(12) INNOVATION PATENT (11) Application No. AU 2015101031 A4
(19) AUSTRALIAN PATENT OFFICE

(54) Title
SYSTEM AND A METHOD FOR MODELLING THE PERFORMANCE OF INFORMATION
SYSTEMS

(51) International Patent Classification(s)
GO6F 9/455 (2006.01)

(21) Application No: 2015101031 (22) Date of Filing: 2015.07.31
(45) Publication Date: 2016.03.10
(45) Publication Journal Date: 2016.03.10
(45) Granted Journal Date: 2016.03.10

(71) Applicant(s)
Performance Assurance Pty Ltd

(72) Inventor(s)
Brebner, Paul Charles;Gray, Jonathan Patrick

(74) Agent/ Attorney
Performance Assurance Pty Ltd, Nicta 7A London Cct, Canberra, ACT, 2601

31 Jul 2015

2015101031

Abstract

The present invention provides a systems and methods for
modelling and predicting the performance and scalability of
information systems. The parts of the system are a domain
specific performance modelling language, a graphical modelling
interface, a module for managing models, a transformation
module for converting graphical models into simulation models,
a simulation engine and associated metrics calculation
modules, and a simulation graphical interface. The system
provides a graphical tool for creating performance models of a
plurality of components of information systems, including
workloads, simple and composite services, workflows and
servers. FEach component may be associated with a plurality of
measured or experimental performance parameters. The system
provides a transformation engine to automatically convert
graphical performance models to run-time simulation models,
and provides a discrete event simulator to process the run-
time simulation models and to compute a plurality of predicted
performance and scalability metrics which are graphically
displayed.

L 3HNOIL

1/8

S0 Inf 1¢ 1€010IS10C

31 Jul 2015

2015101031

10

15

20

25

30

SYSTEM AND A METHOD FOR MODELLING THE PERFORMANCE OF
INFORMATION SYSTEMS

Technical Field of the Invention

The present invention relates to a systems and methods for
modelling the performance of information systems. In
particular the invention is directed to a technology for
modelling the performance and scalability of service

oriented architectures.

Background of the Invention

Service oriented architectures (SOA) have been crucial for
the implementation of distributed systems in the last few
vears. Evolving Enterprise Service Oriented Architectures
(ESOAs) often have distinctive architectural
characteristics which are due to their history and
previous evolution, and the impact of ongoing and future
evolution. The prediction of performance implications of
evolution (including changes to architecture, services,
infrastructure, use, etc) is crucial for designing SOAs
systems. The fundamental aim of SOA is to facilitate IT
agility by implementing business capabilities by using

interoperable interfaces.

In recent years, governments around the world, including
the Australian Government, have launched e-Government
initiatives. E-Government refers to the government's use
of information technologies to exchange information and
services with citizens, business, and other arms of
government. Although there are differences in emphasis

from one country to another, these initiatives aim to:

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 2 -

provide more responsive, convenient, and easier access to
government information and services by citizens; reduce
the cost and time for business when interacting with
government; and seek efficiency gains across government
agencies through rationalisation of systems and increased
interoperability. Many government agencies currently have
a legacy of IT systems developed over several decades.
However, these have typically been developed in isolation
and to agency specific requirements, and are not usually
designed to integrate with other agencies and external
systems. When e-Government solutions are built on top of
these legacy systems, and services are delivered to
citizens and business through the internet, the
performance demands on the legacy systems can often exceed
their original design capacity, placing the e-Government

solution at serious risk of failure.

Increasingly, e-systems are being designed as SOAs. They
are implemented as composite service applications
(services of services), consuming both internal services
and external services provided by other agencies, and
therefore function in the dual roles as service providers
and consumers. Because of their critical role in the
delivery of services to citizens and business, it is wvital
to understand the performance and scalability limits of
these SOA systems well in advance of switch-on. Demand for
the service, particularly a new service not previously
offered by government, is often hard to predict, and a
mismatch between demand and capacity can lead to cases of

system “meltdown”.

