w0 2023/073198 A1 |0 00000 AP0 0RO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
04 May 2023 (04.05.2023)

(10) International Publication Number

WO 2023/073198 Al

WIPO I PCT

(51) International Patent Classification:

GO6F 21/53 (2013.01) HO4L 9/08 (2006.01)
GO6F 21/60 (2013.01) GO6F 21/57 (2013.01)
GO6F 21/62 (2013.01) HO4L 9/40 (2022.01)

(21) International Application Number:
PCT/EP2022/080250

(22) International Filing Date:

28 October 2022 (28.10.2022)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
21306534.5 29 October 2021 (29.10.2021) EP

(71) Applicants: THALES DIS FRANCE SAS [FR/FR]; 6, rue
de la Verrerie, 92190 MEUDON (FR). THALES [FR/FR];

(72)

(74)

@81)

Tour Carpe Diem, Place des Corolles Esplanade Nord,
92400 COURBEVOIE (FR).

Inventors: MARSEILLE, Francois-Xavier, THALES
DIS FRANCE SAS, Intellectual Property Department, 6,
rue de la Verrerie, 92190 Meudon (FR). LETOURNEUR,
Fadela; THALES DIS FRANCE SAS, Intellectual Proper-
ty Department, 6, rue de la Verrerie, 92190 Meudon (FR).
RUGET, Frédéric; THALES DIS FRANCE SAS, Intel-
lectual Property Department, 6, rue de la Verrerie, 92190
Meudon (FR).

Agent: QUINTERO ROMERO, Manuel;, Thales Dis
France SAS, Intellectual Property Department, 6 Rue de la
Verrerie, 92190 Meudon (FR).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,

(54) Title: METHOD TO STORE DATA PERSISTENTLY BY A SOFTWARE PAYLOAD

70 Establishing a secure channel backed by attestation | S.71
-~ l
.
Owner generates a payloadiD and KEY INIT 72
Owner persistently stores KEY_INIT+ payload!D RS E
Chwener sends payloadiD and KEY INIT w74
Payload uses KEY INIT to encrypt sensitive data ™ 75

!

Payload persistently stores the encrypted data and the payloadiD

7

- 76

FIG. 6

(57) Abstract: The present invention provides a method to store data persistently by a payload of an owner, the method comprising the
following steps: * establishing a secure channel between the owner and the software payload itself when running into a hardware-based
trusted executed environment, HWTEE, at the instance of a cloud service provider; * generating, by the owner, a payload identifier
using information shared from the payload during the establishment of the secure channel; « generating, by the owner, a key initiator
and persistently storing at the owner side the key initiator associated to the payload identifier; * sending, by the owner, the payload
identifier and the key initiator to the payload; * using the key initiator, by the payload, to encrypt data; and * persistently storing, by

the payload, the encrypted data and the payload identifier.

[Continued on next page]

WO 2023/073198 A |10 00P 000000 Y O

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU,
LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK. SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI,
SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))
— in black and white; the international application as filed

contained color or greyscale and is available for download
Jrom PATENTSCOPE

10

15

20

25

30

35

WO 2023/073198 -1- PCT/EP2022/080250

METHOD TO STORE DATA PERSISTENTLY BY A
SOFTWARE PAYLOAD

DESCRIPTION

TECHNICAL FIELD

The present invention relates to the technical field of data protection and, namely, to the
field of confidential computing extending the capabilities of data protection in-use to data at

rest.

More particularly, the present invention provides sealing capabilities to a payload running
into a hardware-based trusted execution environment at the instance of a cloud service
provider, CSP, in order to ensure the confidentiality of its persistent storage. “Data sealing”
may thus be understood as the capability to store persistent data in a manner that only the

original payload - or a set of authorized payload(s) - are able to retrieve it.

Accordingly, if this payload is either modified or the HW TEE is modified/tampered-with, the
present invention ensures that the payload will not be able to retrieve its persistent storage

protected by the sealing capability.

More importantly, this sealing capability does not rely on ad hoc HW TEE mechanisms of a

specific CSP but provides a multi-CSP and interoperable solution.

BACKGROUND OF THE INVENTION

In today’s computing, data may exist in three different states: in transit (i.e., data traversing
untrusted public or private networks), at rest (i.e., inactive data in storage), and in use (i.e.,
data being processed while in memory and during computation). Since cryptographic
techniques to protect data in transit and at rest have been constantly enhanced and widely
deployed thus thwarting threat vectors against network and storage devices, attackers have

recently shifted to targeting data-in-use.

As more data is moved to the cloud, mobile, or loT devices - where processing takes place
in remote and difficult to secure locations - the protection of data and applications during

execution is increasingly important.

10

15

20

25

30

35

WO 2023/073198 -2- PCT/EP2022/080250

Confidential computing thus provides a solution for protecting data in use by using
hardware-based Trusted Execution Environments (henceforth “HW TEE”). A Trusted
Execution Environment (TEE) is a secure area of a processor that assures data integrity,
data confidentiality, and code integrity. The hardware-based TEE uses hardware-backed
techniques to provide increased security guarantees for the execution of code and

protection of data within that environment.

HW TEE basically provides security though the lowest layer of hardware, down to the silicon
components, with a minimum of dependencies, by removing the operating system, device
driver and peripheral vendors from the list of required trusted parties, thereby reducing
exposure to potential compromise. Examples of HW TEE chip providers are Intel with
Software Guard Extensions (Intel SGX), or AMD with Secure Encrypted Virtualization (SEV-
SNP).

Service providers or cloud service providers such as Amazon Web Services (AWS), Google
Cloud Platform (GCP), Microsoft Azure (Azure), OVHClod, or AlibabaCloud normally
comprise one or several HW TEE in their infrastructure in order to offer to their customers
the means to use confidential computing for their payload(s). These customers (henceforth
“‘owners”) own piece(s) of computing resources e.g., code or data (henceforth “payload”)

that wishes to execute in the CSP infrastructure.

Nevertheless, confidential computing services are not coming as a simple turnkey solution,
especially for going beyond basic security properties. One of these basic security properties
is known as remote attestation or simply “attestation”, that is, a mechanism to provide a
verifiable signature of the running payload provided by the HW TEE and to be verified by
either the owner or a 3rd party of trust. This type of evidence must be signed by hardware
that can be vouched for by a manufacturer (e.g., Intel or AMD), so that the party checking
the evidence has some assurance that it was not generated by malware or other

unauthorized parties.

