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(57) ABSTRACT 

In a cyphertext (CT) network, a method for detecting anoma 
lies comprising analyzing cyphertext data flows within the 
CT network where the CT network includes one or more 
encryption devices for encrypting plaintext data packets into 
cyphertext data packets such that the cyphertext data flows are 
directed to one or more destination devices. The cyphertext 
data includes multiple CT data packets and each CT data 
packet includes header information where each header 
includes source address information, destination address 
information and differentiated service code point (DSCP) 
information representative of traffic class information. The 
method further includes analyzing the traffic class informa 
tion of each header, including using maximum entropy esti 
mation for detecting one or more anomalies within the traffic 
class distribution of each flow based on the header informa 
tion for that traffic class. 
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Figure 1: CT/PT Domains Overview 
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Figure 18 PT Traffic plus Attack loading (bps) 
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Figure 21 PT Probability Distribution 
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Figure 22 PTThreshold Detection Values 
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CYPHERTEXT (CT) ANALYTIC ENGINE AND 
METHOD FOR NETWORKANOMALY 

DETECTION 

FEDERALLY SPONSORED RESEARCH AND 
DEVELOPMENT 

This invention (Navy Case No. NC 101,610) is assigned to 
the United States Government and is available for licensing 
for commercial purposes. Licensing and technical inquiries 
may be directed to the Office of Research and Technical 
Applications, Space and Naval Warfare Systems Center, 
Pacific, Code 72120, San Diego, Calif., 92.152; voice (619) 
553-2778; email T2Clspawar.navy.mil. 

BACKGROUND 

In recent years network intrusion detection has become an 
important area for both commercial interests as well as aca 
demic research. Applications of network intrusion detection 
typically stem from the perspectives of network monitoring 
and network security. For network monitoring, characteris 
tics such as flows which use a link with a given capacity, flow 
size distributions, and the number of distinct flows are of 
interest. In network security, attention is paid to characteriz 
ing known or unknown anomalous patterns of an attack or a 
virus. 

Network Intrusion Detection Systems (NIDS) work by 
detecting malicious activity Such as denial of service attacks, 
port scans or attempts to crack into computers. A NIDS reads 
all of the incoming packets and tries to find Suspicious pat 
terns known as signatures or rules. 

Network Behavior Anomaly Detection (NBAD) Systems 
work by continuously monitoring the network for unusual 
events or trends. NBAD programs track critical network char 
acteristics in real time and generate an alarm if an unusual 
event or trend is detected that could indicate the presence of a 
threat. Large-scale examples of Such characteristics include 
traffic volume, bandwidth use and protocol use. In order for 
NBAD to be optimally effective, a baseline of normal net 
work or user behavior must be established over a period of 
time. Once certain parameters have been defined as normal, 
any departure from one or more of them is flagged as anoma 
lous. 

Unfortunately the use of IPsec (Internet Protocol Security), 
which encrypts network traffic, renders network intrusion 
detection virtually useless unless traffic is decrypted at net 
work gateways. One alternative to NIDSs are host-based 
intrusion detection systems (HIDSs) which provide some of 
the functionality of NIDSs but with limitations. HIDSs can 
not perform a network-wide analysis and can be subverted if 
a host is compromised. 
Many present day networks, including the Navy network, 

are moving towards the encryption of all traffic. For instance, 
a large portion of the Navy network is Type-1 encrypted. 
Currently available market/commercial products do not 
address a fully cyphertext network. They work by blocking 
application layer exploits, detecting HTTP specific attacks, 
employing deep packet inspection technologies and charac 
terizing unencrypted flows. 

Presently there are no industry/government solutions avail 
able to address the problem of cyber attack detection within 
fully encrypted network traffic where the problem is com 
pounded by the scarcity of available parameters. 

Industry also faces a problem when it comes to cloud 
computing and processing of encrypted packets. Their solu 
tion is Homomorphic Encryption, where a specific algebraic 

2 
operation performed on the plaintext side is equivalent to 
another (possibly different) algebraic operation performed on 
the cyphertext side. Unfortunately Homomorphic Encryption 
does not address detection of cyber attacks on the cyphertext 

5 side of the network. 

