagegtgtee	2940
ctcatctcct ttggcatcca gtccagtgca atcaatgtcg tgaagatctt gcgagtcctg	3000
cgagtactca ggcccctgag ggccatcaac agggccaagg ggctaaagca tgtggttcag	3060
tgtgtgtttg tcgccatccg gaccatcggg aacatcgtga ttgtcaccac cctgctgcag	3120
ttcatgtttg cctgcatcgg ggtccagctc ttcaagggaa agctgtacac ctgttcagac	3180
agtteeaage agacagagge ggaatgeaag ggeaactaea teaegtaeaa agaeggggag	3240
gttgaccacc ccatcatcca accccgcagc tgggagaaca gcaagtttga ctttgacaat	3300
gttetggeag ceatgatgge eetetteaee gteteeaeet tegaagggtg geeagagetg	3360
ctgtaccgct ccatcgactc ccacacggaa gacaagggcc ccatctacaa ctaccgtgtg	3420
gagateteea tettetteat catetacate ateateateg cettetteat gatgaacate	3480
ttcgtgggct tcgtcatcgt cacctttcag gagcaggggg agcaggagta caagaactgt	3540

-continued	
gagetggaca agaaccageg acagtgegtg gaataegeee teaaggeeeg geeeetgegg	3600
aggtacatcc ccaagaacca gcaccagtac aaagtgtggt acgtggtcaa ctccacctac	3660
ttcgagtacc tgatgttcgt cctcatcctg ctcaacacca tctgcctggc catgcagcac	3720
tacggccaga gctgcctgtt caaaatcgcc atgaacatcc tcaacatgct cttcactggc	3780
ctcttcaccg tggagatgat cctgaagctc attgccttca aacccaagca ctatttctgt	3840
gatgcatgga atacatttga cgccttgatt gttgtgggta gcattgttga tatagcaatc	3900
accgaggtaa acccagctga acatacccaa tgctctccct ctatgaacgc agaggaaaac	3960
tecegeatet ceateacett etteegeetg tteegggtea tgegtetggt gaagetgetg	4020
ageogtgggg agggeateog gaegetgetg tggaeettea teaagteett ceaggeeetg	4080
ccctatgtgg ccctcctgat cgtgatgctg ttcttcatct acgcggtgat cgggatgcag	4140
gtgtttggga aaattgccct gaatgatacc acagagatca accggaacaa caactttcag	4200
acetteecee aggeogtget geteetette aggtgtgeea eeggggagge etggeaggae	4260
atcatgctgg cctgcatgcc aggcaagaag tgtgccccag agtccgagcc cagcaacagc	4320
acggagggtg aaacaccctg tggtagcagc tttgctgtct tctacttcat cagcttctac	4380
atgetetgtg cetteetgat cateaacete tttgtagetg teateatgga caaetttgae	4440
tacctgacaa gggactggtc catccttggt ccccaccacc tggatgagtt taaaagaatc	4500
tgggcagagt atgaccetga agecaagggt egtateaaae aeetggatgt ggtgaeeete	4560
ctccggcgga ttcagccgcc actaggtttt gggaagctgt gccctcaccg cgtggcttgc	4620
aaacgeetgg tetecatgaa catgeetetg aacagegaeg ggacagteat gtteaatgee	4680
accctgtttg ccctggtcag gacggccctg aggatcaaaa cagaagggaa cctagaacaa	4740
gccaatgagg agctgcgggc gatcatcaag aagatctgga agcggaccag catgaagctg	4800
ctggaccagg tggtgccccc tgcaggtgat gatgaggtca ccgttggcaa gttctacgcc	4860
acgtteetga teeaggagta etteeggaag tteaagaage geaaagagea gggeettgtg	4920
ggcaageeet eecagaggaa egegetgtet etgeaggetg gettgegeae aetgeatgae	4980
atcgggcctg agatccgacg ggccatctct ggagatctca ccgctgagga ggagctggac	5040
aaggeeatga aggaggetgt gteegetget tetgaagatg acatetteag gagggeeggt	5100
ggeetgtteg geaaceaegt eagetaetae eaaagegaeg geeggagege etteeeeag	5160
acetteacea eteagegeee getgeacate aacaaggegg geageageea gggegaeaet	5220
gagtegeeat eecaegagaa getggtggae teeaeettea eecegageag etaetegtee	5280
accggeteea aegeeaacat caacaaegee aacaaeaeeg eeetgggteg eeteeetege	5340
cccgccggct accccagcac agtcagcact gtggagggcc acgggccccc cttgtcccct	5400
gccatcoggg tgcaggaggt ggcgtggaag ctcagctcca acaggtgcca ctcccgggag	5460
agccaggcag ccatggcggg tcaggaggag acgtctcagg atgagaccta tgaagtgaag	5520
atgaaccatg acacggaggc ctgcagtgag cccagcctgc tctccacaga gatgctctcc	5580
taccaggatg acgaaaatcg gcaactgacg ctcccagagg aggacaagag ggacatccgg	5640
caatctccga agaggggttt cctccgctct gcctcactag gtcgaagggc ctccttccac	5700
ctggaatgtc tgaagcgaca gaaggaccga ggggggagaca tctctcagaa gacagtcctg	5760
cccttgcatc tggttcatca tcaggcattg gcagtggcag gcctgagccc cctcctccag	5820

-con	t.	1 m	ned

agaagcoatt occotgoot attootagg oottttgooa occoaceage cacacetgg 5880 ageogagget ggeececaea geeegteee accetgegge ttgagggggt egagteeagt 5940 gagaaactea acageagett oceateeate cacegegget cegggeegg agaececee 6000 ggtggegggg geageaggee egeeeggag gteeggeegg teteeeteat ggtgeeeage 6060 caggetgggg coceagggag geagtteea ggeagteea geageetgg ggaageggt 6120 ttgatteag aaggaetgg geagttget caagateea agteatega ggteaceae 6180 caggaggetgg cegaecgee ggeegtege atagaggaga tggagagege ggeegaeaa 6240 ateeteageg gggeegeeee aaaggeegee tettaceett tgtgaaetge 6300 agggaecggg ggeaggaeeg ageegggeg gaagaggge gaagaggee ggeegeegg 6360 ggtegaeega gtgaggagga geteeaggae ageaggget acgteage cettaceet tgtgaaetge 6417 <210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA <221> NONEX INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial ceding sequence) <400> SEQUENCE: 9 atgeggagaa ctteatet gteateett accetatggt gatgattge atgtteet 60 teateategt ggeeateetg gtgaggaegg tgaagteea gatggeggaa caeteeagg 120 acceetaece cagtaeate gtggaggaet ggeaggagaa gateaaage cagatttge 180 atteegaaga ageeaaggee aceateetg ggaa	
<pre>gagaaactca acagcagct cccatcatc cactgcggct cctgggctga gaccacccc 6000 ggtggcgggg gcagcagcg cgcccggaga gtccggcccg tctccctat ggtgcccag 6060 caggctgggg ccccagggag gcagttgct caggatgcca gcagctggt ggaagcggt 6120 ttgatttcag aaggactggg gcagttgct caagatccca agttcatcga ggtcaccacc 6180 caggagctgg ccgacgcctg cgacatgacc atagaggaga tggagagcg ggcggacaac 6240 atcctcagcg ggggcgcccc acagagccc aatggcgcc tcttaccctt tgtgaactgc 6300 agggagacggg ggcaggacg agccggggg gaagagggc gaggggtg tacgtcagcg cfgcgcggg 6360 ggtcgaccga gtgaggagga gctccaggac agcagggtct acgtcagcag cctgtag 6417 <210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA <213> ORCANISM: Rabbit <220> FEATURE: <221> NMME/KEY: gene <222> LOCATION: (1)(215) <223> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgcggagaa cttctactat gtcatcctt acctcatggt gatgttgc atgttctct 60 tcatcatcgt ggccatcctg gtgaggacg tgcaggagaa gacaggggaa agtcagagaa gtcagaggaa gtcagagaa gtcagaga gtagaggggaa cattccaacg 120 accctacca ccagtacat gtggaggacg ggcaggagaa agtcagagcagaa gtcagagac cagttttgc 180</pre>	
<pre>ggtggcgggg gcagcagcgc cgcccggaga gtccggcccg tctccctat ggtgcccagc 6060 caggctgggg ccccagggag gcagttccac ggcagtgcca gcagcctggt ggaagcggt 6120 ttgatttcag aaggactggg gcagtttgct caagatccca agttcatcga ggtcaccacc 6180 caggagctgg ccgacgcctg cgacatgacc atagaggaga tggagagcg ggccgacaac 6240 atcctcagcg ggggcgccc acagagccc aatggcgcc tcttaccctt tgtgaactgc 6300 agggaccgg ggcaggaccg agccggggg gaagagggcg gaagagggcg cgggctgtgt gcgcgcgcgg 6360 ggtcgaccga gtgaggagga gctccaggac agcagggtct acgtcagcag cctgtag 6417 </pre>	
<pre>caggctgggg ccccagggag gcagttcac ggcagtgcca gcagctggt ggaagcggt 6120 ttgatttcag aaggactggg gcagtttgt caagatccca agttcatcga ggtcaccacc 6180 cagggagctgg ccgacgcctg cgacatgacc atagaggaga tggagagcg ggccgacaac 6240 atcctcagcg ggggggcccc acagagcccg aatggcgccc tcttaccctt tgtgaactgc 6300 aggggacggg ggcaggaacg agccgggggc gaagaggacg cgggctgtgt gcgcgcgcgg 6360 ggtcgaccga gtgaggagga gctccaggac agcagggtct acgtcagcag cctgtag 6417 </pre>	
ttgatttcag aaggactggg gcagtttget eaagateeea agteatega ggteaceaee 6180 eaggagetgg eegaegeetg egaeatgaee atagaggaga tggagageeg ggeegaeaee 6240 ateeteageg gggggegeeee acagageeee aatggegeee tettaeeett tgtgaaetge 6300 agggaegegg ggeaggaeeg ageeggggge gaagagggee egggetgtgt gegegeegg 6360 ggtegaeega gtgaggagga geteeaggae ageagggtet aegteageag eetgtag 6417 <210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA 213> ORGANISM: Rabbit <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(215) <222> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgeggagaa ettetaetat gteateetet aceteatggt gatgattgge atgtteetet 60 teateategt ggeeateetg gtgageaegg tgaagteeaa gaggeggaa caeteeaaeg 120 acceetaece ceagtaeete gtggaggaet ggeaggaaaa gtacaaaage cagattttge 180	
<pre>caggagctgg ccgacgcctg cgacatgacc atagaggaga tggagagcgc ggccgacaac 6240 atcctcagcg ggggcgcccc acagagcccc aatggcgccc tcttaccctt tgtgaactgc 6300 agggacgcgg ggcaggaccg agccgggggc gaagagggcg cgggctgtgt gcgcgcgcgg 6360 ggtcgaccga gtgaggagga gctccaggac agcagggtct acgtcagcag cctgtag 6417 </pre> <pre>clip NO 9 </pre> <pre>clip No Pacca agcagggtct acgtcagcag cctgtag 6417 </pre> <pre>clip No Pacca agcagggt acgt acgtaggag cctgaggagac acgtagggcd for acgtcagcag cctgtag </pre> <pre>clip No 9 </pre> <pre>clip No Pacca agcagggt acgt acgtagggg cctgaggggg cctgagggggggggg</pre>	
atceteageg gggggggecee acagageeee aatggeggee tettaceett tgtgaactge 6300 aggggageggg ggeaggaeeg ageeggggge gaagagggee egggetgtgt gegegegegg 6360 ggtegaeega gtgaggagga geteeaggae ageagggtet acgteageag eetgta 6417 <210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA <213> ORGANISM: Rabbit <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(215) <223> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgeggagaa ettetaetat gteateetet aceteatggt gatgattgge atgtteteet 60 teateategt ggeeateetg gtgageaegg tgaagteeaa gaggegggaa caeteeaacg 120 acceetaeca ceagtaeate gtggaggaet ggeaggaaaa gtacaaaage cagattttge 180	
agggacgegg ggeaggaceg ageeggggge gaagaggaeg egggetgtgt gegegegegg 6360 ggtegacega gtgaggagga geteeaggae ageagggete aegteageag eetgta 6417 <210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA <213> ORGANISM: Rabbit <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(215) <223> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgeggagaa ettetaetat gteateetet aceteatggt gatgattgge atgtteteet 60 teateategt ggecateetg gtgageaegg tgaagteeaa gaggegggaa caeteeaag 120 acceetaeca ceagtaeate gtggaggaet ggeaggaaaa gtacaaaage cagattttge 180	
<pre>ggtcgaccga gtgaggagga gctccaggac agcagggtct acgtcagcag cctgtag 6417 <210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA <213> ORGANISM: Rabbit <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(215) <223> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgcggagaa cttctactat gtcatcctct acctcatggt gatgattggc atgttctcct 60 tcatcatcgt ggccatcctg gtgagcacgg tgaagtccaa gaggcgggaa cactccaacg 120 acccctacca ccagtacatc gtggaggact ggcaggaaaa gtacaaaagc cagatttgc 180</pre>	
<pre><210> SEQ ID NO 9 <211> LENGTH: 215 <212> TYPE: DNA <213> ORGANISM: Rabbit <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(215) <223> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgcggagaa cttctactat gtcatcctct acctcatggt gatgattggc atgttctcct 60 tcatcatcgt ggccatcctg gtgagcacgg tgaagtccaa gaggcgggaa cactccaacg 120 acccctacca ccagtacatc gtggaggact ggcaggaaaa gtacaaaagc cagattttgc 180</pre>	
<pre><211> LENGTH: 215 <212> TYPE: DNA <213> ORGANISM: Rabbit <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(215) <223> OTHER INFORMATION: K+/pacemaker channel beta subunit mirp1 (mink-related peptide, HCN channel subunit, KCNE2) mRNA (partial coding sequence) <400> SEQUENCE: 9 atgcggagaa cttctactat gtcatcctct acctcatggt gatgattggc atgttctcct 60 tcatcatcgt ggccatcctg gtgagcacgg tgaagtccaa gaggcgggaa cactccaacg 120 acccctacca ccagtacatc gtggaggact ggcaggaaaa gtacaaaagc cagattttgc 180</pre>	
atgeggagaa ettetaetat gteateetet aceteatggt gatgattgge atgtteteet 60 teateategt ggeeateetg gtgageaegg tgaagteeaa gaggegggaa eacteeaaeg 120 aceeetaeea eeagtaeate gtggaggaet ggeaggaaaa gtaeaaaage eagattttge 180	
tcatcatcgt ggocatcetg gtgageaegg tgaagteeaa gaggegggaa caeteeaaeg 120 acceetaeea ceagtaeate gtggaggaet ggeaggaaaa gtaeaaaage eagattttge 180	
acccctacca ccagtacatc gtggaggact ggcaggaaaa gtacaaaagc cagattttgc 180	
atttcgaaga agecaaggee accatecatg agaac 215	
<pre><210> SEQ ID NO 10 <211> LENGTH: 372 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(372) <223> OTHER INFORMATION: potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), mRNA. Complete on 3' end (3 prime). (Assession: NM 172201)</pre>	
<400> SEQUENCE: 10	
atgtetaett tateeaattt cacacagaeg etggaagaeg tetteegaag gatttttatt 60	
acttatatgg acaattggcg ccagaacaca acagctgagc aagaggccct ccaagccaaa 120	
gttgatgctg agaacttcta ctatgtcatc ctgtacctca tggtgatgat tggaatgttc 180	
tettteatea tegtggeeat eetggtgage aetgtgaaat eeaagagaeg ggaacaetee 240	
aatgacccct accaccagta cattgtagag gactggcagg aaaagtacaa gagccaaatc 300	
ttgaatctag aagaatcgaa ggccaccatc catgagaaca ttggtgcggc tgggttcaaa 360	
atgtccccct ga 372	
<210> SEQ ID NO 11 <211> LENGTH: 1401	

LENGTH: 1401
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens
<220> FEATURE:

```
-continued
```

-concinaed								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1401) <223> OTHER INFORMATION: cholinergic receptor, muscarinic 2 (CHRM2),</pre>								
<400> SEQUENCE: 11								
atgaataact caacaaactc ctctaacaat agcctggctc ttacaagtcc ttataagaca 60								
tttgaagtgg tgtttattgt cctggtggct ggatccctca gtttggtgac cattatcggg 120								
aacateetag teatggttte cattaaagte aacegeeace teeagaeegt caacaattae 180								
tttttattca gcttggcctg tgctgacctt atcataggtg ttttctccat gaacttgtac 240								
accetetaea etgtgattgg ttaetggeet ttgggaeetg tggtgtgtga eetttggeta 300								
gccctggact atgtggtcag caatgcctca gttatgaatc tgctcatcat cagctttgac 360								
aggtacttct gtgtcacaaa acctctgacc tacccagtca agcggaccac aaaaatggca 420								
ggtatgatga ttgcagctgc ctgggtcctc tctttcatcc tctgggctcc agccattctc 480								
ttctggcagt tcattgtagg ggtgagaact gtggaggatg gggagtgcta cattcagttt 540								
ttttccaatg ctgctgtcac ctttggtacg gctattgcag ccttctattt gccagtgatc 600								
atcatgactg tgctatattg gcacatatcc cgagccagca agagcaggat aaagaaggac 660								
aagaaggagc ctgttgccaa ccaagacccc gtttctccaa gtctggtaca aggaaggata 720								
gtgaagccaa acaataacaa catgcccagc agtgacgatg gcctggagca caacaaaatc 780								
cagaatggca aagcccccag ggatcctgtg actgaaaact gtgttcaggg agaggagaag 840								
gagageteea atgaeteeae eteagteagt getgttgeet etaatatgag agatgatgaa 900								
ataacccagg atgaaaacac agtttccact tccctgggcc attccaaaga tgagaactct 960								
aagcaaacat gcatcagaat tggcaccaag accccaaaaa gtgactcatg taccccaact 1020								
aataccaccg tggaggtagt ggggtcttca ggtcagaatg gagatgaaaa gcagaatatt 1080								
gtagcccgca agattgtgaa gatgactaag cagcctgcaa aaaagaagcc tcctccttcc 1140								
cgggaaaaga aagtcaccag gacaatcttg gctattctgt tggctttcat catcacttgg 1200								
gccccataca atgtcatggt gctcattaac accttttgtg caccttgcat ccccaacact 1260								
gtgtggacaa ttggttactg gctttgttac atcaacagca ctatcaaccc tgcctgctat 1320								
gcactttgca atgccacctt caagaagacc tttaaacacc ttctcatgtg tcattataag 1380								
aacataggcg ctacaaggta a 1401								
<210> SEQ ID NO 12 <211> LENGTH: 1773 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1773) <223> OTHER INFORMATION: cholinergic receptor, muscarinic 3 (CHRM3), mRNA. (Accession: NM 000740)								
<400> SEQUENCE: 12								
atgacettge acaataacag tacaaceteg cettigtite caaacateag etecteetgg 60								
atacacagee ceteegatge agggetgeee eegggaaceg teacteattt eggeagetae 120								
aatgtttete gageagetgg caatttetee tetecagaeg gtaecaeega tgaeeetetg 180								
ggaggtcata ccgtctggca agtggtcttc atcgctttct taacgggcat cctggccttg 240								

