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COMPUTER-BASED SYSTEMS, COMPUTING COMPONENTS AND COMPUTING 
OBJECTS CONFIGURED TO IMPLEMENT DYNAMIC OUTLIER BIAS REDUCTION IN 

MACHINE LEARNING MODELS 

CROSS-REFERENCE To RELATED APPLICATIONS 

[0001] This application claims priority to U.S. Patent Application Number 17/025,889 filed on 

18 September 2020, which claims priority to U.S. Provisional Application Number 62/902,074 

filed on 18 September 2019 and entitled "COMPUTER-BASED SYSTEMS, COMPUTING 

COMPONENTS AND COMPUTING OBJECTS CONFIGURED TO IMPLEMENT 

DYNAMIC OUTLIER BIAS REDUCTION IN MACHINE LEARNING MODELS," and is 

herein incorporated by reference in its entirety.  

COPYRIGHT NOTICE 

[0002] A portion of the disclosure of this patent document contains material that is subject to 

copyright protection. The copyright owner has no objection to the facsimile reproduction by 

anyone of the patent document or the patent disclosure, as it appears in the Patent and 

Trademark Office patent files or records, but otherwise reserves all copyright rights 

whatsoever. The following notice applies to the software and data as described below and in 

drawings that form a part of this document: Copyright, Hartford Steam Boiler Inspection and 

Insurance Company, All Rights Reserved.  

FIELD OF TECHNOLOGY 

[0003] The present disclosure generally relates to improved computer-based systems, 

computing components and computing objects configured to implement bias reduction in 

machine learning models.  

BACKGROUND OF TECHNOLOGY 

[0004] A machine learning model may include one or more computers or processing devices 

to form predictions or determinations based on patterns and inferences learned from 

sample/training data. Bias in sample/training data selection can propagate into machine 

learning model predictions and determinations.  
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Summary of the Disclosure 

[0004A] It is an object of the present invention to substantially overcome or at least ameliorate 

one or more of the above disadvantages.  

[0005] Embodiments of the present disclosure include methods for dynamic outlier bias reduced 

machine learning models. The methods include receiving, by at least one processor, a training 

data set of target variables representing at least one activity-related attribute for at least one user 

activity; receiving, by the at least one processor, at least one bias criteria used to determine one 

or more outliers; determining, by the at least one processor, a set of model parameters for a 

machine learning model including: (1) applying, by the at least one processor, the machine 

learning model having a set of initial model parameters to the training data set to determine a set 

of model predicted values; (2) generating, by the at least one processor, an error set of data element 

errors by comparing the set of model predicted values to corresponding actual values of the 

training data set; (3) generating, by the at least one processor, a data selection vector to identify 

non-outlier target variables based at least in part on the error set of data element errors and the at 

least one bias criteria; (4) utilizing, by the at least one processor, the data selection vector on the 

training data set to generate a non-outlier data set; (5) determining, by the at least one processor, 

a set of updated model parameters for the machine learning model based on the non-outlier data 

set; and (6) repeating, by the at least one processor, steps (1)-(5) as an iteration until at least one 

censoring performance termination criterion is satisfied so as to obtain the set of model parameters 

for the machine learning model as the updated model parameters, whereby each iteration re

generates the set of predicted values, the error set, the data selection vector, and the non-outlier 

data set using the set of updated model parameters as the set of initial model parameters; training, 

by the at least one processor, based at least in part on the training data set and the data selection 

vector, a set of classifier model parameters of an outlier classifier machine learning model to 

obtain a trained outlier classifier machine learning model that is configured to identify at least one 

outlier data element; applying, by the at least one processor, the trained outlier classifier machine 

learning model to a data set of activity-related data for the at least one user activity to determine: 

i) a set 
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of outlier activity-related data in the data set of activity-related data, and ii) a set of non-outlier 

activity-related data in the data set of activity-related data; and applying, by the at least one 

processor, the machine learning model to the set of non-outlier activity-related data elements 

to predict future activity-related attribute related to the at least one user activity.  

[0006] Embodiments of the present disclosure include systems for dynamic outlier bias 

reduced machine learning models. The systems include at least one processor in 

communication with a non-transitory computer-readable storage medium having software 

instructions stored thereon, where the software instructions, when executed, cause the at least 

one processor to perform steps to: receive a training data set of target variables representing at 

least one activity-related attribute for at least one user activity; receive at least one bias criteria 

used to determine one or more outliers; determine a set of model parameters for a machine 

learning model including: (1) apply the machine learning model having a set of initial model 

parameters to the training data set to determine a set of model predicted values; (2) generate an 

error set of data element errors by comparing the set of model predicted values to corresponding 

actual values of the training data set; (3) generate a data selection vector to identify non-outlier 

target variables based at least in part on the error set of data element errors and the at least one 

bias criteria; (4) utilize the data selection vector on the training data set to generate a non

outlier data set; (5) determine a set of updated model parameters for the machine learning 

model based on the non-outlier data set; and (6) repeat steps (1)-(5) as an iteration until at least 

one censoring performance termination criterion is satisfied so as to obtain the set of model 

parameters for the machine learning model as the updated model parameters, whereby each 

iteration re-generates the set of predicted values, the error set, the data selection vector, and the 

non-outlier data set using the set of updated model parameters as the set of initial model 

parameters; train, based at least in part on the training data set and the data selection vector, a 

set of classifier model parameters of an outlier classifier machine learning model to obtain a 
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trained outlier classifier machine learning model that is configured to identify at least one 

outlier data element; apply the trained outlier classifier machine learning model to a data set of 

activity-related data for the at least one user activity to determine: i) a set of outlier activity

related data in the data set of activity-related data, and ii) a set of non-outlier activity-related 

data in the data set of activity-related data; and apply the machine learning model to the set of 

non-outlier activity-related data elements to predict future activity-related attribute related to 

the at least one user activity.  

[0007] The systems and methods of embodiments of the present disclosure further including: 

applying, by the at least one processor, the data selection vector to the training data set to 

determine an outlier training data set ; training, by the at least one processor, using the outlier 

training data set, at least one outlier-specific model parameter of at least one outlier-specific 

machine learning model to predict outlier data values; and utilizing, by the at least one 

processor, the outlier-specific machine learning model to predict outlier activity-related data 

values for the set of outlier activity-related data.  

[0008] The systems and methods of embodiments of the present disclosure further including: 

training, by the at least one processor, using the training data set, generalized model parameters 

of a generalized machine learning model to predict data values; utilizing, by the at least one 

processor, the generalized machine learning model to predict outlier activity-related data values 

for the set of outlier activity-related data; and utilizing, by the at least one processor, the 

generalized machine learning model to predict the activity-related data values.  

[0009] The systems and methods of embodiments of the present disclosure further including: 

applying, by the at least one processor, the data selection vector to the training data set to 

determine an outlier training data set; training, by the at least one processor, using the outlier 

training data set, an outlier-specific model parameters of an outlier-specific machine learning 

model to predict outlier data values; training, by the at least one processor, using the training 
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data set, generalized model parameters of a generalized machine learning model to predict data 

values; utilizing, by the at least one processor, the outlier-specific machine learning model to 

predict outlier activity-related data values for the set of outlier activity-related data; and 

utilizing, by the at least one processor, the outlier-specific machine learning model to predict 

the activity-related data values.  

[0010] The systems and methods of embodiments of the present disclosure further including: 

training, by the at least one processor, using the training data set, generalized model parameters 

of a generalized machine learning model to predict data values; utilizing, by the at least one 

processor, the generalized machine learning model to predict the activity-related data values 

for the set of activity-related data; utilizing, by the at least one processor, the outlier classifier 

machine learning model to identify outlier activity-related data values of the activity-related 

data values; and removing, by the at least one processor, the outlier activity-related data values.  

[0011] The systems and methods of embodiments of the present disclosure where the training 

data set includes the at least one activity-related attribute of concrete compressive strength as 

a function of concrete composition and concrete curing exposure.  

[0012] The systems and methods of embodiments of the present disclosure where the training 

data set includes the at least one activity-related attribute of energy use data as a function of 

household environmental conditions and lighting conditions.  

[0013] The systems and methods of embodiments of the present disclosure further including: 

receiving, by the at least one processor, an application programming interface (API) request to 

generate a prediction with at least one data element; and instantiating, by the at least one 

processor, at least one cloud computing resource to schedule execution of the machine learning 

model; utilizing, by the at least one processor according to the schedule for execution, the 

machine learning model to predict at least one activity-related data element value for the at 
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least one data element; and returning, by the at least one processor, the at least one activity-related 

data element value to a computing device associated with the API request.  

[0014] The systems and methods of embodiments of the present disclosure where the training 

data set includes the at least one activity-related attribute of three-dimensional patient imagery of 

a medical dataset; and where the machine learning model is configured to predict the activity

related data values including two or more physically-based rendering parameters based on the 

medical dataset.  

[0015] The systems and methods of embodiments of the present disclosure where the training 

data set includes the at least one activity-related attribute of simulated control results for electronic 

machine commands; and where the machine learning model is configured to predict the activity

related data values including control commands for the electronic machine.  

[0016] The systems and methods of embodiments of the present disclosure further including: 

splitting, by the at least one processor, the set of activity-related data into a plurality of subsets of 

activity-related data; determining, by the at least one processor, an ensemble model for each subset 

of activity-related data of the plurality of subsets of activity-related data; where the machine 

learning model includes an ensemble of models; where each ensemble model includes a random 

combination of models from the ensemble of models; utilizing, by the at least one processor, each 

ensemble model separately to predict ensemble-specific activity-related data values; determining, 

by the at least one processor, an error for each ensemble model based on the ensemble-specific 

activity-related data values and known values; and selecting, by the at least one processor, a 

highest performing ensemble model based on a lowest error.  

[0016A] According to one aspect of the present disclosure, there is provided a method comprising: 

receiving, by at least one processor from at least one computing device associated with at least 

one production environment, a production-ready model request comprising a training data set of 

data records; wherein each data record comprising an independent variable and a target variable; 

determining, by the at least one processor, a set of model parameters for at least one machine 

learning model comprising: (1) applying, by the at least one processor, the at least one machine 

learning model having a set of initial model parameters to the training data set to determine a set 

of model predicted values; (2) generating, by the at least one processor, an error set of data element 

errors by comparing the set of model predicted values to corresponding actual values of the 

training data set; (3) generating, by the at least one processor, a data selection vector to identify 

non-outlier target variables based at least in part on the error set of data element errors and at least 

one bias criteria; (4) applying, by the at least one processor, the data selection vector to the training 

data set to generate a non-outlier data set; (5) determining, by the at least one processor, a set of 
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updated model parameters for the at least one machine learning model based on the non-outlier 

data set; and (6) repeating, by the at least one processor, at least one iteration of steps (1)-(5) until 

at least one censoring performance termination criterion is satisfied so as to obtain the set of model 

parameters for the at least one machine learning model as the updated model parameters, whereby 

each iteration re-generates the set of predicted values, the error set, the data selection vector, and 

the non-outlier data set using the set of updated model parameters as the set of initial model 

parameters; training, by the at least one processor, an outlier classification machine learning 

model based at least in part on the outlier data set and the non-outlier data set, the outlier 

classification machine learning model being configured to identify a given data record as an 

outlier or a non-outlier based least in part on outlier classification machine learning model 

parameters; and transmitting, by the at least one processor, a production-ready machine learning 

model comprising the outlier classification machine learning model and the at least one machine 

learning model based at least in part on the at least one iteration for use in the at least one 

production environment; wherein the production-ready machine learning model is configured to 

classify new data records as outliers or non-outliers, and, where the new records are non-outliers, 

apply the at least one machine learning model.  

[0016B] According to another aspect of the present disclosure, there is provided a method 

comprising: transmitting, by at least one processor of at least one computing device associated 

with at least one production environment, a production-ready model request comprising a training 

data set of data records to at least one automated model generation processor; wherein each data 

record comprising an independent variable and a target variable; receiving, by the at least one 

processor from the at least one automated model generation processor, a production-ready 

machine learning model comprising an outlier classification machine learning model and at least 

one machine learning model based at least in part on at least one iteration performed by the at 

least one automated model generation processor, the at least one iteration comprising: determining 

a set of model parameters for the at least one machine learning model comprising: (1) applying 

the at least one machine learning model having a set of initial model parameters to the training 

data set to determine a set of model predicted values; (2) generating an error set of data element 

errors by comparing the set of model predicted values to corresponding actual values of the 

training data set; (3) generating a data selection vector to identify non-outlier target variables 

based at least in part on the error set of data element errors and at least one bias criteria; (4) 

applying the data selection vector to the training data set to generate a non-outlier data set; (5) 

determining a set of updated model parameters for the at least one machine learning model based 
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on the non-outlier data set; and (6) repeating at least one iteration of steps (1)-(5) until at least one 

censoring performance termination criterion is satisfied so as to obtain the set of model parameters 

for the at least one machine learning model as the updated model parameters, whereby each 

iteration re-generates the set of predicted values, the error set, the data selection vector, and the 

non-outlier data set using the set of updated model parameters as the set of initial model 

parameters; training, by the at least one processor, an outlier classification machine learning 

model based at least in part on the outlier data set and the non-outlier data set, the outlier 

classification machine learning model being configured to identify a given data record as an 

outlier or a non-outlier based least in part on outlier classification machine learning model 

parameters; and wherein the production-ready machine learning model is configured to classify 

new data records as outliers or non-outliers, and, where the new records are non-outliers, apply 

the at least one machine learning model.  

[0016C] According to still another aspect of the present disclosure, there is provided a system 

comprising: at least one processor configured to execute software instructions that cause the at 

least one processor to perform steps to: receive, from at least one computing device associated 

with at least one production environment, a production-ready model request comprising a training 

data set of data records; wherein each data record comprising an independent variable and a target 

variable; determine a set of model parameters for at least one machine learning model comprising: 

(1) apply the at least one machine learning model having a set of initial model parameters to the 

training data set to determine a set of model predicted values; (2) generate an error set of data 

element errors by comparing the set of model predicted values to corresponding actual values of 

the training data set; (3) generate a data selection vector to identify non-outlier target variables 

based at least in part on the error set of data element errors and at least one bias criteria; (4) apply 

the data selection vector to the training data set to generate a non-outlier data set; (5) determine a 

set of updated model parameters for the at least one machine learning model based on the non

outlier data set; and (6) repeat at least one iteration of steps (1)-(5) until at least one censoring 

performance termination criterion is satisfied so as to obtain the set of model parameters for the 

at least one machine learning model as the updated model parameters, whereby each iteration re

generates the set of predicted values, the error set, the data selection vector, and the non-outlier 

data set using the set of updated model parameters as the set of initial model parameters; train an 

outlier classification machine learning model based at least in part on the outlier data set and the 

non-outlier data set, the outlier classification machine learning model being configured to identify 

a given data record as an outlier or a non-outlier based least in part on outlier classification 

machine 
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learning model parameters; and transmit a production-ready machine learning model of the at 

least one machine learning model based at least in part on the at least one iteration for use in the 

at least one production environment; wherein the production-ready machine learning model is 

configured to classify new data records as outliers or non-outliers, and, where the new records are 

non-outliers, apply the at least one machine learning model.  

[0016D] According to still another aspect of the present disclosure, there is provided a system 

comprising: at least one processor of at least one computing device associated with at least one 

production environment, wherein the at least one processor is configured to execute software 

instructions that cause the at least one processor to perform steps to: communicate a production

ready model request comprising a training data set of data records to at least one automated model 

generation processor; wherein each data record comprising an independent variable and a target 

variable; receive, from the at least one automated model generation processor, a production-ready 

machine learning model comprising an outlier classification machine learning model and at least 

one machine learning model based at least in part on at least one iteration performed by the at 

least one automated model generation processor, the at least one iteration comprising: determining 

a set of model parameters for the at least one machine learning model comprising: (1) applying 

the at least one machine learning model having a set of initial model parameters to the training 

data set to determine a set of model predicted values; (2) generating an error set of data element 

errors by comparing the set of model predicted values to corresponding actual values of the 

training data set; (3) generating a data selection vector to identify non-outlier target variables 

based at least in part on the error set of data element errors and at least one bias criteria; (4) 

applying the data selection vector to the training data set to generate a non-outlier data set; (5) 

determining a set of updated model parameters for the at least one machine learning model based 

on the non-outlier data set; and (6) repeating at least one iteration of steps (1)-(5) until at least one 

censoring performance termination criterion is satisfied so as to obtain the set of model parameters 

for the at least one machine learning model as the updated model parameters, whereby each 

iteration re-generates the set of predicted values, the error set, the data selection vector, and the 

non-outlier data set using the set of updated model parameters as the set of initial model 

parameters; training, by the at least one processor, an outlier classification machine learning 

model based at least in part on the outlier data set and the non-outlier data set, the outlier 

classification machine learning model being configured to identify a given data record as an 

outlier or a non-outlier based least in part on outlier classification machine learning model 

parameters; and wherein the production-ready machine learning model is configured to classify 

new data records 
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as outliers or non-outliers, and, where the new records are non-outliers, apply the at least one 

machine learning model.  

Brief Description of the Drawings 

[0017] Various embodiments of the present disclosure can be further explained with reference to 

the attached drawings, wherein like structures are referred to by like numerals throughout the 

several views. The drawings shown are not necessarily to scale, with emphasis instead 
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generally being placed upon illustrating the principles of the present disclosure. Therefore, 

specific structural and functional details disclosed herein are not to be interpreted as limiting, 

but merely as a representative basis for teaching one skilled in the art to variously employ one 

or more illustrative embodiments.  

[0018] FIGS. 1-14B show one or more schematic flow diagrams, certain computer-based 

architectures, and/or screenshots of various specialized graphical user interfaces which are 

illustrative of some exemplary aspects of at least some embodiments of the present disclosure.  

DETAILED DESCRIPTION 

[0019] Various detailed embodiments of the present disclosure, taken in conjunction with the 

accompanying figures, are disclosed herein; however, it is to be understood that the disclosed 

embodiments are merely illustrative. In addition, each of the examples given in connection 

with the various embodiments of the present disclosure is intended to be illustrative, and not 

restrictive.  

[0020] Throughout the specification, the following terms take the meanings explicitly 

associated herein, unless the context clearly dictates otherwise. The phrases "in one 

embodiment" and "in some embodiments" as used herein do not necessarily refer to the same 

embodiment(s), though it may. Furthermore, the phrases "in another embodiment" and "in 

some other embodiments" as used herein do not necessarily refer to a different embodiment, 

although it may. Thus, as described below, various embodiments may be readily combined, 

without departing from the scope or spirit of the present disclosure.  

[0021] In addition, the term "based on" is not exclusive and allows for being based on 

additional factors not described, unless the context clearly dictates otherwise. In addition, 

throughout the specification, the meaning of "a," "an," and "the" include plural references. The 

meaning of "in" includes "in" and "on." 
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[0022] It is understood that at least one aspect/functionality of various embodiments described 

herein can be performed in real-time and/or dynamically. As used herein, the term "real-time" 

is directed to an event/action that can occur instantaneously or almost instantaneously in time 

when another event/action has occurred. For example, the "real-time processing," "real-time 

computation," and "real-time execution" all pertain to the performance of a computation during 

the actual time that the related physical process (e.g., a user interacting with an application on 

a mobile device) occurs, in order that results of the computation can be used in guiding the 

physical process.  

[0023] As used herein, the term "dynamically" and term "automatically," and their logical 

and/or linguistic relatives and/or derivatives, mean that certain events and/or actions can be 

triggered and/or occur without any human intervention. In some embodiments, events and/or 

actions in accordance with the present disclosure can be in real-time and/or based on a 

predetermined periodicity of at least one of. nanosecond, several nanoseconds, millisecond, 

several milliseconds, second, several seconds, minute, several minutes, hourly, several hours, 

daily, several days, weekly, monthly, etc.  

[0024] In some embodiments, exemplary inventive, specially programmed computing systems 

with associated devices are configured to operate in the distributed network environment, 

communicating with one another over one or more suitable data communication networks (e.g., 

the Internet, satellite, etc.) and utilizing one or more suitable data communication 

protocols/modes such as, without limitation, IPX/SPX, X.25, AX.25, AppleTalk(TM), TCP/IP 

(e.g., HTTP), near-field wireless communication (NFC), RFID, Narrow Band Internet of 

Things (NBIOT), 3G, 4G, 5G, GSM, GPRS, WiFi, WiMax, CDMA, satellite, ZigBee, and 

other suitable communication modes. In some embodiments, the NFC can represent a short

range wireless communications technology in which NFC-enabled devices are "swiped," 

"bumped," "tap" or otherwise moved in close proximity to communicate.  
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[0025] The material disclosed herein may be implemented in software or firmware or a 

combination of them or as instructions stored on a machine-readable medium, which may be 

read and executed by one or more processors. A machine-readable medium may include any 

medium and/or mechanism for storing or transmitting information in a form readable by a 

machine (e.g., a computing device). For example, a machine-readable medium may include 

read only memory (ROM); random access memory (RAM); magnetic disk storage media; 

optical storage media; flash memory devices; electrical, optical, acoustical or other forms of 

propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), and others.  

[0026] As used herein, the terms "computer engine" and "engine" identify at least one software 

component and/or a combination of at least one software component and at least one hardware 

component which are designed/programmed/configured to manage/control other software 

and/or hardware components (such as the libraries, software development kits (SDKs), objects, 

etc.).  

[0027] Examples of hardware elements may include processors, microprocessors, circuits, 

circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated 

circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), 

digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, 

semiconductor device, chips, microchips, chip sets, and so forth. In some embodiments, the 

one or more processors may be implemented as a Complex Instruction Set Computer (CISC) 

or Reduced Instruction Set Computer (RISC) processors; x86 instruction set compatible 

processors, multi-core, or any other microprocessor or central processing unit (CPU). In 

various implementations, the one or more processors may be dual-core processor(s), dual-core 

mobile processor(s), and so forth.  

[0028] Examples of software may include software components, programs, applications, 

computer programs, application programs, system programs, machine programs, operating 
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system software, middleware, firmware, software modules, routines, subroutines, functions, 

methods, procedures, software interfaces, application program interfaces (API), instruction 

sets, computing code, computer code, code segments, computer code segments, words, values, 

symbols, or any combination thereof Determining whether an embodiment is implemented 

using hardware elements and/or software elements may vary in accordance with any number 

of factors, such as desired computational rate, power levels, heat tolerances, processing cycle 

budget, input data rates, output data rates, memory resources, data bus speeds and other design 

or performance constraints.  

[0029] One or more aspects of at least one embodiment may be implemented by representative 

instructions stored on a machine-readable medium which represents various logic within the 

processor, which when read by a machine causes the machine to fabricate logic to perform the 

techniques described herein. Such representations, known as "IP cores" may be stored on a 

tangible, machine readable medium and supplied to various customers or manufacturing 

facilities to load into the fabrication machines that make the logic or processor. Of note, various 

embodiments described herein may, of course, be implemented using any appropriate hardware 

and/or computing software languages (e.g., C++, Objective-C, Swift, Java, JavaScript, Python, 

Perl, QT, etc.).  

[0030] In some embodiments, one or more of exemplary inventive computer-based devices of 

the present disclosure may include or be incorporated, partially or entirely into at least one 

personal computer (PC), laptop computer, ultra-laptop computer, tablet, touch pad, portable 

computer, handheld computer, palmtop computer, personal digital assistant (PDA), cellular 

telephone, combination cellular telephone/PDA, television, smart device (e.g., smart phone, 

smart tablet or smart television), mobile internet device (MID), messaging device, data 

communication device, and so forth.  
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[0031] As used herein, term "server" should be understood to refer to a service point which 

provides processing, database, and communication facilities. By way of example, and not 

limitation, the term "server" can refer to a single, physical processor with associated 

communications and data storage and database facilities, or it can refer to a networked or 

clustered complex of processors and associated network and storage devices, as well as 

operating software and one or more database systems and application software that support the 

services provided by the server. Cloud servers are examples.  

[0032] In some embodiments, as detailed herein, one or more of exemplary inventive 

computer-based systems of the present disclosure may obtain, manipulate, transfer, store, 

transform, generate, and/or output any digital object and/or data unit (e.g., from inside and/or 

outside of a particular application) that can be in any suitable form such as, without limitation, 

a file, a contact, a task, an email, a tweet, a map, an entire application (e.g., a calculator), etc.  

