
(12) United States Patent

USOO884.3655B2

(10) Patent No.: US 8,843,655 B2
Mapp et al. (45) Date of Patent: *Sep. 23, 2014

(54) DATA TRANSFER, SYNCHRONISING (52) U.S. Cl.
APPLICATIONS, AND LOW LATENCY CPC H04L 67/2823 (2013.01); H04L 49/901

(71)

(72)

(73)

(*)

(21)
(22)
(65)

(60)

(30)

NETWORKS

Applicant: AT&T Investments UK LLC,
Wilmington, DE (US)

Inventors: Glenford Ezra Mapp, Cambridge (GB);
Stephen John Hodges, Kensington
(GB); Derek Edward Roberts,
Cambridge (GB); Steven Leslie Pope,
Cambridge (GB)

Assignee: AT&T Investments UK LLC,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 13/802,400
Filed: Mar 13, 2013

Prior Publication Data

US 2013/O290558 A1 Oct. 31, 2013

Related U.S. Application Data
Continuation of application No. 12/105,412, filed on
Apr. 18, 2008, now Pat. No. 8,423,675, which is a
division of application No. 1 1/198,043, filed on Aug.
5, 2005, now abandoned, which is a division of
application No. 09/980,539, filed as application No.
PCT/GB00/01691 on May 3, 2000, now abandoned.

Foreign Application Priority Data

May 4, 1999 (GB) 991O280.8

(51) nt. Cl.
G06F 15/16 (2006.01)
H04L 29/08 (2006.01)
H04L (2/879 (2013.01)
H04L 2/86 (2013.01)
G06F I3/38 (2006.01)

Second burst
337

(2013.01); H04L 49/90 (2013.01); G06F
13/385 (2013.01)

USPC ... 709/232

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,701,972 A 10/1972 Berkeley et al.
4.429,387 A 1/1984 Kaminski

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101O72227 11, 2007
EP O251584 1, 1988

(Continued)
OTHER PUBLICATIONS

NN9511113. “Shared Burst Sequence Generator.” IBM Technical
Disclosure Bulletin. vol. 38, Issue 11, pp. 113-116. Nov. 1995.*

(Continued)

Primary Examiner — Jeffrey R Swearingen
(74) Attorney, Agent, or Firm — Hanley, Flight &
Zimmerman, LLC

(57) ABSTRACT

Data transfer, synchronizing applications, and low latency
networks are disclosed. An example method includes com
paring a first address of a first data item of a first data burst to
a second address of a last data item of a second data burst
received before the first data burst; and, when the first address
sequentially follows the second address, combining the first
and second data bursts to form a third data burst.

18 Claims, 27 Drawing Sheets

First burst
338

Intermai buffer
335

Codulesced

Coolesced burst
338

|rmternal buffer
335

US 8,843,655 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Gokhale, Aniruddha et al; “Measuring the performance of commu
nication middleware on high-speed networks” SIGCOMM 96 Con
ference proceedings on applications, technologies, architectures, and
protocols for computer communications. ACM Press. Aug. 1996. 12
Pages.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Dec. 14, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Sep. 30, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Jun. 21, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Jul. 22, 2009.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Oct. 30, 2008.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Jul. 2, 2008.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,043 dated Feb. 13, 2008.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 09/980,539 dated May 18, 2006.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 09/980,539 dated Oct. 26, 2005.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 12/105,412 dated Mar. 16, 2011.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 12/105,412 dated Sep. 30, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 12/105,412 dated Aug. 4, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 12/105,412 dated Apr. 14, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 12/105,412 dated Aug. 21, 2009.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,260 dated Dec. 6, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,260 dated Aug. 20, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,260 dated Jun. 10, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,260 dated Nov. 16, 2009.
Patent Cooperation Treaty, International Preliminary Examination
Report for corresponding International Application No. PCT/GB00/
01691 dated Aug. 31, 2001.
European Patent Office, Communication pursuant to Article 64(3)
EPC issued for corresponding Application No. 00.925 5.09.2-2212
dated Nov. 11, 2009.

European Patent Office, Communication pursuant to Article 64(3)
EPC issued for corresponding Application No. 00.925 5.09.2-2212
dated Apr. 13, 2004.
European Patent Office, Communication pursuant to Article 64(3)
EPC issued for corresponding Application No. 00.925 5.09.2-2212
dated Apr. 19, 2002.
Patent Cooperation Treaty, Written Opinion issued for corresponding
Application No. PCT/GB00/01691 dated Jul. 3, 2001.
European Office Action for corresponding application No. 00 925
509.2 dated Nov. 11, 2009.
United States Patent and Trademark Office, "Final Office Action',
issued for U.S. Appl. No. 12/105,412, mailed on Aug. 7, 2012, 6
pageS.
United States Patent and Trademark Office, "Notice of Allowance
and Fee(s) Due”, issued for U.S. Appl. No. 12/105,412, mailed on
Aug. 30, 2012, 12 pages.
United States Patent and Trademark Office, Non-Final Office Action,
issued for U.S. Appl. No. 12/105,412, mailed on Apr. 12, 2012, 6
pageS.
The United States Patent and Trademark Office, Non-Final Rejec
tion, for U.S. Appl. No. 12/105,412, issued on Jan. 3, 2012, (7 pages).
The United States Patent and Trademark Office, Notice of Allowance
issued in connection with U.S. Appl. No. 1 1/198,252 on Jul. 11, 2011.
United States Patent and Trademark Office, Notice of Allowance for
corresponding U.S. Appl. No. 11/198,252 dated Mar. 21, 2011.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,252 dated Oct. 5, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,252 dated Jul. 27, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,252 dated May 26, 2010.
United States Patent and Trademark Office, Office Action for corre
sponding U.S. Appl. No. 1 1/198,252 dated Oct. 29, 2009.
The United States Patent and Trademark Office, "Notice of Allow
ance and Fee(S) Due”, issued for U.S. Appl. No. 11/198,260, mailed
on Jul. 17, 2012, 15 pages.
The United States Patent and Trademark Office, Non-Final Rejec
tion, for U.S. Appl. No. 1 1/198,260, issued on Mar. 5, 2012, (16
pages).
The United States Patent and Trademark Office, Miscellaneous Com
munication, for U.S. Appl. No. 1 1/198,260, issued on Mar. 8, 2012,
(17 pages).
The United States Patent and Trademark Office, Notice of Allowance,
for U.S. Appl. No. 12/105,412, issued on Dec. 13, 2012 (17 pages).
United States Patent and Trademark Office, "Non-Final Office
Action.” issued in connection with U.S. Appl. No. 13/654.876, Sep.
11, 2013, 35 pages.
United States Patent and Trademark Office, "Notice of Allowance.”
issued in connection with U.S. Appl. No. 13/654,876, Dec. 27, 2013,
8 pages.

* cited by examiner

US 8,843,655 B2 Sheet 1 of 27 Sep. 23, 2014 U.S. Patent

US 8,843,655 B2 Sheet 3 of 27 Sep. 23, 2014 U.S. Patent

US 8,843,655 B2 Sheet 4 of 27 Sep. 23, 2014 U.S. Patent

uu??sÁS ôu?DJ?dO
|—————————— — — — — — —– OCZ??

US 8,843,655 B2 Sheet 5 of 27 Sep. 23, 2014 U.S. Patent

US 8,843,655 B2 Sheet 11 of 27 Sep. 23, 2014 U.S. Patent

(

23 bits

SD)?

US 8,843,655 B2 U.S. Patent

ZA J??nduo.O

US 8,843,655 B2 Sheet 14 of 27 Sep. 23, 2014 U.S. Patent

US 8,843,655 B2 Sheet 15 of 27 Sep. 23, 2014 U.S. Patent

W T
Ç

US 8,843,655 B2 Sheet 16 of 27 Sep. 23, 2014 U.S. Patent

| |

|ÁJOu?W
| | | |

Quoddns VIA 3) ? SO|?

US 8,843,655 B2 U.S. Patent

?yg, og 99 ||XI89 || OG | Je?nduo O

US 8,843,655 B2 Sheet 18 of 27 Sep. 23, 2014 U.S. Patent

O6
Je/ASDSU O1.

do e ud

69 || snq ||DooT g??
Og | Je?nduo.O

| | | | | | | | | | | | | | | | | | |

US 8,843,655 B2 Sheet 19 of 27 Sep. 23, 2014 U.S. Patent

U.S. Patent Sep. 23, 2014 Sheet 20 of 27 US 8,843,655 B2

3 OO

Computer
/-306

505 End-point
Opplication ROM

31 O

Action
generator

Content
Odd reSSO ble
memory
(CAM)

Network 3O3

FG 16

U.S. Patent Sep. 23, 2014 Sheet 21 of 27 US 8,843,655 B2

JOO

Computer
5 O6 ? – ?? ??? – – –

End-point ?
ROM 505 application

Code
generotor

309

3 1 ?

Action
generator

Content
OddresSO ble
memory
(CAM)

Process

Network 503

FG 1 7

U.S. Patent Sep. 23, 2014 Sheet 23 of 27 US 8,843,655 B2

Action
generator

Action
generator

Action
generator

??? 23

U.S. Patent Sep. 23, 2014 Sheet 24 of 27 US 8,843,655 B2

Doto burst

FIG 24

33O

Forwarding
J.J.2 unit

FG 25

33O

Forwarding
unit 333

FC 26

U.S. Patent Sep. 23, 2014 Sheet 25 of 27 US 8,843,655 B2

Second burst First burst
337 336

Interno buffer
335

COC les Ced

Coolesced burst
338

Interno buffer
555

FG 27

U.S. Patent Sep. 23, 2014 Sheet 26 of 27 US 8,843,655 B2

Mapped configuration
data ond registers
of remote horCWore

542

Running opplicotion
h a S i nOrinn Caill i View Of
of hord wore. Network

is transporent
N

|Address mopping on to
| systern I/O Bus.

NIC Will raise interrupts
Ond write do to on
beholf of remote

hOrdwore.

Address space
of opplication

34O

N22- Network Cord hos been
looded with configuration

and register doto
corresponding to

303 remote hardware
Application read/write
requests ore forwarded
transporently over the DOtO fOr

network e e Opplication
Interrupt

Remote hord wore
receives requests

k Ngek 345 from application
ond may also 346 roise on interrupt
or write data.

KGéossive IZO BuSC>back to application
Conficau roution ond reCaisters Remote hord wore
of remote hord wore - -

341 FG 28

U.S. Patent Sep. 23, 2014 Sheet 27 Of 27 US 8,843,655 B2

Computer 3OO
- - - - - - - - - - - - - - - - -

32O 3O8

Tripwire Tripwire
unit 4 CPU unit 5

SSSN ??_

ipwire is Host, bus , C Tripwire
unit 5 N

Š 3079
352 System

controller

307? II

| < , IO Bus D Tripwire | | Tripwire
unit 2 ? Š ? ?|

551 Disk 35O
Controler NIC

- - - - - - - - - - - - - - -? – – ?? ?? ?? ?? ? ??