However, HW TEE from different vendors have their own attestation mechanisms (i.e.,
different technically implemented mechanisms), that are not interoperable among them and
only share a minimum set of security features for the attestation verification. Indeed, all HW
TEE default attestation mechanisms ensure that the HW TEE is genuine and the payload
is the expected one (measurement signature indicating that it was not modified) further

being able to inform about its current state in the execution. Furthermore, in order to prevent

10

15

20

25

30

35

WO 2023/073198 -3- PCT/EP2022/080250

replay attacks against the attestation, the attestation mechanism may involve a nonce sent

from the user.

In addition to these basic security features, there is no built-in mean to guarantee that any
subsequent communication from the owner will occur with the same attested payload (and
not a modified one). For instance, if the owner wishes to provision some secret(s) to that
payload, he/she will be uncertain if the very same payload is being provisioned with these

secret(s) if the attestation was already performed.

In addition, some use cases requires contacting the payload at different periods of time
which is currently solved by performing several attestations of the payload at those
instances. Nevertheless, there is a strong limitation nowadays in existing HW TEE due to
the absence of confidentiality of payload at-rest, meaning that it is not possible for the
payload to ensure the identity of the owner during these re-attestations. In consequence,
since there is no confidentiality by default for the payload itself, keys cannot be stored

elsewhere (e.g., in binary as data blob) at CSP’s side to protect the persistent storage.

Finally, each HW TEE from a different vendor has different capabilities in terms of secure
persistent storage or data sealing. For instance, a few HW TEE technologies (such as Intel
SGX) natively support persistent storage by allowing the payload to generate a key that is
specific to both itself and the given HW TEE. Therefore, this native mechanism suffers from

some limitations in term of flexibility and scalability.

Still, once one specific provisioning has been done, it is critical to ensure that the same

owner performs the following attestations.

Thus, there is a need in the confidential computing industry for an interoperable solution

that allows the payload having persistent storage for supporting non-stateless use cases.

SUMMARY OF THE INVENTION

The present invention provides a solution for the aforementioned problems by a method for
storing data persistently by a payload of an owner according to claim 1, a method for
retrieving this persistently stored data according to claim 5, a related system according to
claim 9, an owner according to claim 10, and a software payload according to claim 11. In

dependent claims, preferred embodiments of the invention are defined.

10

15

20

25

30

35

WO 2023/073198 -4 - PCT/EP2022/080250

In a first inventive aspect, the invention provides a computer-implemented method to store
data persistently by a payload of an owner, the method comprising the following steps:

o establishing a secure channel between the owner and the software payload itself
when running into a hardware-based trusted execution environment, HW TEE, at
the instance of a cloud service provider,

e generating, by the owner, a payload identifier using information shared from the
payload during the establishment of the secure channel;

e generating, by the owner, a key initiator and persistently storing at the owner side
the key initiator associated to the payload identifier;

e sending, by the owner, the payload identifier and the key initiator to the payload;

e using the key initiator, by the payload, to encrypt data; and

o persistently storing, by the payload, the encrypted data and the payload identifier.

As noted, once the secure channel has been established between the owner and the

software payload, all subsequent communications will occur through this secured channel.

In addition, in order to improve security, the payload does not store the key initiator or, in
order words, once used, the payload will delete key initiator and any derived key as will be
described later on. Therefore, in a preferred embodiment, after used, the payload deletes
the key initiator and any derived key such as encryption key(s) and integrity key(s).
Accordingly, only the owner will store the key initiator in an associated manner to the

payload identifier.

Thus, when the payload has to access the stored data, it retrieves first its payload identifier
(or a ciphered form thereof) that may also contain information about the version of the
software payload running for distinguishing purposes among different versions. For
instance, for use cases of data migration as the running software will be also changing

accordingly.

In a further implementation, the owner may wish to have payloads sharing the same sealing
keys (e.g., key initiator itself or derived keys therefrom) in order to address scalability in
case, for instance, that an application needs to have several instances of the same payload
and want to access the same database(s). Thus, sharing these sealing keys will simplify

the process.

10

15

20

25

30

35

WO 2023/073198 -5- PCT/EP2022/080250

In another use case, an owner may wish to support multi-tenants so, in this case, sharing

keys might affect security and hence each payload should use its own key initiator.

Accordingly, the idea underlying the invention is that by introducing the payload identifier,
the owner is allowed to identify and retrieve the correct key initiator for sending it to the

proper payload.

How this payload identifier is generated may change depending on the use case. For
instance, when the Virtual Machine (VM) is instantiated for the first time to a specific
customer (i.e., the CSP or HW TEE will identify that is addressing a specific customer
because of the lunching of the VM), it is possible at that time to perform this association. To
ensure this very same association for a re-starting of the VM, the (ciphered) identifier is sent

to the payload for its storing.

In a particular embodiment, the owner encrypts the payload identifier using a first encryption
key (e.g., a symmetric key) before sending it to the payload for its persistent storing in

encrypted form.

Advantageously, the payload is configured to store it in ciphered form and only the owner
is configured to decipher it as it possess the first encryption key. In addition, security is
increased, as the identifier does not appear in clear at the payload side. This first encryption
key is normally used for all (or a group of) the payloads of the owner, while the key initiator

is preferably personalized per payload identifier.

In an embodiment, once the payload stores the ciphered payload identifier, the next time
stored data needs to be unsealed, the owner sends (through the secure channel
established) the encryption key to allow deciphering the identifier and, then, this identifier is
sent back to the owner. From this point, the owner is able to check whether that identifier
was indeed previously stored at its end and, if so, retrieve the associated key initiator and

send it to the payload.

Advantageously, no keys are stored at the CSP side for persistent storage or data sealing
but only the material needed to generate these keys. The real keys are kept by the owner
and only distributed on demand and, more importantly, only through a direct secure channel.
In a basic embodiment, the key initiator is a symmetric key. Alternatively, in a preferred

embodiment, the key initiator is first passed through a key derivation function, KDF, by the

10

15

20

25

30

35

WO 2023/073198 -6- PCT/EP2022/080250

payload, to generate a symmetric key that encrypts the data.