-concinded	
gtgaccatca tcggcaacat cctggtaatt gtgtcattta aggtcaacaa gcagctgaag	300
acggtcaaca actactteet ettaageetg geetgtgeeg atetgattat eggggteatt	360
tcaatgaatc tgtttacgac ctacatcatc atgaatcgat gggccttagg gaacttggcc	420
tgtgacctct ggcttgccat tgactacgta gccagcaatg cctctgttat gaatcttctg	480
gtcatcagct ttgacagata cttttccatc acgaggccgc tcacgtaccg agccaaacga	540
acaacaaaga gagccggtgt gatgatcggt ctggcttggg tcatctcctt tgtcctttgg	u 600
gctcctgcca tcttgttctg gcaatacttt gttggaaaga gaactgtgcc tccgggagag	660
tgetteatte agtteeteag tgageeeace attaettttg geacageeat egetgetttt	720
tatatgcetg teaceattat gaetatttta taetggagga tetataagga aaetgaaaag	1 780
cgtaccaaag agcttgctgg cctgcaagcc tctgggacag aggcagagac agaaaacttt	840
gtccacccca cgggcagttc tcgaagctgc agcagttacg aacttcaaca gcaaagcatg	900
aaacgeteea acaggaggaa gtatggeege tgeeaettet ggtteacaae caagagetgg	960
aaacccagct ccgagcagat ggaccaagac cacagcagca gtgacagttg gaacaacaat	1020
gatgetgetg eeteeetgga gaacteegee teeteegaeg aggaggaeat tggeteegag	1 1080
acgagageca tetactecat egtgeteaag etteegggte acageaceat eeteaactee	: 1140
accaagttac cctcatcgga caacctgcag gtgcctgagg aggagctggg gatggtggac	: 1200
ttggagagga aageegacaa getgeaggee cagaagageg tggaegatgg aggeagtttt	1260
ccaaaaagct tctccaagct tcccatccag ctagagtcag ccgtggacac agctaagact	1320
tetgaegtea acteeteagt gggtaagage aeggeeaete taeetetgte etteaaggaa	1380
gccactctgg ccaagaggtt tgctctgaag accagaagtc agatcactaa gcggaaaagg	1440
atgteeetgg teaaggagaa gaaageggee eagaeeetea gtgegatett gettgeette	1500
atcatcactt ggaccccata caacatcatg gttctggtga acaccttttg tgacagctgc	1560
atacccaaaa ccttttggaa tctgggctac tggctgtgct acatcaacag caccgtgaac	2 1620
cccgtgtgct atgctctgtg caacaaaaca ttcagaacca ctttcaagat gctgctgctg	1680
tgccagtgtg acaaaaaaaa gaggcgcaag cagcagtacc agcagagaca gtcggtcatt	1740
tttcacaagc gegeaeeega geaggeettg tag	1773
<pre><210> SEQ ID NO 13 <211> LENGTH: 1284 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1284) <223> OTHER INFORMATION: potassium inwardly-rectifying channel,</pre>	
<400> SEQUENCE: 13	
atgggcagtg tgcgaaccaa ccgctacagc atcgtctctt cagaagaaga cggtatgaag	60
ttggccacca tggcagttgc aaatggcttt gggaacggga agagtaaagt ccacacccga	120
caacagtgca ggagccgctt tgtgaagaaa gatggccact gtaatgttca gttcatcaat	180
gtgggtgaga aggggcaacg gtacctcgca gacatcttca ccacgtgtgt ggacattcgc	: 240
tggeggtgga tgetggttat ettetgeetg getttegtee tgteatgget gttttttgge	: 300
tgtgtgtttt ggttgatagc tctgctccat ggggacctgg atgcatccaa agagggcaaa	360

gettgtgtgt eegaggteaa eagetteaeg getgeettee tetteteeat tgagaeeeag	420								
acaaccatag gctatggttt cagatgtgtc acggatgaat gcccaattgc tgttttcatg	480								
gtggtgttcc agtcaatcgt gggctgcatc atcgatgctt tcatcattgg cgcagtcatg	540								
gccaagatgg caaagccaaa gaagagaaac gagactcttg tcttcagtca caatgccgtg	600								
attgccatga gagacggcaa gctgtgtttg atgtggcgag tgggcaatct tcggaaaagc	660								
cacttggtgg aagctcatgt tcgagcacag ctcctcaaat ccagaattac ttctgaaggg	720								
gagtatatcc ctctggatca aatagacatc aatgttgggt ttgacagtgg aatcgatcgt	780								
atatttctgg tgtccccaat cactatagtc catgaaatag atgaagacag tcctttatat	840								
gatttgagta aacaggacat tgacaacgca gactttgaaa tcgtggtcat actggaaggc	900								
atggtggaag ccactgccat gacgacacag tgccgtagct cttatctagc aaatgaaatc	960								
ctgtggggcc accgctatga gcctgtgctc tttgaagaga agcactacta caaagtggac	1020								
tattccaggt tccacaaaac ttacgaagtc cccaacactc ccctttgtag tgccagagac	1080								
ttagcagaaa agaaatatat cctctcaaat gcaaattcat tttgctatga aaatgaagtt	1140								
gccctcacaa gcaaagagga agacgacagt gaaaatggag ttccagaaag cactagtacg	1200								
gacacgcccc ctgacataga ccttcacaac caggcaagtg tacctctaga gcccaggccc	1260								
ttacggcgag agtcggagat atga	1284								
<pre><213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-related subfamily, member 3 (KCND3), transcript variant 1. (Accession: NM 004980) <400> SEQUENCE: 14</pre>									
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access</pre>									
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980)									
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14	ion:								
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgct tttgcccggg ctgcggccat cgggtggatg	ion: 60								
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag	ion: 60 120								
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc	ion: 60 120 180								
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag	ion: 60 120 180 240								
<221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggga ccccgaggtg ttccgctgcg tgctcaactt ctaccgcacg	ion: 60 120 180 240 300								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggg cccgagtg ttccgctgcg tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtg atctcgct acgacgacga gctggccttc</pre>	ion: 60 120 180 240 300 360								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggg ctacgagtg ttccgctgcg tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtgc atctctgcct acgacgacga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctacg aggagtacaa ggacgcaag</pre>	ion: 60 120 180 240 300 360 420								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggg ctacgagtg ttccgctgcg tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtgc atcctgcct acgacgaga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctacg aggagtacaa ggaccgcaag agggagaccg ccgagcggct catggacgac aacgactcgg agaacaacca ggagtccatg</pre>	ion: 60 120 180 240 300 360 420 480								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggg ctacgagtg ttccgctgcg tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtgc atctctgcct acgacgacga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctcag aggagtacaa ggagccgca agggaagctgc actacccgcg ctacgagtgc atctctgcct acgacgacga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctcag aggagtacaa ggagtccatg agggaaacg ccgagcggct catggacgac aacgactcgg agaacaacca ggagtccatg ccctcgctca gcttccgcca gaccatgtgg cgggccttcg agaaccacca caccagcacg</pre>	ion: 60 120 180 240 300 360 420 480 540								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacceggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggg ctaccgagtg ttccgctgct acgacgacga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctacg aggagtacaa ggacgcaag agggaagctgc actacccgcg ctacgagtgc actctgctacg aggagtacaa ggacgcaag agggagaacg ccgagcggct catggacgac aacgactcg agaacaacaa ggagtccatg ccctcgctca gcttccgcca gaccatgtgg cgggccttcg agaacaacca gcaggacca ctggccctgg tcttctacta cgtgactgc ttcttcatcg ctgtctcggt catcaccaac cctggccctgg tcttctacta cgtgactggc ttcttcatcg ctgtctcggt catcaccaac</pre>	ion: 60 120 180 240 300 360 420 480 540 600								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggga ccccgaggtg ttccgctgcg tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtgc atctctgcct acgacgacga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctcag aggagtacaa ggagccgcag agggagacg ccgagcggct catggacgac aacgactcgg agaacaacca ggagtccatg ccctcgctca gcttccgcca gaccatgtgg cgggccttcg agaaccacca caccagcacg ctggccctgg tcttctacta cgtgactgc ttcttcatcg ctgtctcggt catcaccaac gtggtggaga cggtgccgtg cggcacgtc ccgggcagca aggagctgc atcaccaac gtggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcggggag ctggcctgg tcttctacta cgtgactgc tcttcatcg ctgtctcggt catcaccaac gtggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcggggag sctggcctgg tcttctacta cgtgactgc tcttcatcg ctgtctcggt catcaccaac gtggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcggggag sctggcctgg tcttctacta cgtgactgc ccgggcagca aggagctgc gtgcggggag sctggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcggggag sctggcctgg tcttctacca cgtgacggtc ccgggcagca aggagctgc gtgcggggag sctggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcggggag sctggcctgg tcttctacta cgtgactggc tccgggcagca aggagctgc gtgcggggag sctggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcgggag sctggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcgggag sctggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcgggag sctggtggaga cggtgcgtg cggcacggtc ccgggaga sctggtgcgaga cggtgcgtg cggcacgaga sctggtgcgaga sctggtgcgaga sctggtgcgaga sctggtggaga scggtgcgaga sctggtgcgaga sctggtgcgaga sctggtgcgaga sctggtg sctggtg sctggtg sctggtgaga scggtg sctggtg sctggtg sctggtg sctggtg sctggtg sctggtg sctg</pre>	ion: 60 120 180 240 300 360 420 480 540 600 660								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgccccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccggga ccccgagtg ttccgctgcg tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtgc atcttgcct acgacgacga gctggccttc tacggcatcc tcccggagat catcggggac tgctgctacg aggagtacaa ggacgcaag agggagacg ccgagcggct catggacgac aacgactcgg agaacaacca ggagtccatg ccctcgctca gcttccgcca gaccatgtgg cgggccttcg agaaccacca caccagcacg ctggcctgg tcttctacta cgtgactgc ttcttcatcg ctgtctcggt catcaccaac gtggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagtcgc gtgcgggag ctggcctgg tcttctacta cgtgactgc tcttcatcg ctgtctcggt catcaccaac gtggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagctgc gtgcgggag cgctactcgg tggccttctt ctgcctggac acggcgtgc tctgatctt caccgtggag cgctactcg tggccttctt ctgcctggac acggcgtgc tcatgatctt caccgtggag aggagacgc tggcgtg tggcgtggacggacggacgacgacgacgacgacgacgacgacgacg</pre>	ion: 60 120 180 240 300 360 420 480 540 600 660 720								
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(1968) <223> OTHER INFORMATION: potassium voltage-gated channel, Shal-rel subfamily, member 3 (KCND3), transcript variant 1. (Access NM 004980) <400> SEQUENCE: 14 atggcggccg gagttgcggc ctggctgcct tttgcccggg ctgcggccat cgggtggatg ccggtggcca actgcccat gcccctggcc ccggccgaca agaacaagcg gcaggatgag ctgattgtcc tcaacgtgag tgggcggagg ttccagacct ggaggaccac gctggagcgc tacccggaca ccctgctggg cagcacggag aaggagttct tcttcaacga ggacaccaag gagtacttct tcgaccgga ccccgaggtg ttccggctgc tgctcaactt ctaccgcacg gggaagctgc actacccgcg ctacgagtgc atctctgcct acgacgacag gctggccttc tacggcatcc tcccggagat catcggggac tgctgctacg aggagtacaa ggagccgcaag agggagacg ccgagcggct catggacgac aacgactcgg agaacaacaa ggagtccatg ccctcgctca gcttccgcca gaccatgtgg cgggccttcg agaaccacac gcaggaga ctggtcctgg tcttctacta cgtgactgc tcttcatcg ctgtctcggt catcaccaca gtggtggaga cggtgccgtg cggcacggtc ccgggcagca aggagtgcc gtgcggggag cgctactcgg tggccttct ctgcctggac acggcggcg tcatgatct caccggagag cgctactcgg tggccttct ctgcctggac acggcgtgcg tcatgatct caccgtggag tacctcctgc ggctcttc ctgcctggac acggcgtgcg tcatgatct caccgtggag tacctcctgc ggctcttc ctgcctggac acggcgtgcg tcatgatct caccgtggag tacctcctgc ggctcttcg ggctcccagc cgtaccgct tcatcgcag cgtcatgagc tacctcctgc ggctcttcg ggctcccagc cgtaccgct tcatcgcag cgtcatgagc tacctcctgc ggctcttcg ggctcccagc cgtaccgct tcatcgcag cgtcatgagc tacctcctgc ggctcttcg ggctcccagc cgtaccgct tcatcgcag cgtcatgagc</pre>	ion: 60 120 180 240 300 360 420 480 540 600 660 720 780								

	tcccgccact	cccagggcct	gcggatcctg	ggctacacac	tgaagagctg	tgcctccgaa	960	
	ctgggctttc	ttctcttctc	cctcaccatg	gccatcatca	tctttgccac	tgtgatgttt	1020	
	tatgccgaga	agggctcctc	ggccagcaag	ttcacaagca	tccctgcctc	gttttggtac	1080	
	accattgtca	ccatgaccac	actggggtac	ggagacatgg	tgcctaagac	gattgcaggg	1140	
	aagatcttcg	gctccatctg	ctccttgagt	ggcgtcctgg	tcattgccct	gccagtccct	1200	
	gtgattgttt	ccaactttag	ccggatttac	caccagaatc	agagagctga	taaacgcagg	1260	
	gcacaaaaga	aggcccgcct	tgccaggatc	cgtgtggcca	aaacaggcag	ttcgaatgca	1320	
	tacctgcaca	gcaagcgcaa	cgggctcctc	aacgaggcgc	tggagctgac	gggcacccca	1380	
	gaagaggagc	acatgggcaa	gaccacctca	ctcatcgaga	gccagcatca	tcacctgctg	1440	
	cactgcctgg	aaaaaaccac	tgggttgtcc	tatcttgtgg	atgatcccct	gttatctgta	1500	
	cgaacctcca	ccatcaagaa	ccacgagttt	attgatgagc	agatgtttga	gcagaactgc	1560	
	atggagagtt	caatgcagaa	ctacccatcc	acaagaagtc	cctcactgtc	cagccaccca	1620	
	ggcctcacta	ccacctgctg	ctcccgtcgt	agtaagaaga	ccacacacct	gcccaattct	1680	
	aacctgccag	ctactcgcct	gcgcagcatg	caagagctca	gcacgatcca	catccagggc	1740	
	agtgagcagc	cctccctcac	aaccagtcgc	tccagcctta	atttgaaagc	agacgacgga	1800	
	ctgagaccaa	actgcaaaac	atcccagatc	accacagcca	tcatcagcat	ccccactccc	1860	
	ccagcgctaa	ccccagaggg	ggaaagtcgg	ccaccccctg	ccagcccagg	ccccaacacg	1920	
	aacattcctt	ccatagccag	caatgttgtc	aaggteteeg	ccttgtaa		1968	
<pre><210> SEQ ID NO 15 <211> LENGTH: 759 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(759) <223> OTHER INFORMATION: Kv channel interacting protein 2. (Accession: BC034685)</pre>								
	<211> LENG <212> TYPE <213> ORGAN <220> FEATU <221> NAME <222> LOCA <223> OTHEN	TH: 759 : DNA NISM: Homo S JRE: /KEY: gene FION: (1) R INFORMATIC	(759)	nel interact	ing protein	n 2. (Acces	sion:	
	<211> LENG <212> TYPE <213> ORGAN <220> FEATU <221> NAME <222> LOCA <223> OTHEN	TH: 759 : DNA NISM: Homo S JRE: /KEY: gene TION: (1) R INFORMATIC 585)	(759)	nel interact	ing protein	n 2. (Acces	sion:	
	<211> LENG <212> TYPE <213> ORGAI <220> FEAT <221> NAME <220> LOCA <222> LOCA <223> OTHEE BC0346 <400> SEQUI	TH: 759 : DNA NISM: Homo S JRE: /KEY: gene TION: (1) R INFORMATIC 585)	(759) DN: Kv chanr				sion: 60	
	<211> LENG <212> TYPE <213> ORGAN <220> FEATO <221> NAME, <222> LOCA <223> OTHEN BC0346 <400> SEQUI atgcgggggcc	TH: 759 : DNA NISM: Homo S JJR: /KEY: gene TION: (1) R INFORMATI(685) ENCE: 15	(759) DN: Kv chann ggagagtttg	tccgattccc	gagacetgga	cggctcctac		
	<211> LENG <212> TYPE <213> ORGAI <220> FEAT <221> NAME <222> LOCA <223> OTHE BC0346 <400> SEQUI atgcggggcc gaccagctca	TH: 759 : DNA NISM: Homo S JRE: /KEY: gene TION: (1) R INFORMATIC 585) ENCE: 15 agggccgcaa	(759) DN: Kv chann ggagagtttg tccagggccc	tccgattccc actaaaaaag	gagacctgga cgctgaagca	cggctcctac gcgattcctc	60	
	<211> LENG <212> TYPE <212> TYPE <212> DRGAN <220> FEAT <221> NAME <222> LOCA <222> LOCA <223> OTHEN BC034 <400> SEQUI atgcggggcc gaccagctca aagctgctgc	TH: 759 : DNA NISM: Homo S JRE: /KEY: gene TION: (1) R INFORMATI(685) ENCE: 15 agggccgcaa cggggccgcaa	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc	tccgattccc actaaaaaag ctgccctcag	gagacctgga cgctgaagca tcagtgaaaa	cggctcctac gcgattcctc cagcgtggac	60 120	
	<211> LENG <212> TYPE <213> ORGAN <220> FEAT <221> NAME <222> LOCA <223> OTHE BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg	<pre>IH: 759 : DNA NISM: Homo S JRE: (KEY: gene FION: (1) R INFORMATIC 585) ENCE: 15 agggccgcaa cggggccaccc cgtgctgcgg</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac	tccgattccc actaaaaaag ctgccctcag cggcctgagg	gagacctgga cgctgaagca tcagtgaaaa gtctggagca	cggctcctac gcgattcctc cagcgtggac gctgcaggag	60 120 180	
	<211> LENG <212> TYPE <212> TYPE <212> ORGAN <220> FEAT <222> LOCA <222> LOCA <223> OTHE BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat	<pre>FH: 759 DNA DJRE: /KEY: gene FION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cggggccaccc cgtgctgcgg aattgtccac</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag	tccgattccc actaaaaaag ctgccctcag cggcctgagg gtcctgtacc	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt	60 120 180 240	
	<211> LENG <212> TYPE <213> ORGAN <220> FEAT <221> NAME <222> LOCA <223> OTHEI BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa	<pre>IH: 759 : DNA NISM: Homo S JUR: /KEY: gene FION: (1) R INFORMATIC 585) ENCE: 15 agggccgcaa cggggccgcaa cggggccaccc cgtgctgcgg aattgtccac tcacgcgcaa</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc	tccgattccc actaaaaaag ctgccctcag cggcctgagg gtcctgtacc aagcagattt	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa	60 120 180 240 300	
	<pre><211> LENG <212> TYPE <213> ORGAN <220> FEAT <221> NAME <222> LOCA <223> OTHE BC0346 <400> SEQUN atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa ggagactcca</pre>	<pre>FH: 759 : DNA NISM: Homo S JRE: /KEY: gene FION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cggggccgcaa cggggccaccc cgtgctgcgg aattgtccac tcacgcgcaa ttgtcaatga</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc cactttctc	tccgattccc actaaaaaag ctgccctcag ggcctgagg gtcctgtacc aagcagattt ttcaatgcct	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt ttgacaccaa	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa ccatgatggc	60 120 180 240 300 360	
	<pre><211> LENG <212> TYPE <213> ORGAI <220> FEAT <221> NAME <222> LOCA <223> OTHEF BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa ggagactcca tcggtcagtt</pre>	<pre>TH: 759 : DNA NISM: Homo S JUR: (KEY: gene TION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cggggccaccc cgtgctgcgg aattgtccac tcacgcgcaa ttgtcaatga gcacctatgc</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc cacttttctc tgtggctggt	tccgattccc actaaaaaag ctgccctcag ggcctgagg gtcctgtacc aagcagattt ttcaatgcct ttgtccgtga	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt ttgacaccaa ttcttcgggg	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa ccatgatggc aactgtagat	60 120 180 240 300 360 420	
	<211> LENG <212> TYPE <213> ORGAN <220> FEAT <221> NAME <222> LOCA <223> OTHEI BC0346 <400> SEQUI atgcgggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa ggagactcca tcggtcagtt gacaggctta	<pre>FH: 759 : DNA NISM: Homo S JRE: /KEY: gene FION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cggggccgcaa cggggccgcaa tcacgcgcaa ttgtcaatga gcacctatgc ttgaggactt</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc cacttttctc tgtggctggt caacctgtat	tccgattccc actaaaaaag ctgccctcag ggcctgagg gtcctgtacc aagcagattt ttcaatgcct ttgtccgtga gaccttaaca	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt ttgacaccaa ttcttcgggg aggacggctg	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa ccatgatggc aactgtagat catcaccaag	60 120 180 240 300 360 420 480	
	<pre><211> LENG <212> TYPE <213> ORGAN <220> FEAT <221> NAME <220> LOCA <222> LOCA <223> OTHE BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa ggagactcca tcggtcagtt gacaggctta gacggaaatgc</pre>	<pre>FH: 759 : DNA VISM: Homo S JRE: /KEY: gene FION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cggggccaccc cgtgctgcgg aattgtccac tcacgcgcaa ttgtcaatga gcacctatgc ttgaggactt attgggcctt</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc cacttttctc tgtggctggt caacctgtat gaagtccatc	tccgattccc actaaaaaag ctgccctcag ggcctgagg gtcctgtacc aagcagattt ttcaatgcct ttgtccgtga gaccttaaca tatgacatga	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt ttgacaccaa ttcttcgggg aggacggctg tgggcaagta	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa ccatgatggc aactgtagat catcaccaag cacgtaccct	60 120 180 240 300 360 420 480 540	
	<pre><211> LENG <212> TYPE <213> ORGAI <220> FEAT <221> NAME <222> LOCA <222> LOCA <223> OTHEI BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa ggagactcca tcggtcagtt gacaggctta gacggaaatgc gcactccggg</pre>	<pre>TH: 759 : DNA NISM: Homo S JUR: (KEY: gene TION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cgggccaccc cgtgctgcgg aattgtccac tcacgcgcaa ttgtcaatga gcacctatgc ttgaggactt attgggcctt ttgacatcat</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc cacttttctc tgtggctggt caacctgtat gaagtccatc aagggaacac	tccgattccc actaaaaaag ctgccctcag gtcctgtacc aagcagattt ttcaatgcct ttgtccgtga gaccttaaca tatgacatga	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt ttgacaccaa ttcttcgggg aggacggctg tgggcaagta tcttccagaa	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa ccatgatggc aactgtagat catcaccaag cacgtaccct gatggacaga	60 120 180 240 300 360 420 480 540	
	<pre><211> LENG <212> TYPE <213> ORGAN <220> FEAT <221> NAME <222> LOCA <223> OTHE BC0346 <400> SEQUI atgcggggcc gaccagctca aagctgctgc gatgaatttg caaaccaaat cccagcggaa ggagactcca tcggtcagtt gacaggctta gacaggctta gacaggctta</pre>	<pre>FH: 759 : DNA NISM: Homo S JRE: /KEY: gene FION: (1) R INFORMATIC 685) ENCE: 15 agggccgcaa cgggccgcaa cgggccgcaa cgggccgcaa ttgtcaatga gcacctatgc ttgaggactt attggcctt ttgacatcat aggaggcccc</pre>	(759) DN: Kv chann ggagagtttg tccagggccc gccccaagcc cgtgtgtcac ggagttgcag ggagaacttc cacttttctc tgtggctggt caacctgtat gaagtccatc aagggaacac cattgaggaa	tccgattccc actaaaaaag ctgccctcag ggcctgagg gtcctgtacc aagcagattt ttcaatgcct ttgtccgtga gaccttaaca tatgacatga gtggagagct ttcattgagt	gagacctgga cgctgaagca tcagtgaaaa gtctggagca ggggcttcaa actcccagtt ttgacaccaa ttcttcgggg aggacggctg tgggcaagta tcttccagaa	cggctcctac gcgattcctc cagcgtggac gctgcaggag gaacgaatgt ctttcctcaa ccatgatggc aactgtagat catcaccaag cacgtaccct gatggacaga	60 120 180 240 300 360 420 480 540 600	

```
-continued
```