FIG 29

US 8,843,655 B2
1.

DATA TRANSFER, SYNCHRONISING
APPLICATIONS, AND LOW LATENCY

NETWORKS

This patentarises from a continuation of U.S. patent appli
cation Ser. No. 12/105,412, filed Apr. 18, 2008, now U.S. Pat.
No. 8,423,675, which is a divisional of U.S. patent applica
tion Ser. No. 11/198,043, filed on Aug. 5, 2005, which is a
divisional of U.S. patent application Ser. No. 09/980,539,
which is a S371 of International Application No. PCT/GB00/
01691, filed May 3, 2000, which claims the benefit of United
Kingdom Patent Application No. 991 0280.8, filed on May 4,
1999. U.S. patent application Ser. No. 12/105.412, U.S.
patent application Ser. No. 11/198,043, U.S. patent applica
tion Ser. No. 09/980,539, International Application No. PCT/
GB00/01691, and United Kingdom Patent Application No.
9910280.8 are hereby incorporated herein by reference in
their entireties and priority to each of these cases is claimed.

This invention, in its various aspects, relates to the field of
asynchronous networking, and specifically to: a memory
mapped network interface; a method of synchronising
between a sending application, running on a first computer,
and a receiving application, running on a second computer,
the computers each having a memory mapped network inter
face; a communication protocol; and a computer network.
This invention also relates to data transfer and to synchronis
ing applications.
Due to a number of reasons, traditional networks, such as

Gigabit Ethernet, ATM, etc., have not been able to deliver
high bandwidth and low latency to applications that require
them. A traditional network is shown in FIG.1. To move data
from computer 200 to another computer 201 over a network,
the Central Processing Unit (CPU) 202 writes data from
memory 204 through its system controller 206 to its Network
Interface Card (NIC) 210. Alternatively, data may be trans
ferred to the NIC 210 using Direct Memory Access (DMA)
hardware 212 or 214. The NIC 210 takes the data and forms
network packets 216, which contain enough information to
allow them to be routed across the network 218 to computer
system 201.
When a network packet arrives at the NIC 211, it must be

demultiplexed to determine where the data needs to be
placed. In traditional networks this must be done by the
operating system. The incoming packet therefore generates
an interrupt 207, which causes software, a device driver in
operating system 209, to run. The device driver examines the
header information of each incoming network packet 216 and
determines the correct location in memory 205, for data con
tained within the network packet. The data is transferred into
memory using the CPU 203 or DMA hardware (not shown).
The driver may then request that operating system 209
reschedule any application process that is blocked waiting for
this data to arrive. Thus there is a direct sequence from the
arrival of incoming packets to the scheduling of the receiving
application. These networks therefore provide implicit syn
chronisation between sending and receiving applications and
are called synchronous networks.

It is difficult to achieve optimum performance using mod
ern Synchronous network hardware. One reason is that the
number of interrupts that have to be processed increases as
packets are transmitted at a higher rate. Each interrupt
requires that the operating system is invoked and Software is
executed for each packet. Such overheads both increase
latency and the data transfer size threshold at which the maxi
mum network bandwidth is achieved.

These observations have led to the development of asyn
chronous networks. In asynchronous networks, the final

10

15

25

30

35

40

45

50

55

60

65

2
memory location within the receiving computer for received
data can be computed by the receiving NIC from the header
information of a received network packet. This computation
can be done without the aid of the operating system.

Hence, in asynchronous networks there is no need to gen
erate a system interrupt on the arrival of incoming data pack
ets. Asynchronous networks therefore have the potential of
delivering high bandwidth and low latency; much greater than
synchronous networks. The Virtual Interface Architecture
(VIA) is emerging as a standard for asynchronous network
1ng.
Memory-mapped networks are one example of asynchro

nous networks. An early computer network using memory
mapping is described in U.S. Pat. No. 4.393,443.
A memory-mapped network is shown in FIG. 2. Applica

tion 222 running on Computer 220 would like to communi
cate with application 223 running on Computer 221 using
network 224. A portion of the application 222's memory
address space is mapped using the computer 220's virtual
memory system onto a memory aperture of the NIC 226 as
shown by the application’s page-tables 228 (these page
tables and their use is well known in the art). Likewise, a
portion of application 223’s memory address space is mapped
using computer 221's virtual memory system onto a memory
aperture of the NIC 229 using the application 223's page
tables 231. Software is usually required to create these map
pings, but once they have been made, data transfer to and from
a remote machine can be achieved using a CPU read or write
instruction to a mapped virtual memory address.

If application 222 were to issue a number of processor
write instructions to this part of its address space, the virtual
memory and I/O controllers of computer 220 will ensure that
these write instructions are captured by the memory aperture
of the NIC 226. NIC 226, determines the address of the
destination computer 221 and the address of the remote
memory aperture 225 within that computer. Some combina
tion of this address information can be regarded as the net
work address, which is the target of the write.

All the aperture mappings and network address transla
tions are calculated at the time that the connection between
the address spaces of computers 220 and 221 is made. The
process of address lookups and translations at each stage in
the system can be carried out using hardware.

After receiving a write, NIC 226 creates network packets
using its packetisation engine 230. These packets are for
warded to the destination computer 221. At the destination,
the memory aperture addresses of the incoming packets are
remapped by the packet handler onto physical memory loca
tions 227. The destination NIC 229 then writes the incoming
data to these physical memory locations 227. This physical
memory has also been mapped at connection setup time into
the address space of application 223. Hence application 223 is
able, using page-tables 231 and the virtual memory system, to
access the data using processor read and write operations.

Commercial equipment for building memory-mapped net
works is available from a number of vendors, including Dol
phin Interconnect Solutions. Industry standards, such as Scal
able Coherent Interface (SCI) (IEEE Standard 1596-1992),
have been defined for building memory mapped networks,
and implementations to the standards are currently available.
SCI is an example of an asynchronous network Standard,

which provides poor facilities for synchronisation at the time
of data reception. A network using SCI is disclosed in U.S.
Pat. No. 5,819,075. FIG.3 shows an example of an SCI-like
network, where application 242 on computer 240 would like
to communicate with application 243 on computer 241. Letus
Suppose that application 243 has blocked waiting for the data.

US 8,843,655 B2
3

Application 242 transmits data using the methods described
above. After sending the data, application 242 must then
construct a synchronisation packet in local memory, and pro
gram the event generator 244, in NIC 246, to send the syn
chronisation packet 248, to the destination node.
On receiving synchronisation packet 248, the NIC 245 on

computer 241, invokes its event handler 247, which generates
an interrupt 249 allowing the operating system 248 to deter
mine that application 243 is blocked and should be woken up.
This is called out-of-band synchronisation since the synchro
nisation packet must be treated as a separate and distinct
entity and not as part of the data stream. Out-of-band Syn
chronisation greatly reduces the potential of memory
mapped networks to provide high bandwidth and low latency.

In other existing asynchronous networks, such as the newly
emerging Virtual Interface Architecture (VIA) standard and
the forthcoming Next Generation Input/Output (NGIO) stan
dard, some support is provided for synchronisation. A NIC
will raise a hardware interrupt when some data has arrived.
However, the interrupt does not identify the recipient of the
data, instead only indicates that some data has arrived for
Some communicating end-point.

While delivery of data can be achieved solely by hardware,
the software task of scheduling between a large number of
applications, each handling received data, becomes difficult
to achieve. Software, known as a device driver, is required to
examine a large number of memory locations to determine
which applications have received data. It must then notify
such applications that data has been delivered to them. This
might include a reschedule request to the operating system for
the relevant applications.

Other known data transfer techniques are disclosed in EP 0
600 683, EP 0 359 137, EP 0 029 800, U.S. Pat. No. 5,768,
259, U.S. Pat. No. 5,550,808 and JP 600211559.
The present invention, in its various aspects, is defined in

more detail in the appended claims to which reference should
now be made.
A first aspect of the invention provides a method of syn

chronising between a sending application on a first computer
and a receiving application on a second computer, each com
puter having a main memory, and at least one of the comput
ers having an asynchronous network interface, comprising
the steps of:

providing the asynchronous network interface with a set of
rules for directing incoming data to memory locations in
the main memory of the second computer,

storing in the network interface one or more triggering
value(s), each triggering value representing a state of a
data transfer between the applications;

receiving, at the network interface, a data stream being
transferred between the applications;

comparing at least part of the data stream received with the
stored triggering values;

if the compared part of the data stream matches any stored
triggering value, indicating that the triggering value has
been matched; and

storing the data received in the main memory of the second
computer at one or more memory location(s) in accor
dance with the said rules.

Another aspect of the invention provides an asynchronous
network interface for use in a host computer having a main
memory and connected to a network, the interface compris
ing:

means for storing a set of rules for directing incoming data
to memory locations in the main memory of the host
computer;

5

10

15

25

30

35

40

45

50

55

60

65

4
a memory for storing one or more triggering value(s), each

value representing a state of a data transfer between two
or more applications in the computer network;

a receiver for receiving a data stream being transferred
between two or more applications in the computer net
work; comparison means for comparing at least part of
the data stream received by the network interface with
the stored triggering values; and

a memory for storing information identifying any matched
triggering values.

A further aspect of the invention provides a method of
passing data between an application on a first computer and
remote hardware within a second computer or on a passive
backplane, the first computer having a main memory and an
asynchronous network interface, the method comprising the
steps of:

providing the asynchronous network interface with a set of
rules for directing incoming data to memory or I/O loca
tion(s) of the remote hardware;

storing in the network interface one or more triggering
value(s), each triggering value representing a state of a
data transfer between the application and the hardware:

receiving, at the network interface, a data stream being
transferred between the application and the hardware;

comparing at least part of the data stream received with the
stored triggering value(s):

indicating that a triggering value has been matched, if any
compared part of the data stream matches a triggering
value;

storing data transmitted in memory or I/O location(s) of the
remote hardware in accordance with the said rules; and

storing the data received in the main memory of the com
puter at one or more memory location(s) in accordance
with the said rules.

A further aspect of the invention provides a method of
arranging data transfers from one or more applications on a
computer, the computer having a main memory, an asynchro
nous network interface, and a Direct Memory Access (DMA)
engine having a request queue address common to all the
applications, comprising the steps of

the application requesting the network interface to store a
triggering value corresponding to a property of the data
block to be transferred;

an application requesting the DMA engine to transfer a
block of data;

the network interface storing a triggering value corre
sponding to a property of the data block to be trans
ferred, along with an identification of the application
which requested the DMA transfer;

the network interface monitoring the data stream being
sent by the applications and comparing at least part of
the data stream with the triggering value(s) stored in its
memory; and

if any triggering value matches, indicating that that trig
gering value has matched.