The invention thus allows providing data sealing capabilities to payload running on a HW
TEE that does not support it by default. In addition, these data sealing capabilities are
independent from the HW TEE vendor which has a major advantage in case the HW TEE
is broken, thus still ensuring the confidentially of the data at rest. Finally, by using different
identifiers (or, otherwise, the same identifier) that may be grouped for different payloads or
even share common key initiators, finer granularity is achieved and policies are thus under

the control of the owner.

Furthermore, if the payload runs into a HW TEE having native data sealing capabilities, the
owner may be configured to revoke permissions for the payload to access to the sealed
data. That is, the payload identifier is protected with the sealing capabilities of the HW TEE,
then it will still be used by the owner to eventually send the key initiator as disclosed above.
Advantageously, this improves the default data sealing capabilities of some HW TEE that
are not supporting such revocation mechanism since the payload can only access the key

initiator if the owner agrees (i.e., if it sends the key initiator).

In a preferred embodiment, the key initiator is passed through a key derivation function,
KDF, by the payload, to generate a Message Authentication Code (MAC) that allows the

payload to subsequently check the integrity of the persistently stored data.

Finally, even if the secure channel may be established in different ways, in the following it

will be explained a preferred multi-CSP embodiment of the invention.

In this preferred embodiment, the secure channel between the owner and the software
payload is backed by the computation, by the HW TEE, of an attestation. Therefore, in this
embodiment, the payload identifier is derived from the attestation information such as
information relative to the HW TEE (e.qg., firmware), the version of the payload, and/or the

instantiation of the payload.

For instance, this secure channel backed by attestation may be established as follows:
e sending, by the owner, at least a nonce to the software payload:;
e generating, by the software payload, a payload key pair: public key and private key;
e mixing, by the software payload, the payload public key with the nonce;

e computing, by the HW TEE, an attestation using at least this nonce mixed with the

10

15

20

25

30

35

WO 2023/073198 -7- PCT/EP2022/080250

payload public key;

e sending, by the software payload, at least the attestation, and the payload public key
to the owner;

o verifying, by the owner, the attestation using the sent nonce mixed with the received
payload public key;

e generating, by the software payload and the owner, a session key between them;
and

o establishing a secure channel between the owner and the software payload running
into the HW TEE.

Throughout the following description, a nonce will be understood as a data string generated
at the owner side (either by the owner’s device or by another interconnected device) to be
used only once in a cryptographic communication. The nonce may be either a random or a
pseudo-random number, or also contain blocks of different information such as a timestamp
or identifiers (owner’s, payload’'s, HW TEFE’s, etc.). Nevertheless, the skilled person shall
recognize that the actual format, size and other informative data sent in the nonce is specific
to the technology of the HW TEE vendor.

Then, in a typical attestation process, once the owner provides the payload with the nonce,
it is passed through the HW TEE as part of the traditional attestation process on the HW
TEE side. In other words, the nonce becomes part of the data signed by the HW TEE and,
therefore, if the owner is able to verify the attestation it means that the same nonce was
used. This embodiment, on the contrary, mixes with this nonce other data generated by the
payload to be also signed by the HW TEE. In a preferred embodiment, the payload
generates an ECDSA key pair (payload private key, payload public key).

Consequently, if the owner also knows this payload public key, it will be able to perform the
same mixing operation and by verifying the attestation, it will be sure that this key pair was
generated by (or inside) the payload running under confidential computing and further
signed by the HW TEE.

Once the secure channel is established in this way, the owner is certain that can inject or
provision some secret(s) in the very same attested payload without being exposed. For
instance, at this point, the owner can send the payload identifier and the key initiator to the

payload.

10

15

20

25

30

35

WO 2023/073198 -8- PCT/EP2022/080250

Therefore, the owner may start generating the payload identifier before the secure channel
is established with some authenticated previous information but will only send the payload
identifier and the key initiator once it is fully established. In addition, the key initiator may be
generated on the fly or pertain to a container of pre-generated key initiator(s) and be late

associated with the payload identifier.

As the skilled person knows, the session key (shared secret) between the parties (owner
and payload) may be generated based on different key-agreement protocols such as any
public key-based key-agreement protocol. In a preferred embodiment, the non-
authenticated key-agreement protocol is based on an Elliptic Curve Diffie-Hellman, ECDH,

protocol.

In a second inventive aspect, the invention provides a computer-implemented method to
retrieve data persistently stored by a payload of an owner according to any of the
embodiments of the first inventive aspect, the method comprising the following steps :

e having established or re-establishing a secure channel between the owner and the
software payload itself when running into the HW TEE at the instance of a cloud
service provider;

o retrieving, by the payload, the stored payload identifier and sending it to the owner,

o retrieving, by the owner, the key initiator associated to the received payload
identifier;

e sending, by the owner, the key initiator to the payload; and

e using the key initiator, by the payload, to decrypt the persistently stored data.

In a particular embodiment, the stored payload identifier had been previously encrypted by
the owner using the first encryption key, the method comprising the following steps:

e sending, by the owner, the first encryption key to the payload; and

o after being retrieved, decrypting, by the payload, the payload identifier and sending

it to the owner.

In a particular embodiment, the stored payload identifier had been previously encrypted by
the owner using the first encryption key, the method comprising the following steps:

e sending, by the payload, the encrypted payload identifier to the owner;

o decrypting, by the owner, the payload identifier; and

o retrieving, by the owner, the key initiator associated to the decrypted payload

identifier.

10

15

20

25

30

35

WO 2023/073198 -9- PCT/EP2022/080250

In a third inventive aspect, the invention provides a system for persistently storing data by
a software payload of an owner, the system comprising:
o the owner of the software payload configured to send the software payload to the
HW TEE for its execution, the software payload configured to run into the HW
TEE, and the HW TEE operated by a cloud service provider;
wherein
o the owner of the software payload and the software payload itself are configured to
establish a secure channel between them when the payload is running into the HW
TEE at the instance of the cloud service provider;
o the owner is further configured to
o generate a payload identifier using information shared from the payload
during the establishment of the secure channel,
o generate a key initiator;
o persistently store at the owner side the key initiator associated to the
payload identifier; and
o send the payload identifier and the key initiator to the payload;
o wherein the payload if further configured to
o use the key initiator to encrypt data; and

o persistently store the encrypted data and the payload identifier.