<210> SEQ ID NO 16 <211> LENGTH: 2733 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(2733) <223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 1 HCN1. (Accession: NM 053375) <400> SEQUENCE: 16 atggaaggeg geggeaagee caacteeget teeaacagee gegaegatgg caacagegte 60 tacccctcca aggcgcccgc gacggggccg gcggcggccg acaagcgcct ggggaccccg 120 ccgggggggg gcgcggccgg gaaggaacac ggcaactccg tgtgcttcaa ggtggacggc 180 ggcggaggag aggagccggc gggcagcttc gaggatgccg aggggccccg gcgacagtac 240 qqtttcatqc aqaqqcaqtt cacctccatq ctqcaqcctq qqqtcaacaa attctccctc 300 360 cgcatgttcg ggagccagaa ggcggtggag aaggagcagg aaagggttaa aactgcaggc ttctggatta tccatccgta cagtgacttc aggttttatt gggatttaat aatgcttata 420 atgatggttg gaaatttggt catcatacca gttggaatca cattcttcac agagcaaaca 480 acaacaccgt ggattatttt caatgtggca tcagatacag ttttcctgtt ggacctaatc 540 atgaatttta ggactgggac tgtcaacgaa gacagctctg aaatcatcct ggaccctaaa 600 gtaatcaaga tgaattattt aaaaagctgg ttcgtggtgg acttcatctc ctcgatcccg 660 gtggattata tetttettat tgtagagaaa ggaatggatt eggaagttta eaagaeegee 720 agagcacttc ggatcgtgag gtttacaaaa attctcagtc tcttgcgttt attacgcctt 780 tcaaggttaa ttagatacat acaccagtgg gaagagatat tccacatgac atatgatctc 840 gccagtgcag tggtgagaat cttcaacete attggcatga tgetgeteet gtgtcaetgg 900 gatggetgte tteagtttet ggteeceetg etgeaggaet teecaeegga ttgetgggtt 960 tetetaaatg aaatggttaa tgatteatgg gggaaacagt atteetaege actetteaaa 1020 gctatgagtc acatgctgtg cattggttat ggcgcccagg cccccgtcag catgtctgac 1080 ctctggatta ccatgctgag catgattgtt ggggccacct gctatgccat gtttgtcggc 1140 1200 catgccacag ctttgatcca gtctctggat tcttcaagga ggcagtatca agagaagtac aagcaagtag agcaatacat gtcattccac aagttaccag ctgacatgcg ccagaagata 1260 catgattact atgagcaccg ataccaaggc aagatcttcg atgaggaaaa tattctcagt 1320 gaacttaatg atcctctgag agaggaaata gtcaacttca actgccggaa actggtggcc 1380 accatgeete tetttgetaa egeggateee aatttegtga eggeeatget gageaagetg 1440 agatttgagg tgttccagcc cggagactat atcattcgag aaggagctgt ggggaagaaa 1500 atgtatttca tccagcatgg tgtggctggt gtcatcacca agtccagtaa agaaatgaag 1560 ttgacagacg gctcttactt tggagaaata tgcctgctga ccaagggccg gcgcactgcc 1620 aqtqttcqaq ctqatacata ctqtcqcctt tactcccttt cqqtqqacaa tttcaacqaq 1680 gtcttggagg aatatccaat gatgagaaga gcctttgaga cagttgctat tgaccgacta 1740 gatcggatag gcaagaaaaa ctctattctc ctgcagaagt tccagaagga tctgaacact 1800 ggtgttttca acaaccagga gaatgagatc ctgaagcaga ttgtgaagca tgacagagag 1860 atggtacaag cgatccctcc aatcaactat cctcaaatga cagccctgaa ttgcacatct 1920

tcaaccacca ccccaacgtc gcgcatgagg acccaatctc caccagtcta cacagcgacc 1980 agentetete acageaacet geacteacee ageneeagea cacagaegee teaaceetea 2040 gccatccttt caccctgctc ctacaccaca gcagtctgca gtcctcctat acagagcccc 2100 ctggccacgc gaactttcca ttatgcctct cccactgcat cccaattgtc actcatgcag 2160 cageetcage egeagetaca geaateeeag gtacageaga etcagaetca gaetcageag 2220 cagcagcagc aacagcagcc gcagccgcag ccgcagcagc cgcaacagca acaacagcag 2280 caacagcagc agcagcagca gcagcaacaa cagcagcagc aacagccaca gacacctggt 2340 agttccacac cgaaaaatga agtgcacaag agcactcaag ctcttcataa cacccacctg 2400 accagagaag teaggeeeet etetgeeteg cageettege tgeeceatga ggteteeaet 2460 atgateteca gacegeatee cactgtggge gagteeetgg ettecateee teaaceegtg 2520 gcaacagtcc acagcactgg ccttcaggca gggagcagga gcaccgtgcc acagcgtgtc 2580 accttgttca gacagatgtc ctcgggagcc attcccccca accgaggagt gcctccagca 2640 cccccgccac cagcagctgt gcagagagag tctccctcag tcttaaataa agacccagat 2700 qcaqaaaaac cccqttttqc ttcqaattta tqa 2733 <210> SEO ID NO 17 <211> LENGTH: 2871 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(2871) <223> OTHER INFORMATION: hyperpolarization activated cyclic nucleotide-gated potassium channel 2 (Norway Rat) HCN2 (Accession: XM 343170) <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (306)..(355) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEOUENCE: 17 atggcagccc tgagccagtc acttactgaa tatcgagaaa aaataaaaaa cccactgaag 60 cagggtgaac atgaaagatc ccccttcatc tggaacaggc atgtgccctg gggtgggaca 120 caatctggca ctgtcaactg taatgttcaa aagtggaaac cagaggggtg ccaggggcag 180 ctccggagtc cccagggtca gggcagccca tctgtgtcag atgaggacat gcagctggca 240 aggcacatec aacaceatgg aacaeetaet ggtgggggtg geteaggtgg aggegggget 300 360 cogcocgogo cooctcagoo toagocacoa coogogocac coocgaacoo caogacocoo 420 togcaccogg agtoggogga cgagocoggo cogogotoco ggototgoag cogogacago 480 teetgeacte etggegegge caagggegge gegaatggeg agtgegggeg eggggageeg 540 cagtgcagee cegagggeee egegegege eccaaggttt egtteteatg tegeggggeg 600 gcetegggge ecgeggegge egaggaggeg ggeagegagg aggegggeee ggegggtgag 660 ccgcgcggca gccaggccag cttcctgcag cgccaattcg gggcgctcct gcagccgggc 720 780 qtcaacaaqt tctccctqcq qatqtttqqc aqccaqaaqq ccqtqqaqcq cqaqcaqqaa cgcgtgaagt cggcgggggc ctggatcatc cacccctaca gcgacttcag gttctactgg 840 gacttcacca tgctgttgtt catggtggga aatctcatca tcatccctgt gggcatcact 900

ttcttcaagg	acgagaccac	ggcgccctgg	atcgtcttca	acgtggtctc	ggacactttc	960	
ttcctcatgg	acttggtgct	gaactttcgc	accggcattg	ttattgagga	caacacggag	1020	
atcatcctgg	accccgaaaa	gataaagaaa	aagtacctgc	gtacgtggtt	cgtggtagac	1080	
ttcgtgtcat	ccatcccggt	ggactacatc	ttcctcatcg	tggagaaggg	aatcgactcc	1140	
gaggtctaca	agacggcccg	tgcactacgc	atcgtgcgtt	tcaccaagat	cctcagtctg	1200	
ctgcggttgc	tgcggctatc	ccggctcatc	cgatatatcc	accaatggga	ggagattttc	1260	
cacatgacct	acgacctggc	aagcgcggtg	atgcgcatct	gtaacctgat	cagcatgatg	1320	
ctgctgctct	gccactggga	cggctgcctg	cagttcctgg	tgcccatgct	gcaagacttc	1380	
cccagcgact	gctgggtgtc	catcaacaac	atggtgaacc	actcgtggag	cgaactctat	1440	
tcgttcgcgc	tcttcaaggc	catgagccac	atgctctgta	ttggctacgg	gcggcaggct	1500	
cccgagagca	tgacggacat	ctggctcacc	atgctcagca	tgatcgtggg	cgccacctgc	1560	
tacgctatgt	tcattgggca	cgccacggcg	cttatccagt	ccctggactc	gtcacggcgc	1620	
cagtaccagg	agaagtacaa	gcaagtggag	cagtacatgt	ccttccacaa	actgccggct	1680	
gacttccgcc	agaagatcca	cgattactat	gaacaccggt	accaggggaa	gatgtttgac	1740	
gaggacagca	tcctggggga	actcaacggc	ccactgcgtg	aggagattgt	gaacttcaac	1800	
tgccggaagc	tggtggcttc	catgccgttg	tttgccaacg	cagaccccaa	cttcgtcacc	1860	
gccatgctga	caaagctcaa	atttgaggtc	ttccagcctg	gagactacat	catccgagag	1920	
gggaccatcg	ggaagaagat	gtacttcatc	cagcacgggg	tggtgagcgt	gctcaccaag	1980	
ggcaacaagg	agatgaagct	gtcagatggc	tcctattttg	gggagatctg	cctgctcacg	2040	
agggggccggc	gcacagccag	tgtgcgggct	gacacctact	gtcgcctcta	ctcactgagc	2100	
gtggacaact	tcaacgaggt	gctggaggag	taccccatga	tgcggcgtgc	ctttgagacc	2160	
gtggccattg	accgcctgga	ccgcataggc	aagaagaact	ccatcttgct	acacaaggtt	2220	
cagcatgatc	tcagctcggg	tgtgttcaac	aaccaggaga	acgccatcat	ccaggagatt	2280	
gtcaaatatg	accgtgagat	ggtgcagcag	gcagagctgg	gccagcgtgt	ggggetette	2340	
ccaccaccgc	caccaccgca	ggtcacgtcg	gccatcgcca	cgctgcagca	ggccgtggcc	2400	
atgagcttct	gcccgcaggt	ggeeegeeeg	ctcgtggggc	ccctggcgct	agggtcccca	2460	
cgcctcgtgc	gccgcgcgcc	cccagggcct	ctgcctcctg	cagcctcacc	agggccaccc	2520	
gcagcgagcc	ccccggctgc	accctcgagc	cctcgggcac	cgcggacctc	accctacggt	2580	
gtgcctggct	ctccggcaac	gcgtgtgggg	cccgcattgc	ccgcacgccg	cctgagccgc	2640	
gcetegegee	cactgtccgc	ctcgcagccc	tcgctgcccc	acggcgcgcc	cgcacccagc	2700	
cccgcggcct	ctgcgcgccc	ggccagcagc	tccaccccgc	gtctgggacc	cgcacccacc	2760	
acccggaccg	cggcacccag	tccggaccgc	agggactcag	cctcgccggg	cgctgccagt	2820	
ggcctcgacc	cactggactc	tgcgcgctcg	cgcctctctt	ccaacttgtg	a	2871	

<210> SEQ ID NO 18 <211> LENGTH: 2343 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus <220> FEATURE: <221> NAME/KEY: gene
<222> LOCATION: (1)..(2343)
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic

				CONCIN	Iucu					
	eotide-gated 53685)	d potassium	channel 3	(Norway Rat) HCN3 (Acce	ession:				
<400> SEQUENCE: 18										
atggaggagg	aggcgcgggcc	ggcggtgggg	gacggggaag	cggcgactcc	tgcacgcgag	60				
acgcctcctg	cggctcccgc	ccaggcccgc	gcggcctcag	gtggggtgcc	agagtctgcg	120				
cccgagccga	agaggcggca	gctcgggacg	ctgctgcagc	cgaccgtcaa	caagttctct	180				
ctccgggtct	tcggcagcca	caaagcggtg	gaaatcgagc	aggagagggt	gaagtccgcc	240				
ggggcctgga	tcatccaccc	ctacagcgac	ttccggtttt	actgggacct	gatcatgctg	300				
ctgctgatgg	tggggaacct	catagtactg	cccgtgggca	tcactttctt	caaggaggag	360				
aactccccac	cctggatcgt	cttcaatgtc	ctctcggaca	ctttcttcct	gctggatctg	420				
gtgctcaact	tccgaactgg	catcgtggtg	gaggaaggtg	cggagatcct	gttggcgccc	480				
agggctatcc	gcacgcgtta	cctgcgcacc	tggttcctgg	tggacctgat	ttcctccatc	540				
cctgtggatt	acatcttcct	agtggtagag	ctggagccac	gactagacgc	tgaggtctac	600				
aaaacggcac	gggccctgcg	catcgttaga	ttcaccaaga	tccttagcct	gctgcggctg	660				
ctccgcctct	cccgcctcat	ccgatacatg	caccagtggg	aggagatctt	tcacatgacc	720				
tacgacctgg	ccagtgcagt	ggttcgcatc	ttcaacctca	ttggaatgat	gttgctgctg	780				
tgtcactggg	atggctgtct	gcagttcctg	gtccctatgc	tgcaggactt	cccttccgac	840				
tgctgggtct	ccatgaaccg	catggtgaac	cactcgtggg	gccgccagta	ctcccacgcc	900				
ctgttcaagg	ccatgagtca	catgctgtgc	attggctacg	ggcagcaggc	accagtaggc	960				
atgcctgacg	tctggctcac	catgctcagc	atgattgtgg	gcgccacctg	ctatgccatg	1020				
ttcatcggcc	acgccaccgc	cctcatccag	tccctggact	cgtcccggcg	ccagtaccag	1080				
gagaagtaca	agcaggtgga	gcagtacatg	tccttccaca	agctgccagc	cgacacacgg	1140				
cagegeatee	acgagtacta	cgagcatcgg	taccagggca	agatgttcga	tgaagagagc	1200				
atcctggggg	agctgagcga	gccgcttcgg	gaggagatta	ttaacttcac	ctgccggggc	1260				
ctggtggccc	acatgccgct	gtttgctcat	gctgacccca	gtttcgtcac	cgcagtactc	1320				
accaagctcc	gttttgaggt	cttccaacct	ggggatctgg	tggtgcgtga	gggctccgtg	1380				
ggcaggaaga	tgtacttcat	ccagcatggg	ctgctcagtg	tgttggcacg	gggcgcccgg	1440				
gacactcgcc	tcactgacgg	atcctacttt	ggggagatct	gcctgctgac	tcgaggtcgg	1500				
agaacagcca	gtgtaagggc	tgacacctac	tgtcgcctct	actcactcag	cgtggaccac	1560				
ttcaatgcag	tgcttgagga	gttcccgatg	atgcgcaggg	cttttgagac	tgtggccatg	1620				
gaccggcttc	ggcgcatcgg	caaaaagaat	tcgatattgc	agcggaaacg	ctctgagccg	1680				
agtccaggca	gcagcagtgg	tggcgtcatg	gagcagcatt	tggtacaaca	cgacagagac	1740				
atggctcgtg	gtattcgggg	tetggeteeg	ggcacaggag	ctcgcctcag	tggaaagcca	1800				
gtgctgtggg	aaccactggt	acacgcacct	ctgcaggcag	ctgctgtgac	ctccaacgtg	1860				
gccatagcct	tgactcatca	gcgaggccct	ctgcccctct	cccctgattc	tccagccacc	1920				
ctcctggctc	gatctgctag	acgctcagca	ggctccccag	cctccccact	ggtgcctgtc	1980				
cgagcaggtc	ctctgctggc	ccggggaccc	tgggcgtcca	cttctcgcct	gcctgctcca	2040				
cctgcccgaa	ccctccatgc	cagcctatcc	cggacagggc	gttcccaggt	gtctctgttg	2100				
ggeeeteece	caggaggagg	tggtcggagg	ctaggacctc	ggggccgccc	actctctgcc	2160				

tetcaaceet etetgeetca gegageeaeg ggggatgget etectaggeg caaaggetet 2220 ggaagtgagc gtctgccccc ctcggggctc ctggccaagc ctccagggac tgtccagcca 2280 tccaggtcat cagtgcctga gccagttacc cccagaggtc cccaaatttc tgccaacatg 2340 2343 tqa <210> SEQ ID NO 19 <211> LENGTH: 3597 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(3597) <223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated K+ 4 (Norway Rat) HCN4 (Accession: NM 021658) <400> SEQUENCE: 19 atggacaage tgeegeegte catgegeaag eggetetaca geetteegea geaggtgggg 60 gccaaggcgt ggatcatgga cgaggaagag gatggtgagg aagagggggc cggggggcctc 120 caqqacccaa qccqaaqqaq cattcqqctq cqqccqctqc cctcqccctc qccctcqqtq 180 gccgccggct gctccgagtc ccggggtgcg gccctcgggg cggcagacag cgaggggccg 240 300 qqccqcaqcq ccqqcaaqtc caqcaccaac qqtqactqca qqcqcttccq cqqqaqtctq gcctcgctgg gcagccgggg cggcggcagt ggtggagcag ggggcggcag cagtctcggg 360 cacctgcatg actccgcgga ggagcggcgg ctcatcgccg ctgagggcga tgcgtccccc 420 ggcgaggaca ggacgccccc gggcctggcg accgagcccg agcgcccggg cgccgcggca 480 caaccegeag cetegeegee geeceaacag eegeegeage eggeeteege eteetgegag 540 cagccctcgg cggacacagc tatcaaagtg gaaggaggcg cggccgccag cgaccagatc 600 ctccctgagg ccgaggtgcg cctgggccag agcggcttca tgcagcgcca gttcggtgcc 660 atgctgcaac ctggggtcaa caaattctcg ctaaggatgt tcggcagcca gaaagcagtg 720 gagcgtgagc aggagagggt taagtcagct gggttttgga ttatccaccc ctacagcgac 780 ttcagatttt actgggacct gacgatgctg ttgctgatgg tggggaatct gatcatcatc 840 cctgtgggca tcaccttctt caaggatgag aacaccaccc cctggatcgt cttcaacgtg 900 gtgtcagaca cattetteet cattgacttg gteetcaact teegcaeggg gategtggtg 960 gaggacaaca cagaaatcat ccttgaccca cagcggatca agatgaagta cctgaaaagc 1020 tggtttgtgg tggacttcat ctcctccatc cccgtggact acatcttcct tatagtggag 1080 1140 actegeattq acteggagqt ctacaaaace gecagggete tgegeattqt cegetteacg aagateetea geeteetgeg eeteetgegg ettteeegee teatteggta eatteaceag 1200 tgggaagaga tettecacat gacetacgae etggecagtg eegtggtaeg categtgaae 1260 ctcattggca tgatgcttct gctttgccac tgggatggct gcctgcagtt cctggtgccc 1320 atgctgcagg acttcccccca tgactgctgg gtgtccatca acggcatggt gaataactcc 1380 tgggggaagc agtactccta tgccctcttc aaggccatga gccacatgct gtgtattggg 1440 tacggacggc aggcacccgt aggcatgtct gacgtctggc tcaccatgct cagcatgatc 1500 gtgggegeca cetgetatge catgtteate gggeaegeca etgeceteat ceagtegetg 1560 gactectece ggegecagta ceaggagaag taeaageagg tggageagta eatgteette 1620

				-001011	lueu	
cacaagctcc	cgcctgacac	caggcagcgc	atccacgact	actacgaaca	ccgctaccag	1680
ggcaagatgt	ttgacgagga	aagcatcctg	ggtgagctga	gtgagccgct	tcgagaggag	1740
atcatcaact	ttaactgccg	gaagctggtg	gcatccatgc	cactgttcgc	caatgcagac	1800
cccaactttg	tgacgtctat	gctgaccaag	ttgcgttttg	aggtctttca	gcctggggac	1860
tacatcatcc	gtgaaggcac	catcggcaag	aagatgtact	ttatccagca	cggcgtggtc	1920
agtgtgctca	ctaagggcaa	caaggagacc	aagctggctg	atggctccta	ttttggagag	1980
atctgcttgc	tgacccgagg	ccgtcgcaca	gcgagcgtga	gggcggatac	ttactgccgc	2040
ctctactcac	tgagcgtgga	caacttcaac	gaggtgctgg	aggagtatcc	catgatgcgc	2100
agggctttcg	agacggttgc	gctggaccgt	ctggaccgca	taggcaagaa	gaactccatc	2160
ctcctccaca	aggtgcagca	cgacctcaac	tcaggcgtct	tcaactacca	agagaacgag	2220
atcatccagc	agatcgtgcg	gcatgaccgt	gagatggccc	actgtgctca	ccgcgtccag	2280
gctgctgcct	cagccacccc	aaccccaacg	cctgtcatat	ggaccccact	gatccaggca	2340
ccactgcagg	ctgctgctgc	tactacttcg	gtggccatag	ccctcacaca	ccacccccgc	2400
ctgccagccg	ctatcttccg	gccccctccc	ggacctgggc	tgggtaacct	ggggggctgga	2460
cagacaccga	ggcacccaag	gaggttgcag	tccttgatcc	cttcagcgct	aggetetget	2520
tcaccagcca	gcagcccctc	acaggtggac	acaccgtctt	catcttcctt	ccacatccaa	2580
cagctggctg	gattctctgc	acctcctgga	ttgagtcctc	tcttgccctc	ctctagctct	2640
tccccacctc	caggagcctg	cagttctccc	ccagccccca	ctccatccac	ctccactgct	2700
gccaccacca	ccgggttcgg	ccactttcat	aaggcgctag	gtggctccct	gtcttcctct	2760
gatteccege	tgctcacccc	actgcaaccg	ggcgctcgct	ctccacaggc	tgcccagccg	2820
ccacccccac	tgcctggggc	ccgaggaggc	ctgggactcc	tggagcactt	cttgccgccc	2880
ccaccttcgt	cccggtcacc	atcatctagc	cctgggcagc	tgggccagcc	tcctggagag	2940
ttgtccccag	gtctggcagc	tggtccacca	agtacaccag	agacaccccc	gcggcccgaa	3000
cggccatcct	ttatggcagg	ggcctctggg	ggggcttctc	ctgtagcctt	taccccccga	3060
ggaggcetea	gccctccggg	ccacagccca	ggacccccaa	gaactttccc	gagtgcccca	3120
ccccgggcct	ctggctccca	tggttccctg	ctcctgccac	ctgcatccag	ccctccgcct	3180
ccccaggtcc	cacagcgcag	gggcacacca	cccctcaccc	ccggccgcct	cacacaggac	3240
ctgaagctca	tctcagcctc	tcagccagcc	ctcccccagg	atggggcaca	gactctacgc	3300
agggcctctc	ctcactcctc	aggggagtcg	atggctgcct	tctcactcta	ccccagagct	3360
ggggggtggca	gtgggagcag	tgggggcctt	gggcctcctg	gaaggccata	tggtgccatc	3420
ccaggccagc	atgtcacttt	gcctcggaag	acatcctcag	gttctttgcc	acccccactt	3480
tctttgtttg	gggcaagagc	cgcctcttct	ggagggcccc	ctctgactgc	tgcaccccag	3540
agggaacctg	gcgctaggtc	cgagccagta	cgctccaaac	tgccgtctaa	tttatga	3597
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN <220> FEATU	TH: 2733 : DNA JISM: Mus mu	usculus				

cyclic nucleotide-gated K+ 1 (house mouse) HCN1 (Accession: NM 010408)

37

<400> SEQUENCE: 20					
atggaaggcg gcggcaaacc	caactccgcg	tccaacagcc	gcgacgatgg	caacagcgtc	60
tteeceteca aggegeeege	gacgggggccg	gtggcggccg	acaagcgcct	ggggaccccg	120
ccgaggggcg gcgcggccgg	gaaggaacat	ggcaactccg	tgtgcttcaa	ggtggacggc	180
ggcggaggag aggagccggc	gggcagcttc	gaggatgccg	aggggccccg	gcggcagtat	240
ggtttcatgc agaggcagtt	cacctccatg	ctgcagcctg	gggtcaacaa	attctccctc	300
cgcatgtttg ggagccagaa	ggcggtggag	aaggagcagg	aaagggttaa	aactgcaggc	360
ttetggatta tecateegta	cagtgacttc	aggttttatt	gggatttaat	catgcttata	420
atgatggttg gaaatttggt	catcatacca	gttggaatca	cgttcttcac	agagcagacg	480
acaacaccgt ggattatttt	caacgtggca	tccgatactg	ttttcctgtt	ggacttaatc	540
atgaatttta ggactgggac	tgtcaatgaa	gacagctcgg	aaatcatcct	ggaccctaaa	600
gtgatcaaga tgaattattt	aaaaagctgg	tttgtggtgg	acttcatctc	atcgatcccg	660
gtggattata tctttctcat	tgtagagaaa	gggatggact	cagaagttta	caagacagcc	720
agagcacttc gtatcgtgag	gtttacaaaa	attctcagtc	tcttgcggtt	attacgcctt	780
tcaaggttaa tcagatacat	acaccagtgg	gaagagatat	tccacatgac	ctatgacctc	840
gccagtgctg tggtgaggat	cttcaacctc	attggcatga	tgctgcttct	gtgccactgg	900
gatggetgte tteagtteet	ggttcccctg	ctgcaggact	tcccaccaga	ttgctgggtt	960
tctctgaatg aaatggttaa	tgattcctgg	ggaaaacaat	attcctacgc	actcttcaaa	1020
gctatgagtc acatgctgtg	cattggttat	ggcgcccaag	cccctgtcag	catgtctgac	1080
ctctggatta ccatgctgag	catgattgtg	ggcgccacct	gctacgcaat	gtttgttggc	1140
catgccacag ctttgatcca	gtctttggac	tcttcaagga	ggcagtatca	agagaagtat	1200
aagcaagtag agcaatacat	gtcattccac	aagttaccag	ctgacatgcg	ccagaagata	1260
catgattact atgagcaccg	ataccaaggc	aagatcttcg	atgaagaaaa	tattctcagt	1320
gagcttaatg atcctctgag	agaggaaata	gtcaacttca	actgccggaa	actggtggct	1380
actatgcctc tttttgctaa	cgccgatccc	aatttcgtga	cggccatgct	gagcaagctg	1440
agatttgagg tgttccagcc	cggagactat	atcattcgag	aaggagctgt	ggggaagaaa	1500
atgtatttca tccagcacgg	tgttgctggc	gttatcacca	agtccagtaa	agaaatgaag	1560
ctgacagatg gctcttactt	cggagagata	tgcctgctga	ccaagggccg	gcgcactgcc	1620
agtgtccgag ctgataccta	ctgtcgtctt	tactcccttt	cggtggacaa	tttcaatgag	1680
gtcttggagg aatatccaat	gatgagaaga	gcctttgaga	cagttgctat	tgaccgactc	1740
gatcggatag gcaagaaaaa	ctctattctc	ctgcagaagt	tccagaagga	tctaaacact	1800
ggtgttttca acaaccagga	gaacgagatc	ctgaagcaga	tcgtgaagca	tgaccgagag	1860
atggtacaag ctatccctcc	aatcaactat	cctcaaatga	cagccctcaa	ctgcacatct	1920
tcaaccacca ccccaacctc	ccgcatgagg	acccaatctc	cgccagtcta	caccgcaacc	1980
agcctgtctc acagcaatct	gcactcaccc	agtcccagca	cacagacgcc	ccaaccctca	2040
gccateettt caceetgete	ctataccaca	gcagtctgca	gtcctcctat	acagagcccc	2100
ctggccacac gaactttcca	ttatgcctct	cccactgcgt	cccagctgtc	actcatgcag	2160
		-		-	

				-contir	nued		
cagcctcagc	agcaactacc	gcagtcccag	gtacagcaga	ctcagactca	gactcagcag	2220	
cagcagcagc	aacagcagca	gcagcagcag	cagcaacagc	aacaacagca	gcagcagcag	2280	
cagcagcagc	agcagcagca	gcagcagcag	cagcagcagc	agcagccaca	gacacctggt	2340	
agctccacac	cgaaaaatga	agtgcacaag	agcacacaag	cccttcataa	caccaacctg	2400	
accaaagaag	tcaggcccct	ttccgcctcg	cagcettete	tgccccatga	ggtctccact	2460	
ttgatctcca	gacctcatcc	cactgtgggc	gaatccctgg	cctctatccc	tcaacccgtg	2520	
gcagcagtcc	acagcactgg	ccttcaggca	gggagcagga	gcacagtgcc	acaacgtgtc	2580	
accttgttcc	gacagatgtc	ctcgggagcc	atccccccca	accgaggagt	gcctccagca	2640	
ccccctccac	cagcagctgt	gcagagagag	tctccctcag	tcctaaatac	agacccagat	2700	
gcagaaaaac	cccgttttgc	ttcgaattta	tga			2733	
<220> FEATU <221> NAME/ <222> LOCAT <223> OTHER	TH: 2592 : DNA NISM: Mus mu JRE: /KEY: gene FION: (1) R INFORMATIC cotide-gated	(2592) DN: hyperpol			-	3226)	
-			agagetest	44444	agatagaga	60	
	geggggggggg						
	caccgccgcc					120 180	
	ccacgacccc						
	gccgcgacag					240	
	gcgggggagcc					300 360	
	geegegggge					420	
	cggcgggtga						
	tgcagcccgg					480 540	
	gcgagcagga					600	
	ggttctactg					600	
_	tgggcatcac	_				720	
	cggacacttt					720	
	acaacacgga					840	
	tcgtggtgga					900	
	gaatcgactc						
	tcctcagtct					960	
	aagagatttt					1020	
	tcagcatgat					1080	
gtgcccatgc	tgcaagactt	ccccagcgac	tgctgggtgt	ccatcaacaa	catggtgaac	1140	
cactcgtgga	gcgagctcta	ctcgttcgcg	ctcttcaagg	ccatgagcca	catgctgtgc	1200	
atcggctacg	ggcggcaggc	gcccgagagc	atgacagaca	tctggctgac	catgctcagc	1260	
atgatcgtag	gcgccacctg	ctatgccatg	ttcattgggc	acgccactgc	gctcatccag	1320	

tccctggatt cgtcacggcg	ccaataccag	gagaagtaca	agcaagtaga	gcaatacatg	1380			
teetteeaa aaetgeeege	tgacttccgc	cagaagatcc	acgattacta	tgaacaccgg	1440			
taccaaggga agatgtttga	tgaggacagc	atccttgggg	aactcaacgg	gccactgcgt	1500			
gaggagattg tgaacttcaa	ctgccggaag	ctggtggctt	ccatgccgct	gtttgccaat	1560			
gcagacccca acttcgtcac	agccatgctg	acaaagctca	aatttgaggt	cttccagcct	1620			
ggagattaca tcatccgaga	ggggaccatc	gggaagaaga	tgtacttcat	ccagcatggg	1680			
gtggtgagcg tgctcaccaa	gggcaacaag	gagatgaagc	tgtcggatgg	ctcctatttc	1740			
ggggagatet gettgeteae	gaggggccgg	cgtacggcca	gcgtgcgagc	tgacacctac	1800			
tgtcgcctct actcactgag	tgtggacaat	ttcaacgagg	tgctggagga	ataccccatg	1860			
atgeggegtg cetttgagae	tgtggctatt	gaccggctag	atcgcatagg	caagaagaac	1920			
tccatcttgc tgcacaaggt	tcagcatgat	ctcagctcag	gtgtgttcaa	caaccaggag	1980			
aatgccatca tccaggagat	tgtcaaatat	gaccgtgaga	tggtgcagca	ggcagagctt	2040			
ggccagcgtg tgggggctctt	cccaccaccg	ccaccaccgc	aggtcacatc	ggccattgcc	2100			
accctacagc aggctgtggc	catgagette	tgcccgcagg	tggcccgccc	gctcgtgggg	2160			
cccctggcgc taggctcccc	acgcctagtg	cgccgcgcgc	ccccagggcc	tetgeeteet	2220			
gcagcetege cagggeeace	cgcagcaagc	cccccggctg	caccctcgag	ccctcgggca	2280			
ccgcggacct caccctacgg	tgtgcctggc	tctccggcaa	cgcgcgtggg	gcccgcattg	2340			
cccgcacgtc gcctgagccg	cgcctcgcgc	ccactgtccg	cctcgcagcc	ctcgctgccc	2400			
catggcgtgc ccgcgcccag	ccccgcggcc	tctgcgcgcc	cggccagcag	ctccacgccg	2460			
cgcctgggac ccgcacccac	cgcccggacc	gccgcgccca	gtccggaccg	cagggactca	2520			
gcctcgccgg gcgctgccag	tggcctcgac	ccactggact	ctgcgcgctc	gcgcctctct	2580			
tccaacttgt ga					2592			
<pre><210> SEQ ID NO 22 <211> LENGTH: 2340 <212> TYPE: DNA <213> ORGANISM: Mus musculus <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(2340) <223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated K+ 3 (House Mouse) HCN3 (Accession: NM 008227)</pre>								
<400> SEQUENCE: 22								
atggaggagg aggcgcggcc	ggcggcgggg	gccggcgaag	cggcgacccc	tgcacgcgag	60			
acgeeteetg eggeteegge	ccaggcccgc	gcggcctcag	gtggggtgcc	ggagtetgeg	120			
cccgagccga agaggcggca	gctcgggacg	ctgctgcagc	cgacggtcaa	caagttetet	180			
ctccgggtct tcggcagcca	caaagcagta	gaaatcgagc	aggagagggt	gaagtccgcc	240			
ggggcctgga tcatccaccc	ctacagcgac	ttccggtttt	actgggatct	catcatgctg	300			
ctgctgatgg tggggaacct	catagttctg	cctgtgggta	tcactttctt	caaggaggag	360			
aactctccac cctggatcgt	cttcaatgtc	ctctctgaca	ctttcttcct	gctggatctg	420			
gtgctcaact tccgaactgg	catcgtggtg	gaggaaggtg	ccgagatcct	gctggcgcca	480			