Load testing is a common strategy used to measure the

capacity of traditional software systems, but it is often

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

15

20

25

30

- 3 -

technically difficult to load test SOA applications end-
to-end due to problems including: testing across
organizational boundaries; security requirements; lack of
tools and skills; high overhead of turning on low-level
performance monitoring; the presence of resources that are
shared with other organizations and/or production systems;
the use of services provided by other organizations. Load
testing may be perceived as a denial of service attack,
SLAs may impose restrictions on use, or there may be a
cost to use a service. By the time that integration
testing is conducted on a production ready system it is
inevitably too late and too expensive to radically change
the software architecture to address performance and
scalability deficiencies. It is therefore critical to
predict the performance implications of architectural

alternatives for SOAs early in the development lifecycle.

A series of Open Source and commercial tools for modelling
of SOAs are available. However, all the existing modelling
tools do not offer enough flexibility to model SOAs
implemented over existent legacy architectures. Existing
tools require extensive custom programming, or ad-hoc
error-prone pre-processing of architectural and
performance data prior to use. Further, they do not
support composable modelling of service compositions, or
shared or virtual resourcing models and are not
sufficiently interactive. There 1is therefore a need in the
art for a flexible and interactive tool which provides
adaptability and easy to use graphic interfaces for SOAs

performance modelling.

Summary of the Invention

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

15

20

25

30

- 4 -

In accordance to a first aspect, the present invention
provides a system for simulating the performance of an
operating environment, the system converting received
parameters of the operating environment into run time
structures for execution in a simulation engine and
providing data representing the performance of the
operating environment, the simulation engine responding in
real time to changes in the received parameters. The data
may be provided dynamically. The parameters may identify
capabilities of the components of the operating
environment, which may be a service oriented computer
architecture. The components of the operating environment
may be modelled in the system in order to be simulated in

the simulation engine.

In accordance to a second aspect, the present invention
provides a method for simulating the performance of an
operating environment, comprising the steps of:

receiving parameters of an operating environment;

converting the parameters into run time structures
for execution in a simulation environment;

running the run time structures in the simulation
environment;

producing data representing the performance of the
operating environment, wherein the simulation engine
responds in real time to changes in the received

parameters.

In accordance to a third aspect, the present invention
provides a service oriented performance modelling tool
comprising means for creating analytical models of a
plurality of components of service oriented computer

architectures, the models being suitable to be simulated

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 5 -

by a simulation engine. Each component may be associated
with a plurality of parameters. In some embodiments, the
plurality of different components comprises: workloads,
services, workflows and servers. In embodiments, each
workload component is associated with at least a parameter
from a list of parameters, the list of parameters
comprising: name, number of users, time interval, arrival
distribution and workflow. In embodiments, each workflow
component comprises a series of steps, each step being
associated with at least a service and may be associated
with a semantics from a semantics list, the semantic lists
comprising sequential semantics, parallel semantics,
probabilistic semantics and split semantics. In
embodiments, the services comprise simple services and
composites services and each server is associated with at

least a service and at least a processing unit.

In accordance to a fourth aspect, the present invention
provides a run-time data structures generator which
generates a run-time environment for analytical models
created by a service oriented performance modelling tool
in accordance to an aspect of the invention. In some
embodiments, the run-time data structures generator may
comprises a network of queues and servers. The run-time
data structures generator may further comprise a plurality
of simulation objects, each simulation object being
associated with a workflow stack. In embodiments, each
workflow of each workflow stack comprises a list of steps
comprising a service name and a workflow type and each
queue comprises a plurality of simulation objects and is
associated with at least a server. In some embodiments,
each server is associated with an input queue and an

output queue and may be configured to perform actions. In

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 6 -

embodiments, the run-time data structures generator
further comprises a scheduling module to manage the
processing of simulation objects in the input queue and an

output queue of each server.

In accordance to a fifth aspect, the present invention
provides a transformation engine to transform service
oriented performance models to run-time data structures
comprising a plurality of transformation rules to
transform each component of the service oriented
performance model into a run-time component. In
embodiments, the transformation rules transform each
component of the service oriented performance model into a
run-time queue or a run-time server, each workload into a
queue/server component with the gqueue filled with one
instance of the workload, and each simple service into a
queue with the name of the service and each server into a

queue network server with same name and number of CPUs.