In a fourth inventive aspect, the invention provides an owner of a software payload for
persistently storing data by the software payload, the owner of the software payload
configured to send the software payload to the HW TEE for its execution,
wherein the owner is further configured to
o establish a secure channel with the payload when the latter is running into the HW
TEE at the instance of the cloud service provider;
e generate a payload identifier using information shared from the payload during the
establishment of the secure channel;
e generate a key initiator;
o persistently store at the owner side the key initiator associated to the payload
identifier; and
e send the payload identifier and the key initiator to the payload which will use the

key initiator to encrypt data and persistently store it and the payload identifier.

In a fifth inventive aspect, the invention provides a software payload of an owner for

10

15

20

25

30

35

WO 2023/073198 -10- PCT/EP2022/080250

persistently storing data, the software payload being configured to run into the HW TEE,

o wherein the payload if further configured to:

o receive a payload identifier and a key initiator from the owner;
o use the key initiator to encrypt the data; and

o persistently store the encrypted data and the payload identifier.

All the features described in this specification (including the claims, description and

drawings) and/or all the steps of the described method can be combined in any combination,

with the exception of combinations of such mutually exclusive features and/or steps.

DESCRIPTION OF THE DRAWINGS

These and other characteristics and advantages of the invention will become clearly

understood in view of the detailed description of the invention which becomes apparent from

a preferred embodiment of the invention, given just as an example and not being limited

thereto, with reference to the drawings.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

This figure shows an embodiment of a system according to the invention

comprising an owner, and a payload running into a HW TEE.

This figure shows a schematic flowchart of an method to establish a secure
channel between the owner of a software payload and the software payload

itself when running into a HW TEE at the instance of a cloud service provider.

This figure shows a schematic diagram of an embodiment of the method to

establish a secure channel between the owner and the software payload.

This figure shows a schematic diagram of an embodiment of the method for

providing authentication means.

This figure shows a schematic diagram of an embodiment of the method to re-
establish a secure and authenticated channel between the owner and the

software payload.

This figure shows a schematic flowchart of a method to persistently store

sensitive data by the payload.

10

15

20

25

30

35

WO 2023/073198 -11- PCT/EP2022/080250

Figure 7 This figure shows a schematic diagram of an embodiment of the method to

persistently store sensitive data by the payload.

Figure 8 This figure shows a schematic diagram of an embodiment of the method to

retrieve sensitive data persistently stored by the payload.

DETAILED DESCRIPTION OF THE INVENTION

As it will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a method or a system for storing data, a method to retrieve said data, an

owner, or a software payload.

Herein below, it is considered a case in which the method according to the invention for
establishing a secure channel or persistently store data is implemented by, locally at a

server side, an HW TEE at instances or premises of a cloud service provider.

According to another embodiment, the owner is implemented by a PC 1, and may also be
a SE host device that cooperates with a TEE that is adapted to carry out the functions that

are carried out by the owner.

The invention does not impose any constraint as to a kind of the owner’s device (so-called
“‘owner”) or cloud server providers HW TEE. Examples of owner devices or simply owner

can be a mobile phone, a server, an IoT device, etc.

Figure 1 depicts schematically a system of an owner, as a PC 1, and a software payload 2

running into a HW TEE 4 at the instance of a cloud service provider 5.

The PC 1 may be configured to receive, from a user at least his/her login credentials for at
least one of his/her end-user account(s), verify them and let said user to run applications
and/or initiate different processes such as sending a code as a whole or part (i.e., “trusted

portion”) of an application, i.e., the payload 2, to be executed in the HW TEE.

Therefore, the PC 1 (or the server) includes one or several (micro)processors (and/or a
(micro)controller(s)) 1.1, as data processing means, comprising and/or being connected to

one or several memories 1.2, as data storing means, comprising or being connected to

10

15

20

25

30

35

WO 2023/073198 -12 - PCT/EP2022/080250

means for interfacing with the user, such as a Man Machine Interface (or MMI), and
comprising or being connected to an Input/Output (or I/O) interface(s) 1.3 that are internally

all connected, through an internal bidirectional data bus.

The I/O interface(s) 1.3 may include a wired and/or a wireless interface, to exchange, over
a contact and/or Contactless (or CTL) link(s), with a user. Within the present description,
the adjective “CTL” denotes notably that the communication means communicates via one

or several Short Range (or SR) type Radio Frequency (or RF) links.

Alternatively, instead of a CTL link(s), or additionally, the PC 1 is connected, through a
wire(s) or a cable(s) (not represented), to another end-user terminal or device (not
represented) also operated at the owner’s instances for instance, at the owner’s facilities.
That is, the owner may be also embodied as a server device configured to execute data /
code, optionally split it into trusted and untrusted portions, and send the trusted portions to
a CSP’s HW TEE for its execution. Examples of payloads as highly sensitive data that must
be protected and securely processed is personally identifiable information (PII), healthcare,

financial, or intellectual property data.

The PC MMI may include a display screen(s), a keyboard(s), a loudspeaker(s) and/or a
camera(s) (not represented). The PC MMI allows the user to interact with the PC 1. The PC

MMI may be used for getting data entered and/or provided by the user.

The PC memory(ies) 1.2 may include one or several volatile memories and/or one or several
non-volatile memories. The PC memory(ies) 1.2 may store data, such as an ID(s) relating
to the PC, that allows identifying uniquely and addressing the PC. The PC ID(s) may include
a unique ID, such as a UUID, a Uniform Resource Locator (or URL), a Uniform Resource

ID (or URI), and/or other data that allows identifying uniquely and addressing the PC.

The PC memory(ies) 1.2 stores the Operating System (OS) and an application which is
adapted to send the payload (also known as “workload”) to the CSP to be processed within
one of the HW TEE. The owner’s application that allows sending this payload may be a
web-based portal (e.g., Amazon Web Service, AWS, management console), or even an

open source application (e.g., AWS command line interface).

The PC 1 itself, or in combination with a server, is further configured to send information

over a communication network 6 (e.g., Transport Layer Security, TLS) to the CSP end. In

10

15

20

25

30

35

WO 2023/073198 -13- PCT/EP2022/080250

particular, the owner 1 and the cloud service provider infrastructure 5 may communicate via

one or more Application Program Interfaces, APIs, using HTTPS over TLS.

At the CSP end 5, or CSP facilities, one or more computing devices 3, 3, 3?, 3" with one
or more HW TEEs 4, 4’ are provided as secure enclave(s) for confidential computing

services.