A yet further aspect of the invention provides a method of
transferring data from a sending application on a first com
puter to a receiving application on a second computer, each
computer having a main memory, and a memory mapped
network interface, the method comprising the steps of

creating a buffer in the main memory of the second com
puter for storing data being transferred as well as data
identifying one or more pointer memory location(s):

storing at said pointer memory location(s) at least one write
pointer and at least one read pointer for indicating those
areas of the buffer available for writes and for reads:

US 8,843,655 B2
5

independence on the values of the WRP(s) and RDP(s), the
sender application writing to the buffer;

updating the value of the WDP(s), after a write has taken
place, to update the indication of the areas of the buffer
available for reads and writes;

in dependence on the values of WRP(s) and RDP(s), the
receiver application reading from the buffer; and

updating the value of the RDP(s), after a read has taken
place, to update the indication of the areas of the buffer
available for reads and writes.

Another aspect of the invention provides a computer net
work comprising two computers, the first computer running a
sending application and the second computer running a
receiving application, each computer having a main memory
and a memory mapped network interface, the main memory
of the second computer having: a buffer for storing data being
transferred between computers as well as data identifying one
or more pointer memory location(s):

means for reading at least one write pointer (WRP) and at
least one read pointer (RDP) stored at (a) pointer
memory location(s), for indicating those areas of the
buffer available for writes and those areas available for
reads:

the network interface of the second computer comprising:
a memory mapping:
means for reading data from the buffer in accordance with

the contents of the WRP(s) and RDP(s); and
means for updating the value of the RDP(s), after a read has

taken place, to update the indication of the areas of the
buffer available for reads and writes.

A further aspect of the invention provides a method of
sending a request from a client application on a first computer
to a server application on a second computer, and sending a
response from the server application to the client application,
both computers having a main memory and a memory
mapped network interface, the method comprising the steps
of:

(A) providing a buffer in the main memory of each com
puter;

(B) the client application, providing software stubs which
produce a marshalled stream of data representing the
request;

(C) the client application sending the marshalled stream of
data to the server's buffer;

(D) the server application unmarshalling the stream of data
by providing software stubs which convert the mar
shalled stream of data into a representation of the request
in the server's main memory;

(E) the server application processing the request and gen
erating a response;

(F) the server application providing software stubs which
produce a marshalled stream of data representing the
response;

(G) the server application sending the marshalled stream of
data to the client’s buffer; and

(H) the client application unmarshalling the received
stream of data by providing software stubs which con
vert the received marshalled stream of data into a repre
sentation of the response in the client's main memory.

10

15

25

30

35

40

45

50

55

6
A further aspect of the invention provides a method of

processing a data burst received over a computer network
comprising the steps of

reading a reference address from the header of the data
burst, and

calculating the addresses of each data word in the burst
from the position of that data word in the burst in relation
to the position of the data word to which the address in
the header corresponds, and from the reference address
read from the header.

Another aspect of the invention provides a method of inter
rupting transfer of a data burst over a computer network
comprising the steps of

halting transfer of a portion of the data burst which has not
yet been transferred, thereby splitting the data burst into
two burst sections, one which is transferred, and one
waiting to be transferred.

A further aspect of the invention provides a method of
restarting the transfer of a data burst, after the transfer of that
data burst has been interrupted, the method comprising the
steps of:

calculating a new reference address for the untransferred
data burst section from the address contained in the
header of the whole data burst, and from the position in
the whole data burst of the first data word of the untrans
ferred data burst section in relation to the position of the
data word to which the address in the header corre
sponds;

providing a new header for the untransferred data burst
section comprising the new reference address; and trans
mitting the new header along with the untransferred data
burst section.

The first aspect of the present invention addresses the syn
chronisation problem for memory mapped network inter
faces. The present invention uses a network interface, con
taining Snooping hardware which can be programmed to
contain triggering values comprising either addresses,
address ranges, or other data which are to be matched. These
data are termed Tripwires. Once programmed, the interface
monitors the data stream, including address data, passing
through the interface for addresses and data which match the
Tripwires which have been set. On a match, the Snooping
hardware can generate interrupts or increment event counters,
or perform some other application specified action. This
Snooping hardware is preferably based upon Content Addres
sable Memory (CAM). References herein to the “data
stream” refer to the stream of data words being transferred
and to the address data accompanying them.
The invention thus provides in-band synchronisation by

using synchronisation primitives which are programmable by
user level applications, while still delivering high bandwidth
and low latency. The programming of the synchronisation
primitives can be made by the sending and receiving appli
cations independently of each other and no synchronisation
information is required to traverse the network.
A number of different interfaces between the network

interface and an application can be Supported. These inter
faces include VIA and the forthcoming Next Generation
Input/Output (NGIO) standard. An interface can be chosen to

Another aspect of the invention provides a method of 60 best match an application’s requirements, and changed as its
arranging data for transfer as a data burst over a computer
network comprising the steps of providing aheader compris
ing the destination address of a certain data word in the data
burst, and a signal at the beginning or end of the data burst for
indicating the start or end of the burst, the destination
addresses of other words in the data burst being inferrable
from the address in the header.

65

requirements change. The network interface of the present
invention can Support a number of Such interfaces simulta
neously.
The Tripwire facility Supports the monitoring of outgoing

as well as incoming data streams. These Tripwires can be used
to inform a sending application that its DMA send operations
have completed or are about to complete.

US 8,843,655 B2
7

Memory-Mapped network interfaces also have the poten
tial to be used for communication between hardware entities.
This is because memory mapped network interfaces are able
to pass arbitrary memory bus cycles over the network. As
shown in FIG. 4, it is possible to set up a memory aperture
254, in the NIC 252 of Computer 250, which is directly
mapped via NIC 259, onto an address region 257 of the I/O
bus 253 of passive backplane 251.

Using existing memory mapped interfaces, such as DEC
Memory Channel or Dolphin SCI, an application running on
Computer 250, which requires use of the hardware device
255, would require a (usually software) process to interface
between itself and the Network Interface card (NIC) 252. This
is because the NIC 252, would not appear at the hardware
level in computer 250 as an instance of the remote hardware
device 255, but instead as a network card which has a memory
aperture 254 mapped onto the hardware device.

In a further aspect of the invention, we have appreciated
that the interface of the present invention can be programmed
to present the same hardware interface as the remote hard
ware device 255, and so appear at the hardware level in
computer 250 to be an instance of the remote hardware
device. If the network card 252 were an interface according to
the present invention, so programmed, the remote hardware
device 255 would appear as physically located within com
puter 250, in a manner transparent to all software. The hard
ware device 255, is able to be physically located both at the
remote end of a dedicated link, or over a general network. The
invention will Support both general networking activity and
remote hardware communication simultaneously on a single
network card.

Another aspect of the invention relates to a link-level com
munication protocol which can be used to Support cut
through routing and forwarding. There is no need for an entire
packet to arrive at a NIC, or any other network entity support
ing the communication protocol, before data transmission
can be started on an outgoing link. The invention also allows
large bursts of data to be handled effectively without the need
for a small physical network packet size such as that
employed by an ATM network, it being possible to dynami
cally stop and restart a burst and regenerate all address infor
mation using hardware.
A preferred embodiment of the various aspects of the

invention will now be described with reference to the draw
ings in which:

FIG. 1 shows two computers connected by a traditional
network;

FIG. 2 shows two computers connected by a traditional
memory-mapped network;

FIG. 3 shows a traditional SCI-like network;
FIG. 4 shows a traditional memory-mapped network

between hardware entities;
FIG. 5 shows two or more computers connected by an

embodiment of the present invention, using Network Inter
face Cards (NICs);

FIG. 6 shows in detail the various functional blocks com
prising the NICs of FIG. 5:

FIG.7 shows the functional blocks of the NICloyed within
a Field Programmable Gate Array (FPGA);

FIGS. 8A-8E shows the communication protocol used in
one embodiment of the invention;

FIG. 9 shows schematically hardware communication
according to an embodiment of the invention;

FIG. 10 shows schematically a circular buffer abstraction
according to one embodiment of the invention;

FIG. 11 shows schematically the system support for dis
crete message communication using circular buffers;

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 12 shows a client-server interaction according to an

embodiment of the invention;
FIG. 13 shows how the system of the present invention can

support VIA;
FIG. 14 shows outgoing stream synchronisation according

to an embodiment of the present invention;
FIG. 15 shows a client-server interaction according to an

embodiment of the invention using a hardware data source:
FIG.16 shows an apparatus for synchronising an end-point

application and constituting an embodiment of the invention;
FIG. 17 shows another apparatus for synchronising an

end-point application and constituting an embodiment of the
invention;

FIGS. 18 to 23 show examples of actions which may be
performed by the apparatuses of FIGS. 16 and 17;

FIG. 24 illustrates the format of a data burst with implied
addresses;
FIG.25 illustrates an interruption in forwarding a burst of

the type shown in FIG. 24;
FIG. 26 illustrates forwarding of the rest of the burst;
FIG. 27 illustrates coalescing of two data bursts:
FIG. 28 illustrates “transparent communication over a

network between an application running on a computer and
remote hardware; and

FIG. 29 ilustrates applications of various tripwires at dif
ferent locations in a computer.

Referring to FIG. 5, computers 1, 2 use the present inven
tion to exchange data. A plurality of other computers such as
3, may participate in the data exchange if connected via
optional network switch 4.

Each computer 1, 2 is composed of a microprocessor cen
tral processing unit 5.57, memory 6,60, local cache memory
757, and system controller 8.58. The system controller 8,58
interacts with its microprocessor 5.57 to allow the micropro
cessor to exchange data with devices attached to I/O bus 9.
Attached to I/O bus 9.59 are standard peripherals, such as a
video adapter 10. Also attached to I/O bus 9,59 is one or more
network interfaces, in the form of NICS 11.56 which repre
sent an embodiment of this invention. In computers 1, 2 the
I/O bus is a standard PCI bus conforming to PCI Local Bus
Specification, Rev. 2.1, although any other bus capable of
Supporting bus master operations can be used with Suitable
modification of System Controller peripherals, such as video
card 10, and the interface to NIC 1156.

Referring to FIG. 6, each NIC comprises a memory 18, 19.
20 for storing triggering values, a receiver 15 for receiving a
data stream, a comparator for comparing part of the data
stream with the triggering values and a memory 23 for storing
information which will identify matched triggering values.
More specifically, in the preferred embodiment each NIC56,
11 is composed of a PCI to Local Bus bridge 12, a control
Field Programmable Gate Array (FPGA) 13, transmit (Tx)
serialiser 14, fibre-optic transceiver 15, receive (RX) de-se
rialiser 16, address multiplexer and latch 17, CAM array 18,
19, 20, boot ROMs 21 and 22, static RAM 23, FLASH ROM
24, and clock generator and buffer 25, 26. FIG. 6 also shows
examples of known chips which could be used for each com
ponent, for example boot ROM 21 could be an Altera EPC1
chip.