In accordance to a sixth aspect, the present invention
provides a discrete event simulator to process discrete
events in a sequence comprising a discrete event
simulation engine which processes run-time data structures
according to an aspect of the invention. In embodiments,
the discrete event simulator comprises a metrics module
which creates metrics for component of a run-time
performance model. The metrics may comprise: arrival rate,
throughput, response time, wait time, service demand,

concurrency, server Utilisation and server BusyCPUs.

In accordance to a seventh aspect, the present invention
provides a discrete event simulation method comprising the

steps of:

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

creating system metrics;

creating workloads;

entering a plurality of simple services into servers;

completing processing of a plurality of services in
Servers;

entering events on a workflow engine;

executing the workflow engine and entering events
onto a composite server;

executing composite servers.

In accordance to an eighth aspect, the present invention
provides a system for modelling the performance of service
oriented architectures, the system comprising:

a model graphical interface;

a simulation graphical interface;

a module for managing service oriented performance
models;

a transformation module for transforming service
oriented performance models into run-time data structures;

a metrics calculation modules for calculating metrics
assoclated with run-time data structures; and

a metrics display module.

In embodiments, the model graphical interface is arranged
to interact with a user. The user may perform a series of
dynamic actions with the graphical interface to alter
create, edit or transform a service oriented performance
model. The simulation graphical interface may be arranged
to interact with a user dynamically and respond in real-
time. The user may perform a series of actions with the
simulation interface to start or stop a simulation, modify
simulation parameters, modify model parameters, or animate

a model. The simulation parameters may be modified

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

8
dynamically during the simulation. The user may perform a
series of actions with the simulation interface to select
or edit metrics to be used during the simulation. The
metrics may be selected or modified dynamically during the

simulation.

Brief description of the drawings

Features and advantages of the present invention will
become apparent from the following description of
embodiments thereof, by way of example only, with

reference to the accompanying drawings in which:

Figure 1 is a schematic representation of the principal
modules of a Service Oriented Architectures simulation
system in accordance with embodiments of the present
invention;

Figure 2 is a flow-diagram of run-time data structures in
accordance with embodiments of the present invention;
Figure 3 is a schematic representation of the
functionalities of a transformation engine in accordance
with embodiments of the present invention;

Figure 4 is a flow-diagram representing the main steps of
a discrete event simulation engine in accordance with
embodiments of the present invention;

Figure 5 shows two flow charts of the functionalities of
servers in accordance with some embodiments of the
invention.

Figure 6 is a schematic representation of a Service
Oriented Performance Modelling (SOPM) Meta model
describing the main components types, relationships and
parameters in accordance with embodiments of the present

invention;

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

15

20

25

30

- 9 -

Figure 7 is a screenshot of an example implementation of a
graphical user interface in accordance with embodiments of
the invention;

Figure 8 is a schematic representation of a computer
system that implements a Service Oriented Architectures
simulation system in accordance with embodiments of the

present invention.

Detailed description of embodiments

Embodiments of the present invention relate to systems and
methods for modelling service oriented architectures
(SOA). The system supports the steps followed by software
architects to enable them to easily produce SOA
performance models, either from scratch or from existing

architectural artifacts.

Models can be graphically visualized and parameterized
with measured performance data, hardware capacity and
optional configuration information. The system
automatically provides an extensive set of performance and
scalability parameters and metrics appropriate for each
type and combination of model component. The model
simulation can be run, paused, restarted and reset. While
the model is running, selected metrics are computed
continuously and graphed, and selected parameter values
are graphed and can be changed giving immediate feedback.
Multiple models can be run concurrently to compare
architectural alternatives. Alternatives within a single
model can also be compared (e.g. different workload ratios
or workflow implementations). The system is intended for a
range of architectural modelling tasks related to

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 10 -

performance and scalability, including capacity and
resource planning, modelling of complex workloads,
modelling complex composite applications, tuning of
service deployment options and server configurations (e.g.
virtual servers), comparing architectural alternatives,
and developing Service Level Agreements (SLAs) for
services consumed and provided.

