a2 United States Patent

Ito et al.

US008689212B2

US 8,689,212 B2
Apr. 1,2014

(10) Patent No.:
(45) Date of Patent:

(54) INFORMATION PROCESSING DEVICE FOR
CONTROLLING AN APPLICATION ABLE TO
ACCESS A PREDETERMINED DEVICE, AND
CONTROL METHOD USING AN
INFORMATION PROCESSING DEVICE FOR
CONTROLLING AN APPLICATION ABLE TO
ACCESS A PREDETERMINED DEVICE

(75) Inventors: Takayuki Ito, Osaka (JP); Manabu

(52) US.CL
CPC GO6F 9/45533 (2013.01); GOG6F 21/00
(2013.01); GOGF 21/30 (2013.01)
USPCccoenee 718/1;726/2; 726/3; 726/4; 726/5;
726/16; 726/17; 726/21
(58) Field of Classification Search

None
See application file for complete search history.

Maeda, Osaka (JP); Tomoyuki Haga, (56) References Cited
Nara (JP); Hisashi Takayama, Osaka U.S. PATENT DOCUMENTS
(IP); Hideki Matsushima, Osaka (JP)
7,035,850 B2* 4/2006 Araietal.cooovvininennnn /1
(73) Assignee: Panasonic Corporation, Osaka (JP) 8,146,167 B2* 3/2012 Inookaetal. 726/27
. . o . (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 888 days.
EP 1528474 5/2005
(21) Appl. No.: 12/918,918 Ip 2001-175486 6/2001
) (Continued)
(22) PCT Filed: Feb. 9,2009 OTHER PUBLICATIONS
(86) PCT No.: PCT/JP2009/000500 Supplementary European Search Report issued Jan. 8, 2013 in Euro-
§ 371 (c)(1), pean Patent Application No. EP 09 71 5484.3.
(2), (4) Date: Aug. 23,2010 (Continued)
(87) PCT Pub. No.: W02009/107330 Primary Examiner — Qing Wu
PCT Pub. Date: Mar. 9’ 2009 gi)PAZZOFI’ley, Agenl, or Firm — Wenderoth, Lind & Ponack,
(65) Prior Publication Data (57) ABSTRACT
US 2013/0212575 Al Aug. 15,2013 An information processing device verifies the authorization
. L L of'an application that has issued an access request to access a
(30) Foreign Application Priority Data device. When an application on a universal OS issues a pro-
b cessing request to a secure device driver, a secure VMM and
Feb. 25,2008 (JP) «ooeieicciceee 2008-043009 an application identification unit on a management dedicated
OS lock a page table of the application and refer to the page
(51) Imt.ClL N .
table to generate a hash value. The application is determined
GO6F 9/455 (2006.01) . . .
to be authorized or unauthorized by comparing the generated
GOOL" 7/04 (2006.01) hash value with a reference hash value
GO6F 21/00 (2013.01) ’
GO6F 21/30 (2013.01) 12 Claims, 23 Drawing Sheets
102)03 15 109 190 ;)6
i s m
Dev;g;uggcsss Authentication code
determination unit generation unit
Application A Application B Device access Application 112
control unit determination unit

Secure device driver

Application
identification unit

101\|

Universal 0S | |

Management dedicated 0S

|f|04

?ugnm'ga];em:nisln%v c')n Running application
identification unit memory lock unit

Secure VIM

4
107 \

100

<
108

US 8,689,212 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2001/0025311 Al
2005/0097298 Al

2005/0223377

2006/0047958 Al
2006/0064697 Al
2007/0226736 Al
2008/0005297 Al
2012/0036508 Al

JP
JP
JP
JP
WO
WO

9/2001
5/2005

Al* 10/2005

3/2006
3/2006
9/2007
1/2008
2/2012

Arai et al.

Cohen

Galaletal.cocovvevvnnnne 718/1
Morais

Kagi et al.

Johnson et al.

Kjos et al.

Johnson et al.

FOREIGN PATENT DOCUMENTS

2001-337864
2003-186561

2006-65847
2007-500381
2005/015390
2007/109484

12/2001
7/2003
3/2006
1/2007
2/2005
9/2007

OTHER PUBLICATIONS

R.S. Sandhu et al., “Access Control: Principles and Practice”, IEEE
Communications Magazine, IEEE Service Center, Piscataway, U.S.,
vol. 32, No. 9, pp. 40-48, XP000476554, ISSN: 0163-6804, DOI:
10.1109/35.312842, pp. 40-43, Sep. 1, 1994.

International Search Report issued Mar. 24, 2009 in International
(PCT) Application No. PCT/JP2009/000500.

TCG Specification Architecture Overview, Specification Revision
1.4, Aug. 2, 2007.

TPM Main Part 1 Design Principles, Specification Version 1.2 Level
2 Revision 103, Jul. 9, 2007.

TPM Main Part 2 TPM Structures, Specification Version 1.2 Level 2
Revision 103, Jul. 9, 2007.

TPM Main Part 3 Commands, Specification Version 1.2 Level 2
Revision 103, Jul. 9, 2007.

* cited by examiner

US 8,689,212 B2

Sheet 1 of 23

Apr. 1,2014

U.S. Patent

801
A

00l

//

L0l
Z

WWA @4noeg

—

11un yoo| AJowsw
uoileo| |dde 3uiuuny

}lun uolijeodlfijuspl
Aiousuw s3ei03s
uoileo] dde 3uluuny

SO paieolpap 1uswaseuey

SO [esJaAlun

3tun uolilealjijuspl
uo|jeol |ddy

11Un Uolleulwislap

48A1Jp 801A3p 94N09S

Jiun |0J3U0D

1 uoi3eo| |ddy $88908 80]4A8(g uoileo) |ddy y uoijes||ddy
11un uolieJtsus? 3tun mmmmmm%whmwov
(|opoo uoijeoijusyiny $59008 89| A8(]
‘ o 4 %
901 0Ll 601 g0l €01 01
EOE

US 8,689,212 B2

Sheet 2 of 23

Apr. 1,2014

U.S. Patent

KJowdw pa19830.d

el 1 HNA 24noag

€l SO poleo|pep
JuawR3eURY

}iun uoiieatlijusp]
d uo|ieos||ddy

90 1Aap 888018
9| 138 0A-UON

\

Aiowew |ewlopN

S0 |esJaAlug

g uoljes|jdde
J0 9jge1 a3ey

¥ uo13eoi|dde
40 a|qe} adey

NN

1€1 <
g uolles||ddy
|| 48A1Jp 801A8p BUNOAg
0L Y uojieoi|ddy
NN
801A8D 8.N03% «
971 |
Gzl sng Tk 10 /
\ 4
0ZL 991A0p 8U|S$8004d UO|1BULIOLU| .
¢Hld

vel

€cl

otl
6¢l

St

8s1

Let

[441

Y41

US 8,689,212 B2

Sheet 3 of 23

Apr. 1,2014

U.S. Patent

ovl

991A9p 3u|sseo0.d

UOI1BWAOJU| U] SoBdS AJowow |BOISAUY

SO poleoipsp jusiiofeuew ol paleoo||e
aoeds AJolsw |eoisAyd

S0 |esSJaAlun 01 pajeoo||e
aoeds AJowsu |B2}sAyd

\

—

4444 4434%0

142!
g Boie poAIasey L

0000 0004%0

|\\\\\\\\\|| evl
Atowa palsaloid

0000 0003x0

vl
Y eale partasoy -

0000 00020

34!
Alowsli |euLioy _

¢ 9ld

0000 0000%0
iaquinu sseJdppe |eo18AUd

US 8,689,212 B2

Sheet 4 of 23

Apr. 1,2014

U.S. Patent

141}

Yy uolieol|dde
Jo aoeds
Kiowsu [eoIS07

[4:11
V BaJe paAtasay B

/ N @3ed

€sl .

N \ 5
% 83ed | /7 Adowsu |euLioN
¥ uoijes||dde \\\\\\\\ .
30 9|qe} e3eq .

¢ o3ey

Z 99ed

| afed

p—

051 WWA 24noas Aq g0 |BSJaAIUN
0] poleoo| | 9oeds Asowew |BOISAyd |enjdip

AVE

US 8,689,212 B2

Sheet 5 of 23

Apr. 1,2014

U.S. Patent

091 8|qel oded
- o|qepesy | @|qel|im-UoN ¢ duly 0000 0010%0 0001 000LX0 N
ans cen rea . “ae “ua v_
o 9| qepesay 9|qellp g 3uny 0000 0000%0 0001 0000X0 ¢
uoijewtojuy | Uollelliojul | UCITBUIOJUI 1o qpuioyu) | 49GUNU SSAIPPR | Jaqunu sseippe laqunu
" |8]gepeaJ-uou} ajqelltm-uou : : eolsAuyd
000 " alapeey | jeraerin | elatd | |eo130T °9ed
L9l 991 a9l 91 €91 291 191
§914

US 8,689,212 B2

Sheet 6 of 23

Apr. 1,2014

U.S. Patent

S0 |BSJ9AIUN

uo mc_::_‘: 811 1Wid gius

oo Bujunt pe11luiad pa1uag paiuag pajuag £ 3uly

SO lesJanlup pe11iwied pal1luiag patuag paiusg Z 3uly

a1eo|pa

mm:w___mmsmsu pe11lwiag pa33wiag pa111uwlag paiuag | Bury

WWA 24noag pe33iwiad pe11iuiag pa11luiag pa31iwieg 0 3ury
9.eM1 108 £ Uiy Z 3uiy | Bu1y 0 Suly Ndo 40
pa1eoo| |y 0] SS90y 0] S$$800Y 0] $S990Y 0} $S990Y apow pesa|iAlig

9914

US 8,689,212 B2

Sheet 7 of 23

Apr. 1,2014

U.S. Patent

A

081

T]

S0 |esdJaAiup

<

a

g uoljeol|dde jo a|qe] aSed

Yy uolleol|dde o ajqel aded

g uo(1eo| |ddy

Y Uoljeor|ddy

p—

1£]!

£L9I4

S

€8l

US 8,689,212 B2

Sheet 8 of 23

Apr. 1,2014

U.S. Patent

761 061

161

/

WWA @4nosg

S0 _pejeoipap juswaseusl
Aq pa3euew o|ge1 s3ed jusJing

SO |esJeAiun Aq
paseuel 8|qe} a3ed justing

SO peleolIpep jusweSeuew uo
Sujuuna Kj3us4ino uoiieol|dde
pue g0 pe1edIpsp juswieseusy

uo{3eoljdde 3uiuun.
A|Juaiind pue go |BSLaAIUf

P

1313

8 914

S

€6l

US 8,689,212 B2

Sheet 9 of 23

Apr. 1,2014

U.S. Patent

LOIS
8018

// 9018

dals uo|jeulwielep

dajs Su|joojun
uoiieol|dde 183.e]

|

dols Suissanoud 89|Asq

\

dols uoijeutwJalap
3uisssoodd 991A3(]

uoijeol |ddy

dols uolie.aual
8p0oo Uo|3eo|jusyiny

P

\\ <

yois

lols |

deis uojyoelap

dals 20§
uoileol|dde 1a3.ie]
i

| - g0IS

dajs |eAal43ed
uoijeo||dde j98.ie]

701 001S

b

3sonbeu Sulsseon.y

\

188nba.

