wo 2014/142972 A1 [N 00O O 0 00 O 0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/142972 Al

18 September 2014 (18.09.2014) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/06 (2006.01) GO6F 9/44 (2006.01) kind of national protection available): AE, AG, AL, AM,
GOG6F 9/30 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
. .. BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
PCT/US2013/032111 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
15 March 2013 (15.03.2013) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(26) Publication Language: English Eﬁ’ g\I;I/’ IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(71) Applicant (for all designated States except US): INTEL , o
CORPORATION [US/US]; 2200 Mission College (84) Designated States (uniess otherwise indicated, for every
Boulevard, Santa Clara, California 95052 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Inventors; and UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicants (for US only): BHARADWAYJ, Jayashankar TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
[US/US]; 19553 Brockton Ln, Saratoga, California 95070 EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). VASUDEVAN, Nalini [IN/US]; 644 Picasso Ter, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Sunnyvale, California 94087 (US). HARTONO, Albert TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
[ID/US]; 496 Mansion Park Drive #304, Santa Clara, Cali- ML, MR, NE, SN, TD, TG).
fornia 95054 (US). BAGHSORKHI, Sara S. [IR/US];)
135 Rio Robles E., Unit 241, San Jose, California 95134 Published:
(US). — with international search report (Art. 21(3))
(74) Agent: JACKLIN, Kim A.; Hanley, Flight & Zimmerman,

LLC, 150 S. Wacker Drive, Suite 2100, Chicago, Illinois
60606 (US).

(54) Title: METHODS AND SYSTEMS TO VECTORIZE SCALAR COMPUTER PROGRAM LOOPS HAVING LOOP-CAR-
RIED DEPENDENCES

110A

115A\

120A

/. 100A

FIG. 1A

Code Supplier Analyzer

)

111A

Vectorization System

Code Generator

Code Executor

—

112A

(57) Abstract: Methods and systems to convert scalar computer program loops having loop carried dependences to vector computer
program loops are disclosed. One example method and system generates a first predicate set associated with a first conditionally ex-
ecuted statement. The first predicate set contains a first set of predicates that cause a variable to be defined in a scalar computer pro -
gram loop at or before the variable is defined by the first conditionally executed statement. The method and system also generates a
second predicate set associated with the first conditionally executed statement. The second predicate set contains a second set of pre -
dicates that cause the variable to be used in the scalar computer program loop at or before the variable is defined by the first condi -
tionally executed statement. The method and system determines whether the second predicate set is a subset of the first predicate set
and, based on the determination, propagates a vector value in an element of a vector of the variable to a subsequent element of the
vector.

WO 2014/142972 PCT/US2013/032111

METHODS AND SYSTEMS TO VECTORIZE SCALAR COMPUTER PROGRAM
LOOPS HAVING LOOP-CARRIED DEPENDENCES

FIELD OF THE DISCLOSURE

[0001] This disclosure relates generally to computer systems and, and more specifically,
to methods and system to vectorize scalar computer program loops having loop-carried

dependences.
BACKGROUND

[0002] Many modern day computer systems employ computer program vectorization
technologies, such as optimizing computer program code compilers to vectorize scalar computer
programs. Vectorization involves converting scalar computer program loops that operate on a scalar
variable(s)/operand(s) representing a single numerical value to vector computer program loops that
operate on a vector variable(s)/operand(s) representing a set of numerical values (e.g., a vector of
“k” elements includes “k” values). Conventional compilers use simple variable expansion (i.e.,
replacing scalar program variables with vector program variables) to perform vectorization on scalar

computer program loops that do not have loop-carried dependences.
BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1A illustrates a block diagram of an example vectorization system capable of

vectorizing a scalar computer program loop.

[0004] FIG. 1B illustrates a block diagram of an example vectorization system capable of

vectorizing a scalar computer program loop having lexically backward loop-carried dependences.

[0005] FIG. 1C illustrates a block diagram of an example vectorization system capable of
vectorizing a scalar computer program loop having loop dependences that arise from recurrence

loop operations.

[0006] FIG. 1D illustrates a block diagram of an example vectorization system capable of

vectorizing a scalar computer program loop having cross iteration memory dependences.

[0007] FIG. 1E illustrates a block diagram of an example vectorization system capable of

-1-

WO 2014/142972 PCT/US2013/032111

vectorizing a scalar computer program loop having loop-carried dependences arising from

conditionally executed statements.

[0008] FIG. 1F illustrates a block diagram of an example vectorization system capable of
vectorizing a scalar computer program loop having loop-carried dependences arising from scalar

references.

[0009] FIG. 2 illustrates example pseudo code representing an example computer
program having a scalar computer program loop containing lexically backward loop-carried

dependences.

[0010] FIG. 3 illustrates example pseudo code representing an example vectorized
version of the example scalar computer program loop of FIG. 2 created using the example

vectorization system of FIG. 1B.

[0011] FIG. 4 illustrates example pseudo code representing an example scalar computer

program loop having loop-carried dependences that arise from recurrence loop operations.

[0012] FIG. 5 illustrates example pseudo code used by the example code generator to
vectorize a computer program loop having loop-carried dependences that arise from recurrence loop

operations.

[0013] FIG. 6 illustrates example pseudo code representing an example vectorized
version of the scalar computer program loop of FIG. 4 created using the example vectorization

system of FIG. 1C.

[0014] FIG. 7 illustrates example pseudo code representing an example scalar computer

program having loop-carried cross iteration memory dependences.

[0015] FIG. 8 illustrates example pseudo code representing an example vectorized
version of the example scalar computer program loop of FIG. 7 created using the example

vectorization system of FIG. 1D.

[0016] FIG. 9 illustrates example pseudo code representing an example scalar computer

program having loop-carried dependences arising from conditionally executed statements.

WO 2014/142972 PCT/US2013/032111

[0017] FIG. 10 illustrates example pseudo code representing an example vectorized
version of the example scalar computer program loop of FIG. 9 created using the example

vectorization system of FIG. 1E.

[0018] FIG. 11 illustrates example pseudo code representing an example scalar computer

program having loop-carried dependences arising from scalar references.

[0019] FIG. 12 illustrates example pseudo code representing an example vectorized
version of the computer program loop of FIG. 11 created using the example vectorization system of

FIG. 1F.

[0020] FIG. 13 illustrates an example flowchart representing example machine readable
instructions executed by the example vectorization system of FIG. 1B to vectorize a scalar computer

program loop having lexically backward loop-carried dependences.

[0021] FIGS. 14A and 14B illustrate example pseudo code representing example machine
readable instructions executed by the example vectorization system of FIG. 1B to vectorize a scalar

computer program loop having lexically backward loop-carried dependences.

[0022] FIGS. 15A — 15C illustrate an example flowchart representing example machine
readable instructions executed by the example vectorization system of FIG. 1C to vectorize a scalar

computer program loop having loop-carried dependences that arise from recurrence loop operations.

[0023] FIGS. 16A — 16C illustrate an example pseudo code representing example
machine readable instructions executed by the example vectorization system of FIG. 1C to vectorize
a scalar computer program loop having loop-carried dependences that arise from recurrence loop

operations.

[0024] FIGS. 17A and 17B illustrate an example flowchart representing example machine
readable instructions executed by the example vectorization system of FIG. 1D to vectorize a scalar

computer program loop having loop-carried cross iteration memory dependences.

[0025] FIG. 18A and 18B illustrate example pseudo code representing example machine
readable instructions executed by the example vectorization system of FIG. 1D to vectorize a scalar

computer program loop having loop-carried cross iteration memory dependences.

“3-

WO 2014/142972 PCT/US2013/032111

[0026] FIGS. 19A and 19B illustrate an example flowchart representing example machine
readable instructions executed by the example vectorization system of FIG. 1E to vectorize a scalar
computer program loop having loop-carried dependences arising from conditionally executed

statements.

[0027] FIGS. 20A and 20B illustrate example pseudo code representing example machine
readable instructions executed by the example vectorization system of FIG. 1E to vectorize a scalar
computer program loop having loop-carried dependences arising from conditionally executed

statements.

[0028] FIGS. 21A and 21B illustrate an example flowchart representing example machine
readable instructions executed by the example vectorization system of FIG. 1F to vectorize a

computer program loop having loop-carried dependences arising from scalar references.

[0029] FIGS. 22A and 22B illustrate example pseudo code representing example machine
readable instructions executed by the example vectorization system of FIG. 1F to vectorize a

computer program loop having loop-carried dependences arising from scalar references.

[0030] FIG. 23 is a block diagram of an example processing system that may execute the
example machine readable instructions of FIGS. 13, 14A-14B, 15A — 15C, 16A- 16B, 17A — 17B,
18A — 18B, 19A - 19B, 20A — 20B., 21A — 21B, and 22A — 22B to implement the example
vectorization systems of FIGS. 1A, 1B, 1C, 1D, 1E and 1F.

[0031] Wherever possible, the same reference numbers will be used throughout the

drawing(s) and accompany written description to refer to the same or like parts.

DETAILED DESCRIPTION

[0032] Example apparatus, methods, systems and articles of manufacture disclosed herein
permit vectorization of scalar computer loops having loop-carried dependences. In some examples,
the methods and systems enable such vectorization by using computer program code, applications
and/or services, including computer code associated with computer languages available in
architectures having hardware/software that support speculative vectorization of loops with runtime

data dependences, (e.g., Macroscalar™ or similar architectures).

-4 -

WO 2014/142972 PCT/US2013/032111

[0033] Vectorization allows multiple iterations of a scalar computer program loop to be
executed at a same time to thereby improve speed and operating efficiency. To enable parallel loop
iteration, each scalar variable in a scalar computer program loop is converted to a vector variable
representing a set of numerical values that are each stored in a different vector element (e.g., a
vector having “k” elements stores “k” numerical values). (Converting the variables in this manner is
sometimes referred to as scalar expansion.) Each vector element of a vector variable corresponds to
a different loop iteration such that a first vector element contains a first value calculated during a
first iteration, a second vector element contains a second value calculated during a second iteration,
etc. Generally, scalar computer program loops can be iterated in parallel (i.e., vectorized) provided
that one or more of the instructions in the loop are not dependent on or more other instructions in the
loop in a manner that causes a cycle to arise. For example, a dependence between two instructions
or variables of a computer program loop exists when the value of a variable calculated in one
iteration of the loop depends on a value of the variable calculated in another or the same iteration of
the loop. In the case when the variable value calculated in one iteration is dependent on the variable
value calculated in a previous, different iteration the dependence is described as “crossing” loop
iterations (also referred to as a loop-carried cross-iteration dependence). In the case when the
variable value calculated in one iteration is dependent on the variable value calculated in the same

iteration the dependence is referred to as a loop-carried intra-iteration dependence.

[0034] In addition to being characterized as either a cross iteration or an intra iteration,
dependences can be characterized as being one of two general types: 1) control dependences and 2)
data dependences. A control dependence (also referred to as a conditional dependence) exists when
a statement is executed based on one or more conditions. For example, a computer program loop
containing a scalar that is conditionally defined in one loop iteration and then used either
unconditionally or guarded by a different condition in the same or a different loop iteration is one

type of conditional dependence.

[0035] In contrast, data dependences between two loop iterations may occur when one
statement or instruction (used interchangeably herein) of the loop must be executed in a particular
order relative to another statement in the loop. If the statements are not executed in that particular

order, the value of a scalar variable used by the loop may be erroneously calculated. For example, a

-5-

WO 2014/142972 PCT/US2013/032111

scalar variable used in a computer program loop should be defined by a write statement before the
variable is read by a read statement. Flow dependence, anti-dependence, output dependence,
memory dependence and input dependence are all types of data dependences. The following
examples of such loop dependences are described with respect to a program code loop having
dependences between a first statement “A” and a second statement “B” wherein the statement “A”
lexically precedes the statement “B.” Note that the adverb “lexically” as used herein refers to the
order in which instructions appear in the actual program code of the loop but not necessarily to the
order in which the statements are executed based on loop operation (e.g., a loop condition may alter
the order in which loop statements are executed while the lexical order of the statements remains
unchanged.) For example, a flow dependence between statements “A” and “B” occurs if statement
“B” modifies a memory location that statement “A” reads and statement “B” is executed before
statement “A” (e.g., “read after write"). Statement “A” is anti-dependent on statement “B” if
statement “A” modifies a resource (e.g., memory location) that statement “B” reads and statement
“B” is executed before statement “A” (e.g., “write after read”). Statement “A” is output dependent
on statement “B” if statement “B” and statement “A” modify the same resource and statement “B”
precedes the statement “A” in execution (e.g., “write after write”). Statement “A” is input
dependent on a statement “B” if statement “B” and statement “A” read the same memory location
and statement “B” is executed before statement “A” (e.g., Read-After-Read). Memory-based
dependences arise when a single memory location is read and/or written to by different
instructions/statements (e.g., statement “A” and statement “B”) in the computer program loop. As
used herein, the terms instruction and statement are equivalent and both refer to computer language
constructs that are designed/configured to cause a computer to perform one or more operations. As

used herein, instructions/statements are tools that are used to perform operations.

[0036] Loop-carried dependences are also described as having directions. For example, if
the statement “B” is executed in an iteration subsequent to an iteration in which the statement “A” is
executed, the loop dependence between that statement “B” and the statement “A” flows in a forward
direction and is represented using the symbol (<). If the statement “B” is executed in an iteration
previous to the iteration in which statement “A” is executed, the loop dependence between the

statement “B” and the statement “A” flows in a backward direction and is represented using the

-6 -

WO 2014/142972 PCT/US2013/032111

symbol (>). If the dependent statements “A” and “B” are both executed in the same iteration of the
loop, the dependence between the statement “A” and the statement “B” is referred to an intra-

iteration dependence and the direction is represented using the symbol (=).

[0037] One technique for vectorizing a scalar computer program loop includes the use of
dependence graphs which are generated using, for example, conventional techniques that are not
described herein. A dependence graph represents a computer program loop and is used to identify
the loop-carried dependences and cycles present in the computer program loop. The dependent
statements or instructions (used interchangeably herein) in the loop are represented in the
dependence graph as source nodes and/or sink nodes and nodes that are dependent on one another
are connected by a connector referred to as an edge. A source node of an edge is dependent on a
corresponding sink node. Therefore, each edge (also referred to herein as a dependence edge)
represents a dependence. In some instances, an “edge” is referred to herein as a “dependence edge”
and, in these cases, is to be understood to be equivalent to an “edge.” As used herein, a dependence
edge An edge is represented herein using the following format “(E_R,W)” where “E” is the edge
name, “R” is a read statement representing the source node, and “W” is a write statement
representing the sink node. An edge from a source node to a sink node is also represented herein
using the following example format “(X_R,W) where “X” represents the type of dependence
associated with the edge and the read and write statements “R” and “W” are source and sink nodes
of the edge, respectively. The variable “X” may be represented using an “A” when the edge is
associated with an anti-dependence edge, or represented using an “F’ when the edge is associated

with a flow dependence, efc.

[0038] In some cases, the dependence edges connect to form a path. If the paths form a
cycle, the corresponding scalar computer program loop(s) is not vectorizable using conventional
techniques (e.g., replacing scalar loop variables with vector loop variables) because the cycle causes
one or more outcomes of the scalar loop to be erroneous when executed in parallel iterations.
Instead, cycles/path(s) present in scalar loops must be removed/broken from the scalar computer
program loop before the scalar computer program loop can be vectorized. Removing/breaking a
loop-carried cycle/path from a computer program loop involves eliminating one or more of the

edges that connect to form the cycle/path. Edge elimination refers to the performance of operations

-7 -

WO 2014/142972 PCT/US2013/032111

that permit the loop to be vectorized. If all cycles can be and have been eliminated from a loop, the
loop is vectorizable. In contrast, if all cycles of a graph representing a scalar computer program

loop cannot be eliminated, then the loop is not vectorizable.

[0039] A distance vector is used to describe how loop dependences are related with
respect to different iterations of a loop. For example, a dependence distance indicates the number of
loop iterations that can be performed in parallel. For example, a loop dependence having a distance
value of 2 indicates that the dependence occurs two iterations forward (i.e., when the distance value
of a loop dependence is 2, two consecutive iterations can be performed in parallel). In contrast, no
iterations of a loop having a dependence distance of 1 can iterated in parallel. As a result, the larger
the value of the dependence distance, the easier it is to vectorize the loop (i.e., the greater the

number of loop iterations that can be executed in parallel without sacrificing loop integrity).

[0040] In some examples, the apparatus, systems, methods and articles of manufacture
disclosed herein are performed by a computer system having a vectorization system, a code supplier
and a code executer. The example vectorization system includes an analyzer, and a code generator.
In some examples, the analyzer creates a list of cycles and/or associated edges in a dependence
graph associated with a computer program loop to be vectorized. In some examples, the analyzer
performs various operations to process information associated with the edges that form the identified
cycles. The analyzer removes cycles and associated edges that have been successfully processed
from the list of edges/cycles identified from the dependence graph. If the list of identified
edges/cycles is empty, (i.e., all of the edges have been successfully processed), the analyzer supplies
the edge-related information to the code generator which operates to compensate for the
edges/cycles in a manner that renders the computer program loop vectorizable. In some examples,
the code generator inserts instructions, such as hardware instructions into the loop using the
information supplied by the edge analyzer. The inserted instructions compensate for cycles caused
by the removed edges in a manner that allows multiple iterations of the loop to be iterated in parallel
without adversely affecting loop integrity (e.g., the loop outcome). . The loop-carried dependences
processed by the code vectorization apparatus , systems, methods and articles of manufacture
disclosed herein include, for example: 1) lexically backward loop-carried dependences, 2) loop-

carried dependences that arise from recurrence loop operations, 3) loop-carried dependences that

-8-

WO 2014/142972 PCT/US2013/032111

arise from cross-iteration memory conflicts, 4) loop-carried dependences arising from conditionally

executed statements, and 5) loop-carried dependences arising from scalar references, efc.

[0041] As described above, a vectorized loop operates on vector operands and permits
multiple iterations of a scalar loop to be executed in parallel. Each vector operand (e.g., vector
variable) comprises a vector having a length of, for example, 8 or 16 bits, depending on the
processing capabilities of the processor. Each element of the vector variable represents a loop
iteration. For example, in a vector having eight elements, the first element contains a value
calculated in first iteration of the scalar computer program loop, the second element contains a value
calculated in a second iteration of the scalar loop and so on. As used herein, an iteration of a
vectorized loop is referred to as a vector iteration and includes the parallel execution of multiple
scalar loop iterations and a loop iteration refers to an individual one of the iterations represented by
one of the positions in the vector(s) used in the vectorized loop. Thus, a loop control variable of a

(13444
1

scalar loop (e.g., loop variable “1”) controls the number of loop iterations (e.g., “N”’) executed by the
scalar loop and is incremented by one each time a loop is executed. A loop control variable of a
vectorized loop controls the number of vector iterations (e.g., “N — VL) executed by the vectorized

loop and is incremented by the vector length each time a vector iteration is executed.

[0042] A block diagram of an example computer system 100A that vectorizes computer
program loops containing dependences is illustrated in FIG. 1A. The example computer system
100A of FIG. 1 includes an example vectorization system 110A coupled to an example code
supplier 111A and an example code executor 112A. The vectorization system 110A includes an
example analyzer 115A and an example code generator 120A. In some examples, the analyzer
115A analyzes computer program code/instructions supplied by the example code supplier 111A to

identify instructions that cause loop-carried dependences.

[0043] If the example analyzer 115A determines that the loop contains one or more types
of loop-carried dependences/cycles, the example analyzer 115A performs one or more operations to
collect information regarding the cycles that is later supplied to the code generator for use in
compensating for edges associated with the cycles in a manner that permits vectorization of the

scalar computer program loop. In some examples, the analyzer 115A generates a dependence graph

WO 2014/142972 PCT/US2013/032111

corresponding to the scalar computer program loop being processed and then analyzes the graph to
identify the dependence edges present in the graph. The analyzer 115A then processes the edges to
collect information about instructions associated with the edges. Because the edges are of a type
that can later be compensated for by the code generator, the edges are removed from the list of edges
identified by the analyzer. Provided that all edges causing a cycle to arise in the scalar computer
program loop have been removed from the list of edges, the collected instruction information
regarding the removed edges is supplied to the code generator 120A. . The scalar computer
program loop and the corresponding edge-related instruction information are transmitted to the
example code generator 120A which uses the edge-related information to vectorize the loop. In
some examples, the code generator 120A vectorizes the loop by inserting hardware instructions
based on the edge-related information to thereby compensate for the edges removed from the list of
edges. Iterations of the vectorized loop can then be executed in parallel by the example code
executer 112A. In the examples disclosed herein, an edge removal operation performed by the
analyzers refers to the removal of an edge from a list of edges associated with a corresponding
dependence graph. The code generators disclosed herein then convert the corresponding scalar
computer program loop in a manner that compensates for the cycles caused by the removed edges
such that multiple iterations of the scalar computer program code can be executed in parallel (i.e.,

the scalar computer program loop can be vectorized).

Vectorization of Loops Having Loop-Carried Lexically Backward Dependences that

Arise From A Conditionally Defined Scalar Variable

[0044] FIG. 1B is a block diagram of an example vectorization system 110B configured
to vectorize loops having loop-carried lexically backward dependences that arise from defining a
conditional scalar variable and then using the scalar unconditionally or guarded by a different,
second condition. Such a dependence is present in a scalar computer program loop when, for
example, a read statement reads a scalar variable and a write statement subsequently write the scalar
variable. In addition, the read statement is executed based on a first condition and the write
statement is executed based on a second condition. A loop configured to include a read and a write
statement that are ordered in this manner and that are based on two different conditions, will have a

different outcome when iterated in parallel than when each loop iteration is executed in a serial

- 10 -

WO 2014/142972 PCT/US2013/032111

fashion. Thus, the loop includes an edge/cycle that must be successfully processed by the analyzer

(i.e., removed from the list of edges created by the analyzer) before the loop can be vectorized.

[0045] The vectorization system 110B includes an example analyzer 115B in
communication with an example code generator 120B via a communication bus 122B. In some
examples, the example analyzer 115B includes a first example controller 125B coupled via a
communication bus 130B to an example dependence graph generator 135B, an example graph
analyzer 140B, an example predicate set generator 145B, an example edge remover 150B, and an
example dependence checker 155B. The example code generator 120B includes a second example
controller 160B coupled via a communication bus 165B to an example code converter 170B, an
example propagator 175B and an example selector/broadcaster 180B. In some examples, the first
controller 125B and the second controller 160B can access a memory 190B as needed to store and/or

retrieve information during operation.

[0046] In some examples, the example analyzer 115B receives the program code
representing the scalar loop to be vectorized from the example code supplier 111A (see FIG. 1A).
The example graph generator 135B then generates a dependence graph representing the scalar loop.
The graph generator 135B supplies the graph to the example graph analyzer 140B which uses the
graph to identify dependences/edges present in the graph. For example, the graph analyzer 140B

creates a list of the edges that were identified based on the dependence graph.

[0047] The example predicate set generator 145B then creates sets that will be populated
with vector predicates. A vector predicate includes a set of vector values each corresponding to
different loop iteration and each controlling whether a vector loop statement is to be executed in the
corresponding iteration. The vector predicate is defined to be a condition that controls execution of
a corresponding loop statement in the scalar loop. The example predicate vector sets created by the
predicate set generator 145B are later used, as described below, to identify loop statements that
cause a loop cycle to arise (e.g., statements that use/read a conditionally defined scalar variable
before that same scalar variable has been defined such that the outcome of the loop would be

adversely affected if multiple iterations of the loop were to be executed in parallel).

[0048] Asused herein, a predicate “p” placed before a vector statement (and enclosed in

-11 -

WO 2014/142972 PCT/US2013/032111

parentheses when shown in pseudo code) indicates that the vector statement is to be performed as a
masked vector operation. A masked vector operation is an operation that is performed in an
iteration only when a value in a vector element of the predicate vector “p,” corresponding to the
iteration, are TRUE, otherwise the operation is not performed. Thus, for example, a predicate
vector “p” used to mask a first vector statement will cause the first vector statement to be executed
for the loop iteration only when the value in the predicate vector element corresponding to the same
loop iteration is TRUE. The term predicates is also referred to herein as a condition upon which a
statement is to be executed. When a condition/predicate appears in a scalar computer program it is a
scalar predicate and when a condition/predicate appears in a predicate vector it is referred to as a
vector predicate. When describing the operation of a predicate within a vector computer program, it
is to be understood that the predicate is a vector. Likewise, when describing the operation of a
predicate within a scalar computer program, it is to be understood that the predicate is a scalar. In
some instances, when needed for clarity, a predicate that takes the form of a vector is referred to

herein as a predicate vector.

[0049] In some examples, the predicate set generator 145B associates two example
predicate sets (e.g., a “PredDefSet(W,J)” and a “PredUseSet(W.,])” with each write statement “W”
that defines a scalar. The “PredDefSet(W,J)” contains each predicate that, when true, causes the
scalar “J” to be defined within the same scalar iteration at or before the write statement, “W.” The
“PredUseSet(W,J)” contains each predicate that, when true, causes the scalar “J” to be used within
the same scalar iteration at or before the write statement, “W.” The “PredDefSet(W,J)” is initialized
to contain “pW” where “pW” controls execution of the write statement “W,” and

“PredUseSet(W,J)” is initialized as a NULL set.

[0050] The example edge remover 150B next removes each loop-carried lexically
backward anti-dependence edge between a read statement “R” that reads the scalar variable “J” and
a write statement “W” that writes the scalar variable “J” from the list of edges generated by the edge
analyzer 135B and then adds the predicate “pR” to the set “PredUseSet(W,J)” (i.e., sets
PredUseSet(W,J) equal to the union of “PredUseSet(W,J)” and the predicate, “pR”), where “pR”

controls the execution of the read statement “R.”

-12 -

WO 2014/142972 PCT/US2013/032111

[0051] The edge remover 150B also removes, from the list of edges generated by the
edge analyzer 135B, each lexically backward output-dependence edge between, for example, two
write statements “W1,” and “W2” (e.g., a dependence from a second write statement, “W2,” to a
first write statement, “W1” of a scalar, “J,”) provided that the second write statement “W2” is not a
recurrence operation. Upon removing the dependences, the edge remover 150B adds the predicate
“pW1” to the set “PredDefSet(W2,])”, where “pW 1” controls execution of the write statement “W1”
(e.g., sets “PredDefSet(W2.,J)” equal to the union of “(PredDefSet(W2,J)” and “pW1.” (Note that
recurrence operations may take the form “T=fn(T,Z)” where the input and output “T” is either a
scalar or an array reference to a same memory location. Techniques to vectorize loops having
recurrence operations, though not described here, are described in detail below with respect to FIGS.
4,5, 6, 15A, 15B, 15C, 16A, 16B and 16C.) As described below, the edges associated with the
types of dependences described above are processed to permit removal of the edge from the list of
edges generated by the edge analyzer 140B because the information related to the removed edges
(e.g., the Sets “PredDefSet” and “PredUseSet”) is later processed by the code generator 120B to

compensate for any of the edges that cause a cycle/path to be present in the loop.

[0052] In addition to performing the operations described above, the edge remover 150B
also attempts to use other techniques (including any of the techniques disclosed herein) to process
any other edges remaining in the list of edges identified by the edge analyzer 135B. For example, an
edge processing technique(s) applicable to the type of edge being processed is attempted (i.e., any
technique that will enable vectorization of the loop by the code generator). After the edge remover
150B is done operating, the example dependence checker 155B determines whether any edges
remain in the list of edges identified by the edge analyzer 135B. If any cycles remain, then the loop
is not vectorizable and the vectorization system 110B stops operating. If the dependence checker
155B determines that no edges remain in the computer program loop being vectorized, the example
analyzer 115B supplies the now vectorizable computer program loop to the code converter 170B of

the code generator 120B.

[0053] When the vectorizable code is received at the example code generator 120B, the
example code converter 170B converts the scalar computer program statements supplied by the

example analyzer 115B to vector statements by, for example: 1) replacing references to scalar

- 13-

WO 2014/142972 PCT/US2013/032111

variable(s) with references to vector version(s) of the scalar variable(s), 2) replacing conditional

(13

statements in the scalar computer program loop to predicate statements “p,” 3) converting statements
that are executed conditionally to masked predicate operations, 4) replacing the scalar iteration
control variable with a vector iteration control variable, efc. As used herein, a prefix of “v” is added
to a scalar variable to indicate the vector form (scalar expansion) of the scalar variable. For

example, “vj” is used to represent the vector form of the scalar variable,*J.”

[0054] Next, the propagator 175B determines whether there any vector predicates
contained in the “PredUseSet(W,J)” that are not contained in the corresponding
“PredDefSet(W.,J).” If the vector predicates contained in the “PredUseSet(W.,J)” are not a subset of
the predicates contained in the corresponding “PredDefSet(W.,J),” the write statement, “W” is
associated with a dependence cycle. In response, the example propagator 175B performs a
propagation operation to compensate for the dependence cycle in a manner that effectively causes

the cycle to be broken/eliminated.

[0055] For example, the propagator 175B causes the elements of a conditionally defined
vector “vj” of the scalar variable, “J,” to propagate from one loop iteration to subsequently executed
loop iterations to thereby prevent the execution of an iteration in which the scalar is used but not
defined. In operation, the propagator 175B propagates values from the vector elements of the vector
“vj” where a corresponding predicate vector element is TRUE to subsequent vector elements of the
vector “vj” where a corresponding predicate vector element is FALSE. In some examples, the
propagator 175B performs this propagation operation by, for example, inserting instructions (e.g.,
propagate instructions) after the identified, conditionally executed write statements (e.g., W1,

W2...etc.).

[0056] In some examples, the selector/broadcaster 180B then selects and broadcasts a last
value of a vector “J” computed in a current vector iteration to all elements of a vector “vj.” The
example selector/broadcaster 180B and broadcaster 170B can do this by, for example, inserting an
instruction(s) (e.g., select and/or broadcast instructions) at the bottom of the loop being vectorized.
Generally, the select and/or broadcast instructions operate to select and broadcast the value residing

at a last vector element of the vector “vj” computed in a first vector iteration to all elements of the

-14 -

WO 2014/142972 PCT/US2013/032111

Ce__ 9

vector “vj” to be used when executing the second vector iteration. For example, and as described
above, if each vector is sixteen elements long, then a first set of sixteen iterations are executed in
parallel and then a second set of sixteen iterations are executed in parallel and so on, until a
desirable number of iterations. When the select and/or broadcast instruction is used, the value
calculated for the last vector element of “vj[i]” during the first set of iterations is propagated to each
element of the vector “vj[i+1]” to be used when executing the second set of iterations and so on.
Thus, selecting and broadcasting the last element of “vj” calculated in the first iterated vector “vj[i]”

to the elements of the vector “vj[i+1]” to be used in the second iterated vector “vj[i+1]” ensures that

the vector “vj[i+1]” is properly initialized before execution.

[0057] In some examples, the graph generator 135B, the graph analyzer 140B, the
predicate set generator 145B, the edge remover 150B and dependence checker 155B operate under
the control of the first controller 125B. Likewise, in some examples, the code converter 170B, the

propagator 175B, and the selector/broadcaster 180B operate under control of the controller 160B.

[0058] The operation of the example vectorization system 110B of FIG. 1B can be further
understood with reference to an example scalar computer program loop 200 illustrated using the
pseudo code shown in FIG. 2. The computer program loop 200 contains loop-carried lexically
backward anti and output dependences (as described below) arising from conditionally defined
scalar variables. A description of the operation of the example loop 200 is followed by a description
of how the example vectorization system 110B operates to vectorize the loop 200.