In some embodiments, as detailed herein, one or more of exemplary inventive computer-based 

systems of the present disclosure may be implemented across one or more of various computer 

platforms such as, but not limited to: (1) AmigaOS, AmigaOS 4, (2) FreeBSD, NetBSD, 

OpenBSD, (3) Linux, (4) Microsoft Windows, (5) OpenVMS, (6) OS X (Mac OS), (7) OS/2, 

(8) Solaris, (9) Tru64 UNIX, (10) VM, (11) Android, (12) Bada, (13) BlackBerry OS, (14) 

Firefox OS, (15) iOS, (16) Embedded Linux, (17) Palm OS, (18) Symbian, (19) Tizen, (20) 

WebOS, (21) Windows Mobile, (22) Windows Phone, (23) Adobe AIR, (24) Adobe Flash, (25) 

Adobe Shockwave, (26) Binary Runtime Environment for Wireless (BREW), (27) Cocoa 

(API), (28) Cocoa Touch, (29) Java Platforms, (30) JavaFX, (31) JavaFX Mobile, (32) 

Microsoft XNA, (33) Mono, (34) Mozilla Prism, XUL and XULRunner, (35) .NET 

Framework, (36) Silverlight, (37) Open Web Platform, (38) Oracle Database, (39) Qt, (40) 

SAP NetWeaver, (41) Smartface, (42) Vexi, and (43) Windows Runtime.  
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[0033] In some embodiments, exemplary inventive computer-based systems, and/or exemplary 

inventive computer-based devices of the present disclosure may be configured to utilize 

hardwired circuitry that may be used in place of or in combination with software instructions 

to implement features consistent with principles of the disclosure. Thus, implementations 

consistent with principles of the disclosure are not limited to any specific combination of 

hardware circuitry and software. For example, various embodiments may be embodied in many 

different ways as a software component such as, without limitation, a stand-alone software 

package, a combination of software packages, or it may be a software package incorporated as 

a "tool" in a larger software product.  

[0034] For example, exemplary software specifically programmed in accordance with one or 

more principles of the present disclosure may be downloadable from a network, for example, 

a website, as a stand-alone product or as an add-in package for installation in an existing 

software application. For example, exemplary software specifically programmed in accordance 

with one or more principles of the present disclosure may also be available as a client-server 

software application, or as a web-enabled software application. For example, exemplary 

software specifically programmed in accordance with one or more principles of the present 

disclosure may also be embodied as a software package installed on a hardware device.  

[0035] In some embodiments, exemplary inventive computer-based systems/platforms, 

exemplary inventive computer-based devices, and/or exemplary inventive computer-based 

components of the present disclosure may be configured to handle numerous concurrent users 

that may be, but is not limited to, at least 100 (e.g., but not limited to, 100-999), at least 1,000 

(e.g., but not limited to, 1,000-9,999 ), at least 10,000 (e.g., but not limited to, 10,000-99,999 

), at least 100,000 (e.g., but not limited to, 100,000-999,999), at least 1,000,000 (e.g., but not 

limited to, 1,000,000-9,999,999), at least 10,000,000 (e.g., but not limited to, 10,000,000
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99,999,999), at least 100,000,000 (e.g., but not limited to, 100,000,000-999,999,999), at least 

1,000,000,000 (e.g., but not limited to, 1,000,000,000-10,000,000,000).  

[0036] In some embodiments, exemplary inventive computer-based systems and/or exemplary 

inventive computer-based devices of the present disclosure may be configured to output to 

distinct, specifically programmed graphical user interface implementations of the present 

disclosure (e.g., a desktop, a web app., etc.). In various implementations of the present 

disclosure, a final output may be displayed on a displaying screen which may be, without 

limitation, a screen of a computer, a screen of a mobile device, or the like. In various 

implementations, the display may be a holographic display. In various implementations, the 

display may be atransparent surface that may receive avisual projection. Such projections may 

convey various forms of information, images, and/or objects. For example, such projections 

may be a visual overlay for a mobile augmented reality (MAR) application.  

[0037] As used herein, terms "cloud," "Internet cloud," "cloud computing," "cloud 

architecture," and similar terms correspond to at least one of the following: (1) a large number 

of computers connected through a real-time communication network (e.g., Internet); (2) 

providing the ability to run a program or application on many connected computers (e.g., 

physical machines, virtual machines (VMs)) at the same time; (3) network-based services, 

which appear to be provided by real server hardware, and are in fact served up by virtual 

hardware (e.g., virtual servers), simulated by software running on one or more real machines 

(e.g., allowing to be moved around and scaled up (or down) on the fly without affecting the 

end user).  

[0038] In some embodiments, the exemplary inventive computer-based systems and/or the 

exemplary inventive computer-based devices of the present disclosure may be configured to 

securely store and/or transmit data by utilizing one or more of encryption techniques (e.g., 

private/public key pair, Triple Data Encryption Standard (3DES), block cipher algorithms (e.g., 
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IDEA, RC2, RC5, CAST and Skipjack), cryptographic hash algorithms (e.g., MD5, RIPEMD

160, RTRO, SHA-1, SHA-2, Tiger (TTH),WHIRLPOOL, RNGs).  

[0039] The aforementioned examples are, of course, illustrative and not restrictive.  

[0040] As used herein, the term "user" shall have a meaning of at least one user. In some 

embodiments, the terms "user", "subscriber" "consumer" or "customer" should be understood 

to refer to a user of an application or applications as described herein and/or a consumer of data 

supplied by a data provider. By way of example, and not limitation, the terms "user" or 

"subscriber" can refer to a person who receives data provided by the data or service provider 

over the Internet in a browser session, or can refer to an automated software application which 

receives the data and stores or processes the data.  

[0041] FIG. 1 depicts a block diagram of an exemplary computer-based system 100 for bias 

reduction in machine learning in accordance with one or more embodiments of the present 

disclosure. However, not all of these components may be required to practice one or more 

embodiments, and variations in the arrangement and type of the components may be made 

without departing from the spirit or scope of various embodiments of the present disclosure. In 

some embodiments, the exemplary inventive computing devices and/or the exemplary 

inventive computing components of the exemplary computer-based system 100 may be 

configured to manage a large number of members and/or concurrent transactions, as detailed 

herein. In some embodiments, the exemplary computer-based system/platform 100 may be 

based on a scalable computer and/or network architecture that incorporates varies strategies for 

assessing the data, caching, searching, and/or database connection pooling, including dynamic 

outlier bias reduction (DOBR) as described in embodiments herein. An example of the scalable 

architecture is an architecture that is capable of operating multiple servers.  

[0042] In some embodiments, referring to FIG. 1, members 102-104 (e.g., clients) of the 

exemplary computer-based system 100 may include virtually any computing device capable of 
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receiving and sending a message over a network (e.g., cloud network), such as network 105, to 

and from another computing device, such as servers 106 and 107, each other, and the like. In 

some embodiments, the member devices 102-104 may be personal computers, multiprocessor 

systems, microprocessor-based or programmable consumer electronics, network PCs, and the 

like. In some embodiments, one or more member devices within member devices 102-104 may 

include computing devices that typically connect using a wireless communications medium 

such as cell phones, smart phones, pagers, walkie talkies, radio frequency (RF) devices, 

infrared (IR) devices, CBs, integrated devices combining one or more of the preceding devices, 

or virtually any mobile computing device, and the like. In some embodiments, one or more 

member devices within member devices 102-104 may be devices that are capable of connecting 

using a wired or wireless communication medium such as a PDA, POCKET PC, wearable 

computer, a laptop, tablet, desktop computer, a netbook, a video game device, a pager, a smart 

phone, an ultra-mobile personal computer (UMPC), and/or any other device that is equipped 

to communicate over a wired and/or wireless communication medium (e.g., NFC, RFID, 

NBIOT, 3G, 4G, 5G, GSM, GPRS, WiFi, WiMax, CDMA, satellite, ZigBee, etc.). In some 

embodiments, one or more member devices within member devices 102-104 may include may 

run one or more applications, such as Internet browsers, mobile applications, voice calls, video 

games, videoconferencing, and email, among others. In some embodiments, one or more 

member devices within member devices 102-104 may be configured to receive and to send 

web pages, and the like. In some embodiments, an exemplary specifically programmed browser 

application of the present disclosure may be configured to receive and display graphics, text, 

multimedia, and the like, employing virtually any web based language, including, but not 

limited to Standard Generalized Markup Language (SMGL), such as HyperText Markup 

Language (HTML), a wireless application protocol (WAP), a Handheld Device Markup 

Language (HDML), such as Wireless Markup Language (WML), WMLScript, XML, 
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JavaScript, and the like. In some embodiments, a member device within member devices 102

104 may be specifically programmed by either Java, .Net, QT, C, C++ and/or other suitable 

programming language. In some embodiments, one or more member devices within member 

devices 102-104 may be specifically programmed include or execute an application to perform 

a variety of possible tasks, such as, without limitation, messaging functionality, browsing, 

searching, playing, streaming or displaying various forms of content, including locally stored 

or uploaded messages, images and/or video, and/or games.  

[0043] In some embodiments, the exemplary network 105 may provide network access, data 

transport and/or other services to any computing device coupled to it. In some embodiments, 

the exemplary network 105 may include and implement at least one specialized network 

architecture that may be based at least in part on one or more standards set by, for example, 

without limitation, Global System for Mobile communication (GSM) Association, the Internet 

Engineering Task Force (IETF), and the Worldwide Interoperability for Microwave Access 

(WiMAX) forum. In some embodiments, the exemplary network 105 may implement one or 

more of a GSM architecture, a General Packet Radio Service (GPRS) architecture, a Universal 

Mobile Telecommunications System (UMTS) architecture, and an evolution of UMTS referred 

to as Long Term Evolution (LTE). In some embodiments, the exemplary network 105 may 

include and implement, as an alternative or in conjunction with one or more of the above, a 

WiMAX architecture defined by the WiMAX forum. In some embodiments and, optionally, in 

combination of any embodiment described above or below, the exemplary network 105 may 

also include, for instance, at least one of a local area network (LAN), a wide area network 

(WAN), the Internet, a virtual LAN (VLAN), an enterprise LAN, a layer 3 virtual private 

network (VPN), an enterprise IP network, or any combination thereof In some embodiments 

and, optionally, in combination of any embodiment described above or below, at least one 

computer network communication over the exemplary network 105 may be transmitted based 
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at least in part on one of more communication modes such as but not limited to: NFC, RFID, 

Narrow Band Internet of Things (NBIOT), ZigBee, 3G, 4G, 5G, GSM, GPRS, WiFi, WiMax, 

CDMA, satellite and any combination thereof In some embodiments, the exemplary network 

105 may also include mass storage, such as network attached storage (NAS), a storage area 

network (SAN), a content delivery network (CDN) or other forms of computer or machine

readable media.  

[0044] In some embodiments, the exemplary server 106 or the exemplary server 107 may be a 

web server (or a series of servers) running a network operating system, examples of which may 

include but are not limited to Microsoft Windows Server, Novell NetWare, or Linux. In some 

embodiments, the exemplary server 106 or the exemplary server 107 may be used for and/or 

provide cloud and/or network computing. Although not shown in FIG. 1, in some 

embodiments, the exemplary server 106 or the exemplary server 107 may have connections to 

external systems like email, SMS messaging, text messaging, ad content providers, etc. Any of 

the features of the exemplary server 106 may be also implemented in the exemplary server 107 

and vice versa.  

[0045] In some embodiments, one or more of the exemplary servers 106 and 107 may be 

specifically programmed to perform, in non-limiting example, as authentication servers, search 

servers, email servers, social networking services servers, SMS servers, IM servers, MMS 

servers, exchange servers, photo-sharing services servers, advertisement providing servers, 

financial/banking-related services servers, travel services servers, or any similarly suitable 

service-base servers for users of the member computing devices 101-104.  

[0046] In some embodiments and, optionally, in combination of any embodiment described 

above or below, for example, one or more exemplary computing member devices 102-104, the 

exemplary server 106, and/or the exemplary server 107 may include a specifically programmed 

software module that may be configured to send, process, and receive information using a 
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scripting language, a remote procedure call, an email, a tweet, Short Message Service (SMS), 

Multimedia Message Service (MMS), instant messaging (IM), internet relay chat (IRC), mIRC, 

Jabber, an application programming interface, Simple Object Access Protocol (SOAP) 

methods, Common Object Request Broker Architecture (CORBA), HTTP (Hypertext Transfer 

Protocol), REST (Representational State Transfer), or any combination thereof 

[0047] FIG. 2 depicts a block diagram of another exemplary computer-based system/platform 

200 in accordance with one or more embodiments of the present disclosure. However, not all 

of these components may be required to practice one or more embodiments, and variations in 

the arrangement and type of the components may be made without departing from the spirit or 

scope of various embodiments of the present disclosure. In some embodiments, the member 

computing devices 202a, 202b through 202n shown each at least includes a computer-readable 

medium, such as a random-access memory (RAM) 208 coupled to a processor 210 or FLASH 

memory. In some embodiments, the processor 210 may execute computer-executable program 

instructions stored in memory 208. In some embodiments, the processor 210 may include a 

microprocessor, an ASIC, and/or a state machine. In some embodiments, the processor 210 

may include, or may be in communication with, media, for example computer-readable media, 

which stores instructions that, when executed by the processor 210, may cause the processor 

210 to perform one or more steps described herein. In some embodiments, examples of 

computer-readable media may include, but are not limited to, an electronic, optical, magnetic, 

or other storage or transmission device capable of providing a processor, such as the processor 

210 of client 202a, with computer-readable instructions. In some embodiments, other examples 

of suitable media may include, but are not limited to, a floppy disk, CD-ROM, DVD, magnetic 

disk, memory chip, ROM, RAM, an ASIC, a configured processor, all optical media, all 

magnetic tape or other magnetic media, or any other medium from which a computer processor 

can read instructions. Also, various other forms of computer-readable media may transmit or 

18



WO 2022/060411 PCT/US2021/022861 

carry instructions to a computer, including a router, private or public network, or other 

transmission device or channel, both wired and wireless. In some embodiments, the instructions 

may comprise code from any computer-programming language, including, for example, C, 

C++, Visual Basic, Java, Python, Perl, JavaScript, and etc.  

[0048] In some embodiments, member computing devices 202a through 202n may also 

comprise a number of external or internal devices such as a mouse, a CD-ROM, DVD, a 

physical or virtual keyboard, a display, or other input or output devices. In some embodiments, 

examples of member computing devices 202a through 202n (e.g., clients) may be any type of 

processor-based platforms that are connected to a network 206 such as, without limitation, 

personal computers, digital assistants, personal digital assistants, smart phones, pagers, digital 

tablets, laptop computers, Internet appliances, and other processor-based devices. In some 

embodiments, member computing devices 202a through 202n may be specifically programmed 

with one or more application programs in accordance with one or more 

principles/methodologies detailed herein. In some embodiments, member computing devices 

202a through 202n may operate on any operating system capable of supporting a browser or 

browser-enabled application, such as MicrosoftTM, WindowsTM, and/or Linux. In some 

embodiments, member computing devices 202a through 202n shown may include, for 

example, personal computers executing a browser application program such as Microsoft 

Corporation's Internet ExplorerTM, Apple Computer, Inc.'s SafariTM, Mozilla Firefox, and/or 

Opera. In some embodiments, through the member computing client devices 202a through 

202n, users, 212a through 212n, may communicate over the exemplary network 206 with each 

other and/or with other systems and/or devices coupled to the network 206. As shown in FIG.  

2, exemplary server devices 204 and 213 may be also coupled to the network 206. In some 

embodiments, one or more member computing devices 202a through 202n may be mobile 

clients.  
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[0049] In some embodiments, at least one database of exemplary databases 207 and 215 may 

be any type of database, including a database managed by a database management system 

(DBMS). In some embodiments, an exemplary DBMS-managed database may be specifically 

programmed as an engine that controls organization, storage, management, and/or retrieval of 

data in the respective database. In some embodiments, the exemplary DBMS-managed 

database may be specifically programmed to provide the ability to query, backup and replicate, 

enforce rules, provide security, compute, perform change and access logging, and/or automate 

optimization. In some embodiments, the exemplary DBMS-managed database may be chosen 

from Oracle database, IBM DB2, Adaptive Server Enterprise, FileMaker, Microsoft Access, 

Microsoft SQL Server, MySQL, PostgreSQL, and a NoSQL implementation. In some 

embodiments, the exemplary DBMS-managed database may be specifically programmed to 

define each respective schema of each database in the exemplary DBMS, according to a 

particular database model of the present disclosure which may include a hierarchical model, 

network model, relational model, object model, or some other suitable organization that may 

result in one or more applicable data structures that may include fields, records, files, and/or 

objects. In some embodiments, the exemplary DBMS-managed database may be specifically 

programmed to include metadata about the data that is stored.  

[0050] In some embodiments, the exemplary inventive computer-based systems/platforms, the 

exemplary inventive computer-based devices, and/or the exemplary inventive computer-based 

components of the present disclosure may be specifically configured to operate in a cloud 

computing/architecture such as, but not limiting to: infrastructure a service (IaaS), platform as 

a service (PaaS), and/or software as a service (SaaS). Figures 3 and 4 illustrate schematics of 

exemplary implementations of the cloud computing/architecture(s) in which the exemplary 

inventive computer-based systems/platforms, the exemplary inventive computer-based 
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devices, and/or the exemplary inventive computer-based components of the present disclosure 

may be specifically configured to operate.  

[0051] In embodiments of the inventive exemplary computer-based systems and/or devices, 

Dynamic Outlier Bias Reduction (DOBR) may be used to improve the accuracy and 

understanding of generalized linear models specifically for benchmarking studies. However, it 

is a method that may be applied to a wide variety of analysis models where there are one or 

more independent variables and one dependent variable. The present disclosure, and 

embodiments therein, are illustrative of the inventive application of DOBR to improving the 

accuracy of machine learning model predictions.  

[0052] In embodiments, DOBR is not a predictive model. Instead, in embodiments, it is an 

add-on method to predictive or interpretive models that can improve the accuracy of model 

predictions. In embodiments, DOBR identified outliers are based on the difference between the 

data supplied target variable and the model computed value. As outliers are identified, via a 

pre-determined selection criterion, the outlier dependent data records and model produced 

dependent variables are removed from the analysis. Further analysis may continue with these 

records permanently removed. However, in other embodiments of the exemplary inventive 

system and methods, at each model iteration, the outlier identification process includes the 

entire dataset so that all records undergo outlier scrutiny using the last iteration's predictive 

model as defined by its calculation parameters. Accordingly, exemplary embodiments of the 

present invention reduce bias in the machine learning model by, e.g., including an entire dataset 

at each iteration to reduce the propagation of selection bias of training data. Thus, machine 

learning models can be trained and implemented more accurately and more efficiently to 

improve the operation of machine learning systems.  

[0053] FIG. 5 illustrates a block diagram of an exemplary inventive bias reduction system in 

machine learning in accordance with one or more embodiments of the present disclosure.  
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[0054] In some embodiments, a bias reduction system 300 may include component for 

dynamic outlier bias reduction (DOBR) in datasets under analysis by, e.g., machine learning 

engines. In some embodiments, DOBR provides an iterative process to remove outlier 

records subject to a pre-defined criterion. This condition is the user-defined error acceptance 

value expressed as a percentage. It refers to how much error the user is willing to accept in 

the model based potentially on their insights and other analysis results that will be described 

later in this discussion. A value of 100% signifies that all of the error is accepted and no 

records will be removed in the DOBR process. If 0% is chosen, then all of the records are 

removed. Generally, error acceptance values in the range of 80 to 95% have been observed 

for industrial applications.  

[0055] In some embodiments, a user may interact with the bias reduction system 300 to 

administer the error acceptance value via a user input device 308 and view results via a display 

device 312, among other user interaction behaviors using the display device 312 and user input 

device 308. Based on the error acceptance value, the bias reduction system 300 may analyze a 

dataset 311 received into a database 310 or other storage in communication with the bias 

reduction system 300. The bias reduction system 300 may receive the dataset 311 via the 

database 310 or other storage device and make predictions using one or more machine learning 

models with dynamic outlier bias reduction for improved accuracy and efficiency.  

[0056] In some embodiments, the bias reduction system 300 includes a combination of 

hardware and software components, including, e.g., storage and memory devices, cache, 

buffers, a bus, input/output (I/O) interfaces, processors, controllers, networking and 

communications devices, an operating system, a kernel, device drivers, among other 

components. In some embodiments, a processor 307 is in communication with multiple other 

components to implement functions of the other components. In some embodiments, each 

component has time scheduled on the processor 307 for execution of component functions, 

22



WO 2022/060411 PCT/US2021/022861 

however in some embodiments, each component is scheduled to one or more processors in a 

processing system of the processor 307. In other embodiments, each component has its own 

processor included therewith.  

[0057] In some embodiments, components of the bias reduction system 300 may include, e.g., 

a DOBR engine 301 in communication with a model index 302 and model library 303, a 

regressor parameter library 305, a classifier parameter library 304 and a DOBR filter 306, 

among other possible components. Each component may include a combination of hardware 

and software to implement component functions, such as, e.g., memory and storage devices, 

processing devices, communications devices, input/output (I/O) interfaces, controllers, 

networking and communications devices, an operating system, a kernel, device drivers, a set 

of instructions, among other components.  

[0058] In some embodiments, the DOBR engine 301 includes a model engine for instantiating 

and executing machine learning models. The DOBR engine 301 may access models for 

instantiation in a model library 303 through the use of a model index 302. For example, the 

model library 303 may include a library of machine learning models that may be selectively 

accessed and instantiated for use by an engine such as the DOBR engine 301. In some 

embodiments, the model library 303 may include machine learning models such as, e.g., a 

support vector machine (SVM), a Linear Regressor, a Lasso model, Decision Tree regressors, 

Decision Tree classifiers, Random Forest regressors, Random Forest classifiers, K Neighbors 

regressors, K Neighbors classifiers, Gradient Boosting regressors, Gradient Boosting 

classifiers, among other possible classifiers and regressors. For example, the model library 303 

may import models according to the following example pseudo-code 1: 

Pseudo-Code 1 
import sys 
sys .path.append("analytics-lanxess-logic") 
import numupy as np 
import pandas as pd 
import random, time 
import xgboost as xgb 
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from xgboost import XGBClassifier,XGBRegressor 
from scipy import stats 
from scipy.stats import mannwhitneyu,wilcoxon 
from sklearn.metrics import meansquared error,rocauc_score, 
classification report,confusion matrix 

from sklearn import svm 
from sklearn.svm import SVR, SVC 
from sklearn.model selection import traintestsplit 
from sklearn.linear model import LinearRegression, Lasso 
from sklearn.tree import DecisionTreeRegressor, DecisionTr 
eeClassifier 
from sklearn.ensemble import RandomForestRegressor, RandomFore 
stClassifier,BaggingClassifier,BaggingRegressor 
from sklearn.neighbors import KNeighborsRegressor , KNeighbors 
Classifier 
from sklearn.ensemble import GradientBoostingRegressor,Gradien 
tBoostingClassifier 

from optimizers.hyperparameters.hyperbandoptimizer import Hyperband, 
HyperparameterOptimizer 
from optimizers.hyperparameters.base optimizer import Hyperparam 
eterOptimizer 
import warnings 
from warnings import simplefilter 
simplefilter(action='ignore', category=FutureWarning) 
simplefilter(action='ignore', category=DeprecationWarning) 
warnings.filterwarnings(module='numpy*' , action='ignore', category= 
DeprecationWarning) 
warnings.filterwarnings(module='numpy*' , action='ignore', category= 
FutureWarning) 
warnings.filterwarnings(module='scipy*' , action='ignore', category= 
FutureWarning) 
warnings.filterwarnings(module='scipy*' , action='ignore', category= 
DeprecationWarning) 
warnings.filterwarnings(module='sklearn*', action='ignore', category= 
DeprecationWarning) 

[0059] However, in some embodiments, to facilitate access to the library of machine learning 

models in the model library 303, the DOBR engine 301 may employ a model index 302 that 

indexes each model to a model identifier to use as a function by the DOBR engine 301. For 

example, models including, e.g., Linear Regression, XGBoost Regression, Support Vector 

Regression, Lasso, K Neighbors Regression, Bagging Regression, Gradient Boosting 

Regression, Random Forest Regression, Decision Tree Regression, among other regression 

models and classification models, may be indexed by a number identifier and labeled with a 
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name. For example, pseudo-code 2, below, depicts an example of a model index code for use 

by the model index 302.  

Pseudo-Code 2 
modelO = LinearRegression() 
modell = xgb.XGBRegressor() 
model2 = SVR() 

model3 = Lasso() 

model4 = KNeighborsRegressor() 
model5 = BaggingRegressor() 
model6 = GradientBoostingRegressor() 
model7 = RandomForestRegressor() 
model8 = DecisionTreeRegressor() 

ModelNameO = " Linear Regression" 

ModelNamel = "XGBoost Regression" 
ModelName2 = "Support Vector Regression" 
ModelName3 = " Lasso" 

ModelName4 = "K Neighbors Regression" 
ModelName5 = "Bagging Regression" 
ModelName6 = "Gradient Boosting Regression" 
ModelName7 = "Random Forest Regression" 
ModelName8 = "Decision Tree Regression" 

[0060] Other embodiments of the pseudo-code for the model library 303 and the model index 

302 are contemplated. In some embodiments, the software instructions are stored within a 

memory of the respective model library 303 or model index 302 and buffered in a cache for 

provision to the processor 307. In some embodiments, the DOBR engine 301 may utilize the 

model index 302 by accessing or calling the index via communications and/or I/O devices, the 

use the index to call models as functions from the model library 303 via communications and/or 

I/O devices.  