SUMMARY 

In a cyphertext (CT) network, a method for detecting 
anomalies comprising analyzing cyphertext data flows within 
the CT network where the CT network includes one or more 
encryption devices for encrypting plaintext data packets into 
cyphertext data packets such that the cyphertext data flows are 
directed to one or more destination devices, where the cypher 
text data includes multiple CT data packets and where each 
CT data packet includes header information where each 
header includes source address information, destination 
address information and differentiated service code point 
(DSCP) information representative of traffic class informa 
tion; and analyzing the traffic class information of each 
header, including using maximum entropy estimation for 
detecting one or more anomalies within the traffic class dis 
tribution of each flow based on the header information for that 
traffic class. 

25 

10 

15 

BRIEF DESCRIPTION OF THE DRAWINGS 

Throughout the several views, like elements are referenced 
using like reference characters, wherein: 

FIG. 1 shows a CT/PT Domains Overview. 
FIG. 2 shows a view of Traffic Class Definitions. 
FIG. 3 shows Traffic Class Definition. 
FIG. 4 shows Priority Processing. 
FIG. 5 shows Dynamic Load Distribution. 
FIG. 6 shows Network Planes. 
FIG. 7 shows Test Node Configuration. 
FIG. 8 shows Test Traffic Class Marking with CBWFQ/ 

WRED. 
FIG. 9 shows PT Traffic plus Attack loading. 
FIG. 10 shows CT Traffic plus Attack loading (bps). 
FIG. 11 shows CT Traffic plus Attack loading (pps). 
FIG. 12 shows Attack Results on Throughput. 
FIG. 13 shows Probability Distribution. 
FIG. 14 shows Baseline Calculation Options. 
FIG. 15 shows Detection values. 
FIG. 16 shows Probability Distribution with threshold 

detection=0.5. 
FIG. 17 shows Probability Distribution with threshold 

detection=0.05. 
FIG. 18 shows PT Traffic plus Attack loading (bps). 
FIG. 19 shows CT Traffic plus Attack loading (bps). 
FIG. 20 shows CT Traffic plus Attack loading (pps). 
FIG. 21 shows PT Probability Distribution. 
FIG. 22 shows PT Threshold Detection Values. 
FIG. 23 shows CT Probability Distribution. 
FIG. 24 shows Attack Packet Remarking. 
FIG. 25 shows Attack Packet Policing. 
FIG. 26 shows an embodiment of a CT Analytic Engine. 
FIG. 27 shows a view of CT flow analysis steps. 

30 

35 

40 

45 

50 

55 

60 

DETAILED DESCRIPTION OF THE 
EMBODIMENTS 

A Cyphertext Analytic Engine and method is described for 
65 network attack and anomaly detection within, for example, 

Type-1 encrypted flows, where only a minimal amount of 
information is known about each packet/flow. 
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One embodiment addresses anomaly detection within a 
fully cyphertext network, where only a small portion of each 
header is revealed to display the source/destination address of 
the encryption device and the Differentiated Services Code 
Point (DSCP) related to Quality of Service (QoS) and prece 
dence of the traffic, by using Maximum Entropy Estimation. 

Cyber Network QoS Protection Architecture 

1.0 Introduction 

Defined is a Cyber network denial of service (DoS) defense 
strategy that focuses on wide area networks (WAN) using a 
Cyphertext (CT) protected core (PCore) routing domain 
where all application traffic is encrypted. 

In the past the WAN designs for military use were based on 
maximizing the use of available link bandwidth in the face of 
network congestion. Today this process needs to be revalu 
ated to also include designs that provide protection from 
cyber network denial of service attacks. Our focus is to assist 
the PT cyber-attack protection process by limiting the flow of 
attack packets in the WAN. The primary goal is to protect the 
quality of service (QoS) in the CT PCore provided to appli 
cations in the Plaintext enclaves. 
The protected WAN architecture will provide a Cyphertext 

(CT) Core backbone security enclave. This requires all user 
data to be encrypted by a Type 1, National Security Agency 
(NSA) approved, Inline Network Encryptor (INE). To main 
tain protection of the Wide Area Network (WAN) routing 
domain, the Cyphertext routing architecture will be isolated 
from external routing domains. 
A second requirement for network infrastructure intrusion 

protection is based on the DISA SECURITY TECHNICAL 
IMPLEMENTATION GUIDE's (STIG): 
The Enclave STIG, V4R3 Dated 28 Jan. 2011 
The Network Infrastructure STIG V7RO.1 Dated 9 Feb. 
2007 

The Network Intrusion Detection/Protection & Content 
Scanning Devices STIG V8R1 Dated 24 Mar. 2010 

The Network Intrusion Detection/Protection & Content 
Scanning Devices STIG V8R1 states that “all DoD locations 
will install, maintain, and operate an intrusion detection and 
protection system (IDPS) inside of their network enclaves.” 
The Enclave IDPS monitors the CT PCore internal network 
traffic and provides near real-time alarms for network-based 
intrusion/attacks. 