		-continue	ea	
cctgtggatt atatct	teet agtggtggag etggageea	c gactagatgc tga	aggtctac 600	
aaaacggcac gggccct	tgcg catcgttaga ttcaccaag	a teettageet get	tgeggetg 660	
ctccgcctct cccgcct	tcat ccgctacata caccagtgg	g aggagatett tea	acatgacc 720	
tacgacctgg ccagtge	cagt ggttcgcatc ttcaacctc	a ttggaatgat gti	tgetgetg 780	
tgtcactggg acggct	gtet geagtttetg gteeetatg	c tgcaggactt cco	cgtccgac 840	
tgctgggtct ccatgaa	accg catggtgaac cactcgtgg	g geegeeagta tto	cccacgcc 900	
ctgttcaagg ccatgag	gtca catgctatgc attggctat	g ggcagcaggc aco	cggtaggc 960	
atgeetgaeg tetgget	tcac catgctcagt atgattgtg	g gcgccacgtg tta	atgccatg 1020	
ttcatcggtc acgccad	cege ecteateeag teeetggae	t cttcccggcg aca	agtaccag 1080	
gagaagtaca agcaggt	tgga gcagtacatg teetteeac	a agetgeeege tga	acacccgg 1140	
cagegeatee aegagta	acta cgagcatcgc taccagggc	a agatgtttga tga	aagagagc 1200	
atcctggggg agctgag	gega gecaettegg gaggagatt	a ttaacttcac cto	geegggge 1260	
ctggtggccc acatgco	eget gtttgeteat getgaeeee	a gcttcgtcac cgo	cagtgctc 1320	
accaagetee gttttga	aggt cttccaacca ggggacctg	g tggtgcgtga gg	gctccgtg 1380	
ggcaggaaga tgtactt	tcat ccagcacggg ctgctgagt	g tgctggcacg tgo	gcgcccgc 1440	
gacaccegee teactga	atgg atcctacttt ggggagatc	t gcctgctgac too	gaggtcgg 1500	
agaacagcca gtgtaag	gggc tgacacctat tgtcgcctc	t actcgctcag cgt	tggaccac 1560	
ttcaatgcgg tgcttga	agga gttcccaatg atgcgcagg	g cttttgagac ggt	tggccatg 1620	
gaccggcttc ggcgcat	togg caaaaagaat togataotg	c agcggaaacg cto	ctgagccg 1680	
agtccaggca gcagcg	gtgg cgtcatggag cagcatttg	g tacaacacga caq	gagacatg 1740	
gctcgtggtg ttcgggg	geet ggeteetggt acaggaget	c gactcagtgg aaa	agccagtg 1800	
ctgtgggaac cactggt	tgca cgcccctctg caggcagct	g ctgtgacctc caa	acgtggcc 1860	
atageettga etcacea	ageg aggeeetetg eccetetee	c ctgattetee age	ccaccctc 1920	
ctagetegat etgeta	gacg ctcagcaggc tccccagcc	t ccccactggt gco	ctgtccga 1980	
gcaggtcctc tgctgg	cccg gggaccctgg gcgtccact	t ctcgcctgcc tg	ctccacct 2040	
geeegaacee teeatge	ccag cctatcccgg acagggcgt	t cccaggtatc tct	tgttgggc 2100	
cctcccccag gaggagg	gtgc tcggaggcta ggacctcgg	g geegeeeact tto	ctgcctcg 2160	
caaccetete tgeetea	agcg agcaacaggg gatggctct	c ctaggcgtaa ago	gctctgga 2220	
agtgagegee tgeeee	cctc tgggctcttg gccaaacct	c cagggacagt cca	agccaccc 2280	
aggtcatcag tgcctga	agee agttaceeee agaggteee	c aaatttetge caa	acatgtga 2340	
nucleotide-o cyclic nucle	5 15 musculus ene	tion-activated,		
<400> SEQUENCE: 23	3			

gccaaggcgt	ggatcatgga	cgaggaagag	gatggtgagg	aagaagggggc	cggggggccgc	120	
caggacccca	gccgaaggag	catccggctg	cggccgctgc	cctcgccctc	tccctcggtg	180	
gctgcgggct	gctcggagtc	ccggggtgcg	gccctcgggg	cgacagagag	cgaggggccg	240	
ggccgcagcg	ccggcaagtc	cagcaccaac	ggtgactgca	ggcgcttccg	cgggagtctg	300	
gcctcgctgg	gcagccgggg	cggcggcagt	ggtggagcag	ggggcggcag	cagtctcggg	360	
cacctgcatg	actccgcgga	ggaacggcgg	ctcatcgccg	ctgagggcga	tgcgtccccc	420	
ggcgaggaca	ggacgccccc	gggcctggcg	accgaacccg	agegeeegge	caccgcggca	480	
caacccgcag	cctcgccgcc	gccccagcag	ccgccgcagc	cggcctctgc	ctcctgcgag	540	
cagecetegg	cggacaccgc	tatcaaagtg	gagggaggcg	cggccgccag	cgaccagatc	600	
ctccccgagg	ccgaggtgcg	cctgggccag	agcggcttca	tgcagcgcca	gttcggtgcc	660	
atgctgcaac	ctggggtcaa	caaattctcc	ctaaggatgt	tcggcagcca	gaaagcggtg	720	
gagcgcgagc	aggagagggt	taagtcagca	gggttttgga	ttatccaccc	ctacagtgac	780	
ttcagatttt	actgggacct	gacgatgctg	ttgctgatgg	tggggaatct	gatcatcata	840	
cccgtgggca	tcaccttctt	caaggatgag	aacaccacac	cctggatcgt	cttcaatgtg	900	
gtgtcagaca	cattcttcct	cattgacttg	gtcctcaact	tccgcacggg	gatcgtggtg	960	
gaggacaaca	cagaaatcat	ccttgacccg	cagaggatca	agatgaagta	cctgaaaagc	1020	
tggtttgtgg	tagatttcat	ctcctccatc	cctgtcgact	acatcttcct	tatagtggag	1080	
actcgcattg	actcggaggt	ctacaaaacc	gctagggctc	tgcgcattgt	ccgtttcact	1140	
aagatcctca	gcctcctgcg	cctcttgagg	ctttcccgcc	tcattcgata	cattcatcag	1200	
tgggaagaga	tcttccacat	gacctatgac	ctggccagcg	ccgtggtacg	catcgtgaac	1260	
ctcattggca	tgatgcttct	gctgtgtcac	tgggatggct	gcctgcagtt	cctagtgccc	1320	
atgctgcagg	acttccccca	tgactgctgg	gtgtccatca	atggcatggt	gaataactcc	1380	
tgggggaagc	agtattccta	cgccctcttc	aaggccatga	gccacatgct	gtgcattggg	1440	
tatggacggc	aggcacccgt	aggcatgtct	gacgtctggc	tcaccatgct	cagcatgatc	1500	
gtgggggcca	cctgctatgc	catgttcatc	ggccacgcca	ctgccctcat	ccagtcgcta	1560	
gactcctccc	ggcgccagta	ccaggagaag	tataaacagg	tggagcagta	catgtccttc	1620	
cacaagctcc	cgcctgacac	ccgacagcgc	atccatgact	actatgaaca	ccgctaccaa	1680	
ggcaagatgt	ttgatgagga	aagcatcctg	ggtgagctga	gtgagccact	tcgagaggag	1740	
atcatcaact	ttaactgccg	aaagctggtg	gcatccatgc	cactgtttgc	caacgcagat	1800	
cccaactttg	tgacatccat	gctgaccaag	ttgcgtttcg	aggtcttcca	gcctggggat	1860	
tacatcatcc	gcgaaggcac	catcggcaag	aagatgtact	ttatccagca	cggcgtggtc	1920	
agcgtgctca	ctaagggcaa	caaagagacc	aagctggctg	atggctccta	ttttggagag	1980	
atctgcttgc	tgacccgggg	tcggcgcaca	gccagcgtca	gagcggatac	ttattgccgc	2040	
ctctactcac	tgagcgtgga	caacttcaat	gaggtgctgg	aggagtatcc	catgatgcgg	2100	
agggccttcg	agacggttgc	gctggaccgc	ctggaccgca	taggcaagaa	gaactccatc	2160	
	aggtgcagca					2220	
	agatcgtgcg					2280	
						2340	
gergeegeet	cagccacccc	uacecceaeg	lugualat	ggaeeeeget	gauceaggeg	2340	

ccactgcagg ctgctgctgc tactacttcg gtggccatag ccctcacaca ccacccccgc	2400
ctgcccgccg ccatcttccg gccccctccc ggacctgggc tgggcaacct tggggctgga	2460
cagacaccga ggcacccaag gaggetgcag teettgatee etteagetet gggetetget	2520
tcaccegeea geageceete acaggtggae acaeegtett cateeteett ceaeateeaa	2580
cagetggetg gattetetge aceteetgga ttgageeete teetgeeete etetagetet	2640
tecceacete caggageetg eggtteecea ceageeeeea caeceteeae etecaetgee	2700
gccgccgcct ccaccactgg gttcggccac tttcacaagg cgctgggtgg ctccctgtca	2760
teetetgaet eccegetget caccecaetg caaccaggeg etegetetee acaggetgee	2820
cagccaccac ccccactgcc tggggcccga ggaggtctgg gactcctgga gcacttcttg	2880
ccgcccccac cctcctccag gtcaccatca tccagccctg ggcagctggg ccagcctcct	2940
ggagagttgt ccctaggtct ggcagctggt ccatcaagta caccagagac acccccacgg	3000
cctgagcgac catccttcat ggcaggggcc tctggagggg cttctcctgt agcctttacc	3060
ccccgaggag gcctcagtcc tccgggccac agcccggggc ccccaagaac tttcccgagt	3120
gecceaecce gggeetetgg etceeatggt teeetgetee tgecaeetge atceageeet	3180
ccacctcccc aggtcccaca gcgcaggggc acaccacccc tcacccctgg ccgcctcaca	3240
caggacetga ageteatete ageeteteag ceageeetee eeeaggatgg ggeacagaet	3300
ctccgcaggg cctcgcctca ctcctcaggg gagtcggtgg ctgccttctc actctacccc	3360
agagctgggg gtggcagtgg gagtagtggg ggccttgggc ctcctggaag gccatatggt	3420
gccatcccag gccaacatgt cactttgcct cggaagacat cctcaggttc tttgccaccc	3480
ccactttett tgtttgggge aagageegee tettetggag ggeeeeetet gaetaetget	3540
gcaccccaga gggaacctgg cgctaggtct gagccagtac gctccaaact gccgtctaat	3600
ttatga	3606
<210> SEQ ID NO 24 <211> LENGTH: 2469 <212> TYPE: DNA <213> ORGANISM: Oryctolagus cuniculus <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(2469) <223> OTHER INFORMATION: uORF and hyperpolarization-activated cycli nucleotide-gated channel 1 (Rabbit) HCN1 (Accession: AF 16812	
<400> SEQUENCE: 24	
atggcaacag cgtcttcccc gccaaggcgc ccgcgacggg cgcggggcct ggaggacgct	60
gaggggccgc ggcggcagta cggcttcatg cagcgacagt tcacctccat gctgcagccc	120
ggggtcaaca aattctccct ccgcatgttc gggagccaga aggcggtgga gaaggagcag	180
gaaagggtta aaactgcagg cttctggatt atccaccctt acagcgattt caggttttat	240
tgggatttaa taatgcttat aatgatggtt ggaaatctag tcatcatacc agttggaatc	300
acattettta cagaacagac aacaacacca tggattattt teaatgtgge ateagataca	360
gtttttctat tggacttgat catgaatttt aggactggga ctgtcaatga agacagttct	420
gaaatcatcc tggaccctaa agtaatcaag atgaattatt taaaaagctg gtttgtggtt	480
gacttcatct catcaatccc agtggattat atctttctta ttgtagaaaa aggaatggat	540

-continued	
- tcagaagttt acaagacagc cagggcactt cgcattgtga ggtttacaaa aattctcagt	600
ctcttgcgtt tattacgact ttcaagatta attagataca tacatcagtg ggaagagata	660
tttcatatga cgtatgatct tgccagtgcg gtggtgagga tttttaatct catcggcatg	720
atgetgetet tgtgteaetg ggatggttgt etgeagttet tggteeeaet attgeaggat	780
tteecaccag attgetgggt gteecteaat gaaatggtta atgatteetg gggaaageag	840
tattcatacg cgctcttcaa agctatgagt cacatgctgt gcattgggta tggagcccaa	900
gccccagtca gcatgtctga cctctggatt accatgttga gcatgattgt cggggccacc	960
tgetaegeea tgtttgttgg ceatgeeaet getttaatee aatetttgga ttetteaagg	1020
cggcagtatc aagagaagta taagcaagta gaacaataca tgtcattcca taagttacca	1080
gctgatatgc gtcagaagat acatgattac tatgaacaca gatatcaagg caaaatcttt	1140
gatgaggaaa atatteteaa tgaactgaat gateetetga gagaggagat agteaaette	1200
aactgtcgga aactagtggc tacaatgcct ctttttgcta acgcagatcc gaattttgtg	1260
actgccatgc tgagcaagtt gagatttgag gtatttcaac ctggagatta tatcatacga	1320
gaaggagctg tagggaaaaa aatgtatttc attcagcatg gtgtggcggg tgtcatcaca	1380
aagtcaagta aagaaatgaa gctgacagat ggctcttact ttggagagat ttgtttgctg	1440
actaaaggac gccgcacagc tagtgttcga gctgatacct attgtcgtct ttattccctt	1500
tcggtggaca atttcaatga ggtcctggaa gaatacccta tgatgagaag agcctttgag	1560
actgttgcta ttgaccgact agatcgaata ggaaagaaaa actccattct tctgcaaaag	1620
ttccagaagg atctgaacac tggtgttttt aacaaccagg agaatgagat cctgaagcag	1680
attgtgaaac atgacaggga gatggtgcag gcgatcgctc ccatcagtta tcctcaaatg	1740
acageeetga attecaeete gtecaetget acceegaeet eaegeatgag gaeeeagtet	1800
ccaccggtgt acacagcaac cagcctgtct cacagcaacc tgcactcccc cagccccagc	1860
acteagacee ceeageette tgecateete tegeeetget eetacaceae tgeggtetge	1920
agteeteetg tacagageee getggeeact egaactttee actaegeete eeecaetgee	1980
teccagttgt caeteatgee teageageag cageageeee aggeacetea gaeteageeg	2040
cagcagccgc cccagcagcc gcagacgccc ggcagcgcca cgccgaagaa cgaagtgcac	2100
cggagcacgc aggegettee taataceage etgaceaggg aggteaggee eetgteegee	2160
togcagoott ogotgoogca ogaggtttoo actotgattt ocagacotoa toocaotgtg	2220
ggcgagtccc tggcctccat cccccagccc gtggcagctg tccacagcgc gggcctccag	2280
gcagcgggca ggagcactgt ccctcagcga gtcaccctgt ttcgacagat gtcctccgga	2340
gccatteece ccaacegagg agtgeeteeg geaceceete caceageage ceetetteag	2400
agagaggett eeteagtett aaacacagae eeggaggeag aaaageeaeg atttgetteg	2460
aatttatga	2469
<210> SEQ ID NO 25 <211> LENGTH: 2817 <212> TYPE: DNA <213> ORGANISM: Oncorhynchus mykiss (Rainbow Trout) <220> FEATURE: <221> NAME/KEY: gene	

- <220> FEATORE: <221> NAME/KEY: gene <222> LOCATION: (1)..(2817) <223> OTHER INFORMATION: hyperpolarization-activated cyclic nucleotide-gated cation channel 1 HCN1 (Accession: AF 421883)

<400> SEQUENCE: 25	
atggaagata aatcaaattc gttctccagc aacaaagaag gggagaaagc agatgggaat	60
aatgtatttc aaaggcaaga ctcgatacag aagaataata tggggagcca gaacatgaaa	120
ggaggggacc atggaaactc ggtggggttc aaggggggacc gggaggaagc cttggtcggg	180
ttcgacgata tagacgggtc cggaaaccga catggcttta tgcagcggca atttggagcg	240
atgatgcagc ccggcgtcaa taagttctcc ctgcgaatgt tcggcagtca gaaagccgtt	300
gagaaagagc aagaaagggt ccagacggct ggatactgga tcattcatcc ctatagcgat	360
tttaggttct actgggactt ggtaatgctg gtcatgatga tgggggaacct gatcatcatt	420
cctgtaggaa taaccttctt ctcggagcag accaccacca cctggctaat attcaacgtc	480
gcatcagaca ccatcttcct cgtggatctg gtcatgaact tccgcacggg gatcgtcaac	540
gaggagagct ctgagatcat cctggacccc aaggtcataa agatgaacta cctgaagagc	600
tggtttgtgg tcgacttcct ctcgtccata ccagtggatt atatatttct aatagtggaa	660
aaggggtttg actcagaggt gtacaagacg gcgagggcgc tgaggatcgt gaggtttact	720
aagattetgt etettetgag getaetgaga ettteeegge teateagata eataeaeeag	780
tgggaggaga ttttccatat gacgtatgac ctggccagtg ctgtggtaag aatatttaat	840
ctgataggga tgatgctact gctgtgccac tgggacggtt gtctgcagtt cctggtccca	900
ctcctacaag atttccctca agattgttgg gtgtcgctaa acggtatggt taatgactcg	960
tggggtaagc agtactcgta cgcactcttc aaggccatga gtcacatgct gtgtatcggg	1020
tacggcgccc gggcccccgt cagcatgtcc gacctgtgga tcaccatgct cagtatgatc	1080
gtgggcgcca cctgctacgc catgttcgtg ggtcacgcca ccgctctcat ccaatcactg	1140
gacteeteec geaggeagta eeaagagaag tataaacaag tggageagta eatgtegtte	1200
cacaagetee eegcagacat geggeagaag atecatgatt aetatgagea tegttateag	1260
ggcaagatct ttgacgagga caatatcctg agtgagctca acgacccgct caaagaggaa	1320
attgtgaact tcaactgtcg gaagctggtg gctaccatgc cgctgttcgc caacgcggac	1380
cccaacttcg tgacgggcat gttgagcaag ctgaagttcg aggtgttcca gcccaacgat	1440
tacatcatca gggaggggcac cgtggggcaag aagatgtatt tcattcaaca tggtgtgggcc	1500
agtgtcatca ccaagcttaa caaagagatg aagctgacgg atggctctta ctttggagag	1560
atctgtctgc tgacgaaggg gagacgcacg gcgagcgttc gcgctgacac ctactgccgt	1620
ctcttctccc tctctgtgga tcacttcaac gaggtgttgg aagagtaccc tatgatgcgc	1680
cgcgctttcg agaccgtagc catcgaccgc ctggaccgca tcgggaagaa gaacagcctg	1740
ctcctccaga agttccagaa ggatctgaac gctggggtgt tcaacacgca ggagaacgaa	1800
atactgaagc agataatccg tcaggacagg gagatggtga tgatggtgga ccgcaagcag	1860
teggteacag ggatgteggt cacagggatg teggteacag ggatgaacae caeceegata	1920
tetggaaaet eeateattaa etegeegget eageegeeet acaeeaetge eetgggeaae	1980
aaccagttee ageagteage cacetetttg acetaeageg etteggeegt cacegeteee	2040
teeteegeag ceacegeeeg cateetgeet geeteggege agggtgteta teeegteeee	2100
agegteatee aeggeaacet gaacteatee tegecegtee eecagaetee eetetetete	2160
catcagcaag ggtccatcat gtccccggta tccttcacca cggcggtgtg cagtccaccc	2220