Referring to FIG. 7, FPGA 13 is comprised of functional
blocks 27-62. The working of the blocks will be explained by
reference to typical data flows.

Operation of NIC 11 begins by computer 1 being started or
reset. This operation causes the contents of boot ROM 21 to
be loaded into FPGA13 thereby programming the FPGA and,
in turn, causing state machines 28, 37, 40, 43, 45, 46 and 47 to
be reset.

US 8,843,655 B2
9

Clock generator 25 begins running and provides a stable
clock for the TX serialiser 14. Clock buffer? divider 26 pro
vides suitable clocks for the rest of the System. Serialiser 14
and de-serialiser 16 are reset and remain in a reset condition
until communication with another node is established and a
satisfactory receive clock is regenerated by de-serialiser 16.

PCI bridge 12 is also reset and loaded with the contents of
boot ROM 22. Bridge 12 can convert (and re-convert at the
target end) memory access cycles into I/O cycles and Support
legacy memory apertures, and as the rest of the NIC Supports
byte-enabled (byte-wide as well as word-wide) transfers,
ROM 22 can be loaded with any PCI configuration space
information, and canthus emulate any desired PCI card trans
parently to microprocessor 5.

Immediately after reset, FLASH control state machine 47
runs and executes a simple microcode sequence stored in
FLASH memory 24. Typically this allows the configuration
space of another card such as 69 in FIG. 9 to be read, and
additional information to be programmed into bridge 12.
Programming of the FLASH memory is also handled by state
machine 47 in conjunction with bridge 12.

Data transfer could in principle commence at this point, but
arbiter 40 is barred from granting bus access to Master state
machine37 until a status bit has been set in one of the internal
registers 49. This allows software to set up the Tripwires
during the initialisation stage.

Writes from computer 1 to computer 2 take place in the
following manner. Microprocessor 5 writes one or more
words to an address location defined by system controller 8 to
lie within NIC 11's address space. PCI to local bus bridge 12
captures these writes and turns them into local bus protocol
(discussed elsewhere in this document). If the writes are
within the portion of the address space determined to be
within the local control aperture of the NIC by register decode
48, then the writes take place locally to the Content Addres
sable Memory appropriate register, (CAM), Static RAM
(SRAM) or FLASH memory area. Otherwise target state
machine 28 claims the cycles and forwards them to protocol
encoder 29.
At the protocol encoder, byte-enable, parity data and con

trol information are added first to an address and then to each
word to be transferred in a burst, with a control bit marking
the beginning of the burst and possibly also a control bit
marking the end of the burst. The control bit marking the
beginning of the burst indicates that address data forming the
header of the data burst comprises the first “data' word of the
burst. Xon/Xoff-style management bits from block 31 are
also added here. This protocol, specific to the serialiser 14 and
de-serialiser 16 is also discussed elsewhere in this document.

Data is fed on from encoder 29 to output multiplexer 30,
reducing the pin count for FPGA 13 and matching the bus
width provided by serialiser 14. Serialiser 14 converts a 23-bit
parallel data stream at 62 MHZ to a 1-bit data stream at
approximately 1.5 Gbit/s; this is converted to an optical signal
by transceiver 15 and carried over a fibre-optic link to a
corresponding transceiver 15 in NIC56, part of computer 2. It
should be noted that other physical layers and protocols are
possible and do not limit the scope of the invention.

In NIC 56, the reconstructed digital signal is clock-recov
ered and de-serialised to 62 MHz by block 16. Block 32
expands the recovered 23 bits to 46 bits, reversing the action
of block 30. Protocol decoder 33 checks that the incoming
words have Suitable sequences of control bits. If so, it passes
address/data streams into command FIFO 34. If the streams
have errors, they are passed into error FIFO 35; master state
machine 37 is stopped; and an interrupt is raised on micro
processor 57 by block 53. Software is then used to decipher

5

10

15

25

30

35

40

45

50

55

60

65

10
the incoming stream until a correct sequence is found, where
upon state machine 37 is restarted.
When a stream arrives at the head of FIFO 34, master state

machine 37 requests access to local bus 55 from arbiter 40.
When granted, it passes first the address, then the following
data onto local bus 55. Bridge 12 reacts to this address/data
stream by requesting access to I/O bus 59 from system con
troller 58. When granted, it writes the required data into
memory 60.

Reads of computer 2's memory 60 initiated by computer 1
take place in a similar manner. However, State machine 28
after sending the address word sends no other words, rather it
waits for return data. Data is returned because master State
machine37 in NIC56 reacts to the arrival of a read address by
requesting a read of memory 60 via I/O bus 59 and corre
sponding local bus bridge 12. This data is returned as if it were
write data flowing from NIC 56 to NIC 11, but without an
initial address. Protocol decoder 33 reacts to this addressless
data by routing it to read return FIFO 36, whereupon state
machine 28 is released from its wait and the microprocessor
5’s read cycle is allowed to complete. Should the address
region be marked in NIC56's bridge 12 as read-prefetchable,
then a number of words are returned; if state machine 28
continues requesting data as if from a local bus burst read,
then subsequent words are fulfilled directly from read return
FIFO 36.
Should NIC 56 need to raise an interrupt on microproces

sor 5, remote interrupt generator 54 causes state machine 28
to send a word from NIC 56 to a mailbox register in NIC 11’s
bridge 12. This will have been configured by software to raise
an interrupt on microprocessor 5.

Inevitably, since the clocks 25 in NICs 11 and 56 will run
at slightly different frequencies, there will be occasional over
run conditions. Where the command FIFO 34 exceeds a pre
programmed threshold value, an Xoff bit is sent to the corre
sponding protocol encoder 29. This bit causes the encoder to
request that the sending state machine 28 stops, if necessary
in mid burst. Logic in bridge 12 takes care of restarting the
data burst when the corresponding Xon is received some time
later. This logic calculates a new reference address for the
unsent part of the data burst, using the reference address in the
header of the whole data burst, and from a count of the
number of data words which are sent before the transfer is
stopped. AS, in this embodiment, successive data words in a
burst have successively incrementing destination addresses,
the destination address of the first data word in the unsent part
of the data burst can easily be calculated.

It is also possible that data may be read out of FIFO 34
faster than it is written in. In the event of this happening,
master state machine 37 uses pipeline delay 38 to anticipate
the draining of FIFO 34 and to terminate the data burst on
local bus 55. It then uses the CAM address latch/counter 41 to
restart the burst when more data arrives in FIFO 34.

Tripwires are triggering values, such as addresses,
address ranges or other data, that are programmed into the
NIC to be matched. Preferably, the trigging values used as
tripwires are addresses. To meet timing requirements during
address match cycles (as data flows through the NIC), three
CAM devices are pipelined to reduce the match cycle time
from around 70 nanoseconds to less than 30 nanoseconds.
The programming of Tripwires takes place by micropro

cessor 5 writing to PCI bridge 12 via system controller 8 and
I/O bus 9. For the purpose of writing the Tripwire data, CAM
array 18, 19, 20 appears like conventional RAM to micropro
cessor 5. For write cycles, this is done by CAM controller 43
generating Suitable control signals to enable all three CAMs
18, 19, 20 for write access. Address latch 44 passes data to the

US 8,843,655 B2
11

CAMs unmodified. Address multiplexer 41 is arranged to
pass local bus data out on the CAM address bus where it is
latched at the moment addresses are valid on the local bus by
latch 17. For read cycles, the process is similar, except that
only CAM 18 is arranged to be enabled for read access, and
address latch/counter 44 has its data flow direction reversed.
So far as microprocessor 5 is concerned, it sees the expected
data returned, since the memory arrays in CAMs 18, 19, 20
either contain the same data, or internal flags indicating that
particular segments of the memory array have not yet been
written and should not participate in match cycles.
Owing to the nature of the address/data bus being com

prised of bursts of data, according to the preferred local pro
tocol, the actual data stream cannot be used for monitoring
address changes. A burst starts with the address of the first
data word followed by an arbitrary number of data words. The
address of the data words is implicit and increments from the
start address. For normal inbound or outbound data transfer
operations, address latch/counter 44 is loaded with the
address of each new data burst, and incremented each time a
valid data item is presented on internal local bus 55. CAM
control state machine 43 is arranged to enable each CAM 18,
19, 20 in sequence for a compare operation as each new
address is output by latch/counter 44. This sequential
enabling of the CAMs combined with their latching proper
ties permits the access time for a comparison operation to be
reduced by a factor of three (there being three CAMs in this
implementation, other implementations being possible) from
70 ns to less than 30 ns. The CAM op-code for each compari
son operation is output from one of the internal registers 49
via address multiplexers 41 and 17. The op-code is actually
latched by address multiplexer 17 at the end of a read/write
cycle, freeing the CAM address bus to return the index of
matched Tripwires after comparison operations.
The Tripwire data (i.e. the addresses to be monitored) is

written to sequential addresses in the CAM array. During the
comparison operation (cycle), all valid Tripwires are com
pared in parallel with the address of the current data, be it
inbound or outbound. During the operation, masking opera
tions may be performed, depending on the type of CAM used,
allowing certain bits of the address to be ignored during the
comparison. In this way, a Tripwire may actually represent a
range of addresses rather than one particular address.
When the CAM array signals a match found (i.e. a Tripwire

has been hit), it returns the address of the Tripwire (its offset
in the CAM array) via the CAM address bus to the tripwire
FIFO 42. Two courses of action are then possible, depending
on how internal registers 49 have been programmed.
One course of action is for state machine 45 to request that

an interrupt be generated by management logic 53. In this
case, an interrupt is received by microprocessor 5, and soft
ware is run which services the interrupt. Normally this would
involve microprocessor 5 reading the Tripwire address from
FIFO 42, matching the address with a device-driver table,
signalling the appropriate process, marking it runnable and
rescheduling.
An alternative course of action is for state machine 45 to

cause records to be read from SRAM 23 using state machine
46. A record comprises a number of data words; an address
and two data words. These words are programmed by the
software just before the Tripwire information is stored in the
CAM. When a Tripwire match is made, the address in
LATCH 44 is left shifted by two to form an address index for
SRAM 23. The first word is then read by state machine 46 and
placed on local bus 55 as an address in memory 6. A fetch
and-increment operation is then performed by state machine
45, using the second and third words of the SRAM record to

10

15

25

30

35

40

45

50

55

60

65

12
first AND and then OR, or else INCREMENT the data
referred to in memory 6. Abit in the first word read by the state
machine will indicate which operation it should take. In the
case of an INCREMENT, the first data word also indicates the
amount to increment by.