As shown in figure 1, the computing device 3 includes a processor 3.1, a memory 3.2, and
an I/O subsystem 3.3, and a data storage device 3.2.1. Examples of computing devices 3
suitable for confidential computing are those described in US 2021/0117246 A1 in relation

with secure enclave supports such as Intel® Software Guard Extensions (SGX) technology.

Thus, the processor 3.1 may be embodied as a single or multi-core processor(s), digital
signal processor, microcontroller, or other processor or processing/controlling circuit
including the secure enclave support 3.1.1, which allows the processor 3.1 to establish a
trusted execution environment 4 known as a secure enclave, in which executing code (i.e.,

payload) may be measured, verified, and/or otherwise determined to be authentic.

Additionally, code and data included in the secure enclave may be encrypted or otherwise
protected from being accessed by code executing outside of the secure enclave. For
example, code and data included in the secure enclave may be protected by hardware
protection mechanisms of the processor 3.1 while being executed or while being stored in
certain protected cache memory of the processor 3.1. The secure enclave support 3.1.1
may be embodied as a set of processor instruction extensions that allows the processor 3.1

to establish one or more secure enclaves in the memory 3.2.

The memory 3.2 may be embodied as any type of volatile or non-volatile memory or data
storage capable of performing the functions described herein. In operation, the memory 3.2
may store various data and software used during operation of the computing device 3 such
as operating systems, applications, programs, libraries, and drivers. As shown, the memory
3.2 may be communicatively coupled to the processor 3.1 via the I/O subsystem 3.3, which
may be embodied as circuitry and/or components to facilitate input/output operations with
the processor 3.1, the memory 3.2, and other components (not shown) of the computing

device 3.

The data storage device 3.2.1 may be embodied as any type of device or devices configured

10

15

20

25

30

35

WO 2023/073198 -14 - PCT/EP2022/080250

for short-term or long-term storage (i.e., persistent storage) of data such as, for example,
memory devices and circuits, memory cards, hard disk drives, solid-state drives, non-
volatile flash memory, or other data storage devices. The secure enclave platform 3.1.1 may
have native mechanisms for sealing or persistently storing pre-encrypted data and native
standard key exchange to setup an encrypted tunnel for data transport between

components of the computing device 3 (for instance, for local attestation purposes).

In this illustrative embodiment, the components of the computing device 3, or the secure
enclave platform 3.1.1 itself, additionally comprise hardware attestation features to prove
their authenticity. The root of trust in the computing device 3 manages the security
credentials (keys, certificates) used with this purpose. As mentioned, the attestation process
measures code and data of the running payload, for instance when it is starting up, and

attests it when the owner requests attestation.

Figure 2 depicts a schematic flowchart of a method 10 to establish a secure channel
between the owner 1 of a software payload 2 and the software payload 2 itself. For this, it
will be assumed that the owner 1 already sent the payload 2 to the CSP 5 and it is running
into a HW TEE 4 described in figure 1.

Method 10 comprises the following steps: first, the owner 1 generates and sends 11 at least
a nonce (NonceOwner) to the software payload 2. Then, the payload 2 generates 12 a
payload key pair: public key (KpubPayload) and private key (KprivPayload). The payload
mixes 13 the KpubPayload with NonceOwner as a “modified” nonce (AttestationNonce) to
be provided to the HW TEE. That is, payload 2 will provide the HW TEE 4 with the
AttestationNonce for computing the attestation instead of the original NonceOwner

generated by the owner.

After, HW TEE 4 computes 14 an attestation (AttestationPayloadReport) using at least this
AttestationNonce. AttestationPayloadReport will be retrieved by the payload 2 and
forwarded 15 to the owner with the KpubPayload.

Once received by the owner 1, it reproduces the same mixing done by the payload but
instead using the nonce it originally sent (i.e., NonceOwner). Therefore, if the mixing output
is the same, it is certain that no attack occurred. Therefore, the owner 1 can verify 16 that it
is the same data it originally sent. Finally, the payload 2 and the owner 1 generates 17 a

session key and thus establish 18 a secure channel between them.

10

15

20

25

30

35

WO 2023/073198 -15- PCT/EP2022/080250

Figure 3 depicts schematic diagram of an embodiment of the method 20 to establish a

secure channel between the owner 1 and the software payload 2.

Alike traditional schemes, first, the payload 2 will be started by the owner and measured by
the HW TEE. Before the payload starts, the HW TEE generates encryption key to protect
its execution and, in addition, it measures its code and data when loading it in memory (e.g.,
measuring occurs by hashing its code and data). Just after, the payload 2 will normally send

a liveness notification to the owner 1.

Preferably, from that point, the establishment of the secure channel according to this
invention starts. In particular, in the following, it will be described a non-authenticated key-
agreement protocol of the type of Elliptic Curve Diffie-Hellman, ECDH, protocol used for

generating the session key by the software payload 2 and the owner 1.

As it can be seen from figure 3, the owner 1 generates 21 owner public data
(ECDHOwnerPubEIlt) and NonceOwner, and sends 22 them to the payload 2. The owner

also stores this NonceOwner for verifying afterwards the attestation.

Then, the payload 2 generates 23 ECDS key pair: KpubPayload / KprivPayload. The
payload will also generate 24 payload public data (ECDHPayloadPubEIlt) and sign 25 this
ECDHPayloadPubEIlt using KprivPayload resulting in ECDHPayloadPubEItSigned.

Next, the payload will compute 26 a hash of the KpubPayload further scrambling this hash

output with the NonceOwner. In other words, computing:

XOR(hash(KpubPayload), NonceOwner) = AttestationNonce

This AttestationNonce will be sent 27 by the payload to the HW TEE for computing 28 the
attestation. In a traditional workflow, the payload would send to the HW TEE the original
NonceOwner sent by the user but, according to the invention, the AttestationNonce will be
used instead. The skilled person would understand that the payload will also send specific
parameters required by the specific HW TEE on a normal attestation workflow. Then, once
received, the HW TEE 4 computes the attestation using at least this AttestationNonce thus

giving rise to AttestationPayloadReport which is further sent back 29 to the payload 2.

10

15

20

25

30

35

WO 2023/073198 -16 - PCT/EP2022/080250

Then, the payload receives it (or intercepts it), and forward it 30 to the owner together with
KpubPayload, ECDHPayloadPubEIlt, ECDHPayloadPubEItSigned.