[0061] In some embodiments, to facilitate optimization and customization of the models called 

by the DOBR engine 301, the bias reduction system 300 may record model parameters in, e.g., 

memory or storage, such as, e.g., hard drives, solid state drives, random access memory 

(RAM), flash storage, among other storage and memory devices. For example, regressor 

parameters may be logged and adjusted in a regressor parameter library 305. Thus, the 

regressor parameter library 305 may include storage and communication hardware configured 
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with sufficient memory and bandwidth to store, adjust and communicate a multitude of 

parameters for multiple regressors, e.g., in real time. For example, for each regression machine 

learning model instantiated by the DOBR engine 301, respective parameters may be initialized 

and updated in the regressor parameter library 305. In some embodiments, a user, via the user 

input device 308, may establish an initial set of parameters. However, in some embodiments, 

the initial set of parameters may be predetermined or randomly generated. Upon instantiation 

of a regression machine learning model, the DOBR engine 301 may correlate a model from as 

identified in the model index 302 to a set of parameters in the regressor parameter library 305.  

For example, the DOBR engine 301 may call a set of parameters according to, e.g., an 

identification (ID) number associated with a given regression model. For example, the 

regressor parameter library 305 may identify parameters for each regression model similar to 

pseudo-code 3 below: 

Pseudo-Code 3 
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[0062] Similarly, in some embodiments, classifier parameters may be logged and adjusted in 

a classifier parameter library 304. Thus, the classifier parameter library 304 may include 

storage and communication hardware configured with sufficient memory and bandwidth to 

store, adjust and communicate a multitude of parameters for multiple regressors, e.g., in real 

time. For example, for each classification machine learning model instantiated by the DOBR 

engine 301, respective parameters may be initialized and updated in the regressor parameter 

library 305. In some embodiments, a user, via the user input device 308, may establish an initial 

set of parameters. However, in some embodiments, the initial set of parameters may be 

predetermined. Upon instantiation of a regression machine learning model, the DOBR engine 

301 may correlate a model from as identified in the model index 302 to a set of parameters in 

the regressor parameter library 305. For example, the DOBR engine 301 may call a set of 

parameters according to, e.g., an identification (ID) number associated with a given regression 

model. For example, the regressor parameter library 305 may identify parameters for each 

regression model similar to pseudo-code 4 below: 

Pseudo-Code 4 

29



WO 2022/060411 PCT/US2021/022861 

defu gen__aras5as (II) 
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10063 In some embodiments, bycalling and receiving aset of models froma model library 

303viathemodel index302 and respectiveparametersfromtheregressorparameter library 

305and/orthclassifierparameterlibrary304theDOBRengine301may load oneor more 
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instantiated and initialized models, e.g., into a cache or buffer of the DOBR engine 301. In 

some embodiments, the dataset 311 may then be loaded fromthe database 310 into, e.g., a same 

or different cache or buffer or other storage device of the DOBR engine 301. The processor 

307 or a processor in the DOBR engine 301 may then execute each model to transform the 

dataset 311 into, e.g., a respective prediction of activity-related data values that characterize 

the results or parameters of an activity based on certain input attributes related to the activity.  

For example, appliance energy usage in home and/or commercial environments, concrete 

compressive strength in a variety of applications and formulations, object or image recognition, 

speech recognition, or other machine learning applications. For example, the DOBR engine 

301 may be modelling appliance energy usage based on a dataset 311 of historical energy 

usage, time of year, time of day, location, among other factors. The DOBR engine 301 may 

called a set of regressors from the model library 303 via the model index 302 connected to a 

bus of the DOBR engine 301. The DOBR engine 301 may then called a parameter file or log 

associated with regressors for appliance energy usage estimation in the regressor parameter 

library 305 connected to a bus of the DOBR engine 301. The DOBR engine 301 may then 

utilize a processor 307 to predict a future energy consumption based on the models and model 

parameters, time and date, location, or other factor and combinations thereof 

[0064] Similarly, for example, the DOBR engine 301 may be modelling concrete compressive 

strength based on a dataset 311 of concrete materials, time of year, time of day, location, 

humidity, curing time, age, among other factors. The DOBR engine 301 may called a set of 

regressors from the model library 303 via the model index 302 connected to a bus of the DOBR 

engine 301. The DOBR engine 301 may then called a parameter file or log associated with 

regressors for concrete compressive strength estimation in the regressor parameter library 305 

connected to a bus of the DOBR engine 301. The DOBR engine 301 may then utilize a 

processor 307 to predict a future concrete compressive strength based on the models and model 
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parameters for a particular concrete formulation, time and date, location, or other factor and 

combinations thereof 

[0065] As another example, the DOBR engine 301 may be performing speech recognition 

based on a dataset 311 of utterances and ground-truth transcriptions, among other factors. The 

DOBR engine 301 may called a set of classifiers from the model library 303 via the model 

index 302 connected to a bus of the DOBR engine 301. The DOBR engine 301 may then called 

a parameter file or log associated with classifiers for speech recognition in the classifier 

parameter library 304 connected to a bus of the DOBR engine 301. The DOBR engine 301 

may then utilize a processor 307 to predict a transcription of recorded speech data based on the 

models and model parameters for a set of one or more utterances.  

[0066] As another example, the DOBR engine 301 may be automatically predicting rendering 

settings for medical imagery based on a dataset 311 of settings for multiple rendering 

parameters across imaging and/or visualizations, among other factors, as described in U.S.  

Patent No. 10,339,695, herein incorporated by reference in its entirety for all purposes. The 

DOBR engine 301 may called a set of classifiers from the model library 303 via the model 

index 302 connected to a bus of the DOBR engine 301. The DOBR engine 301 may then called 

a parameter file or log associated with classifiers for rendering settings in the classifier 

parameter library 304 connected to a bus of the DOBR engine 301. The DOBR engine 301 

may then utilize a processor 307 to predict a rendering settings data based on the models and 

model parameters for a set of one or more medical datasets.  

[0067] As another example, the DOBR engine 301 may be performing robotic control of 

machinery based on a dataset 311 of machine control command results and simulated results 

of machine control commands, among other factors, as described in U.S. Patent No.  

10,317,854, herein incorporated by reference in its entirety for all purposes. The DOBR engine 

301 may called a set of regression models from the model library 303 via the model index 302 
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connected to a bus of the DOBR engine 301. The DOBR engine 301 may then called a 

parameter file or log associated with regression model for robotic control in the regressor 

parameter library 305 connected to a bus of the DOBR engine 301. The DOBR engine 301 

may then utilize a processor 307 to predict a a success or failure of a particular control 

commands based on the models and model parameters for a set of control commands, 

environmental information, sensor data and/or simulations of the commands.  

[0068] in some embodiments. the bias reduction system 300 nay implement the machine 

leading models in a cloud environmnt, e.g., as a cloud service for remote users. Such a cloud 

service nay be designed to support large numbers of users and. a wide variety of algorithms 

and problem sizes, includim those described above, as well as other potential models, datasets 

and parameter tunings specific to a user's use case, as described in U.S. PatentNo. 10,452,992, 

herein incorporated by reference in its entirety for all purposes. In one embodiment, a number 

of programmatic interfaces (such as application programming interfaces (APIs)) may be 

defined by the service in which the bias reduction system 300 is implemented, which guide 

non-xpertuserstostartusingmachinelearning best practices relatively quickly, without the 

users having to expend a lot of time and effort on tuning models, or on learning advanced 

statistics or artificial intelligence techniques. The interfaces may, for example, allow non

experts to rely on default settings or parameters for various aspects of the procedures used for 

building, training and using machine learning models, where the defaults are derived front the 

one or more sets of parameters in the classifier parameter library 304 and/or regressor 

parameter library 305 for similar models to the individual user, The default settings or 

parameters mas be used as a starting point to customize a user's machine learning model using 

training with the user's datasets via the DOBR engine 301 and optimizer 306. At the sane time, 

users may customize the parameters or settings they wish to use for various types of machine 

leading tasks, such as input record handling, feature processing, model building, execution 
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and evaluation. In at least some embodirnents, in addition to or instead of using pre-defined 

libraries implementing various types of machine learning tasks, Additionally, the ciud-serice 

bias reduction system 300 may have extendable built-in capabilities of the service, e.g b 

regti customized functions with the service Depending on the business needs or goals of 

the clients that implement such customized modules or functions, the modules may in some 

cases be shared withother users of the service, while in other cases the use of the customized 

modules may be restricted to their implementers/owners 

[0069] In some embodiments, whether implemented as a cloud service, a local or remote 

system, or in any other system architecture, the bias reduction system 300 may include models 

in the model library 303 that enable an ensemble approach to machine learning model training 

and implementation, as described in U.S. Patent No. 9,646,262, herein incorporated by 

reference in its entirety for all purposes. Such an approach may be useful for applications to 

data analytics using electronic datasets of electronic activity data. In some embodiments, the 

database 310 may include one or more structured or unstructured data sources. An 

unsupervised learning module, in certain embodiments, is configured to assemble an 

unstructured data set into an organized data set using a plurality of unsupervised learning 

techniques, e.g., in an ensemble of models from the model library 303. For example, the 

unsupervised learning module is configured to assemble an unstructured data set into multiple 

versions of an organized data set, while a supervised learning module, in certain embodiments, 

is configured to generate one or more machine learning ensembles based on each version of 

multiple versions of an organized data set and to determine which machine learning ensemble 

exhibits a highest predictive performance according to, e.g., model error after training each 

model in each ensemble using the DOBR engine 301 and optimizer 306.  

[0070] An example of the DOBR engine 301 instructions for controlling hardware to make 

predictions based on the dataset 311 is depicted in pseudo-code 5 below: 
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Pseudo-Code 5 
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[0071] However, in some embodiments, outliers in the dataset 311 may reduce the accuracy of 

the implemented models, thus increasing the number of training iterations. To improve 

accuracy and efficiency, the DOBR engine 301 may include a DOBR filter 301b to dynamically 

test data point errors in the dataset to determine outliers. Thus, outliers may be removed to 

provide a more accurate or representative dataset 311. In some embodiments the DOBR filter 

301b may provide an iterative mechanism for removing outlier data points subject to a pre

defined criterion, e.g., the user-defined error acceptance value described above and provided, 

e.g., by a user via the user input device 308. In some embodiments, the user-defined error 

acceptance value expressed as a percentage where, e.g., a value of 100% signifies that all of 

the error is accepted and no data points will be removed by the filter 301b, while a value of, 

e.g., 0% results in all of the data points being removed. In some embodiments, the filter 301b 

may be configured with an error acceptance value in the range of between, e.g., about 80% and 

about 95%. For example, the filter 301b may be configured to perform functions as depicted in 

pseudo-code 6 below: 

Pseudo-Code 6 
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,Errva"lue)' 

[0072] In some embodiments, the DOBR filter 301b works in conjunction with an optimizer 

306, which is configured to determine error and optimize parameters for each model in the 

regressor parameter library 305 and the classifier parameter library 304. Thus, in some 

embodiments, the optimizer 306 may determine model and communicate the error to the filter 

301b of the DOBR engine 301. Thus, in some embodiments, the optimizer 306 may include, 

e.g., storage and/or memory devices and communication devices with sufficient memory 

capacity and bandwidth to receive the dataset 311 and model predictions and determine, e.g., 

outliers, convergence, error, absolute value error, among other error measures. For example, 

the optimizer 306 may be configured to perform functions as depicted in pseudo-code 7 below: 

Pseudo-Code 7 
def DOR(A~rrrskscept): 
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[0073] In some embodiments, the bias reduction system 300 may then return to a user, via, 

e.g., the display 312, machine learning model predictions, an outlier analysis, a convergence 

of predictions, among other data produced by the DOBR engine 301 in a more accurate and 

efficient manner due to the reduction in outliers that would otherwise bias predictions.  

[0074] FIG. 6 illustrates a flowchart of an exemplary inventive methodology in accordance 

with one or more embodiments of the present disclosure.  

[0075] DOBR, such as the DOBR engine 301 and filter 301b described above, provides an 

iterative process to remove outlier records subject to a pre-defined criterion. This condition is 

the user-defined error acceptance value expressed as a percentage. It refers to how much error 

the user is willing to accept in the model based potentially on their insights and other analysis 

results that will be described later in this discussion. A value of 100% signifies that all of the 

error is accepted and no records will be removed in the DOBR process. If 0% is chosen, then 

all of the records are removed. Generally, error acceptance values in the range of 80 to 95% 

have been observed for industrial applications.  

[0076] However, in some embodiments, it should also be noted that if a dataset contains no 

outliers then DOBR provides no value. But it is rare in practical situations that the analyst 

will have this knowledge before working with a dataset. As will be demonstrated later in this 

discussion, embodiments of the DOBR methodology can also determine the percentage of the 
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dataset that represents model outliers. This pre-analysis step can assist in setting the proper 

error acceptance value or if outliers are present at all.  

[0077] The following steps outline the fundamental DOBR method as it is applied to a 

complete dataset.  

[0078] Pre-analysis: in an embodiment, first we choose the error acceptance criterion, say we 

select oc = 80%. (How to determine this value from the data will be demonstrated after the 

DOBR method is explained.) Then define the error acceptance criterion, C(oc) according to, 

e.g., equation 1 below: 

Equation 1 C(oc) = f(pred, Ytar), 

[0079] where oc is the error acceptance criterion, C is a function of the error acceptance 

criterion, f () is a comparative function, y is a value of a data record, Ypred is a predicted 

value and Ytar is a target value.  

[0080] Other functional relationships may be used to set C(u) but the percentile function is an 

intuitive guide in understanding why the model includes or excludes certain data records, 

such as equation 2 below: 

Equation 2 C(oc) = P, ((Ypred - ytar)), i E(1,im), 

[0081] where P, is a percentile function, i is an index of a record entry, and m is the number 

of record entries.  

[0082] Since the DOBR procedure is iterative, in an embodiment, we also define a 

convergence criterion which in this discussion is set at 0.5%.  

[0083] In an embodiment, given a dataset {, Ytar} 404, a solution model M 408, and an error 

acceptance criterion oc 424, DOBR can be implemented to reduce bias in training the model M 

408. In some embodiments, the solution model M 408 is implemented by a model engine, 
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including, e.g., a processing device and a memory and/or storage device. According to an 

embodiment, the exemplary methodology computes model coefficients, M(c) 402 and model 

estimates {yprea 410 for all records applying the solution model, M 408, to the complete input 

dataset {x, ytar} 404 according to, e.g., equation 3 below: 

Equation 3 typreaJl, M(cO) = M{x, ytar}, 

[0084] where 0 indicates an initial state, and x refers to an input record.  

[0085] Then, according to an illustrative embodiment, a total error function 418 computes 

initial model total error eo according to, e.g., equation 4 below: 

Equation 4 eo = 1Ypreajo Ytar)II 

[0086] where eo is the initial model total error and 0 denotes the initial value.  

[0087] Then, according to an illustrative embodiment, an error function 412 computes model 

errors according to, e.g., equation 5 below: 

Equation 5 {Ek) - yprea k - Ytar ,Vi (1, m)}, 

[0088] where E are predicted record errors, and k denotes an iteration ofrecord selection.  

[0089] Then, according to an illustrative embodiment, the error function 412 computes new a 

data record selection vector {} according to, e.g., equation 6 below: 

( 1 if Ek . !; P-, (Ek) 

Equation 6 {I =i:-- 0 if;k;;k, Vi (1, m) 
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[0090] where I is the record selection vector.  

[0091] Then, according to an illustrative embodiment, a data record selector 414 computes the 

non-outlier data records to be included in model computation by selecting only records where 

the record selection vector is equal to 1, according to, e.g., equation 7 below: 

Equation 7 (x,y)llk= t(Xi, yi): li ,C(1, M), 

[0092] where in is an index referring to the set of DOBR included records as non-outliers.  

[0093] Then, according to an illustrative embodiment, the model 408 with the latest 

coefficients 402 computes new predicted values 420 and model coefficients 402 from the 

DOBR selected data records 416 according to, e.g., equation 8 below: 

Equation 8 t(Ypred)ink k+1,M(ck+l) = Mtck,(x,Y)nikl.  

[0094] Then, according to an illustrative embodiment, the model 408 using the new model 

coefficients, computes new prediction values 420 for the complete dataset. This step 

reproduces computing the predicted values 420 for the DOBR selected records in the formal 

steps, but in practice the new model can be applied to just the DOBR removed records 

according to, e.g., equation 9 below: 

Equation 9 typredlk+l = M{ck+l,X}.  

[0095] Then, according to an illustrative embodiment, the total error function 418 computes 

model total error according to, e.g., equation 10 below: 
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Equation 10 ek+1 - t-predak+l (Starik+1 , 

[0096] where 9 is the target output.  

[0097] Then, according to an illustrative embodiment, a convergence test 424 tests model 

convergence according to, e.g., equation 11 below: 

Equation 11 lek+1-ekl< 
ek 

[0098] where # is a convergence criteria 422, such as, e.g., 0.5%.  

[0099] In some embodiments, the convergence test 424 may terminate the iterative process if, 

for example, the percent error is less than, e.g., 0.5%. Otherwise, the process may return to the 

initial dataset 404. Each of the steps above may then be performed and the convergence criteria 

422 retested. The process is repeated until the convergence test 424 is below the convergence 

criteria 424.  

[0100] FIG. 7 is a graph illustrating an example of relationship between model error and an 

error acceptance criterion of another exemplary computer-based machine learning model with 

reduced bias in accordance with one or more embodiments of the present disclosure.  

[0101] Since oc is an input parameter to DOBR and the model results can vary based on the 

value selected, in an embodiment, it is important to document a data-based procedure tojustify 

which value is used. In the practical applications where DOBR was developed and applied 

there is no theoretical basis (yet) for its selection. However, in practice, a plot of model error 

versus oc may produce a change in slope where the apparent effects of outliers are reduced.  

Figure 1 shows this plot for a nonlinear regression 402 calculation related to Power Generation 

benchmarking according to an embodiment of the present invention.  
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[0102] In an embodiment, the general shape of this curve pre-determined in that it will always 

start with the largest error at c = 100% and model error is zero when c = 0%. In FIG. 7 notice 

that the curve slope changes around c = 85%. And for all lesser C values, the slope is nearly 

constant. The change in slope at this point suggests the model's variability is not changing with 

respect to removing data records, or in other words, no outliers are present at these levels of 

error acceptance. Above c= 85% there are at least two slope apparent slope changes which 

suggests that certain dataset fractions contain behaviors or phenomena that are not accounted 

for in the model. This visual test can help set the appropriate error acceptance level and also 

determine if DOBR is needed at all. If the slope of the line in FIG. 7 does not change, then the 

model accounts satisfactorily for the observed variability in the data. There are no model 

outliers and DOBR does not need to be applied.  

[0103] In simulation studies where specific percentages of additional variability was added to 

a dataset, the curves like FIG 6 show an initially steep slope line that intersects a lessor value 

slope at approximately the error acceptance value programmed into the simulation. In practice, 

however, when outliers have been observed, the transition to a constant slope generally occurs 

gradually suggesting there is more than one type of variability that is not accounted for in the 

model.  

[0104] The calculation of the appropriate error acceptance value is a necessary part of using 

DOBR and it also visually shows the amount and severity of outlier influences on model 

results. This step documents the selection of c and can justify not using DOBR if the outlier 

influence is judged to be minimal compared to the value of the model predictions from the 

outlier data.  

[0105] In some embodiments, the c and model error versus c value can be used as a metric 

for identifying a best performing model or ensemble of models for a particular scenario.  

Because different datasets may vary in degree of linearity, the exact c value for the data and 
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for the model may change the performance of the model. Thus, the model error as a function 

of error acceptance level can be used to determine the degree to which a given model can 

account for variability in data by having a model error that indicates more or less tolerance for 

data variability in order to form accurate predictions. For example, precision and accuracy in 

model predictions may be tuned by selecting a model and/or model parameters that exhibit, 

e.g., low model error for a high error acceptance value to select for a model that is more tolerant 

to outlier data.  

[0106] In some embodiments, model selection may be automated by employing, e.g., rule

based programming and/or machine learning models to identify the best performing model for 

a dataset according to a balance of model error and error acceptance criteria. Thus, a model 

may be automatically selected that optimally accounts for outliers in the dataset. For example, 

model error may be compared across models for one or more error acceptance values, with the 

model having the lowest model error being automatically selected to generate predictions.  

[0107] As a result, the DOBR machine learning techniques according to aspects of the present 

disclosure provide more effective model training, as well as improved visibility into data and 

model behaviors for individual dataset. As a result, in fields such as artificial intelligence, data 

analytics, business intelligence, as well as other areas, machine learning models can be more 

effectively and efficiently trialed for various types of data. The model performance can then be 

more efficiently assessed to determine that an optimal model for the application and for the 

type of data. For example, artificial intelligence applications may be improved with models 

selected and trained using DOBR for the type of intelligence being produced. Similarly, 

business intelligence and data analytics, as well as other applications such as physical behavior 

prediction, content recommendation, resource use predictions, natural language processing, 

and other machine learning applications, may be improved by using DOBR to both tune model 
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parameters and select models based on outlier characteristics and model error in response to 

outliers.  

[0108] FIG. 8 is a graph illustrating an example of relationship between model error and an 

error acceptance criterion of another exemplary computer-based machine learning model with 

reduced bias in accordance with one or more embodiments of the present disclosure.  

[0109] As an example of an embodiment of DOBR on a dataset, we use the concrete 

compression strength dataset 504 downloaded from the University of California-Irvine's 

machine learning data repository. This data set contains 1030 observations, records, or 

instances with 8 independent variables. The first seven describe the concrete composition with 

age given in days: cement amount, superplasticizer, blast furnace slag, coarse aggregate, fly 

ash, fine aggregate, water, and age.  

[0110] The output variable is concrete compressive strength measured in megapascals (MPa).  

For comparison, 1 MPa~ 145 psi. A linear regression model is constructed according to, e.g., 

equation 12 below: 

Equation 12 Concrete Compressive Strength = 1 aixi, 

[0111] where ai are coefficient computed by a linear regression model, xi are observations of 

the 8 variables, and i is the variable index.  

[0112] FIG. 8 is constructed by running the linear regression model 504 as a function of the 

DOBR error acceptance percentage, c, from 100 to 60%. From c = 100% to about c = 95% 

there is a rapid drop in model error, as shown by regression 506, then the error reduction as a 

function of a decreases at a slightly lower rate until c = 85%. From this point on, oc decreases 

at a constant rate, as shown by regression 508. The point where the error begins to decrease at 
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a constant rate is where the model outlier influence is omitted from the model calculation. In 

this case the selection point is oc = 85%.  

[0113] In an embodiment, the DOBR is then modified linear regression model is re-run for oc 

= 92.5% to determine the best model that fits the non-outlier data. FIG. 9 and FIG. 10 displays 

the results of these calculations using the complete dataset 512 (FIG. 9) and the DOBR version 

(FIG. 10) with the outliers identified and removed from the calculation. The outlier values 516, 

marked in red crosses, are computed from the non-outlier model. Both of these plots show the 

actual versus predicted target values with the diagonal line 510 and 514, respectively for FIG.  

9 and FIG. 10, depicting equality. The complete dataset calculation (FIG. 9) shows how outliers 

can bias results. The DOBR modified plot (FIG. 10) shows the bias removed with the diagonal 

line 514 bisecting the non-outlier values 518 and also apparent groups of outlier data points 

516 that may warrant further study.  

[0114] FIG. 9 is a graph illustrating an example of relationship between compressive strength 

and predicted compressive strength of a baseline computer-based machine learning model 

without reduced bias in accordance with one or more embodiments of the present disclosure.  

[0115] FIG. 10 is a graph illustrating an example of relationship between compressive strength 

and predicted compressive strength of another exemplary computer-based machine learning 

model with reduced bias in accordance with one or more embodiments of the present disclosure 

[0116] The identification of outliers and the patterns they sometime form in the above type of 

plots have been useful for additional benefits of the DOBR method in industrial applications.  

The outliers can form patterns or groups that simply are not observed by other methods. This 

information is created by simply using DOBR with the analyst supplied model. No additional 

information or assumptions are required. In practice, the DOBR defined outlier set can supply 

useful information to improve, provide insights, or validate the underlying model.  
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[0117] FIG. 11 is a block diagram of another exemplary computer-based system for machine 

learning predictions with DOBR in accordance with one or more embodiments of the present 

disclosure.  