These alternatives enable the implementation of such
primitives as an event counter incremented on tripwire
matches, or the setting of a system reschedule flag. This
mechanism enables multiple applications to process data
without the requirement for hardware interrupts to be gener
ated after receipt of each network packet.

While in the case of the interrupt followed by a Tripwire
FIFO read, the device driver is presented with a list of end
points which require attention. This list improves system
performance as the device driver is not required to scana large
number of memory locations looking for Such endpoints.

Since the device driver is not required to know where the
memory locations which have been used for synchronisation
are. It is also not required to have any knowledge or take part
in the application level communication protocol. All commu
nication protocol processing can be performed by the appli
cation and different applications are free to use differing
protocols for their own purposes, and one device driver
instance may support a number of such applications.

There is also a problem connected with programming a
DMA engine that is addressed by an aspect of the invention.
Conventional access to DMA engines is moderated either by
a single system device driver, which requires (slow) context
Switches to access, or by virtualisation of the registers by
system page fault, also requiring (multiple) context Switches.
The problem is that it is not safe for a user level application to
directly modify the DMA engine registers or a linked list
DMA queue, because this must be done atomically. In most
systems, user applications cannot atomically update the
DMA queue as they can be descheduled at any moment.
The invention addresses this problem by using hardware

FIFO 50 to queue DMA requests from applications. Each
application wanting to request DMA transfers sets up a
descriptor, containing the start address and the length of the
data to be transferred, in its local memory and posts the
address of the descriptor to the DMA queue, whose address is
common to all applications. This can be arranged by mapping
a single page containing the physical address of the DMA
queue as a write-only page into the address space of all user
applications as they are initialised.
As soon as DMA work queue FIFO 50 is not empty, local

bus 55 is not busy and the DMA engine inbridge 12 is also not
busy, Master/Target/DMA arbiter 40 grants DMA state
machine 51 access to local bus 55. Using the address posted
by the application in FIFO 50, state machine 51 then uses
bridge 12 to read the descriptor in memory 6 into the descrip
tor block 52. State machine 51 then posts the start address and
length information held in block 52 into the DMA engine in
bridge 12.
When the DMA process is complete, bridge 12 notifies

state machine 51 of the completion. The state machine then
uses data from descriptor block 52 to write back a completion
descriptor in memory 6. Optionally, an interrupt can also be
raised on microprocessor 5, although a Tripwire may already
have been crossed to provide this notification early in order to
minimise the delay bringing the relevant application back
onto microprocessor 5's run queue. This is shown later in this
document.

Should queue 50 be full, then state machine 51 writes a
failure code back into the completion field of the descriptor
that the application has just attempted to place on the queue.
Thus the application does not need to read the status of the

US 8,843,655 B2
13

NIC in order to safely post a DMA request. All applications
can safely share the same hardware posting address, and no
time-consuming virtualisation or system device driver pro
cess is necessary.

Should any operation take longer than a preset number of 5
PCI cycles, timeout logic 61 is activated to terminate the
current cycle and return an interrupt through block 53.

Another aspect of the invention relates to the protocol
which is preferably used by the NIC. This protocol uses an
address and some additional bits in its header. This allows the
transfer of variable length packets with simple routines for
Segmentation and Reassembly (SAR) that are transparent to
the sending or receiving codes. This is also done without the
need to have an entire packet arrive before segmentation,
reassembly or forwarding can occur, allowing the data to be
put out on the ongoing link immediately. This enables data to
traverse many links without significantly adding to the overall
latency. The packets may be fragmented and coalesced on
each link, for example between the NIC and a host I/O bus
bridge, or between the NIC and another NIC. We term this
cut-through routing and forwarding. In a network carrying a
large number of streams, cut-through forwarding and routing
enables Small packets to pass through the network without
any delays caused by large packets of other streams. While
other network physical layers such as ATM also provide the
ability to perform cut-through forwarding and routing, they
do so at the cost of requiring all packets to be of a fixed Small
S17C.

FIG. 8 shows an example of how this protocol has been
implemented using the 23-bit data transfer capability of HP's
GUNK chipset (serialiser 14 and de-serialiser 16). PCI to
local bus bridge 12 provides a bus of 32 address/data bits, 4
parity bits and 4 byte-enable bits. It also provides an address
valid signal (ADS) which signifies that a burst is beginning,
and that the address is present on the address/data bus. The
burst continues until a burst last signal (BLAST) is set active,
signifying the end of a burst. It provides a read/write signal,
and some other control signals that need not be transferred to
a remote computer. FIG. 8A shows how this protocol is used
to transfer an in data word burst 63. The data traffic closely
mirrors that used on the PCI bus, but uses fewer signals.
The destination address always precedes each data burst.

Therefore, the bursts can be of variable size, can be split or
coalesced, by generating fresh address words, or by removing
address words where applicable. In the preferred embodi
ment, sequential data words are destined for sequentially
incrementing addresses. However, data words having sequen
tially decrementing addresses might also be used, or any other
pattern of addresses may be used so long as it remains easy to
calculate. So far as the endpoints are concerned, exactly the
same data is transferred to exactly the same locations. The
benefits are that packets can be of any size at all, reducing the
overhead of sending an address; packets can be split (and
addresses regenerated to continue) by network Switches to
provide quality of service, and receivers need not wait for a
complete packet to arrive to begin decoding work.

Also, the destination address given in the header may be for
the nth data word in the burst, rather than for the first,
although using the first data word address is preferred.

FIG. 8b shows how the protocol of FIG. 8a is transcribed
onto the G-LINK physical layer. The first word in any packet
contains an 18-bit network address. Each word of 63 is split
into two words in 64; the lower 16 bits carry high and low
addresses or data, corresponding to the address/data bus; the
next 4 bits carry either byte enables or parity data. During the
address phase, the byte enable field (only 2 bits of which are
available, owing to the limitations of G-LINK) is used to

10

15

25

30

35

40

45

50

55

60

65

14
carry a 2-bit code indicating read, write or escape packet use.
Escape packets are normally used to carry diagnostic or error
information between nodes, or as a means of carrying the
Xon/Xoff-style protocol when no other data is in transit. The
G-LINK nGAV signal corresponds to the ADS signal of 63:
nDAV is active throughout the rest of the burst and the com
bination of nDAV inactive and nGAV inactive signals the end
of a burst, or nGAV active indicates the immediate beginning
of another burst.

FIG. 8c, shows a read data burst 65; this is the same as a
write burst 64, except data bit 16 is set to 0. On the outbound
request, the data field contains the network address for the
read data to be returned to. When the data for a read returns
66, it travels like a write burst, but is signified by there only
being one nCAV active (signifying the network address)
along with the first word. An additional bit, denoted FLAG in
FIG. 8, is used to carry Xon/Xoff style information when a
burst is in progress. It is not necessary therefore to break up a
burst in order to send an Escape packet containing the Xon/
Xoff information. The FLAG bit also serves as an additional
end of packet indicator.

In FIG.8c, 67.68 shows an escape packet; after the network
address, this travels with 68 or without 67 a payload as
defined by data bit 16 in the first word of the burst.

In a full networked implementation, an extra network
address word may precede each of these packets. Other physi
cal layer or network layer solutions are possible, without
compromise to this patent application, including fibre chan
nel parts (using 8B/10B encoding) and conventional net
works such as ATM or even Ethernet. The physical layer only
needs to provide some means of identifying data from non
data and the start of one burst from the end of a previous one.
A further aspect of the invention relates to the distribution

of hardware around a network. One use of a network is to
enable one computer to access a hardware device whose
location is physically distant. As an example, consider the
situation shown in FIG.9, where it is required to display the
images viewed by the camera 70, (connected a frame-grabber
card 69) on the monitor which is, in turn, connected to com
puter 72. The NIC 73 is programmed from Boot ROM 22 to
present the same hardware interface as that of the frame
grabber card 69. Computer 72 can be running the standard
application program as provided by a third party vendor
which is unaware that system has been distributed over a
network. All control reads and writes to the frame-grabber 69.
are transparently forwarded by the NIC 73, and there is no
requirement for an extra process to be placed in the data path
to interface between the application running on CPU 74 and
the NIC 73. Passive PCII/O back-plane 71, requires simply a
PCI bus clock and arbiter i.e., no processor, memory or cache.
These functions can be implemented at very low cost.
The I/O buses are conformant to PCI Local Bus Specifica

tion 2.1. This PCI standard supports the concept of a bridge
between two PCI buses. It is possible to program the NIC 73
to present the same hardware interface as a PCI bridge
between Computer 72 and passive back-plane 71. Such pro
gramming would enable a plurality of hardware devices to be
connected to back-plane 71 and controlled by computer 72
without the requirement for additional interfacing software.
Again, it should be clear that the invention will support both
general networking activity and this remote hardware com
munication, simultaneously using a single network card.
A circular buffer abstraction will now be discussed as an

example of the use of the NIC by an application. The circular
buffer abstraction is designed for applications which require
a producer/consumer Software stream abstraction, with the
properties of low latency and high bandwidth data transmis

US 8,843,655 B2
15

Sion. It also has the properties of responsive flow control and
low buffer space requirements. FIG. 10 shows a system com
prising two software processes, applications 102 and 103, on
different computers 100, 101. Application 102 is producing
Some data. Application 103 is awaiting the production of data
and then consuming it. The circular buffer 107, is composed
of a region of memory on Computer 101 which holds the data
and two memory Locations RDP 106 and WRP 109. WRP
109 contains the pointer to the next byte of data to be written
into the buffer, while RDP 106 contains the pointer to the last
byte of data to be read from the buffer. When the circular
buffer is empty, then WRP is equal to RDP+1 modulo wrap
around of the buffer. Similarly, the buffer is full when WRP is
equal to RDP-1. There are also private values of WRP 108
and RDP 111 in the caches of computer 100 and computer
101 respectively. Each computer 100,101 may use the value
of WRP and RDP held in its own local cache memory to
compute how much data can be written to or read from the
buffer at any point in time, without the requirement for com
munication over the network.
When the circular buffer 107 is created, the producer sets

up a Tripwire 110, which will match on a write to the RDP
pointer 106, and the consumer sets up a Tripwire 113, which
will match on a write to the WRP pointer 109.

If consumer application 103 attempts to read data from the
circular buffer 107, it first checks to see if the circular buffer
is empty. If so, application 103 must wait until the buffer is not
empty, determined when WRP 109 has been seen to be incre
mented. During this waiting period, application 103 may
either block, requesting an operating system reschedule, or
poll the WRP 109 pointer.

If producer application 102 decides to write to the circular
buffer 107, it may do so while the buffer is not full. After
writing some data, application 102 updates its local cached
value of WRP 108, and writes the updated value to the
memory location 109, in computer 101. When the value of
WRP 109, is updated, the Tripwire 113, will match as has
been previously described.