(13444

[0059] The example computer program loop 200 begins when a scalar *j” is initialized to

(13444
1

equal “a[0].” (See line 202). Next, a loop controlled by a counter “i” is entered (see line 204) and a
test for a first condition or first predicate “p1” is performed where p1 is equal to “a[i] < b[i].” (See
line 206). If the first predicate, “p1,” is met, a first write statement, “W1,” is executed by setting the
scalar “” equal to “a[i]” (See line 208). If the first predicate, “p1,” is not met, a test for a second
condition or predicate, “p2,” is performed where “p2” is “c[i] < b[i].” (See line 212). If the second
predicate, “p2,” is met, a second write statement “W2” is executed by setting “j = c[i].” (See line
214). If the second predicate, “p2,” is not met, the program 200 tests for a fourth condition or
predicate, “p4,” where “p4” is “b[i] > 0.” (See line 218). If the fourth predicate, “p4,” is met, a read

statement, “R1” is executed at which the value of “b[i]” is read as the value of the scalar *}.” (See

- 15 -

WO 2014/142972 PCT/US2013/032111

line 220). If the fourth predicate, “p4,” is not met, the value of *j” is returned. (See line 226).
(Note that a third predicate “p3” is defined and described with respect to vectorized computer

program loop 300 shown in FIG. 3.)

[0060] Thus, the example computer program loop 200 contains two conditional write
statements, “W1” and “W2” (see 1. 208, 214) to the scalar variable “j” and one conditional read
statement, “R1,” (see line 220) of the scalar variable “j.” The order in which these instructions are
executed creates: 1) lexically backward anti-dependences from “R1” to “W1” and “W2,” 2) an
output dependence from the first write statement “W1” to the second write statement “W2” and 3) a

lexically backward output-dependence from the second write statement “W2” to the first write

statement “W1.”

[0061] The write statement “W1” defines the variable *“j” based on the predicate “p1” and

(1352

the write statement “W?2” defines the variable “j”” based on “p2.” If either or both “p1” and “p2” are
true in a current iteration, then the variable “j” will be defined in the same iteration before the read
statement “R” is executed. However, if neither “p1” nor “p2” is true in the current iteration, then the

(13444

variable “j” will be undefined when the read statement “R” is executed in the same iteration. When

(13444

the read statement “R” executes before the variable “j” has been defined in the current iteration, the
value of the “J” variable set in the preceding iteration will be read in the current iteration. Thus,
when neither “p1” nor “p2” is true, an outcome of the current iteration is dependent on the
preceding iteration (i.e., the conditional write statements cause a loop dependence) such that
iterating the scalar computer program loop in parallel will cause an error in the outcome of one or

more of the iterations.

[0062] FIG. 3 illustrates example computer program code 300 representing a vectorized
version of the example scalar computer program code 200 (see FIG. 2). In some examples, the
vectorization system 110B of FIG. 1 is used to vectorize the scalar computer program loop 200 of
FIG. 2 to thereby generate the vectorized computer program loop 300 of FIG. 3. The example
analyzer 115B first identifies and processes the edges of the scalar computer program loop 200 to
enable vectorization of the loop To perform the conversion, the graph generator 135B generates a

dependence graph of the loop 200 (see FIG. 2). The graph analyzer 140B then uses the graph to

- 16 -

WO 2014/142972 PCT/US2013/032111

identify and create a list of the edges present in the scalar computer program loop 200 (see FIG. 2).
The edges present in the computer program loop 200 (see FIG. 2) are associated with 1) lexically
backward anti-dependences from “R1” to “W1” and “W2,” 2) an output dependence from the first
write statement “W1” to the second write statement “W2” and 3) a lexically backward output-

dependence from the second write statement “W2” to the first write statement “W1.”

[0063] Next, the predicate set generator 145B associates two predicate sets
“PredDefSet(W,])” and “PredUseSet(W,J)” with each of the write statements “W1” and “W2” such
that the predicate set generator 145B creates the following four sets: 1) “PredDefSet(W1,j) = {p1},”
2) “PredUseSet(W1,j)={},” 3) “PredDefSet(W2,j)={p2},” and 4) “PredUseSet(W2,j)={}.” The
example edge remover 150B removes the cross-iteration backward anti-dependence edges between
“R1” and “W1” from the list of edges identified by the graph analyzer 140B and sets
“PredUseSet(W1,))” equal to “{p3},” removes the cross-iteration backward anti-dependence edge
between “R1” and “W2” from the list of edges identified by the graph analyzer 140B and sets
“PredUseSet(W2,))” equal to “{p3}.” The edge remover 150B also removes the cross-iteration
output dependence edge of “W2” to “W1” and sets “PredDefSet(W2,j)” equal to “{p2 | p1}.” In this
example, the “PredUseSet (W 1,j)” is not a subset of the “PredDefSet(W1,j)” thereby indicating that
the write statement “W1” is associated with a cycle. Likewise, the “PredUseSet (W2,j)” is not a
subset of the “PredDefSet(W2,j)” thereby indicating that the write statement “W2” is associated

with a cycle.

[0064] After the edge remover 150B stops operating, the example dependence checker
155B determines that all the loop dependence edges have been removed from the list of edges
identified by the example graph analyzer 140B and causes the vectorizable loop to be supplied to the
example code generator 120B. The example code generator 120B then begins operating to create
the vectorized code 300 of FIG. 3 by causing the code converter 170B to convert the conditionally
executed statements of scalar loop 200 of FIG. 2 into conditionally executed vector statements in the
loop 300 of FIG. 3. For example, to convert the write statement “W1” in loop 2 (see line 208 of
FIG. 2) the code converter 170B replaces the conditional statement “if (a[i]<b[i])” (line 206 of FIG.
2) with a statement that defines the condition as a predicate, “pl=a[i:i+VL-1]<b[i:i+VL-1]” (see line

306 of FIG. 3). Here, the first predicate, “p1,” (see line 308) is used as a mask vector for performing

-17 -

WO 2014/142972 PCT/US2013/032111

the first write statement, “W1” and the second predicate, “p2,” (see line 312) is used as a mask
vector for performing the second write statement “W2.” (See line 314). The predicate “p” enclosed
in parenthesis before a statement indicates that the statement is to be performed as a masked vector
operation. A masked vector operation is an operation that is performed only when elements of the
predicate “p” used as the vector mask are TRUE, otherwise the operation is not performed. Thus,
for example, with respect to line 308 of FIG. 3, the first predicate “p1” is used to mask the operation
of the first write statement “W 1 such that the first write operation “W1” is performed on a

particular element of the vector “vj” depending on whether a corresponding vector element of the

predicate mask is true.

[0065] In the example of loop 200 and, as described above, the read instruction “R” is
only executed when both “p1” and “p2” are true (i.e., the union of “p1” and “p2”). Thus, the
example code converter also defines a third predicate “p3” equal to the union of “p1” and “p2” (e.g.,

“plIp2”) (see line 316) to control execution of the read statement “R.”

[0066] As described above, the “PredUseSet (W1,j)” is not a subset of the
“PredDefSet(W1,j)” and the “PredUseSet (W2,j)” is not a subset of the “PredDefSet(W2,j).” As a
result, the example propagator 175B inserts a first example propagate instruction (e.g.,
“PropagatePostTrue” instruction) after the first write statement “W1” masked by the predicate “p1”
(See line 310) and a second example propagate instruction (“PropagatePostTrue” instruction) after
the second write statement “W2” (See line 318) masked by the predicate “p2.” As described above,
the “PropagatePostTrue” instruction of line 318 causes the values of the vector elements of “vj”
calculated in loop iterations in which “p3” is true to be propagated to vector elements calculated in

(1352

subsequent loop iterations in which “p3” is false. This operation causes the value of the variable

(13444

calculated in any iteration in which neither “p1” nor “p2” is TRUE (i.e., the iterations in which “j” is

(13444

not defined before being read) to be equal to the value of the variable “j” calculated in the iteration
in which the value of “J” was last defined. In this example, the value of “j” was last defined in the
nearest preceding iteration in which either “p1” and/or “p2” were TRUE. Thus, the propagation
instruction (see line 318) compensates for the loop dependence(s) caused by the loop statements that
use a loop variable in a given iteration before that loop variable has been defined in the same

iteration to thereby allow multiple iterations of the loop to be executed in parallel (i.e., vectorized).

- 18 -

WO 2014/142972 PCT/US2013/032111

[0067] The selector/broadcaster 170B then inserts an example select instruction (e.g.,
“SelectLast” operation) at the bottom (i.e., end) of the loop to select and broadcast the last value of

7" computed in each loop iteration to all elements of the vector “vj” based on a predicate

“TRUE_Predicate” where all of the values in the “TRUE_Predicate” are true. (See line 324).

[0068] It is noted that the “PropagatePostTrue” instruction of line 310 is intended to
compensate for the loop dependence caused by the conditionally executed write statement “W1.”
However, by defining the predicate “p3” to account for the circumstances in which neither “p1” nor

(13

p2” is true, the “PropagatePostTrue” instruction at the line 318 of FIG. 3 compensates for both
instances in which the read instruction “R” attempts to read a *j”” value that has not been previously
defined in the same loop iteration. As aresult, the “PropagatePostTrue” instruction of line 310

never operates and can be removed without consequence to loop operation.

Vectorization of Loops Having Loop Dependences Arising From Recurrence

Operations

[0069] FIG. 1C is a block diagram of an example vectorization system 110C configured
to vectorize loops having loop dependences arising from use of a recurrence operation. Recurrence
operations may take the form “T=fn(T,Z) where the input and output “T” is either a scalar or an
array reference to a same memory location. One example recurrence instruction can take the form
of a write statement “W”” where “W” is equal to “t=t+a[i]” such that the value of “t” is set equal to a
previously defined value of “t” plus the addend “a[i].” In cases where the value of “t” to be added to
“a[i]” was defined in an earlier-executed iteration, (e.g., “t=t[i-1]+a[i]”), the outcome of a current

(13444
1

iteration “i” is dependent on an outcome of an earlier executed loop iteration thereby causing a loop
dependence to arise.

[0070] In some examples, a computer program loop contains a read statement “R” that
operates on the variable “t” and precedes execution of the recurrent write statement “W”” where the
execution of “W” depends on a condition “p.” In such examples, assuming that the value of “t” is
initialized to “t;yiqa before the computer program loop is entered, after execution of the write
statement “W” at a fourth loop iteration, the value of “t” will equal “tiy;ia+a[1]+a[2]+a[3]+a[4]”

[Ie2)

provided that the predicate condition “p” was met in each of the four loop iterations. If, instead, the

- 19 -

WO 2014/142972 PCT/US2013/032111

[Ie2)

predicate condition “p” was met in the first three loop iterations but not the fourth loop iteration, the
value of “t” at the fourth loop iteration will equal “tiya+a[1]+a[2]+a[3].” Thus, the value of “t”
read in each loop iteration will equal “tiy;ia” plus the values of “a” associated with earlier loop
iterations in which the corresponding predicate condition “p,” is met.

[0071] In the illustrated example of FIG. 1C, the vectorization system 110C includes an
example analyzer 115C in communication with an example code generator 120C via an example
communication bus 122C. The example analyzer 115C operates to identify and process loop
dependence edges arising from recurrence operations thereby rendering the computer program loop
vectorizable, and the example code generator 120C operates to vectorize the code. In some
examples, the example analyzer 115C performs the dependence edge removal operations by creating
a dependence graph of the loop, using the graph to identify loop dependences and then removing
edges from the graph as described below. The code generator 120C operates to vectorize recurrence
instructions included in the computer program loop by causing one or more elements of a first vector
to be added to one or more elements of a second vector depending on the value of a predicate vector.
In some examples, the elements of the first and second vectors are added using an instruction that
creates a running sum of the elements of a vector representing the “addend” of the recurrence
instruction as described in greater detail below.

[0072] In some examples, the analyzer 115C includes a first example controller 125C
coupled via a communication bus 130C to an example graph generator 135C, an example graph
analyzer 140C, an example recurrence instruction identifier 145C, an example edge identifier 150C ,
an example edge remover 152C, and an example partial vectorization tool 155C. In some examples,
the code generator 120C of FIG. 1C includes a second example controller 160C coupled via a
communication bus 165C to an example vector code converter 170C, an example
selector/broadcaster 175C, an example vector renaming tool 180C, and an example recurrence adder
185C. The example first controller 125C and the example second controller 160C access a memory
190C as needed to store and/or retrieve information during operation.

[0073] In some examples, the example analyzer 115C receives the program code
representing the scalar loop to be vectorized from the example code supplier 111A (see FIG. 1A).

The example graph generator 135C then generates a dependence graph representing the scalar loop.

-20 -

WO 2014/142972 PCT/US2013/032111

The graph generator 135C supplies the graph to the example graph analyzer 140C which uses the
graph to identify and create a list of edges present in the dependence graph. .

[0074] The recurrence instruction identifier145C then marks each recurrence
instruction(s) that operates on, for example, a variable “t,” with an “S.” In some examples, the
recurrence instruction “S” are write statement(s) “W” that takes the form “t =t + addend” or the
form “t =t —addend” (provided that the variable “addend” is a constant or is a variable expression
that is not dependent on the variable “t”). If the addend is not a constant or is a variable expression
dependent on the variable “t,” then the code is not vectorizable and the vectorization system 110C
ceases operating. Here, the variable “t” may be a scalar variable, an array variable or memory
accesses where the loop-carried flow-dependence distance in the recurrence operation is 1. A flow
dependence distance of 1 indicates that a value written in a previous iteration of the loop is read in
the current iteration of the loop. As described above, iterations of a loop having a dependence

distance of 1 cannot be iterated in parallel.

[0075] In addition to marking the recurrence instructions/statements with an “S,” the
example recurrence instruction identifier 145C creates an example set of instructions to store the
recurrence instructions/statements, referred to as, for example, “RecurrenceSet(t)” and populates the

set with the instructions marked with an “S.”

[0076] The example edge identifier 150C of the example analyzer 115C then creates an
initially empty set, referred to as “EdgesToRemove(t),” that is later populated with edges that are to
be removed from the list of edges generated by the graph analyzer 140C. The example edge
identifier 150C adds each intra-iteration anti-dependence edge (e.g., “A”) on the operand “t” that
extends from a read statement(s) “R” in the loop to one of the write statements “W” in the loop to
the “EdgesToRemove(t)” set provided that the write statement “W” is a recurrence instruction “S”
and the read statement “R” is not a recurrence instruction “S” (e.g., “RecurrenceSet(t)” set contains
the write statement “W”” but not the read statement “R”). (If this condition is not met, the
vectorization system 110C cannot vectorize the code and ceases operating.) In some examples, the
recurrence instruction identifier 145C also creates an initially empty set of instructions, referred to
as, for example, “PreAdd(R),” corresponding to each read instruction “R.” As described below, the

“PreAdd(R)” set corresponding to each read statement “R” will later be populated with the

-21 -

WO 2014/142972 PCT/US2013/032111

recurrence write instruction(s) “W” that operate on a same variable (e.g., “t”) operated on by the

read statement “R.”

[0077] Next, the example partial vectorization tool 155C selects an anti-dependence edge
remaining in “EdgesToRemove(t)” (e.g., “A”) extending from a read instruction “R” to a write
instruction “W” with direction (=) and applies partial vectorization techniques to compensate for the
edge in a manner that will permit vectorization of the loop. The example partial vectorization tool
155C applies the partial vectorization techniques when the application of the technique will enable
vectorization of the loop (e.g., will result in the elimination of one or more cycles in the dependence
graph from the read statement “R” to the write statement “W”’) and further provided that there are
paths from the read statement “R” to the write statement “W” that are constructed using intra-
iteration dependence edges that do not pass through an edge in the “EdgesToRemove(t)” set. The
partial vectorization techniques may include, for example, the partial vectorization techniques

described below with respect to FIGS. 11, 14 and 21.

[0078] If one or more of the edges cannot be processed using the partial vectorization
technique (e.g., applying partial vectorization will not enable vectorization of the loop by the code
generator 120C), the example edge remover 152C removes the recurrence instruction “W” from the
“RecurrentSet(t)” set and then removes all edges from the “EdgesToRemove(t)” set. As described
below, when the partial vectorization techniques are unsuccessful in removing one or more of the
edges from the list of edges generated by the example graph analyzer 140C (i.e., application of
partial vectorization will not enable vectorization), other edge processing techniques are later
applied in an attempt to remove the cycles created by the edges and thereby enable loop

vectorization.

[0079] Provided that the “RecurrenceSet(t)” set is not empty (i.e., “RecurrenceSet(t)” set
contains one or more other recurrence write instructions/statements such as a second write statement
“W27), the partial vectorization tool 155C selects the second write statement “W2,” adds the
associated anti-dependent edges to “EdgesToRemove(t)” and proceeds to operate in the manner
described above in an attempt to process the edge dependence graph using partial vectorization

techniques. In some examples, the partial vectorization tool 155C is associated with the code

-22 -

WO 2014/142972 PCT/US2013/032111

generator 120C instead of the code analyzer 115C.

[0080] If the example partial vectorization tool 155C is successful in permitting removing
one or more such edges associated with the recurrence instruction(s) (e.g., “W”), the example
recurrence instruction identifier 145C adds the write instruction “W1” to the “PreAdd(R)” set
created for each corresponding read statement “R” (e.g., “PreAdd(R)”). In some examples, the
example recurrence instruction identifier 145C adds the write statement “W1”" to the “PreAdd(R)”
set by setting “PreAdd(R)” equal to the union of “PreAdd(R)” and “W.” Next, the example edge
remover 152C removes loop-carried anti-dependence edges having a sink node contained in the
“RecurrenceSet(t)” set from the dependence graph (i.e., from the list of edges created by the edge
analyzer 135C) and removes the loop-carried flow or output dependence edges occurring between
two recurrence instructions/statements from the dependence graph, (e.g., from the first write
statement “W1” to the second write statement “W2), where both the recurrence
instructions/statements are contained in the “RecurrenceSet(t).” If, additional recurrence
instruction(s) remain in “RecurrenceSet(t),” the operations described above are repeated for each of

the remaining recurrence instruction(s).

[0081] If one or more of the edges remaining in the dependence graph connect to form a
dependence cycle, one or more other techniques performed by, for example, the analyzers of FIGS.
1B, 1D, 1E and 1F may be deployed to attempt to process the remaining edges. For example, a
technique applicable to the type of edge to be processed is attempted (i.e., a technique that will
permit vectorization of the loop by the code generator is attempted). If such edges and associated
cycles are not successfully processed, the loop cannot be vectorized and the compiler 110A ceases
operating. If, instead, such edges and associated cycles are successfully processed/removed from
the list edges created by the graph analyzer 140B the loop is now vectorizable and is supplied by the

example analyzer 115B to the example code generator 160C for vectorization.

[0082] When the vectorizable code is received at the example code generator 120C, the
example code converter 170C converts the scalar computer program loop instructions supplied by
the example analyzer 115C to vector program instruction by, for example: 1) replacing references to

the scalar variable(s) with references to vector version(s) of the variable(s) 2) replacing conditional

-23-

WO 2014/142972 PCT/US2013/032111

statements in the scalar code with predicate statements “p,” 3) converting statements that are
executed conditionally to masked predicate operations, 4) replacing the scalar iteration control

variable with a vector iteration control variable, efc.

[0083] Next, the example recurrence adder 185C recurrently uses a first running sum
operation and/or a second running sum operation to add the “addend(s)” values corresponding to
each loop iteration (e.g., “a[i], a[i+1], a[i+2], a[i+3], efc.”) and thereby form a first vector of a first
running sum of the addend values (e.g., “vsal”) and a second vector of a second running sum of the
addend values (e.g., “vsa2”). Each element in the first and second running sums (e.g., “vsal” and
“vsa2”) represents a running sum of the addend values gathered up to a desired loop iteration (e.g.,
“[i]” or “[i-177). In some examples, the recurrence adder 185C forms the first and second running
sum vectors (e.g., “vsal” and “vsa2”) by: 1) causing elements of a vector of the addend values (e.g.,
“va”) to be added to elements of another vector (e.g., the vector “v1”), 2) causing elements of the
addend vector “va” to be added together, and/or 3) propagating elements of addend vector “va” to
subsequent elements of “vsa.” The adding and propagating operations performed by the recurrence
adder 185C are executed based on a predicate mask condition vector “p.” The predicate mask

condition “p” corresponds to a condition in the scalar loop used to control operation of the

corresponding scalar recurrence instruction “t=t+v[a].”

[0084] In some examples, the example recurrence adder 185C generates the first and
second running sums using an example set of propagation instructions (e.g., a “RunningPostAdd”
instruction and a “RunningPreAdd” instruction, respectively). The “Running PostAdd” instruction,
for example, operates on “v1,” “va,” and “p” to calculate the first running sum (e.g., “vsal”) and
takes the form “vsal = RunningPostAdd(v1, va, p).” The “RunningPreAdd” instruction, for
example, also operates on the vector, “v1,” the vector “va” and the predicate mask vector “p” to
calculate a second running sum (e.g., vector “vsa2”) and takes the form *“vsa2 = RunningPreAdd(v1,
va, p).” Both instructions traverse the vector elements of the predicate mask vector “p” starting
from the vector element residing at the vector element position “0” of the predicate mask vector.
Each vector element value contained in the first vector “v1” is copied to a corresponding element
position “k” in the first and second running sum vectors (e.g., “vsal” and “vsa2”) until the first

[t

TRUE predicate element of the predicate mask vector “p” is encountered. When the first TRUE

-4 -

WO 2014/142972 PCT/US2013/032111

[Ie2)

predicate element of the predicate mask vector “p” is encountered, a running sum (i.e., partial sum)
of the mask enabled elements of the vector “va” is added to the first mask enabled element of the
vector “v1” and stored as the element residing in the corresponding position “k™ of the first running
sum vector and the second running sum vector (e.g., “vsal” or “vsa2”). When using the
“RunningPostAdd,” instruction, the value recorded at the vector element position “k” of the vector
“vsal” (i.e., “vsal[k]”) includes the addition of the element residing at the vector element position
“k” of the vector “va,” (i.e., the first running sum is gathered up to and include the element of the
vector “va” located at the position “k”). In contrast, for “RunningPreAdd” the vector value recorded
at the vector element position “k” of the vector “vsa2” includes the partial sum of the elements of
the vector “va” gathered up but not including the element residing at the vector element position “k”
(i.e., the second running sum is gathered up to the element of the vector “va” located at the position
“k-17). Note that the vector “v1” represents an initial value to be added to the partial sum (e.g.,
“vsal” or “vsa2”). In some examples, the recurrence adder 185C initializes the elements of the

vector “v1” at the top of the loop.

[0085] Using the example of FIG. 4 to demonstrate the operation of the
“RunningPostAdd” and “RunningPreAdd” instructions when using the predicate “p” to operate on
the illustrated eight element vectors “v1” and “va,” the vector value of “vsal” residing at the vector
element position “k=0" is equal to the vector value of “v1” residing at the vector element position
“k=0" (e.g., “vsal[0]” =“v1[0].” Likewise, “vsal[1]” = “v1[1]” because the first two elements of
the predicate vector “p” residing at the vector element positions “k=0" and “k=1" are FALSE. The
first TRUE value of “p” resides at the vector element position “k=2.” Hence, the running sum is
computed starting at the vector element position “k=2. Thus, the value of “vsal” at vector element
position “k=2"is equal to “v1[2] + va[2]” and the value of “vsa2” at vector element position “k=2"
is equal to “v1[2].” Likewise, because “p[3]” is TRUE, the value of “vsal” at “k=3"is equal to
“v1[2] + v2[2] + v2[3]” and the “vsa2” at “k=3" is equal to “v1[2] + v2[2].” The values of “vsal”
remain unchanged at k =4, 5 and 6 because the predicate “p” is FALSE at these vector element
positions is FALSE and the value of “vsal” includes the addition of “v2[7]” at “k=7.” The values of

“vsa2” remain unchanged atk =4, 5, 6 and 7 because the predicate “p” is FALSE at these vector

element positions is FALSE and the value of “vsa2” does not include the addition of “v2[7]” at

-25-

WO 2014/142972 PCT/US2013/032111

Cék:7 '77

[0086] Referring again to FIG. 1C, after inserting the instructions that generate the first
running sum (e.g., “vsal”), the example recurrence adder 185C re-defines the vector “vt” by
inserting a vector recurrence operation that adds the first running sum to the vector “vt.” Thus, in
some examples, the example recurrence adder 185C inserts the sequence of vector instructions
“{vsal = RunningPostAdd(vl,va,p}; vt = vt+vsal },” where “S” is of the form “t=t+a” or the
instruction sequence “{vsal = RunningPostAdd(v0,va,p};vt = vt-vsal },” where the instruction “S”

is of the form “t = t-a”).

[0087] Next, to distinguish the vector “vt” being written by a recurrence write instruction
“W’” and then read by a read instruction “R” from other forms of the vector “vt” that are used
elsewhere in the computer program loop, the example renaming tool 180C renames the vector “vt”
before each read instruction “R” that operates on the vector “vt.” In some examples, the example
renaming tool 180C renames the vector, “vt,” operated on by the read instruction “R” to “vtk™ and

replaces references to the vector “vt” in the read instruction “R” with references to the vector “vtk.”

[0088] In some examples, for each recurrence instruction “S” (e.g., each write instruction
“W”) included in a “PreAdd(R)” set, the recurrence adder 185C uses a second summing operation to
generate a second running sum of the addend associated with the corresponding recurrence
instruction “S” gathered up to the previous iteration. The second summing operation, in some
examples, is implemented using the instruction “vsa2 = RunningPreAdd(0,va,p1).” In addition, the
recurrence adder 185C inserts a second recurrence instruction that defines the vector “vt” as being
equal to the sum of the vector “vt” and the second running sum (e.g., “vtk = vtk + vya” or “vtk = vtk
— vya” depending on whether the corresponding scalar recurrence operation takes the form “t =t +
a” or “t =t—a,” respectively). Thus, the example recurrence adder 185C generates the second
running sum and the second recurrence instruction using the sequence of vector instructions
{“vya=RunningPreAdd(0,vz,pl); vtk = vtk + vya” or “vya=RunningPreAdd(0,vz,p1l); vtk = vtk -
vya’}.

[0089] The sequences of instructions inserted by the recurrence adder 185C compensate

for the cycles created by the edges removed from the list of edges created by the graph analyzer

- 26 -

WO 2014/142972 PCT/US2013/032111

140C (see FIG. 1C) such that the code generator 120C can vectorize the loop (i.e., convert the scalar

loop to a loop that can be iterated in parallel without adverse effect on loop integrity).

[0090] At this point, one or more optimization techniques, such as copy propagation and
common sub-expression elimination or partial redundancy elimination can be performed to further

fine tune/optimize the vectorized code.

b3

[0091] The example selector/broadcaster 175C initializes every element in the vector “vt
(before the vector loop is entered) using an initial value of the scalar variable “t.” In some examples,
the selector/broadcaster 175 C performs this operation by inserting, for example, a “broadcast”
instruction (e.g., “vt = Broadcast(t)”’). The selector/broadcaster 175C performs this initializing
operation on each scalar variable that is subject to a recurrence instruction “S” included in the
computer program loop. The example selector/broadcaster 175C also inserts the last mask-enabled
element of the vector “vt” (calculated at the bottom of the first loop iteration) to be inserted into
each element of the vector “vt” at the start of the succeeding vector iteration. Thus, the value in the
last element of “vt” calculated in the initial vector iteration is used at the input of the succeeding
vector iteration (e.g., the last element of the vector “vt” calculated at the bottom of a vector iteration
is used to populate each element of the vector “vt” at the top of the next loop iteration). In some
examples, the example selector/broadcaster 175C selects the last value of the vector “vt” by
inserting a “SelectLast” instruction (e.g., “vt= SelectLast(vt, p0)”) where “p0” is a predicate mask
vector having all elements set to TRUE. In some examples, the selector/broadcaster 175C also
inserts a broadcast instruction before the loop is entered to set the elements of the predicate mask
vector “p0.” In addition, in some examples, the selector broadcaster 175C sets or clears the

elements of the vector “v1” before the loop is entered.

[0092] In some examples, the example graph generator 135C, the example graph
generator 135C, the example graph analyzer 140C, the example recurrence instruction identifier
145C, the example edge identifier 150C, the example edge remover 152C, and the example partial
vectorization tool 155C operate under the control of the first example controller 125C. Likewise, in
some examples, the example vector code converter 170C, the example selector/broadcaster 175C,

the example vector renaming tool 180C, and the example recurrence adder 190C operate under the

=27 -

WO 2014/142972 PCT/US2013/032111

control of the second controller 160C.

[0093] Anexample computer program loop 500 illustrated using the pseudo code shown
in FIG. 5 is described to provide one example of a loop having loop dependences that arise from
recurrence operations/statements. The description of the loop operation is followed by a description
of how the example vectorization system 110C operates to vectorize the computer program loop 500
of FIG. 5.

[0094] The example computer program loop 500 sets a variable “sum” equal to “0.” (See
line 502) and defines a loop iteration control variable “i.” (See line 504). Upon entering the loop, a
first read instruction “R1” is executed on a variable “sum.” (See line 506). If a condition (e.g.,
predicate “p1”’) equal to “a[i] < K” returns TRUE (see line 508), then a first write statement “W1”
operates as a recurrence operation to read and write to the variable “sum.” (See line 510). (Note
that the variable “K” used in the conditional “p1” is not related to the “k” variable used earlier to
represent the vector elements.) Otherwise, a second read statement “R2” reads the variable “sum.”
(See line 514). Next, if a predicate “p2” equal to “b[i] < K2” returns TRUE (see line 516), then a
second write statement “W2” operates as a recurrence operation to read and write the variable
“sum.” (See line 518). Lastly, a third read statement “R3” reads the variable sum. (See line 522).
Thus, as described, the loop 500 of FIG. 5 reads the variable sum at the statement “R1” and then
conditionally adds a first value “a[i]” to the variable “sum” based on the predicate “p1” at the write
statement “W1”” and/or adds a second value “b[i]”” based on the predicate “p2” at the write statement
“W2.” The loop 500 also reads the results of the write statement “W1,” and the write statement
“W2.” Thus, the variable “sum” calculated in one iteration of the loop 500 is used in subsequent

iteration(s) of the loop 500 and the method used to calculate the variable “sum” changes in each

loop based on the conditions “p1” and “p2.”

[0095] An example computer program loop 600 representing a vectorized version of the
loop 500 of FIG. 5 is illustrated using the pseudo code of FIG. 6. Before the code generator 120D
creates the vectorized code, the example analyzer 115D operates to the convert the code in the
manner described above. For example, the graph generator generates a graph of the computer
program loop of FIG. 6 and the graph analyzer analyzes the graph to identify and create a list of loop
edges.