[0118] In an embodiment of the present invention, a machine learning procedure starts with a 

dataset,, consisting ofn independent variables and m records in length and an array (m x 1) 

of target variables, .In an embodiment, to train the machine learning model, the datasetf{,?} 

is divided into two randomly selected subsets of pre-determined size: one to train the model 

and the other to test its predictive accuracy, as per, e.g., equation 13 below: 

Equation 13 X,= Zx)train 

[0119] where 2 is a subset of the independent variables I of the dataset, and 9 is a subset of 

the independent variables f of the dataset.  

[0120] For this discussion, a 70%/30% split of {,}is used for training (n records) and testing 

(j records) (e.g., 70 % of the records are training and 30 % are testing), however any suitable 

split may be employed, such as, e.g., 50%/50%, 60%/40%, 80%/20%, 90%/10%, 95%/5%, or 

other suitable train/test split. A machine learning model, L, trained using (2, 9 )train, is tested 

by computing a set of predicted target variables, {ypredl, expressed as in, e.g., equation 14 

below: 

Equation 14 typred} = L [(2, 9 )train, test].  

[0121] In an illustrative embodiment, the model accuracy is then measured as the norm, 

Iyprea, testt|, which may have, e.g., the following form: 
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Equation 15 IlYpredtest1 Y Prea -- Stest)2.  

[0122] In an illustrative embodiment, in the training and testing environments, we can directly 

measure outliers since we have both the input and output variables. In general, outliers in model 

predictions, {ypred, such as with large deviations from the actual target variable values, are 

due to the inability of the model L, to transform the specific input values to prediction values 

near the known target variable. The input data for these records contain effects of factors and/or 

phenomena that the model cannot map to reality as given by the target variables. Keeping these 

records in the dataset can bias the results since the model coefficients are computed under the 

assumption that all data records are equally valid.  

[0123] In some embodiments, the DOBR process described above, e.g., with reference to FIG.  

6 above, works for a given dataset where the analyst desires the best model that fits the data by 

removing outliers that adversely biases the results. It increases the predictive accuracy of the 

model by restricting the model solution to a subset of the initial dataset that has the outliers 

removed. In an illustrative embodiment, a DOBR assisted solution has two output results: 

a) A set of x values, model parameters, and model solutions for which the model 
describes the data, and 
b) A set of x values, model parameters, and model solutions for which the model does 
not describes the data.  

[0124] Therefore, in addition to computing a more accurate model for the restricted dataset, in 

embodiments, DOBR also provides an outlier dataset that can be further studied relative to the 

given model to understand the cause or causes of high model prediction error.  

[0125] In an illustrative embodiment of a machine learning framework as shown earlier in this 

section, the predictive model is computed from the training data and that model alone is used 

in the testing phase. Since, by design the testing phase may not use the target values to 

determine outliers, the DOBR methodology described above with reference to FIG. 6 may not 
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apply. However, there is an exemplary aspect of the DOBR methodology may not have been 

utilized above: the outlier - non-outlier classification potential as suggested by DOBR's output 

results mentioned previously.  

[0126] To describe DOBR in a machine learning application of an embodiment of the present 

invention, the dataset may be divided into two randomly selected parts: one for training and 

one for testing. In the training phase both the independent and target variables are kept, but in 

testing the target variables are hidden and the independent variables are used to predict the 

target variable. The known target variable values are only used to measure the model's 

predictive error.  

[0127] In an embodiment, given a training dataset fx,Ytar}train 604 with n records, a 

machine learning model L 608, and an error acceptance criterion oc 622, DOBR can 

be implemented to reduce bias in training the machine learning model L 608. In some 

embodiments, the machine learning model L 608 is implemented by a model engine, 

including, e.g., a processing device and a memory and/or storage device. According to an 

embodiment, the exemplary methodology model estimates, train} 606 for all records 

applying the machine learning model L 608, to the complete input dataset 

XY ytar}train 604 according to, e.g., equation 16 below: 

Equation 16 {ypredl 0 = L{(x, y) train, Xtrain), 

[0128] where 0 indicates an initial state, and x refers to an input record.  

[0129] Then, according to an illustrative embodiment, the total error function 618 

compute initial model total error eo according to, e.g., equation 17 below: 

Equation 17 eo= {Ypred,10 fYtrain} 11, 

52



WO 2022/060411 PCT/US2021/022861 

[0130] where eo is the initial model total error.  

[0131] Then, according to an illustrative embodiment, error function 612 computes 

model errors according to, e.g., equation 18 below: 

Equation 18 {Ek) - (Ypredk -Ytar ),V 11,n), 

[0132] where E is a predicted record error, and k denotes an iteration.  

[0133] Then, according to an illustrative embodiment, the error function 612 computes 

new data record selection vector according to, e.g., equation 19 below: 

Equation 19 {kI i } lfEkI.}P,(Ek) , W (1, n) 
f0 if Ek, > P,[ Ek) 

[0134] where I is the record selection vector.  

[0135] Then, according to an illustrative embodiment, a data record selector 614 

computes the non-outlier data records to be included in model computation by selecting 

only records where the record selection vector is equal to 1, according to, e.g., equation 

20 below: 

Equation 20 (x,Y)ink= (Xi,Yi)train:ikC (1, n) 

[0136] where in is an index referring to the set of DOBR included records as non-outliers.  

[0137] Then, according to an illustrative embodiment, the machine learning module 

608 with the latest coefficients 602 compute new predicted values 620 for the complete 
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training set 604 using the DOBR selected data records according to, e.g., equation 21 

below: 

Equation 21 {ypreazk+1 k L(xY , ½'Xtrain

[0138] Then, according to an illustrative embodiment, the total error function 618 

compute model total error according to, e.g., equation 22 below: 

Equation 22 ek+1= ItpreaJk+' Gk* {ytrain4 , 

[0139] Then, according to an illustrative embodiment, a convergence test 624 test 

model convergence according to, e.g., equation 23 below: 

Equation 23 lek+1-eklI< 
ek 

[0140] where # is a convergence criteria 622, such as, e.g., 0.5 %.  

[0141] In some embodiments, the convergence test 624 may terminate the iterative 

process if, for example, the percent error is less than, e.g., 0.5%. Otherwise, the process 

may return to the training dataset 604.  

[0142] In some embodiments, the DOBR iteration procedure measures how well the model can 

predict itself rather than measuring its accuracy relative to the test dataset. The objective here 

is to test the capability of the model to predict the target variable and records with large 

deviations are systematically removed to improve the model's ability to focus on the larger 

majority of the data where the data predictions are relatively good. This process must be done 

on the same dataset. It doesn't make any sense to remove records from the training set if outliers 
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are identified in the testing set. This process is fundamental to the DOBR method in that the 

records that are removed in a previous iteration are re-entered after a new model (new model 

parameters) have been computed. This process requires that the same dataset be used.  

[0143] In an embodiment, this iteration procedure is performed after the learning model is 

defined. Based on the problem to be solved, in an embodiment, the user selects the machine 

learning algorithm and then determines the specific hyperparameters that "tune" or configure 

the model. These parameters can be chosen using standard techniques such as cross-validation 

or simply by plotting testing error as a function of the specific, user-supplied parameter ranges.  

The particular values used may optimize prediction accuracy versus computing time while 

ensuring the model is neither under- or over-fitted. There are several robust tools to assist in 

this process but the user experience and intuition are also valuable advantages in selecting the 

best model hyperparameters. The particular models and associated hyperparameters used in the 

examples discussed below.  

[0144] The Error Acceptance vs Model Error plot is computed from this step by applying a 

sequence of error acceptance values and tabulating or plotting the results. These plots identify 

the fraction of the dataset that are outliers in the sense that their error contribution is marginally 

larger than the error contribution of data records that fit the model. Also in practice, these plots 

can show more than one type of variation not explained by the model. The slope can vary as it 

convergences to the slope of the model. These variations can assist in researching the nature of 

additional data-coded behavior that is unexplained by the model. The records that occupy the 

different slope intervals can be identified and their further investigation can provide insights 

that may help in constructing an even more robust model.  

[0145] In an embodiment, upon training, as described above, two models have been computed: 

Model 1 

{yref I= L{(x, y)tratn, Xtest), 

55



WO 2022/060411 PCT/US2021/022861 

[0146] where {yref is a reference model that is used as a basis to measure accuracy 

improvements; and 

Model2 

{YBase} = L{(x, y) n, testt, 

[0147] where {yBase} is the DOBR base model, built from the converged outlier censored 

records and trained on non-outlier data (x, Y)in.  

[0148] In embodiments, the errors associated with Model 1 and Model 2 are, e.g., 

Eref= IYref , ytestII and EBase= IItYBase, tytest)11, respectively.  

[0149] Thus, in embodiments, the base model {yBase} suggests it might be a better 

predictor for non-outlier records. However, the test dataset is uncensored, containing both non

outliers and outliers. Therefore, is it uncertain if applying a non-outlier, customized model to 

uncensored test data will produce a better predictive model compared to {yre 4}. However, in 

many cases, EBase may be observed to be either statistically equal to or greater than Eref 

[0150] In non-machine learning applications where the objective is to compute the best 

predictive model for a given dataset, the DOBR model, computed from the selected (non

outlier) records always produces a lower model error since the identified outlier records are 

omitted. In the limiting case of no outliers the DOBR model error equals the total model error 

since the datasets are the same.  

[0151] However, in machine learning applications, the objective may be to develop a model 

using a subset of available data (training) and then measure its predictive accuracy on another 

subset (testing). But, in some embodiments, the DOBR methodology removes model outliers 

each iteration before computing model parameters. In machine learning model development 
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this can be done in the training phase, but by definition, the target values in testing can only be 

used to measure the model's predictive accuracy without advanced knowledge of outliers. This 

observation means that the standard DOBR methodology may be generalized utilizing more of 

the DOBR model information computed in the training phase.  

[0152] FIG. 11 is a block diagram of another exemplary computer-based system for machine 

learning with reduced bias in accordance with one or more embodiments of the present 

disclosure.  

[0153] In embodiments, upon training, as described above, the following information is 

produced: the DOBR selected training dataset values for the non-outliers (x, y)ia, the DOBR 

training data selection vector for the non-outliers {Ij}, the DOBR selected training dataset 

values for the outliers (x, y)out, and the DOBR training data selection vector for the outliers 

{1 - Iin}.  

[0154] In embodiments, DOBR classifies the training data into two mutually exclusive subsets.  

In addition, we also have the corresponding selection vectors that provide a binary: (non-outlier 

or outlier) classification value for each record in the training dataset, e.g., according to equation 

24 below: 

Equation 24 (x, y)i n&(x, y)out,where: (x, y)train = (x,y)in + (x, y)out and Itrain= 

Iin + Iout* 

[0155] In embodiments, the complete set of the training data attributes, Xtrain, and the DOBR 

produced classifications, {train} are used to construct/train a classifier machine learning 

model, C, e.g., stored in the model library 303. This model is applied to the testing dataset, 

Test, to classify the testing data records as outliers or non-outliers based on the training dataset 
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DOBR-established knowledge. For example, the classifier machine learning model C is 

implemented according to equation 25 below: 

Equation 25 fIc} = C[(Itrain, trainn, testt.  

[0156] Thus, in an embodiment, {Ic} produces two testing predictive datasets; Xtestin and 

Xtestout where Ici = 1 or 0, respectively. The above information creates several possible "full 

dataset" predictive models for analysis of the test dataset. In some embodiments, the three that 

have shown the most predictive improvements for the entire dataset are: 

Model 3 

{y1} = ty1inj + tyout}, where y1in= L [(x, y)in, Xtestin 

1 out = L[(x,y)outtestout 

Model 4 

{Y2) = ty2train-inl + tY2train whereY2train-in = L[(x, y)train, Xtestin] 

Y2train-out = L[(x,y)train, Xtestout]' 

Model5 

{ys) = fY2train-in + {yjouti.  

[0157] In some embodiments, for {y1}, the machine learning model L 608, is defined by the 

non-outlier data, (x, y)in and applied to the DOBR test classified data Xtestin to predict the 

non-outlier test values. The same procedure is done for the outlier data. In embodiments, the 

objective ofthis combination is to use the most precise predictive model with its corresponding 

dataset. In other words, this model tests the overall predictive accuracy ofthe non-outlier and 
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outlier models applied separately on their respective datasets that were defined with the DOBR 

classification.  

[0158] In some embodiments, for {y2}, the machine learning model L 608, is defined by the 

training data, (x, y)train and is also applied to the DOBR test classified data test i.This model 

uses the broad knowledge of L(x,y)train to predict the target values of the DOBR defined 

outlier and non-outlier x values. The purpose of this model is test the predictive accuracy of 

the full training model applied separately to the DOBR classified non-outlier and outlier 

datasets.  

[0159] In some embodiments, the third model {y}, is a hybrid that joins the predictive 

characteristics of the previous two approaches. This model tests the predictive benefit, if any, 

of joining L(x, y)train, the model 608 trained on the total training with L(x, y)out, the specific 

model trained on the DOBR classified outliers in the training set applied to their respective, 

classified datasets. There are additional hybrid models that may be explored in further research.  

[0160] In each of these three models and other embodiments, the complete test dataset is 

predicted utilizing both the DOBR classified non-outlier and outlier records. The ability of the 

DOBR method to improve machine learning model overall predictive accuracy is being tested 

with these models. But DOBR's primary benefit is to identify model outliers, remove them, 

and compute the best model predictor from the remaining non-outlier values. And by definition, 

DOBR defined outliers are records that contain variation not adequately described in the 

current variables (or features) given utilized machine learning model.  

[0161] In some embodiments, with the outlier and non-outlier datasets computed, the analyst 

has at least three options or more. In an embodiment, a first option is to apply the base model, 

tyref}, and do not apply DOBR. This is data-driven strategy when the Risk Acceptance vs.  

Model Error curve is close to a linear relationship. In an embodiment, a second is to apply one 

or more of the models: {y,{y2}, or {y}, and combine e.g. average the results. In an 
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embodiment, a third is to develop predictions for just the non-outlier records and further 

research the outlier data to develop a modeling strategy for this specialized new dataset - e.g.  

change the machine learning model or add variables to account for unexplained variation, etc.  

[0162] Regarding option 3, there are several ways to compute the non-outlier dataset and two 

possible choices are mentioned here. One reason for the relatively large number of possibilities 

may be due to the non-linearity of many applied machine learning models. In general, {Ic} * 

L[(x, y)train, Xtest] # L[(x, y)train, {Ic * xtest]. This inequality may be due to the complexity 

of many machine learning models. Equality holds for linear regression, for example, but not as 

a general rule for machine learning models.  

[0163] In embodiments, regarding non-outlier predictions, the DOBR method was not initially 

designed to improve the prediction of the complete dataset. By design, the method converges 

to the best set of outliers based on the provided model and dataset. The remaining data and 

model calculations provide improved accuracy but there is no guidance on how to make 

predictions for the outliers. The implicit decision is to apply a different model to the outlier 

dataset that reflects the unique data variations that are not present in the non-outlier model.  

[0164] In embodiments two models are defined to test non-outlier prediction accuracy 

removing the outliers from the analysis. The first choice for selecting the non-outlier dataset 

applies the DOBR classification vector, {Ic}, to the reference model, tyre 1 according, e.g., 

model 6 below: 

Model6 

{y4} = {Ic} * L [(x, y)train, Xtest] = {Ic} * tYref).  

[0165] In embodiments, the reference model utilizes the complete training data-defined model 

to make predictions from the dataset, Xtest. The classification vector is then applied to remove 
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predicted outliers based on the DOBR method's knowledge obtained from the training dataset.  

This model applies DOBR to the most general or broad domain model.  

[0166] In embodiments, the second model applies DOBR in the most narrow or "precise" 

manner by using the DOBR model created from the training stage from non-outlier training 

data, to only the records selected by the classification model, {Ic}, according, e.g., model 7 

below: 

Model 7 
{ys} = L[(x, y)j., fIc}* test] = fIc} * L[(X, y)i, Xtestin] = jyiinJ.  

[0167] There are other models that can be formed from the analytical formulations developed 

in this research and, depending on the problem, they may have significant predictability 

improvement potential. However, the models used here, {y4} and {ys}, are limiting cases 

representing the broadest and narrowest versions in terms of training domain utilization and 

model definition.  

[0168] In embodiments, to test the predictive accuracy of the DOBR developed models defined 

above, such as, e.g., Models 3-7, we use Yref Ias a comparison basis for models {y1},{y), 

and {y} (Models 3, 4 and 5, respectively). For {y4} and {ys} (Models 6 and 7, respectively), 

the model predictions for the non-outlier dataset, the comparison basis is fIc} * Ytest. Thus, in 

embodiments, error can be determined according to, e.g., equations 26, 27 and 28, below: 

Equation 27 ERef= ItYRef , {ytestI 1 [±j1 (YRef ~ ytesti, where m= 

length of dataset, 
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Equation 28 Ek Ik, Utest}II= 

2 k = 1, 2, 3 
Xj= 1 (Yki - Ytest) ,where = length of test dataset' 

Equation 29 Ek Ik, lttest}II= 

(k = 4,5 

-G1=1(Yki - test) 2 ,where G = length of non - outlier dataset.  
test = EIc = 1* Ytest 

[0169] In the following examples of illustrative embodiments, the measure of DOBR's 

predictive accuracy is gauged by how much, (if any), El, E2, and/or E3 are less than ERef. For 

the non-outlier dataset errors, E4 and Es, the measure of improvement is the decrease in error 

relative to the outlier adjusted base error ERef. The adjustment are described below with regards 

to the example results.  

[0170] In some embodiments for machine learning examples of the exemplary inventive 

DOBR improvements, the accuracy of the previously defined five models may be tested with 

seven machine learning regression models: Linear Regression, k Nearest Neighbor, LASSO, 

Support Vector, Decision Tree, Bagging, and Random Forest. These machine learning 

regression models are examples of a broad spectrum of model constructs. Additional or 

alternative models are also contemplated, such as neural networks, clustering, ensemble 

models, among others and combinations thereof 

[0171] Linear regression is a method that gives analysts insights regarding the process where 

the coefficients (or the model parameters), can have a technical/process-related meaning. A 

model of the process, represented by an equation, must be supplied by the analyst and the 

coefficients are determined by minimizing the error between the predicted and the data supplied 

target values.  

62



WO 2022/060411 PCT/US2021/022861 

[0172] LASSO, an abbreviation for 'least absolute shrinkage and selection operator,' is a 

regression-related methodology where an addition term is added to the objective function. This 

term is the sum of the absolute values of the regression coefficients and it is minimized subject 

to a user supplied parameter. The purpose of this additional term is to add a penalty for 

increasing the value of variable (or feature) coefficients. The minimization only retains the 

dominant coefficients and can help in reducing the hard to interpret effects of variable (or 

feature) covariance or collinearity.  

[0173] Decision Tree Regression can mimic human thinking and are intuitive and easy to 

interpret. The model chooses a decision tree construct that logically shows how the x values 

produce the target variable. The specific parameters like maximum depth and minimum 

samples per leaf are set by the analyst in the training/test machine learning exercise.  

[0174] Random Forest Regression builds on the Decision Tree method. Just like forests are 

made with trees, a random forest regression model is made with groups of decision trees. The 

analyst defines the forest structure by supplying the of estimators (number of trees in the forest), 

some parameters similar to decision trees maximum depth of the trees, leaf characteristics, and 

technical parameters related to how the model error is computed and applied.  

[0175] k-NN refers to k nearest neighbors methods where the predicted value is computed from 

the k nearest neighbors in the x (or feature) domain. Selecting the metric to measure distance 

and the specific number of nearest neighbors to use are the major parameters set by the analyst 

in tuning a model for predictions on a given dataset. It is a straightforward method that can 

work well for regression and classification predictions.  

[0176] Support Vector Regression is a versatile, machine learning method that has several 

variations. Regression means fitting a model to data and the optimization is usually a 

minimization of error between predicted and the target variables. With support vector 

regression, the error criterion is generalized to say that if the error is less than some value 's', 
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then we say that's 'close is good enough' and only errors greater than '', are measured and 

optimized. In addition to this attribute, the method allows the data to be transformed into 

nonlinear domains with standard or in some cases, user-defined transformation functions or 

kernels. The multi-dimensional data structure is used where the objective is to compute robust 

predictions - not to model the data in the tradition spirit of regression.  

[0177] Bagging Regression computes prediction estimates from drawing random subsets with 

replacement. Each random sample computes a decision tree (by default) prediction of the target 

variable. The final ensemble prediction value can be computed several ways - the average value 

is one example. The primary machine learning variables are the number of estimators in each 

ensemble, the number of variables (or features) and samples to draw to train each estimator, 

and selection/replacement guidelines. The method can reduce the variance compared other 

methods like decision tree regression.  

[0178] The classifier model, C[(ItrainingXtrain),Xtest] is an illustrative example since it is 

applied to the DOBR non-outlier/outlier classifications and the training set x values to define 

non-outlier and outliers in the test dataset. This a critical step in DOBR's machine learning 

application since it transfers the knowledge of outliers from the training set to the testing or 

production dataset. If there are improper classifications, the utility of DOBR methodology to 

improve the accuracy of machine learning predictions is not realized.  

[0179] Decision Tree, k-NN, Random Forest, and Bagging classifier models were tested for 

their classification accuracy. The Bagging and Random Forest models were selected and both 

models tuned to produce the correct error acceptance fraction for non-outliers. A more detailed 

classification analysis could suggest other models. An extensive classifier analysis, even 

though classification accuracy is paramount, is beyond the scope of this initial discussion.  

[0180] FIG. 12 is a graph illustrating an example of relationship between model error and an 

error acceptance criterion of some exemplary computer-based machine learning models with 
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reduced bias for predicting concrete strength in accordance with one or more embodiments of 

the present disclosure.  

[0181] The first example uses the same dataset as described above with reference to concrete 

compression strength, where DOBR is applied to a complete dataset. As a short review, this 

dataset contains concrete compression strength as a function of its composition and exposure 

as defined by 8 quantitative input variables. The dataset has 1,030 records or instances and can 

be found at the University of California, Irvine machine learning repository archive.  

[0182] The machine learning training exercise divides this dataset into a 70%:30% split with 

model tuning performed on the training dataset (70%) and the prediction results measured with 

the testing (30%) dataset.  

[0183] The model tuning results for seven machine learning models in concrete compression 

strength prediction are given in Table 1, below.  

Table 1 
Linear Regression fitintercept=False, normalize=False 

LASSO alpha=4, fitintercept=False 
Decision Tree Regressor maxdepth=6, min_samplessplit-2 

Random Forest Regressor nestimators=3, min samplesleaf=30 

k-Neighbors Regressor n neighbors=3 
SVR C=10, gamma=0.0005, kemel='rbf 

Bagging Regressor n estimators=25, max samples=35 

[0184] Default model parameters (e.g., for Python 3.6) are not shown since they do not add 

information to the results. In embodiments, the tuning process is an exercise in selecting 

parameters that minimized training and testing dataset errors using the mean squared error as 

the indicator. More sophisticated algorithms could be applied but the straightforward approach 

was used simply to ensure the results did not over- or under- fit either dataset error.  

[0185] In an embodiment, to apply DOBR, a determination the percentage of data, if any, 

where the error is excessively large is performed. In embodiments, the machine learning 
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models are applied for a sequence of error acceptance fractions record the corresponding model 

errors. This is done solely for the training data set since the test data set is used only to measure 

the machine learning model's prediction accuracy. The data percentage included in the model, 

"error acceptance" refers to the amount of total model error the user is willing to acceptance 

and also indicates the fraction of data that the model adequately describes.  

[0186] In embodiments, the error acceptance percentage sequence ranges from 100% to 60% 

in increments of 2.  

[0187] FIG. 13 is a graph illustrating an example of relationship between model error and an 

error acceptance criterion of some exemplary computer-based machine learning models with 

reduced bias for predicting energy use in accordance with one or more embodiments of the 

present disclosure.  

[0188] The second example contains appliance energy use data along with household 

environmental and lighting conditions with a sampling every 10 minutes for 4 months. It is 

comprised of 29 attributes: 28 input variables and 1 output (target variable) and 19,735 records: 

The dataset and documentation can be found at the University of California, Irvine machine 

learning repository archive.  

[0189] Similar to above, in embodiments, the model tuning results for seven machine learning 

models in appliance energy use prediction are given in Table 2, below.  