Subsequent sections of this document define the dynamic 
QoS within a CT protected core (PCore) architecture which 
includes the protection functions, combined with the intru 
sion detection & response system necessary to defend against 
a network intrusion/denial of service attack. 

2.0 Technical Description 

An overview of the Plaintext (PT) and Cyphertext (CT) 
domains appears in FIG.1. There are multiple PT community 
of interest (COI) enclaves operating at multiple security lev 
els connected to a protected core (PCore) with inline network 
encryptors. These can be configured as multiple VPNs (Vir 
tual Private Networks) accessing a service provider where the 
CTPCore is the service provider edge (PE) access point. The 
COI’s share the available bandwidth across the PCore links. A 
traffic manager is used within each enclave to monitor 
enclave traffic flow and to set packet priority markings based 
on mission needs. 
The entry into the CT PCore is a point of congestion. This 

is where QoS is critical to providing services for the multiple 
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4 
COI enclaves and hence this is where the attackers could 
focus their flooding denial of service attacks. 
The attackers are assumed to have technical expertise and 

funding resources to make attacking traffic appear to be nor 
mal traffic without flow control. It is also assumed the attack 
ers can plant attacks remotely which can be triggered by the 
attackers at any time. External flooding attacks received from 
other nodes would not consume bandwidth of the local nodes 
unless the received flooding traffic is to be relayed to another 
node. This could be an external attack plan, turn nodes into 
relays and saturate their bandwidth. 
Dynamic QoS within the CT PCore consists of three 

dynamic functions that would be subject for packet flooding 
attack. These will be discussed in detail in the following 
sections 

A. Priority application processing within the PCore router 
queues. 

B. Dynamic bandwidth allocation distributed over multiple 
PCore routing queues. 

C. Dynamic load distribution over parallel paths. 
Within the PT enclaves deep packet inspection is used to 

detect/protect multiple applications in each PT COI from 
various types of cyber-attacks. Cyber-attacks within the PT 
domain can be flooded into the CT domain. 

Within the CT PCore where deep packet inspection is not 
possible, statistical detection and blocking of malicious traf 
fic is necessary to protect the CT PCore QoS from denial of 
service (DoS) attacks. 

2.1 Quality of Service (QoS) Description 
Within this architecture we define dynamic QoS which 

means the QoS can dynamically change based on the mission 
needs of the COI enclave applications. The mission needs are 
set in the PT domain traffic manager by assigning DSCP 
priority markings to mission important traffic. This forms a 
"catch-22 situation in that the mission needs are not clearly 
defined and will change with operational scenarios. Passing 
congestion information is limited by the inline network 
encryption (i.e. IPSec) to the explicit congestion notification 
(ECN) bytes in the IP header. Therefore the goal for dynamic 
QoS is to be flexible to any change in operational needs and to 
be responsive to each normal traffic class while recognizing 
anomalous traffic classes attempting to degrade QoS. 

(a) 2.1.1 Normal Traffic Class Definition 
An example mapping for the COI enclaves is shown in FIG. 

2. As shown in FIG. 2, a normal Traffic Class (co) within the 
CT PCore is based on combinations of each security 
enclave's source prefix (IPs), destination prefix (IPd), and 
Service Class DSCP values. Within the PT enclaves any 
application that has its packets marked with a particular 
DSCP value will become part of the CT traffic class with that 
dscp marking and that enclaves HAIPE IP addressing. There 
can be multiple PT applications in one CT traffic class. A 
traffic class (co) is the smallest defined flow in the CT PCore: 

Where co-(IPIPDSCP) 

FIG. 3 shows the range of application types and related 
DSCP. The left column defines the COI enclave originating 
the traffic classes. The center column defines the application 
types. The last two columns define the DSCP markings. The 
result is about 100 traffic classes within a single node when 
considering only the source IP address. When the destination 
IP address is used to further define traffic classes the number 
of traffic classes increases by the number of node destina 
tions. For example 100 ships=10,000 traffic classes that must 
be managed. A cyber-attack on the PCore could flood mali 
cious traffic using any traffic class markings that simulate 
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normal traffic classes. An attacker could focus on traffic class 
markings that consume the most bandwidth. 

2.1.2 Dynamic QoS 
This section defines the three functions that support 

dynamic QoS and would be the focus of denial of service 
attacks. 