The methods use a model-driven tool GUI for model
development and visualization, and automatically
transforms the model into a run-time form to be solved by
a discrete event simulation engine to compute performance
metrics for each component (including workloads, services,
servers) and aggregations of components (including
response times, throughput, concurrency, utilization, wait

times, service demand, etc).

Embodiments of the present invention provide systems and
methods for modelling the performance and scalability of
Service Oriented Architectures (SOA) using the first order
concepts of SOA systems, namely: Services (Simple and
Composite) and Service Consumers (Workloads).

Further, embodiments of the invention provide a Service
Oriented Performance Modelling (SOPM) tool, run-time data
structures and a transformation tool for transforming SOPM
structures to run-time data structures, and a simulation
engine to simulate run-time data structures and to predict

performance metrics.

In embodiments of the invention the components are
imbedded in a custom Model Driven Architecture (MDA) tool
framework which supports their definition, implementation,
visualisation, modification, parameterisation,

persistence, and transformation.

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

Referring now to figure 1, there is shown a schematic
representation of the principal modules of a Service
Oriented Architectures (SOA) modelling and simulation
system 100 in accordance with embodiments of the present

invention.

The service oriented performance models module 104
supports the definition of SOPM models, via a meta-model,
and, in conjunction with the model graphic user interface
(GUI) 102, creates new models, visualising models, editing
models, parameterisation and checking of models (for
correctness and completeness properties). The GUI 102 is
provided to the system’s user to interact with service
oriented models 104. In conjunction with other components,
it supports users to graphically create, edit,
save/load/print, parameterise and check models, and

transform models to run-time version.

In conjunction with the SOPM models module 104 and the
model GUI 102, the models and metrics stores module 106
enables persistence of model instances, parameters, and
computed metrics to a variety of storage types and formats
including local or remote binary files, XML, relational or

object databases, bucket storage (E.g. Amazon S3), etc.

The import of parameterisation data module 108 acts as an
interface to external sources of parameterisation data
including file based data formats (e.g. log files, CSV
files, Excel files, etc), and 3rd party monitoring tools
(e.g. via APIs, proprietary file formats, XML files, etc).
The import of parameterisation data module 108 enables

relevant parameterisation data to be imported, selected,

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 12 -

transformed and processed from the source formats to the
target model formats and data types, and includes the

ability to process the data statistically.

The transformation to run-time simulation module 110
performs the actual transformation of SOPM instances into
run-time versions ready for run-time simulation. The
transformation to run-time simulation module 110 allows
keeping the operations of the underlying run-time data
structures and simulation engine transparent to the users,

limiting the amount of programming required.

After the model has been transformed into the run-time
data structures it can be executed by the Simulation
Engine component. The run-time simulation module 114
simulates the arrival and exit of users, the sequence of
workflows associated with workloads, the calling and flow
(via workflows) and completion of services, and the load

on the servers.

The Simulation GUI works in conjunction with the Run-time
Simulation Engine and enables simulations to be run
(started, stopped, etc), in batch or interactive models,
simulation and model parameters to be changed during
simulation, models to be animated, and model metrics to

be graphed.

The performance metrics calculation module 112 interacts
with the run-time simulation and calculates the
performance metrics from the simulation events depending
on the component types. The current values of metrics are
computed continuously and some metrics such as statistics

are either computed continuously, periodically or once a

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

15

20

25

30

- 13 -

simulation is stopped. Metrics can be stored in the models

& metrics stores 106 for later retrieval and analysis.

The display performance metrics module 116 takes computed
metrics from the performance metrics calculation module
112 or models & metrics stores 106 and displays them in a
variety of appropriate formats. The display performance
metrics module 116 operates in synergy with the simulation
GUI to enable the user to select metrics to display or

edit, scale or save/load/print graphs.

Referring now to figure 2 there is shown a diagram of run-
time data structures 200 in accordance with embodiments of
the present invention.

The run-time data structures are networks (connecting
lines) of queues 201 and servers 202 (queuing networks)
connected according to the architecture of figure 2, and
comprise the following list of components: SimObjects;
Workflows; Queues and Servers.

SimObjects are created and passed around the queue/server
network. SimObjects are Stacks of Workflows. Each
SimObject has a current workflow (the top workflow in the
stack) and workflow step (initially the 1lst step)
maintained and updated for it.