Table 2 
Linear Regression fit intercept=False, normalize=False 

LASSO alpha=4, fitintercept=False, max iter-100000, 
tol=0.01 

Decision Tree Regressor max-depth=22, min samples leaf=2 

Random Forest Regressor n-estimators=6 

k-Neighbors Regressor n neighbors=9 

SVR C=1000, gamma=0.001, kernel='rbf 
Bagging Regressor n-estimators=20, maxsamples=15 
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[0190] In embodiments, default model parameters (e.g., for Python 3.6) are not shown since 

they do not add information to the results. The tuning process was an exercise in selecting 

parameters that minimized training and testing dataset errors using the mean squared error as 

the indicator. More sophisticated algorithms could be applied but the straightforward approach 

was used simply to ensure the results did not over- or under- fit either dataset error.  

[0191] In an embodiment, to apply DOBR, a determination the percentage of data, if any, 

where the error is excessively large is performed. In embodiments, the machine learning 

models are applied for a sequence of error acceptance fractions record the corresponding model 

errors. This is done solely for the training data set since the test data set is used only to measure 

the machine learning model's prediction accuracy. The data percentage included in the model, 

"error acceptance" refers to the amount of total model error the user is willing to acceptance 

and also indicates the fraction of data that the model adequately describes.  

[0192] In embodiments, error acceptance percentage sequence ranges from 100% to 60% in 

increments of 2.  

[0193] FIG. 12 and FIG. 13 show, in part, the machine learning models' capability to adapt to 

high variation data. The closer the lines are to linear (being straight), the greater the model's 

ability to adequately describe the data which translates to fewer, if any outliers. The linear 

behavior for several models applied to the Concrete Data show they can almost completely 

adequately describe the entire training dataset. The nonlinearity of the results for the energy 

dataset suggest that there is a significant percentage of data records where models produce 

inaccurate predictions or outliers.  

[0194] For each curve in the above concrete data plot, including, e.g., linear regression 530, 

LASSO 540, decision tree regression 522, random forest regression 528, k-neighbors 

regression 524, support vector regression (SVR) 520, and bagging regression 526, and in the 

above energy use data plot, including, e.g., linear regression 730, LASSO 740, decision tree 
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regression 722, random forest regression 728, k-neighbors regression 724, support vector 

regression (SVR) 720, and bagging regression 726, the straight line defined by the low error 

acceptance percentages may extrapolated to determine the error acceptance value where the 

fraction of outliers begins, as per an embodiment of the present invention. This process could 

be automated but in practice, it may be performed by hand to ensure that the selected error 

acceptance value reflects the analyst's judgment.  

[0195] The extrapolation exercise and error acceptance percentage selection is a relatively 

simple process but it has very important implications. It indicates how good the proposed model 

fits the data. The error acceptance value complement is the dataset percentage that are outliers, 

i.e., the percentage of records where the model fails to make relatively accurate predictions.  

This is important information in choosing the machine learning (or any model) for a given 

dataset and practical application. Table 3 represents the error acceptance values chosen for each 

mode for the two example datasets.  

Table 3 
Concrete Appliance 
Compression Energy Use 

Linear Regression 80% 84% 

LASSO 80% 84% 

Decision Tree 94% 90% 

Random Forest 90% 90% 

k Nearest Neighbor 88% 84% 
Support Vector 94% 84% 

Bagging 92% 84% 

[0196] In embodiments, the predictive accuracy of just the DOBR selected values are 

compared to the reference model. This is the basic utility of DOBR since the method by itself 

does not provide any specific information about increasing the predictive accuracy for the 

complete dataset. Therefore, the DOBR analysis presents the analyst with a potential tradeoff 

to have better predictive power for part of the dataset but with no information provided for 

outlier records. The question addressed in this section is how much, if any, are the DOBR 

68



WO 2022/060411 PCT/US2021/022861 

selected results more accurate compared to the corresponding reference model test data 

predictions.  

[0197] The reference error is computed for the complete dataset. The adjusted reference error 

values for comparison with the non-outlier datasets is computed by multiplying the complete 

reference error by the error acceptance value. For example, if the reference error is 10.0 and 

the error acceptance value is 80%, then the adjusted reference error is 10 x 80% or 8.0. The 

interpretation utilizes the definition of "error acceptance." If the non-outlier data is computed 

on 80% of the data for example, then 80% of the total error should still be remaining in the 

non- outlier data. This is the error acceptance definition.  

[0198] The results measuring the predictive accuracy performance of the DOBR selected non

outliers is presented in Table 4 and Table 5, below, corresponding to, e.g., a concrete strength 

dataset and an energy dataset, respectively. The reference error is computed by multiplying the 

actual error acceptance percentages by the point estimates of tyRef,{ytest}|. The Random 

Forest classifier was not applied to the concrete dataset since it was judged not going to change 

the conclusions regarding DOBR's predictive accuracy improvement.  

[0199] For all the following statistical, the results show the mean a 9 5% confidence interval 

from 100 random trial selections of training and test data subsets. In some examples in the 

following tables the Support Vector results were computed from fewer iterations (5 or 10) for 

manage computing time issues.  

Table 4 

9 x 
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Table 5 

[0200].Table 4.shows that.there.i little,.if ayrdtive improvement usi. the.DOBR 

selectedrcs T 

B ad Rado Fe csn s F.14 and FIG 14B, respectively,%belo .;h 

102001Tabe{s =}showshriltteimostnipreditementrsuggestngtusingtheDlOfButirs 

seletreods.TharisrsculisnoththerDOBRnclainctiexpctedbsbettertresuthanjsth 

erroraceptanclasincatierorcurvteshll(oninBR odlTidig.1c2i.mpoemn 

resultsAlstwee expeelsshosehtdoFIG 13,Table5 imotndicaethere tis csierabl 

improem tenistintheO eletneod oretepredictionsfothrfeecuracylbyamoesf obteu 

time andeerlother factsoseotimporntmandtsugesachisntesiemovaofouinerse 

to suggest the viability of one model over another.  

102021The conclusion from Table 5is clear and statistically significant. Given the potential 

for outlier bias, as indicated in FIG. 13-like plot, the machine learning model with the DOBR 
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methodology can provide better predictive accuracy for the non-outlier records than by using 

the machine learning model without DOBR. Thus, an exemplary inventive computing system 

including a machine learning model with DOBR has improved accuracy and reduced error in 

making predictions, thus increasing the performance and efficiency of implementing the model.  

But the improvement may be achieved at a price: there may be no predictive value or 

consideration given to the identified outlier values. In embodiments, how the outlier records 

are modeled can vary based on the application.  

[0203] Table 6 shows the predictive accuracy results for train/test samplings of the concrete 

compression strength dataset with the Bagging Classifier. The Random Forest Classifier was 

not applied to this dataset. The table displays the root mean square error (see, Equation 15) at 

a 95% confidence level between the test data and each of the models for 100 random selections 

of the training and test datasets.  

Table 6 

[ASSO T1a5b sh7ow th cr () i p o th DOBR 

modelsrelatiepto teisionree.modelicaehe csi eg onreeopruesoteegth 

Prediction Accuracy Performance of DOBR Models: Bagging Classiier.  

Table 7 
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{y1} % {y2} % {y3} % 
Improvement Improvement Improvement 

Linear Regression 12.39% 0.55% 3.44% 0.51% 8.63% 0.47% 
LASSO 11.98% 0.60% 2.44% 0.53% 9.29% 0.42% 
Decision Tree -0.44% 1.07% -2.54% 1.29% -1.28% 0.77% 
Random Forest -6.73% 1.46% -3.68% 0.41% -6.17% 0.67% 
k Nearest Neighbor -4.17% 0.99% 2.11% ±0.66% 0.23% 0.19% 
Support Vector -7.38% 1.37% -2.61% 1.38% -4.88% 0.29% 
Bagging -2.71% ±1.17% 2.11% ±1.20% 4.77% 0.98% 

[0206] These results are not surprising since the Model Error vs. Error Acceptance curves for 

Linear Regression and LASSO were the plots with the largest nonlinearity and the others are 

almost straight lines suggesting that the models adequately predict the target variable and 

outlier analysis is not required. And this is the message conveyed in Table 7. Model outputs 

regarding predicted concrete compressive strength is represented in Appendix A, attached 

herewith.  

[0207] Now looking at the energy consumption prediction error results in Table 8 a different 

situation exists involving, e.g., Appliance Energy Consumption Prediction Errors For Bagging 

and Random Forest Classifiers. The Bagging, Linear Regression and LASSO models have 

largest reference prediction errors and the Random Forest Model the smallest. The DOBR 

model errors in the right three columns show, that in many cases, the DOBR models yield a 

higher the prediction accuracy than the reference models.  

Table 8 
Bagging7 

IASS5fl 94.&7±O.7 P48604 5.76t,1132 XMc43 44 

suppmsrt sWaor $2ff±-t 0,9 79,2&2- 346H 8.W1( 
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102081Iis interesting to note that Bagging reference model has the largest reference error 

values but its DOBR augmented model results are generally in the same statistical ranges as 

the other models. Also for practical reasons the Support Vector model was run for only 10 

iterations. This explains the increase in uncertainty across its model results.  

102091The detailed improvement results are shown in Table 9related to, e.g., Appliance 

Energy Consumption Prediction Accuracy Performance of DOBR Models. Note that at least 

one of the DOBR models produces some prediction accuracy increase for most of the machine 

learning models. However, there are also relatively large differences so there are no conclusive 

results regarding DOBR produced predictability improvement. From the Model Error vs. Error 

Acceptance curves for the energy data, all of the plots show nonlinearity behavior with the 

Random Forest and Decision Tree models having the smallest amount of curvature. And it 

appears than the models, particularly Random Forest, can adequately model this variation 

based on the results shown here. Model outputs regarding predicted energy use is represented 

in Appendix B, attached herewith.  

Table 9 

Reor !re *C.2? 4% 3 66%' ? 4% ;* 33 

Starest e 4b2%± 0t3%" 96 029%Q$%.19% 

Random Forest {y1} % {y2} % {y3} % 

Improvement Improvement Improvement 
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Linear Regression 12.80% ±0.27% 10.14% ± 0.23% 2.38% ±0.12% 
LASSO 13.20% ± 0.24% 11.71% ± 0.21% 1.31% ±0.12% 
Decision Tree 5.35% ±0.58% -1.40% ± 0.44% 6.89% ±0.41% 
Random Forest -2.28% ± 0.44% -1.74% ± 0.39% -0.73% 0.36% 
k Nearest -0.16% ±0.32% -1.34% ±0.30% 1.20% ±0.16% 
Neighbor I 
Support Vector 4.35% ± 0.98% 6.73% ± 0.90% -2.23% 0.27% 
Bagging 17.31% ± 0.47% 9.98% ± 0.77% 5.94% ± 0.48% 

[0210] FIG. 14A and FIG. 14B illustrate plots of non-outlier and outlier distributions in 

classifier models according to an exemplary embodiment of an inventive exemplary computer 

based system with a DOBR classifier in accordance with one or more embodiments of the 

present disclosure.  

[0211] The concrete dataset is relatively small so data plots can provide visual insights, but 

since DOBR has little value in this case, graphing this dataset doesn't improve our 

understanding as to how DOBR works. For the energy dataset predictions however, DOBR 

does produce some significant predictive improvements. But its relatively large size (13,814 

training records, 5,921 testing records) makes direct scatter plot visualizations difficult to 

interpret. The scatter plots, like FIG. 9 and FIG. 10, with a large number of points can blot out 

any detail. The error improvement results presented in Table 3 are summations over the non

outlier datasets, but the question remains as to how the DOBR method and the classification 

model produce these results.  

[0212] In embodiments, to address this question the error distributions for the two model 

representations can be analyzed: {y4}, the Random Forest classifier (FIG. 14A) and {ys} the 

Bagging classifier (FIG. 14B) of the outlier and non-outlier datasets. In an embodiment, the 

non-outlier errors should be smaller than the outlier errors by design but the exemplary 

inventive DOBR model and the classification process are constructed from the training data 

exclusively so the testing dataset can contain information not previously seen. Consequently, 

the model and classification calculations may not be precise and the extent of classification 

errors can be visualized in these plots. This work is performed for the Linear and Bagging 
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Regression models as these two approaches have the largest and smallest improvement 

benefits, respectively, presented in Tables 5.  

[0213] For discussion the reference error value is highlighted in both plots of FIG. 14A and 

FIG. 14B. The top set of arrows show that 80% the non-outlier error values are less than 1,000 

which says the 20% of the error values are > 1,000. This lower set of arrows show also that for 

the outlier distributions, about 20% of outlier values have an error <1,000 or 80% has errors 

>1,000 - which should be representative of outlier errors. Without having advance knowledge 

of the error acceptance percentage values, we cannot precisely computed the accuracy of the 

classification process but the above plots do suggest that even though misclassification occurs, 

most of the values are properly classified.  

[0214] FIG. 14C illustrates plots of model error as a function of error acceptance values for an 

example use case of an exemplary embodiment of an inventive exemplary computer based 

system with a DOBR-trained machine learning model for predicting non-production time in 

well drilling in accordance with one or more embodiments of the present disclosure.  

[0215] Offshore well drilling operations contain unique challenges for the oil and gas 

industries. In addition to the observable logistical and environmental risks from weather and 

ocean depths, there hidden downhole risks operating in high temperature, pressure, and 

vibration environments. Drilling times are held to tight schedules and delays due to downhole 

equipment failures (non-productive time or NPT) can represent significant revenue penalties.  

[0216] To aid in managing NPT, a machine learning model is constructed to help predict future 

downtime events for the purpose of including these estimated delays into contract terms that 

set drilling goals. Looking at historical events including: Distance Drilled [feet], Hole Size 

[inch],Tool Size [inch], Location Pressure Severity, Max Dog Leg [deg/100ft], Vibration 

Severity Category, Curvature Category, and NPT(hr).  
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[0217] Linear, xgboost, Gradient Boosting, and Random Forest regression models were 

applied to the downhole equipment failure data with a 80/20 train/test split to measure model 

predictive accuracy. Hyperband was used to tune the models and the pertinent parameter values 

shown in Table 10 below: 

Table 10 

xgboost eta = 0.76, max depth = 4, min child weight = 0.43 
Gradient learning rate = 0.34, min samples split = 0.58, n_estimators = 13 
Boosting 
Random Forest max depth = 4, minsamples leaf = 2, min samples split = 9, 

n estimators = 6 

[0218] The classification function that transfers the DOBR computed outlier information to the 

test dataset may be chosen as a random forest model with the number of estimators equal to, 

e.g., 5. This tuning activity is also accomplished in the training part of the analysis. The metric 

for parameter selection is to compute the percentage of correctly classified elements of the 

training set and compare it to the model's error acceptance value.  

[0219] Linear regression is included in this analysis since it is the only model where the 

coefficients can provide engineering insights to help identify additional best practice 

refinements. The other models are more robust from a predictive perspective but offer little 

insights.  

[0220] As discussed in this specification there are several DOBR-related models that can be 

constructed basic DOBR process. In this example three models are presented: M represents a 

given hyptertuned model.  

[0221] Using the DOBR selected inliers and outliers of the training and test datasets: 

Pseudo-Code 8 
DOBRModeltestin = M(Dataxinscrub,Data-yin-scrub) 

.predict(Dataxtestinscrub 

DOBR_Model_testout= M (DataxoutscrubDatayoutscrub) 

.predict(Data-xtestout-scrub) 

BaseModel_yin,BaseModel-yout = IBaseModel 
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[0222] where Dataxinscrub and Data-yinscrub are the DOBR computed inliers from the 

training set, Dataxoutscrub and Data-youtscrub are the DOBR computed outliers from 

the training set, DOBRModel_testin and DOBRModeltestout are the test dataset inliers 

and outliers, respectively, computed from the DOBR classification model, 

BaseModel_yin,BaseModel-yout are non-DOBR computed model results classified into 

inliers and outliers using the DOBR classification model, and I assigns BaseModel values to 

BaseModelyin for DOBR defined inliers and to BaseModel-yin for DOBR defined outliers.  

[0223] From these subsets the three DOBR models are: 

a. DOBR_Model#1 = [DOBRModeltestin, DOBRModeltestout] 

b. DOBRModel #2 = [ BaseModelyin, DOBRModeltestout ] 

c. DOBRModel #3 = [ DOBRModeltestin, BaseModelyout] 

[0224] Running the Error Acceptance percentage versus Model Error Curves for the 

aforementioned hypertuned models produces the curves as shown in FIG. 14C. The important 

property of these curves is their curvature - not the error values by themselves. In general, the 

more linear a given curve's slope over the domain (0,100%), the smaller the influence of 

outliers. For the offshore downhole equipment failure data, the curves appear linear up to about 

an error acceptance of 80% and then various nonlinear slopes appear. In analyzing the slope as 

a function of error acceptance values, the following table (Table 11) shows the determined 

error acceptance thresholds for the DOBR analysis.  

Table 11 

Regression Model Applied Error Acceptance % 
Linear 85.0 
xgboost 85.0 
Gradient Boosting 85.0 
Random Forest 85.0 
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[0225] The models were all run with the computed hyperparameters and assigned Error 

Acceptance values. Model outputs regarding predicted NPT is represented in Appendix C, 

attached herewith, and the error results tabulated in Table 12 below: 

Table 12 
Regression Base (no DOBR Model DOBR Model DOBR Model 
Model DOBR) error #1 #2 #3 
Linear 16.4 14.0 14.9 15.6 
xgboost 11.1 10.6 10.0 11.6 
Gradient 16.9 10.5 17.8 9.6 
Boosting I I I I 
Random Forest 13.9 9.0 9.0 13.4 

[0226] Now that we have the non-DOBR model alongside the three DOBR models we are in 

a position to select which model to use in production for future predictions. Overall, the linear 

model offers the lowest predictive accuracy and DOBR Models #1 or #2 offer the best. At this 

point the analyst can balance these accuracy figures with other practical considerations, .e.g.  

computing time to select model to apply to future predictions.  

[0227] While the results for the use of DOBR to train and implement machine learning models 

for application in predicting concrete compressive strain and in predicting energy, other 

applications are also contemplated.  

[0228] For example, image rendering and visualization may leverage machine learning models 

to automatically predict and implement rendering parameters based on, e.g., medical data, as 

described in U.S. Patent No. 10,339,695, herein incorporated by reference in its entirety for all 

purposes. DOBR may be employed to train and implement machine learning models for 

content-based rendering. A medical dataset representing a three-dimensional region of a patient 

may be employed as input data. Using DOBR, outliers from a training medical dataset may be 

removed such that the machine learning model may be trained on non-outlier data according 

to the DOBR techniques described above. The machine-learned model is trained with deep 

learning of the non-outlier data from the training medical dataset to extract features from the 

medical dataset and to output values for two or more physically-based rendering parameters 
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based on input of the medical dataset. In some embodiments, the physically-based rendering 

parameters are controls for consistent data handling, lighting design, viewing design, material 

propriety, or internal renderer property. A physically-based renderer renders a photorealistic 

image of the three-dimensional region of the patient using the output values resulting from the 

applying.  

[0229] In another example application of DOBR for training and implementing machine 

learning models, a machine learning model may be trained with the DOBR techniques 

described above to generate a control command for a machine to output the control command, 

as described in U.S. Patent No. 10,317,854, herein incorporated by reference in its entirety for 

all purposes. In such an example, a simulator may perform a simulation of a work operation of 

the machine based on the control command. The simulator may generate a complete data set 

for training the machine learning model by simulating physical actions of the machine based 

on the control command. Such a dataset may be processed using the DOBR iterations to ensure 

any outlier simulations are removed when training the model parameters including the work 

operation data, control command data and machine data used as input for each simulation.  

[0230] Other examples of the application of DOBR for training and implement machine 

learning models may include, e.g., a Software-as-a-Service implementation for on-demand 

model training and deployment, outlier dataset analytics with outlier trained models, grid 

energy optimization modeling, user content recommendation modeling for optimizing user 

engagement, among other implementations. Some examples are described in further detail 

below: 

SaaS Implementation for Custom ML Training 

[0231] FIG. 15 illustrates a block diagram of an exemplary inventive bias reduced model 

generation service for machine learning model training and deployment in accordance with one 

or more embodiments of the present disclosure.  
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[0232] In some embodiments, a bias reduced model generation service 1500 may be 

implemented as Software-as-a-Service (SaaS) by including components for dynamic outlier 

bias reduction (DOBR) in training datasets for the training and deployment of one or more 

machine learning model(s). In some embodiments, DOBR provides an iterative process to 

remove outlier records subject to a pre-defined criterion. This condition is the user-defined 

error acceptance value expressed as a percentage. It refers to how much error the user is 

willing to accept in the model based potentially on their insights and other analysis results 

that will be described later in this discussion. A value of 100% signifies that all of the error is 

accepted and no records will be removed in the DOBR process. If 0% is chosen, then all of 

the records are removed. Generally, error acceptance values in the range of 80 to 95% have 

been observed for industrial applications.  

[0233] In some embodiments, a user may interact with the bias reduced model generation 

service 1500 to initiate a request for a machine learning model. In some embodiments, the bias 

reduced model generation service 1500 may receive the request, train machine learning models 

based on the request and return to the user a trained machine learning model for use towards 

the user's purpose.  

[0234] In some embodiments, the user may use a computing device 1511 to communicate with 

the bias reduced model generation service 1500, e.g., via a network 1520. In some 

embodiments the computing device 1511 may send a model request 1512 to the bias reduced 

model generation service 1500 to request a custom trained model. Accordingly, the model 

request 1512 may include requested model attributes, such as, e.g., the error acceptance value 

for DOBR dataset filtering, a model type (e.g., classification, object detection, natural language 

processor, data prediction, time-series prediction, computer vision, etc.), model memory limits, 

or any other requested model attributes or any combination thereof In some embodiments, the 

model request 1512 may also include training data for the modelling task for which the custom 
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trained model is to be used. For example, for a grid energy optimization model, the request 

may include a package of electrical power demand data according to, e.g., time of day, day of 

the week, day of the month, month of the year, season, weather, location, population density, 

among other electrical power demand data. For another example, for content and advertising 

recommendation models for surfacing online content to one or more users, the request may 

include a package of user engagement data including, e.g., click rates, click frequency, times 

spent on content, content location on page, content screen area, content type or classification, 

among other user engagement data, in combination with user data such as user characteristics, 

including e.g., browser, location, age, or other user characteristics or any combination thereof 

[0235] In some embodiments, the computing device 1511 may send the model request 1512 

with the training data to the bias reduced model generation service 1500 over the network 1520 

using any suitable electronic request. In some embodiments, the model request 1512 may be 

communicated to the bias reduced model generation service 1500 via, e.g., a suitable 

application programming interface (API), messaging protocol, or other communication 

technology. In some embodiments, the model request 1512 may be communicated across, e.g., 

a direct interface between the computing device 1511 and the bias reduced model generation 

service 1500 or across the network 1520 (such as a local area network (LAN), wide area 

network (WAN), Internet, intranet, or other network and combinations thereof), or a 

combination thereof In some embodiments, the connection may include, e.g., hard wired 

connections (e.g., fiber optic cabling, coaxial cabling, copper wire cabling, ethernet, etc.), 

wireless connections (e.g., WiFi, Bluetooth, Zigbee, Z-Wave, cellular networking such as 5G, 

4G, Long Term Evolution (LTE), 3G, High-Speed Downlink Packet Access (HSPA), Global 

System for Mobile Communications (GSM), Code-division multiple access (CDMA) or other 

technologies, and combinations thereof), or combination thereof 
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[0236] administer the error acceptance value via a user input device 1508 and view results via 

a display device 1512, among other user interaction behaviors using the display device 1512 

and user input device 1508. Based on the error acceptance value, the bias reduced model 

generation service 1500 may analyze a dataset 1511 received into a database 1510 or other 

storage in communication with the bias reduced model generation service 1500. The bias 

reduced model generation service 1500 may receive the dataset 1511 via the database 1510 or 

other storage device and make predictions using one or more machine learning models with 

dynamic outlier bias reduction for improved accuracy and efficiency.  

[0237] In some embodiments, the bias reduced model generation service 1500 includes a 

combination of hardware and software components, including, e.g., storage and memory 

devices, cache, buffers, a bus, input/output (I/O) interfaces, processors, controllers, networking 

and communications devices, an operating system, a kernel, device drivers, among other 

components. In some embodiments, a processor 1507 is in communication with multiple other 

components to implement functions of the other components. In some embodiments, each 

component has time scheduled on the processor 1507 for execution of component functions, 

however in some embodiments, each component is scheduled to one or more processors in a 

processing system of the processor 1507. In other embodiments, each component has its own 

processor included therewith.  

[0238] In some embodiments, components of the bias reduced model generation service 1500 

may include, e.g., a DOBR training engine 1501 in communication with a model index 1502 

and model library 1503, a regressor parameter library 1505, a classifier parameter library 1504 

and a DOBR filter 1506, among other possible components. Each component may include a 

combination of hardware and software to implement component functions, such as, e.g., 

memory and storage devices, processing devices, communications devices, input/output (I/O) 
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interfaces, controllers, networking and communications devices, an operating system, a kernel, 

device drivers, a set of instructions, among other components.  