-28 -

WO 2014/142972 PCT/US2013/032111

[0096] As described above, the loop 500 conditionally adds a value to the scalar variable
“sum” at the statement “W1” which is then read in the same and/or subsequent loop iterations by
one or more statements “R1,” “W1,” “R2,” “W2.,” and “R3.” Thus, when operating on the program
loop 500 of FIG. 5, the graph analyzer 140C identifies an intra-iteration anti-dependence edge
“A1_R1W1” on the variable “sum” from the read statement “R1” to the write statement “W 1" that
requires that the statement “R1” lexically precede the write statement “W1.” As a result, a flow
dependence edge “F1_W1R1” from the write statement “W1” to the read statement “R1” on the
variable “sum” is a loop-carried lexically backward flow dependence. Similarly there are intra-
iteration anti-dependences edges, “A2_R1W2.,” A3_W1W2, A4_R2W?2 on the variable “sum” from
the read statement “R1,” to the write statement “W1,” and from the read statement “R2” to the write
statement “W2” that require that the read statement “R1,” the write statement “W1”, and the read
statement “R2” lexically precede the write statement “W2.” Hence a set of flow dependence edges
“F2_W2R1,” “F3_W2W1,” and “F4_W2R2” from the write statement “W2” to “R1,” “W1,” and
“R2” on the variable “sum” are loop-carried lexically backward flow dependences/edges. Together,
these flow and anti-dependences “F1_WI1R1,” “F2_W2R1,” “F3_W2W1,” and “F4_W2R2” and
“A1_RIW1,” “A2_R1W2,” “A3_WI1W2,” and “A4_R2W2” create cycles in the dependence graph.
There are also cycles created by self flow dependences as well as flow dependences between the
recurrence operations “W1” and “W2.” In addition there are cycles created by output dependences
between “W1” and “W?2” (referred to as “O1_W2W1”, O2_WI1W1,” O3_W2,W2”). A conventional

compiler would not be able to vectorize this loop.

[0097] After the graph analyzer 140C has identified and created a list of the dependences
of the computer program loop 500, the example recurrence instruction identifier 145C creates the
“RecurrenceSet(sum)” set and defines the set to contain the recurrence instructions/statements
“IW1,W2}.” The example edge identifier 150C creates the initially empty set of edges to be
removed, “EdgesToRemove(sum)”. The example edge identifier 150C then adds each intra-
iteration anti-dependence edge “A” on the operand “sum” from a read instruction to a write
statement to the “EdgesToRemove(t)” set provided that the “RecurrenceSet(sum)” set contains the
corresponding write statements “W1” and “W2” but not the corresponding read statements “R1” and

“R2.” In the loop 500, the intra iteration edges “Al,” “A2,” and “A4” correspond to the edges from

-29 .

WO 2014/142972 PCT/US2013/032111

“R1” to “W1,” from “R1” to “W2” and from “R2” to “W2,” respectively, and
“RecurrenceSet(sum)” contains “W1” and “W2” but not “R1” and not “R2.” As a result, the edges

“Al,” “A2,” and “A4” are each added to the “EdgesToRemove(t)” set.

[0098] As described above, in some examples, the edge identifier 150C creates an
initially empty set of instructions, “PreAdd(R).” to contain read statements “R.” A different
“PreAdd(R)” set is created for each read instruction “R” in the loop 500 (i.e., “PreAdd(R1)” and
“PreAdd(R2).” The example edge identifier 150C adds “W1” and “W2” to “PreAdd(R1)” because
the anti-dependent intra-iteration edge “Al1_R1,W1” extends from “R1” to “W1” and the anti-
dependence intra-iteration edge “(A2_R1,W2)” extends from “R1” to “W2.” The example edge
identifier 150C also adds the write statement “W2” to “PreAdd(R2)” because the anti-dependence
intra-iteration edge “A4_R2,W2” extends from “R2” to “W2.”

[0099] In the scalar computer program loop 500 of FIG. 5, every path formed using
intra-iteration dependence edges “Al,” “A2” and “A4” passes through an edge in the
“EdgesToRemove(sum)” set such that the partial vectorization tool 155C does not apply partial

vectorization techniques to remove these edges.

[00100] Next, the edge identifier 150C removes the edges contained in the
“EdgesToRemove(t)” set from the dependence graph/list of edges and removes any loop-carried
anti-dependence edges on the variable “sum” if the sink node of the edge is in the
“RecurrenceSet(t).” This operation results in the removal of the edges “Al,” “A2,” “A3.,” and “A4”

from “EdgesToRemove(sum)” and from the list of edges.

[00101] The example edge identifier 120C also removes, from the dependence graph/list of
edges, each loop-carried flow and output dependence edge on the variable “sum” from the statement
“W1” to the statement “W2,” provided that both “W1” and “W?2” are in the “RecurrenceSet(t).”

This operation results in the removal of the edges “O1,” “02,” “03,” “F1,” “F2,” “F3,” and “F4”
from the dependence graph/list of edges.

[00102] Because all cycles in the loop were formed by one or more of the edges removed
from the list of edges, the edge identifier 150C supplies the scalar computer program code and

edge-related information the example code generator 120C for vectorization. It is noted that there

-30 -

WO 2014/142972 PCT/US2013/032111

are additional edges (dependences) in the scalar computer program loop 500 not discussed here.
However, these edges do not cause cycles such that removal of these edges is not required to enable

vectorization.

[00103] Referring to FIG. 6, upon receiving the vectorizable code, the example code
generator 120C begins operating when the example code converter 170C converts the scalar loop
variables to vector variables (e.g., “sum” is converted to “vsum,” “a[i]” is converted to “vsa[i],” and

(13444
1

“b[i] is converted to “vsb[i]”), initializes the vector controller iteration to control iteration of the
vectorized loop, and defines a set of predicates “p1” and “p2” to replace the conditional statements
that control execution of the first write statement “W 1 and the second write statement “W2.” (See
lines 608, 610, 612, 614 and 616). The example selector/broadcaster 175C initializes a set of
vectors including a predicate vector, “p0,” and the vectors “vzero” and the vector “vsum” are
initialized by the recurrence adder 185C before the loop is entered (see lines 602, 604, 606). As
shown, the vector elements of the predicate “p0” are set to TRUE and the predicate “p0” is later
used by the selector/broadcaster 175C as described in detail below. The elements of the vectors
“vzero” and “vsum” are also set to FALSE and both are later used by the example recurrence adder

185C to determine a running sum of the variables “a[i]” and “b[i],” as is also described in greater

detail below.

[00104] To ensure proper loop operation, the example renaming tool 180C renames the
vector “vsum’” to be read at “R1” to “vsum1” and the vector “vsum’ to be read at “R2” to “vsum?2.”
The name of the vector “vsum” read at instruction “R3” remains unchanged. (See lines 624, 632,

and 638).

[00105] In some examples, after the example code converter 170C, the example
selector/broadcaster 175C and the example renaming tool 180C have operated, the example
recurrence adder 185C uses a sequence of three instructions (see lines 618-622) to calculate the
vector “vsum1” operated on by the first read instruction “R1.” (See line 624). The first instruction
in the sequence is a “RunningPreAdd” instruction (See line 618) that operates on the vector “va” and
the vector “vzero” to calculate a running sum (i.e., ““vsa”) of the mask enabled elements of the vector

“va” gathered up to the previous iteration, where the mask is “p1.” During execution of the first

23] -

WO 2014/142972 PCT/US2013/032111

loop iteration of each vector iteration, the running sum, “vsa” of the mask enabled elements of “va”
gathered up to the previous iteration is set to zero such that the first element of “va” used in each

vector iteration is zero.

[00106] The second example instruction is a “RunningPreAdd” instruction (see line 620)
that operates on the vector “vb” and the vector “vzero” to calculate a running sum (i.e., “vsb”) of the
mask enabled elements of the vector “vb” gathered up to the previous iteration, where the mask is
“p2.” Note that, during execution of the first loop iteration of each vector iteration, the running sum
of “vb” gathered up to the previous iteration is set to zero such that the first element of “vb” used in

each vector iteration is zero. (See line 620).

[00107] The second example instruction sets “vsum = vsum + vsa” (see line 628 thereby
causing the values in the vector “vsum” to be equal to the values in the vector “vsum” calculated at
the end of a previous iteration added to the running sum (i.e., “vsa”) of the masked enabled elements
of the vector “va” calculated in a current iteration. The third example instruction calculates the
value of “vsum1” to equal the sum of the values of the vector “vsum” as defined for the current set
of vector iterations (see line 606 for the initial set of vector iterations and line 638, 640 for later sets
of vector iterations) added to the running sums (i.e., “vsa,” and “vsb”) of the mask enabled elements
of the vectors “va” and “vb,” respectively (see lines 618, 620) calculated using the
“RunningPreAdd” instructions (see lines 622). Note that the recurrence adder 185C has set the
elements of the vector “vsum” used during the first vector iteration to zero (see line 606), as
described above, and the elements in the vector “vsum” used in subsequent vector iterations are
carried over from a previous vector iteration (see lines 622 and 640). The elements of the vector
“vzero” were also set by the example recurrence adder 185C to zero as described above. Here, the

vector “vzero” represents the vector “v1” described in the example illustrated in FIG. 4.

[00108] The example recurrence adder 185C also inserts a second sequence of three
instructions (see lines 626 - 630) to calculate the vector “vsum2” operated on by the second read
instruction “R2.” (See line 632). The first instruction in the second sequence of instructions is a

“RunningPostAdd” instruction (See line 626) that operates on the vector “va” and the vector “vzero’

to calculate a running sum (e.g., “vsa”) of the mask enabled elements of the vector “va” gathered up

-3

WO 2014/142972 PCT/US2013/032111

to the current iteration, where the mask is “p1.”

[00109] The second example instruction sets “vsum = vsum + vsa” (see line 628) thereby
causing the values in the vector “vsum” to equal the values in the vector “vsum” calculated at the
end of a previous iteration added to the running sum (i.e., “vsa”) of the vector “va” calculated in a
current iteration. The third example instruction sets “vsum2 = vsum + vsb” (see line 630) thereby
causing the values in the vector “vsum2” to equal the values in the vector “vsum” calculated at the

end of a previous iteration added to the running sum the vector “vb” calculated in a current iteration.

[00110] The example recurrence adder 185C also inserts a sequence of two instructions
(see lines 634-636) to calculate the value of “vsum” to be read at the third read instruction “R3.”
(See line 638). The first instruction in the sequence is a “RunningPostAdd” instruction (See line
634) that operates on the vector “vsb” and the vector “vzero” to calculate a running sum of the mask

enabled elements of the vector “vb” gathered up to the current iteration, where the mask is “p2.”

[00111] The second example instruction (see line 636) re-defines the value of “vsum” to
equal the sum of “vsum” (defined at the line 630) added to the running sum (i.e., “vsb”) of the mask

enabled elements of the vector “vb” gathered up to the current iteration.

[00112] The example selector/broadcaster inserts a “SelectLast” instruction (see line 640)
after the third read instruction “R3” to select and broadcast the last mask enabled element of “vsum”
(as defined at line 636) to every element of the vector “vsum” used in the next vector iteration. As
described above, the predicate “p0” used in the “SelectLast instruction” is a predicate mask (see line

602) with all bits enabled (i.e., all elements are TRUE).
Vectorization of Loops Having Cross Iteration Memory Loop Dependences

[00113] FIG. 1D is a block diagram of an example vectorization system 110D configured
to vectorize loops having cross iteration memory dependences. Cross iteration memory
dependences occur when a memory access performed in one iteration of a loop conflicts with a
memory access occurring in a previous iteration of the same loop. In some examples, an example
analyzer 115D identifies and removes cross-iteration dependence edge from a dependence graph
(e.g., from a list of edge created using the dependence graph) corresponding to the loop and an

example code generator 120D operates to compensate for the removed edges by, for example,

-33.

WO 2014/142972 PCT/US2013/032111

performing memory checking operations to identify different loop iterations that may access a same
memory (resulting in a memory conflict) and sectioning or partitioning the vector loop into chunks
that can be performed in parallel without resulting in an adverse loop outcome (e.g., creating a
vector partitioning loop). A vector partitioning loop executes a variable number of times based on
dynamically changing conditions in the loop (e.g., the detection of memory access conflicts in the
loop), in contrast to a loop vectorized using conventional techniques which executes a fixed number
of times. Before describing the operations performed by the vectorization system 110D, a brief

description of how a vector partitioning loop operates follows.
[00114] Consider, for example, the scalar loop shown here:
for(i=0;i<N;i++)
scalar_computation(i)
[00115] Assuming that the “scalar_computation” is vectorizable, then the vectorizable loop
takes the following form:
for(i=0;i<N;i+=VL)

vector_computation(i,min(i,i+VL-1)

[00116] In the example above, the “scalar_computation” has been converted to the
“vector_computation” that executes multiple iterations of the “scalar_computation” in parallel (each
set of iterations executed in parallel are referred to as a vector iteration). Here, the number of
iterations executed in parallel (i.e., the size of the vector iteration) is fixed based on the size of the

(13444
1

vector length “VL” associated with system hardware. The scalar iteration counter “1” is incremented

by the vector length “VL-1" after each vector iteration.

[00117] In contrast, partial vectorization involves further, dynamically partitioning a single
vector iteration into smaller parts (referred to as “chunks” and/or “subpartitions”) that can be
executed in parallel by introducing an inner loop referred to as a vector partitioning loop (“VPL”).

The “VPL” may take the form:
for (i=0; i<N; i+=VL) {

start=i;

-34 -

WO 2014/142972 PCT/US2013/032111

do { // This is the “VPL” loop

divide = someRuntimeDependencyDetectionMechanism(some_input, ...); //

divide value is: start <= divide <= min(N, i+VL-1)

vector(start, divide); // execute in parallel the elements from position start to
divide;

start = divide + 1;

} while(start < min(N, i+VL));

}

[00118] In this example the “VPL” is represented as a “do” loop and the variable “divide”
represents a mechanism used to detect points in the loop at which iterations cannot be performed in
parallel due to a dependence. In the pseudo code above, the function
“someRuntimeDependencyDetectionMechanism(some_input, ...)” is used to detect (at runtime)
loop iterations that cannot be performed in parallel. For the example vectorization technique
described below with respect to FIGS. 7 and 8, the dependence detection mechanism detects loop

dependences caused by memory access conflicts.

[00119] In the example pseudo code above, the calculation of the divide value results in
the identification of points (represented by “start...divide”) that signify the contiguous positions of
the vector sub-partition elements that can be executed in parallel. Thus, as described above, the
vector partitioning loop: 1) divides (or partitions) a vector iteration into sub-partitions/chunks of
vector elements that can be iterated in parallel because they do not depend on each other, 2) causes
those vector elements to be executed in parallel, 3) updates the start position to equal the next sub-
partition/chunk of vector elements to be executed in parallel, and 4) proceeds to execute the next
chunk of vector elements in parallel by branching back to the “VPL.” These operations are repeated
until no sub-partitions remain. Note that an outer loop containing the “VPL” (inner loop) configures
the loop to be performed a fixed number of iterations and then the “VPL” is executed a variable
number of times based on the number of iterations in which a loop dependence is detected. Thus,

the VPL processes a variable number of scalar iterations unlike traditionally vectorized loops in

-35-

WO 2014/142972 PCT/US2013/032111

which a fixed number of scalar iterations or vector elements are processed. The number of iterations
containing a loop dependence is detected by checking for loop iterations that are adversely affected
by the outcome of other loop iterations. For example, a loop having multiple memory access
instructions that may access a same memory location may result in a conflict between an access of
the memory performed in one iteration and an access of the same memory location in another
iteration. The example vectorization system of FIG. 1D identifies the iterations that are dependent
on each other by checking the loop operation, during runtime, for memory access conflicts. In some
examples, the system checks for memory access conflicts using hardware instructions referred to as

memory checking instructions as described below.

[00120] In some examples, the example vectorization system 110D of FIG. 1D includes an
example analyzer 115D in communication with the example code generator 120D via a
communication bus 122D. In some examples, the analyzer 115D includes an example first
controller 125D coupled via a communication bus 130D to an example graph generator 135D, an
example graph analyzer 140D, an example edge remover 145D, and an example conflict identifier
150D. In some examples, the code generator 120D includes an example second controller 160D
coupled via a communication bus 165D to an example code converter 170D, an example loop
partitioner 175D, and an example conflict checker 180D. In some examples, the first controller
125B and the second controller 160D can access a memory 190B as needed to store and/or retrieve

information during operation.

[00121] The components of the example analyzer 115D perform operations to convert the
loop into a vectorizable form and then supply the vectorizable code to the example code generator
120D. In some examples, the example analyzer 115D receives the program code representing the
scalar loop to be vectorized from the example code supplier 111A (see FIG. 1A). To convert the
loop to a vectorizable form, the example graph generator 135D of the analyzer 115D generates a
dependence graph representing the program loop to be vectorized and the example graph analyzer
140D uses the graph to identify and create a list of loop edges. The example edge remover 145D
then marks the program loop as vectorizable. For each dependence edge “E” in the dependence
graph, the example edge remover 145D uses conventional techniques to determine whether an edge

“E” 1s part of a cycle (i.e., loop dependence). If an edge “E” under consideration is not part of a

-36 -

WO 2014/142972 PCT/US2013/032111

cycle, the edge remover 145D uses, for example, any of the other techniques disclosed herein, to
process the edge in a manner that will permit vectorization of that edge by the code generator 120D.

The technique used is selected based on, for example, the type of edge/dependence to be processed.

[00122] If an edge “E” under consideration is part of a cycle and the edge “E” is a memory
flow, anti or output dependence edge from a statement “A” to a statement “B” having a single
direction (<), the example conflict identifier 150D identifies the statements “A” and “B” as being
instructions/statements that may cause a conflict to occur in the program loop. In some examples,
the conflict identifier 150D performs this operation by adding the statement “A” and the statement
“B” to a set of conflict instructions “C.” Next, the example edge remover 145D removes that edge
“E” from the list of edges identified by the example analyzer 135C. The same operations are
performed for the other edges included in the list of edges identified by the example graph analyzer
140D (i.e., present in the dependence graph). The conflict identifier 150D then marks all of the
program instructions that were in the cycle that was eliminated by removing any of the edges “E”
with a notation “IN_VPL.” If, instead, the dependence edge “E” under consideration cannot be
eliminated/removed, the example edge remover 145D determines that the loop is not vectorizable.
In some examples, the edge remover 145D performs this operation by marking the loop as non-
vectorizable. Provided that the loop is vectorizable, (i.e., the dependence edges and associated
cycles were successfully eliminated by the example edge remover 145D), the analyzer 115D

provides the vectorizable code to the example code generator 120D.

[00123] When the vectorizable code is received at the code generator 120D, the example
code converter 170D converts the scalar computer loop program instructions supplied by the
example analyzer 115D to vector instructions by, for example: 1) replacing references to scalar
variable(s) with references to vector variables, 2) replacing conditional statements in the scalar code

to predicates “p,” 3) converting statements that are executed conditionally to masked predicate

operations, 4) replacing scalar iteration control variables with vector iteration control variables, efc.

[00124] Provided that the loop is vectorizable, (i.e., the edges associated with cycles were
successfully eliminated from the corresponding dependence graph by the example edge remover

145D), and provided that the conflict instruction set “C” created by the example conflict identifier

-37-

WO 2014/142972 PCT/US2013/032111

150D is not empty, the example loop partitioner 175D partitions the loop and places the instructions
that have been marked with the notation “IN_VPL” into the “VPL” into the partition.

[00125] In some examples, the example conflict checker 180D then analyzes the
vectorizable program code at runtime to identify loop iterations in which memory conflicts will
occur. For example, the conflict checker 180D uses an example conflict checking instruction to
identify loop iterations that are dependent on other loop iterations due to, for example, a conflicting
memory access. The output of the conflict checking instruction is used to control iteration of the
partition. For example, if the conflict checking instruction indicates that a set of loop iterations 1, 2
and 3 can be performed without conflict but that iteration 4 conflicts with iteration 1, then the
conflict checker 180D will indicate that the next earliest conflict occurs at iteration 4. Thus, the
loop partitioner 175D will cause the “VPL” to execute the first, second and third iterations in
parallel. Further, if the conflict checking instructions indicates that the 4™ and 5" iterations can be
executed in parallel, but that 6" iteration conflicts with 4™ iteration, then the loop partitioner 175
will cause the “VPL” to execute the 4™ and 5™ iterations in parallel, efc. In some examples, an
output(s) of the conflict checking instructions is used as a predicate to control operation of the
“VPL” thereby controlling the iterations to be executed by the “VPL” in parallel.

[00126] In some examples, the example conflict checking instruction takes the form
“CheckConflict(tMemoryAddress(B), MemoryAddress(A), pB, pA)”, where “pA” is the predicate
that controls the execution of the statement “A” and “pB” is the predicate that controls the execution
of the statement “B.” Here, the statement “A” and the statement “B” are both memory access
instructions that may access a same memory location. The “CheckConflict(MemoryAddress(B),
MemoryAddress(A), pB, pA” instruction checks the program loop for instances in which different
iterations of a loop conflict due to memory accesses caused by the statement “A” and the statement
“B.” The conflict checker 180D inserts, for each pair of instructions (A, B) contained in the conflict
instruction set “C,” a corresponding “CheckConflict(MemoryAddress(B), MemoryAddress(A), pB,
pA)” instruction before the “VPL.”

[00127] If there are more one set of conflicting memory access instructions (e.g., memory
access instructions that may access a same memory location(s)), the example conflict checker 180D

inserts a set of conflict checking instructions where each conflict checking instruction in the set

-38 -

WO 2014/142972 PCT/US2013/032111

corresponds to one of the sets of memory access instructions that access a same memory location.
The example conflict checker performs a logical OR operation on the results of all the
“CheckConflict” instructions included in the set to dynamically determine the earliest next iteration
conflict point and the output of the logical OR operation is used as a predicate to control execution

of the “VPL”.

[00128] In some examples, the example graph generator 135D, the example graph analyzer
140D, the example edge remover 145D, and the example conflict identifier 150D operate under the
control of the first example controller 125D. Likewise, the example code converter 170D, the
example loop partitioner 175D, and the example conflict checker 180D operate under the control of

the second controller 160D.

[00129] An example computer program loop 700 illustrated by the pseudo code shown in
FIG. 7 is described to provide one example of how the example vectorization system 110D of FIG.
1D can be used to vectorize loops containing cross-iteration dependences arising from memory
access conflicts. The description of how the example loop 700 operates is followed by a description
of how the example vectorization system 110D of FIG. 1D operates to vectorize the computer
program loop 700.

[00130] The example computer program loop 700 begins when the number of loop
iterations is defined to be controlled by an iteration counter “i.” (See line 702). If a predicate “p,”
(e.g., (b[i] < FACTOR)) is TRUE (line 704), then a read statement “R” is executed (see line 706),
followed by a write statement W (see line 708). In this example, the program loop has intra-
iteration flow and memory dependences from the read instruction “R” to the write statement “W” on
the scalar “t” and there is a memory flow-dependence (with direction <) from the write statement
“W” to the read instruction “R.” Thus, the dependence graph associated with the example computer
program loop 700 has cycles that will prevent vectorization using conventional vectorization

techniques, such as converting the scalar variables to vector variables without more.

[00131] The example vectorization system 110D of FIG. 1D begins vectorizing the
example computer program 700 when the example graph generator 135D generates a dependence

graph representing the computer program loop 700. The example graph analyzer 140D then uses the

-39 .

WO 2014/142972 PCT/US2013/032111

graph to identify and create a list of loop dependences including the memory flow-dependence edge
“F1” (with direction <) from the write statement “W” to the read instruction “R” (i.e., F1(W->R))
and the intra-iteration flow and memory dependences from the read statement “R” to the write

statement “W”’ on the scalar variable “t” (i.e., A(R->W) and F2(R->W)).

[00132] The example edge remover 145D marks the program loop as vectorizable. In the
example loop of FIG. 7, the edge F1 is a memory flow dependence edge having a single direction
(<) and is part of a cycle, such that the example conflict identifier 150D identifies the write
statement “W”” and the read statement “R” as statements that may cause a memory access conflict to
occur in the program loop and causes them to be added to the set of conflict instructions “C.” Next,
the example edge remover 145D removes the edge “F1” from the list of edges identified by the
graph analyzer 140D. In addition, the example conflict identifier 150D marks the instructions that
were in the cycle that was eliminated by removing the edge “F1” (e.g., the “W” and the “R”
instructions) with the notation “IN_VPL” to indicate that they will be placed into the partitioned

loop.

[00133] Now the example computer program loop 700 is vectorizable and supplied by the
example analyzer 115D to the example code generator 120D to generate the vectorized program
code 800 of FIG. 8. To begin processing the vectorizable code, the example code converter 170D
converts the scalar program instruction of the computer loop 700 supplied by the example analyzer
115D to vector instructions by, for example: 1) replacing references to scalar variable(s) with
references to vector variables, 2) replacing conditional statements in the scalar code to predicate
statements “p,” 3) converting statements that are executed conditionally to masked predicate

operations, 4) converting scalar loop iteration control variables to vector loop control iteration

variables, etc.

[00134] The example loop partitioner 175D generates a vector partitioning loop “VPL”
and places the instructions that have been marked with the notation “IN_VPL” by the example
analyzer 115D into the “VPL.” (See 1l. 810 — 820). Here, the read statement “R” and the write
statement “W”” are placed in the “VPL”. (See ll. 814 - §15). Then, the conflict checker 180D inserts
the “CheckConflict(b[i], 1, p, p)” instruction before the “VPL” where the predicate “p” is equal to

- 40 -

WO 2014/142972 PCT/US2013/032111

“(b[i]<FACTOR).” (See 1l. 808 - 809). The result of the CheckConflict instruction is used to
identify the next earliest instance of a memory access conflict and the next earliest conflict point is
used to generate a masked predicate for the “VPL.” (Note that, in this example, there is only one
pair of instructions that may cause memory access conflicts to occur such that a logical OR
operation need not be (and is not) included in the vectorized program code represented in FIG. §.)
In the example computer program loop 800 of FIG. 8, the “divide = getNextDependence
(dependences, start)” instruction represents the masked predicate used to control the execution of the
“VPL”. Specifically, loop iterations from the range spanning “start” to “divide” are iterated in
parallel (via the “VPL”) until the next conflict point is reached, at which time the execution of the
“VPL” returns to the “divide” instruction (l. 812 - 813), and obtains information identifying the
next chunk of iterations (i.e., the iterations between “start + 17 and “divide”) that can be performed
in parallel, and then causes those loop iterations to be executed in parallel. The “VPL” is exited

(13444
1

when the value of “i” reaches a maximum value. (See line 804).

Vectorization of Loops Having Cross Iteration Loop Dependences Arising from

Conditionally Executed Statements

[00135] FIG. 1E is a block diagram of an example vectorization system 110E configured
to vectorize loops having loop-carried dependences from or to conditionally executed statements
also referred to as dynamic cross-iteration dependences. Loop carried dependences from/to
conditionally executed statements occur when a conditional statement executed in one iteration is
executed unconditionally in a subsequently executed iteration or is guarded by a different condition

in a subsequently executed loop iteration.

[00136] In some examples, the example vectorization system 110E includes an example
analyzer 115E in communication with an example code generator 120E via an example
communication bus 122E. The example analyzer 120E includes an example first controller 125E
coupled via a communication bus 130E to an example graph generator 135E, an example graph
analyzer 140E, an example edge remover 145E and an example edge identifier 150E. In some
examples, the code generator 120E includes an example second controller 160E coupled via a

communication bus 165F to an example code converter 170E, an example loop partitioner 175E, an

-41 -

WO 2014/142972 PCT/US2013/032111

example conflict checker 180E, an example propagator 183E and an example selector 185E. In
some examples, the first controller 125E and the second controller 160E can access a memory 190E

as needed to store and/or retrieve information during operation.

[00137] In some examples, the example analyzer 115E receives the program code
representing the scalar loop to be vectorized from the example code supplier 111A (see FIG. 1A).
The example graph generator 135E of the analyzer 115E generates a dependence graph and the
graph analyzer 140E uses the graph to identify and create a list of loop edges. The example edge
remover 145E then determines whether any of the edges are flow dependent edges with a single
direction (<) from a statement “A” to a statement “B” where at least one of the nodes “A” and/or
“B” of the dependence graph is conditionally executed within the loop and removal of the edge will
eliminate a cycle from the dependence graph. If the example edge remover 145E determines that an
edge meeting these criteria is present in the loop, the example edge remover 145E removes the
corresponding edge from the list of edges created by the graph analyzer 140E using the dependence
graph and the example conflict identifier 150D identifies the instructions associated with the
eliminated cycle as being conflicting instructions (e.g., places the instructions associated with the
eliminated cycle into a set of instructions referred to as the “IN_VPL” set to be placed into a vector
partition). The edge remover 145E continues to process the edges in the loop in the manner
described until all edges have been processed. If all edges have been processed and no cycles
remain in the loop, the vectorizable code is supplied to the example code generator 120E for

vectorization.

[00138] If an edge “E” being processed by the example edge remover 145E does not meet
the criteria described above, the edge remover 145E attempts to use other edge removal techniques
as applicable (including any of the techniques disclosed herein) to process the edge. If all such
techniques have been unsuccessful and/or if, one or more cycles remain in the loop after all of the
edges have been processed, the code is not vectorizable and the code vectorization system 110E

ceases operating.

[00139] When the vectorizable code is supplied to the code generator 160E, the example

code converter 170E converts the scalar computer loop program instructions supplied by the

-42 -

WO 2014/142972 PCT/US2013/032111

example analyzer 115E to vector instructions by, for example: 1) replacing references to the scalar
variable(s) with references to vector version(s) of the variable(s), 2) replacing conditional
statements in the scalar code to predicate statements that convert the condition(s) contained in the
scalar code to vector predicates “p,” 3) converting statements that are executed conditionally to

(13444
1

masked predicate operations, 4) replacing a scalar loop control variable “i” with a vector loop

control variable, efc.

[00140] The example loop partitioner 175E generates a “VPL” containing all of the
statements associated with the eliminated cycle (including the conditionally executed statements

identified by the edge remover 145E) (e.g., the instructions “A” and “B” placed into IN_VPL.

[00141] The example conflict checker 180E then identifies loops iterations in which
conditionally executed statements cause a cross-iteration loop dependence. As described above, the
conditionally executed statements are identified by the example conflict identifier 150E of the
analyzer 115E and may include the conditionally executed statement “A” and the conditionally
executed statement “B.” The conditional conflict identifier 180E can use, for example, hardware
instructions (e.g., conditional conflict identifying instructions) to identify the iterations that can be
executed in parallel and the iterations that cannot be executed in parallel. In some examples, the
conditional conflict identifying instructions take the form “ConditionalPairStop(pB,pA)” instruction
where the execution of the statement “A” is controlled by a predicate “pA,” and the execution of the

statement “B” is controlled by a predicate “pB.”

[00142] In some examples, the loop partitioner 175E places the conditional conflict
identifying instruction (e.g., “ConditionalPairStop(pB,pA)”) after the predicates “pB” and “pA” are
defined. The “ConditionalPairStop(pB,pA)” instruction determines the actual dynamic cross-
iteration dependences between conditionally executed statements “A” and “B” and, in some
examples, is placed into the corresponding “VPL” (e.g., the “VPL” that operates on the conditional
statements “A” and “B”’) before the instruction(s) to be partially vectorized (e.g., the instruction(s)
conditionally controlled by the conditional statements “A” and “B”). The example partitioner 175E
then uses the output generated by the conditional conflict identifying instruction to mask the

conditionally executed statement(s) (e.g., statement “A” and/or statement “B”).

-43 -

WO 2014/142972 PCT/US2013/032111

[00143] In some examples, after the partitioner 175E has operated, the example propagator
183E causes the value of “r” contained in the vector “vr” from vector elements where the predicate
“pA” is TRUE to subsequent elements where the predicate “pA” is FALSE provided that the
statement “A” is conditionally executed and the removed edge “E” associated with the statement
“A” 1s on a scalar variable (e.g., “r”’) (or an array variable that is not dependent on the loop induction
variable, where a loop induction variable is a variable that is increased or decreased by a fixed
amount on every iteration of the loop, or is a linear function of another induction variable). In
addition, the example selector 185E selects the last element of the vector “r”” and broadcasts that
element to the entire vector. In some examples, the propagator 183 uses a propagation instruction to
cause the propagation operation and the selector 185E uses a “SelectLast” instruction to select the
value to be used in the next vector iteration. Using the propagator 183E and the selector 185E
causes the last value of “r” calculated in one vector iteration to be used to initialize the variable “r”

in each loop iteration of the subsequently executed vector iteration.