Workflows are a list of steps containing service names and
the workflow type, and optionally service demand times.
Queues 201 are ordered lists of SimObjects waiting to be
resourced by an associated server. Queues are purely
passive and are processed in First In First Out (FIFO)

order.

Servers 202 are the active processing elements. They have

input queues and output queues. Servers have three phases:

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 14 -

input actions (implemented by “inActions” functions), and
output actions (implemented by the “outActions”
functions). Initially all CPUs are free. During the input
phase and if there is a free CPU, a server takes the next
SimObject from an input queue based on a scheduling
algorithm and then processes it. Once an SimObject is
taken off an input queue it is delayed by the amount of
ftime specified by the service demand time of the event
during which time one CPU of the server is busy. The
service demand time may possibly be scaled or modified by
load dependent scaling (throughput, concurrency, CPUs, or
utilisation dependent) or time gquanta limits (e.g. maximum
time quanta allocated for processing before being forced
out and back into the input queue). Once the processing
time has elapsed the SimObject is released from the server
and sent to the workflow engine 203 input gqueue ready for
the next step to be processed.

Some servers 203 (the workflow engine), are run-time
artefacts and don’t correspond to model elements, while
most have a direct correspondence (to composite services

or H/W servers in SOPM).

The Workflow engine is implemented as a single server with
one input queue, and with infinite CPUs and zero
processing time. It works as follows. For each SimObject
in the input gqueue it determines what the next current
workflow and step(s) are (which depends on the workflow
type), which queue(s) it/they should be sent to next, and
increments the current workflow and step counter.
Workflows that are completed are popped of the current
SimObject stack, and workloads that are completed are then

sent to the completed queue 204 (figure 2).

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

Referring now to figure 3, there is shown a schematic
representation of the functionalities of a transformation
engine 300 in accordance with embodiments of the present
invention. The transformation engine operates by
transforming SOPM language components (figure 6) to run-
time data structures (figure 2) according to the following
rules:

1. Workloads are transformed into a queue/server
component 302 with the queue filled with one instance
of the workload, and the server parameterised with
one CPU.

2. Composite services/Workflows are transformed into
(Queue network) servers 304 which have zero
processing delay and infinite CPUs, so instantly
create and push an instance of the workflow
associated with the composite service onto the
current SimObject stack and pass it on to the input
queue of the workflow engine server.

3. Simple services are transformed into a queue 306 with
the name of the service, which is then linked as an
input queue to the (SOPM) server which the service is
deployed to.

4., Servers are transformed into a (Queue network) server
308 with same name and number of CPUs. Note that a
Server can have multiple input queues (simple

services) .

Referring now to figure 4 there is shown a schematic
diagram representing the main components and steps of a

discrete event simulation engine 400 in accordance with

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

15

20

25

30

- 16 -

embodiments of the present invention. The discrete event
simulation engine simulates the run-time data structures
200. The order of event processing is determined by a
custom discrete event simulator which ensures that all
events are processed in order, in other words, that all
events occurring before or at the current simulation time
are processed before any subsequent events, and that the
system clock is advanced to the time of the next event to
be processed. In embodiments of the invention, the custom
discrete event simulation engine 400 processes the run-
time data structures according to the following actions

until the model is stopped or paused.

Input of run-time model data structures and initialisation
of variables, current time, next time and model metrics
402, including list of servers (with inActions and
outActions) ;

Execute all inActions for each server in the run-time
model and update time 404;

Execute all outActions for each server in the run-time
model and update time 406.

Find oldest server nextActionTime and update next action

time and current time 408.

Referring now to figure 5, there are shown two flow charts
500, 550 of the functionalities of a server inAction and
outAction methods in accordance with some embodiments of

the invention.

Figure 5(a) is a flow chart representing the main steps of
an inAction functionality of a server in accordance with
embodiments of the present invention. The server checks if

there are idle CPUs available 502; removes any waiting

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 17 -

event from the respective input queue 504; computes the
time delay for processing 506; sets the termination time

508 and pushes the event into a spare CPU slot 510.