[0239] In some embodiments, the DOBR training engine 1501 includes a model engine for 

instantiating and executing machine learning models. The DOBR training engine 1501 may 

access models for instantiation in a model library 1503 through the use of a model index 1502.  

For example, the model library 1503 may include a library of machine learning models that 

may be selectively accessed and instantiated for use by an engine such as the DOBR training 

engine 1501. In some embodiments, the model library 1503 may include machine learning 

models such as, e.g., a support vector machine (SVM), a Linear Regressor, a Lasso model, 

Decision Tree regressors, Decision Tree classifiers, Random Forest regressors, Random Forest 

classifiers, K Neighbors regressors, K Neighbors classifiers, Gradient Boosting regressors, 

Gradient Boosting classifiers, among other possible classifiers and regressors.  

[0240] In some embodiments, based on the model attributes of the model request 1512, the 

DOBR training engine 1501 may select a set of model architectures. For example, some models 

may be smaller than others, and thus based on a maximize size requirement in the model request 

1512, the DOBR training engine 1501 may use the model index 1502 to identify model 

architectures in the model library 1503 conforming the maximize size requirement. Similarly, 

a model type or task type may be used to identify model architectures. For examples, the DOBR 

training engine 1501 may select a set of model architectures listed for use with classification 

tasks, regression tasks, time-series prediction tasks, computer vision tasks, or any other task.  

[0241] Accordingly, in some embodiments, to facilitate access to the library of machine 

learning models in the model library 1503, the DOBR training engine 1501 may employ the 

model index 1502. In some embodiments, the model index 1502 may index each model with 

reference to a model identifier, a model type, a set of task types, a memory footprint, among 

other model architecture characteristics. For example, models including, e.g., Linear 
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Regression, XGBoost Regression, Support Vector Regression, Lasso, K Neighbors Regression, 

Bagging Regression, Gradient Boosting Regression, Random Forest Regression, Decision Tree 

Regression, among other regression models and classification models, may be indexed by a 

number identifier and labeled with a name.  

[0242] In some embodiments, the software instructions are stored within a memory of the 

respective model library 1503 or model index 1502 and buffered in a cache for provision to the 

processor 1507. In some embodiments, the DOBR training engine 1501 may utilize the model 

index 1502 by accessing or calling the index via communications and/or I/O devices, the use 

the index to call models as functions from the model library 1503 via communications and/or 

I/O devices.  

[0243] In some embodiments, to facilitate optimization and customization of the models called 

by the DOBRtraining engine 1501, the bias reduced model generation service 1500 may record 

model parameters in, e.g., memory or storage, such as, e.g., hard drives, solid state drives, 

random access memory (RAM), flash storage, among other storage and memory devices. For 

example, regressor parameters may be logged and adjusted in a regressor parameter library 

1505. Thus, the regressor parameter library 1505 may include storage and communication 

hardware configured with sufficient memory and bandwidth to store, adjust and communicate 

a multitude of parameters for multiple regressors, e.g., in real time. For example, for each 

regression machine learning model instantiated by the DOBR training engine 1501, respective 

parameters may be initialized and updated in the regressor parameter library 1505. In some 

embodiments, a user, via the model request 1512 from the computing device 1511, may 

establish an initial set of parameters in addition to the training data. However, in some 

embodiments, the initial set of parameters may be predetermined or stochastic (e.g., randomly 

initialized). Upon instantiation of a regression machine learning model, the DOBR training 

engine 1501 may correlate a model selected from the model index 1502 to a set of parameters 
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in the regressor parameter library 1505. For example, the DOBR training engine 1501 may call 

a set of parameters according to, e.g., an identification (ID) number associated with a given 

regression model.  

[0244] Similarly, in some embodiments, classifier parameters may be logged and adjusted in 

a classifier parameter library 1504. Thus, the classifier parameter library 1504 may include 

storage and communication hardware configured with sufficient memory and bandwidth to 

store, adjust and communicate a multitude of parameters for multiple classifiers, e.g., in real 

time. For example, for each classification machine learning model instantiated by the DOBR 

training engine 1501, respective parameters may be initialized and updated in the classifier 

parameter library 1504. In some embodiments, a user, via the user input device 1508, may 

establish an initial set of parameters. However, in some embodiments, the initial set of 

parameters may be predetermined or stochastic (e.g., randomly initialized). Upon instantiation 

of a classification machine learning model, the DOBR training engine 1501 may correlate a 

model selected from the model index 1502 to a set of parameters in the classifier parameter 

library 1504. For example, the DOBR training engine 1501 may call a set of parameters 

according to, e.g., an identification (ID) number associated with a given regression model.  

[0245] In some embodiments, by calling and receiving a set of models from a model library 

1503 via the model index 1502 and respective parameters from the regressor parameter library 

1505 and/or the classifier parameter library 1504, the DOBR training engine 1501 may load 

one or more instantiated and initialized models, e.g., into a cache or buffer of the DOBR 

training engine 1501. In some embodiments, the training dataset may be ingested from the 

model request 1512, and the DOBR training engine 1501 may train each model in the set of 

models using the iterative DOBR training procedure.  

[0246] In some embodiments, for example, the processor 1507 or a processor in the DOBR 

training engine 1501 may utilize each model to transform the training dataset into, e.g., a 
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respective prediction of, for example, a predicted grid electrical power demand based on each 

input datapoint of, e.g., time of day, day of the week, day of the month, month of the year, 

season, weather, location, population density, among other electrical power demand data. The 

predicted outputs may be compared against the actual power demand of the training dataset.  

[0247] Similarly, for example, the DOBR training engine 1501 may train the set of models to 

model user engagement according to content attributes based on the training dataset of the 

model request 1512. For example, the set of models may be used to predict a predicted user 

engagement based on inputs from the training dataset including, e.g., e.g., content location on 

page, content screen area, content type or classification, among other user engagement data, in 

combination with user data such as user characteristics, including e.g., browser, location, age, 

or other user characteristics or any combination thereof The predicted user engagement may 

then be compared to the actual user engagement for each input according to the training dataset 

based on user engagement metrics such as, e.g., click rates, click frequency, times spent on 

content, among other user engagement metrics or any combination thereof 

[0248] However, in some embodiments, outliers in the training dataset from the model request 

1512 may reduce the accuracy of the implemented models, thus increasing the number of 

training iterations to achieve an accurate set of parameters for a given model in a given 

application. To improve accuracy and efficiency, the DOBR training engine 1501 may include 

a DOBR filter 1501b to dynamically test data point errors in the training dataset to determine 

outliers. Thus, outliers may be removed to provide a more accurate or representative of the 

training dataset from the model request 1512. In some embodiments the DOBR filter 1501b 

may provide an iterative mechanism for removing outlier data points subject to a pre-defined 

criterion, e.g., the user-define error acceptance value described above and provided, e.g., by a 

user via the user input device 1508. In some embodiments, the user-defined error acceptance 

value expressed as a percentage where, e.g., a value of 100% signifies that all of the error is 
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accepted and no data points will be removed by the filter 1501b, while a value of, e.g., 0% 

results in all of the data points being removed. In some embodiments, the filter 1501b may be 

configured with an error acceptance value in the range of between, e.g., about 80% and about 

95%.  

[0249] In some embodiments, the DOBR filter 1501b works in conjunction with an optimizer 

1506, which is configured to determine error and optimize parameters for each model in the 

regressor parameter library 1505 and the classifier parameter library 1504. Thus, in some 

embodiments, the optimizer 1506 may determine model and communicate the error to the filter 

1501b of the DOBR training engine 1501. Thus, in some embodiments, the optimizer 1506 

may include, e.g., storage and/or memory devices and communication devices with sufficient 

memory capacity and bandwidth to receive the dataset 1511 and model predictions and 

determine, e.g., outliers, convergence, error, absolute value error, among other error measures.  

[0250] In some embodiments, the DOBR training engine 1501 selects and trains multiple 

models using the DOBR filter 1501b and the training dataset from the model request 1512, the 

DOBR training engine 1501 may compare error rates between each model in a last iteration of 

training. Thus, the DOBR training engine 1501 may check each model for a lowest error rate 

using an outlier reduced dataset of the training dataset. The model having the lowest error may 

be considered the highest performing model, and thus may be selected for deployment. In some 

embodiments, the DOBR training engine 1501 may select a set of models including only one 

model. In such a scenario, the DOBR training engine 1501 can skip the step for comparing 

error rates and use the one model for deployment.  

[0251] In some embodiments, to facilitate deployment, the bias reduced model generation 

service 1500 may return the selected model, trained using the filter 1501b for dynamic outlier 

bias reduced training, to the computing device 1511 as a production ready model 1513. In some 

embodiments, the production ready model 1513 may include the model architecture selected 
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according to the model request 1512 and the trained parameters for the model. Thus, in some 

embodiments, the bias reduced model generation service 1500 may provide a SaaS solution for 

on demand training and deployment of machine learning models, custom selected and trained 

for a user's particular task and/or production environment. Thus, a user may simply develop 

artificially intelligent software products without needing to building the machine learning 

model from scratch. Moreover, the use of DOBR improves on the accuracy and efficiency of 

model training by dynamically removing outliers from the supplied training dataset to reduce 

bias and error in the model.  

Outlier Dataset Analytics 

[0252] FIGs. 16A and 16B depict a dynamic outlier bias reduction for outlier dataset modelling 

according to an illustrative methodology in accordance with one or more embodiments of the 

present disclosure.  

[0253] In some embodiments, one or more models can be trained to predict an output 

according to a given input x 1606. In some embodiments, DOBR, such as the DOBR training 

engine 1501 and filter 1501b described above, provides an iterative process to remove outlier 

records subject to a pre-defined criterion. This condition is the user-defined error acceptance 

value expressed as a percentage. It refers to how much error the user is willing to accept in 

the model based potentially on their insights and other analysis results that will be described 

later in this discussion. A value of 100% signifies that all of the error is accepted and no 

records will be removed in the DOBR process. If 0% is chosen, then all of the records are 

removed. Generally, error acceptance values in the range of 80 to 95% have been observed 

for industrial applications.  

[0254] In some embodiments, as described, bias reduction through the iterative and dynamic 

outlier reduction in training machine learning models may provide efficient and powerful 

training for more accurate machine learning models. In some embodiments, in addition to 
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modelling an outlier reduced dataset, machine learning models as well as other analytic 

models may be applied to the outlier dataset. Such modelling of the outlier dataset may yield 

insight into abnormal situations such as extreme events, externalities, anomalies, and root 

causes of such abnormal situations.  

[0255] In some embodiments, outlier analysis using DOBR may include pre-analysis where 

the error acceptance criterion (oc) is selected, such as oc = 80%. In some embodiments, the 

error acceptance criterion, C(oc) may be defined according to, e.g., equation 1 as described 

above. In some embodiments, while other functional relationships may be used to set C(u), 

the percentile function is an intuitive guide in understanding why the model includes or 

excludes certain data records, such as equation 2 as described above. Since the DOBR 

procedure is iterative, in an embodiment, a convergence criterion may be defined, such as, 

e.g., 0.5%.  

[0256] In an embodiment, given a dataset {x, ytar} 1604, a solution model M 1608, and an 

error acceptance criterion oc 1624, DOBR can be implemented to reduce bias in training the 

model M 1608. In some embodiments, the solution model M 1608 is implemented by a model 

engine, including, e.g., a processing device and a memory and/or storage device. According to 

an embodiment, the exemplary methodology computes model coefficients, M(c) 1602 and 

model estimates typredl 1610 for all records applying the solution model, M 1608, to the 

complete input dataset {x, ytar} 1604 according to, e.g., equation 3 as described above.  

[0257] Then, according to an illustrative embodiment, a total error function 1618 computes 

initial model total error eo according to, e.g., equation 16 as described above. In some 

embodiments, the total model error may include a model prediction error aggregating 

individual errors of the prediction of each datapoint in the total dataset. Accordingly, the error 

function 1612 may also compute model errors according to, e.g., equation 5 as described above.  
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[0258] In some embodiments, the model errors are employed to determine a data record 

selection vector {} according to, e.g., equation 6 as described above. In some embodiments, 

the data record section vector may include a binary classification based on a percentile of each 

model error for each data record in a distribution of the model errors. In some embodiments, 

the data record selection vector includes a percentile threshold, above which data records are 

classified as outliers, and equal to or below which data records are classified as non-outliers.  

According to an illustrative embodiment, the error function 1612 computes a new data record 

selection vector {} according to, e.g., equation 6 as described above to define the outlier 

dataset 1617 and the non-outlier dataset 1616. According to an illustrative embodiment, a data 

record selector 1614 computes the non-outlier data records to be included in model computation 

by selecting only records where the record selection vector is equal to 1, according to, e.g., 

equation 7 as described above.  

[0259] Then, according to an illustrative embodiment, the model 1608 with the latest 

coefficients 1602 computes new predicted values 1620 and model coefficients 1602 from the 

DOBR selected data records 1616 according to, e.g., equation 8 as described above.  

[0260] Then, according to an illustrative embodiment, the model 1608 using the new model 

coefficients, compute new prediction values 1620 for the complete dataset. This step 

reproduces computing the predicted values 1620 for the DOBR selected records in the formal 

steps, but in practice the new model can be applied to just the DOBR removed records 

according to, e.g., equation 9 as described above. Then, according to an illustrative 

embodiment, the total error function 1618 computes model total error according to, e.g., 

equation 10 as described above.  

[0261] Then, according to an illustrative embodiment, a convergence test 1624 tests model 

convergence according to, e.g., equation 11 described above using the convergence criteria 

1622 (f), such as, e.g., 0.5%. In some embodiments, the convergence test 1624 may terminate 
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the iterative process if, for example, the percent error is less than, e.g., 0.5%. Otherwise, the 

process may return to the initial dataset 1604.  

[0262] In some embodiments, the outlier analytics model 1609 may also utilize current 

coefficients to computes new predicted outlier values 1621 and outlier model coefficients from 

the outlier dataset 1617 according to, e.g., equation 8 as described above. In some 

embodiments, similar to the model 1608, the outlier analytics model 1609 may updated at each 

iterative step in dynamic outlier bias reduction. In some embodiments, the outlier analytics 

model 1609 may be trained after the all iterative steps in dynamic outlier bias reduction have 

been completed and convergence on the convergence criteria 1622 has occurred for the model 

1608. Thus, the outlier analytics model 1609 may be trained against outlier data records to 

model bias-inducing outliers.  

[0263] In some embodiments, the outlier analytics model 1609 may include, e.g., a suitable 

machine learning model for modelling the outlier data records, such as, e.g., a regression model 

or a classifier model. For example, the outlier analytics model 1609 may include, e.g., Decision 

Trees, Random forest, Nalve Bayes, K-Nearest Neighbor, Support vector machine, Neural 

network (convolutional neural network and/or recurrent neural network), or any other model 

or any combination thereof In some embodiments, by training the outlier analytics model 1609 

with the outlier data records, the outlier analytics model 1609 may ingest new data records to 

determine a likelihood of outlier behavior. For example, extreme weather events may be 

predicted based on weather condition inputs provided to the outlier analytics model 1609 

trained on outlier weather events. Accordingly, the outlier analytics model 1609 may include a 

binary classifier model to classify data records as either a likely outlier or not a likely outlier 

based on a predicted probability value. In some embodiments, where the predicted probability 

value exceeds a threshold probability value, the associated data records may be classified as a 
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likely outlier. Such predictions may be used to inform predictions by the model 1608 or other 

analyses based on the associated data record.  

[0264] In some embodiments, rather than a machine learning model, the outlier analytics 

model 1609 may include a statistical model for characterizing, e.g., a frequency of outliers 

under given conditions, a ratio of the frequency of outliers to the frequency of non-outliers 

under given conditions, or other charactization. In some embodiments, the frequencies and/or 

ratios may be based on, e.g., average values of the data records for the given conditions, median 

values of the data records for the given conditions, or other statistical aggregation for of the 

data records under given conditions.  

[0265] For example, the outlier data records 1617 may be clustered according to a clustering 

model of the outlier analytics model 1609, such as, e.g., k-means clustering, distribution 

modelling (e.g., Bayesian distributions, mixture modeling, Gaussian modelling, etc.) or other 

cluster analysis or any combination thereof As a result, the outlier analytics model 1609 may 

group outlier data records 1617 together according to similarities for use in, e.g., root cause 

analysis or other analyses or any combination thereof 

DOBR for Grid Energy Optimization 

[0266] FIGs. 17A through 17C depict a dynamic outlier bias reduction for grid energy demand 

prediction and energy supply optimization according to an illustrative methodology in 

accordance with one or more embodiments of the present disclosure.  

[0267] In some embodiments, one or more models can be trained to predict an output 

according to a given input x 1706. In some embodiments, DOBR, such as the DOBR training 

engine 1501 and filter 1501b described above, provides an iterative process to remove outlier 

records subject to a pre-defined criterion. This condition is the user-defined error acceptance 

value expressed as a percentage. It refers to how much error the user is willing to accept in 

the model based potentially on their insights and other analysis results that will be described 
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later in this discussion. A value of 100% signifies that all of the error is accepted and no 

records will be removed in the DOBR process. If 0% is chosen, then all of the records are 

removed. Generally, error acceptance values in the range of 80 to 95% have been observed 

for industrial applications.  

[0268] In some embodiments, as described, bias reduction through the iterative and dynamic 

outlier reduction in training machine learning models may provide efficient and powerful 

training for more accurate machine learning models. In some embodiments, in addition to 

modelling an outlier reduced dataset, machine learning models as well as other analytic 

models may be applied to the outlier dataset. Such modelling of the outlier dataset may yield 

insight into abnormal situations such as extreme events, externalities, anomalies, and root 

causes of such abnormal situations.  

[0269] Referring to FIG. 17A, in some embodiments, a grid energy demand model 1708 may 

be trained to predict grid energy demand for power supply and storage optimization. An 

excess of electrical power supply produced by a power generation facility may go unutilized, 

thus wasting the material, resources and money needed to supply the energy. However, a 

deficiency in electrical power supply may have drastic consequences including blackouts and 

brownouts that may limited to a given area or may be more widespread depending on the 

degree of the deficiency. Thus, the grid demand model 1708 is advantageously trained to 

more accurately predict energy demand can provide improvements to power supply 

management and optimization to improve resource utilization efficiency and reduce power 

outages.  

[0270] Accordingly, in some embodiments, a DOBR model training process, e.g., by the 

DOBR training engine 1501 described above, may be supplied with grid energy demand 

training data 1704 to train the grid demand model 1708 without outlier bias. In some 
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embodiments, the training data may include historical energy data records, where each record 

has an independent variable 1705 and a target output variable 1706.  

[0271] In some embodiments, independent variable 1706 may include grid condition data, 

such as, e.g., time of day, day of the week, day of the month, month of the year, season, 

weather, location, population density, among other electrical power demand data and grid 

condition data. In some embodiments, the target output variable 1706 of each data record 

may include, e.g., grid electrical power demand over a given period or at a given time. In 

some embodiments, the given period or given time may include, e.g., an instantaneous date 

and time, a period of a day, such as, e.g., morning, afternoon, night, two hour periods of the 

day, three hour periods of the day, four hour periods of the day, six hour periods of the day, 

eight hour periods of the day, twelve hour periods of the day, day of the week, day of the 

month, month of the year, or any other period for which to assess grid energy demand.  

[0272] In some embodiments, outlier analysis using DOBR may include pre-analysis where 

the error acceptance criterion (oc) 1702 is selected, such as c = 80%. In some embodiments, 

the error acceptance criterion, C(oc) may be defined according to, e.g., equation 1 as 

described above. In some embodiments, while other functional relationships may be used to 

set C(u), the percentile function is an intuitive guide in understanding why the model includes 

or excludes certain data records, such as equation 2 as described above. Since the DOBR 

procedure is iterative, in an embodiment, a convergence criterion 1724 may be defined, such 

as, e.g., 0.5%.  

[0273] In some embodiments, each data record of the grid energy demand training data 1704 

may be provided to the grid demand model 1708 to generate a predicted output variable 1710 

for each independent variable 1705. In some embodiments, the target output variable 1706 and 

the predicted output variable 1710 may include a grid demand level, such as, e.g., a kilowatt 

(kW), gigawatt (GW), a terawatt (TW) or other unit of electrical power. Accordingly, to learn 
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and predict outputs according to the grid conditions data of the independent variable 1705, the 

grid demand model 1708 may employ a suitable regression machine learning model. For 

example, the grid demand model 1708 may include, e.g., Ridge regression, Lasso regression, 

Decision Tree, Random forest, K-Nearest Neighbor, Support vector machine, Neural network 

(recurrent neural network), or any other suitable regression model or any combination thereof 

In some embodiments, DOBR can be implemented to reduce bias in training the grid demand 

model M 1708 to more accurately predict future grid demand levels without outlier bias.  

[0274] In some embodiments, the grid demand model M 1708 is implemented by a model 

engine, including, e.g., a processing device and a memory and/or storage device. According 

to an embodiment, the exemplary methodology computes model coefficients, M(c) 1702 and 

model estimates typredl 1710 for all records applying the grid demand model M 1708, to the 

complete input dataset {x, ytar} 1704 according to, e.g., equation 3 as described above.  

[0275] Then, according to an illustrative embodiment, a total error function 1718 computes 

initial model total error eo according to, e.g., equation 17 as described above. In some 

embodiments, the total model error may include a model prediction error aggregating 

individual errors of the predicted grid demand level compared to the target grid demand level 

of the target output variable 1706 for each independent variable 1705. Accordingly, the error 

function 1712 may also compute model errors according to, e.g., equation 5 as described above.  

[0276] In some embodiments, the model errors are employed to determine a data record 

selection vector {} according to, e.g., equation 6 as described above. In some embodiments, 

the data record section vector may include a binary classification based on a percentile of each 

model error for each data record in a distribution of the model errors. In some embodiments, 

the data record selection vector includes a percentile threshold, above which data records are 

classified as outliers, and equal to or below which data records are classified as non-outliers.  

According to an illustrative embodiment, the error function 1712 computes a new data record 
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selection vector {} according to, e.g., equation 6 as described above to define the outlier 

dataset 1717 and the non-outlier dataset 1716. According to an illustrative embodiment, a data 

record selector 1714 computes the non-outlier data records to be included in model computation 

by selecting only records where the record selection vector is equal to 1, according to, e.g., 

equation 7 as described above.  

[0277] Then, according to an illustrative embodiment, the grid demand model 1708 with the 

latest coefficients 1702 computes new predicted grid demand values 1720 and model 

coefficients 1702 from the DOBR selected data records 1716 according to, e.g., equation 8 as 

described above.  

[0278] Then, according to an illustrative embodiment, the grid demand model 1708 using the 

new model coefficients, compute new grid demand values 1720 for the complete dataset. This 

step reproduces computing the new grid demand values 1720 for the DOBR selected records 

in the formal steps, but in practice the new model can be applied to just the DOBR removed 

records according to, e.g., equation 9 as described above. Then, according to an illustrative 

embodiment, the total error function 1718 computes model total error according to, e.g., 

equation 10 as described above.  

[0279] Then, according to an illustrative embodiment, a convergence test 1724 tests model 

convergence according to, e.g., equation 11 described above using the convergence criteria 

1722 (f), such as, e.g., 0.5%. In some embodiments, the convergence test 1724 may terminate 

the iterative process if, for example, the percent error is less than, e.g., 0.5%. Otherwise, the 

process may return to the initial dataset 1704.  

[0280] In some embodiments, to facilitate power supply determinations, a risk of an extreme 

power requirement due to external factors may be determined through an analysis of the outlier 

dataset resulting from the end of the DOBR process. In some embodiments, as shown in FIG.  

17C, an extreme grid demand model 1709 may be trained on the outlier grid demand dataset 
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1717 determined by the data record selector 1714. In some embodiments, the extreme grid 

demand model 1709 is trained to ingest an independent variable 1705 of the outlier dataset 

1717 and predict a risk 1721 of an extreme grid demand condition. For example, in some 

embodiments, certain conditions may be correlated with increased risk of outlier data that 

constitutes abnormally high or abnormally low grid demand as defined by the outlier data 

record selector 1714.  

[0281] In some embodiments, the extreme grid demand model 1709 may utilize the target 

variable 1706 of the training data set 1704 to determine an error of the predicted risk 1721 and 

updated model coefficients for the extreme grid demand model 1709. Thus, the extreme grid 

demand model 1709 may be trained to predict a degree of risk of an extreme grid demand level.  