[00144] In some examples, the example graph generator 135E, the example graph analyzer
140E, the example edge remover 145E and the example conflict identifier 150E operate under the
control of the first example controller 125E. Likewise, in some examples, the example code
converter 170E, the example loop partitioner 175E, the example conditional conflict identifier 180E,
the example propagator 183E and the example selector 185E operate under the control of the second

controller 160E.

[00145] The operation of the example vectorization system 110E of the FIG. 1E can be
further understood with reference to the example computer program loop 900 illustrated using the
pseudo code shown in FIG. 9. The computer program loop 900 contains loop dependences that arise
from conditionally executed statements. A description of the operation of the loop 900 is followed

by a description of how the example vectorization system 110E of FIG. 1E vectorizes the loop 900.

[00146] In the example loop 900 of FIG. 9, a counter “i” is defined to control the number
of times the loop is iterated. (See line 902). If a predicate is TRUE (e.g., (a[i][<FACTOR)) (see line
906), a statement “A” (see line 910) is executed. As illustrated in FIG. 9, the statement “A” includes

aread “R” and a write “W” of the variable “r” (e.g., “r= a[i+r]”). As a result, when executed, one

- 44 -

WO 2014/142972 PCT/US2013/032111

iteration of the loop may write to the variable “r”” if “a[i] < FACTOR” holds true for that iteration
and a different, subsequently executed iteration of the loop may read that value of “r”” (i.e., the value
of “r” as defined in the first iteration) if the condition “a[i] < FACTOR” holds true. Thus, the value
of “r”” as read in one iteration depends on the value of “r”” as defined (e.g., written) in another
iteration thereby causing a cross-iteration dependence such that at least some of the iterations cannot
be executed in parallel. In the example loop 900 the cross-iteration dependence is also a self flow
dependence because the conditionally executed statement “A” is dependent on itself (e.g., in some
iterations, the execution of statement “A” conflicts with the execution of the statement “A” in other
iterations). Hence, the cycle caused by the loop-carried cross-iteration self-flow dependence in the
corresponding dependence graph prevents the vectorization of this (and similar) loops using
conventional vectorization techniques (e.g., converting the scalar variables to vector variables

without more).

[00147] In some examples, the vectorization system 110E operates to vectorize the scalar
computer program loop 900 of FIG. 9 to thereby create the vectorized loop 1000 shown in FIG. 10.
As described above, the example analyzer 115E process the edges of the scalar computer program
loop 900 to enable vectorization of the loop and then supplies the vectorizable loop to the example

vector code generator for vectorization.

[00148] For example, the example graph generator 135E creates the dependence graph and
the graph analyzer 140E uses the graph to identify and creates a list of the loop edges including: 1)
a cross-iteration (<) flow dependence edge “F’ (W->W)” from a statement “A” to the statement “A”
and 2) an intra and cross-iteration (<=) anti-dependence edge “A (R->W)” from the statement “A” to
the statement “A.” Here, the edge “A(R->W)” is a self anti-dependence and can, therefore, be
ignored because vector operations, by default, read all elements of their operands before these
elements are written such that the code can be vectorized regardless of the presence of such a
dependence. The example edge remover 145E then removes the edge “F’ from the list of edges
identified by the graph analyzer 140E. The example conflict identifier 150E also identifies the
instruction “A” to the code generator as an instruction to be added to a “VPL.” The example

analyzer 115E then supplies the vectorizable code to the example code generator 120E.

- 45 -

WO 2014/142972 PCT/US2013/032111

[00149] The example code converter 170E converts the conditional “if”” statement (see line
906 of FIG. 9) into a predicate statement “p” (see line 1008) and converts the scalar variable “r”” into
a vector, “vector(r).” (See line 1008). The code converter 170F also converts the scalar iteration

(13444
1

control variable “1” into a vector iteration control variable. (See lines 1002 and 1016). The example
partitioner 175E creates a “VPL” (see line 1006) and places the conditionally executed statement
“A” into the VPL. (See line 1012). The example partitioner 175E also places the predicate “p” used
to control the execution of the statement A in the scalar loop into the vector loop 1000 (See line
1008). The example conditional conflict identifier 180E then generates a predicate (i.e., “divide”™)
using, for example, the “ConditionalPairStop(p,p)” instruction (see line 1010) and the partitioner

175 uses the predicate to control the number of loop iterations to be executed in parallel in each

vector iteration. (See lines 1012 and 1013).

[00150] In some examples, the example propagator 183E uses a horizontal propagation
instruction to cause the vector elements of the conditionally defined vector “r” to be propagated to
other vector elements based on the predicate “p” and the example selector 185E inserts a
“SelectLast” instruction (see line 1014) near the bottom of the loop to select and broadcast the last
value of “r”’ calculated in the current vector iteration to all elements of the vector, “vr,” used in the

subsequent vector iteration. The example propagator 183E and selector 185E performs these

operation when, for example, the variable “r” defined in the statement “A” is a scalar variable.

[00151] Note that, in the example loop 900, the statement “A” is dependent on itself.
Thus, instead of using a conditional checking instruction of the form “ConditionalPairStop(pA,pB)”
to identify conflicting instructions, the conflict checker 180E uses a conditional checking instruction

of the form “ConditionalPairStop(p,p) (see line 1010) where “p” is the predicate controlling

execution of the statement “A.” (See line 906).

Vectorization Of A Loop Having Intra-Iteration Anti-Dependences Arising From

Scalar References

[00152] FIG. 1F is a block diagram of an example vectorization system 110F configured to
vectorize loops containing intra-iteration anti-dependences arising from scalar references. As

described above, an intra-iteration anti-dependence is a dependence between two instructions that

- 46 -

WO 2014/142972 PCT/US2013/032111

operate within a same iteration where a first of the instructions is dependent on a second instruction
and the first instruction lexically precedes the second instruction. For example, a loop having a read
statement of a scalar variable lexically followed by a write statement of the same scalar variable has
an intra-iteration anti-dependence from the read statement and the write statement because the early
executed read statement is dependent on the later executed write statement. To preserve loop
integrity, the computer program has to be vectorized in a manner that causes the write standard to
execute before the read statement. In some examples, the vectorization system 110F includes an
example analyzer 115F in communication with an example code generator 120F via a
communication bus 122F. In some examples, the example analyzer 115F includes a first example
controller 125F coupled via a communication bus 130F to an example graph generator 135F, an
example graph analyzer 140F and an example edge remover 145F. In some examples, the example
code generator 120F includes an example second controller 160F coupled via a communication bus
165F to an example code converter 170F, an example instruction copier 175F, an example renaming
tool 180F, an example propagator 185F, and an example selector 187F. In some examples the first
controller 125F and the second controller 160F accesses a memory 190F as needed to store and/or

retrieve information during operation.

[00153] The example analyzer 115F receives scalar computer program code representing a
scalar loop to be vectorized from the example code supplier 111A (see FIG. 1A). The example
graph generator 135F of the analyzer 115F creates a dependence graph of the scalar loop and the
example graph analyzer 140F uses the graph to identify and creates of list of e edges associated with
the loop dependences. In some examples, the edge remover 145F creates a set, referred to as “E,”
that is later populated with edges from the dependence graph/list of edges created by the example
graph analyzer 140F. When processing, for example, a loop having flow dependences on a scalar
variable “r”” from a write statement (e.g., “W’’) to one or more read statements (e.g., “R1, “R2,”
“R3” ... RN”), and in which the loop also has intra-iteration anti-dependences on the variable “r”
from the read statements “R1, “R2,” “R3” ... RN” to the write statement “W,” the edge remover
145F places all of the intra-iteration anti-dependence loop edges having the write statement “W” as
a sink node into the set “E.” The edge remover 145F also places all of the source nodes (e.g., “R1,”

“R2,” ..., “RN”) of the edges contained in the set “E” into a set of nodes/instructions referred to as

_47 -

WO 2014/142972 PCT/US2013/032111

CCS b

[00154] The example edge remover 145F determines whether the loop being processed
contains any loop-carried flow-dependence edges from the write statement “W” to a first read
statement “R1.” If no such dependence edges exist, the edge remover 145F removes the first read
statement “R1” from the set of nodes “S” and also removes the corresponding edge from “R1” to
“W” from the set of edges “E.” The edge remover 145F repeats these operations for each of the

remaining source nodes/instructions (e.g., “R2,” ..., “RN”’) contained in the set of source nodes “S.”

[00155] The example edge remover 145F then determines whether there is a dependence
path from any of the source nodes remaining in the set of source nodes “S” to the write statement
“W” that does not pass through an edge contained in the set “E.” If so, the edge remover 145F
attempts to process in the edge in a manner that will permit vectorization using any other technique
(including any of the techniques described herein). . If none of the edges could be successfully
eliminated, then one or more cycles remain in the loop such that the loop is not vectorizable and the
vectorization system 110F ceases operating. The example edge remover 145F repeats these

operations for all source nodes/instructions remaining in the set of source nodes/instructions “S.”

[00156] Provided that the loop is vectorizable (e.g., at least one of the edges could be
successfully eliminated on each of the identified dependence paths), the example edge remover 145F
determines whether any edges remain in the set of edges “E.” If so, the example edge remover 145F
creates a list identifying each remaining edge, “E,” a corresponding scalar variable “r,” a
corresponding write statement “W,” and a corresponding read statement “R.” The example edge

remover 145F supplies the list to the example code generator 120F for usage in vectorizing the

scalar computer program code as described below.

[00157] The example copier 175F of the code generator 120F creates a copy of the write
statement “W” referred to as “Wqp,” and places or hoists “Wqp,” and the dependence predecessors
of “Weepy” above the “R1,” “R2,” “R3,”... “RN” statements. A dependence predecessor of “Wqpy”
is a statement that outputs a value that is used by the statement “W .,y For example, a predicate

p” used to conditionally control the execution of “W” is a dependence predicate of the statement

“Weopy and is also hoisted above the statements “R1,” “R2,” “R3” ... “RN.” As used herein, the

- 48 -

WO 2014/142972 PCT/US2013/032111

term “hoist” refers to the action of selecting instructions/statements and moving them to or placing
them at a different location relative to other loop instructions/statements. Creating a copy of “W”

and hoisting the copy of “W?” (i.e., “Wqp, ") above the read instructions “R1,” “R2,” “R3” ... “RN”

removes the anti-dependence between “R” and “W.”

[00158] The example renaming tool 180F renames the result of “Wopy» (i.€., the loop
variable “1”’) to “rqopy» and replaces the references to “r” in “R1,” “R2,” “R3” ... “RN” with
references to “reopy.” The example propagator 185F then causes the vector values of “reqp,” to be
propagated based on the predicate that controls execution of “W,,”. In some examples, the
propagator 185F propagates the vector values of “r.p,” by inserting a propagate/shift instruction
(e.g., a “PropagateShift” instruction). In some examples, the “PropagateShift” instruction takes the
form “v2 = PropagateShift(s,v1,p)” and shifts the element of the vector “v1” right by one position
when the corresponding element of the predicate vector “p” is TRUE and propagates the element
value that was shifted in when the corresponding element of the predicate vector “p” is false. The

[IPR2)
S

scalar ““s” is shifted into the first element of the resulting vector. By way of example, for vector
“v1” and “v2” each containing eight elements, where s =0, vl = {1,2,3,4,5,6,7, 8}, and p={T,
F, T, T,F, F, F, T}, the vector “v2” produced using the “PropagateShift” instruction includes the
elements {0, 1, 1, 3, 4, 4, 4, 4}. Thus, to effect propagation and shift of “rc.py,” the propagator 185F

inserts the instruction “reopy = PropagateShift (Ir, reopy, p)” after “Weqpy» where “p” is the predicate

mask used to perform the propagate shift operations.

[00159] Replacing references to the variable “r”” with “rcopy” and propagating and shifting
the elements of “rcopy,” in the manner described ensures that the corresponding read statements of the
vector loop read the value of “r” defined in the previous loop iteration to thereby compensate for the

anti-dependence existing between each read instruction and the write instruction.

[00160] In addition, the example selector 187F selects the last element (as determined by
the predicate vector “p”) of the vector “r”” in the current iteration and causes the selected element to

[IPR2)
S

be used as the value to be “shifted in” to the vector “v1” when using the “PropagateShift”
instruction. In some examples, the example selector 187F selects the last element by placing the

instruction “Ir = SelectLastElement (r,p)” after the write statement “W.” In some examples, the

- 49 -

WO 2014/142972 PCT/US2013/032111

selector 187F also initializes the value of “r” at the start of the loop (e.g., sets “Ir =17).

[00161] In some examples, the example graph generator 135F, the example graph analyzer
140F and the example edge remover 145F operate under the control of the first example controller
125F. Likewise, in some examples, the example instruction copier 175F, the example renaming tool
170F, the example propagator 185F, and the example selector 187F operate under the control of the

second controller 160F.

[00162] The operation of the example vectorization system 110F of FIG. 1F can be further
understood with reference to an example computer program loop 1100 illustrated using the pseudo-
code shown in FIG. 11. The computer program loop 1100 contains intra-iteration anti-dependences
arising from scalar references within the loop 1100. A description of the operation of the loop 1100
is followed by a description of how the example vectorization system 110F operates to vectorize the

loop 1100.

[00163] The example computer program loop 1100 of FIG. 11 begins by setting a variable
“last” equal to 10 (see line 1102) and then entering a loop that iterates under control of a variable
“.” (See line 1104) Within the loop, a variable “j” is set equal to a variable “a[i].” (See line 1106).
Next, a first read operation, “R1,” of the variable “last” is performed when determining whether a
first predicate pl (e.g., “(j <last)”) holds TRUE. (See line 1108). A second read operation, “R2,”
of the variable “last” is executed when the value of a variable “b[i]” is set equal to the value of the
variable “last” based on the predicate “p1”. (See line 1110). Next, a second predicate “p2” is
defined (e.g., “(j < 0)”) to control execution of a write operation, “W.” (See line 1114). Depending
on whether the second predicate “p2” holds TRUE, the write operation “W” is performed. (See line
1116). The value of “last” is then returned. (See line 1122). Thus, the values of the scalar variable
“last” that are read at “R1” and “R2” in a current loop iteration are dependent on a value of the
scalar variable “last” computed at the write statement “W” in the previous loop iteration thereby

creating an intra-iteration anti-dependence on the scalar variable “last.”

[00164] The computer program loop 1100 of FIG. 11 is illustrated as a vector loop 1200
using the pseudo code shown in FIG. 12. When processing the loop 1100 of FIG. 11, the example
graph generator 135F creates a dependence graph for the loop 1100 and the example graph analyzer

-50 -

WO 2014/142972 PCT/US2013/032111

140F uses the graph to determine and a list of loop edges including the intra-iteration anti-
dependence edges referred to as “Al1” and “A2” on the variable “last” from “R1” to “W”” and from
“R2” to “W.” In this example computer program loop 1100, the read statements “R1” and “R2”
lexically precede “W.” The list of edges created by the graph analyzer 140F also includes loop-
carried lexically backward flow-dependences referred to as “F1” and “F2,” from “W” to “R1” and
from “W” to “R2,” respectively. Together, “F1,” “F2,” “A1” and “A2” create cycles in the

dependence graph that cannot be vectorized using conventional vectorization techniques.

[00165] The example edge remover 145F of the analyzer 115F creates the set of edges,
“E,” and populates the set with the edges “A1” and “A2” and places the source nodes “R1” and
“R2,” into the set of nodes “S.” The edge remover 145F then uses a list of edges identified by the
example graph analyzer 140F to determine whether the computer program loop 1100 contains any
loop-carried flow-dependence edges from the write statement “W” to a first read statement “R1.” In
this case loop-carried flow dependence edges “F1” and “F2” exist such that the example edge
remover 145F proceeds to determine whether there is a dependence path from either of the source
nodes remaining in the set “S” (e.g., “R1” and “R2”) to the write statement “W”” that does not pass
through an edge contained in the set “E.” In this case, no such dependence path exists such that the
example edge remover 145F creates the list identifying each edge in the set of edges “E” (e.g., “Al”
and “A2”), identifies information corresponding to each edge “E” ((e.g., {“last,” “W,” “R1,” “A1”}
and {last, “W,” “R1,” and “A2”}), and then removes the edges from the dependence graph/removes
the edges from the list of edge created by the graph analyzer 140F. The computer program loop
1100 is now vectorizable and the example edge remover 145F supplies the vectorizable loop 1100
and the list of edges to the example code generator 120F. In some examples, the list of edges and

corresponding information is supplied to the code generator 120F in a stack.

[00166] The code generator 120F then operates on the now-vectorizable code to create the

vectorized code 1200 of FIG. 12. In some examples, the code converter 170F converts the scalar

(1352

variables in the scalar loop to the vector variables (e.g., the scalar variable *j” is converted to a
vector “vj,” “a[i]” is converted to a vector, “b[i]” is converted to a vector, “last” is converted to a

(13444
1

vector “vlast,” and the loop iteration control variable “i” is converted to a vector iteration control

variable). (See lines 1204, 1206, 1216 and 1218). Additionally, the code converter 170F converts

-5] -

WO 2014/142972 PCT/US2013/032111

the conditional statements to predicates, “p1” and “p2”. (See lines 1208 and 1214). In the scalar
computer program loop 1100 of FIG. 11, prior to entering the loop, the scalar variable “last” was
initialized to an integer value of “10” (see line 1202). Thus, in the vector computer program loop
1200, the scalar variable is initialized to an integer value of “10” (see line 1202) because computer
program instructions outside of the loop are not converted by the code converter 170F of the

example code generator.

[00167] The example copier 175F then inserts a copy “Wqpy,~ of the write statement “W”
above the read instructions “R1” and “R2.” (See line 1210). In this example, the write statement
“W” is masked by the predicate vector “p2.” Here, the copy of the write statement “W g, 18
constructed by setting the vector variable “vlast” equal to the vector variable *“vj,” where the vector
variable “vlast” has been renamed by the example renaming tool 180F to “vlastl.” (See line 1210).
Likewise, the renaming tool 180F renames the vector “vlast” read by “R1” and “R2” in the scalar
loop 1100 to the vector “vlastl” in the vector loop 1200 causing the read statements “R1” and “R2”
(see lines 1214, 1216) to read the values of the renamed vector “vlast]” computed by the “W cqp,”
instruction. Further, by placing the “W ., instruction above the read statements “R1” and “R2,”
the vector values of “vlast]” that are read by the read statements “R1” and “R2” are defined in the
current loop iteration before the read statements thereby eliminating the anti-dependence between
the write statement “W1” and the read statements “R1” and “R2.” After the “W,, instruction, the
example propagator 185F inserts a “PropagateShift” instruction to shift or propagate (in the manner
described above) the elements of the vector “vlast]” computed by the copy of the write statement
“Weopy based on the value of the predicate “p2.” (See line 1212). Shifting/propagating the vector
values of “vlast]” in this manner causes the value of “vlast]l” calculated for each current iteration
(i.e., residing in each element/position in the vector “vlast]1”) to be equal to the value of “vlast”
calculated in the preceding iteration. As a result, the vector values read by the read statements “R1”

and “R2” are the vector values calculated for “vj” in the preceding iteration.

[00168] Finally, the example selector 187F inserts a “SelectLastElement” operation after
the write statement “W” (see line 1220) to select the last element of the vector “vlast” depending on
the predicate “p2” and to cause the last element of the vector “vlast” to be used by the next iteration

as the scalar value to be shifted into the first element of “vlast1” when using the

-52-

WO 2014/142972 PCT/US2013/032111

“PropagateShiftInstruction.” (See line 1212). In addition, the selector initializes the value of “last”

before the loop. (See line 1202).

[00169] While an example manner of implementing the example vectorization system
110A of FIG. 1A is illustrated in FIGS. 1A, 1B, 1C, 1D, 1E, 1F, one or more of the elements,
processes and/or devices illustrated in FIGS. 1A, 1B, 1C, 1D, 1E, 1F may be combined, divided, re-
arranged, omitted, eliminated and/or implemented in any other way. Further, the example
vectorization systems 110B, 110C, 110D, 110E, 110F, the example code supplier 111A, the
example code executor 112A, the example analyzer 115A, 115B, 115C, 115D, 115E 115F, the
example code generator 120A, 120B, 120C, 120D, 120E, 120F, the example communication bus
122B, 122C, 122D, 122E, 122F, 130B, 130C, 130D, 130E, 130F, 165B, 165C, 165D, 165E, the
example first controller 125B, 125C, 125D, 125E, 125F, the example second controller 160B, 160C,
160D, 160E, 160F, the example graph generator 135B 135C, 135D, 135E, 135F, the example graph
analyzer 140B, 140C, 140D, 140E, 140F, the example edge remover 150B, 152C, 145D, 145E,
145F, the example code converter 170B, 170C, 170D, 170E, 170F, the example predicate set
generator 145B, the example dependence checker 155B, the example recurrence instruction
identifier 145C, the example partial vectorization tool 155C, the example edge identifier 150C, the
example conflict identifier 150D, 150E, the example propagator 175B, 183E, 185F, the example
selector/broadcaster 175C, the example selector 185E, 187F, the example recurrence adder 185C,
the example renaming tool 180C, 180F, the example loop partitioner 175D, 175E, the example
conflict checker 180D, 180E, and/or, the example copier 175F and/or more generally, the example
vectorization system 110A of FIG. 1A may be implemented by hardware, software, firmware and/or
any combination of hardware, software and/or firmware. Thus, for example, any of the example
vectorization systems 110B, 110C, 110D, 110E, 110F, the example code supplier 111A, the
example code executor 112A, the example analyzer 115A, 115B, 115C, 115D, 115E 115F, the
example code generator 120A, 120B, 120C, 120D, 120E, 120F, the example communication bus
122B, 122C, 122D, 122E, 122F, 130B, 130C, 130D, 130E, 130F, 165B, 165C, 165D, 165E, the
example first controller 125B, 125C, 125D, 125E, 125F, the example second controller 160B, 160C,
160D, 160E, 160F, the example graph generator 135B 135C, 135D, 135E, 135F, the example graph
analyzer 140B, 140C, 140D, 140E, 140F, the example edge remover 150B, 152C, 145D, 145E,

-53.-

WO 2014/142972 PCT/US2013/032111

145F, the example code converter 170B, 170C, 170D, 170E, 170F, the example predicate set
generator 145B, the example dependence checker 155B, the example recurrence instruction
identifier 145C, the example partial vectorization tool 155C, the example edge identifier 150C, the
example conflict identifier 150D, 150E, the example propagator 175B, 183E, 185F, the example
selector/broadcaster 175C, the example selector 185E, 187F, the example recurrence adder 185C,
the example renaming tool 180C, 180F, the example loop partitioner 175D, 175E, the example
conflict checker 180D, 180E, and/or the example copier 175F and/or, more generally, the example
vectorization system 110A could be implemented by one or more analog or digital circuit(s), logic
circuits, programmable processor(s), application specific integrated circuit(s) (ASIC(s)),
programmable logic device(s) (PLD(s)) and/or field programmable logic device(s) (FPLD(s)).
When reading any of the apparatus or system claims of this patent to cover a purely software and/or
firmware implementation, at least one of the example vectorization systems 110A, 110B, 110C,
110D, 110E, 110F, the example code supplier 111A, the example code executor 112A, the example
analyzer 115A, 115B, 115C, 115D, 115E 115F, the example code generator 120A, 120B, 120C,
120D, 120E, 120F, the example communication bus 122B, 122C, 122D, 122E, 122F, 130B, 130C,
130D, 130E, 130F, 165B, 165C, 165D, 165E, the example first controller 125B, 125C, 125D, 125E,
125F, the example second controller 160B, 160C, 160D, 160E, 160F, the example graph generator
135B 135C, 135D, 135E, 135F, the example graph analyzer 140B, 140C, 140D, 140E, 140F, the
example edge remover 150B, 152C, 145D, 145E, 145F, the example code converter 170B, 170C,
170D, 170E, 170F, the example predicate set generator 145B, the example dependence checker
155B, the example recurrence instruction identifier 145C, the example partial vectorization tool
155C, the example edge identifier 150C, the example conflict identifier 150D, 150E, the example
propagator 175B, 183E, 185F, the example selector/broadcaster 175C, the example selector 185E,
187F, the example recurrence adder 185C, the example renaming tool 180C, 180F, the example loop
partitioner 175D, 175E, the example conflict checker 180D, 180E, and/or the example copier 175F
are hereby expressly defined to include a tangible computer readable storage device or storage disk
such as a memory, a digital versatile disk (DVD), a compact disk (CD), a Blu-ray disk, etc. storing
the software and/or firmware. Further still, the example vectorization system 110A of FIG. 1A, may

include one or more elements, processes and/or devices in addition to, or instead of, those illustrated

-54 -

WO 2014/142972 PCT/US2013/032111

in FIGS. 1A, 1B, 1C, 1D, 1E and/or 1F and/or may include more than one of any or all of the

illustrated elements, processes and devices.

[00170] Flowcharts and pseudo code representative of example machine readable
instructions for implementing the vectorization systems 110A, 110B, 110C, 110D, 110E and 110F
of FIGS. 1A, 1B, 1C, 1D, 1E and 1F are shown in FIGS. 13, 14A — 14B, 15A - 15C, 16A - 16C,
17A - 17B, 18A — 18B, 19A — 19B, 20A — 20B, 21A — 21B, and/or 22A — 22B. In this example, the
machine readable instructions comprise a program for execution by a processor such as the
processor 2312 shown in the example processor platform 2300 discussed below in connection with
FIG. 23. The program may be embodied in software stored on a tangible computer readable storage
medium such as a CD-ROM, a floppy disk, a hard drive, a digital versatile disk (DVD), a Blu-ray
disk, or a memory associated with the processor 2312, but the entire program and/or parts thereof
could alternatively be executed by a device other than the processor 2312 and/or embodied in
firmware or dedicated hardware. Further, although the example program is described with reference
to the flowchart and pseudo code illustrated in FIGS. 13, 14A — 14B, 15A - 15C, 16A - 16C, 17A —
17B, 18A — 18B, 19A — 19B, 20A — 20B, 21A - 21B, and 22A — 22B, many other methods of
implementing the example vectorization systems 110A, 110B, 110C, 110D, 110E and 110F may
alternatively be used. For example, the order of execution of the blocks and/or lines of pseudo code

may be changed, and/or some of the blocks described may be changed, eliminated, or combined.

[00171] As mentioned above, the example processes of FIGS. 13, 14A — 14B, 15A - 15C,
16A - 16C, 17A — 17B, 18A - 18B, 19A - 19B, 20A — 20B, 21A - 21B, and 22A - 22B may be
implemented using coded instructions (e.g., computer and/or machine readable instructions) stored
on a tangible computer readable storage medium such as a hard disk drive, a flash memory, a read-
only memory (ROM), a compact disk (CD), a digital versatile disk (DVD), a cache, a random-access
memory (RAM) and/or any other storage device or storage disk in which information is stored for
any duration (e.g., for extended time periods, permanently, for brief instances, for temporarily
buffering, and/or for caching of the information). As used herein, the term tangible computer
readable storage medium is expressly defined to include any type of computer readable storage
device and/or storage disk and to exclude propagating signals. As used herein, "tangible computer

readable storage medium" and "tangible machine readable storage medium" are used

-55-

WO 2014/142972 PCT/US2013/032111

interchangeably. Additionally or alternatively, the example processes of FIGS. 13, 14A — 14B, 15A
- 15C, 16A - 16C, 17A — 17B, 18A — 18B, 19A — 19B, 20A — 20B, 21A - 21B, and 22A - 22B may
be implemented using coded instructions (e.g., computer and/or machine readable instructions)
stored on a non-transitory computer and/or machine readable medium such as a hard disk drive, a
flash memory, a read-only memory, a compact disk, a digital versatile disk, a cache, a random-
access memory and/or any other storage device or storage disk in which information is stored for
any duration (e.g., for extended time periods, permanently, for brief instances, for temporarily
buffering, and/or for caching of the information). As used herein, the term non-transitory computer
readable medium is expressly defined to include any type of computer readable device or disk and to
exclude propagating signals. As used herein, when the phrase "at least" is used as the transition
term in a preamble of a claim, it is open-ended in the same manner as the term "comprising” is open

ended.

[00172] Example machine readable instructions 1300 & 1400 and that may be executed to
implement the example vectorization system 110B of FIG. 1B are represented by the flowcharts
1300 illustrated in FIG. 13 and by the pseudo code 1400 illustrated in FIGS. 14A and 14B. The
example machine readable instructions 1300 and 1400 may be executed at intervals (e.g.,
predetermined intervals), based on an occurrence of an event (e.g., a predetermined event), etc., or
any combination thereof. In some examples, the instructions executed by the example analyzer
115B of FIG. 1B and the example code generator 120B of FIG. 1B are designed to enable loop
vectorization by processing the cycle-causing loop-carried anti and output dependence edges of the
loop and then compensating for the processed edges by inserting horizontal propagation instructions

for each instruction “S” (defined below) associated with one of the cycle-causing dependences.

[00173] The example machine readable instructions 1300 and 1400 of FIGS. 13 and 14A-
14B begin by causing the dependence graph generator 135B of FIG. 1B to generate the dependence
graph, and the graph analyzer 140B of FIG. 1B analyzes the graph to identify and create a list of
loop edges. (See block 1302 of FIG. 13). In some examples, the graph analyzer 140B of FIG. 1B
identifies edges arising from a conditionally defined scalar variable. Provided that any such
dependences edges are present and have been identified by the graph analyzer 140B of FIG. 1B, the

predicate set generator 145B associates a set of predicates with each instruction “S” in the computer

-56 -

WO 2014/142972 PCT/US2013/032111

program loop that defines a scalar “J.” (See block 1304 of FIG. 13; lines 1406-1412 of FIG. 14A).
In some examples, the sets of predicates are defined as “PredDefSet(S, J)”” and “PredUseSet(S, J)”
and are initialized by setting “PredDefSet(S, J)” equal to “predicate(S),” where the “predicate(S)” is
the predicate that controls execution of the corresponding instruction “S.” Additionally, the sets
“PredUseSet(S,J)” are initialized as empty sets. (See block 1304 of FIG. 13 and lines 1406 - 1412
of FIG. 14A).

[00174] Next, the example edge remover 150B of FIG. 1B removes the edges associated
with the instruction “S” from the list of edges identified by the example graph analyzer 130B of
FIG. 1B. (See block 1306 of FIG. 13; lines 1418-1444 of FIG. 14A). In some examples, the loop to
be vectorized includes a write statement “W 1" that conditionally writes to a scalar variable “J”
based on a first predicate “p1” and a write statement “W2” that conditionally writes to the scalar
variable “J”” based on a second variable “p2” and further includes a read statement “R” that is

executed based on both “p1” and “p2.”