&
Bl

48A 1P
801ABp 8inoag

6 914

~

WA @4noag

guissaocoid
90| A9p 8.4noag

I

S0 |esdaAlun
uo uoliesi|ddy

US 8,689,212 B2

Sheet 10 of 23

Apr. 1,2014

U.S. Patent

80¢
AN

00¢

//

LOC
Z

WNA @4nosg

—

1iun yoo0| A.Jowsw
uoijeol|dde Suiuuny

31UN UOI1E01}13UBD |
KJiouwsu mwmho”_,w
uoi1eoi|dde Suiuuny

poz /|

SO paleolpap juawaseueyy SO |esJ4aAlup
}lun uoijesljijusp|
4011801 | ddy 18A1Jp 801A8p 94no8g
}1un [043U00
L1 31un uo|ssiusugl y
H o 1 $88008 201A3(g uolieoi|ddy y uoijes||ddy
}1un uoj3eJauss iun mmmwmm%wgmpov
]epoo uoi3eatjusy3ny $S9008 991A9(
(7 ((
90¢ 012 60C G0¢ €0¢ ¢0¢
0L 914

US 8,689,212 B2

Sheet 11 of 23

Apr. 1,2014

U.S. Patent

e

NS

JaAJ9S UO|1BUIWISLEP
uoieon| |ddy

}lun uoljeu|wiaisp
uo|leo| |ddy

/

’

A4

(444

LLOI4

90| ABp
Su|sseo04d
LUO13BWI0U |

\

0¢¢

US 8,689,212 B2

Sheet 12 of 23

Apr. 1,2014

U.S. Patent

0€¢

/r/

188
Z

WA @4noag

—

11un 00| KJoueu
uo11eoy|dde 3uluuny

11Un Uo11B0113u8p|
AJowal ageiols
uoijesi|dde Suiuuny

324

0ve

S0 pajeolpap jusuaseuey SO |esdaAlun
11Un UoI3e9l 4 13usp] an1p
uo11eo| | ddy 808} 193U| YJOM]BN
Ll 31un uojssiwsuea|
g uoi3eo}|ddy y Uo|3eo| |ddy
}1un uoljelaus3 jiun :o_aJmmwhwamv
9pod uol3eolusy3ny mmmwwwzmo_>oa
’ 7 ’
9ee 6€¢ 104 AR
AT

US 8,689,212 B2

Sheet 13 of 23

Apr. 1,2014

U.S. Patent

(A4

B

JEYOEH!
JaplAaodd 901A498

\\\\n 95¢
11uUn uo|ieulwialap

|1
JapilAoid 8diAIBg

Jiun Japiaoid £6¢
801A 188

90| ABp
\ 3ujssaooud
\\\ uo|Jewloju|

162 §6¢

18AJ8S UO13BUIUIS18D
uo|1eo} |ddy
05¢

}1UNn UOi3lBUIWIaLap
uo|1eo} |ddy

/

.

414 €1 91d

US 8,689,212 B2

Sheet 14 of 23

Apr. 1,2014

U.S. Patent

dols uoisiAcid 891A48S

de3s 3uiroojun
uoijeol|dde je34e|

de1s uoljeujuaalep
13p1aoid a91Aleg

&
L

JEYPEH]
dapinoid

901AJ98

dals ucljeulwialap
uo|jeo||ddy

>
.

\\\mcww

-

<

SEYSEL
uoljeuluwielep

uo|iest jddy
vl 94

de]s uoissiusue.l

8p0o% U0 |31BDijusylny

doys uoljeisusg

9poo Uo|1B913ualyny

dsls X00|

uoijeol|dde 1a8.4e]

dels |easlJlsd
uolleol|dde jasie|

da3s uol1o93ep

1sanbaJs 30158992044
1

1ssnbas 3uissecoud
80ASp 94noss

99| Aap
3u1ssaooud

uoijewiou|

US 8,689,212 B2

Sheet 15 of 23

Apr. 1,2014

U.S. Patent

0L¢ 09¢ 69¢
S — _
WHA 8.4ndag 31Un [0J3UOD SSBO0B 8D1A3($1un uojieuluialep

1sonbaJ $s900B 901A9(

11Un %o0] Klowaw

}iun uolleolfliuspl
Kiowow ageJols
uoljeo}|dde 3uluuny

1|1|\\\\\\\\\\\\\\|11|| uoileo||dde Sujuuny
89¢ —

>~ 197

///_wm

. \\ SO peieolpap juswaseuey SO |BsJ9AlU
9
1iun uoijeoljijuspl
uojleo}|ddy
11uUn uoljeu|wialsp
212 y uoijeol |ddy A8A14p 301A3D 34n08g g uolieol |ddy y uoljeo]|ddy

}1Un Uol3eiauas
9poo UO11BD]IUBYINY

LLE \\

0 ¢

99¢ 99¢

GL 914

£9¢

¢9¢

US 8,689,212 B2

Sheet 16 of 23

Apr. 1,2014

U.S. Patent

dals 3utyoojun
uoijesljdde je8.e]

m—mmx\\\\

ds]s uoljeulwialsp
guisseooid a91A9(

dals Buj|ssaoodd 291A9(
tizs — -
§1¢S
da}s uoijeuiwiolep - o_Nw1\\\y .
uoijeot |ddy >
L
da1s uo|}eious3d \\\\v_wm
8poo U013Bo11UsYLNY
eizs—
2z

11un

Uo13e9i 4 13uap|
uoijes| |ddy

dals ¥o0]

uoileol|dde je3.ie|
1

dels |eA9lJ}a4

uolqesidde 123.4e]|
1

daA14p

90| ASp 9U4noag

91 914

dals uo)30938p
3sanbad Suissasouy

01¢s

p

3senbaus Suissesoud
921A8p 94noeg

WHA ©4noag

S0 [es4eAlUn
uo uol3es] jddy

US 8,689,212 B2

Sheet 17 of 23

Apr. 1,2014

U.S. Patent

08¢

68¢
_

WAA @4noag

}1un uojjeisuss
8pod UO0|3e913usyiny

31Un Yo0| AJouwsu

||1‘ul\\\\\\\\\|\\\|||| uoi3eoljdde Suiuuny
88¢ —

31un uoi1eo] J13uap|
KJlowal mmmgouw
uojleo||dde Suiuuny

~— L[8¢

S SO paiedsipap juswaseuely
¥8¢

SO |esJdsAlup

Hlun uolleolyijuspl JOA1Jp 991ABP 94n08G

uol3eol |ddy
11Un Uo|3BUlWIS19p 11Un |043U09
Vi uol3eoi |ddy $S900B 991A3(
¢6¢

11uUn uo|3jeulwialep
1sanba.
$S9008 901A8(

/

g uoi3es! |ddy

V Uoi3eol|ddy

g [r

982 162 062 482
L1791

[4:14

US 8,689,212 B2

Sheet 18 of 23

Apr. 1,2014

U.S. Patent

8z¢s e

dajs Suiyoojun
uo|1eoijdde 31ag8.ej

dols Suissaocoid 801Aa(

de1s uUoljBUIWI9LEP
8u19s800.d 891A8(

dels uolleU|LIa]AD

uo1yeo| | ddy

mNNw|\\\

»

dsls uoijeasuss

8poo Uo§1es|usylny
1

dois yoo|

uo|3ieo||dde 3183.ie|
I

dals |eAslJalal
uoijesl|dde jag.e)

dais ucl3o9atep

4

1senbaJ 3U1$$800.4d

1tun

uofleaijiuspl
uoiieo||ddy

&

0¢zs

\\

JEYYPI

89]ABp 8inveg

81 914

1sonbas 3uissavodd
901A9p 81N29g

WWA 94noag

S0 jeS48AlIUN
uo uol1eo| jddy

US 8,689,212 B2

Sheet 19 of 23

Apr. 1,2014

U.S. Patent

gu|ssasoud puj

A

p
T
:
w

Su1sseo0.d pawiojiad 1eyy weiSoad Lo UOILBZIJOYINe ALIJoA
pue uoljeuwlojul psssanodd 03 8pod uo|iedliusylne yoelly

3

3u1ssaoo.d pswJojdad eyl weagodd
JoJ uollounj ysey BIA 8p0od uoljeoljuayine ale.dausy

A

elep Indul $9s5920.4d WeUS0.d

F 3

guissaosoud 1.iels

14V ¥OI4d 61 914

\,
(]
T
[0}

US 8,689,212 B2

Sheet 20 of 23

Apr. 1,2014

U.S. Patent

00v
)
WA
14014
/Z SO swll-|edy SO |BS49AIUN
43A14p JIN
or — |
dde
kxoad 9N uotleol |
SO |BSJ4aAIU m_xﬁ_‘__ou”,m%mszoo
d1/dan Axodd 9IN
auil 1~ | E9Y ol - | B0y \ j
r~ r~
7 coy AVl 4
\ /
90t Gov

14V ¥OI4d 0Z 914

LOY
\

US 8,689,212 B2

Sheet 21 of 23

Apr. 1,2014

U.S. Patent

spua Su18Sa00.d

SObS -

F 3

&
<+

elEp 19%oed JO SO [ESJeAIUN
ul Axoad 9N SO |eS49AIUN ALI1ON

yors —

3

19%oed BlEp $8S88004d SO BWI1-|BAY

ON

F 3

S3A

4SO dWil-|eaJ AQ pasn Jaqunu 1.iod
07 Spuodsa.iod ejep 19%oed jo BoJe 34od Ul padols Jaquny

- ¢0¥S

#

ejep 3exoed JO d|/dQn SW!i-|BaJ $814130U
pue elep 18yoed sadinboe JaAlip 9N

#

B1Ep 19%oBd 1O |BAIJJR 4O UO|1BD[LI30U
SOpIA0Id pABD 90BLIBIUI YJOMBN

14V ¥OIdd |Z 914

US 8,689,212 B2

Sheet 22 of 23

Apr. 1,2014

U.S. Patent

spus uoljes||dde Jo 3uipeo]

\.
w0
O
o
L]