Figure 5(b) is a flow chart representing the main steps of
an outAction functionality of a server in accordance with
embodiments of the present invention. The server checks if
there are events in the CPUs slots 552; removes any event
occurred at or after the current time indicator from the
CPU slot 554; increments the next step 556, and sends them
to the next input queue 558.

Figure 6 is a schematic representation of a SOPM Meta
model 600 describing the main components types,
relationships and parameters in accordance with
embodiments of the present invention. A SOPM model
consists of one or more of Workloads 602, Services 604 and

Servers 606.

Each workload 602 has parameters of name, number of users,
arrival period and arrival distribution. A workload
represents a class of external or internal users of the
system. A workload has a workflow represented by one or
more steps 614. Each step is a call to a single named
service 604. However the same service can be called by
more than one step in a given workload. A step has
parameters of call time (response time in ms), and call
semantics which can include synchronous or asynchronous.
A workload’s workflow represents the business process used
for the consumption of the modelled services. Workflows
are not an explicit UML model component, but are modelled
as an ordered list of step components and associated with

either workloads or composite services.

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

Fach service 604 has a name and can be simple 608 or
composite 610. A simple service 608 represents an atomic
service with no further dependencies on other services and
no further implementation detail available or relevant. A
simple service has a parameter of an optional default
service demand time (response time, ms) representing the
resources consumed on a server per service call. A service
is deployed to a single server 606. There must be at least
one simple service per model to be complete. A composite
service 610 represents services than are both consumed and
consume other services (including themselves recursively),
and that have some internal workflow with steps calling
other services associated with them. These workflows may
have different semantics including sequential, parallel,
or choice (probabilistic). Composite Service Workflows
are modelled by one or more service steps 612. Service
steps 612 are effectively one or more calls to services,
called steps 614. Each step has a name of the service to
be called and an optional “callTime” (which is the service
demand for the called service and which is passed to the
called service). Probabilistic steps have a probability
which represents the probability of each step being
invoked. Times passed into a composite service are passed
to each step of the workflow directly. By default, steps
(calls to services) are synchronous (request-response,
wait for response), but may optionally be specified as

asynchronous (call and forget, no response and no wait).

Fach server 606 has a name, one or more simple services
608 deployed to it, and it may be associated with a number
of concurrent processing units (CPUs). Servers 606 can be

used to model physical server hardware and networks.

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

15

20

25

30

In some embodiments of the invention probabilistic
workflows are used to model service time distributions.
The models may be enhanced with array of time

distributions in place of simple time parameters.

A SOPM model is correct and complete 1if it is a wvalid
instance of a SOPM meta-model and if it has the minimum of
information required in order to run on the simulation
engine (at least one workload, one simple service, one

server, and all required parameters set to valid wvalues).

Figure 7 is a screenshot of an example implementation 700
of the Model GUI 102 (Figure 1), showing an example SOPM
model instance and the main components and relationships,
in accordance with embodiments of the present invention.
The example SOPM in figure 7 is a high level view only and
does not show all the details, in particular the parameter
values are not shown. The example implementation 700
consists of two workload components, Workload 1 702 and
Workload 2 704. Workload 1 702 represents an external
application which consumes a single externally available
service, Composite Service 1 706, which has a workflow
with five steps which consume internal services (Simple

Servicesl, 2 (called twice), 4, & 5).

Simple Service 1 708 represents a SOAP Web service, Simple
Service 2 710 represents a Security service, Simple
Service 3 712 represents pages on a web server, and Simple
Services 4 and 5 714 represent application services.
Simple Services 1-5 are deployed on representative servers
(SOAP Server 722, Security Server 724, Web Server 726,

Application Server 728).

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 20 -

Workload 2 704 represents an external user interacting
with the system via web pages, and has a workflow with
four steps. The first step interacts directly with Simple
Service 3 712 (Web). The second step calls Composite
Service 2 712. Composite Service 2 712 in turns calls
Simple Service 2 710 (Security) and Simple Service 3 712
(Web) . The third step calls Composite Service 3 718 which
calls Simple Service 3 712 (Web) and Simple Service 4 714
(Application). Finally the fourth step calls Composite
Service 4 720 which in turn calls Simple Service 2 710
(Security), Simple Service 3 712 (Web) and Simple Service

5 714 (Application).