[00175] For example scalar loops of this type, the edge remover 150B of FIG. 1B operates
to remove each loop-carried lexically backward dependence edge that is part of a cycle and that is
anti-dependent on a scalar (e.g., for each write statement “W”” that is a sink of an edge “E” and for
each read instruction “R” that is a source of the edge “E)” from the list dependence edges identified
by the graph analyzer 140B. The edge remover 150B of FIG. 1B then adds the predicate “pR” that
controls the statement “R” to the set “PredUseSet(W,J).” (See block 1306 of FIG. 13; lines 1420-
1430 of FIG. 14A). The edge remover 150B of FIG. 1B also removes, from the list of edges created
by the graph analyzer 140B of FIG. 1B, each lexically backward dependence edge “E” that is part of
a cycle and that is output dependent on the scalar “J” (instead of being anti-dependent on the scalar),
(e.g., the write statement “W1” is the sink of the edge “E” and the write statement “W2” is the
source of the Edge “E).” (See block 1306 of FIG. 13;lines 1432 — 1434 of FIG. 14A). The edge
remover 150 of FIG. 1B then adds the predicate “pW1” that controls execution of “pW1” to the set
“PredDefSet(W2,]”) “pW1.” (See block 1306 of FIG. 13; line 1436 of FIG. 14A). In some
examples, the edge remover 150B of FIG. 1B first determines whether the scalar loop being
processed includes and loop-carried lexically backward dependences and output dependence before

the performing the described operations. (See lines 1424, 1426, 1432 of FIG. 14A.)

-57-

WO 2014/142972 PCT/US2013/032111

[00176] If the edge “E” is not part of a cycle or is part of a cycle but is not a loop-carried
lexically backward edge, the example edge remover 150B of FIG. 1B attempts to apply another
technique to process the dependence edge “E.” (See block 1306 of FIG. 13; lines 1442 — 1444 of
FIG. 14A).

[00177] Next, the example dependence checker 155B of FIG. 1B determines whether the
edge processing operations performed by the edge remover 150B of FIG. 1B have caused all edges
associated with a cycle to be eliminated from the loop 200 of FIG. 2 (e.g., to be eliminated from the
list of edges created by the graph analyzer 140B). (See block 1308 of FIG. 13; line 1410 of FIG.
14A). If all such dependences edges have been removed, the example code generator 120B operates
to create a vectorized version of the loop to be vectorized. (See block 1310 of FIG. 13; line 1452 of
FIG. 14B). In some examples, the vector code generator 120B of FIG. 1B begins operating when

(13444
1

the code converter 170B converts the scalar loop control variable (e.g., “1”) to a vector loop control

variable and converts the statements in the scalar loop to vectorized statements by, for example,
replacing the conditional statements with predicates, “p” and converting conditionally executed
statements to masked vector operations, efc. In addition, the code converter replaces references to
the scalar *j” with references to a vector of the variable “j” (e.g., “vj”). (See block 1310 of FIG. 13;
line 1452 of FIG. 14B). If all edges associated with a cycle have not been eliminated, the
vectorization system 110B of FIG. 1B stops operating.

[00178] The example propagator 175B of FIG. 1B propagates the elements of the vector
“vj” based on a predicate “p” by, for example, inserting a “PropagatePostTrue” after each instruction
“S” that defines a scalar where the associated “PredUseSet (S, J)” is not a subset of the
PredDefSet(S, J), (e.g., “J = PropagatePostTrue(J, PredDefSet(S, J))”). (See block 1312 of FIG. 13;
lines 1454 — 1462 of FIG. 14B). In some examples, the selector 180B of FIG. 1B then inserts a
“SelectLast” instruction at the bottom of the loop body (see block 1314 of FIG. 13; line 1464 of
FIG. 14B). After all instructions “S” have been processed, the example machine readable

instructions represented by the flowchart 1300 and the pseudo code 1400 cause the example

vectorization system 110B of FIG. 1B to cease operating.

[00179] Example machine readable instructions 1500 & 1600 that may be executed to

-58 -

WO 2014/142972 PCT/US2013/032111

implement the example vectorization system 110C of FIG. 1C are represented by the flowcharts
1500 illustrated in FIGS. 15A, 15B, and 15C and the pseudo code 1600 illustrated in FIGS. 16A,
16B, and 16C. The example machine readable instructions 1500 and 1600 may be executed at
intervals (e.g., predetermined intervals), based on an occurrence of an event (e.g., a predetermined

event), etc., or any combination thereof.

[00180] In this example, the machine readable instructions executed by the example
vectorization system 110C of FIG. 1C are designed to permit the example analyzer 115C of FIG. 1C
and example code generator 120C of FIG. 1C to perform scalar loop vectorization by processing
certain types of intra-iteration anti-dependences and loop-carried dependences of a scalar computer
program loop and then compensating for the edges using horizontal recurrence instructions. In
this example, the machine readable instructions begin when the example graph generator 135C of
FIG. 1C generates a dependence graph corresponding to the loop to be vectorized and then supplies
the graph to the example graph analyzer 140C of FIG. 1C which uses the graph to identify and
create a list of loop edges. (See block 1501 of FIG. 15A).

[00181] The example recurrence instruction identifier 145C of FIG. 1C marks each
instruction “S” of the form “t = t+ addend” or “t = t-addend” as a vectorizable recurrence operation
where the addend is a constant or a variable expression that is not dependent on the scalar variable
“t” (see block 1502 of FIG. 15A; line 1603 of FIG. 16A). In addition, the example recurrence
instruction identifier 145C of FIG. 1C creates a set of instructions referred to as “RecurrenceSet(t)”
containing the instructions “S” and the example edge identifier 150C of FIG. 1C creates an empty
set of edges referred to as “EdgesToRemove(t)” (see block 1504 of FIG. 15A; lines 1604, 1605 of
FIG. 16A).

[00182] For each “RecurrenceSet(t)” that is not empty, the example edge identifier 150C
of FIG. 1C adds, to the set “EdgesToRemove(t),” each intra-iteration anti-dependence edge “A” on
the operand “t” from a read statement node “R” (defined as a source node of the edge “A”) to a write
statement “W,” (defined as the sink node of the edge “A”) provided that the “RecurrenceSet(t)”
contains the write statement “W” but not the read statement “R.” (See block 1506 of FIG. 15A;

lines 1607 — 1612 of FIG. 16A). In addition, the example recurrence instruction identifier 145C of

-59 -

WO 2014/142972 PCT/US2013/032111

FIG. 1C creates and initializes the set “PreAdd(R)” to the NULL set (i.e., empty set). (See block
1508 of FIG. 15A; line 1613 of FIG. 16A).

[00183] If there are no paths from the read instruction “R” to the write statement “W”” that
can be eliminated by removing an edge of the path, the example recurrence instruction identifier
145C also sets “PreAdd(R) = Union(PreAdd(R),W)” for each edge from the read instruction “Reopy”
to the write statement “W” in the EdgesToRemove(t) set. The example edge remover 152C of FIG.
1C removes the edges in the EdgesToRemove(t) set from the dependence graph (see block 1510 of
FIG. 15A; line 1632 of FIG. 16B) and removes any loop-carried dependence edge on the variable
“t” if the edge is an anti-dependent edge and the sink node of the edge is in the RecurrenceSet(t) set.
(See block 1510 of FIG. 15A; lines 1633 — 1636 of FIG. 16B). The example edge remover 152C
also removes each loop-carried flow or output dependence edge on the variable “t” from a first write
statement “W1” (defined as the source node) to a second write statement “W2” (defined as the sink
node) if both the write instructions “W1”” and “W2” (e.g., the source node and the sink node) are in

the RecurrenceSet(t) set. (See block 1510 of FIG. 15A; lines 1637 — 1639 of FIG. 16B).

[00184] The example partial vectorization tool 155C of FIG. 1C attempts to apply partial
vectorization techniques to process edges on paths in the dependence graph from the read statement
“R” (defined as a source node) to the write statement “W” (defined as the sink node) where the paths
are constructed using intra-iteration dependence edges that does not pass through an edge “E”
included in the set “EdgesToRemove(t)” (see block 1512 of FIG. 15B; line 1616 — 1620 of FIG.
16A).. If none of the edge(s) could be removed, the example edge remover 152C removes the write
statement “W”” from the RecurrenceSet(t) set and removes all edges from “EdgesToRemove(t).”
(See block 1514 of FIG. 15B; line 1623-1624 of FIG. 16A). If the RecurrenceSet(t) is not empty,
the operations described with respect to the blocks 1506 — 1520 of FIGS. 15A and 15B are repeated.

[00185] If the RecurrenceSet(t) is empty, the example edge remover 152C of FIG. 1C
applies other techniques, as applicable, to process any remaining edges/cycles in the dependence
graph in a manner that will permit vectorization of the loop. (see block 1518 of FIG. 15B; lines
1642 — 1643 of FIG. 16B). Provided that all cycles have been removed from the corresponding
dependence graph/list of edges (see block 1520 of FIG. 15B; line 1644 of FIG. 16C), the loop can

-60 -

WO 2014/142972 PCT/US2013/032111

now be vectorized. (If all cycles have not been removed (see blocks 1520 & 1534 of FIGS. 15A and
15B; line 1644 of FIG. 16C), the loop is not vectorizable and the machine readable instructions 1500

and 1600 cause the example analyzer 115 to cease operating.

[00186] The code converter 170C of FIG. 1C converts the scalar instructions to vector
instructions by, for example, replacing the scalar variables with vector variables, replacing the scalar
iteration control variable with a vector iteration control variable. (See block 1520 of FIG. 15B), etc..
(Note that this operation is not illustrated in the example pseudo code of FIGS. 16A — 16C). In
some examples, for each instruction “S” of the form “t = t+a” or “t =t-a” that is in the
RecurrenceSet(t) set, the selector/broadcaster 175C selects the last mask-enabled value of the vector
“vt” calculated at the bottom of the loop by, for example, inserting a “SelectLast” instruction and
broadcasts the mask-enabled element to all elements of the vector “vt” at the top of the loop. (see

block 1522 of FIG. 15B; lines 1646 — 1649 of FIG. 16C).

[00187] Next, the example recurrence adder 180C of FIG. 1C generates a summing vector
for each instruction “S” that is in the RecurrenceSet(t) set using the sequence {vsal =
RunningPostAdd(0,va,pl); vt = vt + va)} if “S” is of the form “t =t + a” and {vsal =
RunningPostAdd(0,va,pl);vt = vt — va)} if “S” is of the form “t = t-a.” (See block 1524 of FIG.
15B; lines 1650 — 1654 of FIG. 16C). Here, “p1” is the predicate mask that controls execution of

the instruction “S’ in the vector code.

[00188] For each read instruction “R” with a non-empty “PreAdd(R)”’set, the example
renaming tool 180C adds the instruction “vtk = vt” before the read instruction “R” and the
references to “vt” are replaced with references “vtk™ in the read statement “R.” (See block 1526 of
FIG. 15C; lines 1657 — 1659 of FIG. 16C). Here “vtk” is a unique name generated for the read
instruction “R.” In some examples, for each write statement “W”” in the “PreAdd(R)” set, the
example renaming tool 180C inserts the instruction (vsa2 = RunningPreAdd(0,va,pl) ; vtk = vtk +
va) or vsa2 = RunningPreAdd(0,va,p1); vtk = vtk — va) before the read instruction “R.” (See block
1528 of FIG. 15C; lines 1660 — 1665 of FIG. 16C). In some examples, conventional optimization
techniques such as, for example, copy propagation and common sub-expression elimination, or

partial redundancy elimination are performed after the vectorization operations to streamline the

-61 -

WO 2014/142972 PCT/US2013/032111

vector code. (See block 1530 of FIG. 15C) and the vectorization process represented by the
machine readable instructions ends. The example code generator 120C of FIG. 1C can also identify
multiple instructions with the same “PreAdd” set content and nullify those instructions except for
the lexically first of these instructions to further optimize the code. In these instances any references

to “vt” are replaced with references to “vtk’ in the nullified instructions.

[00189] Example machine readable instructions of 1700 & 1800 that may be executed to
implement the vectorization system 110D of FIG. 1D are represented by the flowchart 1700
illustrated in FIGS. 17A and 17B and the pseudo code 1800 illustrated in FIGS. 18A and 18B. The
example machine readable instructions 1700 and 1800 may be executed at intervals (e.g.,
predetermined intervals), based on an occurrence of an event (e.g., a predetermined event), or any

combination thereof.

[00190] In this example, the machine readable instructions executed by the vectorization
system 110D are designed to enable loop vectorization of loops with cross-iteration memory
dependences. Before the machine readable instructions 1700 and 1800 begin operating, the graph
generator 115D and the graph analyzer 120D have generated a dependence graph of the loop being
analyzed and analyzed the graph to identify and create a list of loop edges, respectively. The
machine readable instructions begin when the example edge remover 145D of FIG. 1D marks the
instructions of the loop to be vectorized as “vectorizable” (see block 1702 of FIG. 17A; line 1806 of
FIG. 18A) and the example conflict identifier 150D of FIG. 1D selects an edge “E” to be processed
(see block 1704 of FIG. 17A; line 1808 of FIG. 18A) and determines whether the selected edge “E”
is part of a cycle. (See block 1706 of FIG. 17A; line 1810 of FIG. 18A). If the edge “E” is not part
of a cycle, the example conflict identifier 150D of FIG. 1D determines whether other dependence
edges “E” are to be processed. (See block 1708 of FIG. 17A; line 1808 of FIG. 18A). If there are
more edges “E,” the example edge remover 145D of FIG. 1D selects a next edge “E” to be
processed. (See block 1704 of FIG. 17A; line 1808 of FIG. 18A). If all edges “E” have been
processed, the example edge remover 145D determines whether any of the edges that were
determined to part of a cycle have not been removed from the loop (i.e., removed from a list of
edges created by the graph analyzer 140D). (See block 1710 of FIG. 17A). If all such edges cycles
have not been removed, then the loop is not vectorizable (see block 1711 of FIG. 17B; line 1836 of

-62 -

WO 2014/142972 PCT/US2013/032111

FIG. 18A) and the machine readable instructions 1700, 1800 cause the vectorization system 110D of

FIG. 1D to cease operating.

[00191] If the edge “E” is part of a cycle, the example conflict identifier 150D of FIG. 1D
determines whether the edge “E” is a memory flow, anti, or output dependence edge “E” from a
statement “A” to a statement “B” with a single direction (<) (see block 1712 of FIG. 17A; line 1814
of FIG. 18A). If the edge “E” meets one of these criteria the example conflict identifier 150D adds
the statements “A” and “B” to a set of “conflict” instructions (see block 1714 of FIG. 17A; line 1818
of FIG. 18A) and the example edge remover 145D of FIG. 1D removes the edge “E” from the
dependence graph/list of edges. (See block 1716 of FIG. 17A; line 1820 of FIG. 18A). The
example conflict identifier 150D of FIG. 1D places all of the instructions associated with the
eliminated cycle into a set of instructions referred to as the “IN_VPL” set that will later be placed

into a “VPL”. (See block 1718 of FIG. 17A; line 1822 of FIG. 18A).

[00192] If the example conflict identifier 150D of FIG. 1D determines that the edge “E”
does not meet any of these criteria (see block 1712 of FIG. 17A; line 1814 of FIG. 18A), the
example conflict checker 180D determines whether another technique is available to process the
edge “E.” (See block 1720 of FIG. 17A; line 1826 of FIG. 18A). If there is another technique
available, the example edge remover 145D applies that technique to process the edge “E.” (See
block 1722 of FIG. 17A; lines 1828 — 1830 of FIG. 18A). If there is not another technique
available, the example conflict identifier 150D of FIG. 1D determines that the loop is not
vectorizable (see block 1711 of FIG. 17B) and the machine readable instructions cause the example

vectorization system 110D to cease operating.

[00193] After placing all of the instructions associated with the cycle that was eliminated
by removing the edge “E” into the set “IN_VPL” (see block 1718 of FIG. 17A), the example
conflict identifier 150D of FIG. 1D tests to determine whether there are more edges to be processed.
(See block 1708 of FIG. 17A; line 1808 of FIG. 18A). If all edges have been processed, the
example edge remover 145D of FIG. 1D tests to determine whether all of the cycle have been
removed (i.e., whether removal of edges from the list of edges has operated to break all cycles in the

loop). (See block 1710 of FIG. 17A). If all cycles have not been removed, the loop is not

-63 -

WO 2014/142972 PCT/US2013/032111

vectorizable (see block 1711 of FIG. 17B; line 1836 of FIG. 18A) and the machine readable
instructions cause the example vectorization system 110D of FIG. 1D to cease operating, as

described above.

[00194] If all cycles have been removed, the example code converter 170D of FIG. 1D
converts the scalar instructions of the loop being vectorized to vector instructions as described above
with respect to FIG. 1D. (See block 1723 of FIG. 17B; not illustrated in the example pseudo code of
FIG. 18.) The example loop partitioner 175D of the code generator 130A generates the “VPL” and
places all of the instructions included in the set “IN_VPL” into the “VPL”. (See block 1724 of FIG.
17B; lines 1844 of FIG. 18B). Then, for each pair of instructions “A” and “B” included in the
“Conflict” instruction set, the example conflict checker 180D inserts a corresponding
“CheckConflict” operation before the “VPL”. (See block 1726 of FIG. 17B; lines 1850 — 1854 of
FIG. 18B). In some examples, the conflict checker 180D performs a logical OR operation on the
results of the “CheckConflict” operation to dynamically determine the earliest next conflict point in
the loop (see block 1728 of FIG. 17B; lines 1858 — 1862 of FIG. 18B) and uses the next earliest
conflict point to generate a predicate used to control execution of the “VPL”. (See block 1730 of
FIG. 17B; lines 1858 — 1862 of FIG. 18B). After generating the predicate used to control execution
of the “VPL”, the machine readable instructions cause the example vectorization system 110D to

cease operating.

[00195] Example machine readable instructions 1900 & 2000 that may be executed to
implement the vectorization system 110E of FIG. 1E are represented by the flowcharts of FIGS.
19A and 19B and by the pseudo code illustrated in FIGS. 20A and 20B. The example machine
readable instructions 1900 and 2000 may be executed at intervals (e.g., predetermined intervals),

based on an occurrence of an event (e.g., a predetermined event), etc., or any combination thereof.

[00196] The machine readable instructions executed by the vectorization system 110E of
FIG. 1E are designed to enable vectorization of a scalar computer program loop having
conditionally executed statements that can result in cross-iteration dependences. Before the
instructions are executed, the example graph generator 135E of FIG. 1E and the example graph

analyzer 140E of FIG. 1E have operated to generate the graph and to analyze the graph to identify

- 64 -

WO 2014/142972 PCT/US2013/032111

edges (e.g., create a list of the edges) present in the scalar computer program loop. The machine
readable instructions then cause the example edge remover 145E of FIG. 1E to mark the instructions
of the loop to be vectorized as “vectorizable” (see block 1904 of FIG. 19A; line 2006 of FIG. 20A).
The example edge remover 145E of FIG. 1E also selects an edge to be processed. (See block 1906
of FIG. 19A; line 2008 of FIG. 20A) and determines whether the edge “E” is part of a cycle. (See
block 1906 of FIG. 19A; line 2010 of FIG. 20A). If the edge “E” is not part of a cycle, the example
conflict identifier 150E determines whether there are more edges “E” to be processed. (See block
1908 of FIG. 19A; line 2008 of FIG. 20A). If there are more edges “E”, the example analyzer edge
remover 145E selects a next edge “E” to be processed. (See block 1904 of FIG. 19A). If all of the
edges “E” have been processed, and provided that all of the edges “E” that are part of a cycle have
been removed, the example code generator 120E of FIG. 1E proceeds to vectorize the loop as

described below with reference to block 1923 of FIG. 19A and line 2042 of FIG. 20B.

[00197] If all of the edges “E” have been processed (using the example techniques
described below with reference to blocks 1912 — 1922 of FIG. 19A and lines 2014 — 2034 of FIG.
20A) but not all of the edges that are part of a cycle have been removed from the list of edges
identified by the example graph analyzer 140E of FIG. 1E, then one or more cycles remain in the
loop and the edge remover 145E of FIG. 1E causes the loop to be marked as non-vectorizable and
the instructions cause the vectorization system 110E to cease operating. (See block 1911 of FIG.

19B; line 2036 of FIG. 20A).

[00198] If the selected edge “E” is part of a cycle (see block 1906 of FIG. 19A; line 2010
of FIG. 20A), the example edge remover 145E of FIG. 1E determines whether the edge “E” is a
flow dependence edge from a statement “A” to a statement “B” with a single direction (<), where
either “A,” “B” or both are conditionally executed within the loop. (See block 1912 of FIG. 19A;
lines 2014, 2016 of FIG. 20A). If the edge remover 145E of FIG. 1E determines that these
conditions are met, the example conflict identifier 150E of FIG. 1E adds the statements “A” and “B”
to a set of ““ConditionalPairStop” instructions (CPS) (see block 1914 of FIG. 19A; line 2018 of FIG.
20A) and the edge remover 145E of FIG. 1E removes the edge “E” from the dependence graph.
(See block 1916 of FIG. 19A; line 2020 of FIG. 20A). In some examples, the conflict identifier

150E places all of the instructions associated with the eliminated cycle into a set of instructions

-65 -

WO 2014/142972 PCT/US2013/032111

referred to as “IN_VPL” (see block 1918 of FIG. 19A; line 2022 of FIG. 20A) that will later be
placed into a “VPL” by the code generator.

[00199] If the example edge remover 145E of FIG. 1E determines that the edge “E” is not
a flow dependence edge “E” of the type described above (see block 1912 of FIG. 19A; line 2014 of
FIG. 20A), the example edge remover 145E of FIG. 1E determines whether another technique can
be used to process the edge “E” in a manner that will permit vectorization of the loop by the code
generator (See block 1920 of FIG. 19A; line 2026 of FIG. 20A). If there is another technique
available, the example edge remover 145E applies that technique to the edge “E” (see block 1922 of
FIG. 19A; lines 2028, 2030 of FIG. 20A). If there is not another technique that can be used to
process the edge “E”, the example edge remover 145E determines that the loop is not vectorizable
(see block 1911 of FIG. 19B), marks the loop as non-vectorizable (see block 1911 of FIG. 19B; line
2036 of FIG. 20A) and the machine readable instructions cause the example vectorization system

110E to halt operation.

[00200] After each edge is processed, the edge remover 145E of FIG. 1E again tests to
determine whether there are more edges to be processed (as described above), and, if not, whether
all cycles have been eliminated from the dependence graph. As described above, if the example
edge remover 145E of FIG. 1E determines that edges have been successfully processed and removed
from the list of edges such that all loop-cycles have been broken, the scalar computer program loop
is supplied to the code converter 170E of FIG. 1E which converts the scalar loop instructions into
vector loop instructions by replacing the scalar variables with vector variables, efc. (See block
1923; not illustrated in the example pseudo code of FIGA. 20A and 20B. The example partitioner
175E generates a “VPL” containing the statements included in the set “IN_VPL.” (See block 1924
of FIG. 19B; lines 2044 of FIG. 20B). Then, the conflict checker identifier 180E of FIG. 1E inserts
a conditional conflict checking instruction such as the “ConditionalPairStop” instruction into the
“VPL” for each pair of statements “A” and “B” included in the set of conflict check instructions
“CPS.” (See block 1926 of FIG. 19B; line 2046 and lines 2050 — 2054 of FIG. 20B). The
“ConditionalPairStop” instructions, as described above, are used to identify the loop iterations that
can be executed in parallel. In some examples, the conditional conflict identifier 180E of FIG. 1E

tests to determine whether the statement “A” writes to a scalar variable “r.” (See block 1928 of FIG.

- 66 -

WO 2014/142972 PCT/US2013/032111

19B; line 2056 of FIG. 20B). If the statement “A” does not write to a scalar variable “r,” the
example partitioner 175E converts the conditionally executed instructions included in the “VPL”
(e.g., statement “A” and statement “B”’) into masked instructions. (See block 1934 of FIG. 19B;
lines 2072, 2074 of FIG. 20B). If the statement “A” does write to a scalar variable “r,” the example
propagator 183E of FIG. 1E inserts a horizontal propagation instruction after the vector instruction
for the statement “A” to propagate the value of the vectorized version of “r”” from elements where
the predicate for the statement “A” (e.g., “pA”) is TRUE to successive elements where the predicate
“pA” is FALSE. (See block 1930 of FIG. 19B; lines 2064 of FIG. 20B). The example selector
185E of FIG. 1E inserts a “SelectLast” instruction after the “VPL” to select the last element of the
vector “vr”’ and broadcasts it to all the elements of the vector “vr” for use in the next vector iteration.
(See block 1932 of FIG. 19B; line 2066 of FIG. 20B). The tangible machine readable instructions
1900 and 2000 then cause the vectorization system 110E of FIG. 1E to cease operating.

[00201] Example machine readable instructions 2100 & 2200 that may be executed to
implement the vectorization system 110F of FIG. 1F are represented by the flowcharts 2100 of
FIGS. 21A - 21B and the pseudo code 2200 illustrated in FIGS. 22A and 22B. The example
machine readable instructions 2100 and 2200 may be executed at intervals (e.g., predetermined
intervals), based on an occurrence of an event (e.g., a predetermined event), etc., or any combination

thereof.

[00202] Example operations performed by the example vectorization system 110F of FIG.
IF are designed to vectorize a loop having loop-carried dependences arising from references to a
scalar variable within the loop. In some examples, the example graph generator 135F of FIG. 1F and
example graph analyzer140F of FIG. 1F have operated to generate and analyze the dependence
graph before the instructions 2100 and 2200 begin and cause the example edge remover to 145F of
FIG. 1F to create and populate a set of edges “E” containing intra-iteration anti-dependence edges
having a sink “W.” The edge remover 145F of FIG. 1F also creates and populates a set of nodes “S”
containing the source nodes, “R,” for each of the edges contained in “E.” (See block 2102 of FIG.
21A; lines 2208 — 2212 of FIG. 22A). The example edge remover 145F creates the sets “E” and “S”

for each write statement “W”” that defines a scalar variable “r” in the loop being vectorized.

- 67 -

WO 2014/142972 PCT/US2013/032111

[00203] For each node “R” in the set “S” for which there is no loop-carried flow
dependence edge from the corresponding “W” node to the “R” node, the example edge remover
145F removes the read instruction “R” from the set “S and the corresponding edge “E *“ (R-> W)
from the set of edges “E.” (See block 2104 of FIG. 21A; lines 2214 — 2218 of FIG. 22A).

[00204] For each node “R” in the set “S,” the example edge remover 145F of FIG. 1F
attempts to use partial vectorization to eliminate an edge on any dependence path from the node “R”
to the node “W” that does not pass through an edge in the set “E.” (See block 2106 of FIG. 21A;
lines 2224 — 2230 of FIG. 22A). If none of the edges on such a path/cycle can be eliminated (see
block 2108 of FIG. 21A, 2230), the edge remover 145F causes the vectorization system 110F to
cease operating. (See block 1209 of FIG. 21A; line 2232 of FIG. 22A). In some examples, the edge
remover 145F causes also indicates that vectorization has failed by returning a “FAILED TO

VECTORIZE” message. (See line 2232 of FIG. 22A).

[00205] Where the set of edges “E” is not empty, the example edge remover 145F of FIG.
IF records information about each remaining edge in “E” (e.g., {r, W, S, E}) onto a stack. (See
block 2110 of FIG. 21A; line 2240, 2242 of FIG. 22A) In some examples, the information is
recorded by being pushed onto a stack referred to as “PropagateShiftCodeGeneration,” and the edge
remover 145F then removes all edges “E” from the corresponding dependence graph/list of edges
created by the graph analyzer 140F of FIG. 1F. In some examples, the edge remover 145F attempts
to process any remaining edges associated with cycles remaining in the scalar computer program
loop using an applicable technique (including any of the techniques disclosed herein) that will
permit vectorization of the loop. (See block 2212 of FIG. 21B; line 2250 — 2252 of FIG. 22A). If
any cycles remain, the loop cannot be vectorized. (See block 2115 of FIG. 21B).

[00206] Next, provided that the dependence graph associated with the loop does not
contain any cycles, the example code converter 170F of FIG. 1F proceeds to convert the scalar loop
being processed to a vector loop by, for example, replacing the scalar variables with vector
variables, replacing the conditions with predicates, efc. (See block 2116 of FIG. 21B; lines 2254 —
2258 of FIG. 22B). In some examples, for each (r, W, S, E) in the “PropagateShiftCodeGeneration”

stack, the example copier 165F creates a copy of the write statement “W.,” referred to as “Wop,” in

- 68 -

WO 2014/142972 PCT/US2013/032111

which any references to “r’” have been renamed by the renaming tool 180F as “r.py.” (See block
2118 of FIG. 21B; line 2260 — 2262 of FIG. 22B). In addition, the example copier 175F of FIG. 1F
hoists the copy of the write statement W, and its dependence predecessors above all instructions
represented by the set “S” (see block 2120 of FIG. 21B; line 2264 of FIG. 22B) and the renaming
tool 180F of FIG. 1F replaces all references to “r”” with references to “reopy” in all of the instructions
contained in the set “S.” (See block 2122 of FIG. 21B; line 2266 of FIG. 22B). In addition, the
example propagator/shifter 185F of FIG. 1F causes the values of the renamed vector “reqp,” to be
propagated/shifted based on the predicate controlling the vector “r” in the scalar version of the loop.
(See block 2124 of FIG. 21B; lines 2268, 2270 of FIG. 22B). In some examples, the example
propagator/shifter 185F performs the vector propagation/shift operation by inserting an instruction
“Icopy = PropagateShift(lr, reopy, p)” after the instruction “W,p,” where p is the predicate mask used
in “Weopy.” The selector 187F of FIG. 1F inserts an instruction “Ir = SelectLastElement (r, p)”
causing the value of “r” calculated in the last iteration of the vector to be shifted into “rcopy ’in the
next iteration. The selector 187F of FIG. 1F also initializes the value of the “r”” before the loop is
entered. (See block 2124 of FIG. 21B; lines 2272 — 2274 of FIG. 22B). The example machine
readable instructions 2100 and 2200 then cause the code generator 120F of FIG. 1F to cease

operating.

[00207] FIG. 23 is a block diagram of an example processor platform 2300 capable of
executing the instructions of FIGS. 13, 14A — 1B, 15A — 15C, 16A - 16C, 17A - 17B, 18A — 18B,
19A — 19B, 20A, 20B, 21A — 21B and 22A — 22B to implement the apparatus of FIGS. 1A, 1B, 1C,
1D, 1E, 1F. The processor platform 2300 can be, for example, a server, a personal computer, a
mobile device (e.g., a cell phone, a smart phone, a tablet such as an iPadTM), a personal digital
assistant (PDA), an Internet appliance, a DVD player, a CD player, a digital video recorder, a Blu-
ray player, a gaming console, a personal video recorder, a set top box, or any other type of
computing device.

[00208] The processor platform 2300 of the illustrated example includes a processor 2312.
The processor 2312 of the illustrated example is hardware. For example, the processor 2312 can be
implemented by one or more integrated circuits, logic circuits, microprocessors or controllers from

any desired family or manufacturer.

-69 -

WO 2014/142972 PCT/US2013/032111

[00209] The processor 2312 of the illustrated example includes a local memory 2313 (e.g.,
a cache). The processor 2312 of the illustrated example is in communication with a main memory
including a volatile memory 2314 and a non-volatile memory 2316 via a bus 2318. The volatile
memory 2314 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM) and/or any other type of random access memory device. The non-volatile memory 2316
may be implemented by flash memory and/or any other desired type of memory device. Access to
the main memory 2314, 2316 is controlled by a memory controller.

[00210] The processor platform 2300 of the illustrated example also includes an interface
circuit 2320. The interface circuit 2320 may be implemented by any type of interface standard, such
as an Ethernet interface, a universal serial bus (USB), and/or a PCI express interface.

[00211] In the illustrated example, one or more input devices 2322 are connected to the
interface circuit 2320. The input device(s) 2322 permit(s) a user to enter data and commands into
the processor 2312. The input device(s) can be implemented by, for example, an audio sensor, a
microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a track-pad, a
trackball, isopoint and/or a voice recognition system.