The owner will receive it and reproduce 31 the mixing done by the payload but using the

original NonceOwner it sent to the payload. Therefore, the owner computes:

XOR(hash(KpubPayload), NonceOwner) = AttestationNonce’

and verifies 32 AttestationPayloadReport using AttestationNonce’. If the verification
succeeds, the workflow continues. Otherwise, the attestation verification fails and the
secure channel cannot be established. In addition, owner can be alerted somehow and,
optionally, preventive measures may be taken such as aborting the connection with the

payload.

In case the attestation can be verified, the owner 1 verifies 33 ECDHPayloadPubEItSigned
using KpubPayload. If the verification of the signature succeeds, the workflow continues.

Otherwise, the signature verification fails and the secure channel cannot be established.

Therefore, both the software payload 2 and the owner 1 separately generate 34 a shared
secret using owner public data and payload public data, respectively. Hence, a direct secure

channel is established 35 between them.

KPrivPayload is not limited to sign the ECDH Public Elements, it may be also used to sign
any other data exchanged with the owner. In other embodiments, a Key Derivation Function

may be used from the shared secret to have a specific signature key.

Advantageously, once the secure channel has been established, the owner is able to

provision the very same attested payload with some secret(s).

Still, through the lifetime of the Payload, it may be necessary for the owner to have

subsequent communications with it, for instance to perform secret(s) rotation.

Therefore, figure 4 depicts a schematic diagram of an embodiment of the method 40 for
providing authentication means for the owner. Thanks to this, both parties are authenticated
and therefore the secure channel may be re-opened on demand with the very same attested

payload.

10

15

20

25

30

35

WO 2023/073198 -17 - PCT/EP2022/080250

That is, once the secure channel has been established between the owner 1 and the
software payload 2 running into the HW TEE 4 for instance, using the method 10, 20
according to figures 2 or 3, the owner 1 generates 41 an owner ECDSA key pair: public key

(KpubOwner) and private key (KprivOwner), and then sends the KpubOwner to the payload.

The software payload receives KpubOwner and stores it 43 in a memory under the
protection of the HW TEE. This persistent storage may be used either using the native
sealing capabilities of the HW TEE or, alternatively, using any of the methods according to

any of figures 6 or 7.

Then, both the owner 1 and the payload 2 can exchange 44 any information relevant to the

application in a secure manner.

After this provisioning, since maintaining the secure channel through the whole lifetime of
the payload would be too costly in term of network resources, any of the ends may require

closing the secure channel 45 and the secure communication will stop.

Therefore, an authenticated secure channel backed up by attestation may be opened and

closed as needed.

Figure 5 depicts a schematic diagram of an embodiment of the method 50 to re-establish

a secure and authenticated channel between the owner 1 and the software payload 2.

It will be assumed that a secure channel according to the method 10, 20 of the figures 2 or

3 was already established and, afterwards, stopped.

First, the owner 1 and the payload 2 perform a non-authenticated key-agreement protocol
of the type of ECDH protocol for generating a session key. This session key may be different

or similar to the session key already used for the establishment of the last secure channel.
Thus, the owner generates 51 owner public data (ECDHOwnerPubEIlt) and signs it 52 using
KprivOwner thus resulting in ECDHOwnerPubEItSigned. Then, the owner sends 53 these

ECDHOwnerPubEIt and ECDHOwnerPubEItSigned to the payload 2.

The software payload retrieves the previously stored (e.g., in a HW TEE memory or the

10

15

20

25

30

35

WO 2023/073198 -18 - PCT/EP2022/080250

RAM of the payload) KpubOwner and verifies 54 ECDHOwnerPubEItSigned using
KpubOwner.

If the owner signature is verified at payload’s end, the workflow will continue. Otherwise,

this verification will fail and the secure channel cannot be established.

If verified, the payload also generates 55 payload public data (ECDHPayloadPubEIt) and
retrieves KprivPayload for signing 56 this ECDHPayloadPubEIlt giving rise to
ECDHPayloadPubEItSigned.

Then, the payload sends 57 ECDHPayloadPubEIt and ECDHPayloadPubEItSigned to the
owner which verifies 58, at its end, the ECDHPaylaodPubEItSigned using the KpubPayload.

If verified, both the payload 2 and the owner 1 will generate or compute 59 a (new) shared
secret using ECDHOwnerPubEIlt and ECDHPayloadPubElt, respectively.

Finally, a secure channel is re-established 60 between the owner and the software payload
running into the HW TEE allowing the owner 1 and the payload 2 exchanging any sensitive

information in a secure manner.

Figure 6 depicts a schematic flowchart of a method to persistently store sensitive data by

the payload 2.

It is assumed that a secure channel has been established 71 between the owner 1 and the
payload 2 itself when running into a HW TEE at the instance of a cloud service provider.
Preferably, this secure channel is backed by the computation, by the HW TEE, of an

attestation.

First, the owner generates 72 a payload identifier (PayloadlD) using information shared from
the payload during the establishment of the secure channel. For instance, payloadID can
be derived from the attestation information such as information relative to the HW TEE, the

version of the payload, and/or the instantiation of the payload.

Then, the owner also generates 72 a key initiator (KEY_INIT) and persistently stores 73
(i.e., atthe owner side) the key initiator associated to the payloadID. In a basic configuration,

this KEY_INIT may be simply a symmetric key.

10

15

20

25

30

35

WO 2023/073198 -19- PCT/EP2022/080250

Then, the owner sends 74 these payloadID and key initiator to the payload. And the payload

uses 75 the key initiator to encrypt data.

By doing so, the payload will be able to persistently store 76 the encrypted data and the
payloadlD in a memory under the protection of the HW TEE without relying on the native

privacy mechanisms of the HW TEE.

The persistently stored sensitive data may be, for instance, KpubOwner and KprivPayload.

Therefore, when the payload need to retrieve this persistently stored data the following
steps are taken:
o the payload retrieves the stored payloadID and sends it to the owner;
o the owner retrieves the key initiator associated to the received payload identifier and
sends this key initiator to the payload; and

o the payload uses said key initiator to decrypt the persistently stored data.

After that, the payload will delete this key initiator.

Figure 7 depicts a preferred embodiment of a method 80 to persistently store sensitive data

by the payload 2 without relying on the sealing capabilities of the HW TEE.