2.1.2.1 Priority Processing 
The 1 aspect of dynamic QoS is priority processing as 

shown in FIG. 4. Priority processing is based on weighted 
random early detection (WRED). Packets are marked with a 
DSCP value by the traffic manager in the PT enclaves based 
on a mission needs application mapping. The PT traffic man 
ager inspects packets to determine the required DSCP mark 
1ng. 
WRED is based on the random dropping of packets as the 

min threshold is reached. This causes TCP flow control in 
normal traffic to slow down. When the maximum threshold is 
reached all packets for that DSCP marking are dropped. A 
packet flooding attack (i.e. no TCP flow control) at the highest 
DSCP marking would cause all lower DSCP marked packets 
to be dropped. 

2.1.2.2 Bandwidth Allocation 
The 2" aspect for dynamic QoS is the % minimum band 

width (BW) allocation assigned to every COI enclave/traffic 
class within the PCore router. The sum of all the BW alloca 
tions should be about 95% of the link BW. Within each COI 
enclave's CBWFQ, the BW is further divided using WRED 
priority processing. The actual BW used by each traffic class 
is dependent on how many traffic classes are being used and 
the actual link BW. When a traffic class stops sending traffic, 
its BWallocation is dynamically redistributed to other traffic 
classes based on their relative% BW allocation. 
One key issue is that the dynamic BW redistributions, 

based on normal traffic class flows, must be considered when 
establishing detection thresholds for anomalous traffic. The 
increase in normal traffic due to redistribution should not be 
detected as anomalous traffic. 

2.1.2.3 Load Distribution 
The 3" aspect for QoS is dynamically redistribution of the 

traffic classes over parallel paths to maximize use of all avail 
able bandwidth. Normal routing protocols will only select the 
lowest cost link and leave any parallel links empty. Multi 
topology routing (MTR) can be used to policy route selected 
traffic over parallel paths. However MTR does not dynami 
cally Switch paths based on link loading. A dynamic redistri 
bution approach requires some method for measuring traffic 
flow. This will improve the redistribution efficiency but does 
open the door to potential cyber disruption. 
One of the new load distribution protocols is Cisco's OER/ 

PfR. OER/PfR uses a NetFlow measure of 9% bandwidth 
utilization per traffic class to policy base shift traffic classes 
between the parallel paths. An example in one time period of 
OER/PfR is shown in FIG. 5. In this example there are two 
parallel links (i.e. row 1, SHF and 2, CBSP). In both links the 
BW is fully loaded. As can be seen the BW used by each 
traffic class can have a large variation depending on how 
OER/PfR redistributes the traffic classes. 

Setting thresholds for anomalous traffic detection must 
consider load distribution variations on throughput. The 
actual throughput for each traffic class is limited by TCP for 
normal traffic but attacking traffic has no flow control limits. 
This is an advantage for detecting anomalous traffic which 
can have a flow much greater than normal TCP traffic flow. 

2.2 Network Planes 
Network planes are shown in FIG. 6. The Application 

Plane is where the application traffic classes are originated. 
The PT Mgt. Plane is where DSCP markings are added to 
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6 
applications to form traffic classes. The Traffic Mgr. is also 
use by node managers to set the traffic flow based on mission 
needs. 
The management plane handles administration, configura 

tion, booting, and generally the persistent state of the router. 
The control plane covers monitoring, route table updates, and 
generally the dynamic operation of the router. A separate 
control plane exists for the CT core and each PT routing 
domain. 
The security plane handles the INE management functions 

including discovery service, ESP header protection, sync? 
sequence numbering, and IKE. The data plane handles the 
packets transiting the router among the networks it serves. 

In FIG. 6, potential DoS flooding attackinjection points are 
marked by a 'X'. The attack in this document is focused on 
disrupting QoS and is shown in the CT control plane at the 
point of congestion. Within the CT PCore there can also be 
attacks on the routing protocols, the net mgr. the network 
security and routing reachability advertisements in the PT 
control plane. These types of attacks can be solved by using 
IPsec in the basic network design and are assumed to be in 
place in this document. 

2.3 Attack Test Results 
Considerable testing has been conducted to measure the 

impact of a packet flooding attack on the PCore QoS. This 
section presents a Summary of the testing. 