[00212] One or more output devices 2324 are also connected to the interface circuit 2320
of the illustrated example. The output devices 2324 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal
display, a cathode ray tube display (CRT), a touchscreen, a tactile output device, a light emitting
diode (LED), a printer and/or speakers). The interface circuit 2320 of the illustrated example, thus,
typically includes a graphics driver card, a graphics driver chip or a graphics driver processor.

[00213] The interface circuit 2320 of the illustrated example also includes a
communication device such as a transmitter, a receiver, a transceiver, a modem and/or network
interface card to facilitate exchange of data with external machines (e.g., computing devices of any
kind) via a network 2326 (e.g., an Ethernet connection, a digital subscriber line (DSL), a telephone
line, coaxial cable, a cellular telephone system, etc.).

[00214] The processor platform 2300 of the illustrated example also includes one or more

mass storage devices 2328 for storing software and/or data. Examples of such mass storage devices

-70 -

WO 2014/142972 PCT/US2013/032111

2328 include floppy disk drives, hard drive disks, compact disk drives, Blu-ray disk drives, RAID
systems, and digital versatile disk (DVD) drives.

[00215] The coded instructions 2332 of FIGS. 13, 14A — 1B, 15A - 15C, 16A — 16C, 17A
—17B, 18A — 18B, 19A — 19B, 20A, 20B, 21A — 21B and 22A — 22B may be stored in the mass
storage device 2328, in the volatile memory 2314, in the non-volatile memory 2316, and/or on a
removable tangible computer readable storage medium such as a CD or DVD.

[00216] From the foregoing, it will be appreciated that the above disclosed methods,
apparatus and articles of manufacture permit the vectorization of scalar computer program loops
having loop-carried dependences thereby eliminating the need to perform such vectorization
manually. Further, the above disclosed methods, apparatus and articles of manufacture use
computer program code, applications and/or services, including computer code associated with
computer languages available in architectures having hardware/software that support speculative
vectorization of loops with runtime data dependences, (e.g., Macroscalar™ or similar
architectures).to perform such vectorization. The above disclosed methods, apparatus and articles of
manufacture also permit the identification of run-time loop dependences and the elimination of such
dependences to enable vectorization of the scalar computer program loops.

[00217] An example method disclosed herein includes generating a first predicate set
associated with a first scalar computer program instruction where the first predicate set contains
predicates that cause a scalar variable to be defined in the scalar computer program at or before the
first scalar computer program instruction. The example also includes generating a second predicate
set associated with the first scalar computer program instruction where the second predicate set
contain predicates that cause the scalar variable to be used in the scalar computer program loop after
the first scalar computer program instruction. Some example methods also include determining
whether the second predicate set is a subset of the first predicate set and propagating a value in an
element of a vector to a subsequent element of the vector in response to determining that the second
predicate set is not a subset of the first predicate set. In some such example methods, the vector is
formed by converting the scalar variable to a vector variable.

[00218] Some example methods further include adding a first predicate controlling

execution of the first scalar computer program instruction to the first predicate set and initializing

-71 -

WO 2014/142972 PCT/US2013/032111

the second predicate set as an empty set. Some example methods additionally include adding a
second predicate controlling execution of a second scalar computer program instruction to the
second predicate set.

[00219] Some example methods include determining whether an edge between the first
scalar computer program instruction and a second computer program instruction is a loop-carried
lexically backward anti-dependence edge on the scalar variable. A second predicate controlling
execution of the second scalar computer program instruction is added to the second predicate set, if
the edge is determined to be a loop-carried lexically backward anti-dependence edge on the scalar
variable.

[00220] Some example methods also include adding a second predicate controlling
execution of a second scalar computer program instruction to the first predicate set. Example
methods can also include determining whether an edge between the first scalar computer program
instruction and a second computer program instruction is an output dependence edge on the scalar
variable. In some example methods a second predicate controlling execution of the second scalar
computer program instruction is added to the first predicate set, if the edge is determined to be an
output dependence edge. In some examples, a propagation instruction is used to propagate the
value. Some example methods include converting a scalar instruction that corresponds to the first
scalar computer program instruction into a vector computer program instruction and inserting the
propagation instruction after the vector computer program instruction.

[00221] In some example methods, the propagated value is a first value and the element is
a first element, and the methods also include selecting, in a first iteration, a second value from a
second element in the vector, and populating, in a second iteration, all elements of the vector with
the selected, second value. In some example methods, the second element is the last element in the
vector. In some examples, the value is propagated based on the first predicate.

[00222] Some example systems disclosed herein include a predicate set generator to
generate a first predicate set associated with a first scalar computer program instruction where the
first predicate set contains predicates that cause a scalar variable to be defined at or before the first
scalar computer program instruction. The predicate set generator is also to generate a second

predicate set associated with the first scalar computer program instruction. The second predicate set

=72 -

WO 2014/142972 PCT/US2013/032111

contains predicates that cause the scalar variable to be used after the first scalar computer program
instruction. Some example systems also include a propagator to determine whether the second
predicate set is a subset of the first predicate set and to propagate a value in an element of a vector to
a subsequent element of the vector in response to determining that the second predicate set is not a
subset of the first predicate set. The vector is formed by converting the scalar variable to a vector
variable.

[00223] In some example systems, the predicate set generator also adds a first predicate
controlling execution of the first scalar computer program instruction to the first predicate set; and
initializes the second predicate set as an empty set. Some example systems also include an edge
remover to add a second predicate controlling execution of a second scalar computer program
instruction to the second predicate set. In some example systems the edge remover is to determine
whether an edge between the first scalar computer program instruction and a second computer
program instruction is a loop-carried lexically backward anti-dependence edge on the scalar
variable. If the edge is determined to be a loop-carried lexically backward anti-dependence edge on
the scalar variable, the edge remover adds a second predicate controlling execution of the second
scalar computer program instruction to the second predicate set. In some examples, the edge
remover is to add a second predicate controlling execution of a second scalar computer program
instruction to the first predicate set.

[00224] In some example systems include an edge remover to determine whether an edge
between the first scalar computer program instruction and a second computer program instruction is
an output dependence edge on the scalar variable. The edge remover adds a second predicate
controlling execution of the second scalar computer program instruction to the first predicate set, if
the edge is determined to be an output dependence edge.

[00225] In some example systems, the propagator propagates the value using a propagation
instruction and the propagator inserts the propagation instruction after a vector instruction formed by
converting the first scalar computer program instruction into the vector instruction. In some
examples, propagate value is a first value and the element is a first element and the system also
includes a selector to select, in first iteration, a second value from a second element in the vector and

a broadcaster to populate, in a second iteration, all elements of the vector with the selected value. In

-73 -

WO 2014/142972 PCT/US2013/032111

some examples, the second element is the last element in the vector.

[00226] Some example tangible machine readable storage mediums disclosed herein
include machine readable instructions that cause a machine to generate a first predicate set
associated with a first scalar computer program instruction. The first predicate set is to contain
predicates that cause a scalar variable to be defined at or before the first scalar computer program
instruction. The instructions also cause the machine to generate a second predicate set associated
with the first scalar computer program instruction. The second predicate set is to contain predicates
that cause the scalar variable to be used after the first scalar computer program instruction. In some
examples, the instructions further cause the machine to determine whether the second predicate set
is a subset of the first predicate set. In response to determining that the second predicate set is not a
subset of the first predicate set, the instructions cause the machine to propagate a value in an element
of a vector to a subsequent element of the vector in response. In some examples, the vector is
formed by converting the scalar variable to a vector variable.

[00227] In some example disclosed herein, the instructions also cause the machine to add a
first predicate controlling execution of the first scalar computer program instruction to the first
predicate set and to initialize the second predicate set as an empty set. The instructions further cause
the machine to add a second predicate controlling execution of a second scalar computer program
instruction to the second predicate set. In some examples, instructions also cause the machine to
determine whether an edge between the first scalar computer program instruction and a second
computer program instruction is a loop-carried lexically backward anti-dependence edge on the
scalar variable. The instructions cause the machine to add a second predicate controlling execution
of the second scalar computer program instruction to the second predicate set, if the edge is
determined to be a loop-carried lexically backward anti-dependence edge on the scalar variable.

[00228] In some examples, the instructions also cause the machine to add a second
predicate controlling execution of a second scalar computer program instruction to the first predicate
set. The instructions can also cause the machine to determine whether an edge between the first
scalar computer program instruction and a second computer program instruction is an output
dependence edge on the scalar variable and to add a second predicate controlling execution of the

second scalar computer program instruction to the first predicate set, if the edge is determined to be

-74 -

WO 2014/142972 PCT/US2013/032111

an output dependence edge.

[00229] In some examples, the instructions cause the machine to use a propagation
instruction to propagate the value, to convert a scalar instruction that corresponds to the first scalar
computer program instruction into a vector computer program instruction, and to insert the
propagation instruction after the vector computer program instruction.

[00230] In some examples, the propagated value is a first value and the element is a first
element, and the instructions further cause the machine to select a second value from a second
element in the vector, the second value being selected in a first iteration, and populate, in a second
iteration, all elements of the vector with the selected second value. The second element is the last
element in the vector. In some examples, the value is propagated based on the first predicate.

[00231] Some example methods disclosed herein include, in response to receiving a scalar
computer program loop, replacing a scalar recurrence operation in the scalar computer program loop
with a first vector summing operation and a first vector recurrence operation. The first vector
summing operation is to generate a first running sum and the first vector recurrence operation is to
generate a first vector. The first vector recurrence operation being based on the scalar recurrence
operation. Some example methods also include inserting a renaming operation to rename the first
vector, inserting a second vector summing operation to generate a second running sum, and inserting
a second vector recurrence operation to generate a second vector based on the renamed first vector.

[00232] In some example methods, the first vector recurrence operation defines the first
vector as being based on the first vector and the first running sum and the second vector recurrence
operation defines the renamed first vector as being based on the renamed first vector and the second
running sum. Some example methods also include replacing references to the first vector in a read
operation with references to the renamed vector where the read operation reads the renamed vector.

[00233] In some example methods, the second vector recurrence operation is inserted
before the read operation. In some examples, the scalar recurrence operation is based on an addend,
the first running sum is a first summing vector, and the second running sum is a second summing
vector. Each vector element of the first summing vector contains a running sum of addend values
gathered up to a current iteration and each vector element in the second summing vector contains a

running sum of addend values gathered up to a preceding iteration.

-75 -

WO 2014/142972 PCT/US2013/032111

[00234] Some example methods include, in a current vector iteration, selecting a value in a
last element of the first vector and in a subsequent iteration, populating the elements of the first
vector with the selected value. Some example methods also include identifying a dependence edge
in the scalar computer program loop from a read operation to the scalar recurrence operation where
the scalar recurrence operation is a write operation. Additionally, the example methods include
adding the dependence edge to a set of dependence edges to be removed from a list of edges
associated with the scalar computer program loop if the write operation is in a set of scalar
recurrence operations associated with the scalar computer program loop and the read operation is not
in the set of recurrence operations.

[00235] In some example methods, the scalar recurrence operation is a first scalar
recurrence operation, and the methods further include identifying a dependence edge in the scalar
computer program loop from the first scalar recurrence operation to a second scalar recurrence
operation, where the first and second scalar recurrence operations are write operations.

[00236] Some example systems disclosed herein include a recurrence adder to replace a
scalar recurrence operation in the scalar computer program loop with a first vector summing
operation and a first vector recurrence operation. The first vector summing operation is to generate
a first running sum and the first vector recurrence operation is to generate a first vector. The scalar
recurrence operation is converted to form the first vector recurrence operation. In some example the
recurrence adder also inserts a second vector summing operation to generate a second running sum
and inserts a second vector recurrence operation to generate a second vector. Some example
systems also include a renaming tool to rename the first vector where the second vector recurrence
operation is based on the renamed first vector.

[00237] In some example systems, the first vector recurrence operation defines the first
vector as being based on the first vector and the first running sum and the second vector recurrence
operation defines the renamed first vector as being based on the renamed first vector and the second
running sum. In some such example systems, the recurrence adder inserts the second summing
vector operation and the second vector recurrence operation before a vector read operation and
replace references to the first vector in the vector read operation with references to the renamed

vector. The vector read operation reads the renamed vector.

-76 -

WO 2014/142972 PCT/US2013/032111

[00238] In some example systems, the scalar recurrence operation is based on an addend,
the first running sum is a first summing vector, and the second running sum is a second summing
vector. Each vector element of the first summing vector contains a running sum of addend values
gathered up to a current iteration and each vector element in the second summing vector contains a
running sum of addend values gathered up to a preceding iteration.

[00239] Some example systems include an edge remover to identify a dependence edge in
the scalar computer program loop from a read operation to the scalar recurrence operation where the
scalar recurrence operation is a write operation. In some examples, the edge remover is also to add
the dependence edge to a set of dependence edges associated with the scalar computer program loop,
if the write operation is in a set of scalar recurrence operations associated with the scalar computer
program loop and the read operation is not in the set of recurrence operations. In some examples the
edge remover applies a partial vectorization technique to break a cycle in the scalar computer
program loop. If the partial vectorization technique is not successful in breaking the cycle, the edge
remover removes the dependence edge from the set of dependence edges and removes the write
operation from the set of scalar recurrence operations.

[00240] In some example systems, the scalar recurrence operation is a first scalar
recurrence operation, and the system also includes an edge remover to identify a dependence edge in
the scalar computer program loop from a first write instruction to a second write instruction. The
edge remover removes the dependence edge from a list of dependence edges associated with the
scalar computer program loop if the first and second write instructions are both contained in a set of
recurrence operations associated with the scalar computer program loop.

[00241] Some example tangible machine readable storage mediums disclosed herein
include machine readable instructions that cause a machine to, in response to receiving a scalar
computer program loop, replace a scalar recurrence operation in the scalar computer program loop
with a first vector summing operation and a first vector recurrence operation. The first vector
summing operation is to generate a first running sum and the first vector recurrence operation is to
generate a first vector. The first vector recurrence operation is based on the scalar recurrence
operation. The instructions also cause the machine to insert a second vector summing operation.

The second vector summing operation is to generate a second running sum. In some examples, the

=77 -

WO 2014/142972 PCT/US2013/032111

instructions further cause the machine to insert a second vector recurrence operation to generate a
second vector and to rename the first vector, the second vector recurrence operation being based on
the renamed first vector.

[00242] In some examples, the first vector recurrence operation defines the first vector as
being based on the first vector and the first running sum, the second vector recurrence operation
defines the renamed first vector as being based on the renamed first vector and the second running
sum, and the second summing vector operation and the second vector recurrence operation are
inserted before a vector read operation that reads the renamed vector. In some examples, references
to the first vector in the vector read operation are replaced with references to the renamed vector. In
some examples, the scalar recurrence operation is based on an addend, the first running sum is a first
summing vector, and the second running sum is a second summing vector. Each vector element of
the first summing vector contains a running sum of addend values gathered up to a current iteration
and each vector element in the second summing vector contains a running sum of addend values
gathered up to a preceding iteration.

[00243] In some examples, the instructions further to cause the machine to identify a
dependence edge in the scalar computer program loop from a read operation to the scalar recurrence
operation where the scalar recurrence operation being a write operation. If the write operation isin a
set of scalar recurrence operations associated with the scalar computer program loop and the read
operation is not in the set of scalar recurrence operations, the instructions cause the machine to add
the dependence edge to a set of dependence edges associated with the scalar computer program loop.
The instructions cause the machine to apply a partial vectorization technique to remove a cycle in
the scalar computer program loop. If the partial vectorization technique is not successful in breaking
the cycle, the instructions cause the machine to remove the dependence edge from the set of
dependence edges and to remove the write operation from the set of scalar recurrence operations.

[00244] Some example instructions cause the machine to identify a dependence edge in the
scalar computer program loop from a first write instruction to a second write instruction. If the first
and second write instructions are both contained in a set of scalar recurrence operations associated
with the scalar computer program loop, the instructions cause the machine to remove the

dependence edge from a list of dependence edges scalar computer program loop.

-78 -

WO 2014/142972 PCT/US2013/032111

[00245] One example method disclosed herein includes, at runtime, identifying a first loop
iteration that cannot be executed in parallel with a second loop iteration due to a set of conflicting
scalar loop operations, the first loop iteration being executed after the second loop iteration. The
method also includes sectioning a vector loop into vector partitions including a first vector partition,
the first vector partition to execute consecutive loop iterations in parallel, the consecutive loop
iterations to start at the earlier loop iteration and to end before the conflict loop iteration.

[00246] In some example methods, the consecutive loop iterations are a first set of
consecutive loop iterations, and the vector partitions include a second vector partition to execute a
second set of consecutive loop iterations in parallel. The second set of consecutive loop iterations
start at the first loop iteration and end before a third loop iteration. In some example methods, a first
number of consecutive loop iterations included in the first set of consecutive loop iterations is
different than a second number of consecutive loop iterations included in the second set of
consecutive loop iterations. In some example methods, sectioning the vector loop into vector
partitions includes generating a vector partitioning loop, the vector partitioning loop being executed
based on a predicate. In some example methods, first loop iteration is identified before the vector
partitioning loop is entered and in some example methods, sectioning the vector loop is performed
in an inner loop that is executed within an outer loop. In some example methods, the conflicting
operations access a same memory location.

[00247] In some example methods the conflicting operations include a first conditionally
executed statement and a second conditionally executed statement and the first and second
conditionally executed statements cause a cross-iteration dependence. Some example methods
further include compensating for a memory flow dependence between a first operation and a second
operation by placing a set of program instructions associated with first operation and the second
operation into the vector partitioning loop.

[00248] One example system disclosed herein include a conflict checker to identify, at
runtime, a first loop iteration that cannot be executed in parallel with a second loop iteration due to
the conflicting operations where the first loop iteration being executed before the second loop
iteration. The system also includes a partitioner to section a vector loop into vector partitions

including a first vector partition. The first vector partition is to execute consecutive loop iterations

-79 -

WO 2014/142972 PCT/US2013/032111

in parallel and the consecutive loop iterations start at the second loop iteration and end before the
first loop iteration. In some example systems, the consecutive loop iterations are a first set of
consecutive loop iterations, and the vector partitions further include a second vector partition to
execute a second set of consecutive loop iterations in parallel. The second set of consecutive loop
iterations start at the first loop iteration and end before a third loop iteration. In some example
systems, a first number of consecutive loop iterations included in the first set of consecutive loop
iterations is different than a second number of consecutive loop iterations included in the second set
of consecutive loop iterations.

[00249] In some example systems, the partitioner sections the vector loop into vector
partitions by generating a vector partitioning loop, the vector partitioning loop being executed based
on a predicate. In some example systems, the conflict checker identifies the first conflict loop
iteration before the vector partitioning loop is entered. In some examples, the partitioner sections
the vector loop within an inner loop that is executed within an outer loop.

[00250] In some example systems, the conflicting operations access a same memory
location and in some example systems the conflicting operations include a first conditionally
executed statement and a second conditionally executed statement where the first and second
conditionally executed statements causing a cross-iteration dependence. In some examples, the
conflicting operations include a first operation and a second operation that cause a memory flow
dependence.

[00251] In some examples, the partitioner sections the vector loop by generating a vector
partitioning loop, and the conflicting operations include a first scalar operation performed by a first
scalar instruction and a second scalar operation performed by a second scalar instruction. In some
such examples, the sectioning performed by the partitioner compensates for a memory flow
dependence between the first scalar instruction and the second scalar instruction by placing a set of
vector computer program instructions associated with the first scalar instruction and the second
scalar instruction into the vector partitioning loop.

[00252] Some example tangible machine readable storage mediums disclosed herein
include machine readable instructions that cause a machine to, at runtime, identify a first loop

iteration that cannot be executed in parallel with a second loop iteration due to a set of conflicting

-80 -

WO 2014/142972 PCT/US2013/032111

scalar loop operations. The first loop iteration is executed after the second loop iteration. The
instructions also cause the machine to section a vector loop into vector partitions including a first
vector partition that executes consecutive loop iterations in parallel starting at the second loop
iteration and ending before the first loop iteration. In some examples, the consecutive loop
iterations are a first set of consecutive loop iterations, and the vector partitions include a second
vector partition to execute a second set of consecutive loop iterations in parallel starting at the first
loop iteration and ending before a third loop iteration.

[00253] In some examples, a first number of consecutive loop iterations included in the
first set of consecutive loop iterations is different than a second number of consecutive loop
iterations included in the second set of consecutive loop iterations. In some examples, sectioning
the vector loop into vector partitions includes generating a vector partitioning loop that is executed
based on a predicate. In some examples, the first loop iteration is identified before the vector
partitioning loop is entered and in some examples, the vector loop is sectioned in an inner loop that
is executed within an outer loop. In some examples, the conflicting operations access a same
memory location.

[00254] In some examples, the conflicting operations include a first conditionally executed
statement and a second conditionally executed statement that causes a cross-iteration dependence.
In some examples the instructions further cause the machine to compensate for a memory flow
dependence between a first scalar operation and a second scalar operation by placing a set of
program instructions associated with first scalar operation and the second scalar operation into the
vector partitioning loop.

[00255] Some example methods disclosed herein include, in response to receiving a scalar
computer program loop having a scalar variable referenced in a first scalar operation and referenced
in a second scalar operation that lexically precedes the first scalar operation, renaming a first vector
based on the scalar variable to form a second vector. The method also includes replacing references
to the first vector in a copy of a first vector operation based on the first scalar operation with
references to the second vector and replacing references to the first vector in a second vector
operation based on the second scalar operation with references to the second vector. The method

further includes placing the copy of the first vector operation at a location in the vector computer

-81 -

WO 2014/142972 PCT/US2013/032111

program loop that lexically precedes the second vector operation and inserting a third vector
operation into the vector computer program loop. The third vector operation propagates values in
vector elements of the second vector based on a predicate vector.

[00256] In some example methods the location in the vector computer program loop is a
first location and the third vector operation is inserted at a second location where the first location
lexically precedes the second location. In some example methods the predicate vector is based on a
condition that controls execution of the first scalar operation in the scalar computer program loop.
In some examples, the third vector operation propagates the values in vector elements of the second
vector based on the predicate vector.

[00257] Some example methods also include identifying a set of edges that are each
associated with an intra-iteration anti-dependence in the scalar computer program loop and that each
have the first operation as the sink node. Some example methods further include identifying a set of
source nodes that each correspond to an edge in the set of edges and determining whether there is a
flow dependence from the first scalar operation to the second scalar operation. If there is not a flow
dependence from the first scalar operation to the second operation, the method includes removing a
first edge between the second scalar operation and the first scalar operation from the set of edges
and removing a first source node corresponding to the second scalar operation from the set of source
nodes. In some examples, the method also includes selecting, in a first iteration, a value from a last
element of the first vector, and populating, in a second iteration, all elements of the first vector with
the selected vector value.

[00258] Some example systems disclosed herein include a copier to generate a copy of a
first vector operation in response to receiving a scalar computer program loop having a scalar
variable referenced in a first scalar operation and referenced in a second scalar operation that
lexically precedes the first scalar operation. The first vector operation is based on the first scalar
operation. The copier also inserts the copy of the first vector operation into the vector computer
program loop at a location that lexically precedes a second vector operation based on the second
scalar operation. A renaming tool renames a first vector based on the scalar variable to form a
second vector and replaces references to the first vector in the copy of the first vector operation with

references to the second vector. The renaming tool also replaces references to the first vector in a

-82-

WO 2014/142972 PCT/US2013/032111

second vector operation based on the second scalar operation with references to the second vector.
Some example systems also include a propagator to insert a third vector operation into the vector
computer program loop. The third vector operation propagates values in vector elements of the
second vector based on a predicate vector. In some examples, the location in the vector computer
program loop is a first location and the propagator inserts the third vector operation at a second
location where the first location lexically precedes the second location.

[00259] In some examples system, the predicate vector is based on a condition that
controls execution of the first scalar operation in the scalar computer program loop. And in some
example systems, the third vector operation propagates the values in vector elements of the second
vector based on the predicate vector.

[00260] Some example systems also include an edge remover to identify a set of edges that
are each associated with an intra-iteration anti-dependence in the scalar computer program loop and
that each have the first operation as a sink node. The example edge remover also identifies a set of
source nodes that each correspond to an edge in the set of edges and determines whether there is a
flow dependence from the first scalar operation to the second scalar operation. If the edge remover
determines that there is not a flow dependence from the first scalar operation to the second scalar
operation, the edge remover removes a first edge between the second scalar operation and the first
scalar operation from the set of edges and removes a first source node corresponding to the second
scalar operation from the set of source nodes.

[00261] Some example systems also include a selector to select, in a first iteration, a value
from a last element of the first vector and a broadcaster to populate, in a second iteration, all
elements of the first vector with the selected value.

[00262] Some example tangible machine readable storage mediums disclosed herein
include machine readable instructions that cause a machine to, in response to receiving a scalar
computer program loop having a scalar variable referenced in a first scalar operation and referenced
in a second scalar operation that lexically precedes the first scalar operation, rename a first vector
form a second vector, the first being based on the scalar variable. The instructions also cause the
machine to replace references to the first vector in a copy of a first vector operation with references

to the second vector and to replace references to the first vector in a second vector operation with

-83 -

WO 2014/142972 PCT/US2013/032111

references to the second vector where the first vector operation is based on the first scalar operation
and the second vector operation is based on the second scalar operation. The instructions also cause
the machine to place the copy of the first vector operation at a location in the vector computer
program loop that lexically precedes the second vector operation and to insert a third vector
operation into the vector computer program loop, the third vector operation propagating values in
vector elements of the second vector based on a predicate vector.

[00263] In some examples, the location in the vector computer program loop is a first
location and the third vector operation is inserted at a second location where the first location
lexically precedes the second location. In some examples, the predicate vector is based on a
condition that controls execution of the first scalar operation in the scalar computer program loop
and, in some examples, the third vector operation propagates the values in vector elements of the
second vector based on the predicate vector.

[00264] In some examples, the instructions further cause the machine to identify a set of
edges that are each associated with an intra-iteration anti-dependence in the scalar computer
program loop and that each have the first operation as the sink node. The instructions also cause the
machine to identify a set of source nodes that each correspond to an edge in the set of edges. The
instructions further cause the machine to determine whether there is a flow dependence from the
first scalar operation to the second scalar operation, and if it is determined that there is not a flow
dependence from the first scalar operation to the second operation, remove a first edge between the
second scalar operation and the first scalar operation from the set of edges and remove a first source
node corresponding to the second scalar operation from the set of source nodes. In some examples,
the instructions further cause the machine to select, in a first iteration, a value from a last element of
the first vector, and populate, in a second iteration, all elements of the first vector with the selected

vector value.

[00265] In some examples, the loop-dependence/edge processing techniques employed by
one or more of the example analyzers 115A, 115B, 115C, 115D, 115E, 115F are employed by any
of the other example analyzers to process a loop dependence/edge as appropriate to the type of loop

dependence/edge.

-84 -

WO 2014/142972 PCT/US2013/032111

[00266] Finally, although certain example methods, apparatus and articles of manufacture
have been described herein, the scope of coverage of this patent is not limited thereto. On the
contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within

the scope of the claims of the patent either literally or under the doctrine of equivalents.

-85 -

WO 2014/142972 PCT/US2013/032111

1. A system to convert a scalar computer program loop having loop-carried
dependences arising from a conditionally defined scalar variable to a vector computer
program loop, the system comprising:
a predicate set generator to:
generate a first predicate set associated with a first scalar computer program
instruction, the first predicate set to contain predicates that cause a scalar variable to be
defined at or before the first scalar computer program instruction;
generate a second predicate set associated with the first scalar computer
program instruction, the second predicate set to contain predicates that cause the scalar
variable to be used after the first scalar computer program instruction;
a propagator to:
determine whether the second predicate set is a subset of the first predicate
set; and
propagate a value in an element of a vector to a subsequent element of the
vector in response to determining that the second predicate set is not a subset of the first

predicate set, the vector being formed by converting the scalar variable to a vector variable.

2. A system as defined in claim 1 wherein the predicate set generator is further to:
add a first predicate controlling execution of the first scalar computer program
instruction to the first predicate set; and

initialize the second predicate set as an empty set.
3. A system as defined in claim 2 further comprising an edge remover to add a second

predicate controlling execution of a second scalar computer program instruction to the

second predicate set.

-86 -

WO 2014/142972 PCT/US2013/032111

4. A system as defined in claim 2 further comprising an edge remover to:

determine whether an edge between the first scalar computer program instruction and
a second computer program instruction is a loop-carried lexically backward anti-dependence
edge on the scalar variable; and

add a second predicate controlling execution of the second scalar computer program
instruction to the second predicate set, if the edge is determined to be a loop-carried lexically

backward anti-dependence edge on the scalar variable.

5. A system as defined in claim 2 further comprising an edge remover to add a second
predicate controlling execution of a second scalar computer program instruction to the first

predicate set.

6. A system as defined in claim 2 further comprising an edge remover to:

determine whether an edge between the first scalar computer program instruction and
a second computer program instruction is an output dependence edge on the scalar variable;
and

add a second predicate controlling execution of the second scalar computer program
instruction to the first predicate set, if the edge is determined to be an output dependence

edge.

7. As system as defined in claim 1 wherein the propagator is to propagate the value
using a propagation instruction and wherein the propagator inserts the propagation
instruction after a vector computer program instruction formed by converting the first scalar

computer program instruction into the vector computer program instruction.

-87-

WO 2014/142972 PCT/US2013/032111

8. A system as defined in claim 1 wherein the value is a first value and the element is a
first element, the system further comprising:

a selector to select a second value from a second element in the vector, the second
value being selected in a first iteration; and

a broadcaster to populate, in a second iteration, all elements of the vector with the

selected value.

9. A system as defined in claim 8 wherein the second element is the last element in the
vector.
10. A method to convert a scalar computer program loop having a loop-carried

dependence arising from a conditionally defined scalar variable to a vector computer
program loop, the method comprising:

generating a first predicate set associated with a first scalar computer program
instruction, the first predicate set to contain predicates that cause the scalar variable to be
defined in the scalar computer program at or before the first scalar computer program
instruction;

generating a second predicate set associated with the first scalar computer program
instruction, the second predicate set to contain predicates that cause the scalar variable to be
used in the scalar computer program loop after the first scalar computer program instruction;

determining whether the second predicate set is a subset of the first predicate set; and

propagating a value in an element of a vector to a subsequent element of the vector in
response to determining that the second predicate set is not a subset of the first predicate set,

the vector being formed by converting the scalar variable to a vector variable.

11. A method as defined in claim 10 further comprising:
adding a first predicate controlling execution of the first scalar computer program
instruction to the first predicate set; and

initializing the second predicate set as an empty set.

- 88 -

WO 2014/142972 PCT/US2013/032111

12. A method as defined in claim 11 further comprising:
adding a second predicate controlling execution of a second scalar computer program

instruction to the second predicate set.

13. A method as defined in claim 11 further comprising:

determining whether an edge between the first scalar computer program instruction
and a second computer program instruction is a loop-carried lexically backward anti-
dependence edge on the scalar variable; and

adding a second predicate controlling execution of the second scalar computer
program instruction to the second predicate set if the edge is determined to be a loop-carried

lexically backward anti-dependence edge on the scalar variable.

14. A method as defined in claim 11 further comprising:
adding a second predicate controlling execution of a second scalar computer program

instruction to the first predicate set.

15. A method as defined in claim 11 further comprising:

determining whether an edge between the first scalar computer program instruction
and a second computer program instruction is an output dependence edge on the scalar
variable; and

adding a second predicate controlling execution of the second scalar computer
program instruction to the first predicate set, if the edge is determined to be an output

dependence edge.