F 3

BaJe AJowaw pasjuesend ojul a|i) woi) weiSoud peoy

uoijes| |dde o} Sulpuodssiiod a|qel ased 9]1B94Y

AJowaw [ewou Ul BOJB Adoulow 99lue.ieny

901A8p 85B401S 8| 11B|OA~UOU
o4} palols S| uojleol|dde yosiym ul 8|1} pesy

L 3

uoljesl |dde Bulpeo| ui3dag

¢¢ 94

US 8,689,212 B2

Sheet 23 of 23

Apr. 1,2014

U.S. Patent

00¢ @|qel a3ed

o 9| qepesy 9|qel!m-UoN 0 3ury 0000 0010%0 0001 000LX0 N

ame ase cee vae an an v_

.- 9| qepeay 3| qel | Jn-Uop 0 3ury 0000 0000X%0 0001 0000%0 ¢
UO | JBULIOJU | mc_on_%%m___mbﬁ:co_: mc_m _muwm_sn%*::o_: uoljewopul| 4 mn_ﬂmu | Mmm mnvm Jaqunu ssaippe | Jaqunu
19y /5| qepeay /5] Ge3 1M ada| 1Al g [N [e91307 adeq

LOg 90¢ S0¢€ 1401 £0g ¢0g 10€

€¢9lid

US 8,689,212 B2

1
INFORMATION PROCESSING DEVICE FOR
CONTROLLING AN APPLICATION ABLE TO
ACCESS A PREDETERMINED DEVICE, AND
CONTROL METHOD USING AN
INFORMATION PROCESSING DEVICE FOR
CONTROLLING AN APPLICATION ABLE TO
ACCESS A PREDETERMINED DEVICE

TECHNICAL FIELD

The present invention relates to an information processing
device that includes a virtual machine monitor that manages
a virtual machine on which an application operates and to a
method for controlling the information processing device.

BACKGROUND ART

Inrecentyears, consumer products are starting to digitalize
audio data and incorporate the data in a storage device in order
for consumers to enjoy music. Furthermore, there is a demand
for consumer products to incorporate not only audio data, but
also highly expressive content such as High Definition (HD)
video.

Digitalized audio data, HD video, etc. can be copied with
no loss of quality. Therefore, in order to protect the interests
of copyright holders, such content needs to be protected from
illicit copying.

Such content is protected, therefore, by copyright protec-
tion technology such as CPRM (Content Protection Recoding
Media) or AACS (Advanced Access Content System). These
copyright protection technologies protect content by encrypt-
ing it, and for users to enjoy content, it is necessary to decrypt
the data with a terminal supporting the copyright protection
technology.

A terminal supporting the copyright protection technology
is provided with a secure device such as an encryption engine
that decrypts encrypted content. The secure device needs to
be operated properly so that content is not decrypted via illicit
processing.

Tampering detection is a form of technology for determin-
ing whether a program performing the secure device opera-
tion is authorized or not (for example, Patent Literature 1).

Patent Literature 1 is technology for detecting whether a
program that handles data is authorized or not. This technol-
ogy is briefly described with reference to FIG. 19, which
shows a sequence in Patent Literature 1.

First, processing begins via operation by, for example, a
user (S410).

Next, the program processes input data and outputs pro-
cessed information (S411).

Next, a hash value (authentication code) is created using a
hash function for the program (S412).

Next, the processed information and the hash value (au-
thentication code) are transferred to a verification unit not
shown in FIG. 19. If the hash values match, the verification
unit determines that the program corresponding to the hash
value is authorized (S413).

Processing then ends (S414).

Patent Literature 2, for example, is technology for appro-
priately processing data handled by a terminal device. This
technology is briefly described with reference to FIGS. 20
and 21.

FIG. 20 is a software schematic diagram of Patent Litera-
ture 2.

The software in Patent Literature 2 is composed of a Virtual
Machine Monitor (VMM) 400, universal OS 401, network

20

25

30

35

40

45

50

55

60

65

2

compatible application 402, universal OS NIC proxy 403,
real-time OS 404, real-time NIC proxy 405, real-time UDP/
1P 406, and NIC driver 407.

The VMM 400 provides an OS virtualization function. The
universal OS 401 and the real-time OS 404 are the operating
system on which the hardware virtualized by the VMM 400
operates.

When performing network processing, the network com-
patible application 402 requests network processing of the
universal OS NIC proxy 403. The universal OS NIC proxy
403 requests processing of the real-time NIC proxy 405. The
real-time NIC proxy 405 requests processing of the real-time
UDP/IP 406 406. The real-time UDP/IP 406 uses the NIC
driver 407 to control a Network Interface Card (NIC) not
shown in FIG. 20.

Also when performing network processing, the real-time
UDP/IP 406 uses the NIC driver 407 to control an NIC.

FIG. 21 shows a sequence when receiving notification of
arrival of packet data from the NIC.

A notification of arrival of packet data is transmitted via an
interrupt signal or the like from the NIC, which has detected
the arrival of packet data (S400).

Next, the NIC driver 407 receives data from the NIC and
transmits packet data to the real-time UDP/IP 406 (S401).

The real-time UDP/IP 406 determines whether the number
stored in the port area of the packet data is the port number
that the software in the real-time OS uses. If the number is the
port number that the software in the real-time OS uses, pro-
cessing proceeds to S403. Ifthe number is not the number that
the software in the real-time OS uses, processing proceeds to
S404 (S402).

In S403, the real-time UDP/IP 406 transmits the packet
data to appropriate software in the real-time OS, and process-
ing proceeds to S405 (S403).

In step S404, the real-time UDP/IP 406 transmits the
packet data to the universal OS NIC proxy 403 via the real-
time NIC proxy 405. The universal OS NIC proxy 403 trans-
mits the packet data to the network compatible application
402 (S404).

Processing then ends (S405).

[Patent Literature 1] Japanese Patent Application Publication

No. 2003-186561 (Page 8, FIG. 1, etc.).

[Patent Literature 2] Tokuhyo (published Japanese translation
of PCT international publication for patent application)

No. 2007-500381 (Page 17, FIG. 1, etc.).

SUMMARY OF INVENTION

However, the above-described conventional technology
leads to the following problems.

In the method in Patent Literature 1, hash calculation is
performed on the program to determine whether the program
is authorized.

This method, however, has the problem that if an autho-
rized program is replaced by an unauthorized program, and
the unauthorized program operates, it will be determined to
be an authorized program.

This problem is briefly described with reference to FIG. 19.

First, in S411, an unauthorized program performs process-
ing. Before proceeding from S411 to S412, the unauthorized
program replaces an authorized program. Processing then
proceeds to S412.

In S412, a hash value (authentication code) for the replace-
ment of the authorized program is generated. Accordingly, it
is determined that processing has been performed by an
authorized program.

US 8,689,212 B2

3

Furthermore, the method in Patent Literature 2 only deter-
mines whether the data that the device handles is to be pro-
cessed by software on the real-time OS, or by software on the
universal OS. This method does not verify whether the appli-
cation is authorized.

Therefore, even when the network compatible application
402 has to use a secure transmission method such as SSL
(Secure Socket Layer), there is a problem in that it is possible
for unauthorized software to operate on the universal OS 401
and transmit without SSL.

In order to solve the above problems, it is an aim of the
present invention to provide an information processing
device and control method thereof which, after determining
whether an application is authorized, prevent the application
from being overwritten by an unauthorized application that
controls a device.

To solve the above-described conventional problems, an
information processing device according to the present inven-
tion comprises: a virtual machine operable to cause an appli-
cation, which accesses a predetermined device, to operate in
a work area; a detection unit operable to detect, from the
virtual machine, an access request to access the predeter-
mined device via the application; a verification unit operable
to verify authorization of the application; and a virtual
machine monitor operable to manage the virtual machine, the
verification unit, and the detection unit and to switch between
managing the application in one of a writeable state and a
non-writable state, wherein upon detecting the access
request, the detection unit notifies the virtual machine moni-
tor of the detection, upon receiving notification from the
detection unit, the virtual machine monitor switches to man-
aging the application in the non-writable state and notifies the
verification unit of the switch, and upon receiving notification
from the virtual machine monitor, the verification unit verifies
authorization of the application.

With this structure for the information processing device in
the present invention, after the virtual machine monitor
switches to managing the application in the work area in a
non-writable state, the verification unit determines whether
the application is authorized. Switching to managing the
application in a non-writable state before the verification unit
verifies authorization of the application prevents the applica-
tion from being replaced in the work area by an unauthorized
application after the verification unit determines the applica-
tion to be authorized.

The information processing device in Claim 1 of the
present invention comprises: a virtual machine operable to
cause an application, which accesses a predetermined device,
to operate in a work area; a detection unit operable to detect,
from the virtual machine, an access request to access the
predetermined device via the application; a verification unit
operable to verify authorization of the application; and a
virtual machine monitor operable to manage the virtual
machine, the verification unit, and the detection unit and to
switch between managing the application in one of a write-
able state and a non-writable state, wherein upon detecting
the access request, the detection unit notifies the virtual
machine monitor of the detection, upon receiving notification
from the detection unit, the virtual machine monitor switches
to managing the application in the non-writable state and
notifies the verification unit of the switch, and upon receiving
notification from the virtual machine monitor, the verification
unit verifies authorization of the application.

In the present invention, after the virtual machine monitor
switches to managing the application in the work area in a
non-writable state, the verification unit determines whether
the application is authorized. Switching to managing the

20

25

30

35

40

45

50

55

60

65

4

application in a non-writable state before the verification unit
verifies authorization of the application prevents the applica-
tion from being replaced in the work area by another appli-
cation after the verification unit determines the application to
be authorized.

The information processing device in Claim 2 of the
present invention further comprises an execution unit that
accesses the predetermined device via the application when
the verification unit determines that the application is autho-
rized.

In the present invention, after the virtual machine monitor
switches to managing the application in the work area in a
non-writable state, the application is determined to be autho-
rized or unauthorized, and a predetermined device is accessed
via the application. Switching to managing the application in
anon-writable state before the verification unit verifies autho-
rization of the application prevents the application from being
replaced in the work area by an unauthorized application and
prevents use of the unauthorized application to access the
predetermined device after the verification unit determines
the application to be authorized.

In the information processing device in Claim 3 of the
present invention, after the execution unit finishes accessing
the predetermined device via the application, the virtual
machine monitor switches back to managing the application
in the writable state.

In the present invention, the virtual machine monitor
switches back to managing the application in a writable state
after the execution unit accesses the predetermined device via
the application. Since the application can be removed from
the work area after access of the predetermined device via the
application, unnecessary use of the workspace by the appli-
cation after processing is complete can be prevented.