As mentioned, a secure channel has been established 81 between the owner 1 and the

payload 2, for instance, backed by the computation, by the HW TEE, of an attestation.
The owner generates 82 PayloadID using information from the attestation. Then, the owner
encrypts the payloadlD using a first encryption key (PayloadlDEncKey) resulting in

PayloadIDCiphered.

Then, the owner also generates 83 KEY_INIT and persistently stores 84 (i.e., at the owner
side) the KEY_INIT associated to the payloadID.

Then, the owner sends 85 these payloadlDCiphered and KEY_INIT to the payload.

The payload passes 86 the KEY_INIT through a key derivation function, KDF, to generate

a symmetric key (DataEncKey) for encrypting data, and (in addition) to generate a

10

15

20

25

30

35

WO 2023/073198 -20- PCT/EP2022/080250

DatalntKey and Message Authentication Code (MAC) that allows the payload to

subsequently check the integrity of the persistently stored data.

Finally, first the payload stores 87 the PayloadlDCiphered and further encrypts and MAC

88 the sensitive data.

Figure 8 depicts a preferred embodiment of a method 90 to retrieve persistently stored
sensitive data by the payload 2 as, for instance, any of the methods 70, 80 according to

figures 6 or 7.

As mentioned, a secure channel has been established 91 between the owner 1 and the

payload 2, for instance, backed by the computation, by the HW TEE, of an attestation.

Either at the instance of the payload or as part of a workflow, the owner 1 sends 92
PayloadlDEncKey to the payload 2. Then, firstly, the payload retrieves 93 the
PayloadIDCiphered and further decrypts it using PayloadIDEncKey (= PayloadID). The

payload will then send back to the owner the PayloadID in clear.

As an alternative implementation (not shown), the payload 2 may retrieve
PayloadIDCiphered and send it to the owner which will decrypt it using PayloadlIDEncKey

thus also resulting on PayloadID in clear.

Referring back to figure 8, once the owner has the PayloadID in clear, it looks for any known
PayloadID and, if found, retrieves 96 the associated KEY_INIT. Otherwise, if no PayloadID

can be found, an error message may appear and the communications may end.

If KEY_INIT retrieval succeeds, the owner sends 97 KEY_INIT to the payload which will
pass it through KDF to generate 98 DataEncKey for decrypting the sealed data, and to
generate 98 DatalntKey to check the integrity of the persistently stored data.

Therefore, the payload retrieves 99 the sealed data and, accordingly, use 100 DataEncKey

and DatalntKey to decrypt and check the integrity of this sealed data.

In terms of implementation, the skilled person shall understand that these processes may
be delivered as a library that the developer can use. Preferably, these are done inside the

payload because are secured by the HW TEE. There is no specific payload in charge.

WO 2023/073198 -21- PCT/EP2022/080250

The skilled person would recognize that these defined functionalities may be implemented
as a library. Therefore, the developer can decide to use several payloads: one for the

database, one for the webserver, one for the back-end, etc.

10

15

20

25

30

35

WO 2023/073198 -22- PCT/EP2022/080250

CLAIMS

1.- Computer-implemented method to store data persistently by a payload of an owner, the
method comprising the following steps:

o establishing a secure channel between the owner and the software payload itself
when running into a hardware-based trusted executed environment, HW TEE, at the
instance of a cloud service provider,

e generating, by the owner, a payload identifier using information shared from the
payload during the establishment of the secure channel;

e generating, by the owner, a key initiator and persistently storing at the owner side
the key initiator associated to the payload identifier;

e sending, by the owner, the payload identifier and the key initiator to the payload;

e using the key initiator, by the payload, to encrypt data; and

o persistently storing, by the payload, the encrypted data and the payload identifier.

2.- Method according to claim 1, further comprising the following step:
e encrypting, by the owner, the payload identifier using a first encryption key before

sending it to the payload for its persistent storing in encrypted form.

3.- Method according to any of claims 1 or 2, wherein either:
o the key initiator is a symmetric key, or
o the key initiator is first passed through a key derivation function, KDF, by the

payload, to generate a symmetric key that encrypts the data.

4.- Method according to any of claims 1 to 3, wherein the key initiator is passed through a
key derivation function, KDF, by the payload, to generate a Message Authentication Code
(MAC) that allows the payload to subsequently check the integrity of the persistently stored

data.

5.- Method according to any of claims 1 to 4, wherein the secure channel between the owner
and the software payload is backed by the computation, by the HW TEE, of an attestation,
and wherein the payload identifier is derived from the attestation information such as
information relative to the HW TEE, the version of the payload, and/or the instantiation of

the payload.

6.- Computer-implemented method to retrieve data persistently stored by a payload of an

10

15

20

25

30

35

WO 2023/073198 -23- PCT/EP2022/080250

owner according to any of the claims 1 to 5, the method comprising the following steps:

e having established or re-establishing a secure channel between the owner and the
software payload itself when running into the HW TEE at the instance of a cloud
service provider;

o retrieving, by the payload, the stored payload identifier and sending it to the owner,

o retrieving, by the owner, the key initiator associated to the received payload
identifier;

e sending, by the owner, the key initiator to the payload; and

e using the key initiator, by the payload, to decrypt the persistently stored data.

7.- Method according to claim 6, wherein the stored payload identifier had been previously
encrypted by the owner using the first encryption key, the method comprising the following
steps:

e sending, by the owner, the first encryption key to the payload; and

o after being retrieved, decrypting, by the payload, the payload identifier and sending

it to the owner.

8.- Method according to claim 6, wherein the stored payload identifier had been previously
encrypted by the owner using the first encryption key, the method comprising the following
steps:

e sending, by the payload, the encrypted payload identifier to the owner;

o decrypting, by the owner, the payload identifier; and

o retrieving, by the owner, the key initiator associated to the decrypted payload

identifier.

9.- System for persistently storing data by a software payload of an owner, the system
comprising:

o the owner of the software payload configured to send the software payload to the
HW TEE for its execution, the software payload configured to run into the HW TEE,
and the HW TEE operated by a cloud service provider;

o wherein the owner of the software payload and the software payload itself are
configured to establish a secure channel between them when the payload is running
into the HW TEE at the instance of the cloud service provider;

o wherein the owner is further configured to

o generate a payload identifier using information shared from the payload

during the establishment of the secure channel,

10

15

20

25

WO 2023/073198 -24 - PCT/EP2022/080250

o generate a key initiator;
o persistently store at the owner side the key initiator associated to the payload
identifier; and
o send the payload identifier and the key initiator to the payload;
o wherein the payload if further configured to
o use the key initiator to encrypt data; and

o persistently store the encrypted data and the payload identifier.