-89 -

WO 2014/142972 PCT/US2013/032111

16. A method as defined in any one of claims 10-15 wherein the value is propagated
using a propagation instruction, the method further comprising:

converting a scalar instruction that corresponds to the first scalar computer program
instruction into a vector computer program instruction; and

inserting the propagation instruction after the vector computer program instruction.

17. A method as defined in any one of claims 10-15 wherein the value is a first value and
the element is a first element, the method further comprising:
selecting a second value from a second element in the vector, the second value being

selected in a first iteration; and

populating, in a second iteration, all elements of the vector with the selected second

value.

18. A method as defined in claim 17 wherein the second element is the last element in the

vector.

19. A method as defined in claim 10 wherein the value is propagated based on the first

predicate.

-90 -

WO 2014/142972 PCT/US2013/032111

20. A tangible machine readable storage medium comprising machine readable
instructions which, when executed, cause a machine to at least:

generate a first predicate set associated with a first scalar computer program
instruction , the first predicate set to contain predicates that cause a scalar variable to be
defined at or before the first scalar computer program instruction;

generate a second predicate set associated with the first scalar computer program
instruction, the second predicate set to contain predicates that cause the scalar variable to be
used after the first scalar computer program instruction;

determine whether the second predicate set is a subset of the first predicate set; and

propagate a value in an element of a vector to a subsequent element of the vector in
response to determining that the second predicate set is not a subset of the first predicate set,

the vector being formed by converting the scalar variable to a vector variable.

21. A tangible machine readable storage medium as defined in claim 20, the instructions
further to cause the machine to:

add a first predicate controlling execution of the first scalar computer program
instruction to the first predicate set; and

initialize the second predicate set as an empty set.
22. A tangible machine readable storage medium as defined in claim 21, the instructions
further to cause the machine to add a second predicate controlling execution of a second

scalar computer program instruction to the second predicate set.

23. A tangible machine readable storage medium as defined in claim 22 the instructions

further to cause the machine to:

-9] -

WO 2014/142972 PCT/US2013/032111

determine whether an edge between the first scalar computer program instruction and a
second computer program instruction is a loop-carried lexically backward anti-dependence
edge on the scalar variable; and

add a second predicate controlling execution of the second scalar computer program
instruction to the second predicate set, if the edge is determined to be a loop-carried lexically

backward anti-dependence edge on the scalar variable.

24. A tangible machine readable storage medium as defined in claim 20 the instructions
further to cause the machine to:
add a second predicate controlling execution of a second scalar computer program

instruction to the first predicate set.

25. A tangible machine readable storage medium as defined in claim 21, the instructions
further to cause the machine to:

determine whether an edge between the first scalar computer program instruction and
a second computer program instruction is an output dependence edge on the scalar variable;
and

add a second predicate controlling execution of the second scalar computer program
instruction to the first predicate set, if the edge is determined to be an output dependence

edge.

26. A tangible machine readable storage medium as defined in claim 20 the machine
readable instructions further to cause the machine to:

use a propagation instruction to propagate the value;

convert a scalar instruction that corresponds to the first scalar computer program
instruction into a vector computer program instruction; and

insert the propagation instruction after the vector computer program instruction.

-9

WO 2014/142972 PCT/US2013/032111

27. A tangible machine readable storage medium as defined in claim 20 wherein the
value is a first value and the element is a first element, the instructions further to cause the
machine to:

select a second value from a second element in the vector, the second value being
selected in a first iteration; and

populate, in a second iteration, all elements of the vector with the selected. second

value.

28. A tangible machine readable storage medium as defined in claim 27 wherein the

second element is the last element in the vector.

29. A tangible machine readable storage medium as defined in claim 20 wherein the

value is propagated based on the first predicate.

30. A method to convert a scalar computer program loop having loop-carried
dependences arising from a scalar recurrence operation into a vector computer program loop,
the method comprising:
in response to receiving the scalar computer program loop, replacing the scalar
recurrence operation in the scalar computer program loop with a first vector summing
operation and a first vector recurrence operation, the first vector summing operation to
generate a first running sum and the first vector recurrence operation to generate a first
vector, the first vector recurrence operation being based on the scalar recurrence operation;
and
inserting:
a renaming operation to rename the first vector;
a second vector summing operation, the second vector summing operation to
generate a second running sum; and
a second vector recurrence operation to generate a second vector based on the

renamed first vector.

-03 .

WO 2014/142972 PCT/US2013/032111

31. A method as defined in claim 30 wherein the first vector recurrence operation defines
the first vector as being based on the first vector and the first running sum, the second vector
recurrence operation defines the renamed first vector as being based on the renamed first
vector and the second running sum, the method further comprising replacing references to
the first vector in a read operation with references to the renamed vector, the read operation

reading the renamed vector.

32. A method as defined in claim 31, wherein the second vector recurrence operation is

inserted before the read operation.

33. A method as defined in any one of claims 30-32 wherein the scalar recurrence
operation is based on an addend, the first running sum is a first summing vector, and the
second running sum is a second summing vector, each vector element of the first summing
vector containing a running sum of addend values gathered up to a current iteration and each
vector element in the second summing vector containing a running sum of addend values

gathered up to a preceding iteration.

34. A method as defined in any one of claims 30-32 further comprising:
in a current vector iteration, selecting a value in a last element of the first vector; and
in a subsequent iteration, populating the elements of the first vector with the selected

value.

-94 -

WO 2014/142972 PCT/US2013/032111

35. A method as defined in claim 30 further comprising:

identifying a dependence edge in the scalar computer program loop from a read
operation to the scalar recurrence operation, the scalar recurrence operation being a write
operation; and

adding the dependence edge to a set of dependence edges to be removed from a list of
edges associated with the scalar computer program loop if the write operation is in a set of
scalar recurrence operations associated with the scalar computer program loop and the read

operation is not in the set of scalar recurrence operations.

36. A method as defined in claim 30, wherein the scalar recurrence operation is a first
scalar recurrence operation, the method further comprising:

identifying a dependence edge in the scalar computer program loop from the first
scalar recurrence operation to a second scalar recurrence operation, the first and second

scalar recurrence operations being write operations.

37. A system to convert a scalar computer program loop having loop-carried
dependences arising from a scalar recurrence operation into a vector computer program loop,
the system comprising:
a recurrence adder to:
replace the scalar recurrence operation in the scalar computer program loop
with a first vector summing operation and a first vector recurrence operation, the first vector
summing operation to generate a first running sum and the first vector recurrence operation
to generate a first vector, the first vector recurrence operation being based on the scalar
recurrence operation;
insert a second vector summing operation, the second vector summing
operation to generate a second running sum; and
insert a second vector recurrence operation to generate a second vector; and
a renaming tool to rename the first vector, the second vector recurrence operation

being based on the renamed first vector.

-05.-

WO 2014/142972 PCT/US2013/032111

38. A system as defined in claim 37 wherein the first vector recurrence operation defines
the first vector as being based on the first vector and the first running sum, the second vector
recurrence operation defines the renamed first vector as being based on the renamed first
vector and the second running sum, and the recurrence adder inserts the second summing
vector operation and the second vector recurrence operation before a vector read operation
and replace references to the first vector in the vector read operation with references to the

renamed vector, the vector read operation reading the renamed vector.

39. A system as defined in claim 37 wherein the scalar recurrence operation is based on
an addend, the first running sum is a first summing vector, and the second running sum is a
second summing vector, each vector element of the first summing vector containing a
running sum of addend values gathered up to a current iteration and each vector element in
the second summing vector containing a running sum of addend values gathered up to a

preceding iteration.

40. A system as defined in claim 37 further comprising an edge remover to:

identify a dependence edge in the scalar computer program loop from a read
operation to the scalar recurrence operation, the scalar recurrence operation being a write
operation;

add the dependence edge to a set of dependence edges to be removed from a list of
edges associated with the scalar computer program loop , if the write operation is in a set of
scalar recurrence operations associated with the scalar computer program loop and the read
operation is not in the set of scalar recurrence operations;

apply a partial vectorization technique to break a cycle associated with the
dependence edge;

if the partial vectorization technique is not successful in breaking the cycle , remove
the dependence edge from the set of dependence edges and remove the write operation from

the set of scalar recurrence operations.

-906 -

WO 2014/142972 PCT/US2013/032111

41. A system as defined in claim 37, wherein the scalar recurrence operation is a first
scalar recurrence operation, the system further comprising an edge remover to:

identify a dependence edge in the scalar computer program loop from a first write
instruction to a second write instruction; and

remove the dependence edge from a list of dependence edges associated the scalar
computer program loop if the first and second write instructions are both contained in a set of

scalar recurrence operations associated with the scalar computer program loop.

42. A tangible machine readable storage medium comprising machine readable
instructions which, when executed, cause the machine to at least:

in response to receiving a scalar computer program loop, replace a scalar recurrence
operation in the scalar computer program loop with a first vector summing operation and a
first vector recurrence operation, the first vector summing operation to generate a first
running sum and the first vector recurrence operation to generate a first vector, the first
vector recurrence operation being based on the scalar recurrence operation;

insert a second vector summing operation, the second vector summing operation to
generate a second running sum; and

insert a second vector recurrence operation to generate a second vector; and

rename the first vector, the second vector recurrence operation being based on the

renamed first vector.

43. A tangible machine readable storage medium as defined in claim 42 wherein the first
vector recurrence operation defines the first vector as being based on the first vector and the
first running sum, the second vector recurrence operation defines the renamed first vector as
being based on the renamed first vector and the second running sum, the second summing
vector operation and the second vector recurrence operation are inserted before a vector read
operation that reads the renamed vector, and references to the first vector in the vector read

operation are replaced with references to the renamed vector.

-97-

WO 2014/142972 PCT/US2013/032111

44. A tangible machine readable storage medium as defined in claim 42 wherein the
scalar recurrence operation is based on an addend, the first running sum is a first summing
vector, and the second running sum is a second summing vector, each vector element of the
first summing vector containing a running sum of addend values gathered up to a current
iteration and each vector element in the second summing vector containing a running sum of

addend values gathered up to a preceding iteration.

45. A tangible machine readable storage medium as defined in claim 42 the instructions
further to cause the machine to:

identify a dependence edge in the scalar computer program loop from a read
operation to the scalar recurrence operation, the scalar recurrence operation being a write
operation;

if the write operation is in a set of scalar recurrence operations associated with the
scalar computer program loop and the read operation is not in the set of scalar recurrence
operations, add the dependence edge to a set of dependence edges to be removed from a list
of edges associated with the scalar computer program loop.;

apply a partial vectorization technique to break a cycle in the scalar computer
program loop, the cycles being from the read operation to the write operation, and

if the partial vectorization technique is not successful in breaking the cycle, remove
the write operation from the set of scalar recurrence operations and remove all dependence

edges from the set of dependence edges

-08 -

WO 2014/142972 PCT/US2013/032111

46. A tangible machine readable storage medium as defined in claim 42, the instructions
further to cause the machine to:

identify a dependence edge in the scalar computer program loop from a first write
instruction to a second write instruction; and

if the first and second write instructions are both contained in a set of scalar
recurrence operations associated with the scalar computer program loop, remove the
dependence edge from a list of dependence edges associated with the scalar computer

program loop.

47. A method to convert a scalar computer program loop having loop-carried
dependences to a vector computer program loop, the method comprising:

at runtime, identifying a first loop iteration that cannot be executed in parallel with a
second loop iteration due to a set of conflicting scalar loop operations, the first loop iteration
being executed after the second loop iteration; and

sectioning a vector loop into vector partitions including a first vector partition, the
first vector partition to execute consecutive loop iterations in parallel, the consecutive loop

iterations to start at the second loop iteration and to end before the first loop iteration.

48. A method as defined in claim 47 wherein the consecutive loop iterations are a first set
of consecutive loop iterations, and the vector partitions include a second vector partition to
execute a second set of consecutive loop iterations in parallel, the second set of consecutive

loop iterations to start at the first loop iteration and to end before a third loop iteration.

49. A method as defined in claim 48 wherein a first number of consecutive loop
iterations included in the first set of consecutive loop iterations is different than a second
number of consecutive loop iterations included in the second set of consecutive loop

iterations.

-99 .

WO 2014/142972 PCT/US2013/032111

50. A method as defined in any one of claims 47-49 wherein sectioning the vector loop
into vector partitions comprises generating a vector partitioning loop, the vector partitioning

loop being executed based on a predicate.

51. A method as defined in claim 50 wherein the first loop iteration is identified before

the vector partitioning loop is entered.

52. A method as defined in any one of claims 47-49 wherein sectioning the vector loop

is performed in an inner loop, the inner loop being executed within an outer loop.

53. A method as defined in any one of claims 47-49 wherein the conflicting operations

access a same memory location.

54. A method as defined in any one of claims 47-49 wherein the conflicting operations
include a first conditionally executed statement and a second conditionally executed
statement, the first and second conditionally executed statements causing a cross-iteration

dependence.

55. A method as defined in claim 50, the method further comprising compensating for
a memory flow dependence between a first operation and a second operation by placing a set
of program instructions associated with the first operation and the second operation into the

vector partitioning loop.

- 100 -

WO 2014/142972 PCT/US2013/032111

56. A system to convert a scalar computer program loop having loop-carried
dependences into a vector computer program loop, the system comprising:

a conflict checker to identify, at runtime, a first loop iteration that cannot be
executed in parallel with a second loop iteration due to the conflicting operations, the first
loop iteration being executed before the second loop iteration; and

a partitioner to section a vector loop into vector partitions including a first vector
partition, the first vector partition to execute consecutive loop iterations in parallel, the
consecutive loop iterations to start at the second loop iteration and to end before the first loop

iteration.

57. A system as defined in claim 56 wherein the consecutive loop iterations are a first set
of consecutive loop iterations, and the vector partition further include a second vector
partition to execute a second set of consecutive loop iterations in parallel, the second set of
consecutive loop iterations to start at the first loop iteration and to end before a third loop

iteration.

38. A system as defined in claim 57 wherein a first number of consecutive loop iterations
included in the first set of consecutive loop iterations is different than a second number of

consecutive loop iterations included in the second set of consecutive loop iterations.

59. A system as defined in claim 56 wherein the partitioner sections the vector loop into
vector partitions by generating a vector partitioning loop, the vector partitioning loop being

executed based on a predicate.

60. A system as defined in claim 59 wherein the conflict checker identifies the first
conflict loop iteration before the vector partitioning loop is entered.
61. A system as defined in claim 56 wherein the partitioner sections the vector loop

within an inner loop, the inner loop being executed within an outer loop.

- 101 -

WO 2014/142972 PCT/US2013/032111

62. A system as defined in claim 56 wherein the conflicting operations access a same

memory location.

63. A system as defined in claim 56 wherein the conflicting operations include a first
conditionally executed statement and a second conditionally executed statement, the first and

second conditionally executed statements causing a cross-iteration dependence.

64. A system as defined in claim 56 wherein the conflicting operations include a first

operation and a second operation that cause a memory flow dependence.

65. A system as defined in claim 56 wherein the partitioner sections the vector loop by
generating a vector partitioning loop, the conflicting operations include a first scalar
operation performed by a first scalar instruction and a second scalar operation performed by
a second scalar instruction, and the sectioning performed by the partitioner compensates for a
memory flow dependence between the first scalar instruction and the second scalar
instruction by placing a set of vector computer program instructions associated with the first

scalar instruction and the second scalar instruction into the vector partitioning loop.

66. A tangible machine readable storage medium comprising machine readable
instructions which, when executed, cause the machine to at least:

at runtime, identify a first loop iteration that cannot be executed in parallel
with a second loop iteration due to a set of conflicting scalar loop operations, the first loop
iteration being executed after the second loop iteration; and

section a vector loop into vector partitions including a first vector partition,
the first vector partition to execute consecutive loop iterations in parallel, the consecutive

loop iterations to start at the second loop iteration and to end before the first loop iteration.

- 102 -

WO 2014/142972 PCT/US2013/032111

67. A tangible machine readable storage medium as defined in claim 66 wherein the
consecutive loop iterations are a first set of consecutive loop iterations, and the vector
partitions include a second vector partition to execute a second set of consecutive loop
iterations in parallel, the second set of consecutive loop iterations to start at the first loop

iteration and to end before a third loop iteration.

68. A tangible machine readable storage medium as defined in claim 67 wherein a first
number of consecutive loop iterations included in the first set of consecutive loop iterations
is different than a second number of consecutive loop iterations included in the second set of

consecutive loop iterations.

69. A tangible machine readable storage medium as defined in claim 66 wherein
sectioning the vector loop into vector partitions comprises generating a vector partitioning

loop, the vector partitioning loop being executed based on a predicate.

70. A tangible machine readable storage medium as defined in claim 69 wherein the first

loop iteration is identified before the vector partitioning loop is entered.

71. A tangible machine readable storage medium as defined in claim 66 wherein the

vector loop is sectioned in an inner loop, the inner loop being executed within an outer loop.

72. A tangible machine readable storage medium as defined in claim 66 wherein the

conflicting operations access a same memory location.

73. A tangible machine readable storage medium as defined in claim 66 wherein the
conflicting operations include a first conditionally executed statement and a second
conditionally executed statement, the first and second conditionally executed statements

causing a cross-iteration dependence.

- 103 -

WO 2014/142972 PCT/US2013/032111

74. A tangible machine readable storage medium as defined in claim 69, the instructions
further to cause the machine to compensate for a memory flow dependence between a first
scalar operation and a second scalar operation by placing a set of program instructions
associated with first scalar operation and the second scalar operation into the vector

partitioning loop.

75. A method to convert a scalar computer program loop having loop-carried
dependences arising from references to a scalar variable to a vector computer program loop,
the method comprising:

renaming a first vector to form a second vector in response to receiving a scalar
computer program loop having the scalar variable referenced in a first scalar operation and
referenced in a second scalar operation that lexically precedes the first scalar operation, the
first vector being based on the scalar variable;

replacing references to the first vector in a copy of a first vector operation with
references to the second vector, the first vector operation being based on the first scalar
operation;

replacing references to the first vector in a second vector operation with references to
the second vector, the second vector operation being based on the second scalar operation;

placing the copy of the first vector operation at a location in the vector computer
program loop that lexically precedes the second vector operation; and

inserting a third vector operation into the vector computer program loop, the third

vector operation propagating values in vector elements of the second vector.
76. A method as defined in claim 75 wherein the location in the vector computer program
loop is a first location and the third vector operation is inserted at a second location, the first

location lexically preceding the second location.

77. A method as defined in any one of claims 75-76 wherein the third vector operation

propagates the values based on a predicate vector.

- 104 -

WO 2014/142972 PCT/US2013/032111

78. A method as defined in claim 77 wherein the predicate vector is based on a condition

that controls execution of the first scalar operation in the scalar computer program loop.

79. A method as defined in any one of claims 75-76 further comprising:

identifying a set of edges, each edge being associated with an intra-iteration anti-
dependence in the scalar computer program loop and each edge having the first operation as
the sink node;

identifying a set of source nodes, each source node corresponding to an edge in the
set of edges;

determining whether there is a flow dependence from the first scalar operation to the
second scalar operation; and

removing a first edge between the second scalar operation and the first scalar
operation from the set of edges and removing a first source node corresponding to the second
scalar operation from the set of source nodes, if it is determined that there is not a flow

dependence from the first scalar operation to the second operation.
80. A method as defined in any of claims 75-76 further comprising selecting, in a first

iteration, a value from a last element of the first vector, wherein the third vector operation

causes the selected value to be shifted into the second vector.

- 105 -

WO 2014/142972 PCT/US2013/032111

81. A system to convert a scalar computer program loop having loop-carried
dependences arising from references to a scalar variable into a vector computer program
loop, the system comprising
a copier to:
generate a copy of a first vector operation, in response to receiving a scalar
computer program loop having the scalar variable referenced in a first scalar operation and
referenced in a second scalar operation that lexically precedes the first scalar operation, the
first vector operation being based on the first scalar operation,;
insert the copy of the first vector operation into the vector computer program
loop at a location that lexically precedes a second vector operation, the second vector
operation being based on the second scalar operation;
a renaming tool to:
rename a first vector based on the scalar variable to form a second vector;
replace references to the first vector in the copy of the first vector operation
with references to the second vector;
replace references to the first vector in the second vector operation with
references to the second vector; and
a propagator to insert a third vector operation into the vector computer program loop,
the third vector operation propagating values in vector elements of the second vector based

on a predicate vector.
82. A system as defined in claim 81 wherein the location in the vector computer program
loop is a first location and the propagator inserts the third vector operation at a second

location, the first location lexically preceding the second location.

83. A system as defined in claim 81 wherein the predicate vector is based on a condition

that controls execution of the first scalar operation in the scalar computer program loop.

- 106 -

WO 2014/142972 PCT/US2013/032111

84. A system as defined in claim 81 wherein the third vector operation propagates the

values in vector elements of the second vector based on the predicate vector.

85. A system as defined in claim 81 further comprising:
an edge remover to:

identify a set of edges, each edge to be associated with an intra-iteration anti-
dependence in the scalar computer program loop and each edge to have the first operation as
a sink node;

identify a set of source nodes, each source node to correspond to an edge in
the set of edges;

determine whether there is a flow dependence from the first scalar operation
to the second scalar operation; and

remove a first edge between the second scalar operation and the first scalar
operation from the set of edges and remove a first source node corresponding to the second
scalar operation from the set of source nodes, if it is determined that there is not a flow

dependence from the first scalar operation to the second scalar operation.
86. A system as defined in claim 81 further comprising:

a selector to select, in a first iteration, a value from a last element of the first vector,

the third vector operation causing the selected value to be shifted into the second vector.

- 107 -

WO 2014/142972 PCT/US2013/032111

87. A tangible machine readable storage medium comprising machine readable
instructions which, when executed, cause a machine to at least:

rename a first vector to form a second vector in response to receiving a scalar
computer program loop having a scalar variable referenced in a first scalar operation and
referenced in a second scalar operation that lexically precedes the first scalar operation, the
first vector being based on the scalar variable;

replace references to the first vector in a copy of a first vector operation with
references to the second vector, the first vector operation being based on the first scalar
operation;

replace references to the first vector in a second vector operation with references to
the second vector, the second vector operation being based on the second scalar operation;

place the copy of the first vector operation at a location in the vector computer
program loop that lexically precedes the second vector operation; and

insert a third vector operation into the vector computer program loop, the third vector
operation propagating values in vector elements of the second vector based on a predicate

vector.

88. A tangible machine readable storage medium as defined in claim 87 wherein the
location in the vector computer program loop is a first location and the third vector operation

is inserted at a second location, the first location lexically preceding the second location.

89. A tangible machine readable storage medium as defined in claim 87 wherein the
predicate vector is based on a condition that controls execution of the first scalar operation in

the scalar computer program loop.
90. A tangible machine readable storage medium as defined in claim 87 wherein the third

vector operation propagates the values in vector elements of the second vector based on the

predicate vector.

- 108 -

WO 2014/142972 PCT/US2013/032111

91. A tangible machine readable storage medium as defined in claim 87, the instructions
further to cause the machine to:

identify a set of edges, each edge being associated with an intra-iteration anti-
dependence in the scalar computer program loop and each edge having the first operation as
the sink node;

identify a set of source nodes, each source node corresponding to an edge in the set of
edges;

determine whether there is a flow dependence from the first scalar operation to the
second scalar operation; and

if it is determined that there is not a flow dependence from the first scalar operation
to the second operation, remove a first edge between the second scalar operation and the first
scalar operation from the set of edges and remove a first source node corresponding to the

second scalar operation from the set of source nodes.

92. A tangible machine readable storage medium as defined in claim 87, the instructions
further to cause the machine to select, in a first iteration, a value from a last element of the
first vector, the third vector operation causing the selected value to be shifted into the second

vector.

- 109 -

PCT/US2013/032111

WO 2014/142972

1/39

Vi Old

vell

N

Jojnoexg apod

V00l

Jojelausn) apon

WIB1ISAS UOIBZIIOID9A

//<ON_\

Vil

JazAjeuy

/%:

Janddng spo)H

VoLl

PCT/US2013/032111

WO 2014/142972

dl Ol

WIB1SAS UONBZIIOIDOA
I0}eI8USD) BP0Y 19zAUY ggp| o5
d0og¢l 198
as/l g0S1 w S ajeolpald
Janoway 1azhieu — dovl
asol Jojebedoud abp3 — y Q.nr@,q
ooeyy |
Ja)seopeoig JoueAu0) souopuadsq ueo
/10109|9S 8p09 ydeso
(®))
xQ
N Ja|josuo) pug 904} gggy Ja||03u0D 18|
\)\
q081 Aiowspy \
dccl — @ dasll
d0c| qaszl
d09 _\|\ \
d061 decl
d0c| da0ll

PCT/US2013/032111

WO 2014/142972

9)°

Old

WIB1SAS UONBZIIOIDOA

9681 o0¢1
Jojeiauan) apo)n 3ZG1 1ozhleuy — OG¥1
Jappy / Janowsy .\ | J9yuUSPl ISyl
90UBLINODY abp3 SJUBLINOSY
06/ 1 |- TAE— |
Isyseopeo.g o41uSp| jozAjeu ool
059} obpy leuy
[10103[9S ydelo
001 |00 |
BUILLBUS 191I8AUOD UONBZLOJOSA | | us9
- . d oP0O lerued ydeto
Q A N 0021
o [10UOCD pug J9||011U0D 1S |
o661
\
3z2Z1 o081 Alowsy
9021 o6l
o091
0061 ezl L oeel
o011

PCT/US2013/032111

WO 2014/142972

dl old

WIB1SAS UOIBZIIOIDDA

JOJBJIBUSL) 8pon JazAjeuy asvl —
o | Jenowsy
ol aocit o06p3
\ aovi
acoL — Jauonined || JezhAjeuy
dooT ydeio
19X28yd JBBAUOD Jauiusp|] uo9)
o PIpUoD apoD RIJUeD] ydeso
«Q
<t Jajjonuod pug Jajjonuon 18|
aoll aosi
aosglt Alowsy
dccl aozl asti
aool \
aoel aszl assl
aoti

PCT/US2013/032111

WO 2014/142972

d1 'Ol

WIB1SAS UOIBZIIOIDDA

JOJBIBUSS) 9p0D 3091 iezheuy ggpp
g8l 0] — memwwm
10]03|9S | 3G6/1 |/ 00—
Jojebedo.d Jauoniued || JezAleuy
dooT ydeio
Jaynuap| JaUBAUOD us9
JOIUOD opoD [| ydeio
I T
o) J9]|04U0D) puZ 30/1 JIoRUOD ISL | | gee
Alowsy
d¢c¢l 408} 2021 3611
4091 3061
= (74"
3011

PCT/US2013/032111

WO 2014/142972

41 "Old

WoISAS UONBZIIOIDO A

Jo)jeJBUSL) 8poD JazAjeuy 46¥1 —
. J0eL — Janowiay
abp3
SIS 1S/
J101ebedoid |/ 407} —
4681 — JazAjleuy
10109198 Jaidod ydeio
4481 — |00 JaLIBAUOD uso)
» Buiweuay apon ydelo
> L /
o
Ja||ou0) pug 4011 J9]|0U0] 1S | 451
4081 40¢} Alowsy
d¢¢l 4611
4091 1061
4621
4011

PCT/US2013/032111

WO 2014/142972

7/39

¢ 9ld

L s //
0 < [1llg = $d sjedipaid //

ZM s //
[1]g > [1]o = zd sjeo1paid //

LA WIS //
[1]a > [1]e = |d sjea1paly //

‘[uinjal

1=1[lq
Y (0 <[a)H
{

Jlo=T
¥ (Ma > [1Jo) »
{

Nle=1
} (Da > [1]e) »

9¢¢

{ vz

¢cc
0cc
8lLc
9il¢
vic
clc
0] 74
80¢
90¢

} (++41 IN>1 11=1) Jo) $02
‘[ole = [202

00¢

PCT/US2013/032111

WO 2014/142972

8/39

¢ 9ld
008

{
‘(s1ed1pald INYL ‘TA)ise7i08)08 = A
1o /7 In = [L-IA+0G (pd)
{(0)1seopeotg < [L-1A+I1]G = td
‘(gd ‘Ia)ani]1s0gsiebedold = A
izd| 1d=¢d
M /1 [LIA+1]0 = [A (2d)
TL-AA+1]a > [LIA+1]o = 2d
PESp SI1 } 92uls palsjep aq ued siyy a1oN // ((1.d ‘Ia)ena | 1soga1ebedold = A /
LM/ L A+]e = [a (1d)
TL-aA+1]a > [L-A+]e = |d
} (A =+ JL+AN>! < L=1) J0)
‘([o]e)iseopeolq = A

9poD Japuleway// 9z¢

143
vce
¢ce
0ce
81¢
91¢€
143>
A3
0L€
80¢
90¢
v0€
c0¢€

PCT/US2013/032111

WO 2014/142972

9/39

v Old

ppyaidbuluuny 4oy {£1 ‘L1 ‘ZL ‘L1 ‘6 ‘€ ‘C L} = ZesA

pue
pPwIsodbuluuny oy {€¢ ‘21 L1 ‘2L ‘L1 6 ‘T 'L} = LBsSA
uayy

Al_l.H_. .H_.l_l.l_l.H_.H_v”Q

{9L ‘vL‘ZLOL ‘89 ‘CY=en

Aw .N .@.m..v.mw.N.—‘v” —‘>

00t \;

PCT/US2013/032111

WO 2014/142972

10/39

¢'old

009
{ ¥ZS
wns speal ¢ Juis // ‘wns = [Ij¢Ajjey 22s
{ 0Zs
wns SallUM pue speal jey] adualindal e Sl ZgAA JWlS // ”EQ + WNS = wns 316G
2 > [lla = gd syeoipaid j/ } (gM > [19) 4 916
wns speal gy Juis // ‘wns = [IJzAjje} 71G
{ ZLs
wns SallIM pue speal jey] adualindald e SI | AA JWS // ”Em + WNS = wns 0LS
LM > [1]e = Ld ayeoipaid j/ } (LM > [1]e) 4 805
wns speal |y juis // ‘wns = [I]LAjje} 90S
}(++1 IN=>1 1L=1) 10} 08
”O = wns 0%

PCT/US2013/032111

WO 2014/142972

11/39

9 'Old

009 ;/4

WNSA JO anjeA }se| 1seopeolq pue 19918S// (0d ‘WNsA)}Se7108|9S = WNSA
(ZM 4O PPYISOd) + (LM JO PPYISOd) Speal gd// wnsA = [L-A+LI[eAle)
WINSA 0] ppyisodbuluuny sppe Za\// ‘4SA + WNSA = WNSA
‘(zd ‘gA ‘o1azA)ppyIsSOdbuluuny = gsA
(2M Jo ppyaid) + (LM JO PPYISOd) Speal gd// -gwnsA = [L-TA+:1[zAle)
‘JSA + WNSA = ZWNSA
WNSA 0] ppyisodbuluuny sppe LAA// ‘BSA + WNSA = WNSA
(1d ‘eA ‘olazAa)ppyisodbuluuny = esA
(2M J0 ppyaid) + (L JO PPYaid) speas LY/ <LwnsA = [L-TA+]LAle)
‘JSA + BSA + WNSA = | WINSA
‘(zd ‘gA ‘ouaza)ppyaidbuluuny = qsA
((1.d ‘eA ‘oiaza)ppyaidbuluuny = BsA
‘(ZM)seopeolg > gr = ¢zd
‘[L-IA+11]9 = A
‘(1M)1seopeolg > en = |d
‘[L-In+1:1]e = ea
}OIA =+ 1 1+IA-N=>1 1L =1) 10}
‘(0)1seopeoIg = WNSA
‘(0)1seopeoIg = 019ZA
‘(1 1seopeolg = od

[A72Y)
0)2¢)
8¢9
9€9
4%
[A%Y)
0€9
8¢9
929
¥Z9
¢e9
029
819
919
v19
¢l9
019
809
909
¥09
¢09

PCT/US2013/032111

WO 2014/142972

12/39

J 'Ol 002
{ 4]
{ 0L
M/ 1= [l]e 80/
d/ llale =3 90/
} (do1ov4 > [1a) & ¥0.
F(++1 N >1°0 =1) 40} 202

PCT/US2013/032111

WO 2014/142972

13/39

8 9ld

008

104 pua // {
L9 youeuqy/ ‘|da 0job
(AA+I'N)UIW > ye)s) Ji
-1 + SPIAID = HE}S JoS
ajeolpald se sayelado si apIAIp
Hels// laplalp T Heys wody) = [i]e pue [[ilg]e =3 jo uonezuoyoaa jeped oq
(eyeo1pald e se pajuasauidal sI SpIAIP)
Ju10d 1011JU09 1X8U S}95) // ‘(.S ‘seouspuadap) aouspuadagixeNieb = apIaIp
doon Buluoniued 10108A // :|dA
(L-1A=+! ‘N) ulw oy | woulj [IJe pue [[ijq]e jo sadipul 8y} usAM}E] Sjulod
101JUOD uoeId) suIN}dy // {(anay ‘enu] ‘I ‘[I]q)1o1puoDNo8y0 = sasuapuadap
‘1 = Je)s
FIA=+1IN>1!0=1) 10}
‘0 =1UBes

¢c8
0¢8
818
918
g8
718
€18
¢l8
018
608
808
908
¥08
¢08

PCT/US2013/032111

WO 2014/142972

14/39

6 Old

006

V Juswaers // Ta+1]e = 4
}
(40Lovd > [lle) u
}

(++! {N>1 ‘0=I) 40}

916
716
¢l6
016
806
906
¥06
¢06

PCT/US2013/032111

WO 2014/142972

15/39

0l Old 000}

Joy pus /7 {0zZ01

1 youelq // :|dA ojob 810l

((AA+! ‘N)UlW > Jeys) Jl 910l

'} + 9PIAIp = Me)s 198 GL0l

((d‘(4)10100A)15B 7109|198 = (4)J0108A 101

a1eoIpald e Agq pajussaldal cL0l

S| BPIAIP " Jels // HOU_>_U:tm”_w wodj T+:m = J]JO UOI1eZIJOJO3BA _m_tma og AN
(d'd)doysiiedjeuonipuod = apIAIp 010}

(H4OLoVv4)10308A > [(IA+N)ulwI]e = d 8001

dooj| Buiuoniied 10109 // :|dA 9001

IT=1els 00l

F(IA=+ ‘N >1:0=1) 40} 200!