In the information processing device in Claim 4 of the
present invention, the virtual machine monitor manages man-
agement information corresponding to the application, the
management information including privilege information
that indicates one or more subjects having authority to rewrite
the management information, and when the privilege infor-
mation indicates that the virtual machine is a subject that can
rewrite the application, the virtual machine monitor switches
to managing the application in the non-writable state by
rewriting the privilege information to exclude the virtual
machine from the subjects that can rewrite the application.

In the present invention, the virtual machine monitor
rewrites privilege information within management informa-
tion rewritable by the virtual machine so that the virtual
machine cannot rewrite the application. Thus, by rewriting
the privilege information, the virtual machine monitor can
prevent the virtual machine from rewriting the management
information. This prevents the application from being
replaced in the work area by another application after the
verification unit determines the application to be authorized.

Since the virtual machine monitor rewrites the privilege
information, which is part of the management information, to
exclude the virtual machine from the subjects that can rewrite
the application, it is easy for the virtual machine monitor to
prevent the virtual machine from rewriting an application
operating in the work area. Furthermore, since existing infor-
mation, i.e. the privilege information in the management
information, is rewritten, another data structure for prohibit-
ing rewriting of the management information by the virtual
machine is not necessary, making the structure to prohibit
rewriting simple.

In the information processing device in Claim 5 of the
present invention, the virtual machine monitor excludes the
virtual machine from the subjects that can rewrite the appli-

US 8,689,212 B2

5

cation by rewriting the privilege information, so that instead
of including the virtual machine and the virtual machine
monitor as the subjects that can rewrite the application, the
privilege information limits the subjects that can rewrite the
application to the virtual machine monitor.

In the present invention, the virtual machine monitor
excludes the virtual machine from the subjects that can
rewrite the application by rewriting the privilege information,
so that the privilege information does not include the virtual
machine as a subject that can rewrite the application. There-
fore, it is easy for the virtual machine monitor to prevent the
virtual machine from rewriting an application operating in the
work area.

In the information processing device in Claim 6 of the
present invention, the predetermined device is an SD card.

In the information processing device in Claim 7 of the
present invention, the predetermined device is an external
content server that provides content to the information pro-
cessing device.

The information processing device in Claim 8 of the
present invention comprises: a virtual machine operable to
cause an application, which accesses a predetermined device,
to operate in a work area; a detection unit operable to detect,
from the virtual machine, an access request to access the
predetermined device via the application; and a virtual
machine monitor operable to manage the virtual machine and
the detection unit and to switch between managing the appli-
cation in one of a writeable state and a non-writable state,
wherein upon detecting the access request, the detection unit
notifies the virtual machine monitor of the detection, and
upon receiving notification from the detection unit, the virtual
machine monitor (i) switches to managing the application in
the non-writable state and notifies an external device pro-
vided with a verification unit of the switch and (ii) causes the
verification unit in the external device to verify authorization
of the application.

In the present invention, the verification unit may be
included in a device external to the information processing
device instead of being included in the information process-
ing device.

The information processing device in Claim 9 of the
present invention comprises: a virtual machine operable to
cause an application, which accesses a predetermined device,
to operate in a work area; a detection unit operable to detect,
from the virtual machine, an access request to access the
predetermined device via the application; a virtual machine
monitor operable to manage the virtual machine and the
detection unit and to switch between managing the applica-
tion in one of a writeable state and a non-writable state; and a
transmission unit operable to transmit to an external device
that is provided with an execution unit and that provides
services, wherein upon detecting the access request, the
detection unit notifies the virtual machine monitor of the
detection, upon receiving notification from the detection unit,
the virtual machine monitor switches to managing the appli-
cation in the non-writable state, and when the application is
determined to be authorized after being switched to manage-
ment in the non-writable state, the transmission unit receives
the services provided by the execution unit in the external
device.

In the present invention, the execution unit may be
included in a device external to the information processing
device instead of being included in the information process-
ing device.

Claim 10 of the present invention is a control method for
controlling an information processing device that comprises:
a virtual machine operable to cause an application, which

20

25

30

35

40

45

50

55

60

65

6

accesses a predetermined device, to operate in a work area; a
detection unit operable to detect, from the virtual machine, an
access request to access the predetermined device via the
application; a verification unit operable to verify authoriza-
tion of the application; and a virtual machine monitor oper-
able to manage the virtual machine, the verification unit, and
the detection unit, wherein upon detecting the access request,
the detection unit notifies the virtual machine monitor of the
detection, upon receiving notification from the detection unit,
the virtual machine monitor switches to managing the appli-
cation in a non-writable state and notifies the verification unit
of'the switch, and upon receiving notification from the virtual
machine monitor, the verification unit verifies authorization
of the application.

In the present invention, after the virtual machine monitor
switches to managing the application in the work area in a
non-writable state, the verification unit determines whether
the application is authorized. Switching to managing the
application in a non-writable state before the verification unit
verifies authorization of the application prevents the applica-
tion from being replaced in the work area by an unauthorized
application after the verification unit determines the applica-
tion to be authorized.

Claim 11 of the present invention is a control program for
controlling an information processing device that comprises:
a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work area; a
detection unit operable to detect, from the virtual machine, an
access request to access the predetermined device via the
application; a verification unit operable to verify authoriza-
tion of the application; and a virtual machine monitor oper-
able to manage the virtual machine, the verification unit, and
the detection unit, the control program comprising the steps
of: notifying the virtual machine monitor when the detection
unit detects an access request; causing the virtual machine
monitor to switch to managing the application in a non-
writable state and causing the virtual machine monitor to
notify the verification unit of the switch; and causing the
verification unit, which receives notification from the virtual
machine monitor, to verify authorization of the application.

In the present invention, after the virtual machine monitor
switches to managing the application in the work area in a
non-writable state, the verification unit determines whether
the application is authorized. Switching to managing the
application in a non-writable state before the verification unit
verifies authorization of the application prevents the applica-
tion from being replaced in the work area by an unauthorized
application after the verification unit determines the applica-
tion to be authorized.

The integrated circuit used in an information processing
device in Claim 12 of the present invention comprises: a
virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work area; a
detection unit operable to detect, from the virtual machine, an
access request to access the predetermined device via the
application; a verification unit operable to verify authoriza-
tion of the application; and a virtual machine monitor oper-
able to manage the virtual machine, the verification unit, and
the detection unit, wherein upon detecting the access request,
the detection unit notifies the virtual machine monitor of the
detection, upon receiving notification from the detection unit,
the virtual machine monitor switches to managing the appli-
cation in a non-writable state and notifies the verification unit
of'the switch, and upon receiving notification from the virtual
machine monitor, the verification unit verifies authorization
of the application.

US 8,689,212 B2

7

In the present invention, after the virtual machine monitor
switches to managing the application in the work area in a
non-writable state, the verification unit determines whether
the application is authorized. Switching to managing the
application in a non-writable state before the verification unit
verifies authorization of the application prevents the applica-
tion from being replaced in the work area by an unauthorized
application after the verification unit determines the applica-
tion to be authorized.

BRIEF DESCRIPTION OF DRAWINGS

FIG.1is ablock diagram showing a software configuration
in embodiment 1 of the present invention.

FIG. 2 is ablock diagram showing a software configuration
in embodiment 1 of the present invention.

FIG. 3 shows physical memory space in an information
processing device in embodiment 1 of the present invention.

FIG. 4 shows an example of a relationship between virtual
physical memory space and logical memory space in embodi-
ment 1 of the present invention.

FIG. 5 shows an example of a data structure of a page table
in embodiment 1 of the present invention.

FIG. 6 shows access control when a CPU in embodiment 1
of the present invention accesses normal memory and pro-
tected memory.

FIG. 7 shows an example of operations on page tables and
applications by a universal OS in embodiment 1 of the present
invention.

FIG. 8 shows an example of operations on page tables and
software execution environments by a secure VMM in
embodiment 1 of the present invention.

FIG. 9 is a sequence diagram showing prevention of secure
device access by an unauthorized application in embodiment
1 of the present invention.

FIG. 10 shows a software configuration in embodiment 2
of the present invention.

FIG. 11 shows a structure in which an information process-
ing device and an application determination server in embodi-
ment 2 of the present invention are connected via a network.

FIG. 12 shows a software configuration in embodiment 3
of the present invention.

FIG. 13 shows a structure in which an information process-
ing device, an application determination server, and a service
provider server in embodiment 3 of the present invention are
connected via a network.

FIG. 14 is a sequence diagram showing prevention of
secure device access by an unauthorized application in
embodiment 3 of the present invention.

FIG. 15 shows a software configuration in embodiment 4
of the present invention.

FIG. 16 is a sequence diagram showing prevention of
secure device access by an unauthorized application in
embodiment 4 of the present invention.

FIG. 17 shows a software configuration in embodiment 5
of the present invention.

FIG. 18 is a sequence diagram showing prevention of
secure device access by an unauthorized application in
embodiment 5 of the present invention.

FIG. 19 is a sequence diagram of conventional verification
that a program is authorized.

FIG. 20 shows a software configuration that processes data
appropriately for each execution environment in a conven-
tional OS virtualized execution environment.

FIG. 21 is a sequence diagram showing processing of data
appropriately for each execution environment in a conven-
tional OS virtualized execution environment.

FIG. 22 is a sequence diagram showing loading of an
application on a universal OS.

20

25

30

35

40

45

50

55

60

65

8

FIG. 23 shows an example of a rewritten data structure of
a page table in embodiment 1 of the present invention.

REFERENCE SIGNS LIST

100, 133, 190, 200, 230, 260, 280 secure VMM

101, 129, 180, 201, 231, 261, 281, 401 universal OS

102,103,127,128, 183,184, 202,203, 232, 233,262,263,
282, 283 application

104, 132, 204, 234, 264, 284 management dedicated OS

105, 130, 205, 265, 285 secure device driver

106, 131,206,236, 266, 286 application identification unit

107, 207, 237, 267, 287 running application storage
memory identification unit

108, 208, 238, 268, 288 running application memory lock
unit

109, 209, 239, 269, 290 device access request determina-
tion unit

110, 210, 270, 291 device access control unit

111, 211, 240, 271, 289 authentication code generation
unit

112, 223, 254, 272, 292 application determination unit

120, 220, 250 information processing device

121 CPU

122 MMU

123, 141, 151 normal memory

124, 143 protected memory

125 bus

126 secure device

134 non-volatile storage device

140 physical memory space in information processing
device

142, 144, 152 reserved area

150 virtual physical memory space allotted to universal OS
by secure VMM

135, 136, 153, 160, 181, 182, 300 page table

154 logical memory space of application

161, 301 page number field

162, 302 logical address number field

163, 303 virtual physical address number field

164, 304 privilege information field

165, 305 writable/non-writable information field

166, 306 readable/non-readable information field

167, 307 other information field

170 field showing access control when normal memory or
protected memory are accessed

191 current page table managed by universal OS

192 current page table managed by management dedicated
(O

193 universal OS and application currently operating

194 management dedicated OS and application currently
operating on management dedicated OS

212, 241 transmission unit

221, 251 application determination server

222, 253 network

235 network interface driver

252 service provider server

255 service provider unit

256 service provider determination unit

400 VMM

402 network compatible application

403 universal OS NIC proxy

404 real-time OS

405 real-time NIC proxy

406 real-time UDP/IP

407 NIC driver

US 8,689,212 B2

9
DETAILED DESCRIPTION OF INVENTION

Embodiments of the present invention are described below
with reference to the drawings.