If consumer application 103 is not running on CPU 118
when some data is written into the buffer and Tripwire 113
matches, NIC 115 will raise a hardware interrupt 114. This
interrupt causes CPU 118 to run device driver software con
tained within operating system 118. The device driver will
service the interrupt by reading the tripwire FIFO 42 on NIC
115 and determine from the value read, the system identifier
for application 103. The device driver can then request that
operating system 118, reschedule application 103. The device
driver would then indicate that the tripwire 113 should not
generate a hardware interrupt until application 103 has been
next descheduled and subsequently another Tripwire match
has occurred.

Note that the system identifier for each running application
is loaded into internal registers 49, each time the operating
system reschedules. This enables the NIC to determine the
currently running application, and so make the decision
whether or not to raise a hardware interrupt for a particular
application given a Tripwire match.

Hence, once consumer application 103 is again running on
the processor further writes to the circular buffer 107, by
application 102, may occur without triggering further hard
ware interrupts. Application 103 now reads data from the
circular buffer 107. It can read data until the buffer becomes
empty (detected by comparing the values of RDP and WRP
111,109). After reading, application 102 will update its local
value of RDP111 and finally writes the updated value of RDP
to memory location 106 over the network.

10

15

25

30

35

40

45

50

55

60

65

16
If producer application 102 had been blocked on a full

buffer, this update of RDP 106 would generate a Tripwire
match 110, resulting in application 102, being unblocked and
able to write more data into the buffer 107.

In normal operation, application 102 and application 103
could be operating on different parts of the circular buffer
simultaneously without the need for mutual exclusion mecha
nisms or Tripwire.
The most important properties of the data structure are that

the producer and the consumer are able to process data with
out hindrance from each other and that flow control is explicit
within the software abstraction. Data is streamed through the
system. The consumer can remove data from the buffer at the
same time as the producer is adding more data. There is no
danger of buffer over-run, since a producer will never trans
mit more data than can fit in the buffer.
The producer only ever increments WRP 108, 109 and

reads RDP 106, and the consumer only ever increments RDP
106, 111, and reads WRP 109. Inconsistencies in the values of
WRP and RDP seen by either the producer or consumer either
cause the consumer to not process some valid data (when
RDP 106 is inconsistent with 111), or the producer to not
write some more data (when WRP 109 is inconsistent with
108), until the inconsistency has been resolved. Neither of
these occurrences cause incorrect operation or performance
degradation so long as they are transient.

It should also be noted that on most computerarchitectures,
including the Alpha AXP and Intel Pentium ranges, computer
100 can store the value of the RDP106 pointerin its processor
cache, since the producer application 102 only reads the
pointer 106. Any remote writes to the memory location of the
RDP pointer 106 will automatically invalidate the copy in the
cache causing the new value to be fetched from memory. This
process is automatically carried out and managed by the
system controller 8. In addition, since computer 101 keeps a
private copy of the RDP pointer 111 in its own cache, there is
no need for any remote reads of RDP pointer values during
operation of the circular buffer. Similar observations can also
be made for the WRP pointer 109 in the memory of computer
101 and the WRP pointer 108 in the cache of computer 100.
This feature of the buffer abstraction ensures that high per
formance and low latency are maintained. Responsive appli
cation level flow-control is possible because the cached
pointer values can be exposed to the user-level applications
102, 103.
A further enhancement to the above arrangement can be

used to provide support for applications which would like to
exchange data in discrete units. As shown in FIG. 11, and in
addition to the system described in FIG. 10. The system
maintains a second circular buffer 127, of updated WRP 129
values corresponding to buffer 125. This second buffer 127 is
used to indicate to a consumer how much data to consume in
order that data be consumed in the same discrete units as it
were produced. Note that circular buffer 125 contains the data
to be exchanged between the applications 122 and 123.
The producer, application 122 writes data into buffer 125,

updating the pointer WRP 129, as previously described. Once
data has been placed in buffer 125, application 122 then
writes the new value of the WRP 129 pointer into buffer 127.
At the same time it also manipulates the pointer WRP131. If
either of these write operations does not complete then the
application level write operation is blocked until Some data is
read by the consumer application 123. The Tripwire mecha
nism can be used as previously described, for either applica
tion to block on either a full or empty buffer pair.

US 8,843,655 B2
17

The consumer application 123 is able to read from both
buffers 125 and 127, in the process updating the RDP pointers
133,135 in its local cache and RDP pointers 124,126 over the
network in the manner previously described. A data value
read from buffer 127 indicates an amount of data, which had
been written into buffer 125. This value may be used by
application level or library software 123, to consume data
from buffer 125 in the same order and by the same discrete
amounts as it were produced by application 122.
The NIC can also be used to directly support a low latency

Request/Response style of communication, as seen in client/
server environments such as Common Object Request Broker
Architecture (CORBA) and Network File System (NFS) as
well as transactional systems such as databases. Such an
arrangement is shown in FIG. 12, where application 142 on
computer 140 acts as a client requesting service from appli
cation 143 on computer 141, which acts as a server. The
applications interact via memory mappings using two circu
lar buffers 144 and 145, one contained in the main memory of
each computer. The circular buffers operate as previously
described, and also can be configured to transfer data in
discrete units as previously described.

Application 142, the client, writes a request 147 directly
into the circular buffer 145, via the memory mapped connec
tion(s), and waits for a reply by waiting on data to arrive in
circular buffer 144. Most Request/Response systems use a
process known as marshalling to construct the request and use
an intermediate buffer in memory of the client application to
do the marshalling. Likewise marshalling is used to construct
a response, with an intermediate buffer being required in the
memory of the server application. Using the present inven
tion, marshalling can take place directly into the circular
buffer 145 of the server as shown. No intermediate storage of
the request is necessary at either the client or server comput
ers 140, 141.
The server application 143 notices the request (possibly

using the Tripwire mechanism) and is able to begin unmar
shalling the request as soon as it starts to arrive in the buffer
145. It is possible that the server may have started to process
the request 149 while the client is still marshalling and trans
mitting, thus reducing latency in the communication.

After processing the request, the server writes the reply 146
directly into buffer 144, unblocking application 142 (using
the Tripwire mechanism), which then unmarshalls and pro
cesses the reply 148. Again, there is no need for intermediate
storage, and unmarshalling by the client may be overlapped
with marshalling and transmission by the server.
A further useful and novel property of a Request/Response

system built using the present invention, is that data may be
written into the buffer both from software running on a CPU,
or any hardware device contained in the computer system.
FIG. 15 shows a Request/Response system which is a file
serving application. The client application 262 writes a
request 267 for some data held on disks controlled by 271.
The server application 263 reads 269 and decodes the request
from its circular buffer 265 in the manner previously
described. It then performs authentication and authorisation
on the request according to the particular application.

If the request for data is accepted, the server application
263 uses a two-part approach to send its reply. Firstly, it
writes, into the circular buffer 264, the software generated
header part of the reply 266. The server application 263 then
requests 273 that the disk controller 271 send the required
data part of the reply 272 over the network to circular buffer
264. This request to the disk controller takes the form of a
DMA request, with the target address being an address on I/O
bus 270 which has been mapped onto circular buffer 264.

10

15

25

30

35

40

45

50

55

60

65

18
Note that the correct offset is applied to the address such that
reply data 272 from the disk is placed immediately following
the header data 266.

Before initiating the request 273, the server application 263
can ensure that sufficient space is available in the buffer 264
to accept the reply data. Further, it is not necessary for the
server application 263 to await the completion request 273. It
is possible for the client application 262 to have seta Tripwire
274 to match once the reply data 272 has been received into
buffer 264. This match can be programmed to increment the
WRP pointer associated with buffer 264, rather than requiring
application 263 to increment the pointer as previously
described. If a request fails, then the client application 262
level timeout mechanism would detect and retry the opera
tion.

It is also possible for the client application 262 to arrange
that reply data 272 be placed in some other data structure,
(such as a kernel buffer-cache page), through manipulation of
169 and 167 as described later. This is useful when 264 is not
the final destination of the rept data, so preventing a final
memory copy operation by the client. Server application 263
would be unaware of this client side optimisation.
By use of this mechanism, the processing load on the server

is reduced. The requirement for the server application to wait
for completion of its disk requests is removed. The require
ment for high bandwidth streams of reply data to pass through
the server's system controller, memory, cache or CPU is also
removed.
As previously stated, the NIC of the present invention

could be used to support the Virtual Interface Architecture
(VIA) Standard. FIG. 13 shows two applications communi
cating using VIA. Application 152 sends data to application
153, by first writing the data to be sent into a region of its
memory, shown as block 154. Application 152 then builds a
transmit descriptor 156, which describes the location of block
154 and the action required by the NIC (in this case data
transmission). This descriptor is then placed onto the
TxQueue 158, which has been mapped into the user-level
address-space of application 152. Application 152 then
finally writes to the doorbell register 160 in the NIC 162 to
notify the NIC that work has been placed on the TxQueue
158.
Once the doorbell register 160 has been written, the NIC

162 can determine, from the value written, the address in
physical memory of the activated TxQueue 158. The NIC 152
reads and removes the descriptor 156 from the TxQueue 158,
determines from the descriptor 156, the address of data block
154 and invokes a DMA 164 engine to transmit the data
contained in block 154. When the data is transmitted 168, the
NIC 162 places the descriptor 156 on a completion queue
166, which is also mapped into the address space of applica
tion 152, and optionally generates a hardware interrupt. The
application 152 can determine when data has been Success
fully sent by examining queue 166.
When application 153 is to receive data, it builds a receive

descriptor 157 describing where the incoming data should be
placed, in this case block 155. Application 153 then places
descriptor 157 onto RXQueue 159, which is mapped into its
user-level address-space. Application 153 then writes to the
doorbell register 161 to indicate that its RXQueue 159 has
been activated. It may choose to either poll its completion
queue 163, waiting for data to arrive, or block until data has
arrived and a hardware interrupt generated.
The NIC 165 in computer 151 services the doorbell register

161 write by first removing the descriptor 157 from the
RxQueue 159. The NIC 165 then locates the physical pages of
memory corresponding to block 155 and described by the

US 8,843,655 B2
19

receive descriptor 157. The VIA standard allows these physi
cal pages to have been previously locked by application 153
(preventing the virtual memory system moving or removing
the pages from physical memory). However, the NIC is also
capable of traversing the page-table structures held in physi
cal memory and itself locking the pages.
The NIC 165 continues to service the doorbell register

write and constructs a Translation Look-aside (TLB) entry
167 located in SRAM 23. When data arrives corresponding to
a particular VIA endpoint, the incoming address matches an
aperture 169 in the NIC, which has been marked as requiring
a TLB translation. This translation is carried out by state
machine 46 and determines the physical memory address of
block 155.