45

gtgcagaccc ctgggctggc gggccgcagc ttccagtacg gctcgcccac cgcctcccag 2280 ctctccctta tccagcagcc gctgcctact gccctaccac cgcagcaacc actaccacag 2340 ccacagcaac caggaggagc agcggcctcc tcagcaacac aacaaccaca acaacagcag 2400 caagteeegt caeeteagag gagtgacage etceacaagg ceageeatge tetceagteg 2460 ggaageetga gtegagaegt gegeeacete tetgeeteee ageeeteet geeeeacgae 2520 acgteeetgg ggeeeegage geaceetgea gegteegggg acteeetgge etceattgee 2580 ccgccggtgg ctgcggtcca gggtatgggt atacagagcg gtctccgcac cacagtgccc 2640 cagagggtca acctgttccg ccagatgtca tcaggagcgt tgcctccggt gcgagcggtg 2700 teetetgeag ceeageacag ggatteeact ggttetagga gagattetag aagagattet 2760 accttaagca gtacagagac tgagcaagat aagatgcggt tcgcatcaaa tttatga 2817 <210> SEQ ID NO 26 <211> LENGTH: 2160 <212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)..(2160) <223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 2 (HCN2) (partial coding sequence) <400> SEQUENCE: 26 atggacgcgc gcggggggggg cgggcggccc ggggagagcc cgggcgcgac ccccgcgccg 60 gggccgccgc cgccgccgcc gcccgcgccc ccccaacagc agccgccgcc gccgccgccg 120 cccgcgcccc ccccgggccc cgggcccgcg ccccccagc acccgccccg ggccgaggcg 180 ttgcccccgg aggcggcgga tgagggcggc ccgcggggcc ggctccgcag ccgcgacagc 240 tcgtgcggcc gccccggcac cccgggcgcg gcgagcacgg ccaagggcag cccgaacggc 300 gagtgcgggc gcggcgagcc gcagtgcagc cccgcggggc ccgaggggccc ggcgcggggg 360 420 cccaaggtgt cgttctcgtg ccgcggggcg gcctcggggc ccgcgccggg gccggggccg 480 gcggaggagg cgggcagcga ggaggcgggc ccggcggggg agccgcgcgg cagccaggcc agetteatge agegeeagtt eggegegete etgeageegg gegteaacaa gttetegetg 540 cggatgttcg gcagccagaa ggccgtggag cgcgagcagg agcgcgtcaa gtcggcgggg 600 gcctggatca tccacccgta cagcgacttc aggttctact gggacttcac catgctgctg 660 ttcatggtgg gaaacctcat catcatccca gtgggcatca ccttcttcaa ggatgagacc 720 actgecccgt ggatcgtgtt caacgtggtc tcggacacct tettectcat ggacctggtg 780 840 ttgaacttee geaceggeat tgtgategag gacaacaegg agateateet ggaceeegag aagatcaaga agaagtatct gcgcacgtgg ttcgtggtgg acttcgtgtc ctccatcccc 900 gtggactaca tetteettat tgtggagaag ggeattgaet eegaggteta caagaeggea 960 cgcgccctgc gcatcgtgcg cttcaccaag atcctcagcc tcctgcggct gctgcgcctc 1020 tcacgcctga tccgctacat ccatcagtgg gaggagatct tccacatgac ctatgacctg 1080 qccaqcqcqq tqatqaqqat ctqcaatctc atcaqcatqa tqctqctqct ctqccactqq 1140 gacggctgcc tgcagttcct ggtgcctatg ctgcaggact tcccgcgcaa ctgctgggtg 1200 tccatcaatg gcatggtgaa ccactcgtgg agtgaactgt actccttcgc actcttcaag 1260

gccatgagcc acatgctgtg catcgggtac ggccggcagg cgcccgagag catgacggac 1320	
atctggctga ccatgctcag catgattgtg ggtgccacct gctacgccat gttcatcggc 1380	
caegecaetg eeeteateca gtegetggae teetegegge gecagtaeca ggagaagtae 1440	
aagcaggtgg agcagtacat gtccttccac aagctgccag ctgacttccg ccagaagatc 1500	
cacgactact atgagcaccg ttaccagggc aagatgtttg acgaggacag catcctgggc 1560	
gagetcaaeg ggeeeetgeg ggaggagate gteaaettea aetgeeggaa getggtggee 1620	
tccatgccgc tgttcgccaa cgccgacccc aacttcgtca cggccatgct gaccaagctc 1680	
aagttegagg tetteeagee gggtgaetae ateateegeg aaggeaceat egggaagaag 1740	
atgtacttca tccagcacgg cgtggtcagc gtgctcacta agggcaacaa ggagatgaag 1800	
ctgtccgatg gctcctactt cggggagatc tgcctgctca cccgggggccg ccgcacggcg 1860	
agcgtgcggg ccgacaccta ctgccgcctc tattcgctga gcgtggacaa cttcaacgag 1920	
gtgctggagg agtaccccat gatgcggcgc gccttcgaga cggtggccat cgaccgcctg 1980	
gaccgcatcg gcaagaagaa ttccatcctc ctgcacaagg tgcagcatga cctcaactcg 2040	
ggcgtattca acaaccagga gaacgccatc atccaggaga tcgtcaagta cgaccgcgag 2100	
atggtgcagc aggccgagct gggtcagcgc gtgggcctct teeegeegee geegeegeeg 2160	
<212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE: <221> NAME/KEY: gene <222> LOCATION: (1)(1812)	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence)	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence)	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcete ccgttgetee eccgcctgcg accgeggeet caggteegat ecceaaatet 120	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggcct caggtccgat ccccaaatct 120 gggcctgagc ctaagaggag gcaccttggg acgctgctcc agcctacggt caacaagttc 180	
<223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcete cegttgetee ecegectgeg acegeggeet caggteegat ececaaatet 120 gggcctgage etaagaggag gcacettggg acgetgetee ageetaeggt eaacaagtte 180 teeetteggg tgtteggeag ecacaaagea gtggaaateg ageaggageg ggtgaagtea 240	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggcct caggtccgat ccccaaatct 120 gggcctgagc ctaagaggag gcaccttggg acgctgctcc agcctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagcg ggtgaagtca 240 gcggggggcct ggatcatcca cccctacagc gacttccggt tttactggga cctgatcatg 300</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcete cegttgetee eccgectgeg acegeggeet caggteegat ecceaaatet 120 gggcctgage etaagaggag gcacettggg acgetgetee ageetaeggt eaacaagtte 180 teceetteggg tgtteggeag ecacaaagea gtggaaateg ageaggageg ggtgaagtea 240 geggggggeet ggateateea ecceetaeage gaetteeggt tttaetggga ectgateatg 300 etgetgetga tggtggggaa ecteategte etgeetgtgg geateacett etteaaggag 360</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcete cegttgetee eeegeetgeg acegeggeet caggteegat eeecaaatet 120 gggcetgage etaagaggag gcacettggg acgetgetee agcetaeggt caacaagtte 180 teeetteggg tgtteggeag ecacaaagea gtggaaateg agcaggageg ggtgaagtea 240 geggggggeet ggateateea eeectaeage gaetteeggt tttaetggga ectgateatg 300 etgetgetga tggtggggaa eeteategte etgeetgtgg geateacett etteaaggag 360 gagaacteee egeettggat egtetteaae gtattgtetg ataetttett eetaetggat 420</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggcct caggtccgat ccccaaatct 120 gggcctgagc ctaagaaggag gcaccttggg acgctgctcc agctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagcg ggtgaagtca 240 gcggggggcct ggatcatcca cccctacagc gacttccggt tttactggga cctgatcatg 300 ctgctgctga tggtggggaa cctcatcgtc ctgcctgtgg gcatcacctt cttcaaggag 360 gagaactccc cgccttggat cgtcttcaac gtattgtctg atactttett cctactggat 420 ctggtgctca acttccgaac gggcatcgtg gtggaggagg gtgctgagat cctgctggca 480</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggcct caggtccgat ccccaaatct 120 gggcctgagc ctaagaggag gcaccttggg acgctgctcc agctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagcg ggtgaagtca 240 gcggggggcct ggatcatcca cccctacagc gacttccggt tttactggga cctgatcatg 300 ctgctgctga tggtgggaa cctcatcgtc ctgcctgtg gcatcacctt cttcaaggag 360 gagaactccc cgccttggat cgtcttcaac gtattgtctg atactttctt cctactggat 420 ctggtgctca acttccgaac gggcatcgtg gtggaggagg gtgctgagat cctgctgcca 480 ccgcggggcca tccgcacgcg ctacctgcc acctggtcc tggttgacct catcttctt 540</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcgggct caggtccgat ccccaaatct 120 gggcctgagc ctaagaggag gcaccttggg acgctgctcc agcctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagcg ggtgaagtca 240 gcggggggcct ggatcatcca cccctacagc gacttccggt tttactggga cctgatcatg 300 ctgctgctga tggtggggaa cctcatcgtc ctgcctgtgg gcatcacctt cttcaaggag 360 gagaactccc cgccttggat cgtcttcaac gtattgtctg atactttctt cctactggat 420 ctggtgctca acttccgac gggcatcgtg gtggaggagg gtgctgagat cctgctgca 480 ccgcgggcca tccgcacgcg ctacctgcgc acctggttcc tggttgacct catctttct 540 atccctgtgg attacatctt cctagtggtg gagctggagc cacggttgga cgctgaggtc 600</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggcct caggtccgat ccccaaatct 120 gggcctgagc ctaagaggag gcaccttggg acgctgctcc agcctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagcg ggtgaagtca 240 gcggggggcct ggatcatcca cccctacagc gacttccggt tttactggga cctgatcatg 300 ctgctgctga tggtggggaa cctcatcgtc ctgcctgtgg gcatcacctt cttcaaggag 360 gagaactccc cgccttggat cgtcttcaac gtattgtctg atactttctt cctactggat 420 ctggtgctca acttccgaac gggcatcgtg gtggaggag gtgctgagat cctgctgcg 480 ccgcggggcca tccgcacgcg ctacctgcge acctggttcc tggttgacct catcttctt 540 atccctgtgg attacatct cctagtggtg gagctggagc cacggttgga cgctgaggtc 600 tacaaaacgg cacgggccct acgcatcgtt cgcttcacca agatcctaag cctgctgagg 660</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcc ggcggcgggg gccagcgaag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggcct caggtccgat ccccaaatct 120 gggcctgagc ctaagaggag gcaccttggg acgctgctcc agctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggageg ggtgaagtca 240 gcggggggcct ggatcateca cccctacage gacttccggt tttactggga cctgateatg 300 ctgctgctga tggtggggaa cctcatcgtc ctgcctgtgg gcatcacctt cttcaaggag 360 gagaactece cgecttggat cgtettcaae gtattgtetg atactttett cctactggat 420 ctggtgctca acttecgaae gggcategtg gtggaggagg gtgetgagat cctgetggea 480 ccgegggcca tecgcaegg ctacctgcge acctggttee tggttgacet catettett 540 atccetgtgg attacatett cctagtggtg gagctggage caeggttgga cgetgaggt 600 tacaaaacgg caegggceet acgeategtt cgettcaea agatectaag cctgetgagg 660 ctgetcegee tetecegeet catecgetae atacaccagt gggaggagat ettteacatg 720</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcageggcc ggcggcgggg gccagegaag gggcgacccc tggactggag 60 gcggtgcete cegttgetee ecegeetgeg acegeggeet eaggteegat ececaaatet 120 gggeetgage etaagaggag geacettggg acgetgetee ageetaeggt eaacaagtte 180 teeetteggg tgtteggeag ecacaaagea gtggaaateg ageaggageg ggtgaagtea 240 gegggggeet ggateateea ececetaeage gaetteeggt tttaetggga eetgateatg 300 etgetgetga tggtggggaa ecteategte etgeetgtgg geateaeett etteaaggag 360 gagaaeteee egeettggat egtetteaae gtattgtetg ataetttett eetaaeggat 420 etggtgetea actteegaae gggeategg gtggaaggag gtgetgagat eetgetggea 480 eegegggeea teegeaegeg etaeetgee acetggttee tggttgaeet eateettett 540 ateeetgtgg attaeatett eetagtggt gagetggage eacggtgga egetgaggt 660 taeaaaaegg eaegggeeet acegeategt egetteaea agateetaag eetggagg 660 etgeteegee teteeegeet aceedategt egetteaea agateetaag eetgaggag 720 acetatgaee tggeeagtge tgtggttege atetteaaee teattgggat gatgetgetg 780</pre>	
<pre><223> OTHER INFORMATION: hyperpolarization-activated, cyclic nucleotide-gated potassium channel 3 (HCN3) (partial coding sequence) <400> SEQUENCE: 27 atggaggcag agcagcggcg ggcggcgggg gccagcggag gggcgacccc tggactggag 60 gcggtgcctc ccgttgctcc cccgcctgcg accgcggct caggtccgat ccccaaatct 120 gggcctgage ctaagaggag gcaccttggg acgctgctcc agctacggt caacaagttc 180 tcccttcggg tgttcggcag ccacaaagca gtggaaatcg agcaggagg ggtgaagtca 240 gcggggggcct ggatcatcca cccctacage gacttccggt tttactggga cctgatcatg 300 ctgctgctga tggtgggaa cctcatcgtc ctgcctgtgg gcatcacctt cttcaaggag 360 gagaactccc cgccttggat cgtcttcaac gtattgtcg atacttctt cctactggat 420 ctggtgctca acttccgaac gggcatcgtg gtggaggagg gtgctgagat cctgctgga 480 ccggcgggcca tccgcacgg ctacctgcge acctggttce tggttgacct catctcttc 540 atccctgtgg attacatctt cctagtggg gagctggage cacggttgga cgctgaggtc 600 tacaaaacgg cacgggccet acgcatcgtt cgcttcacca agatcctaag cctgctggag 660 ctgctccgcc tctcccgcct catccgtc atacaccagt gggaggagat cttccacatg 720 acctatgacc tggccagtge tgtggttcg atcttcaace tcattgggat gatgctggag 780 etagtcact gggatggtg tctgcagttc ctggtgccaa tgctgcagga 780</pre>	