Embodiment 1

Description of Software Configuration in
Embodiment 1

FIG. 1 is a diagram showing the software configuration in
embodiment 1 of the present invention.

An information processing device inembodiment 1 is com-
posed of the following: a secure VMM 100, which is a virtual
machine monitor; a universal OS 101; an application A 102;
an application B 103; a management dedicated OS 104; a
secure device driver 105, which includes a device access
request determination unit 109, which is a detection unit, and
a secure access control unit 110, which is an execution unit;
and an application identification unit 106, which is a verifi-
cation unit. The virtual machine includes the universal OS
101, application A 102, and application B 103.

The secure VMM 100 provides an OS virtualization func-
tion. The universal OS 101 and management dedicated OS
104 are an operating system that operate on the virtualized
hardware provided by the secure VMM 100.

The secure VMM 100 is provided with a running applica-
tion storage memory identification unit 107 and a running
application memory lock unit 108.

Application A 102 and application B 103 are applications
that provide services to a user and that access a secure device,
not shown in FIG. 1, as necessary.

The secure device driver 105 is a device driver to control a
secure device, not shown in FIG. 1, and is provided with the
device access request determination unit 109 and the secure
access control unit 110.

The application identification unit 106 is provided with an
authentication code generation unit 111 and an application
determination unit 112.

Description of the Constituent Elements of the
Secure VMM

The running application storage memory identification
unit 107 specifies an application on the universal OS 101 that
accesses a secure device not shown in FIG. 1. Details are
provided below.

The running application memory lock unit 108 controls a
page table corresponding to an application on the universal
OS 101 that accesses a secure device not shown in FIG. 1.
Details are provided below.

Description of the Constituent Elements of the
Secure Device Driver

The device access request determination unit 109 detects a
request to access a secure device, not shown in FIG. 1. Details
are provided below.

The secure access control unit 110 controls access to a
secure device, not shown in FIG. 1. Details are provided
below.

Description of the Constituent Elements of the
Application Identification Unit

The authentication code generation unit ill generates an
authentication code of an application on the universal OS 101
for a secure device, not shown in FIG. 1. Details are provided
below.

20

25

30

35

40

45

50

55

60

65

10

The application determination unit 112 uses the authenti-
cation code of the application to determine whether the appli-
cation is authorized. Details are provided below.

Description of the Hardware Configuration in
Embodiment 1

FIG. 2 is a hardware configuration diagram for the infor-
mation processing device 120 on which the software in FIG.
1 operates.

In the information processing device 120 in FIG. 2, a CPU
121, a Memory Management Unit (MMU) 122, a normal
memory 123, a protected memory 124, a secure device 126,
and a non-volatile storage device 134 are connected to each
other via a bus 125.

The information processing device 120 is further provided
with an I/O unit, auxiliary storage device, etc. which are not
shown in FIG. 2, but since these elements do not pertain to the
essence of the present invention, a description thereof'is omit-
ted.

The following is a detailed description of each constituent
element in the information processing device 120.

Description of the Constituent Elements in the
Hardware of the Information Processing Device

The CPU 121 controls the overall operations of the infor-
mation processing device 120 by executing command code
included in programs and the like stored in the normal
memory 123 and the protected memory 124.

The MMU 122 refers to a page table, not shown in FIG. 2,
and provides the CPU 121 with a function to convert a physi-
cal address number into a logical address (also generally
referred to as “virtual address™) number. Furthermore, the
MMU 122 refers to a page table, not shown in FIG. 2, and in
accordance with the privilege status of the CPU 121, provides
a function to control access to write to the memory, read the
memory, etc.

The non-volatile storage device 134 is a non-volatile stor-
age device storing an application A 127 and an application B
128. Specifically, the non-volatile storage device 134 is a hard
disk, flash memory, etc.

The normal memory 123 is a volatile storage device that
loads and executes application A 127 and application B 128,
stored in the non-volatile storage device 134, and a universal
OS 129. The normal memory 123 corresponds to the work
area in the present invention.

The protected memory 124 is a storage device storing the
secure device driver 130, application identification unit 131,
management dedicated OS 132, and secure VMM 133.

The secure device 126 is a device that handles information
to be protected, such as content. Access to the secure device
126 by unauthorized applications needs to be prevented. The
secure device 126 is, for example, a decryption circuit that
decrypts encrypted content. Other possible examples include
a recording medium, such as flash memory, on which
encrypted content is recorded, or memory storing decrypted
content. The secure device is not limited to being internal to
the information processing device, but may also be an exter-
nal recording device such as an SD card.

Furthermore, the protected memory 124 and the secure
device 126 are controlled so as to be accessible only by
software stored in the protected memory 124.

Description of Relationship Between Universal OS
and Application

The universal OS 129 stores a page table 135 and a page
table 136 respectively for an application A 127 and an appli-

US 8,689,212 B2

11

cation B 128 operating on the universal OS 129. Details on the
page table are provided below.

Description of Memory Space Using OS
Virtualization Function

FIG. 3 shows a physical memory space 140 in the infor-
mation processing device 120.

The physical memory space 140 in the information pro-
cessing device 120 is composed of a memory space 141
corresponding to the normal memory, areserved area A142, a
memory space 143 corresponding to the protected memory,
and a reserved area B144. The physical memory space 140 in
the information processing device can be uniquely specified
by a physical memory address.

The secure VMM 100 manages the physical memory space
140 of the information processing device by dividing it into a
physical memory space allocated to the universal OS 101 and
a physical memory space allocated to the management dedi-
cated OS 104.

The physical memory space allocated to the universal OS
101 is composed of a memory space 141 corresponding to the
normal memory and a reserved area A142.

The physical memory space allocated to the management
dedicated OS 104 is composed of a memory space 143 cor-
responding to the protected memory and a reserved area
B144.

The secure VMM 100 causes the universal OS 101 and the
management dedicated OS 104 to refer to their respective
memory spaces as virtual physical address spaces. The uni-
versal OS 101 and the management dedicated OS 104 read
from and write to their respective virtual physical address
spaces using virtual physical address numbers.

Description of the Virtual Physical Memory Space
and the Logical Memory Space

FIG. 4 shows an example of the relationship between vir-
tual physical memory space and logical memory (also gener-
ally referred to as “virtual memory”) space. Note that the
universal OS reads from and writes to the virtual physical
memory space shown in FIG. 4.

The normal memory 151 is managed by being divided into
sizes of a fixed length, called pages.

The page table 153 manages a group of multiple pages to
form a logical address space. Furthermore, one page table
corresponds to one application.

An application reads from and writes to logical address
spaces using logical address numbers.

Description of Constituent Elements of Page Table

FIG. 5 shows an example of the data structure of a page
table 160.

Each entry in the page table 160, corresponding to a page,
has a data structure composed of a page number 161, logical
address number 162, virtual physical address number 163,
privilege information 164, writable/non-writable information
165, readable/non-readable information 166, and other infor-
mation 167.

The page number 161 is a field storing the number of a
page.

The logical address number 162 is a field storing a logical
address number corresponding to when the MMU 122 con-
verts a virtual physical address number into a logical address
number. This field may store a logical address number corre-

20

25

30

35

40

45

50

55

60

65

12

sponding to each virtual physical address number, or may
store the top logical address number of the page.

The logical address number 163 is a field storing a virtual
physical address number corresponding to when the MMU
122 converts a virtual physical address number into a logical
address number. This field may store the top virtual physical
address number of the page.

The privilege information 164 is a field storing privilege
information to which the MMU 122 refers when controlling
access to the memory. Details are provided below.

The writable/non-writable information 165 is a field show-
ing whether the application corresponding to the page table
160 is allowed to write to the page. This field stores informa-
tion indicating permission or lack of permission.

The readable/non-readable information 166 is a field
showing whether the application corresponding to the page
table 160 is allowed to read from the page. This field stores
information indicating permission or lack of permission.

The other information 167 is a field storing page size, dirty
information for a page, or information on attributes other than
those listed above.

Changes to the information in each field in the page table
are only possible when the privileged mode of the CPU 121 is
Ring 0. Note that details on the privileged mode are provided
below.

Note that the page table 160 shown in FIG. 5 is a logical
data structure, and for example, a widely-known hierarchical
page table structure may be used.

Note also that in the page table 160 shown in FIG. 5,
privilege information is allocated to each page, but one piece
of privilege information may also be allocated for one page
table. In that case, the one piece of privilege information may
be managed with a separate data structure or register.

In the page table 160 shown in FIG. 5, the writable/non-
writable information 165 is a field showing whether writing
by an application is permitted, but this field is not limited in
this way. For example, this field may indicate both informa-
tion designating a subject of a write operation stored in the
other information 167 and whether the subject is permitted to
perform the write operation.

In the page table 160 shown in FIG. 5, the readable/non-
readable information 166 is a field showing whether reading
by an application is permitted, but this field is not limited in
this way. For example, this field may indicate both informa-
tion designating a subject of a read operation stored in the
other information 167 and whether the subject is permitted to
perform the read operation.

Description of Controlling Access to Memory Based
on Privileged Mode of CPU

FIG. 6 is a table showing access control when the CPU 121
accesses normal memory 123 and protected memory 124.

Either the CPU 121 or the MMU 122 may perform the
access control in FIG. 6.

The CPU 121 has privileged modes of Ring 0, Ring 1, Ring
2, and Ring 3. The CPU 121 transitions between privileged
modes by executing a privilege command.

Software that operates on a CPU 121 having a privileged
mode of Ring 0 can access pages whose privilege information
164 in the page table 160 is Ring 0, Ring 1, Ring 2, and Ring
3. The software can also rewrite page tables whose privilege
information 164 field is Ring 0, Ring 1, Ring 2, and Ring 3.

Software that operates on a CPU 121 having a privileged
mode of Ring 1 can access pages whose privilege information
164 in the page table 160 is Ring 1, Ring 2, and Ring 3. The
software can also rewrite page tables whose privilege infor-

US 8,689,212 B2

13
mation 164 field is Ring 1, Ring 2, and Ring 3. When software
that operates on the CPU 121 having a privileged mode of
Ring 1 attempts to access a page whose privilege information
164 in the page table 160 indicates Ring 0, the CPU 121 or the
MMU 122 detects and denies the unauthorized access.