PCT/US2013/032111

WO 2014/142972

16/39

0oL

Ll "Old

:1se| uinyau

{
1Se| saulep M WS // [=1sE
0>[=gdaeopaid // }(0>1) 4
{
)se| speal g s // asel =[1]q
)se| > [= |d ejeoipald "}se| speal Ly Juis // }(yser >) 4
‘Me =1
} (++1 IN=>1 fL=1) 40}
‘0L =1s¢e|

44
49"
8LLL

9LLL
vibl
clhl
OLLL
8011
0Ll
1281%°
cOLl

PCT/US2013/032111

WO 2014/142972

17/39

AE

0ocl

9p0Y Ioputewsy // L¢cl

{
(zd ‘Jse|r)yusws|JIseOd|eS = ise|
‘A =1sBJA (2d)
WLIO} I0JODA Ul 2 Judwaiessy/ (Liseja = [L-A+L1]qg (1.d)
WLI0J J0J08A Ul LY uswalels// {(Liseja > [A) = |.d
'(zd “LiselA seylysajebedold = LiseA
‘In = 11seA (2d)
‘0>Ih=¢d
TL-IA+r]e = (A
FOIA =+ 1IL+TIAN=>! {|=1) 1o}
‘0L =1s¢e|

0ccl
6lcl
8lcl
9lci
vicl
clclh
0lcl
80¢l
90¢i
144°
¢c0cl

WO 2014/142972

18/39

Generate and analyze dependence
graph

v

PCT/US2013/032111

V/ 1300

— 1302

Generate and initialize predicate sets
for each “S” that defines a scalar

/ 1304

v

— 1306

Remove lexically backward anti-dependences; and remove
lexically backward output dependence between “W1” and “W2;”
remove remaining edges using other techniques as appropriate

Dependences

remain?

Initialize and convert scalar loop
instructions to vector loop instructions

'

Propagate values of “vj” based on a
predicate

Y

— 1314

Select and broadcast values of elements
of “vj” calculated in a first set of iterations
to corresponding elements in “vj” to be
used in next set of iterations of loop

FIG. 13

PCT/US2013/032111

19/39

oovl
vl Ol N

{8yl

{ *ad’

(enbiuyosy) 4ad!

18y} A|dde} (3 ajeulwi@ 0) pasn ag ued anbiuyos) sisAjeue Jayjoue) JI 8s|9 rArad)
{ \ad’

{ 8chl

((Lm)ere0IpaId (P ‘ZMNIeSIeapald)uoiun = ([‘gMNeSieapa.d 18s ochl
(F)04S = ZM @NUIS = LW veyL

}(p Jejeos e uo souapuadap-indino uye si J) 4l as|e AR

{ 0chl

((")s1eo1pald ‘(r ‘MBesesnpald)uoiun = (P ‘M)1eSasnpald 1es TAd)
(F)ous = o ((@MUIS = M }(r Jejeds e uo souspusdsp-iue ue s| J) J T4 4"
} (((>) st uo noauip “o'1) abpa piemyoeq Ajjeaixs| palied-doo) e s 3) 4 verl
‘anunuoo YaAd)

(epoho e Jo yed jou si 3) # 0zvl

} ydeub ayy ul 3 ebpe aouspuadap yoes ol QL1 |

{alvl

{ vivl

Jos Aydwia 7/ :{} = (P ‘S)eSesNpa.d 18s 2yl
{(S)eedipaid} = (P ‘S)hesiedpa.d 1es oLyl
} (P Jejeos saulep S) H 8071

} S uondonuisul yoes 9oyl

WO 2014/142972

JOJ suononJisul uonebedoud |ejuoziioy yium sesuapuadap 1ndino pue nue palles-doo| // v0v |
Buisnes a[0Ao Bulpuey AQq uoisuedxa Jejeos ylim UOIBZIIOI09A 9|qeud 0] Wylob)y // ZOov L

PCT/US2013/032111

WO 2014/142972

20/39

avl ol 00w}

{z1v1

{ ozt1

{ g9vl

{ o99pL

Apoq doo| 8y} Jo wonoq sy} Je (eyedlpaldINYL ‘T)iseTIos|es = [Mesu] oyl

doo| J0108A 2971

ul g Jaye ((r ‘S)esieapadd ‘r)anipisodeiebedold = [uononisul Jejeasoloe|p Jasu| 09%1
} (r's)esse@pald 40 Jesgns Jou si (1 ‘Shesesnpald) 4 8Svl

} (r Jejess e sauygep g) 4! syl

} S uononasul yoes Jop ySi L
dooj| 8y} 40} BPOD JOJOBA B)BIBUSS) 75|

3} (81942 Aue uiejuo9 jou saop ydeib souspusdap) 4l 0G|

WO 2014/142972 PCT/US2013/032111

21/39

V/ 1500

— 1501
Generate Graph and Analyze to
Identify Edges
* — 1502

Identify and mark each
recurrent instruction “S”

* 1504
Create empty sets “RecurrenceSet(t)” /

and “EdgesToRemove(t)” and add

instructions “S” to “RecurrenceSet(t)
¢ —— 1506

Add, to EdgesToRemove(t),
each intra-iteration anti-dependences based on criteria

l 1508

Create and initialize “PreAdd(R)” to the NULL set

'

For each edge from “R” to “W,” set “PreAdd(R) = /> 1510

Union(PreAdd(R),W)”; Remove edges in “EdgesToRemove(t)”
from dependence graph. Remove any loop carried anti-dependent
edge on “t” if sink node of edge is in “RecurrenceSet(t);” Remove
each loop-carried flow or output dependence edge on “t” from “W1”
to “W2” if both “W1” and “W2” are in “RecurrenceSet(t).”

FIG. 15A

WO 2014/142972

PCT/US2013/032111

22/39
V/ 1500
Attempt to remove edge 1912
using partial vectorization
techniques
¢ — 1514

If none of the edges were
removed, remove “W”
from “RecurrenceSet(t)”
and remove all edges
from “EdgesToRemove(t)’

+ — 1516

If “RecurrenceSet(t)” is not empty, repeat
operations described with reference to blocks

1506 - 1514 1518

v

If needed, apply other techniques to eliminate
any remaining cycles

Cycles
remaining?

Convert scalar variables to vector variables, etc. 1522

\J

For each instruction “S” in “RecurrenceSet(t),”

insert a “SelectLast” instruction at the bottom of

loop and a “Broadcast” instruction at the top of
the loop

Generate vector code for each instruction “S”

in the “RecurrenceSet(t)” set using the 1524
sequence

“{vsal = RunningPostAdd(0,va,p1); vt = vt +
va)}” or
“{{vsal = RunningPostAdd(0,va,p1);vt = vt —
va)l’

CZ) FIG. 15B

WO 2014/142972

23/39

PCT/US2013/032111

V/ 1500

1526

For each read instruction “R” with a non-empty “PreAdd(R)"set, add “vtk = vt”
before the read instruction “R” replace references to “vt” with “vtk” in the read

instruction “R.”

For each write instruction “W” in the “PreAdd(R)” set, insert
the instruction “(vsa2 = RunningPreAdd(0,va,p1) ; vtk = vtk +
va)” or “(vsa2 = RunningPreAdd(0,va,p1); vtk = vtk — va)”
before the read instruction “R.”

— 1528

Perform conventional
optimization techniques
to streamline the vector

code.
Loop not
P >

vectorizable

1534

/ 1530

FIG. 15C

PCT/US2013/032111

WO 2014/142972

V9l Old

24/39

009 r\s

{2291

{ 9z9l

'2d31S 0106 GZ9l

{} = ())anowsyo] sebp3 29l

‘(1)19592UB1IN0Y WOUL AN BAOWDY ©Z91

} (pajeulwIS 8q pINod 86ps ou) §| 229l

‘sanbiuyoa) uonezuooaA |eiued Buisn 4 yied uo abpsa ue ajeulwi@ 0 Al 1291
‘onunuod 0291

(()enowayo| sebp3 ul abps ue niyy sassed 4) H 6191

} ((=) uonoauip yim sabpa Buisn pajonlisuod AA 01 Y woll 4 yied yoea) 1oy 8191
(WHuUIS = M i(w)eainos =y 2191
} (1)enoweyo] sebp3 Ul ¥ 86ps yoes) Joj 99|

{5191

{ v19l

jos Aydwia /7 :{} = (d)ppvaid c19l

‘(1))anowsyo sebp3 ‘w)uolun = (3)arowseyo] sebp3 } Z191
(4 “()sy)suieiuo); 979 (M ‘(3)SH)suiejuo)) 4 L1191

(WMuUIS = M (v)o04nos = o 0191

} (3 puesado uo (=) uonioalip yim y abpa aouspuadap-ijue yoea) J0o} 6091

'SY Joj puesado =1 8091

} (SY 19890us.LINday Ajdwa-uou yoes) Jo) 1091

{9091

{} = ()enowayolsebpg GO9I

(S ‘(1)1@g9ouaunoay)uoiun = (1)19890UBLN0SY H091

} (pusppe —1 =110 pusppe +] =} WIO} BY} JO S UOIONASUI yoes) o) €091

SUOIIONJISUI 82USB.INJ8U [BIUOZIIOY YIIM Saouspuadap pallieo-doo| uielad pue // 209l
saouapuadap nue uoleIal-eaul uleuad Bunneulwi@ Ag uoneziio1oaA a|geus 0] Wyllloby // 1091

PCT/US2013/032111

WO 2014/142972

25/39

d9l "Old

ydeub aouspuadop syl ul S8[0A0 91BUIWIE 01 SBNDIUYDS) UOIBZIIOIDBA [BUOIJUBAUOD 79|
10 sanbiuyoa) pasopsip Jayio Alddy z#9|

{ 1v91

{ oval

‘ydeub aouspuadap woll 3 aAowWaYy 6591

} (Anoseousunoay ul st (IPUIS BB 8¢9/

9% (1)19S90UB.IN0Y Ul SI (J)924n0S % o6ps aouspuadap Indino JomojpesiJ) I /€91
{ o9cal

‘ydeub souspuadap woul 3 aA0wWaY GEol

H(3reseouannoay ul st (INuIS 9@ 96ps souspuadsp lue ue st J) § €91
} (1 91geLeA uo (>) uondauip yum 3J abpe aouspuadep yoes) ££9|
Jo} ydeub asuspuadap ay; woly (1)aroway o] sabp3 ul sabpa aroway ZE9l

{1e9l

‘(M “(d)ppyaid)uoiun 0g9l

= (H)ppvald (YMUIS = M (¥)22inos =y 6291
1 ((3)enowiayo] sebp3 Ul v 96ps yoes) Joj gz9|

0091

PCT/US2013/032111

WO 2014/142972

26/39

009, —V¥

Q91 Old

{6991

{ 899l

{ 1991

{ 9991

Y a1ojeq BAA — WIA = WA (1d ‘ZA ‘Q)ppyaldbuluuny = BAA, LBSU| G991
Z-)=}jWwloj8yijo sl S//}osp 7991

{ €991

Y a10joq BAA + MIA = WA {(1d ‘ZA ‘Q)ppyaldbuluuny = BAA, LBSU| 2991

1z +31=1wiop8y) josI Q) 4 1991

1 ((Y)ppweid ur pm\ uononisul yoes) Joy 0991

N UL YIA YUM JA 0] S82USUB)8l 8] auieudy 6G91

'd 8J0J8q A = YIA, UoiONASUI 8Y} PPY 8691

} ((4)ppyeid 18s Ajdwe-uou e yym Y uononisul Yyoes) Joy 1591

{ 9591

{ GGl

~AN - =30 (LD A ‘Q)ppvIsodbuluuny = AA, YyliM S J0) Sp09 J0J09A aoe|day 691
Z—-}=1WIo}8yijo sl S//}asP@ €691

{ 2891

AN 18 =10 (1D ZA ‘Q)ppvyIsOdbBuluuny = AA, Ylim S J0J 8p02 J0109A doe|doy Kele])
}(z +1=1uwio} 8y} jo 51 Q) 091

4 pappe Apealje jou 4 Apog doo| 8y} Jo Wonog ay3 Je (INYLd ‘1A)1seT09|8S = A Uasu| 6791
‘pappe ussq Apeadje Jou sey siy} §i dooj 8y} 03 Ajus 8y je (3)iseopeolg = A ppy 8¥91
} ((31)10892UBLINOY Ul S UOIONIISUI YOBd) 10} /Y91

} (Aidws-uou s (3)19S90U8.uN08Y aloym } puelado yoes) 1o} 99|
:do0| 8y] 10} BPOI I0JOBA SJBISUSS) GH9|
9|qez1i0199A sI doo /7 } (ydeub aouspuadap ay; ul S8[0AD OuU aJe aJdy)) 9l

WO 2014/142972

27/39
1700

\‘

PCT/US2013/032111

Mark loop as
vectorizable and
identify all edges

/ 1702

r

Select an edge “E” to be processed Y

Is “E” part of a
cycle?

Is “E” a memory flow,

Another
technique

available? edge from “A” to “B”

ith single direction (<

/— 1706

anti,or output dependence

1704
1708 —

More edges to

be processed
?

1710

1714

Apply other

technique Add statement “A” and

statement “B” to a set of
“Conflict” instructions

'

— 1716

1718
Remove Edge

'

Put all instructions associated with
eliminated cycle into a set “IN_VPL”

FIG. 17A

WO 2014/142972

28/39

+

Convert scalar loop instructions to
vector loop instructions

’

PCT/US2013/032111

v/ 1700

Generate a VPL containing the
instructions marked “IN_VPL”

\

Insert a “CheckConflict” (before the

VPL) corresponding to each pair of

instructions “A,” and “B” contained in
the set of “Conflict” instructions

l

Generate code to “OR” the results of
the CheckConflict instructions
together

i

Use results of “OR” operation or
“CheckConflict” instruction to generate
a predicate to control execution of the

VPL.

— 1723

— 1724

1726

1728
7

1730
e

1711
e
Loop is not

FIG.

vectorizable

17B

PCT/US2013/032111

WO 2014/142972

29/39

0081

V8l Old
{ovsl
{ s¢8l1
9|qezII0199A-uou se doo| YJep o€81
1 ose vegl
{ ze8l
sonbiuyo9e) asoy; Ajddy 8781
} (3 aAowal 0] pasn aq UBd sanbiuyoda) |BUOIIUBAUOD O SaNbiuyda) pasolosIp Jaylo) JI as|d 9Z81
{ vzsl
IdA NI Se 3 10 |eaowal Ag pajeulwl@ 8j9Ad sy Ul 8Jam 1BY] SUoidNsul ||B YJep 2281
‘3 aAoway 0281
' 189S J0I)U0d 8y} 0} (g V) PPY 818l
H({(>) 9l8l
uonoalip ajbuis yim g 0} y Juswale)s wo.l abps adsuspuadap ndino Jo ‘yue ‘moj; Alowsw e st 3) J 181
‘anunuoo 2181

(ephoejouediousi) 0L8L
} ydeub ay ur abpas aouspuadap yoes Jo) 8081

‘3]qez140308A se doO| YJe|\ 9081
‘soouapuadap Aiowsw paled-doo| buisned 081

8[oAo Buljpuey Aq suononisul BuIyosyo 191]1U0Y AloWwaW YlIM UOIIBZII0108A 8]geus O] WYoB|y // Z0gl

PCT/US2013/032111

WO 2014/142972

30/39

d8l 9l 0081

{9081

{ 98l

"(doon Buiuoniled 1009) TdA 84l 2981

JO UOIINJd8X3 |0JJU0d 0] mumo_bm.a =10)} Oumgmcmm .w_cu @c_wj pue ”_C_OQ 101JUOD I1XBU]}saljles syl (09381

auIWJB)aP Aj|BOIWEBUAP 0} SUOIIDONJISUL JOIJUODNOBYD BY] JO S)Nsal 8y} MO, O} 9p00 91eIaudn) 8681
{ o9s8l

‘g Burjjonuoo aiesipald oyl si gd pue y Buljjosuod ayedipald ay si yd aiaym 581

1dA du3 840}9q (vd ‘gd ‘(v)ssaippyAlows|y'(g)ssaippyAIOWBN)IOIIUODMNOBYD 2581

uononJIsul JoIpuooy2ay9, Buipuodsaliod e uasy| 0S81

} 8¥8l

} O Ul (g ‘v) suononuisul jo Jled yoes Jo4 9y8lL

“TdA 3y} OJUI TdA NI pasew suononisul ade(d pue dA 8y} djessuds ##8|
} (Aidwa j0u s1 D 185 pue 8|gez1I0J0dA SI doo)) I Z¥]L

WO 2014/142972

31/39

START)

1900 ~\\\

Mark loop as vectorizable and identify all edges

PCT/US2013/032111

— 1902

Ve

Select an edge “E” to be processed

1904 ——

Is “E” part of a
cycle?

s “E” a flow dependence
edge from “A” to “B”
with single direction (<)
where either or both of “A”
and “B” are executed

conditionally
?

Apply other
technique

1914

Add “A” and “B” to a set of
“ConditionalPairStop*
instructions

¢ 1916

Remove Edge

¢ 1918

Put all instructions associated with
eliminated cycle into a set “IN_VPL”

v

1908

More edges
to be processed

FIG. 19A

WO 2014/142972 PCT/US2013/032111

32/39

1900
\ a 1923

Convert scalar loop instructions to
vector loop instructions

) 1924

Generate a VPL
containing instructions
marked IN_VPL

FIG. 19B v
Insert

“ConditionalPairStop” |~ 1926
into VPL

1928

oes statement “A” write to
scalar variable “r’?

1930

Insert horizontal propagation
instruction after the vector
instruction for “A” for each

pair of instructions “A” & “B”

in CPS B
1932
+ o ; 1911
Insert "SelectLast’ Loop not vectorizable
instruction after VPL

1 1934

Convert conditionally executed
statement (in the VPL) to a masked
statement using the
“‘ConditionalPairStop” as the predicate
mask

PCT/US2013/032111

WO 2014/142972

33/39

vO0c¢ Old

{ o0z

{ 8€0Z

9]geZ110)O8A-UOU SE Qoo_ MNIEN 9¢0c¢
}esp $€0C

{ e¢eoe

sanbiuyos) asoy) Ajddy 8202
} (3 anowal 0} pasn g ued senbiuyos) UOIIEZII0}O8A [BUOIJUSAUOD PSSOOSIP JBYI0) JI 8|8 9202

{ vzoe
Td/A NI e 3 JO [erowsad AQ psjeulwi|s 91940 sy Ul alem Jey) suoljonaisul |je YJen 2202
‘g anoway 0202

'SdD 19s doisiledjeuonipuod ay 01 (g ‘) ppy 810¢
(pe1noaxa Ajjeuonipuod ale yioq Jo g Jo y JUswalels Jaylo aloym 910z

((>) uonoauip sjbuls YIm g 0} v Juswisle)s Wod) abpa souspuadap Jndjno Jo ‘nue ‘moj Alowsuw e si 3J) JI ¥102

-anu1u09 Z102
(s1oAo e jo ped Jou si 3) § 0102
} ydeib ay} Ul 3 abps aouspuadap yoes o} 8002

:8]qez110)98A se dOO| MJe|\ 9002
"saouspuadsp Moy} palLed-doo| 002
Buisned 810Ad Buijpuey AQ suononisul Buiyosyo pJezey yym uoijeziiojosA sjqeus O} Wyiiobly // 2002

PCT/US2013/032111

WO 2014/142972

34/39

d0¢ 9l4 0002 —

{9/02
‘do1s snoinaud ay) ul paresausabyy /0 suononasul /02

doiguieqjeuonipuod sy Jo S)nsal syl Woll JdA @Yl Jol ysew a1eoipald ay) s1eisusn) Z/0Z

{ 0202

{ 890¢

JA JOJOBA 811U 8Y) 9907

0] 11 1ISBOPEOI(J PUB JA JO JUSWS|S 1SB| 8Y1 109]9S 01 Td/\ U1 JolB uononJsul ue uasu| 902

"3S7V4 sl vd a1aym sjuswsd g90¢
BAISSD09NS 0] JNY L SI Yd 8Jaym SjUBWIB|IS WL JA 1O anjeA ay] aiebedoud 01 0902

W uoljonaisul JojoaA sy} Jaye uononiisul uonebedoud |ejuoziioy e uasu| 8602

}(4 3|qelIBA JB|BIS B 0] SO}UM Y/ JuBWDIR)S) J| 9602

‘g Buljjonuod aiesipald syl si gd pue y Buljjosiuod ayedipald ayl si yd aiaym 4502

‘90U0 1B POZII0J09A 8 UBD SUOIJBISY SAIINIBSUOD UYdIYM dUILLISIDP O} JUBWS)R)S PaINdaxa Aj|Buoiipuod zsoe
8y} 8J0jaq TdA 9y} ol (vd ‘gd)dojsiiedjeuonipuod, Se yons uoponasul JoIpuodNoayd, Lasu| 0S0¢
} 8voz

SdO Ul (g ‘v) suononsul jo Jied yoes Jo} 9402

“1dA 8U} 03Ul TdA NI paXJew suononiisul nd pue JdA B 9jesaussd #40Z

} (Aidwa-uou s1 §dD 19S pue 9|qezIio}odA si doo)) JI 2102

WO 2014/142972

2100

N e

35/39

PCT/US2013/032111

2102
e

For each write instruction “W” defining a scalar variable “r”: define set of
edges “E” associated with an intra-iteration anti-dependence and having a
sink node “W” and define a set of source nodes/instructions “S” of the

edges contained in “E”

Y

Remove each node/instruction “R” from “S” for
which there is no loop-carried flow
dependence from “W” to “R,” and remove the
corresponding anti-dependence edge “R->W”
from the set “E”

— 2104

l

dependence path from “R” to “W” that
does not pass through an edge in
the set “E.”

None of edges
successfully eliminated?

2106
Attempt to eliminate any edgeona |/

2109
pan

Cease
operating

2110

Record information about remaining edges in “E”
(r,W,S,E) and remove all edges “E” from the graph

FIG. 21A

=

WO 2014/142972

PCT/US2013/032111

36/39

2100

— 2112
Use other technique techniques to remove
cycles from dependence graph

2115
e
Al cycl d? Cease
cycles removed? operating
2116
Convert scalar variablesto |
vector variables, etc.
— 2118
Create copy of “W” (*Wepy ")with
references to “r” renamed to “reepy”
— 2120
Hoist “W’” and dependence predecessors
above instructions in the set “S”
2122
\J /
Replace references to “r” with “reepy” in all instructions in the set
“S”
Propagate/Shift vector elements; select | o494

last vector element and use as shift
value in next iteration; initialize value of
“r’ before the loop

0

[END
FIG. 21B

PCT/US2013/032111

WO 2014/142972

Ve Old

37/39

00cz —¥

ydeub aouspuadap ayj ul $8|0A2 8jBUIWIIS 0) SBNDIUYDS) UOIJBZII0JOSA [BUOITUSAUOD ZGZ2
JaY10 J0 anbiuyoa) pasojasip Jaylo Alddy 0Geze

{8vze

{ ovee

ydeub ay) wo.l 3 sobpo ||e aAowdY Yv2e

Moe)s uoljelsusnapoylyseiebedold e ojuo (3 ‘S ‘M) ysnd Zvee
} (Adwe-uou s 3188) §I 0¥22

{8¢cee

{ 9¢2e

{ veeTe

(3Z1I40L03N OL a3aIv4) uinjel 2eee

} (pejeulwiie 8q ued yied siyy uo abpa ou) 4l 0€2e

uoneziioloaA jeied Ag yied siyy uo abpa ue ajeuiwie 01 1[dwany QC2C

} (3 10s uI 8bpa ue ybnouyy ssed jou S0P JBY) A 01 H WoJ) yied asuapuadaep e si aley)) Ji 9222
} S Uy spou yoes uo} 4gze

{ zeez

{ 0222

3 189S Woll M<-y 9b6pa aouspuadap-iue Buipuodsallod ay) pue S 189S Wod) Y SAOWa. 8122
} (Y 01 M\ wouy 8bpa aouspuadap-mol) palLIed-doo| ou SI auay}) J 9122

} S ury apou yoea 1oy 1¢gg
3 19S Ul S9Bps JO SEPOU 82IN0S JO18S =S 2122

M SIuUIS asoym sebps aouspuadop-jue uoljeld)-elul Jods =3 0122

} (1 9|geLIeA JBBOS B BUululdp AA UOIONJASUI YOBd) IO} 8022

suononJsul uonebedoud /7 9022

puUB JIYS |BIUOZIIOY YIIM S9oUSPUSdap [JUB UOIBIS)I-BJAUI pUB MO PalLIBDI-doo) // 022
Buisnes ajoAo Bulpuey Ag uonezioaA s|gqeus 01 WYob|y // 2022

PCT/US2013/032111

WO 2014/142972

38/39

dcc Ol

doo| ay) 840J8q J = J| UoIIBZI|B.IIUI 1IaSU|
M Ja1e (d “J)juswa|3)1$e1109|9S = J| UoIjoNJISul JUasU|
\EOO\S

Ul pasn yseuw ajeoipatd ayy si d ataym “@opp dayge (d .1 dp)uiyserebedold = 49994 uononaisul Jssu|

g Jes Aq pajussaidal suonoangisul [e ul A9%o yum J o) seouslsyal aoejdey
g Jes Aq pejuasaidal suononisul |[e aroge siossaospald aouspuadap sy pue “9%pA 1s10H
Adoo) o) paweUBl 8Je J 0] S8ouUBIslal alaym (A9°°pn) p Adoo e a1eal)

} yoB)S uonelausapoIyIysalebedosd ayr Ul (3 ‘S ‘M) yoes Jo4

:dooj| Y3 Jo] 8p09 J01IBA 9)RIBUSL)

dooj| 9z110)29 //

{9122
v.cc
¢lec
04¢¢
89¢¢
99¢¢
¥9¢¢
¢9¢¢
09¢¢
8G¢ce
9Gcce

} (ydeib souspuadap ayj ul $3j9A0 Ou ale alsy) J| ¥S2Z

00¢¢

WO 2014/142972

RANDOM
ACCESS |ep
MEMORY

=
N— 2332

/— 2316

READ ONLY
MEMORY H

N\— 2332

PROCESSOR

LOCAL Rl

39/39

PCT/US2013/032111

/2328 | 2332
MASS
STORAGE | CQ::E?ED
\ INSTRUCTIONS
INPUT |
DEVICE(S)
l —2320 | 2326
INTERFACE <—|—>
¢ — 2324
OUTPUT
DEVICE(S)

MEMORY
. 2313

N— 2332

FIG. 23

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2013/032111

A.

CLASSIFICATION OF SUBJECT MATTER

GOGF 9/06(2006.01)i, GOGF 9/30(2006.01)i, GOGF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GSeF 9/06; GOOF 9/445; GOGF 9/45, GO6F 9/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: scalar computer program loop , loop-carried dependence, propagator;

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 8176299 B2 (GONION JEFFRY E.

A 2-9,11-19,21-92
A US 8087010 B2 (EICHENBERGER ALEXANDRE E. et al.) 27 December 2011 1-92
See column 19, line 36 - column 24, line 55; claims 1, 11, 20, and figures 1-
24.
A US 8196124 B2 (EICHENBERGER ALEXANDRE E. et al.) 05 June 2012 1-92
See column 7, line 64 — column 10, line 63; claims 1, 6, and figures 1-7.
A US 8136107 B2 (ZAKS AYAL) 13 March 2012 1-92

et al.) 08 May 2012
See column 4, line 20 — column 8, line 62; claims 1-21, and figures 1-7.

See column 5, line 4 - column 6, line 65; claims 1, 6, 11, and figures 1-5.

1,10,20

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

*

nAm

g

o

nQon

npn

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

e

'

myn

ngn

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or motre other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

26 November 2013 (26.11.2013)

Date of mailing of the international search report

26 November 2013 (26.11.2013)

Name and mailing address of the ISA/KR Authorized officer 0N :\\\\

Korean Intellectual Property Office \\\i\:\ §\§ \\ X

N 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, BOK, Jin Yo i %\\\\}\\\\&‘1& * \\\\‘\\

, : RN

W @F 302701 Republic of Korea *\: \\\\ \\\\\\
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-5113 Misaes™

Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/032111
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8176299 B2 08/05/2012 US 2010-077182 Al 25/03/2010
US 8087010 B2 27/12/2011 US 2009-083702 Al 26/03/2009
US 8196124 B2 05/06/2012 US 2005-283774 Al 22/12/2005
US 2008-307402 Al 11/12/2008
US 7478377 B2 13/01/2009
US 8136107 B2 13/03/2012 US 2009-113168 Al 30/04/2009

Form PCT/ISA/210 (patent family annex) (July 2009

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - claims
	Page 105 - claims
	Page 106 - claims
	Page 107 - claims
	Page 108 - claims
	Page 109 - claims
	Page 110 - claims
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - wo-search-report
	Page 151 - wo-search-report