The TLB translation, having been previously set up, occurs
with little overhead and the data is written 175 to appropriate
memory block 155. A Tripwire 171 will have been arranged
(when the TLB 167 entry was constructed) to match when the
address range corresponding to block 155 is written to. This
Tripwire match causes the firmware 173 (implemented in
state machine 51) to place the receive descriptor 157 onto
completion queue 163 to invalidate the TLB mapping 167 and
optionally generate an interrupt. If the RXQueue 159 has been
loaded with other receive descriptors, then the next descriptor
is taken and loaded into the TLB as previously described. If
application 153 is blocked waiting for data to arrive, the
interrupt generated will result, (after a device driver has per
formed a search of all the completion queues in the system),
in application 153 being re-scheduled. If there is no TLB
mapping for the VIA Aperture addresses, or the mapping is
invalid, an error is raised using an interrupt. If the NIC 165 is
in the process of reloading the TLB 167 when new data
arrives, then hardware flow control mechanism 31 is used to
control the data until a path to the memory block in computer
151 has been completed.
As an optional extension to the VIA standard, the NIC

could also respond to Tripwire match 171 by placing an index
on Tripwire FIFO 42, which could enable the device driver to
identify the active VIA endpoint without searching all
completion queues in the system.

This method can be extended to provide support for 120
and the forthcoming Next Generation I/O (NGIO) standard.
Here, the transmit, receive and completion queues are located
on the NIC rather than in the physical memory of the com
puter, as is currently the case for the VIA standard.
As mentioned previously, another aspect of this invention

is its use in providing Support for the outbound streaming of
data through the NIC. This setup is described in FIG. 14. It
shows a Direct Memory Access (DMA) engine 182 on the
NIC 183, which has been programmed in the manner previ
ously described by a number of user-level applications 184.
These applications have requested that the NIC 183 transfer
their respective data blocks 181 through the NIC 183, local
bus 189, fibre-optic transceiver 190 and onto network 200.
After each application has placed its data transfer request
onto the DMA request queue 185, it blocks, awaiting a
reschedule, initiated by device driver 187. It can be important
that the system maintains fair access between a large number
of Such applications, especially under circumstances where
an application requires a strict periodic access to the queue,
Such as an application generating a video stream.

Data transferred over the network by the DMA engine 182,
traverses local bus 189, and is monitored by the Tripwire unit
186. This takes place in the same manner as for received data,
(both transmitted and received data pass through the NIC
using the same local bus 55).

10

15

25

30

35

40

45

50

55

60

65

20
Each application, when programming the DMA engine

182 to transmit a data block, also constructs a Tripwire which
is set to match on an address in the data block. The address to
match could indicate that all or a certain portion of the data
has been transmitted. When this Tripwire fires and causes a
hardware interrupt 188, the device driver 187 can quickly
determine which application should be made runnable. By
causing a system reschedule, the application can be run on the
CPU at the appropriate moment to generate more DMA
requests. Because the device driver can execute at the same
time that the DMA engine is transferring data, this decision
can be made in parallel to data transfer operations. Hence, by
the time that a particular application's data transfer requests
have been satisfied, the system can ensure that the application
be running on the CPU and able to generate more requests.

FIG. 16 illustrates a generalised apparatus or arrangement
for synchronising an end-point application using a tripwire.
An end-point is a final destination for an information stream
and is the point at which processing of the information takes
place. Examples of end-points include a web, a file, a data
base server and hardware devices such as a disk or graphics
controller. An end-point may be running an operating system
and a number of data processing applications and these are
referred to as end-point applications. Thus, examples of end
point applications include an operating system or a compo
nent thereof, a network protocol stack, and any application
level processing. Arrangements such as network Switches and
routers do not constitute end-points or end-point applications
because their purpose is to ensure that the information is
delivered elsewhere.
The arrangement comprises a computer 300 which is

optionally connected to other computers 301 and 302 via a
network 303. The computer 300 comprises a program
memory (illustrated by way of example only as a read only
memory (ROM) 305) which contains a program for control
ling the computer to synchronise the end-point application in
accordance with an address-based event in an information
stream on an information pathway 307, such as a bus, within
the computer. The information stream may be wholly within
the computer, for example from another application per
formed by the computer 300, or may be from a remote source,
such as from the network 303.
The bus 307 is connected to a memory 308 in the end-point

application 306, which also comprises a code generator 309
and an action generator 310. The code generator 309 supplies
codes to a comparator which is illustrated as a content addres
sable memory (CAM) 311. The CAM311 has another input
connected to the bus 307 and is arranged to perform a com
parison between each entry in the CAM and the information
stream on the bus 307. When a match is found, the CAM
sends a signal to the action generator 310 which performs an
action which is associated with an address-based event in the
information stream.

In a typical example of use of the synchronising arrange
ment, the end-point application 306 sets a tripwire, for
example to be triggered when data relating to an end-point
address or range of end-point addresses in the memory 308
are present on the bus 307.
The code generator 309 supplies a code which is written

into the CAM 311 and which comprises the destination
memory address of the data or possibly part of this address,
Such as the most significant bits when a range of addresses is
to be monitored. It is also possible to enter a code which
represents not only the address or range of addresses but also
part or all of one or more items of data which are expected in
the information stream. The CAM311 compares the address
of each data burst on the bus 307, and possibly also at least

US 8,843,655 B2
21

some of the data of each burst, with each code stored in the
CAM 311 and supplies a signal to the action generator 310
when a match is found. The action generator 310 then causes
the appropriate action to be taken within the end-point appli
cation306. This may be a single action, several actions, or one
or more specific actions which are determined not only by the
triggering of the tripwire but also by the data within the
information stream, for example arriving at the appropriate
location or locations in the memory 308.
As mentioned hereinbefore, the information stream 307

may be wholly internal to the computer 300 and an example
of this is an application-to-application stream of information
where both applications are running, for example alternately,
on the computer 300. However, the information stream may
be partly or wholly from outside the computer 300, as illus
trated by the broken line connection from the bus 307 to the
network 303. Thus, the information stream may be from a
switch fabric, a network, or a plurality of sources. A switch
fabric is a device which has a plurality of inputs and outputs
and which is capable of forwarding data from each input to
the appropriate output accordingto routing information con
tained within the data. A switch fabric may alternatively be
wholly contained within the computer. The information
stream preferably has a data burst arrangement as described
hereinafter and, in the case of a plurality of Sources, the data
bursts may arrive from any of the sources at any time, which
amounts to multiplexing.

FIG. 17 shows an arrangement which illustrates two pos
sible modifications to the arrangement shown in FIG. 16. In
this case, the bus 307 is connected to an input/output bus 312
of the end-point application 306 within the computer 300.
This represents an example of a hardware end-point for the
information stream but other types of hardware end-points are
possible. Such as active controllers, and may be located “out
side the application 306. An example of an active controller
is a disk controller.
The arrangement shown in FIG. 17 also differs from that

shown in FIG. 16 in that the tripwire may be triggered by an
address-based event in the information stream on the bus 307
which does not exactly match any of the codes stored in the
CAM 311. Instead, the information from the information
stream on the bus 307 first passes through a process 313
before being supplied to the CAM for comparison with each
of the stored codes.
One application of this is for the case where the informa

tion stream comprises packets or bursts of data starting with
an address, for example corresponding to an address in the
memory 308 to which the first item of data after the address in
the packet or burst is allocated. Subsequent items of data are
to be allocated to consecutive addresses, for example Such
that each item of data in the burst is to be allocated to the next
highest address location after the preceding data item. Thus,
the address at the start of each burst relates to the first data
item and the following data item addresses can be inferred by
incrementing the address upon the arrival of the second and
each Subsequent item of data.
The application 306 can cause the code generator 309 to

store in the CAM311 a code which corresponds to an implied
address in the actual information stream appearing on the bus
307. The process 313 detects the address at the start of each
data burst and supplies this to the CAM311 with the arrival of
the first data item. As each Subsequent data item of the same
burst arrives, the process 313 increments the address and
supplies this to the CAM 311. This allows a tripwire to be
triggered when, for example a data item having an implied

10

15

25

30

35

40

45

50

55

60

65

22
address is present on the bus 307 because the CAM can match
the corresponding stored code with the address Supplied by
the process 313.
As mentioned hereinbefore, the action generator 310 can

cause any one or more of various different actions to be
triggered by the tripwire. The resulting action may be deter
mined by which tripwire has been triggered i.e. which code
stored in the CAM 311 has been matched. It is also possible
for the action to be at least partly determined by the data item
which effectively triggered the tripwire. Any action may be
targetted at the computer containing the tripwire orata dif
ferent computer. Various possible actions are described here
inafter as typical examples and may be performed singly or in
any appropriate combination for the specific application and
may be targeted at the computer containing the tripwire or at
a different computer.

FIG. 18 illustrates the action generator 310 raising an inter
rupt request IRQ and Supplying this to the interrupt line of a
central processing unit (CPU)320 of the computer 300. FIG.
19 illustrates the action generator 310 setting a bit in a bitmap
321, for example in the memory 308. These two actions may
be used independently of each other or together. For example,
the action generator may raise an interrupt request if an appli
cation which requires data corresponding to the tripwire is not
currently running but is runnable; for example it has not
exhausted its time-slice. Otherwise, for example if the appli
cation is awaiting rescheduling, the relevant bit in the bitmap
321 may be set. The operating system may periodically check
the bitmap 321 for changes and, as a result of the arrival of the
relevant data for an application which is presently not run
ning, may decide to reschedule or wakeup the application.

FIG. 20 illustrates another type of action which may be
performed as a result of detection of the address-based event.
In this example, a counter 322, for example whose count is
stored within the memory 308, is incremented in response to
triggering of the tripwire. Incrementing may take place as a
result of any tripwire being triggered or only by one or more
specific tripwires depending on the specific application. FIG.
21 illustrates another action which is such that, when the or
the appropriate tripwire is triggered, a predetermined value
“N” is written to a location “X” shown at 323 as being in the
memory 308 (or being mapped thereto).

FIG. 22 illustrates another combination of actions which
may be used to indicate that an application should be awak
ened or rescheduled. When a tripwire is triggered, an interrupt
request is supplied to the CPU 320 and a “runnable bit for a
specific application is set at location 324 in the memory 308.
The operating system of the computer 300 responds to the
interrupt request by waking up or rescheduling the applica
tion whose runnable bit has been set.

FIG. 23 illustrates an action which modifies entries in the
CAM311 in response to triggering of a tripwire. Any form of
modification is possible. For example, the code which trig
gers the tripwire may be deleted if no further tripwires are
required for the same address-based event. As an alternative,
the code may be modified so as effectively to set a different
but related tripwire. A further possibility is to generate a
completely new code and supply this to the CAM311 in order
to set a new unrelated tripwire.