10.- Owner of a software payload for persistently storing data by the software payload, the
owner of the software payload configured to send the software payload to the HW TEE for
its execution,
wherein the owner is further configured to
o establish a secure channel with the payload when the latter is running into the HW
TEE at the instance of the cloud service provider;
e generate a payload identifier using information shared from the payload during the
establishment of the secure channel;
e generate a key initiator;
o persistently store at the owner side the key initiator associated to the payload
identifier; and
o send the payload identifier and the key initiator to the payload which will use the key

initiator to encrypt data and persistently store it and the payload identifier.

11.- Software payload of an owner for persistently storing data, the software payload being
configured to run into the HW TEE,
wherein the payload if further configured to:

e receive a payload identifier and a key initiator from the owner;

o use the key initiator to encrypt the data; and

o persistently store the encrypted data and the payload identifier.

PCT/EP2022/080250

1/5

WO 2023/073198

~
~€

»_m,.\m l./r FY

~ZE
k4 I .ww
A3LAH | 331 AMH
s///e

= ~_] 1€

18PIADId BIAIBS PNOD

WO 2023/073198 PCT/EP2022/080250

2/5

Owner sends NonceOwner to the payload

I 11

\ Payload generates key pair:
KpubPayload/KprivPayioad

|

Payload mixes Kpubpayload with the
NonceOwner

!

HW TEE computes attestation using ™14
KpubPayload mixed with the NonceOwner

!

Payload sends the attestation KpubPayload to the owner M 15

:

Owner verifies the attestation using original NonceOwner N 16
mixed with the received KpubPayload

!

Payload and owner generates a session key

|

] securechannel established FlG 2

10

" 12

13

18

WO 2023/073198 PCT/EP2022/080250

3/5

-4 ’«—2

Payload 1

Owner |/

21
22]’

o,

HW TEE

A\

23‘.\‘[
25\[
o 27 —"’

- 29
, S s 30

k 4

- 31
32\[*
Attest. Verification OK B 33
Y
34 [
kl: 34
s 35 et

Secure channel established |

FIG. 3 Signature verification OK ‘

HWTEE |/ 4 Payload |/ 2 Owner |/ 1

40 |
\ | Secure channel established |
e 41
P

43w\\|:

1 44

Sensitive data exchange

15 45

| Secure channel stopped |

WO 2023/073198 PCT/EP2022/080250
4/5
HWTEE |/ 4 Payload |/ 2 owner |/ 1
50 \ | Secure channel stopped |
}/ 51
52{

- 53

54\[
]’f 35 Owmner signature OK

6~\\&|:

Ve 57

hd

1[« 58
59

Payload signature OK
Secure channel established

Sensitive data exchange

FIG.5

Establishing a secure channel backed by attestation |71

Owner generates a payloadiD and KEY_INIT

|

Owner persistently stores KEY _INIT+ payloadiD 73

.

Crwner sends payloadiD and KEY _INIT 74

!

Payload uses KEY INIT to encrypt sensitive data s 75

'

Payload persistently stores the encrypted data and the payloadiD S 76

70

[P,

72

FIG. 6

WO 2023/073198

80

90

HW TEE

FIG.7

HW TEE

FIG. 8

5/5

Payload

o 2

e,

Mff 81

PCT/EP2022/080250

Owner |/

I i I
| Secure channel established |

~ 85

K

}f‘ 82
}f 84

Bk
N,

Payload |

& 2

f 91

Owner |/

| s 1
| Secure channel established |

™

\k92

]j« 84

»

I's 95
L > 9%
Retriev. KEY INIT '
.
o8 ﬁ\[97
i Retriev. sealing|key{s}

100 _I:

~99
},

Retriev. sealed data

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2022/080250
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06F21/53 GO06Fr21/60 GO6F21/62 HO04L9/08 GO06F21/57
HO041L9/40
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2018/183578 Al (CHAKRABARTI SOMNATH 1-11

[US] ET AL) 28 June 2018 (2018-06-28)

paragraphs [0019] - [0020], [0024],

[0033], [0035] - [0037], [0042] -

[0046], [0049] - [0053]

figures 2, 5, 6, 7
X US 2018/211067 Al (COSTA MANUEL [GB]) 1-11

26 July 2018 (2018-07-26)

paragraphs [0005], [0032], [0051],
[0057], [0099], [0125] - [0130],

[0144], [0154] - [0168], [0180] - [0187]
paragraphs [0200], [0215] - [0223]
figures 15, 16, 17, 18, 19, 20, 21, 22, 23

-/—

|__K| Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than

the priority date claimed

=

o

"o

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 January 2023

Date of mailing of the international search report

07/02/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Volpato, Gian Luca

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2022/080250

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2021/037001 Al (SAPEK ANNA [US] ET AL)
4 February 2021 (2021-02-04)

paragraphs [0004] - [0005], [0037] -
[0038], [00%6], [0105]

figures 9, 12

1-11

Form PCT/ISA/210 (contin

uation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2022/080250
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2018183578 Al 28-06-2018 NONE

US 2018211067 Al 26-07-2018 AU 2018213020 A1l 04-07-2019
BR 112019013540 A2 07-01-2020
Ca 3046517 Al 02-08-2018
CL 2019002007 A1l 13-12-2019
CN 110199284 A 03-09-2019
CO 2019007655 A2 31-07-2019
EP 3574435 Al 04-12-2019
IL 267938 A 26-09-2019
JP 7094292 B2 01-07-2022
JP 2020505699 A 20-02-2020
KR 20190108574 A 24-09-2019
PH 12019550123 Al 10-02-2020
RU 2019126641 A 26-02-2021
SG 11201905462W A 27-08-2019
Us 2018211067 Al 26-07-2018
WO 2018140290 A1l 02-08-2018
ZA 201903705 B 25-11-2020

US 2021037001 Al 04-02-2021 CN 112041838 A 04-12-2020
EP 3788528 Al 10-03-2021
Us 2021037001 A1 04-02-2021
WO 2019212580 Al 07-11-2019

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report