[0282] In some embodiments, referring to FIG. 17B, a new grid condition data record 1731 

can be measured for a power grid 1730. For example, in some embodiments, the grid condition 

data record 1731 may include, e.g., e.g., time of day, day of the week, day of the month, month 

of the year, season, weather, location, population density, among other electrical power demand 

data characterizing the power grid 1730.  

[0283] In some embodiments, according to the model coefficients resulting from the 

termination of the iterative DOBR process, the grid demand model 1708 may predict a future 

demand level 1732. For example, in some embodiments, the prediction may include, e.g., a 

grid demand level over a next hour, two hours, three hours, four hours, six hours, eight hours, 

twelve hours, twenty four hours, two days, week, two weeks, month, or other prediction period.  

Accordingly, the grid demand model 1708 may produce a future projected grid demand level.  

[0284] In some embodiments, the extreme grid demand model 1709 may also receive the new 

grid condition data record 1731 measured for the power grid 1730. In some embodiments, the 

extreme grid demand model 1709 may ingest the grid condition data record 1731 and produce 

a prediction of an extreme grid demand risk 1734, such as, e.g., a probability of value of an 
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extreme grid condition occurring based on the training on outlier demand levels according to 

grid conditions.  

[0285] In some embodiments, a power generation facility 1733 may receive the projected grid 

demand level 1732 and the extreme grid demand risk 1734 to optimize power generation. In 

some embodiments, the power generation facility 1733 may dynamically scale power 

generation and power storage to compensate for projected increases or decreases in the 

demand. In some embodiments, the dynamic scaling may include an optimization function that 

minimizes power generation surplus while minimizing a risk of power generation deficiency.  

For example, the power generation facility 1733 may balance a cost of a surplus against a 

frequency or extent of a deficiency, thus ensuring that adequate power is generated without 

wasting resources. In some embodiments, the power generation facility 1733 may further adjust 

dynamic scaling where the extreme grid demand risk 1734 is high, such as, e.g., above 50%, 

above 60%, above 75% or other suitable threshold risk. For example, the power generation 

facility 1733 may generate and store an additional buffer of electrical power (e.g., using 

batteries or other power storage mechanism) where the risk of an extreme demand event is 

high. As a result, the power generation facility 1733 may improve grid power supply 

management to reduce the risk of a power deficiency while also reducing resource 

inefficiencies.  

DOBR for User Engagement with Recommended Content 

[0286] FIGs. 18A and 18B depict a dynamic outlier bias reduction for user engagement

optimized content recommendation prediction according to an illustrative methodology in 

accordance with one or more embodiments of the present disclosure.  

[0287] In some embodiments, one or more models can be trained to predict an output 

according to a given input x 1706. In some embodiments, DOBR, such as the DOBR training 

engine 1501 and filter 1501b described above, provides an iterative process to remove outlier 
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records subject to a pre-defined criterion. This condition is the user-defined error acceptance 

value expressed as a percentage. It refers to how much error the user is willing to accept in 

the model based potentially on their insights and other analysis results that will be described 

later in this discussion. A value of 100% signifies that all of the error is accepted and no 

records will be removed in the DOBR process. If 0% is chosen, then all of the records are 

removed. Generally, error acceptance values in the range of 80 to 95% have been observed 

for industrial applications.  

[0288] In some embodiments, referring to FIG. 18A, bias reduction through the iterative and 

dynamic outlier reduction in training machine learning models may provide efficient and 

powerful training for more accurate machine learning models. For example, in some 

embodiments, a content prediction model 1808 may be trained to predict content 

recommendations and/or content placement to users of computing devices and software 

applications. For example, intemet advertisements may be placed on a web page being 

browsed by a user according to advertising content, or media content may be recommended 

in a media streaming application. The content predictions may be trained according to 

optimization of user engagement with content during a browsing session. Thus, the content 

prediction model 1808 is advantageously trained to more accurately predict content 

recommendations and placement for greater user engagement.  

[0289] Accordingly, in some embodiments, a DOBR model training process, e.g., by the 

DOBR training engine 1501 described above, may be supplied with user engagement training 

data 1804 to train the content prediction model 1808 without outlier bias. In some 

embodiments, the training data may include characteristics of each user and the degree of 

engagement with content that each user encountered, where each record has an independent 

variable 1805 and a target output variable 1806.  
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[0290] In some embodiments, independent variable 1806 may include user characteristics 

data, such as, e.g., user data such as user characteristics, including e.g., browser, location, 

age, or other user characteristics or any combination thereof, and user engagement metrics 

such as e.g., click rates, click frequency, times spent on content, among other user 

engagement metrics or any combination thereof In some embodiments, the target output 

variable 1806 of each data record may include content characteristics, e.g., content source, 

content location on page, content screen area, content type or classification.  

[0291] In some embodiments, outlier analysis using DOBR may include pre-analysis where 

the error acceptance criterion (oc) 1802 is selected, such as c = 80%. In some embodiments, 

the error acceptance criterion, C(oc) may be defined according to, e.g., equation 1 as 

described above. In some embodiments, while other functional relationships may be used to 

set C(u), the percentile function is an intuitive guide in understanding why the model includes 

or excludes certain data records, such as equation 2 as described above. Since the DOBR 

procedure is iterative, in an embodiment, a convergence criterion 1824 may be defined, such 

as, e.g., 0.5%.  

[0292] In some embodiments, each data record of the user engagement training data 1804 may 

be provided to the content prediction model 1808 to generate a predicted output variable 1810 

for each independent variable 1805. In some embodiments, the target output variable 1806 and 

the predicted output variable 1810 may include content characteristics for identifying content 

to surface to the user such as, e.g., content source, content location on page, content screen 

area, content type or classification. Accordingly, to learn and predict outputs according to the 

user characteristics data of the independent variable 1805, the content prediction model 1808 

may employ a suitable classifier machine learning model such as, e.g., a multi-label classifier.  

For example, the content prediction model 1808 may include, e.g., collaborative filtering, 

logistic regression, Decision Tree, Random forest, K-Nearest Neighbor, Support vector 
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machine, Neural network (e.g., a convolutional neural network), or any other suitable classifier 

model or any combination thereof In some embodiments, DOBR can be implemented to 

reduce bias in training the content prediction model M 1808 to more accurately predict future 

grid demand levels without outlier bias.  

[0293] In some embodiments, the content prediction model M 1808 is implemented by a 

model engine, including, e.g., a processing device and a memory and/or storage device.  

According to an embodiment, the exemplary methodology computes model coefficients, 

M(c) 1802 and model estimates typredl 1810 for all records applying the content prediction 

model M 1808, to the complete input dataset {x, ytar} 1804 according to, e.g., equation 3 as 

described above.  

[0294] Then, according to an illustrative embodiment, a total error function 1818 computes 

initial model total error eo according to, e.g., equation 18 as described above. In some 

embodiments, the total model error may include a model prediction error aggregating 

individual errors of the predicted content characteristics compared to the target content 

characteristics of the target output variable 1806 for each independent variable 1805.  

Accordingly, the error function 1812 may also compute model errors according to, e.g., 

equation 5 as described above.  

[0295] For example, in some embodiments, the predicted output variable 1810 may be 

compared against the target variable 1806 to assess error in the prediction. In some 

embodiments, the error may be influenced by an optimizer that employs a loss function to 

maximize user engagement metrics, such as, e.g., click rates, click frequency, times spent on 

content, among other user engagement metrics or any combination thereof Accordingly, the 

error based on a difference between the predicted output variable 1810 and the target variable 

1806 according to user engagement levels may be used to update the coefficients of the content 

prediction model 1808.  
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[0296] In some embodiments, the model errors are employed to determine a data record 

selection vector {} according to, e.g., equation 6 as described above. In some embodiments, 

the data record section vector may include a binary classification based on a percentile of each 

model error for each data record in a distribution of the model errors. In some embodiments, 

the data record selection vector includes a percentile threshold, above which data records are 

classified as outliers, and equal to or below which data records are classified as non-outliers.  

According to an illustrative embodiment, the error function 1812 computes a new data record 

selection vector {} according to, e.g., equation 6 as described above to define the outlier 

dataset 1817 and the non-outlier dataset 1816. According to an illustrative embodiment, a data 

record selector 1814 computes the non-outlier data records to be included in model computation 

by selecting only records where the record selection vector is equal to 1, according to, e.g., 

equation 7 as described above.  

[0297] Then, according to an illustrative embodiment, the content prediction model 1808 with 

the latest coefficients 1802 computes new predicted content characteristics 1820 and model 

coefficients 1802 from the DOBR selected data records 1816 according to, e.g., equation 8 as 

described above.  

[0298] Then, according to an illustrative embodiment, the content prediction model 1808 using 

the new model coefficients, compute new content characteristics 1820 for the complete dataset.  

This step reproduces computing the new content characteristics 1820 for the DOBR selected 

records in the formal steps, but in practice the new model can be applied to just the DOBR 

removed records according to, e.g., equation 9 as described above. Then, according to an 

illustrative embodiment, the total error function 1818 computes model total error according to, 

e.g., equation 10 as described above.  

[0299] Then, according to an illustrative embodiment, a convergence test 1824 tests model 

convergence according to, e.g., equation 11 described above using the convergence criteria 
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1822 (f), such as, e.g., 0.5%. In some embodiments, the convergence test 1824 may terminate 

the iterative process if, for example, the percent error is less than, e.g., 0.5%. Otherwise, the 

process may return to the initial dataset 1804.  

[0300] In some embodiments, referring to FIG. 18B, new user characteristics 1831 of a user 

viewing content on a user computing device 1830. For example, in some embodiments, the 

user characteristics 1831 may include, e.g., e.g., browser, software application, device 

identifier, location, age, or other user characteristics or any combination thereof characterizing 

the user at the user computing device 1830.  

[0301] In some embodiments, according to the model coefficients resulting from the 

termination of the iterative DOBR process, the content prediction model 1808 may predict 

content characteristics 1832 for content to be displayed to the user to maximize user 

engagement. For example, in some embodiments, the prediction may include, e.g., a content 

source, content location on page, content screen area, content type or classification or any 

combination thereof Accordingly, the content prediction model 1808 may produce a content 

recommendation and placement to maximize engagement.  

[0302] In some embodiments, the user computing device 1820 may receive content selected 

according to the content characteristics 1832 to display the content to the user. Accordingly, 

the user computing device 1830 may automatically receive dynamically selected content to 

maximize user engagement for, e.g., improved advertising revenue, more accurate advertising 

subject matter, media (e.g., music, video, music, imagery, social media content, etc.) that more 

closely matches the user's behavior, etc. Accordingly, the DOBR process can improve the 

content prediction model 1808 to provide content according to the content characteristics 1832 

with reduced bias due to outlier behavior.  

[0303] In some embodiments and, optionally, in combination of any embodiment described 

above or below, the exemplary DOBR machine learning model may be based at least in part 
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on is Monte Carlo method of computational algorithms (e.g., the Solovay-Strassen type 

algorithms, the Baillie-PSW type algorithms, the Miller-Rabin type algorithms, and/or 

Schreier-Sims type algorithms) that may consider the historical quality data for the desired 

non-outlier data. In some embodiments and, optionally, in combination of any embodiment 

described above or below, the exemplary DOBR machine learning model may be continuously 

trained by, for example without limitation, applying at least one machine learning technique 

(such as, but not limited to, decision trees, boosting, support-vector machines, neural networks, 

nearest neighbor algorithms, Naive Bayes, bagging, random forests, etc.) to the collected and/or 

compiled sensor data (e.g., various type of visual data about environmental and/or cargo's 

physical/visual appearance). In some embodiments and, optionally, in combination of any 

embodiment described above or below, an exemplary neutral network technique may be one 

of, without limitation, feedforward neural network, radial basis function network, recurrent 

neural network, convolutional network (e.g., U-net) or other suitable network. In some 

embodiments and, optionally, in combination of any embodiment described above or below, 

an exemplary implementation of Neural Network may be executed as follows: 

i) Define Neural Network architecture/model, 

ii) Transfer the input data to the exemplary neural network model, 

iii) Train the exemplary model incrementally, 

iv) determine the accuracy for a specific number of timesteps, 

v) apply the exemplary trained model to process the newly-received input data, 

vi) optionally and in parallel, continue to train the exemplary trained model with a 

predetermined periodicity.  

[0304] In some embodiments and, optionally, in combination of any embodiment described 

above or below, the exemplary trained neural network model may specify a neural network by 

at least a neural network topology, a series of activation functions, and connection weights. For 
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example, the topology of a neural network may include a configuration of nodes of the neural 

network and connections between such nodes. In some embodiments and, optionally, in 

combination of any embodiment described above or below, the exemplary trained neural 

network model may also be specified to include other parameters, including but not limited to, 

bias values/functions and/or aggregation functions. For example, an activation function of a 

node may be a step function, sine function, continuous or piecewise linear function, sigmoid 

function, hyperbolic tangent function, or other type of mathematical function that represents a 

threshold at which the node is activated. In some embodiments and, optionally, in combination 

of any embodiment described above or below, the exemplary aggregation function may be a 

mathematical function that combines (e.g., sum, product, etc.) input signals to the node. In 

some embodiments and, optionally, in combination of any embodiment described above or 

below, an output of the exemplary aggregation function may be used as input to the exemplary 

activation function. In some embodiments and, optionally, in combination of any embodiment 

described above or below, the bias may be a constant value or function that may be used by the 

aggregation function and/or the activation function to make the node more or less likely to be 

activated.  

[0305] In some embodiments and, optionally, in combination of any embodiment described 

above or below, an exemplary connection data for each connection in the exemplary neural 

network may include at least one of a node pair or a connection weight. For example, if the 

exemplary neural network includes a connection from node NI to node N2, then the 

exemplary connection data for that connection may include the node pair <Ni, N2>. In some 

embodiments and, optionally, in combination of any embodiment described above or below, 

the connection weight may be a numerical quantity that influences if and/or how the output of 

NI is modified before being input at N2. In the example of a recurrent network, a node may 

have a connection to itself (e.g., the connection data may include the node pair <Ni, N>).  

105



WO 2022/060411 PCT/US2021/022861 

[0306] In some embodiments and, optionally, in combination of any embodiment described 

above or below, the exemplary trained neural network model may also include a species 

identifier (ID) and fitness data. For example, each species ID may indicate which of a 

plurality of species (e.g., cargo's loss categories) the model is classified in. For example, the 

fitness data may indicate how well the exemplary trained neural network model models the 

input sensory data set. For example, the fitness data may include a fitness value that is 

determined based on evaluating the fitness function with respect to the model. For example, 

the exemplary fitness function may be an objective function that is based on a frequency 

and/or magnitude of errors produced by testing the exemplary trained neural network model 

on the input sensory data set. As a simple example, assume the input sensory data set includes 

ten rows, that the input sensory data set includes two columns denoted A and B, and that the 

exemplary trained neural network model outputs a predicted value of B given an input value 

of A. In this example, testing the exemplary trained neural network model may include 

inputting each of the ten values of A from the input sensor data set, comparing the predicted 

values of B to the corresponding actual values of B from the input sensor data set, and 

determining if and/or by how much the two predicted and actual values of B differ. To 

illustrate, if a particular neural network correctly predicted the value of B for nine of the ten 

rows, then the exemplary fitness function may assign the corresponding model a fitness value 

of 9/10=0.9. It is to be understood that the previous example is for illustration only and is not 

to be considered limiting. In some embodiments, the exemplary fitness function may be 

based on factors unrelated to error frequency or error rate, such as number of input nodes, 

node layers, hidden layers, connections, computational complexity, etc.  

[0307] In some embodiments and, optionally, in combination of any embodiment described 

above or below, the present disclosure may utilize several aspects of at least one of 

US Patent Ser. 8195484, entitled Insurance product, rating system and method; 

106



WO 2022/060411 PCT/US2021/022861 

US Patent Ser. 8548833, entitled Insurance product, rating system and method; 

US Patent Ser. 8554588, entitled Insurance product, rating system and method; 

US Patent Ser. 8554589, entitled Insurance product, rating system and method; 

US Patent Ser. 8595036, entitled Insurance product, rating system and method; 

US Patent Ser. 8676610, entitled Insurance product, rating system and method; 

US Patent Ser. 8719059, entitled Insurance product, rating system and method; 

US Patent Ser. 8812331, entitled Insurance product, rating and credit enhancement system 

and method for insuring project savings.  

[0308] At least some aspects of the present disclosure will now be described with reference to 

the following numbered clauses: 

Clause 1. A method comprising: 

receiving, by at least one processor, a training data set of target variables representing 

at least one activity-related attribute for at least one user activity; 

receiving, by the at least one processor, at least one bias criteria used to determine one 

or more outliers; 

determining, by the at least one processor, a set of model parameters for a machine 

learning model comprising: 

(1) applying, by the at least one processor, the machine learning model having 

a set of initial model parameters to the training data set to determine a set of model 

predicted values; 

(2) generating, by the at least one processor, an error set of data element errors 

by comparing the set of model predicted values to corresponding actual values of the 

training data set; 
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(3) generating, by the at least one processor, a data selection vector to identify 

non-outlier target variables based at least in part on the error set of data element errors 

and the at least one bias criteria; 

(4) utilizing, by the at least one processor, the data selection vector on the 

training data set to generate a non-outlier data set; 

(5) determining, by the at least one processor, a set of updated model 

parameters for the machine learning model based on the non-outlier data set; and 

(6) repeating, by the at least one processor, steps (1)-(5) as an iteration until at 

least one censoring performance termination criterion is satisfied so as to obtain the 

set of model parameters for the machine learning model as the updated model 

parameters, whereby each iteration re-generates the set of predicted values, the error 

set, the data selection vector, and the non-outlier data set using the set of updated 

model parameters as the set of initial model parameters; 

training, by the at least one processor, based at least in part on the training data set 

and the data selection vector, a set of classifier model parameters of an outlier classifier 

machine learning model to obtain a trained outlier classifier machine learning model that is 

configured to identify at least one outlier data element; 

applying, by the at least one processor, the trained outlier classifier machine learning 

model to a data set of activity-related data for the at least one user activity to determine: 

i) a set of outlier activity-related data in the data set of activity-related data, 

and 

ii) a set of non-outlier activity-related data in the data set of activity-related 

data; and 
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applying, by the at least one processor, the machine learning model to the set of non

outlier activity-related data elements to predict future activity-related attribute related to the 

at least one user activity.  

Clause 2. A system comprising: 

at least one processor in communication with a non-transitory computer-readable 

storage medium having software instructions stored thereon, wherein the software 

instructions, when executed, cause the at least one processor to perform steps to: 

receive a training data set of target variables representing at least one activity

related attribute for at least one user activity; 

receive at least one bias criteria used to determine one or more outliers; 

determine a set of model parameters for a machine learning model comprising: 

(1) apply the machine learning model having a set of initial model 

parameters to the training data set to determine a set of model predicted 

values; 

(2) generate an error set of data element errors by comparing the set of 

model predicted values to corresponding actual values of the training data set; 

(3) generate a data selection vector to identify non-outlier target 

variables based at least in part on the error set of data element errors and the at 

least one bias criteria; 

(4) utilize the data selection vector on the training data set to generate a 

non-outlier data set; 

(5) determine a set of updated model parameters for the machine 

learning model based on the non-outlier data set; and 

(6) repeat steps (1)-(5) as an iteration until at least one censoring 

performance termination criterion is satisfied so as to obtain the set of model 
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parameters for the machine learning model as the updated model parameters, 

whereby each iteration re-generates the set of predicted values, the error set, 

the data selection vector, and the non-outlier data set using the set of updated 

model parameters as the set of initial model parameters; 

train, based at least in part on the training data set and the data selection 

vector, a set of classifier model parameters of an outlier classifier machine learning 

model to obtain a trained outlier classifier machine learning model that is configured 

to identify at least one outlier data element; 

apply the trained outlier classifier machine learning model to a data set of 

activity-related data for the at least one user activity to determine: 

i) a set of outlier activity-related data in the data set of activity-related 

data, and 

ii) a set of non-outlier activity-related data in the data set of activity

related data; and 

apply the machine learning model to the set of non-outlier activity-related data 

elements to predict future activity-related attribute related to the at least one user 

activity.  

Clause 3. The systems and methods of clauses 1 and/or 2, further comprising: 

applying, by the at least one processor, the data selection vector to the training data 

set to determine an outlier training data set; 

training, by the at least one processor, using the outlier training data set, at least one 

outlier-specific model parameter of at least one outlier-specific machine learning model to 

predict outlier data values; and 

utilizing, by the at least one processor, the outlier-specific machine learning model to 

predict outlier activity-related data values for the set of outlier activity-related data.  

110



WO 2022/060411 PCT/US2021/022861 

Clause 4. The systems and methods of clauses 1 and/or 2, further comprising: 

training, by the at least one processor, using the training data set, generalized model 

parameters of a generalized machine learning model to predict data values; 

utilizing, by the at least one processor, the generalized machine learning model to 

predict outlier activity-related data values for the set of outlier activity-related data; and 

utilizing, by the at least one processor, the generalized machine learning model to 

predict the activity-related data values.  

Clause 5. The systems and methods of clauses 1 and/or 2, further comprising: 

applying, by the at least one processor, the data selection vector to the training data 

set to determine an outlier training data set; 

training, by the at least one processor, using the outlier training data set, an outlier

specific model parameters of an outlier-specific machine learning model to predict outlier 

data values; 

training, by the at least one processor, using the training data set, generalized model 

parameters of a generalized machine learning model to predict data values; 

utilizing, by the at least one processor, the outlier-specific machine learning model to 

predict outlier activity-related data values for the set of outlier activity-related data; and 

utilizing, by the at least one processor, the outlier-specific machine learning model to 

predict the activity-related data values.  

Clause 6. The systems and methods of clauses 1 and/or 2, further comprising: 

training, by the at least one processor, using the training data set, generalized model 

parameters of a generalized machine learning model to predict data values; 

utilizing, by the at least one processor, the generalized machine learning model to 

predict the activity-related data values for the set of activity-related data; 
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utilizing, by the at least one processor, the outlier classifier machine learning model to 

identify outlier activity-related data values of the activity-related data values; and 

removing, by the at least one processor, the outlier activity-related data values.  

Clause 7. The systems and methods of clauses 1 and/or 2, wherein the training data set 

comprises the at least one activity-related attribute of concrete compressive strength as a 

function of concrete composition and concrete curing exposure.  

Clause 8. The systems and methods of clauses 1 and/or 2, wherein the training data set 

comprises the at least one activity-related attribute of energy use data as a function of 

household environmental conditions and lighting conditions.  

Clause 9. The systems and methods of clauses 1 and/or 2, further comprising: 

receiving, by the at least one processor, an application programming interface (API) 

request to generate a prediction with at least one data element; and 

instantiating, by the at least one processor, at least one cloud computing resource to 

schedule execution of the machine learning model; 

utilizing, by the at least one processor according to the schedule for execution, the 

machine learning model to predict at least one activity-related data element value for the at 

least one data element; and 

returning, by the at least one processor, the at least one activity-related data element 

value to a computing device associated with the API request.  

Clause 10. The systems and methods of clauses 1 and/or 2, wherein the training data set 

comprises the at least one activity-related attribute of three-dimensional patient imagery of a 

medical dataset; and 

wherein the machine learning model is configured to predict the activity-related data 

values comprising two or more physically-based rendering parameters based on the medical 

dataset.  
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Clause 11. The systems and methods of clauses 1 and/or 2, wherein the training data set 

comprises the at least one activity-related attribute of simulated control results for electronic 

machine commands; and 

wherein the machine learning model is configured to predict the activity-related data 

values comprising control commands for the electronic machine.  

Clause 12. The systems and methods of clauses 1 and/or 2, further comprising: 

splitting, by the at least one processor, the set of activity-related data into a plurality 

of subsets of activity-related data; 

determining, by the at least one processor, an ensemble model for each subset of 

activity-related data of the plurality of subsets of activity-related data; 

wherein the machine learning model comprises an ensemble of models; 

wherein each ensemble model comprises a random combination of models 

from the ensemble of models; 

utilizing, by the at least one processor, each ensemble model separately to predict 

ensemble-specific activity-related data values; 

determining, by the at least one processor, an error for each ensemble model based on 

the ensemble-specific activity-related data values and known values; and 

selecting, by the at least one processor, a highest performing ensemble model based 

on a lowest error.  