ggcatgcccg acgtctggct caccatgctc agcatgatcg taggtgccac atgctacgcc	1020
atgttcatcg gccatgccac ggcactcatc cagtccctgg actcttcccg gcgtcagtac	1080
caggagaagt acaagcaggt ggagcagtac atgtccttcc acaagctgcc agcagacacg	1140
cggcagcgca tccacgagta ctatgagcac cgctaccagg gcaagatgtt cgatgaggaa	1200
agcateetgg gegagetgag egageegett egegaggaga teattaaett eacetgtegg	1260
ggcetggtgg eccacatgee getgtttgee catgeegaee ecagettegt caetgeagtt	1320
ctcaccaagc tgcgctttga ggtcttccag ccggggggatc tcgtggtgcg tgagggctcc	1380
gtggggagga agatgtactt catccagcat gggctgctca gtgtgctggc ccgcggcgcc	1440
cgggacacac geeteacega tggateetae tttggggaga tetgeetget aaetagggge	1500
cggcgcacag ccagtgttcg ggctgacacc tactgccgcc tttactcact cagcgtggac	1560
catttcaatg ctgtgcttga ggagttcccc atgatgcgcc gggcctttga gactgtggcc	1620
atggatcggc tgctccgcat cggcaagaag aattccatac tgcagcggaa gcgctccgag	1680
ccaagtccag gcagcagtgg tggcatcatg gagcagcact tggtgcaaca tgacagagac	1740
atggeteggg gtgttegggg tegggeeeeg ageaeaggag eteagettag tggaaageea	1800
gtactgtggg ag	1812
<212> TYPE: DNA <213> ORGANISM: Homo Sapiens <220> FEATURE:	
<pre><221> NAME/KEY: gene <222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence)</pre>	
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic</pre>	
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence)</pre>	60
<222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28	60 120
<222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgccgccgte catgegeaag eggetetaca geeteegea geaggtgggg	
<222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaagc tgccgccgtc catgcgcaag cggctctaca gcctcccgca gcaggtgggg gccaaggcgt ggatcatgga cgaggaagag gacgccgagg aggagggggc cggggggccgc	120
<222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgeegeegte catgegeaag eggetetaca geeteegea geaggtgggg gecaaggegt ggateatgga egaggaagag gaegeegagg aggaggggge egggggeege caagaeeeea geegeaggag cateeggetg eggeeaetge eetegeeete eeeteggeg	120 180
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgccgccgte catgegcaag eggetetaca geeteeggaggggggggggggggggggggggggggggg</pre>	120 180 240
<222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgecgecgte catgegeaag eggetetaea geeteeega geegggggg eggggeege gecaaggegt ggateatgga egaggaagag gaegeegagg aggaggggge egggggeege caagaeeeea geegeaggag eateeggetg eggeeaetge eetegeeete eeeeeggg geegegggtg geaeggagte eeggageteg geeeteggg eageggaeag egaagggeeg geegegggtg eggeeagte eageaegaac ggegaetgea ggegetteeg egggageetg geeegeggeg egggeaagte eageaegaac ggegaetgea ggegetteeg egggageetg	120 180 240 300
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgeegecgte catgegeaag eggetetaca geeteegeggggg eggegggggg eggeggggg eggeggggg eggegg</pre>	120 180 240 300 360
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaagc tgccgccgtc catgcgcaag cggctctaca gcctcccgca gcaggtgggg gccaaggcgt ggatcatgga cgaggaagag gacgccgagg aggagggggc cggggggccgc caagacccca gccgcaggag catccggctg cggccactgc cctcgccctc cccctcggcg gccgcgggtg gcacggagtc ccggagctcg gccctcgggg cagcggacag cgaagggccg gcccgcggcg cgggcaagtc cagcacgaac ggcgactga ggcgctccg cgggagcctg gcctcgctgg gcagccgggg cggcggcagc ggcggcacg ggcggcag cagtcacgga cacctgcatg actccgcga ggagcggcgg ctcatcgccg agggcgacg gtcccccggc</pre>	120 180 240 300 360 420
<pre><222> LOCATION: (1)(214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgccgccgte catgegeaag eggetetaca geeteecga geaggtgggg gecaaggegt ggateatgga egaggaagag gaegeegagg aggagggggge egggggeege caagaeeeea geegeaggag eateeggetg eggeeaetge eetegeeete eeeteggeg geegegggtg geaeggagte eeggageteg geeeteggg eageggaeag eggageetg geeegeggeg egggeaagte eageaegaac ggegaetgea ggegeeteeg egggaeetg geetegetgg geaeegggg eggeggeage ggeggeaegg ggageggeag eagteaegga caeetgeetg acteegegg eggeggeegg eteategeeg aggegeaege gteeeegg gaggaeagga egeeeeagg eeggegeegg eteategeeg aggegeaege gteeeegge gaggaeagga egeeeeegg eeggegeegg eteategeeg aggegeaege gteeeegge gaggaeagga egeeeeagg eeggegeegg eteategeeg aggegeaege gteeeegge gaggaeagga egeeeeagg eeggegeeg eteategeeg aggegeaege eteggeegeage gaggaeagga egeeeeagg eeteggeggee gageeeggee eteggeegeage</pre>	120 180 240 300 360 420 480
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgccgccgte catgegcaag eggetetaca geeteeggaggegggggggggggggggggggggggggg</pre>	120 180 240 300 420 480 540
<pre><222> LOCATION: (1)(214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgeegeegte catgegeaag eggetetaca geeteegeag egggggege gecaaggeegt ggateatgga egaggaagag gaegeegagg aggaggggge egggggeege caagaceeca geegeaggag cateeggetg eggeeaetge eetegeeete eeeteggeg geegegggtg geaeggagte eeggageteg geeeteggg eageggaeag egagggeege geetegetgg eggeeaggte eageagaae ggegaetgea ggegeeteeg eggageetg geetegetgg geageegggg eggeggeage ggeggeaeg ggageggeag eagteaegga cacetgeatg acteegegga ggageggegg eteategeeg aggegeaeg eteeeegg gaggacagga egeeeeegg eggegeege gageeegge eteegeege eteegeege gaggacagga egeeeegge egeeeggeeggeegge egeeeggeegee</pre>	120 180 240 360 420 480 540
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgccgccgte catgegcaag eggetetaca geeteegeag egggggggggggggggggggggggggg</pre>	120 180 240 360 420 480 540 600
<pre><22> LOCATION: (1)(214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgccgcegte catgegeaag eggetetaca geeteeggegggggggeegge gecaaggegt ggateatgga egaggaagag gaegeeggg aggaggggge egggggeege caagaeeeea geegeaggag eateeggetg eggeeaetge eeteggeete eeeteggeg geegegggtg geaeggagte eeggageteg geeeteggg eageggaeag eggaggeege geetegetgg geageeggg eggeggeage ggeggeaegg ggageggeag eagteaegga caeetgeatg acteegegg eggeggeage ggeeggeaeg ggeegeaege gteeeeegg gaggacagga egeeeeag eeteggegee gageeegge eteggegee gaggacagga egeeeeag eeteggegee gageeegge eteggeege gaggacagga egeeeeag eeteggegee gageeegge eteggeege gaggacagga egeeeeag eeteggegee gageeegge eteggeege gaggacagga egeeeeag eeteggegee gageeegge eteggeegag caeeeeageet egeegeee geeeeage egeeeegee eteggeega caeeeeageet egeegeee tateaaagtg gagggaggeg egeeteeg eggeeee atgeteeaae eegggteaa eaaattetee etaaggatgt teggeageea gaaageegtg</pre>	120 180 240 360 420 480 540 600 660 720
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgeegeegte catgegeaag eggetetaca geeteegeag egggggege gecaaggeegt ggateatgga eggaggaagag gaegeegagg aggaggggge egggggeege caagaceeea geegeaggag cateeggetg eggeeaetge ectegeeete ecceteggeg geegegggtg geaeggagte eeggageteg geeetegggg eageggaacag eggaggeegg geetegeggeg egggeaagte eageaggaac ggeggeaetge ggegeeteeg egggaaetge geetegetgg geageegggg eggeggeaeg ggeggeaegg ggageggeag eagteaegga caeetgeatg acteegegga ggageggee eteategeeg aggegeaeg eteetegge gaggacagga egeeeeaag eeteggege eggeeteege eteegeege gaggacagga egeeeeaag eeteggege gageeegge eggeeteege eteegege gaggacagga egeeeeaag eeteegage eggeeteege eteetgeega cageeetegg tggacacege tateaaagtg gagggaggeg eggetgeeg geeeagate eteeeggagg eegaggtege eetgggeeag geeggettea tgeagegeea gteegggee atgeteeaae eegggteaa caaattetee etaaggatgt teggeageea gaaageegtg gagegegaae aggagagggt caagteggee ggattttgga ttateeacee etaeagtgae gagegegaae aggagagggt caagteggee ggattttgga ttateeacee etaeagtgae</pre>	120 180 240 360 420 480 540 660 720 780
<pre><222> LOCATION: (1)(2214) <223> OTHER INFORMATION: Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 4 (HCN4) (Partial Coding Sequence) <400> SEQUENCE: 28 atggacaage tgeegeegte catgegeaag eggetetaca geeteegeag eggggeeg gecaaggegt ggateatgga egaggaagag gaegeegag aggaggggge egggggeeg geegegggtg geaeggagte eeggageteg geeeteggg eageggaeag egaagggeeg geeegeggeg egggeaagte eageaegaae ggegaetgea ggegeteeg eggageetg geetegetgg geageeggag eggeegeage ggeegeagg eggegeage eagteaegga cacetgeetg geageeggag eggeegeeg eggegeege ggeegeege eteggege gaggaeagga egeeeeag eetggegee gageeege eteggege eteggege gaggaeagga egeeeeag eetggegee gageeege eteggege gaggaeagga egeeeeag eetggegee gageeegge eteggegee gaggaeagga egeeeeag eetggeggee gageeegge eteggegee gageeetegg tggaeaeege tateaaagtg gagggageg eggeeege eteggegee atgeteeaae eegggteeg eetggegee geeeggettea tgeagegee gteegggee atgeteeaae eegggteea eaaattetee etaaggatg teggeageea gaaageegtg gageeggaae aggagagggt eaagteggee ggatttegg ttateeaee etaaggat tteagatttt actgggaeet gaeeatgetg etgetgatgg tgggaaaeet gattacatt</pre>	120 180 240 300 420 480 540 600 660 720 780 840

gaggacaaca cagaga	atcat cctggacccg	cagcggatta	aaatgaagta	cctgaaaagc	1020	
tggttcatgg tagatt	tcat ttcctccatc	cccgtggact	acatcttcct	cattgtggag	1080	
acacgcatcg actcg	gaggt ctacaagact	gcccgggccc	tgcgcattgt	ccgcttcacg	1140	
aagateetca geetet	tacg cctgttacgc	ctctcccgcc	tcattcgata	tattcaccag	1200	
tgggaagaga tettee	cacat gacctacgac	ctggccagcg	ccgtggtgcg	catcgtgaac	1260	
ctcatcggca tgatgo	ctect getetgeeae	tgggacggct	gcctgcagtt	cctggtaccc	1320	
atgctacagg acttco	cctga cgactgctgg	gtgtccatca	acaacatggt	gaacaactcc	1380	
tggggggaagc agtact	ceta egegetette	aaggccatga	gccacatgct	gtgcatcggc	1440	
tacgggcggc aggcgo	cccgt gggcatgtcc	gacgtctggc	tcaccatgct	cagcatgatc	1500	
gtgggtgcca cctgct	acgc catgttcatt	ggccacgcca	ctgccctcat	ccagtccctg	1560	
gactectece ggegee	cagta ccaggaaaag	tacaagcagg	tggagcagta	catgtccttt	1620	
cacaagetee egeeeg	gacac ccggcagcgc	atccacgact	actacgagca	ccgctaccag	1680	
ggcaagatgt tcgaco	gagga gagcatcctg	ggcgagctaa	gcgagcccct	gcgggaggag	1740	
atcatcaact ttaact	gtcg gaagctggtg	gcctccatgc	cactgtttgc	caatgcggac	1800	
cccaacttcg tgacgt	ccat gctgaccaag	ctgcgtttcg	aggtetteca	gcctggggac	1860	
tacatcatcc gggaag	ggcac cattggcaag	aagatgtact	tcatccagca	tggcgtggtc	1920	
agcgtgctca ccaago	ggcaa caaggagacc	aagctggccg	acggctccta	ctttggagag	1980	
atctgcctgc tgacco	cgggg ccggcgcaca	gccagcgtga	gggccgacac	ctactgccgc	2040	
ctctactcgc tgageg	gtgga caacttcaat	gaggtgctgg	aggagtaccc	catgatgcga	2100	
agggcetteg agaeeg	ytggc gctggaccgc	ctggaccgca	ttggcaagaa	gaactccatc	2160	
ctcctccaca aagtco	cagca cgacctcaac	teeggegtet	tcaactacca	ggag	2214	
	56 Homo Sapiens gene (1)(2256)	assium Char	nnel 4 (HCN4		oding	
<400> SEQUENCE: 2	29					
cgcctcgcca tggaca	aaget geegeegtee	atgcgcaagc	ggctctacag	cctcccgcag	60	
caggtgggggg ccaage	gegtg gateatggae	gaggaagagg	acgccgagga	ggaggggggcc	120	
ggggggccgcc aagaco	cccag ccgcaggagc	atccggctgc	ggccactgcc	ctcgccctcc	180	
ccctcggcgg ccgcgg	ggtgg cacggagtcc	cggagctcgg	ccctcggggc	agcggacagc	240	
gaagggccgg cccgc	ggcgc gggcaagtcc	agcacgaacg	gcgactgcag	gcgcttccgc	300	
gggagcetgg eetege	ctggg cagccggggc	ggcggcagcg	gcggcacggg	gagcggcagc	360	
agtcacggac acctgo	catga ctccgcggag	gagcggcggc	tcatcgccga	gggcgacgcg	420	
teccceggeg aggaea	aggac gcccccaggc	ctggcggccg	agcccgagcg	ccccggcgcc	480	
teggegeage eegeag	geete geegeegeeg	ccccagcagc	caccgcagcc	ggcctccgcc	540	
tcctgcgagc agccct	coggt ggacacogot	atcaaagtgg	agggaggcgc	ggctgccggc	600	