The embodiments described in this section are exemplary
embodiments of the invention and should not limit the
scope of application of the systems and methods described
herein. The systems and methods of the invention may be
used, for example, to model client/server, n-tier, event-
based, Enterprise Service Bus (ESB), architectures,
business processes, and various h/w resources including
servers, Virtualised servers, cloud hosting, databases,
SAN, networks, etc, and systems involving humans as

“resources”.

The models created by embodiments of the invention are
composable and can be created from multiple other sub-
models without modification. This is particularly
important for service compositions where SOAs are realised
by increasingly deep and complex layers of legacy
services. These SOAs can be managed directly and be
updated easily to reflect changes in the service

compositions. In addition, models are paramaterisable from

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 21 -

real performance data obtained from monitoring
infrastructure. Because models are represented using
explicit SOA concepts, they can be automatically
discovered and built from data sources including
documentation and run-time monitoring data (e.g.
transaction trace topology/response time views).

Both batch mode and interactive simulations are also
envisaged. Batch modes allow for changes to parameters and
model structures to be specified in advance with a
scripting language or directly in GUI to take effect at
given times or event based which change aspects of the
workload, service compositions, timing or server
resourcing dynamically as the simulation runs. Interactive
mode allows the model parameters to be interactively
changed by a user with immediate effect on computed

metrics.

Embodiments of the modelling system of the present
invention are preferably carried out on a computer system
800 such as the one schematised in figure 8. The computer
system 800 may be a high performance machine, such as a
supercomputer, a desktop workstation or a personal
computer, or may be a portable computer such as a laptop
or a notebook or may be a distributed computing array or a

computer cluster or a networked cluster of computers.

The computer system 800 also comprises a suitable
operating system and appropriate software for

implementation of embodiments of the present invention.

The computer system 800 comprises one or more data
processing units (CPUs) 802; memory 804, which may include

volatile or non volatile memory, such as various types of

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

- 22 -

RAM memories, magnetic discs, optical disks and solid
state memories; a user interface 806, which may comprise a
monitor, keyboard, mouse and/or touch-screen display; a
network or other communication interface 808 for
communicating with other computers as well as other
devices; and one or more communication busses 810 for

interconnecting the different parts of the system 800.

The computer system 800 may also be connected directly to
remote systems and/or data analysis and visualisation
equipment 812 to present modelling data. The remote
systems 812 may include IT systems monitoring stations,

maintenance centres or design centres.

The computer system 800 may also access data stored in a
remote database 814 via network interface 808. Remote

database 814 may be a distributed database.

A computer system for implementing embodiments of the
invention is not limited to the computer system described
in the preceding paragraphs. Any computer system
architecture may be utilised, such as standalone
computers, networked computers, dedicated computing
devices, handheld devices or any device capable of
receiving processing information in accordance with
embodiments of the present invention. The architecture
may comprise client/server architecture, or any other
architecture. The software for implementing embodiments
of the invention may be processed by “cloud” computing

architecture.

It will be appreciated by persons skilled in the art that

numerous variations and/or modifications may be made to

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

- 23 -

the invention as shown in the specific embodiments without
departing from the spirit or scope of the invention as
broadly described. The present embodiments are,
therefore, to be considered in all respects as

illustrative and not restrictive.

31/07/15
4490128_1 (GHMatters) P94243 AU

31 Jul 2015

2015101031

10

15

20

25

30

35

The claims of the invention are as follows:

1. A system and methods for modelling the performance of
information systems such as (but not limited to) service
oriented architectures, the system comprising:

a model graphical interface;

a simulation graphical interface;

a module for managing service oriented performance
models;

a transformation module for transforming service
oriented performance models into run-time data structures;

a simulation module consisting of a discrete event
simulation engine;

a metrics calculation module for calculating metrics
assoclated with run-time data structures; and

a metrics display module.

2. A graphical modelling tool comprising means for
creating, editing and managing performance models of a
plurality of components of service oriented computer
architectures, wherein the plurality of different
components comprises: workloads, simple and composite
services, workflows and servers, and wherein each
component is associated with a plurality of measured or

experimental performance parameters.