Software that operates on a CPU 121 having a privileged
mode of Ring 2 can access pages whose privilege information
164 in the page table 160 is Ring 2 and Ring 3. The software
can also rewrite page tables whose privilege information 164
field is Ring 2 and Ring 3. When software that operates on the
CPU 121 having a privilege information of Ring 2 attempts to
access a page whose privilege information 164 in the page
table 160 indicates Ring 0 or Ring 1, the CPU 121 or the
MMU 122 detects and denies the unauthorized access.

Software that operates on a CPU 121 having a privileged
mode of Ring 3 can access pages whose privilege information
164 in the page table 160 is Ring 3. The software can also
rewrite page tables whose privilege information 164 field is
Ring 3. When software that operates on the CPU 121 having
a privileged mode of Ring 3 attempts to access a page whose
privilege information 164 in the page table 160 indicates Ring
0, Ring 1, or Ring 2, the CPU 121 or the MMU 122 detects
and denies the unauthorized access.

In the information processing device 120, the secure VMM
100 is allocated to Ring 0, the management dedicated OS 104
to Ring 1, the universal OS 101 to Ring 2, and applications
operating on the universal OS to Ring 3.

Note, however, that the allocation of privileges to Rings is
not limited in this way. Other allocation methods may be
used, as long as the privileges allocated to the universal OS
101 and to the applications operating on the universal OS are
lower than the privileges allocated to the secure VMM 100
and to the management dedicated OS 104.

Description of Processing to Load Applications

FIG. 22 is a sequence diagram showing loading of an
application by a universal OS.

Loading of an application begins after indication by a user,
for example, via an interface not shown in FIG. 22 (S300).

The universal OS 180 reads the file storing the application
from the non-volatile storage device 134 (S301).

The universal OS 180 refers to the required memory size
stored in the header of the file, calculates the memory size to
allocate to the application, and guarantees the required
memory area from the normal memory 123 (S302).

The universal OS 180 internally creates a page table cor-
responding to the application (S303).

The universal OS 180 loads the application program (code
and data) from the file read in step S301 into the memory area
guaranteed in step S302 (S304).

The universal OS 180 then terminates processing to load
the application (S305).

Note that steps S304 and S305 may be performed in reverse
order.

Description of Operations on Page Tables and
Applications by OS

FIG. 7 shows an example of operations on page tables and
applications by the universal OS. In FIG. 7, application A 183
and application B 184 operate on the universal OS 180.

The universal OS 180 allocates the CPU to application A
183 and application B 184 via time-sharing to cause the
application A 183 and application B 184 to operate.

During the allocation via time-sharing, the universal OS
180 switches between the application A 183 and the applica-

20

25

30

35

40

45

50

55

60

65

14

tion B 184. The universal OS 180 accomplishes this switching
by switching between the page table corresponding to each
application.

In the case in FIG. 7, the universal OS 180 retains the page
table 181 corresponding to application A 183 and the page
table 182 corresponding to application B 184 and executes the
applications via time-sharing by switching between these
page tables.

Also, the management dedicated OS 104 switches between
software operating on the management dedicated OS 104 by
performing similar operations on page tables.

Description of Operations on Page Tables and
Software Execution Environments by the Secure
VMM

FIG. 8 shows an example of operations on page tables and
software execution environments by the secure VMM. In
FIG. 8, the universal OS 193 and management dedicated OS
194 operate on the secure VMM 190.

The secure VMM 190 allocates the CPU to the universal
OS 193 and the management dedicated OS 194 via time-
sharing to cause the universal OS 193 and the management
dedicated OS 194 to operate.

During the allocation via time-sharing, the secure VMM
190 switches between the universal OS 193 and the manage-
ment dedicated OS 194. The secure VMM 190 accomplishes
this switching by switching between the current page table
corresponding to each OS (software execution environment).
The current page table is the page table to which each OS
causes the CPU 121 to refer.

In the case in FIG. 8, the secure VMM 190 retains the
current page table 191 corresponding to the universal OS 193
and the current page table 192 corresponding to the manage-
ment dedicated OS 194 and executes each OS (software
execution environment) via time-sharing by switching
between these page tables.

Description of Detecting Access to a Secure Device
by an Unauthorized Application and Prevention of
Access

With reference to FIG. 9, the following is a description of
how the information processing device 120 detects access to
a secure device by an unauthorized application and prevents
access.

An application on the universal OS 101 issues a secure
device processing request via the universal OS 101 (S100).

The secure VMM 100 switches from the universal OS 101
to the management dedicated OS 104 via the above-described
operations on the software execution environment. During
the processing request detection step, the device access
request determination unit 109 in the secure device driver 105
detects the secure device processing request. The device
access request determination unit 109 issues a target applica-
tion retrieval request to the secure VMM 100 (S101).

In response to the target application retrieval request, the
secure VMM 100 performs a target application retrieval step
and a target application lock step.

During the target application retrieval step, the running
application storage memory identification unit 107 in the
secure VMM 100 retrieves the current page table of the uni-
versal OS 101. Since the application causing the universal OS
101 to operate is the application that issued the secure device
processing request, the current page table is the page table for
this application (S102).

US 8,689,212 B2

15

During the target application lock step, the running appli-
cation memory lock unit 108 in the secure VMM 100 backs up
the information stored in the current page table of the univer-
sal OS 101 in the protected memory. The running application
memory lock unit 108 then changes all of the writable/non-
writable information fields in the current page table of the
universal OS 101 to “non-writable”. For example, performing
the above operations changes the page table 160 shown in
FIG. 5to the page table 300 shown in FIG. 23. In the rewritten
page table 300, the field for the privilege information 164 in
the page table 160, which was Ring 3 before rewriting, is
rewritten to Ring 0, as shown by the privilege information 304
in the page table 300. Furthermore, in the rewritten page table
300, the fields for writable/non-writable information 165 in
the page table 160 are all rewritten to “non-writable” as
shown by the writable/non-writable information 305 in the
page table 300.

It thus becomes impossible to rewrite the memory space
into which the application that issues a secure device process-
ing request has been loaded. Furthermore, the privilege infor-
mation field is changed to a Ring number that ensures that the
privilege information field cannot be changed under the privi-
leges allocated to the universal OS and the applications oper-
ating on the universal OS. By changing the privilege infor-
mation, it becomes impossible for the universal OS and the
application operating on the universal OS to restore the field
for the writable/non-writable information from “non-writ-
able” to “writable” regardless of the original privilege infor-
mation of the current page table. This makes it possible to
prevent an attack whereby the universal OS or an application
operating on the universal OS restores the writable/non-writ-
able information field in the page table to “writable”, making
it possible to rewrite the memory space into which an appli-
cation is loaded. In the present embodiment, by rewriting the
writable/non-writable information 165 field and the privilege
information field, a virtual machine that includes the univer-
sal OS and all of the applications operating on the universal
OS is prevented from being able to rewrite an application that
issues a secure device processing request. An application
identification request is issued to the application identifica-
tion unit 106 (S103).

In response to the application identification request, the
application identification unit 106 performs a authentication
code generation step and an application determination step.

During the authentication code generation step, the authen-
tication code generation unit 111 of the application identifi-
cation unit 106 uses the retrieved page table to refer to the
logical address space. The authentication code generation
unit 111 uses a one-way function such as SHA1 to generate a
hash value from the program stored in the referenced logical
address space (S104).

Next, during the application determination step, the appli-
cation determination unit 112 of the application identification
unit 106 determines whether the generated hash value
matches a pre-stored reference hash value. If the values
match, the application determination unit 112 determines that
the application that issued the secure device processing
request in S100 is an authorized application. If the values do
not match, the application determination unit 112 determines
that the application that issued the secure device processing
request in S100 is an unauthorized application. The applica-
tion determination unit 112 refers to the determination results
and issues a device access control request to the secure device
driver 105 (S105).

In response to the device access control request, the device
access controlunit 110 in the secure device driver 105 permits
access to the secure device when the determination results

20

25

30

35

40

45

50

55

60

65

16

indicate that the application is authorized. When the determi-
nation results indicate that the application is unauthorized, the
device access control unit 110 denies access to the secure
device (5106).

When the device access control unit 110 permits access to
the secure device, the secure device driver 105 performs
processing on the secure device (S107). After processing is
complete, the secure device driver 105 issues a target appli-
cation unlocking request to the secure VMM 100.

In response to the target application unlocking request, the
running application memory lock unit 108 of the secure
VMM 100 performs a target application unlocking step.

During the target application unlocking step, the running
application memory lock unit 108 resets the current page
table of the universal OS 101 to the current page table that was
backed up. The writable/non-writable information and the
privilege information of the page table thus return to their
states before the target application lock step (S108).

The secure VMM 100 then switches to the universal OS
101. The universal OS 101 notifies the application of the
processing results of the secure device driver 105.

During step S106, when access to the secure device is
determined to be denied, the secure device driver 105 issues a
target application unlocking request to the secure VMM 100,
and the running application memory lock unit 108 in the
secure VMM 100 performs the same processing as in step
S108. The secure VMM 100 then switches to the universal OS
101. The universal OS notifies the application of the process-
ing results of the secure device driver 105.

Advantageous Effects of Embodiment 1

In embodiment 1, when a secure device processing request
is detected, the application issuing the request is verified after
changing the settings of the page table for the application to
be non-writable. The settings are kept as non-writable until
access to the secure device is complete. This makes it possible
to prevent an attack that attempts unauthorized access to the
secure device by rewriting an unauthorized application over
an application in memory after the application has been veri-
fied as being authorized. In other words, since an application
is verified after the memory in which the application is loaded
is set to be non-writable, it is impossible to replace the appli-
cation in memory with an unauthorized application immedi-
ately after verification is complete.

Furthermore, changing the privilege information field of
the page table to a privilege such that the privilege informa-
tion field cannot be changed by the universal OS or applica-
tions operating on the universal OS prevents the universal OS
and the applications from being able to restore the settings of
the page table to “writable”. This prevents an attack whereby
an unauthorized application operating on the universal OS
restores the settings of the page table to “writable” and
replaces an application.

Embodiment 2

FIG. 10 is a diagram showing a software configuration of
an information processing device according to embodiment 2
of the present invention.

FIG. 11 shows a structure in which the information pro-
cessing device and the application determination unit in
embodiment 2 of the present invention are connected via a
network.

The differences in configuration between the information
processing device 120 in embodiment 1 and the information
processing device 220 in embodiment 2 are as follows.