-continued

gaccagatec teceggage egaggtege tegggeca fede tteggggeca teceggage egaggtega aaattetee tagggeca fede aaageegteg aegeegaaca ggagaggte aagteegge ggataaca fede tacagtgact tacagtega gegagaaca ggagaggte aagteegge ggataacaca fede attateatte ctggggaca aagteegge ggataacaca ggadaaca fede attggggag aagteegge tecteateg eeggagaca fede fede attggggag aeggacaca aggattee tecteateg eeggagaca fede fede attgggaga cacgetega etggagaca tectecate eeggagaca fede fede attgggaga cacgetega etggagge tectecate eeggagge fede fed fede fede f		
anagecegtagagegegaacaggagagggtcagteggecggatttagattatcaccccaaagecegtagagegegaacaggagagggtcacatgetgetgettagattatcaccccattacattectggggcatcacettetteaaggatggaacaccaccacectgggatggattacattectggggcatacattetectgggaccgaggatggaacaccaccacectggggattacattectgtgggtgaggacaacaaggattactctggacccgaggggattaatggagt1020ctgaaagetggttcatggtagatteatttcetccateccegtggactcatetteete1080attgtggagacacgcategactggaggtetacaagactcegtgggte1200attacaccagtgggtaaacacagatteatttcetccatecegtggec1200attgtggagacacgcategacteggagtetacaagactcettacge1200attacaccagtgggaaggatcteccacatcctggaccetacagtge1200attacaccagtgggaaggatcteccacatcctggaccetacagtge1200attacaccagtgggaaggatcteccacatgcctgaccetgge1200attacaccagtgggaaggatcteccacatgcctgaccetgge1200attacaccagtgggaaggatcteccacatgcctgaccetgge1200attacaccagtgggaaggatcteccacatgcctgaccactgge1320ctggaaccagtgtccacagatgecegcctgaccactgge1320ctggaaccactggtggacagtaccctacgccgtcacatacacatgge1320ctgatacgggggcacaca<	gaccagatee teeeggagge egaggtgege etgggeeagg eeggetteat geagegeea	g 660
tacagtgact tcagattta ctgggacctg accatgctg tgctgatggt gggaaacctg840attacatte ctgtgggeat cacettette aaggatgaga acaceacae etggattgte900tteaatgtgg tgtcagacae attetteet ategacttgg teeteaact ecgeacaggg960ategtggtgg aggacaacae agagateate etggacege ageggattaa aatgaagtae1020ctgaaaaget ggteatggt agatteatt teeteeate ecggggeeta catetteet1080attgtggaga caegeatega eteggaggte tacaagaetg ecegggeet gegeattgte1140cgetteacga agateeteag ectettaege etgttaegee teecegee eggacgee egggtegee1260attgtggaace teateggeat gatgeteet getettaege etgetegg tgteeteaa eacatggtg1320attgtgaace teateggeat gatgeteet gegeetgg tgteeteaa eacatggtg1320etggtacee tggtaaggat etteetgae gaetgetgg tgteeteaa eacatggtg1380aacaaeteet gggggaagga gtacteetg eggetegg acgeetgg acgettega ecacatgetg1440tgeategget acgggeggea ggegeegg ggeatgteeg acgtetgget caecatgete1500ageatgateg tgggtgeea etgetaege agegagat acaageaggt ggacgatae1620cagteetgg ecaagatgt eggegeegg agegeegg ageagege tecaagaet eaggaagat etaeaagaagg ageageagt a1320ctggtacea tgetaegea gegeeegg ggeatgteeg acgtetgge caecatgetg1440tgeategget acgggegga ggeecegg ggeatgteeg acgtetgge caecatgetg1500ageatgateg tgggtgeea etgetaege agegegeat ecaeggat ggaceagtae1620cggagagaa teateaaett taaetgtegg aagetgegg ecgacaag eggeeetgg1740cgggaggaag teateaaetg gaegteega agetgeega agetgeega agetgeega agetgeega1800aatgeeggae accateteg ggaagaeae ateggaagaa agatgae agetgeegae agetgeega agetgeegae1800aatgeeggae caeaattet gaeggagae atetegg etgeegaeag agedgeetgg1800cggg	ttcggggcca tgctccaacc cggggtcaac aaattctccc taaggatgtt cggcagcca	g 720
attacattectggggcatcaccttetteaaggatgagaacaccacaecctggattgte900tteaatgtggtgtcagacaeattetteeategacttggteeteaactcegacaggg960ategtggtggaggacaacaeaggateatectggaccegageggattaaaatgaggate1020ctgaaaagetggtteatggtagatteattteetecateceggggattacatetteete1080attgtggagacacgecategacteggaggtetacaagactgceegggecetgegattate1020attgtggagacacgecategacteggaggtetacaagactgceegggecetgegattate1020attgtggagacacgecategacteggaggtetacaagactgceegggecetcatetteete1080attgtggagacacgecategactecategaceetggecettececategat1140cgetteacgagggaagagatettecacatgactacgectegecageccatetegat1220attgtggaaceteateggetgedgecategegecagegggacggec13201320attgtggtaceteateggetgedgeggggateteetaggecaggg1320ctggtaccatgetacaggagtacteetaggecagae13201380aacaacteetggggggagagtacteetagegecateacacaacage1320cagteaggetgggggggagagtacteetagegecateatacaagae1620ageatgatetegggggagagegececategegecateagegecatea1500ageatgatetgggggaagegecagegegecageagegecatea1620ageatgateteggegggagegecaga	aaagccgtgg agcgcgaaca ggagagggtc aagtcggccg gattttggat tatccaccc	c 780
ttcaatgtgg tgtcagacac attcttecte ategacttgg tecteaactt eegeacaggg960ategtggtgg aggacaacac agagateate etggaceege ageggattaa aatgaagtac1020ctgaaaaget ggtteatggt agatteatt teeteeatee eegggacea aetggacta eateeteete1080attgtggaga caegeatega eteggaggte tacaagaetg eegggacea gegeattgte1140cgetteaega agateeteag eetettaege etgteaegee teteeegeet eateegatat1200attgtggaace teateggeat gatgeteetg etgeeaeteggg tgteeateaa eaaetaggtg1320etggtacea tgetaeagga etteeetga gaetgeetggg tgteeateaa eaaetaggtg1380aacaacteet gggggaagea gtaeteeta gegetettea aggeeatgge eaceatgeet1500ageatgateg tgggggeea ggegeeegg ggeatgteeg aegtetgget eaceatgete1500ageatgateg tgggggeae eggeeegga aggegeet eeggaagge gegeeegg eggaagaag teaeaagt1680ceggaaggaag teateee geeegaaag eeggeeegg eggeagea teeaaggeg ggaagaagat1620atgteettte acaagetee geeegaaag eggeeegg aggeagea teeaaggag ggaagaaga1620atgteettte acaagetee geeegaaag eggeeegg aggeagea teeaagaegg ggaagaagat1620atgteettte acaagetee geeegaaag eggeeegg aggeagea teeaagaegg ggaagaagat1620atgteettte acaagetee geeegaaag eggeeegg acgeagea teeaagaagt ggageagta1620atgteettte acaagetee geeegaaag agaateetgg geggeagaag ggaegaega1620atgteettte acaagetee geeegaaag agaateetgg geggeeaa etgeggeegaagae1620cggaaggag teateaett taactgtegg agaagaag acateetgg geggetaa etgeggeegaa1800ceggaggaga teateaet taactgteg gaegtgeg eegeegaa eggeeetga gegeeetga1800aatgeeggaee eeaaetteg gaaggeeae attggeaaga agatgtaett eateeagae1920ggeggggaaga tetgeetge gaegggeae aaggagaa agatgaeaa agetggeega eggeecea	tacagtgact tcagatttta ctgggacctg accatgctgc tgctgatggt gggaaacct	g 840
atcgtggtgg aggacaaca agagatcatc ctggaccge agcggattaa aatgaagtac ctgaaaaget ggtteatggt agattteatt teetecate eegtggacta eatetteete attgtggaga eacgeatega eteggaggte tacaagaetg eeegggeet eategatat 1200 attgtggaga eacgeatega eteggaggte tacaagaetg eegggeet eategatat 1200 atteaceagt gggaaggagat etteeacatg acetacgaee tggeeaggee egtggtgee 1260 ategtgaace teateggeat gatgeteetg etetgeeate gggaeggetg eetgeagte 1320 etggtaecea tgetaeagga etteeetgae gaetgeegg tgteeateaa eaacatggtg 1380 aacaaeteet gggggaagea gtaeteeta eeggeetgeg acgeetgget eaceatgetg 1440 tgeategget aegggeggea ggegeeegtg ggeatgteeg aegteegge tgeeetaet 1500 ageatgateg tgggtgeeae etgetaegee atgteattg geeaegeeae	attatcattc ctgtgggcat caccttcttc aaggatgaga acaccacacc	900
ctgaaaagct ggttcatggt agattcatt teetecatee cegtggaeta eatetteete 1080 attgtggaga eaegeatega etecgaeget taeaagaetg eeeggeeet gegeattgte 1140 egetteaega agateeteag eetettaege etgttaegee teteeegee egtggtege 1260 atteaeeagt gggaagagat etteeetgae gaetgeetgg tggeeagee egtggtege 1320 etggtaeee teateggeat gatgeteetg etetgeeate gggaeggetg eetgeagteg 1380 aaeaaeteet gggggaagea gtaeteetg gegetgteg ggeeagee eaeatggtg 1380 aaeaaeteet gggggaagea gtaeteeta gegetettea aggeeatgag eeaeatgetg 1440 tgeategget aegggegea ggegeeegtg ggeatgteeg aegteetgge eaeatgetg 1560 atgteette aeaggeege eggeeagtae eaggaaaagt aeaageaggt ggageagtae 1620 atgteette aeaagetee geeegaagaa geateetgg gegageagt eeaeatgetg 1620 atgteette aeaagetee geeegaaga ageeteetgg gegageagt eeaeagae 1620 atgteette aeaagetee geeegaaga ageeteetgg gegageege teeaegae 1620 atgteette aeaagetee geeegaaga ageeteetgg gegagetage eaeagae 1620 aggaggaga teateaaett taaetgtegg aagetegtgg eedeadae eaeagaega 1740 egggaaggae eeaaetteg gaegteetg etggeeage tegetteega ggtetteeag 1860 eetgggaee eeaaetteg gaeggeeag ageeteetg eegeteteag 1920 ggeetggtea geetgetee eaaggaaa agaggaee agegtgeeg eegeeteeta 1920 ggeetggtea geetgetee gaeeggge eggeeaag eeggeteetae 1920 tttggaagaa tetgeetget gaeegggee eggeeaeag eeggetgag eeggeeaee 2040 taetgeegee tetaetege gaeggtgge etggaeege teggaegga ggagaagee 2100 atgategeag gggeettega gaeegtgeg etggaeegee tggeegaa eegegeaag 2160 aaeteedee teeteeaaa agteeggee eggeeeaet eegeette aaeagaaga 2160	ttcaatgtgg tgtcagacac attcttcctc atcgacttgg tcctcaactt ccgcacagg	g 960
attgtggagacacacactegactcggaggtetacaagactgcccggggcetgcgcattgte1140cgetteacgaagateeteagcetetacgectteacgectteacgetetecacatg1200atteaccagtgggaagagatetteeacatgacetacgeecggecageecttegatat1200ategtgaaceteateggeatgatgeteetgetteeacatggggeaggege1260ategtgaaceteateggeatgatgeteetgetteeacatggggeaggege1200ctggtacceatgetacaggagtacteetgctteeacatggggeaggege1320ctggtacceatgetacaggagtacteetggaetgeteggtgecatacagge1380aacaacteetgggggaageagtacteetgggecatgteggcacacatgetg1440tgeateggetacgggeggeaggegeeceggggecatgtegacgecatgge1500ageatgategtgggtggecaeetgetacageaggecatggegegaggagat1620atgteettteacaageteegegecagtaecaggaagag1620atgteettteacaageteegegecagaeaecaggaagag1620atgteettteacaageteegegecagaeae1620atgteettteacaageteegecegaaaag1620atgteettteacaageteegecegaagaa1620atgteetteacaageteegecegaagaa1620atgteetteacaageteegecegaagaag1620atgteetteacaageteegecegaagaagaagaagaagaagaagaagagagagae1620atgteetteacaaeetegaegagagaagaagaagaagaagaagagagagagagaegaagae1620atgteeggg </td <td>atcgtggtgg aggacaacac agagatcatc ctggacccgc agcggattaa aatgaagta</td> <td>2 1020</td>	atcgtggtgg aggacaacac agagatcatc ctggacccgc agcggattaa aatgaagta	2 1020
cgetteaega agateeteag eetettaege etgttaegee teteeegeet eattegatat 1200 atteaeeag gggaaggat etteeeatg acetaegaee tggeeagee egtggtgege 1260 ategtgaace teateggeat gatgeteetg etetgeeaet gggaeggetg eetgeagtee 1320 etggtaeeea tgetaeagga etteeetgae gaetgetggg tgteeateaa eaaeatggtg 1380 aaeaaeteet gggggaagea gtaeteetae gegetettea aggeeatgag eeaeatgetg 1440 tgeategget aegggeggea ggegeeegtg ggeatgteeg aegtetgget eaeeatgete 1500 ageatgateg tgggtgeeae etgetaegee atgtteattg geeaegeeae	ctgaaaagct ggttcatggt agatttcatt tcctccatcc ccgtggacta catcttcct	c 1080
attcaccagt gggaagagat ettecacatg acetacgaee tggecagee egtggtgeee 1260 ategtgaace teateggeat gatgeteetg etetgeeaet gggaeggetg eetgeagtte 1320 etggtaecea tgetacagga ettecetgae gaetgetggg tgteeateaa caacatggtg 1380 aacaaeteet gggggaagea gtaeteetae gegetettea aggeeatgae caecatgetg 1440 tgeategget aegggeggea ggegeeegtg ggeatgteeg aegtetgget eaceatgete 1500 ageatgateg tgggtgeeae etgetaegee atgtteattg geeaegeeae	attgtggaga cacgcatcga ctcggaggtc tacaagactg cccgggccct gcgcattgt	c 1140
atcgtgaace teateggeat gatgeteetg etetgeeaet gggaeggetg eetgeagtee 1320 etggtaecea tgetaeagga etteeetgae gaetgetggg tgteeateaa caacatggtg 1380 aacaaeteet gggggaagea gtaeteetae gegetettea aggeeatgag eeaeatgetg 1440 tgeategget aegggeggea ggegeeegtg ggeatgteeg aegtetgget eaeeatgete 1500 ageatgateg tgggtgeeae etgetaegee atgtteattg geeaegeeae	cgetteaega agateeteag eetettaege etgttaegee teteeegeet eattegata	1200
ctggtaccca tgctacagga cttccctgac gactgctggg tgtccatcaa caacatggtg 1380 aacaactcct gggggaagca gtactcctac gcgctcttca aggccatgag ccacatgctg 1440 tgcatcggct acgggcggca ggcgcccgtg ggcatgtccg acgtctggct caccatgctc 1500 agcatgatcg tgggtgccac ctgctacgcc atgttcattg gccacgccac	attcaccagt gggaagagat cttccacatg acctacgacc tggccagcgc cgtggtgcg	2 1260
aacaacteet gggggaagea gtaeteetae gegetettea aggeeatgaa ecaeatgete 1440 tgeategget aegggeggea ggegeeegtg ggeatgteeg aegtetgget eaceatgete 1500 ageatgateg tgggtgeeae etgetaegee atgtteattg geeaegeeae	atcgtgaacc tcatcggcat gatgctcctg ctctgccact gggacggctg cctgcagtt	c 1320
tgcatcggct acgggcggca ggcgccgtg ggcatgtccg acgtctggct caccatgctc 1560 agcatgatcg tgggtgccac ctgctacgcc atgttcattg gccacgccac	ctggtaccca tgctacagga cttccctgac gactgctggg tgtccatcaa caacatggt	g 1380
agcatgatcg tgggtgccac ctgctacgcc atgttcattg gccacgccac	aacaacteet ggggggaagea gtacteetae gegetettea aggeeatgag ceacatget	g 1440
cagtecetgg actecteeeg gegeeagtae caggaaaagt acaageaggt ggageagtae 1620 atgteettte acaageteee geeegacaee eggeagegea teeaegacta etaegageae 1680 egetaeeagg geaagatgtt egaegaggag ageateetgg gegagetaag egageeetg 1740 egggaggaga teateaaett taaetgtegg aagetggtgg eeteeatgee aetgttege 1800 aatgeeggaee eeaaettegt gaegteeatg etgaeeage tgegtteega ggtetteeag 1860 eetggggaet acateateeg ggaaggeaee attggeaaga agatgtaett eateeageat 1920 ggeegtggtea gegtgeteae eaagggaeae aaggagaeea agetggeega eggeteetae 1980 tttggagaga tettgeetget gaeeegggee eggegeeaeg eeagetggag ggeegaeaee 2040 taetgeegee tetaeteget gaeegtggeg etggaeegee tggaeegga ggagtaeeee 2100 atgatgegaa gggeettega gaeegtggee etggaeegee tggaeegeat tggeaagaag 2160 aaeteeatee teeteeaa agteeageae gaeeteaaet eeggetett eaaetaeeag 2220	tgcatcggct acgggcggca ggcgcccgtg ggcatgtccg acgtctggct caccatgct	c 1500
atgteettte acaageteec geeegaagag ageateetgg gegagetaag egageeetg 1740 egggaggaga teateaaett taaetgtegg aagetggtgg eeteetge gegtteega ggtetteega 1860 eetggggaee eeaaettegg gaeggeeet attggeeaga agatgtaett eateeageat 1920 geegtggtea gegtgeteae eaagggeeae attggeaaga agatgtaett eateeageat 1920 tttggagaga tetgeetget gaeeggegge eggegeeeag eeggegega ggeegaeee 2040 taetgeegee tetaeteget gaeegtggge etggaeege tggaeega ggeegaeee 2040 aatgatgeegaa gggeetteega gaeegtggeg etggaeege tggaeegaa tegeeagaag 2160 aatgatgeegaa gggeetteega agteeggee etggaeege tggaeegeat tegeeagaag 2160 aaeteeatee teeteecaa agteeggee gaeeteaaet eeggetett eaaetaecag 2220	agcatgateg tgggtgeeae etgetaegee atgtteattg geeaegeeae	c 1560
cgctaccagg gcaagatgtt cgacgaggag agcatcctgg gcgagctaag cgagccctg 1740 cggggaggaga tcatcaactt taactgtcgg aagctggtgg cctccatgcc actgtttgcc 1800 aatgcggacc ccaactcgt gacgtccatg ctgaccaagc tgcgtttcga ggtcttccag 1860 cctggggact acatcatccg ggaaggcacc attggcaaga agatgtactt catccagcat 1920 ggcgtggtca gcgtgctcac caaggggcacc aaggaggacca agctggccga cggctcctac 1980 tttggagaga tctgcctgct gacccggggc cggcgcacag ccagcgtgag ggcgacacc 2040 tactgccgcc tctactcgct gaccgtggg ctggaccgc tggaccgat tggcaagaa 2160 atgatgcgaa gggccttcga agtccagca agtcgaccc tcgaccgat tggcaagaag 2160 aactccatcc tcctccacaa agtccagcac gacctcaact ccggcgtctt caactaccag 2220	cagtccctgg actcctcccg gcgccagtac caggaaaagt acaagcaggt ggagcagta	c 1620
cgggaggaga tcatcaactt taactgtcgg aagctggtgg cctccatgcc actgtttgcc 1800 aatgcggacc ccaacttcgt gacgtccatg ctgaccaage tgegtttega ggtettecag 1860 cctggggact acateateeg ggaaggeace attggeaaga agatgtaett cateeageat 1920 ggegtggtea gegtgeteae caagggeaae aaggagaeea agetggeega eggeteetae 1980 tttggagaga tetgeetget gaeeegggge eggegeaeag eeagegtgag ggeegaeaee 2040 taetgeegee tetaeteget gaeegggge etggaeegee tggaeegga ggagtaeeee 2100 atgatgegaa gggeettega gaeegtggeg etggaeegee tggaeegae tggeaagaag 2160 aacteeatee teeteecaaa agteeggee gaeeteaaet eeggegtett eaaetaeeg 2220	atgteettte acaageteee geeegacaee eggeagegea teeaegacta etaegagea	c 1680
aatgeeggaee eeaacttegt gaegteetge etggaeegee teggaeegga gggeeteegg 2040 taetgeeggee tetaeteget gaeegtegge etggaeegee teggaeegga gggeeteegg 2040 taetgeegge tetaeteget gaeegtggee etggaeege teggaeegga gggeegaeeg 2040 atgatgeega gggeetteega gaeegtggee etggaeegee teggaeegeat teggeagga 2160 aacteeatee teeteegaa agteeggee ggeegteate eeggeetett eaactaeeg 2220	cgctaccagg gcaagatgtt cgacgaggag agcatectgg gcgagetaag egageeeet	g 1740
cctgggggact acatcatccg ggaaggcacc attggcaaga agatgtactt catccagcat1920ggcgtggtca gcgtgctcac caagggcaac aaggagacca agctggccga cggctcctac1980tttggagaga tctgcctgct gacccggggc cggcgcacag ccagcgtgag ggccgacacc2040tactgccgcc tctactcgct gagcgtggac aacttcaatg aggtgctgga ggagtacccc2100atgatgcgaa gggccttcga ggccgtggcg ctggaccgcc tggaccgcat tggcaagaag2160aactccatcc tcctccacaa agtccagcac gacctcaact ccggcgtctt caactaccag2220	cgggaggaga tcatcaactt taactgtcgg aagctggtgg cctccatgcc actgtttgc	c 1800
ggegtggtca gegtgeteae eaagggeaae aaggagaeea agetggeega eggeegaeaee 2040 taetgeegee tetaeteget gaeeegggge eggegeaeag eeagegtgag ggeegaeaee 2100 atgatgegaa gggeettega gaeegtggeg etggaeegee tggaeegeat tggeaagaag 2160 aacteeatee teeteeaaa agteeageae gaeeteaaet eeggegtett eaaetaeeag 2220	aatgeggaee ceaacttegt gaegteeatg etgaeeaage tgegtttega ggtetteea	g 1860
tttggagaga tetgeetget gaecegggge eggegeacag eeagegtgag ggeegacaee 2040 taetgeegee tetaeteget gagegtggae aaetteaatg aggtgetgga ggagtaecee 2100 atgatgegaa gggeettega gaeegtggeg etggaeegee tggaeegeat tggeaagaag 2160 aaeteeatee teeteeaaa agteeageae gaeeteaaet eeggegtett eaaetaecag 2220	cctggggact acatcatccg ggaaggcacc attggcaaga agatgtactt catccagca	1920
tactgccgcc tctactcgct gagcgtgggac aacttcaatg aggtgctgga ggagtacccc 2100 atgatgcgaa gggccttcga gaccgtggcg ctggaccgcc tggaccgcat tggcaagaag 2160 aactccatcc tcctccacaa agtccagcac gacctcaact ccggcgtctt caactaccag 2220	ggcgtggtca gcgtgctcac caagggcaac aaggagacca agctggccga cggctccta	c 1980
atgatgegaa gggeettega gaeegtggeg etggaeegee tggaeegeat tggeaagaag 2160 aaeteeatee teeteeaaa agteeageae gaeeteaaet eeggegtett caaetaeeag 2220	tttggagaga tctgcctgct gacccggggc cggcgcacag ccagcgtgag ggccgacac	2040
aactecatee teetecacaa agtecageae gaeeteaact eeggegtett caactaeeag 2220	tactgccgcc tctactcgct gagcgtggac aacttcaatg aggtgctgga ggagtaccc	2100
	atgatgcgaa gggccttcga gaccgtggcg ctggaccgcc tggaccgcat tggcaagaa	g 2160
gagcagaagc tgatctcaga ggaggacctg ctttga 2256	aactccatcc teetecacaa agtecageae gaeeteaaet eeggegtett caaetaeea	g 2220
	gagcagaagc tgatctcaga ggaggacctg ctttga	2256

1-23. (canceled)

24. A nucleic acid construct comprising:

- a heterologous regulatory sequence operably linked to a nucleotide sequence encoding a truncated human hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) protein,
- wherein the truncated human HCN4 protein is a truncated version of an un-truncated wild-type human HNC4 protein that encodes a cyclic nucleotide binding domain (CNBD) and is truncated 16 amino acids after the coding sequence of the CNBD, and
- wherein expression of the human HCN4 truncated polynucleotide in an isolated cell results in a channel respon-

sive to cyclic adenosine monophosphate (cAMP) over a broader range of potentials than the un-truncated wild-type human HCN4 protein.

25. An isolated purified cell comprising the construct of claim **24**, wherein expression of the human HCN4 truncated polynucleotide in the cell results in a channel responsive to cAMP over a broader range of potentials than the un-truncated wild-type human HCN4 protein.

26. A pharmaceutical composition comprising the cell of claim **25** and a pharmaceutically acceptable carrier.

27. A method comprising administering the pharmaceutical composition of claim **25** to a patient in need thereof.

28. The method of claim **27**, wherein the patient is suffering from a cardiac dysfunction.

29. The method of claim **28**, wherein the cardiac dysfunction is arrhythmia.

30. The method of claim **28**, wherein the cardiac dysfunction is bradyarrhythmia.

31. The method of claim **28**, wherein the cardiac dysfunction is tachyarrhythmia.

32. A pharmaceutical composition comprising the construct of claim **24** and a pharmaceutically acceptable carrier.

33. The pharmaceutical composition of claim **32**, further comprising a nucleic acid construct comprising a heterologous regulatory sequence operably linked to a nucleotide sequence encoding a protein selected from the group consisting of human hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) protein, human hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) protein, and human hyperpolarization-activated cyclic nucleotide-gated 3 (HCN3).

34. The pharmaceutical composition of claim **33**, further comprising a nucleic acid construct comprising a heterologous regulatory sequence operably linked to a nucleotide sequence encoding a protein selected from the group consisting of beta-1 adrenergic receptor, beta-2 adrenergic receptor, T-type calcium channel (CACNA1H, $I_{ca,T}$), human L-type calcium channel (CACNA1C, $I_{ca,L}$), mink-related peptide 1 (KCNE2-beta, MiRP1, HCN-beta subunit), voltage-gated channel (KCNE2, I_{Kr}), cholinergic receptor, acetylcholine-activated K+ channel (KCNJ3, KCNJ4, $I_{K(Ach)}$), muscarinic 2 receptor (CHRM2), muscarinic 3 receptor (CHRM3), inwardly-rectifying K+ channel (KCNJ2, I_{K1}), transient out-

ward K+ channel voltage-gated channel (KCND3, T_{t0} and Kv channel interacting proteins 2 (KchIP2.x).

35. The pharmaceutical composition of claim **32**, further comprising a nucleic acid construct comprising a heterologous regulatory sequence operably linked to a nucleotide sequence encoding a protein selected from the group consisting of beta-1 adrenergic receptor, beta-2 adrenergic receptor, T-type calcium channel (CACNA1H, $I_{ca,T}$), human L-type calcium channel (CACNA1C, $I_{ca,L}$), mink-related peptide 1 (KCNE2-beta, MiRP1, HCN-beta subunit), voltage-gated channel (KCNE2, I_{Kr}), cholinergic receptor, acetylcholine-activated K+ channel (KCNJ3, KCNJ4, $I_{K(Ach)}$), muscarinic 2 receptor (CHRM2), muscarinic 3 receptor (CHRM3), inwardly-rectifying K+ channel (KCNJ2, I_{K1}), transient outward K+ channel voltage-gated channel (KCND3, T_{ro}) and Kv channel interacting proteins 2 (KchIP2.x).

36. A method comprising administering the pharmaceutical composition of claim **32** to a patient in need thereof.

37. The method of claim **36**, wherein the patient is suffering from a cardiac dysfunction.

38. The method of claim **37**, wherein the cardiac dysfunction is arrhythmia.

39. The method of claim **37**, wherein the cardiac dysfunction is bradyarrhythmia.

40. The method of claim **37**, wherein the cardiac dysfunction is tachyarrhythmia.

* * * * *