FIG. 24 illustrates the format of a data burst, a sequence of
which forms the information stream on the bus 307. The data
burst comprises a plurality of items which arrive one after the
other in sequence on the bus. The first item is an address A(n)
which is or corresponds to the end-point address, for example
in the memory 308, for receiving the subsequent data items.
This address is the actual address n of the first data item
D.sub. 1 of the burst, which immediately follows the address

US 8,843,655 B2
23

A(n). The subsequent data items D. Sub.2, D. Sub.3
D.sub-parrive in sequence and their destination addresses are
implied by their position within the burst relative to the first
data item Dl and its address n. Thus, the second data item
D.sub.2 has an implied address n+1, the third data item
D. Sub.3 has an implied address n+2 and so on. Each data item
is written or Supplied to the implied address as its destination
address.

This data burst format may be used to fragment and coa
lesce bursts as the data stream passes through a forwarding
unit 330, such as a network interface card or a Switch, ofan
information pathway. For example, the forwarding unit can
start to transmit a burst as soon as the first data item has
arrived and does not have to wait until the whole data burst has
arrived.

FIG. 25 illustrates an example of this in which an interrup
tion in the data burst occurs. The forwarding unit 330 has
already started transmission of the burst and the first r data
items 331 together with the burst address have already been
forwarded. The remainder 332 of the burst has not yet arrived
and the forwarding unit 330 terminates forwarding or trans
mission of that burst.
When the remainder 332 of the burst starts to arrive, the

forwarding unit 330 recalculates the destination address A(r+
1) for the remainder of the burstand inserts this in front of the
data item D. Sub.r-1. This is transmitted as a further burst 333
as illustrated in FIG. 26.

This technique may be used even when the whole burst is
available for forwarding by the forwarding unit 330. For
example, the forwarding unit 330 may terminate transmission
of a particular burst before completion of transmission for
reasons of arbitration between a number of competing bursts
or for flow control reasons. Thus, individual data bursts can be
forwarded in tact or can be sent in two or more fragments as
necessary or convenientandall such bursts are treated as valid
bursts by any Subsequent forwarding units.

FIG. 27 illustrates an alternative situation in which the
forwarding unit has an internal buffer 335 which contains first
and second bursts 336 and 337. In this case, the implied
address of the first data item D. Sub.n+1 of the second burst
337 immediately follows the implied address of the last data
item D. Sub.n of the first burst336. The forwarding unit checks
for Such situations and, when they are found, coalesces the
first and second bursts into a coalesced burst 338 as shown in
the lower part of FIG. 27. The forwarding unit then transmits
a single contiguous burst, which saves the overhead of the
excess address information (which is deleted from the second
burst). Any Subsequent forwarding units then treat the coa
lesced burst 338 as a single burst.
The format of the data burst allows such fragmentation or

merging ofbursts to take place. This in turn allows forwarding
units to transmit data as soon as it arrives so as to reduce or
minimise latency. Also, bursts of any length or number of data
items can be handled which improves the flexibility of trans
mission of data.

FIG. 28 illustrates an example of communication between
an application, whose address space is shown at 340, and
remote hardware 341 via a network303 Such that the network
303 is “transparent' or “invisible' to each of the application
and the remote hardware 341. The address space 340 contains
mapped configuration data and registers of the remote hard
ware as indicated at 342. This is mapped onto the system
input/output bus 343 to which a network interface card 344 is
connected. The network interface card 344 is loaded with
configuration and register data corresponding to the remote
hardware 341. All application requests are forwarded over the
network303 transparently to the remote hardware 341 so that

10

15

25

30

35

40

45

50

55

60

65

24
the remote hardware appears as though it is local to the
application and the network 303 is invisible.
The remote hardware 341 is connected to a passive input/

output bus 345 which is provided with a network interface
card 346 for interfacing to the network303. The configuration
and registers of the remote hardware are illustrated at 347 and
are mapped ultimately to the region 342 of the address space
340 of the application. Again, the network is invisible to the
remote hardware 341 and the remote application appears to be
local to it.
When the application sends a request to the remote hard

ware 341, for example requesting that the remote hardware
Supply data to be used in or processed by the application, this
is written in the space 342 which is mapped to the system
input/output bus 343. The network interface card 344 sends
read/write requests over the network 303 to the card 346,
which supplies these via the passive input/output bus 345 to
the remote hardware 341. Viewed from the remote hardware
341, the bus 345 appears equivalent to the bus 343.
The remote hardware 341 may supply an interrupt and/or

data for the application to the bus 345. Again, the network
interface card 346 sends this via the network 303 to the card
344. The network interface card 344 supplies an interrupt
request to the computer running the application and writes the
data on behalf of the remote hardware to the space 342 in the
address space 340 of the application. Thus, to the application,
the remote hardware 341 appears to be connected directly to
the bus 343.

Although implementations of tripwires have been
described in detail hereinbefore with reference to the tripwire
unit 1 shown in FIG.29 associated with the network interface
card 350, tripwires may be implemented at other points in a
system as illustrated by tripwire units 2 to 5 in FIG. 29. The
system comprises a disk controller 351 connected to an input/
output bus 307b and the tripwire unit 2 is implemented as part
of the disk controller 351. Such an arrangement allows trip
wire operations to inform applications of any characteristic
data transfer to or from the disk controller 351. Such an
arrangement is particularly useful where the controller 351 is
able to transfer data to and from a non-contiguous memory
region corresponding to user-level buffers of an application.
This allows data transfer and application level notification to
be achieved without requiring hardware interrupts or kernel
intervention.
The tripwire unit 3 is associated with a system controller

352 connected to a host bus 307a and the input/output bus
307b. Such an arrangement allows tripwire operations to
inform applications of any characteristic data transfer to or
from any device in the computer system. This includes hard
ware devices, such as the disk controller 351 and the network
interface card 350, and, in the case of a system employing
several CPUs, enables an application running on one of the
CPUs to synchronise on a data transfer to or from an appli
cation running on another of the CPUs. Similarly, a tripwire
may be used for synchronisation between applications run
ning on the same CPU. This reduces the need for other mecha
nisms such as spin locks where both applications are required
to operate in lock-step with the data transfer.

Tripwire units 4 and 5 are implemented in the CPU 320 or
the memory 308. This is generally equivalent to the tripwire
unit 3, where all data transfers in the system can be monitored.
However, the tripwire unit 4 may monitor data written by an
application to cache, which may not appear on the hostbus
307.

US 8,843,655 B2
25

What is claimed is:
1. A method, comprising:
storing a first data burst including a first address and first

data items, the first address indicative of a first location
in memory to which a first one of the first data items is
directed, the first data burst not including address infor
mation for the first data items following the first one of
the first data items;

identifying a second address of a last one of the first data
items based on the first address:

storing a second data burst received after the first data burst,
the second data burst including a third address and sec
ond data items, the third address indicative of a second
location in the memory to which a first one of the second
data items is directed, the second data burst not includ
ing destination information for ones of the second data
items following the first one of the second data items:

determining whether the third address sequentially follows
the second address; and when the third address sequen
tially follows the second address:
deleting the third address from the second data burst; and
combining the first and second data bursts to forma third

data burst.
2. A method as defined in claim 1, further comprising

transmitting the third data burst contiguously as a single burst.
3. A method as defined in claim 1, wherein the first and

second data bursts are stored in an internal buffer of a for
warding unit, and the combining of the first and second data
bursts is performed by the forwarding unit.

4. A method as defined in claim 3, wherein the first data
burst and the second data burst are different data bursts in the
internal buffer before being combined.

5. A method as defined in claim 1, further comprising,
when the third address does not sequentially follow the sec
ond address, transmitting the first and second data bursts
separately.

6. A method as defined in claim 1, wherein the first address
is an implied address based on a reference memory location.

7. An apparatus comprising:
a memory comprising machine readable instructions;
a processor to execute the instructions to cause a machine

to perform operations comprising:
storing a first data burst including a first address and first

data items, the first address indicative of a first loca
tion in memory to which a first one of the first data
items is directed, the first data burst not including
address information for any of the first data items
except the first one of the first data items;

identifying a second address of a last one of the first data
items based on the first address;

storing a second data burst received after the first data
burst, the second data burst including a third address
and second data items, the third address indicative of
a second location in the memory to which a first one of
the second data items is directed, the second data burst
not including destination information for any of the
second data items except the first one of the second
data items;

determining whether the third address sequentially fol
lows the second address; and

when the third address sequentially follows the second
address:
deleting the third address from the second data burst:

and

10

15

25

30

35

40

45

50

55

60

26
combining the first and second data bursts to form a

third data burst.
8. An apparatus as defined in claim 7, wherein the opera

tions further comprise transmitting the third data burst con
tiguously as a single burst.

9. An apparatus as defined in claim 7, wherein the appara
tus is a forwarding unit and the first and second data bursts are
located in an internal buffer of the forwarding unit.

10. An apparatus as defined in claim 9, wherein the first
data burst and the second data burst are different data bursts in
the internal buffer before being combined.

11. An apparatus as defined in claim 7, wherein the opera
tions further comprise transmitting the first and second data
bursts separately when the third address does not sequentially
follow the second address.

12. An apparatus as defined in claim 7, wherein the first
address is an implied address based on a reference memory
location.

13. A tangible machine readable storage device comprising
instructions that, when executed, cause a machine to perform
operations comprising:

storing a first data burst including a first address and first
data items, the first address indicative of a first location
in memory to which a first one of the first data items is
directed, the first data burst not including address infor
mation for the first data items following the first one of
the first data items;

identifying a second address of a last one of the first data
items based on the first address:

storing a second data burst received after the first data burst,
the second data burst including a third address and sec
ond data items, the third address indicative of a second
location in the memory to which a first one of the second
data items is directed, the second data burst not includ
ing destination information for the second data items
following the first one of the second data items:

determining whether the third address sequentially follows
the second address; and

when the third address sequentially follows the second
address:
deleting the third address from the second data burst; and
combining the first and second data bursts to formathird

data burst.
14. A storage device as defined in claim 13, wherein the

operations further comprise transmitting the third data burst
contiguously as a single burst.

15. A storage device as defined in claim 13, wherein the
machine is a forwarding unit, the storage device comprises an
internal buffer of the forwarding unit, and the combining of
the first and second data bursts is performed at the forwarding
unit.

16. A storage device as defined in claim 15, wherein the
first data burst and the second data burst are different data
bursts in the internal buffer before being combined.

17. A storage device as defined in claim 13, wherein the
operations further comprise transmitting the first and second
data bursts separately when the third address does not sequen
tially follow the second address.

18. A storage device as defined in claim 13, wherein the
first address is an implied address based on a reference
memory location.