US 8,689,212 B2

17

In the information processing device 120 in embodiment 1,
the application identification unit 106 includes an application
determination unit 112 that is a verification unit, whereas the
application identification unit 206 in the information process-
ing device 220 in embodiment 2 does not include an applica-
tion determination unit that is a verification unit. Further-
more, the application identification unit 206 in embodiment 2
differs by including a transmission unit 212.

Furthermore, the information processing device 220 in
embodiment 2 is connected to an application determination
server 221 via a network 222. The application determination
server 221 is provided with an application determination unit
223 that is a verification unit.

The difference in the operations of embodiment 1 and
embodiment 2 are as follows.

In embodiment 1, the application determination unit 112
compares the hash value (authentication code) generated by
the authentication code generation unit 111 with a reference
hash value (authentication code) to make a determination.

In embodiment 2, on the other hand, the transmission unit
212 uses a network function not shown in the figures to
transmit a hash value (authentication code) generated by the
authentication code generation unit 211 via a network 222 to
the application determination server 221. The application
determination unit 223 in the application determination
server 221 compares the transmitted hash value (authentica-
tion code) with a pre-stored hash value (authentication code)
to determine whether an application is authorized.

Apart from the above differences, embodiment 2 is the
same as embodiment 1, and therefore further description is
omitted.

In embodiment 2, the application determination server
determines whether an application is authorized. Accord-
ingly, unlike in embodiment 1, there is no need for the infor-
mation processing device 220 to pre-store a hash value (au-
thentication code) for use in the application determination
step. This has the advantageous effect of making it possible to
reduce the size of the storage area in the information process-
ing device 220.

Embodiment 3

FIG. 12 is a block diagram showing a software configura-
tion of an information processing device according to
embodiment 3 of the present invention.

FIG. 13 shows a structure in which the information pro-
cessing device, the application determination unit, and the
service provider server in embodiment 3 of the present inven-
tion are connected via a network.

FIG. 14 shows a sequence for device access control accord-
ing to embodiment 3 of the present invention.

The differences in configuration between the information
processing device 120 in embodiment 1 and the information
processing device 250 in embodiment 3 are as follows.

The difference in hardware configuration between embodi-
ment 1 and embodiment 3 is the network interface in the
secure device. The network interface driver 235 is the device
driver that controls the network interface.

In the information processing device 120 in embodiment 1,
the application identification unit 106 includes an application
determination unit 112 that is a verification unit, whereas the
application identification unit 236 in the information process-
ing device 250 in embodiment 3 does not include an applica-
tion determination unit that is a verification unit. Further-
more, the application identification unit 236 in embodiment 3
differs by including a transmission unit 241. Also, the net-

20

25

30

35

40

45

50

55

60

65

18

work interface driver 235 in embodiment 3 is not provided
with a device access control unit that is an execution unit.

Furthermore, the information processing device 250,
application determination server 251, and service provider
server 252 in embodiment 3 are connected by a network 253.
The application determination server 251 is provided with an
application determination unit 254 that is a verification unit.
The service provider server 252 is provided with a service
providerunit 255 and service provider determination unit 256
as execution units.

As an execution unit, the service provider unit 255 provides
the information processing device 250 with services such as
content distribution.

The service provider determination unit 256 determines
whether it is acceptable to provide the information processing
device 250 with services.

With reference to the sequence in FIG. 14, a description is
provided for the steps by which the information processing
device 250 receives services from the service provider server
252.

First, the following steps performed in the information
processing device 250 are the same as in embodiment 1, and
therefore a description thereof is omitted: secure device pro-
cessing request (S200), processing request detection step
(S201), target application retrieval step (S202), target appli-
cation lock step (S203), authentication code generation step
(S204), and target application unlocking step (S209).

During the authentication code transmission step (S205),
the transmission unit 241 transmits a generated hash value
(authentication code) via the network 253 to the application
determination server 251. The application determination unit
254 in the application determination server 251 compares the
transmitted hash value (authentication code) with a pre-
stored hash value (authentication code) to determine whether
an application is authorized. The application determination
unit 254 then transmits the determination results to the ser-
vice provider server 252 via the network 253 (S206).

The service provider determination unit 256 in the service
provider server 252 receives the transmitted determination
results.

Ifthe determination results indicate an authorized applica-
tion (S207), the service provider determination unit 256
instructs the service provider unit 255 to provide services to
the information processing device 250. Upon being instructed
to provide services, the service provider unit 255 provides
services to the information processing device 250 via the
network 253 (S208).

Ifthe determination results indicate an unauthorized appli-
cation (S207), the service provider determination unit 256
notifies the information processing device 250 by transmit-
ting information indicating failure of the request (S208).

Note that the application determination server 251 and the
service provider server 252 may be the same server.

Note also that the application determination server 251 and
the service provider server 252 may be connected by a dedi-
cated network to which the information processing device
250 is not connected. If the application determination server
251 and the service provider server 252 are connected by a
dedicated network, the application determination server 251
notifies the service provider server 252 of the determination
results via the dedicated network.

Apart from the above differences, embodiment 3 is the
same as embodiment 1, and therefore further description is
omitted.

In embodiment 3, the service provider server determines
whether to provide the information processing device with

US 8,689,212 B2

19

services. This has the advantageous effect of making it pos-
sible for a service provider to verify software via a network.

Embodiment 4

FIG. 15 is a block diagram showing a software configura-
tion of an information processing device according to
embodiment 4 of the present invention.

FIG. 16 shows a sequence for device access control accord-
ing to embodiment 4 of the present invention.

The differences in configuration between the information
processing device 120 in embodiment 1 and the information
processing device in embodiment 4 are as follows.

In the information processing device 120 in embodiment 1,
the secure device driver 105 is provided with the device
access request determination unit 109 as a detection unit and
the device access control unit 110 as an execution unit,
whereas the secure device driver 265 in embodiment 4 is not
provided with a device access request determination unit as a
detection unit nor with a device access control unit as an
execution unit. Furthermore, the secure VMM 260 in embodi-
ment 4 is provided with a device access request determination
unit 269 as a detection unit and a device access control unit
270 as an execution unit.

With reference to the sequence in FIG. 16, a description is
provided of the steps whereby the information processing
device in embodiment 4 allows only an authorized applica-
tion to access the secure device.

In embodiment 1, the processing request detection step
(S101) and the device processing determination step (S106)
are performed in the secure device driver 105. In embodiment
4, on the other hand, a processing request detection step
(S211) and a device processing determination step (S216) are
performed in the secure VMM 260.

Apart from the above differences, embodiment 4 is the
same as embodiment 1, and therefore further description is
omitted.

Embodiment 4 differs from embodiment 1 in that the
device access request determination unit 269 and device
access control unit 270 exist within the secure VMM 260, not
within the secure device driver 265. Accordingly, the infor-
mation processing device in embodiment 4 can be operated
without altering the secure device driver.

Embodiment 5

FIG. 17 is a block diagram showing a software configura-
tion of an information processing device according to
embodiment 5 of the present invention.

FIG. 18 shows a sequence for device access control accord-
ing to embodiment 5 of the present invention.

The differences in configuration between the information
processing device 120 in embodiment 1 and the information
processing device in embodiment 5 are as follows.

In the information processing device 120 in embodiment 1,
the application identification unit 106 is provided with an
authentication code generation unit 111 as a verification unit,
but the application identification unit 286 in embodiment 5 is
not provided with an authentication code generation unit as a
verification unit. Furthermore, the secure VMM 280 in
embodiment 5 is provided with an authentication code gen-
eration unit 289 as a verification unit.

With reference to the sequence in FIG. 18, a description is
provided of the steps whereby the information processing
device in embodiment 5 allows only an authorized applica-
tion to access the secure device.

20

25

30

35

40

45

50

55

60

65

20

In embodiment 1, the authentication code generation step
(S104) is performed in the application identification unit 106.
In embodiment 5, on the other hand, an authentication code
generation step (S224) is performed in the secure VMM 280.

Apart from the above differences, embodiment 5 is the
same as embodiment 1, and therefore further description is
omitted.

In embodiment 5, unlike embodiment 1, the authentication
code generation unit 289 exists within the secure VMM 280,
not within the application identification unit 286. Therefore,
notification of information from the running application stor-
age memory identification unit 287 to the authentication code
generation unit 289 takes place within the same module (i.e.
the secure VMM 280). This has the advantageous effect that
notification of information from the running application stor-
age memory identification unit 287 to the authentication code
generation unit 289 can be performed more quickly.

(Other Modifications)

(1) In the processing request detection step in the above
embodiments, rather than detecting the processing request
itself, a processing request can be determined to have been
issued by referring to the command classification of the
request or to the nature of the data processing.

(2) In the above embodiments, the processing request
detection step may be performed only on operations during
device initialization.

(3) In the above embodiments, whether detection during
the processing request detection step is performed may be
determined randomly based on a random number.

(4) In the above embodiments, whether detection during
the processing request detection step is performed may
depend on the number of times the device is accessed. For
example, detection may be performed after the secure device
driver is accessed ten times.

(5) In the above embodiments, a one-way function other
than SHA1 may be used to generate the hash value in the
authentication code generation step. For example, MDS5,
SHA256, AES, or DES may be used.

(6) In the above embodiments, the hash value in the authen-
tication code generation step may be generated using only a
part of the logical address space. For example, a hash value
may be generated for only the code area of an application.

(7) In the above embodiments, multiple hash values may be
generated in the authentication code generation step. For
example, the logical memory space may be divided, and a
hash value may be generated for each divided area.

(8) In the above embodiments, when backing up the infor-
mation in the page table in the target application lock step,
only part of the information may be backed up.

(9) In the above embodiments, the application determina-
tion unit may determine that only applications provided with
a specific application license are unauthorized applications.

(10) In the above embodiments, the CPU may be provided
with a protected mode and a regular mode. Furthermore, the
CPU may be permitted to access the protected memory only
when in protected mode.

(11) In the above embodiments, the protected memory and
the secure device are controlled to be accessible only by
software stored in the protected memory, but this configura-
tion may be implemented by hardware. For example, the bus
may be controlled so that the CPU may only access the
protected memory and the secure device when a program in
protected memory operates.

(12) In the above embodiments, the normal memory and
the protected memory may be the same memory.

(13) In the above embodiments, a non-volatile storage
device may store the universal OS. In this case, the universal

US 8,689,212 B2

21

OS is loaded into the normal memory by special firmware
(programs) referred to as a Basic Input Output System
(BIOS) or Initial Program Loader (IPL).

(14) In the above embodiments, a non-volatile storage
device may store the secure device driver, the application
identification unit, the management dedicated OS, or the
secure VMM. In this case, the secure device driver, applica-
tion identification unit, management dedicated OS, or secure
VMM are stored after being encrypted with an encryption
algorithm, for example a private key encryption method such
as AES or an asymmetric key encryption method such as
RSA. Each of the modules is then decrypted, loaded into the
protected memory, and executed.