[0309] Publications cited throughout this document are hereby incorporated by reference in 

their entirety. While one or more embodiments of the present disclosure have been described, 

it is understood that these embodiments are illustrative only, and not restrictive, and that many 

modifications may become apparent to those of ordinary skill in the art, including that various 

embodiments of the inventive methodologies, the inventive systems/platforms, and the 

inventive devices described herein can be utilized in any combination with each other. Further 
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still, the various steps may be carried out in any desired order (and any desired steps may be 

added and/or any desired steps may be eliminated).  
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CLAIMS: 

1. A method comprising: 

receiving, by at least one processor from at least one computing device associated with at 

least one production environment, a production-ready model request comprising a 

training data set of data records; 

wherein each data record comprising an independent variable and a target variable; 

determining, by the at least one processor, a set of model parameters for at least one 

machine learning model comprising: 

(1) applying, by the at least one processor, the at least one machine learning model 

having a set of initial model parameters to the training data set to determine a set 

of model predicted values; 

(2) generating, by the at least one processor, an error set of data element errors by 

comparing the set of model predicted values to corresponding actual values of 

the training data set; 

(3) generating, by the at least one processor, a data selection vector to identify non

outlier target variables based at least in part on the error set of data element errors 

and at least one bias criteria; 

(4) applying, by the at least one processor, the data selection vector to the training 

data set to generate a non-outlier data set; 

(5) determining, by the at least one processor, a set of updated model parameters 

for the at least one machine learning model based on the non-outlier data set; and 

(6) repeating, by the at least one processor, at least one iteration of steps (1)-(5) 

until at least one censoring performance termination criterion is satisfied so as to 

obtain the set of model parameters for the at least one machine learning model 

as the updated model parameters, whereby each iteration re-generates the set of 

predicted values, the error set, the data selection vector, and the non-outlier data 

set using the set of updated model parameters as the set of initial model 

parameters; 

training, by the at least one processor, an outlier classification machine learning model 

based at least in part on the outlier data set and the non-outlier data set, the outlier 
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classification machine learning model being configured to identify a given data record 

as an outlier or a non-outlier based least in part on outlier classification machine learning 

model parameters; and 

transmitting, by the at least one processor, a production-ready machine learning model 

comprising the outlier classification machine learning model and the at least one 

machine learning model based at least in part on the at least one iteration for use in the 

at least one production environment; 

wherein the production-ready machine learning model is configured to classify 

new data records as outliers or non-outliers, and, where the new records are non

outliers, apply the at least one machine learning model.  

2. The method of claim 1, further comprising: 

selecting, by the at least one processor, at least one outlier analytics machine learning 

model based at least in part on the production-ready model request; 

determining, by the at least one processor, a set of outlier analytics model parameters for 

the at least one outlier analytics machine learning model comprising: 

(7) applying, by the at least one processor, the at least one outlier analytics machine 

learning model having a set of initial model parameters to the training data set to 

determine a set of outlier analytics model predicted values; and 

(8) generating, by the at least one processor, an outlier analytics error set of outlier 

analytics data element errors by comparing the set of outlier analytics model 

predicted values to corresponding actual values of the training data set; 

(9) repeating, by the at least one processor, steps (7)-(8) as a part of the at least one 

iteration until the at least one censoring performance termination criterion is 

satisfied for the at least one machine learning model; and 

communicating, by the at least one processor, the outlier analytics machine learning model 

to the at least one computing device for use in the at least one production environment 

to predict a likelihood of outlier events.  
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3. The method of claim 1, wherein the independent variable of each data record comprises 

an electrical grid state; 

wherein the electrical grid state comprises: 

a time of day, 

a date, 

weather, 

a location, 

a population density, or 

any combination thereof; 

wherein the target variable comprises a grid energy demand; and 

wherein the at least one machine learning model comprises at least one energy demand 

prediction machine learning model trained to predict grid energy demand based at least 

in part on subsequent electrical grid states.  

4. The method of claim 3, further comprising: 

selecting, by the at least one processor, at least one extreme demand machine learning 

model based at least in part on the production-ready model request; 

determining, by the at least one processor, a set of extreme demand model parameters for 

the at least one extreme demand machine learning model comprising: 

(7) applying, by the at least one processor, the at least one extreme demand 

machine learning model having a set of initial model parameters to the training 

data set to determine a set of extreme demand model predicted values; and 

(8) generating, by the at least one processor, an extreme demand error set of 

extreme demand data element errors by comparing the set of extreme demand 

model predicted values to corresponding actual values of the training data set; 

(9) repeating, by the at least one processor, steps (7)-(8) as a part of the at least one 

iteration until the at least one censoring performance termination criterion is 

satisfied for the at least one machine learning model.  
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communicating, by the at least one processor, the extreme demand machine learning 

model to the at least one computing device for use in the at least one production 

environment to predict a likelihood of extreme grid demand.  

5. The method of claim 1, wherein the independent variable of each data record comprises 

user characteristics; 

wherein the user characteristics comprises: 

browser, 

location, 

age, or 

any combination thereof; 

wherein the target variable comprises; 

content source, 

content location on a web page, 

content screen area, 

a content type, 

a classification, or 

any combination thereof; and 

wherein the at least one machine learning model comprises at least one content prediction 

machine learning model trained to predict a content recommendation based at least in 

part on subsequent user characteristics.  

6. A method comprising: 

transmitting, by at least one processor of at least one computing device associated with at 

least one production environment, a production-ready model request comprising a 

training data set of data records to at least one automated model generation processor; 

wherein each data record comprising an independent variable and a target variable; 
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receiving, by the at least one processor from the at least one automated model generation 

processor, a production-ready machine learning model comprising an outlier 

classification machine learning model and at least one machine learning model based at 

least in part on at least one iteration performed by the at least one automated model 

generation processor, the at least one iteration comprising: 

determining a set of model parameters for the at least one machine learning model 

comprising: 

(1) applying the at least one machine learning model having a set of initial 

model parameters to the training data set to determine a set of model 

predicted values; 

(2) generating an error set of data element errors by comparing the set of 

model predicted values to corresponding actual values of the training data 

set; 

(3) generating a data selection vector to identify non-outlier target variables 

based at least in part on the error set of data element errors and at least 

one bias criteria; 

(4) applying the data selection vector to the training data set to generate a 

non-outlier data set; 

(5) determining a set of updated model parameters for the at least one 

machine learning model based on the non-outlier data set; and 

(6) repeating at least one iteration of steps (1)-(5) until at least one 

censoring performance termination criterion is satisfied so as to obtain 

the set of model parameters for the at least one machine learning model 

as the updated model parameters, whereby each iteration re-generates the 

set of predicted values, the error set, the data selection vector, and the 

non-outlier data set using the set of updated model parameters as the set 

of initial model parameters; 

training, by the at least one processor, an outlier classification machine 

learning model based at least in part on the outlier data set and the non

outlier data set, the outlier classification machine learning model being 

configured to identify a given data record as an outlier or a non-outlier 
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based least in part on outlier classification machine learning model 

parameters; and 

wherein the production-ready machine learning model is 

configured to classify new data records as outliers or non-outliers, 

and, where the new records are non-outliers, apply the at least one 

machine learning model.  

7. The method of claim 6, further comprising receiving, by the at least one processor, an 

outlier analytics machine learning model for use in the at least one production environment to 

predict a likelihood of outlier events; 

wherein the at least one iteration further comprises: 

selecting at least one outlier analytics machine learning model based at least in part 

on the production-ready model request; 

determining a set of outlier analytics model parameters for the at least one outlier 

analytics machine learning model comprising: 

(7) applying the at least one outlier analytics machine learning model 

having a set of initial model parameters to the training data set to 

determine a set of outlier analytics model predicted values; and 

(8) generating an outlier analytics error set of outlier analytics data element 

errors by comparing the set of outlier analytics model predicted values to 

corresponding actual values of the training data set; and 

(9) repeating steps (7)-(8) as a part of the at least one iteration until the at 

least one censoring performance termination criterion is satisfied for the 

at least one machine learning model.  

8. The method of claim 6, wherein the independent variable of each data record comprises 

an electrical grid state; 

wherein the electrical grid state comprises: 

a time of day, 

a date, 
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weather, 

a location, 

a population density, or 

any combination thereof; 

wherein the target variable comprises a grid energy demand; and 

wherein the at least one machine learning model comprises at least one energy demand 

prediction machine learning model trained to predict grid energy demand based at least 

in part on subsequent electrical grid states.  

9. The method of claim 8, further comprising receiving, by the at least one processor, an 

extreme demand machine learning model for use in the at least one production environment to 

predict a likelihood of extreme grid demand; 

wherein the at least one iteration further comprises: 

selecting at least one extreme demand machine learning model based at least in 

part on the production-ready model request; 

determining a set of extreme demand model parameters for the at least one extreme 

demand machine learning model comprising: 

(7) applying the at least one extreme demand machine learning model 

having a set of initial model parameters to the training data set to 

determine a set of extreme demand model predicted values; and 

(8) generating an extreme demand error set of extreme demand data 

element errors by comparing the set of extreme demand model predicted 

values to corresponding actual values of the training data set; and 

(9) repeating steps (7)-(8) as a part of the at least one iteration until the at 

least one censoring performance termination criterion is satisfied for the 

at least one machine learning model.  

10. The method of claim 6, wherein the independent variable of each data record comprises 

user characteristics; 
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wherein the user characteristics comprises: 

browser, 

location, 

age, or 

any combination thereof; 

wherein the target variable comprises; 

content source, 

content location on a web page, 

content screen area, 

a content type, 

a classification, or 

any combination thereof; and 

wherein the at least one machine learning model comprises at least one content prediction 

machine learning model trained to predict a content recommendation based at least in 

part on subsequent user characteristics.  

11. A system comprising: 

at least one processor configured to execute software instructions that cause the at least 

one processor to perform steps to: 

receive, from at least one computing device associated with at least one production 

environment, a production-ready model request comprising a training data set of 

data records; 

wherein each data record comprising an independent variable and a target 

variable; 

determine a set of model parameters for at least one machine learning model 

comprising: 
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(1) apply the at least one machine learning model having a set of initial 

model parameters to the training data set to determine a set of model 

predicted values; 

(2) generate an error set of data element errors by comparing the set of 

model predicted values to corresponding actual values of the training data 

set; 

(3) generate a data selection vector to identify non-outlier target variables 

based at least in part on the error set of data element errors and at least 

one bias criteria; 

(4) apply the data selection vector to the training data set to generate a non

outlier data set; 

(5) determine a set of updated model parameters for the at least one 

machine learning model based on the non-outlier data set; and 

(6) repeat at least one iteration of steps (1)-(5) until at least one censoring 

performance termination criterion is satisfied so as to obtain the set of 

model parameters for the at least one machine learning model as the 

updated model parameters, whereby each iteration re-generates the set of 

predicted values, the error set, the data selection vector, and the non

outlier data set using the set of updated model parameters as the set of 

initial model parameters; 

train an outlier classification machine learning model based at least in part on the 

outlier data set and the non-outlier data set, the outlier classification machine 

learning model being configured to identify a given data record as an outlier or 

a non-outlier based least in part on outlier classification machine learning model 

parameters; and 

transmit a production-ready machine learning model of the at least one machine 

learning model based at least in part on the at least one iteration for use in the at 

least one production environment; 

wherein the production-ready machine learning model is configured to 

classify new data records as outliers or non-outliers, and, where the new 

records are non-outliers, apply the at least one machine learning model.  
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12. The system of claim 11, wherein the at least one processor is further configured to execute 

software instructions that cause the at least one processor to perform steps to: 

select at least one outlier analytics machine learning model based at least in part on the 

production-ready model request; 

determine a set of outlier analytics model parameters for the at least one outlier analytics 

machine learning model comprising: 

(7) apply the at least one outlier analytics machine learning model having a set of 

initial model parameters to the training data set to determine a set of outlier 

analytics model predicted values; and 

(8) generate outlier analytics error set of outlier analytics data element errors by 

comparing the set of outlier analytics model predicted values to corresponding 

actual values of the training data set; 

(9) repeat steps (7)-(8) as a part of the at least one iteration until the at least one 

censoring performance termination criterion is satisfied for the at least one 

machine learning model; and 

communicate the outlier analytics machine learning model to the at least one computing 

device for use in the at least one production environment to predict a likelihood of outlier 

events.  

13. The system of claim 11, wherein the independent variable of each data record comprises 

an electrical grid state; 

wherein the electrical grid state comprises: 

a time of day, 

a date, 

weather, 

a location, 

a population density, or 

any combination thereof; 
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wherein the target variable comprises a grid energy demand; and 

wherein the at least one machine learning model comprises at least one energy demand 

prediction machine learning model trained to predict grid energy demand based at least 

in part on subsequent electrical grid states.  

14. The system of claim 13, wherein the at least one processor is further configured to execute 

software instructions that cause the at least one processor to perform steps to: 

select at least one extreme demand machine learning model based at least in part on the 

production-ready model request; 

determine a set of extreme demand model parameters for the at least one extreme demand 

machine learning model comprising: 

(7) apply the at least one extreme demand machine learning model having a set of 

initial model parameters to the training data set to determine a set of extreme 

demand model predicted values; and 

(8) generate an extreme demand error set of extreme demand data element errors 

by comparing the set of extreme demand model predicted values to 

corresponding actual values of the training data set; 

(9) repeat steps (7)-(8) as a part of the at least one iteration until the at least one 

censoring performance termination criterion is satisfied for the at least one 

machine learning model.  

communicate the extreme demand machine learning model to the at least one computing 

device for use in the at least one production environment to predict a likelihood of 

extreme grid demand.  

15. The system of claim 11, wherein the independent variable of each data record comprises 

user characteristics; 

wherein the user characteristics comprises: 

browser, 

location, 

age, or 
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any combination thereof; 

wherein the target variable comprises; 

content source, 

content location on a web page, 

content screen area, 

a content type, 

a classification, or 

any combination thereof; and 

wherein the at least one machine learning model comprises at least one content prediction 

machine learning model trained to predict a content recommendation based at least in 

part on subsequent user characteristics.  

16. A system comprising: 

at least one processor of at least one computing device associated with at least one 

production environment, wherein the at least one processor is configured to execute 

software instructions that cause the at least one processor to perform steps to: 

communicate a production-ready model request comprising a training data set of 

data records to at least one automated model generation processor; 

wherein each data record comprising an independent variable and a target 

variable; 

receive, from the at least one automated model generation processor, a production

ready machine learning model comprising an outlier classification machine 

learning model and at least one machine learning model based at least in part on 

at least one iteration performed by the at least one automated model generation 

processor, the at least one iteration comprising: 

determining a set of model parameters for the at least one machine learning 

model comprising: 
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(1) applying the at least one machine learning model having a set 

of initial model parameters to the training data set to determine a 

set of model predicted values; 

(2) generating an error set of data element errors by comparing the 

set of model predicted values to corresponding actual values of 

the training data set; 

(3) generating a data selection vector to identify non-outlier target 

variables based at least in part on the error set of data element 

errors and at least one bias criteria; 

(4) applying the data selection vector to the training data set to 

generate a non-outlier data set; 

(5) determining a set of updated model parameters for the at least 

one machine learning model based on the non-outlier data set; and 

(6) repeating at least one iteration of steps (1)-(5) until at least one 

censoring performance termination criterion is satisfied so as to 

obtain the set of model parameters for the at least one machine 

learning model as the updated model parameters, whereby each 

iteration re-generates the set of predicted values, the error set, the 

data selection vector, and the non-outlier data set using the set of 

updated model parameters as the set of initial model parameters; 

training, by the at least one processor, an outlier classification 

machine learning model based at least in part on the outlier data 

set and the non-outlier data set, the outlier classification machine 

learning model being configured to identify a given data record 

as an outlier or a non-outlier based least in part on outlier 

classification machine learning model parameters; and 

wherein the production-ready machine learning model is 

configured to classify new data records as outliers or non

outliers, and, where the new records are non-outliers, 

apply the at least one machine learning model.  
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17. The system of claim 16, wherein the at least one processor is further configured to execute 

software instructions that cause the at least one processor to perform steps to receive an outlier 

analytics machine learning model for use in the at least one production environment to predict a 

likelihood of outlier events; 

wherein the at least one iteration further comprises: 

selecting at least one outlier analytics machine learning model based at least in part 

on the production-ready model request; 

determining a set of outlier analytics model parameters for the at least one outlier 

analytics machine learning model comprising: 

(7) applying the at least one outlier analytics machine learning model 

having a set of initial model parameters to the training data set to 

determine a set of outlier analytics model predicted values; and 

(8) generating an outlier analytics error set of outlier analytics data element 

errors by comparing the set of outlier analytics model predicted values to 

corresponding actual values of the training data set; and 

(9) repeating steps (7)-(8) as a part of the at least one iteration until the at 

least one censoring performance termination criterion is satisfied for the 

at least one machine learning model.  

18. The system of claim 16, wherein the independent variable of each data record comprises 

an electrical grid state; 

wherein the electrical grid state comprises: 

a time of day, 

a date, 

weather, 

a location, 

a population density, or 

any combination thereof; 

wherein the target variable comprises a grid energy demand; and 
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wherein the at least one machine learning model comprises at least one energy demand 

prediction machine learning model trained to predict grid energy demand based at least 

in part on subsequent electrical grid states.  

19. The system of claim 18, wherein the at least one processor is further configured to execute 

software instructions that cause the at least one processor to perform steps to receive an extreme 

demand machine learning model for use in the at least one production environment to predict a 

likelihood of extreme grid demand; 

wherein the at least one iteration further comprises: 

selecting at least one extreme demand machine learning model based at least in 

part on the production-ready model request; 

determining a set of extreme demand model parameters for the at least one extreme 

demand machine learning model comprising: 

(7) applying the at least one extreme demand machine learning model 

having a set of initial model parameters to the training data set to 

determine a set of extreme demand model predicted values; and 

(8) generating an extreme demand error set of extreme demand data 

element errors by comparing the set of extreme demand model predicted 

values to corresponding actual values of the training data set; and 

(9) repeating steps (7)-(8) as a part of the at least one iteration until the at 

least one censoring performance termination criterion is satisfied for the 

at least one machine learning model.  

20. The system of claim 16, wherein the independent variable of each data record comprises 

user characteristics; 

wherein the user characteristics comprises: 

browser, 

location, 

age, or 

any combination thereof; 
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wherein the target variable comprises; 

content source, 

content location on a web page, 

content screen area, 

a content type, 

a classification, or 

any combination thereof; and 

wherein the at least one machine learning model comprises at least one content prediction 

machine learning model trained to predict a content recommendation based at least in 

part on subsequent user characteristics.  
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Nonoutlier & Outlier Value Distributions:

Bagging Model - Random Forest Classifier

100%
{Y4} included

90% (Y5) included

80% (Y5) Outliers

70% (Y4) Outliers

60%

50%

40%

30%

20%

10%

0%
1 10 100 1,000 10,000 100.000

Model Error

FIG. 14B

15/24

WO 2022/060411 PCT/US2021/022861

Nonoutlier & Outlier Value Distributions:

Bagging Model $ Random Forest Classifier

100%
{Y4} included

90% (Y5) included

80% (Y5) Outliers

70% {Y4} Outliers

60%

50%

40%

30%

20%

10%

0%
1 10 100 1,000 10,000 100,000

Model Error

FIG. 14B

15/24



WO 2022/060411 PCT/US2021/022861

Model Error vs Error Acceptance Values:
Offshore Well Operations: NPT

Convergence Criteria = 0.005

25
Linear

xgboost

Gradient Boosting

20
Random Forest

15

10

5

0
60 70 80 90 100Error Acceptance

FIG. 14C

16/24

WO 2022/060411 PCT/US2021/022861

Model Error vs Error Acceptance Values:

Offshore Well Operations: NPT
Convergence Criteria = 0.005

25
Linear

xgboost

Gradient Boosting

20
Random Forest

15

10

5

0
60 70 80 90 100

Error Acceptance

FIG. 14C

16/24



WO 2022/060411 PCT/US2021/022861

1507 Bias Reduced Model Generation Service - 1500

000000 Regressor

Parameter
Library

000000 1505

Classifier DOBR Training

Engine Model Model
Parameter

1501 Index Library
Library

1502 1503
1504 Filter - 1501b

Optimizer

1506

Network

1520

1511 1512

1513

FIG. 15

17/24

WO 2022/060411 PCT/US2021/022861

1507 Bias Reduced Model Generation Service - 1500

000000 Regressor

Parameter

Library

000000
1505

Classifier DOBR Training

Engine Model Model
Parameter

1501
Index Library

Library

1502 1503
1504 Filter - 1501b

Optimizer

1506

Network

1520

1511 1512

1513

FIG. 15

17/24



WO 2022/060411 PCT/US2021/022861

Outlier Analytics

1606 1604
1602

C y.tar

1606

Model

1608 1610

y.pred

1612

Error Function

1614

Data record selector

1616
(x,y.tar)in.k (x,y.tar)out.k

1617

Model

1620
1608

1622
y.pred_ k+1

B

1624 1618
Total Error Function

Convergence Test

FIG. 16A

18/24

WO 2022/060411 PCT/US2021/022861

Outlier Analytics

1606 1604
1602

C y.tar

1606

Model

1608 1610

y.pred

1612

Error Function

1614

Data record selector

1616
(x,y.tar)in.k (x,y.tar)out.k

1617

Model

16201608

1622
y.pred_k+1

B

1624 1618

Total Error Function

Convergence Test

FIG. 16A

18/24



WO 2022/060411 PCT/US2021/022861

Outlier Analytics

1606 1604
1602

C X y.tar

1606

Model

1608 1610

y.pred

1612

Error Function

1614

Data record selector

1616
(x,y.tar)in.k (x,y.tar)out.k

1617

Outlier Analytics Model

1609
1621

y.outlier.pred

FIG. 16B

19/24

WO 2022/060411 PCT/US2021/022861

Outlier Analytics

1606 1604
1602

C X y.tar

1606

Model

1608 1610

y.pred

1612

Error Function

1614

Data record selector

1616
(x,y.tar)in.k (x,y.tar)out.k

1617

Outlier Analytics Model

1609
1621

y.outlier.preo

FIG. 16B

19/24



WO 2022/060411 PCT/US2021/022861

1704
1705

1702

C X y.tar

1706

Grid Demand Model

1708 1710

y.pred

1712

Error Function

1714

Data record selector

1716
(x,y.tar)in.k (x,y.tar)out.k

1717

Grid Demand Model

1720

1722 1708 y.pred_ k+1
V
B

1724 1718
Total Error Function

Convergence Test

FIG. 17A

20/24

WO 2022/060411 PCT/US2021/022861

1704
1705

1702

C X y.tar

1706

Grid Demand Model

1708 1710

y.pred

1712

Error Function

1714

Data record selector

1716
(x,y.tar)in.k (x,y.tar)out.k

1717

Grid Demand Model

1720

1722
1708

y.pred_k+1

B

1724 1718
Total Error Function

Convergence Test

FIG. 17A

20/24



WO 2022/060411 PCT/US2021/022861

1705 1704
1702

C X y.tar

1706

Model

1708 1710

y.pred

1712

Error Function

1714

Data record selector

1716
(x,y.tar)in.k (x,y.tar)out.k

1717

Extreme Grid Demand

Model

1721
1709

y.outlier.pred

FIG. 17B

21/24

WO 2022/060411 PCT/US2021/022861

1705 1704
1702

C X y.tar

1706

Model

1708
1710

y.pred

1712

Error Function

1714

Data record selector

1716
(x,y.tar)in.k (x,y.tar)out.k

1717

Extreme Grid Demand

Model

1721
1709

y.outlier.pred

FIG. 17B

21/24



WO 2022/060411 PCT/US2021/022861

1730

1731

X

Extreme Grid Demand
Grid Demand Model

Model

1709 1734 1708 1732

y.outlier. pred y.pred

1733

FIG. 17C

22/24

WO 2022/060411 PCT/US2021/022861

1730

1731

X

Extreme Grid Demand
Grid Demand Model

Model

1709 1734 1708 1732

y.outlier. pred y.pred

1733

FIG. 17C

22/24



WO 2022/060411 PCT/US2021/022861

1804
1806

1802

C X y.tar

1806

Content Prediction Model

1808 1810

y.pred

1812

Error Function

1814

Data record selector

1816
(x,y.tar)in.k (x,y.tar)out.k

1817

Content Prediction Model

1820

1822 1808 y.pred_k+1
W
B

1824 1818
Total Error Function

Convergence Test

FIG. 18A

23/24

WO 2022/060411 PCT/US2021/022861

1804
1806

1802

C y.tar

1806

Content Prediction Model

1808 1810

y.pred

1812

Error Function

1814

Data record selector

1816
(x,y.tar)in.k (x,y.tar)out.k

1817

Content Prediction Model

1820

1822
1808

y.pred k+1
V
B

1824 1818

Total Error Function

Convergence Test

FIG. 18A

23/24



WO 2022/060411 PCT/US2021/022861

1830

1831

Content Prediction Model

1808 1832

y.pred

FIG. 18B

24/24

WO 2022/060411 PCT/US2021/022861

1830

1831

Content Prediction Model

1808 1832

y.pred

FIG. 18B

24/24


	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