3. A transformation engine to transform service oriented
performance models to run-time data structures comprising
a plurality of transformation rules to transform each
component of the service oriented performance model into a
run-time component capable of being processed by the

simulation engine of claim 4.

4. A discrete event simulator to process discrete events
in a sequence comprising a discrete event simulation

engine which processes run-time data structures according

31/07/15

4490128_1 (GHMatters) P94243.AU

31 Jul 2015

2015101031

10

- 2 -

to claims 2 to 3, and which responds to changes of

parameter vales in real-time.

5. A metrics system comprising a module which creates and
computes values for metrics for components of a run-time
performance model, wherein the metrics comprise: arrival
rate, throughput, response time, wait time, service
demand, concurrency, server Utilisation and server
BusyCPUs; and a dgraphics module which displays metrics in

real-time.

31/07/15

4490128_1 (GHMatters) P94243.AU

1/8

S10T INf 1€

I 3HNOId

911

N I_H I_Hl/ s

N

AN

.

0Tt b

o M%MW%W%WW %M
[s

L

e

//////////////%///M
N

o

90T

s B

-

80T

I1€01016T0C

2/8

CI0C IS T¢

¢ 34NOI4

U X siojelauas

PEOPHOM

,, /ﬂﬂ/

CIITTITH

702 = ananb paia|dwo)

MCE.JOL LiaAg RO PUE MO
N

h
e mu.m._um_%%/v

NN
A ,///////5///&//%7/////

4

1334

7
@&

SMO|J IUBA2 = SMOLIY

\ SMO IO JO SIIBIS JO ananDd
Aoy /

T0¢

U0J3N23X3 MO[JIOAY
aU[BUF MOPHIOM

I1€01016T0C

CI0C IS T¢

I1€01016T0C

€ 34NOId

FURISIRRD

RFUWRIST

e

BRII2T

STHETS TTY WIOISU
,.».,.‘. ///
£
1 by

GG T

PEQES RN

WIQI/UARI L

80¢€

90t

ro¢

403

00¢€

4/8

CI0C IS T¢

I1€01016T0C

¥ 34NOId

WL

B[ENDRHE TIDAISFR YIW

1]

00%¥

307¥

90F

[40h%

A7

5/8

CI0C IS T¢

(s)ononb 3ndut 3xaUu
03} §3uUsAd DbUIpPUDS — 2GG

G 34NOI4

de]s
1¥X8U buTiluswsIOUI — 966

T

S10TS $ndD wodalg
SWT3l-3usIand 3sod JO UO
S1usas buTacwsy - $GG

T

MD02UD SNdD UT sjusayq — ZGG

\

0549

I1€01016T0C

sndp oa2aeds
UT S3jusad burtysnd — 0TS

N

SWT1 UOTIBUTUISD]
butizes - 806

N

pbutssevoad 103 AeTeop
swTl buraindwo)d - 904

gonanb AnduT woIJ SIU3AD
putaTem burtacudy - (06

N

ADBUD sNdD RIPI - 204

\

004

6/8

CI0C IS T¢

9 34NOI4

B0} A EGOUE

~ doig antasg

809 T\
iAoy Iapeeg
BLHL] B UNRE0 \iEnusnles) il
SIS ajdus N susodwion
paiojdag
I SHED
ey sndn
, J3NIDG INASE g
a'T T E%@mn 0 A0S
IBUOTURD WdDS) .
909 9
Buns ouen r09
19RO INDOS
009

I1€01016T0C

[SNOUCIYIUASY
FEROUDIYIUAG)

X [SONUBIBGHED

UM P EHED
Furns ueNdas

daig

1 T

{a0ssiog uesuond
SUSRNGIASIG

SLLL PO HRALY
afagyy saesn

PEOPHIOM

w1

SUDGIEY 405

)

<09

L 34dNOId

7/8

T

HIND T HOVHAAHILNT dHdSN DIHAYAD 00L

CrocInf 1¢ T¢OI0TISTOC

8/8

CI0C IS T¢

AR

8 34NOId

AHHE AHEE BEE

I1€01016T0C

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