(15) In the above embodiments, the secure VMM may be
stored in the normal memory. In this case, a tampering detec-
tion program, which is not shown in the figures and which is
stored in the protected memory, may detect tampering with
the secure VMM. Furthermore, this detection of tampering
with the secure VMM may be performed in the following
cases: when the secure VMM is loaded in normal memory; on
a regular basis; on an irregular basis in accordance, for
example, with a random number; or based on some sort of
trigger.

(16) In the above embodiments, the secure VMM may be
stored in the normal memory. In this case, a tampering detec-
tion program, which is not shown in the figures and which is
stored in Read Only Memory (ROM) internal to the informa-
tion processing device, may detect tampering with the secure
VMM. Furthermore, this detection of tampering with the
secure VMM may be performed in the following cases: when
the secure VMM is loaded in normal memory; on a regular
basis; on an irregular basis in accordance, for example, with a
random number; or based on some sort of trigger.

(17) In the above embodiments, the privileged mode of the
CPU is implemented using the CPU’s Ring function, but
other methods may be used. For example, a virtual domain
(administrative domain and universal domain) function in a
CPU that supports full virtualization may be used.

(18) In the above embodiments, the universal OS manages
the page table of an application, but other methods may be
used. For example, shadow paging in OS virtualization tech-
nology may be used for the secure VMM to manage the page
tables.

Furthermore, in the above embodiments, the secure VMM
refers to the page table for each application managed by the
universal OS via the current page table. Specifically, a pointer
pointing to the current page table is linked to the page table for
the application, among the applications managed by the uni-
versal OS, that is currently being processed. However, the
invention is not limited in this way. For example, when using
shadow paging, the secure VMM copies the page table man-
aged by the universal OS upon each switch between running
application. In this case, since access to memory is controlled
based on the page table stored by the secure VMM, the secure
VMM can perform the same processing on the page table it
has copied as the processing performed on the current page
table in the above embodiments.

(19) In embodiment 2 and embodiment 3, the information
processing device may send information to identify the infor-
mation processing device to the application determination
server along with the hash value (authentication code).

(20) In embodiment 2 and embodiment 3, a secure trans-
mission channel may be used between the information pro-
cessing device and the application determination server. For
example, SSL. may be used.

(21) In embodiment 2 and embodiment 3, the information
transmitted from the information processing device to the
application determination server may be protected using a
digital signature. For example, a digital signature may be
created for information to be transmitted using Trusted Plat-

20

25

30

35

45

50

55

60

65

22

form Module (TPM) by the Trusted Computing Group
(TCG), and the digital signature may be transmitted to the
application determination server.

(22) In embodiment 2 and embodiment 3, the information
processing device and the application determination server
may perform mutual authentication using challenge-response
processing.

(23) In the above embodiments, the CPU is permitted to
access all of the entries in page tables corresponding to privi-
lege information that is lower than the CPU’s privileged
mode, but the present invention is not limited in this way. For
example, a privileged mode may be related to privilege infor-
mation in a one-to-one correspondence, so that in a privileged
mode of Ring 3, only entries having privilege information of
Ring 3 can be accessed.

(24) Part or all of the constituent elements in the above
embodiments may be implemented, insofar as possible, as
software. By doing so, the amount of hardware that has to be
placed on an integrated circuit can be reduced, thus improv-
ing the degree of integration.

(25) Part or all of the constituent elements in the above
embodiments may be implemented, insofar as possible, as
hardware. In this case, processing is faster than when imple-
menting the constituent elements as software. This sort of
implementation is particularly advantageous for processing
that is expected to be fast for the sake of user convenience,
such as saving or restoring.

(26) Depending on the degree of integration, a system LSI
is also referred to as an IC, LSI, super LSL, or ultra LSI. It goes
without saying that the present invention includes implemen-
tation on a system LSI with any of these degrees of integra-
tion. A Field Programmable Gate Array (FPGA), which is
programmable after the L.SI is manufactured, or a reconfig-
urable processor, which allows reconfiguration ofthe connec-
tion and setting of circuit cells inside the LSI, may be used.

Furthermore, if technology for forming integrated circuits
that replaces LSIs emerges, owing to advances in semicon-
ductor technology or to another derivative technology, the
integration of function blocks and components may naturally
be accomplished using such technology. The application of
biotechnology or the like is possible.

(27) The present invention may also be a computer read-
able recording medium such as a flexible disk, hard disk,
CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-
ray Disc), semiconductor memory, etc. on which a computer
program or a digital signal is recorded. The present invention
may also be the digital signal recorded on such a recording
medium.

(28) The above embodiments and modifications may be
combined with one another.

The method of controlling access to a secure device in the
present invention locks the logical memory space in which an
application is stored and generates a hash value for determi-
nation of authorization, thus yielding the advantageous effect
of preventing access to the device by an unauthorized appli-
cation that replaces the application. During data processing
on the secure device, this method therefore has the advanta-
geous effect of preventing operation of an unauthorized appli-
cation.

The invention claimed is:

1. An information processing device comprising:

a hardware processor programmed to operate as:

a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work
area;

a detection unit operable to detect, from the virtual
machine, an access request to access the predetermined
device via the application;

US 8,689,212 B2

23

a verification unit operable to verify authorization of the
application; and

a virtual machine monitor operable to manage the virtual
machine, the verification unit, and the detection unit and
to switch between managing the application in one of a
writeable state and a non-writable state, wherein

upon detecting the access request, the detection unit noti-
fies the virtual machine monitor of the detection,

upon receiving notification from the detection unit, the
virtual machine monitor switches to managing the appli-
cation in the non-writable state and notifies the verifica-
tion unit of the switch, and

upon receiving notification from the virtual machine moni-
tor, the verification unit verifies authorization of the
application.

2. The information processing device of claim 1, further
comprising an execution unit that accesses the predetermined
device via the application when the verification unit deter-
mines that the application is authorized.

3. The information processing device of claim 2, wherein
after the execution unit finishes accessing the predetermined
device via the application, the virtual machine monitor
switches back to managing the application in the writable
state.

4. The information processing device of claim 1, wherein

the virtual machine monitor manages management infor-
mation corresponding to the application, the manage-
ment information including privilege information that
indicates one or more subjects having authority to
rewrite the management information, and

when the privilege information indicates that the virtual
machine is a subject that can rewrite the application, the
virtual machine monitor switches to managing the appli-
cation in the non-writable state by rewriting the privilege
information to exclude the virtual machine from the
subjects that can rewrite the application.

5. The information processing device of claim 4, wherein
the virtual machine monitor excludes the virtual machine
from the subjects that can rewrite the application by rewriting
the privilege information, so that instead of including the
virtual machine and the virtual machine monitor as the sub-
jects that can rewrite the application, the privilege informa-
tion limits the subjects that can rewrite the application to the
virtual machine monitor.

6. The information processing device of claim 1, wherein
the predetermined device is an SD card.

7. The information processing device of claim 1, wherein
the predetermined device is an external content server that
provides content to the information processing device.

8. An information processing device comprising:

a hardware processor programmed to operate as:

a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work
area;

a detection unit operable to detect, from the virtual
machine, an access request to access the predetermined
device via the application; and

a virtual machine monitor operable to manage the virtual
machine and the detection unit and to switch between
managing the application in one of a writeable state and
a non-writable state, wherein

upon detecting the access request, the detection unit noti-
fies the virtual machine monitor of the detection, and

upon receiving notification from the detection unit, the
virtual machine monitor (i) switches to managing the
application in the non-writable state and notifies an
external device provided with a verification unit of the
switch and (ii) causes the verification unit in the external
device to verify authorization of the application.

20

25

35

40

55

60

65

24

9. An information processing device comprising:

a hardware processor programmed to operate as:

a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work
area;

a detection unit operable to detect, from the virtual
machine, an access request to access the predetermined
device via the application;

a virtual machine monitor operable to manage the virtual
machine and the detection unit and to switch between
managing the application in one of a writeable state and
a non-writable state; and

a transmission unit operable to transmit to an external
device that is provided with an execution unit and that
provides services, wherein

upon detecting the access request, the detection unit noti-
fies the virtual machine monitor of the detection,

upon receiving notification from the detection unit, the
virtual machine monitor switches to managing the appli-
cation in the non-writable state, and

when the application is determined to be authorized after
being switched to management in the non-writable state,
the transmission unit receives the services provided by
the execution unit in the external device.

10. A control method for controlling an information pro-

cessing device that comprises:

a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work
area;

a detection unit operable to detect, from the virtual
machine, an access request to access the predetermined
device via the application;

a verification unit operable to verify authorization of the
application; and

a virtual machine monitor operable to manage the virtual
machine, the verification unit, and the detection unit,
wherein

upon detecting the access request, the detection unit noti-
fies the virtual machine monitor of the detection,

upon receiving notification from the detection unit, the
virtual machine monitor switches to managing the appli-
cation in anon-writable state and notifies the verification
unit of the switch, and

upon receiving notification from the virtual machine moni-
tor, the verification unit verifies authorization of the
application.

11. A non-transitory computer-readable recording medium
on which is recorded a control program for controlling an
information processing device, the control program causing
the information processing device to operate as:

a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work
area;

a detection unit operable to detect, from the virtual
machine, an access request to access the predetermined
device via the application;

a verification unit operable to verify authorization of the
application; and

a virtual machine monitor operable to manage the virtual
machine, the verification unit, and the detection unit,

the control program comprising the steps of:
notifying the virtual machine monitor when the detec-

tion unit detects an access request;

causing the virtual machine monitor to switch to managing
the application in a non-writable state and causing the
virtual machine monitor to notify the verification unit of
the switch; and

US 8,689,212 B2

25

causing the verification unit, which receives notification
from the virtual machine monitor, to verity authoriza-
tion of the application.

12. An integrated circuit used in an information processing

device, the integrated circuit comprising:

a hardware processor programmed to operate as:

a virtual machine operable to cause an application, which
accesses a predetermined device, to operate in a work
area;

a detection unit operable to detect, from the virtual
machine, an access request to access the predetermined
device via the application;

a verification unit operable to verify authorization of the
application; and

a virtual machine monitor operable to manage the virtual
machine, the verification unit, and the detection unit,
wherein

upon detecting the access request, the detection unit noti-
fies the virtual machine monitor of the detection,

upon receiving notification from the detection unit, the
virtual machine monitor switches to managing the appli-
cationina non-writable state and notifies the verification
unit of the switch, and

upon receiving notification from the virtual machine moni-
tor, the verification unit verifies authorization of the
application.

10

20

25

26