Within each traffic class there can be multiple applications 
using the same discp marking. For example the normal traffic 
in the attack testing had multiple ftp sessions using the same 
discp marking. 
The test configuration is shown in FIG. 7. The simulated 

link was set at 512 kbps and a 800 msec delay to simulate a 
Satcom link. Spirent was used to generate multiple http, fip 
and Smtp sessions. The Spirent in node 1 was configured to act 
as a client requesting service from the Spirent Server in node 
2. The attack was generated in Win XP and injected into the 
PT router. The attack was 1000 byte packets flooded with no 
flow control. The attack was also injected in the CT PCore 
router with the same test results. 
The following test results were with the attack located on 

the client side as shown in FIG. 7. The impact of this location 
is that when the attack blocks all client requests, the server 
sends nothing. If some client requests leakthrough the server 
will attempt to set up TCP connections which causes TCP 
instability. 

Testing was also conducted with the attack located on the 
server side in node 2. In this case the client keeps sending 
requests but the server responses are block by the attack. The 
end result for the high priority attack is the same. 
WRED packet processing is shown in FIG. 8. The fip 

sessions are mixed with the attack packets to determine the 
impact when normal traffic is competing with attack traffic. 
The ftp traffic will slow down due to TCP back off from 
dropped packets. The attack packets will also be dropped but 
not slowed down. The expected result would be all traffic 
below discp24 will be dropped and normal ftp discp24 traffic 
will be significantly reduced. 

For the packets marked discp0 normal http discp0 packets 
will have reduced bandwidth. Packets higher thandscp0 will 
have some tall dropping and should have a small reduced 
throughput. 

FIG.9 shows the data plus attackpackets inserted in the PT 
enclave. The attack was set in two levels. The first (240 kbps) 
was below the simulated link bandwidth to determine the 
bandwidth reduction impact on normal throughput. The ques 
tion was, is the bandwidth reduction significant for the low 
level attack enough to raise an attack detection alarm. 
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The second attack level (1024 Mbps) was twice the simu 
lated link bandwidth to determine the amount of normal traf 
fic blocked by the attack packets. 

FIG.10 shows the packets actually injected into the CT link 
as measured by NetFlow. The discp24 attack packets were 
limited in the PCore router queue to the max link bandwidth 
and the discp0 attack packets where further limited by normal 
traffic with higher discp markings. 

FIG. 11 shows the same traffic shown in FIG. 10 except it 
is in packets per sec (pps) instead of bits per sec. The pps 
measurement does not consider packet size where bps is 
dependent on packet size. Applications with Small packets 
will have a higherpps count than the attack packets which are 
set at 1000 bytes. The pps measurement is what is used to 
measure/compute traffic statistics for attack detection. 
The result of these attacks on bps throughput is shown in 

FIG. 12. The 240 kbps attacks had minimal impact on normal 
traffic throughput. The discp0 1024 kbps attack reduced the 
normal discp0 traffic throughput and had minimal impact on 
throughput for higher discp marked traffic. The major impact 
was the attack packets marked discp24 blocked all normal 
traffic with lower discp markings and reduced normal discp24 
traffic by about 80%. This suggests that if attack traffic can be 
limited to about 50% of the link bandwidth the attack disrup 
tion can be significantly reduced. 

2.4 Detection and Response 
Detection and Response against traffic flow disruption 

within a Cyphertext network domain can be described as 
follows. 
Detection 

1. Need to reliably identify that an attack is taking place, 
disrupting QoS and consuming significant enclave 
bandwidth 

2. Need to identify the source of the attack 
3. Need to define a detection threshold approach for reli 

able identification and a set of alarms for multiple levels 
of attack 

Response 
1. Need to provide varying levels of response to disruption 
of QoS and bandwidth consumption based on severity of 
alarms 

2. Need to focus response on Source of attack 
3. Need to prevent dynamic load distribution from redis 

tributing the Cypher network attack 
(b) 2.4.1 Detection 
The first step is to convert measured pps, as shown in FIG. 

11, to a Probability Distribution P(co) which will be used in 
the detection process. The probability distribution parameters 
a. 

Q(c))=learned Baseline Prob. Dist. per traffic class () 
P(c))=current measured Prob. Dist. Per traffic class () 
P(())) pps(c))/X, pps(all ()) 
Where pps(co) packets per sec per traffic class () 

And Xo P(c))=1 
It should be noted that at any instance of time the sum of the 

probability distribution for all traffic classes will equal 1. The 
higher probability distribution value for a traffic class 
increases the likelihood of successful detection for that traffic 
class. 
As seen from FIG. 13 the discp0 traffic class attack does not 

significantly suppress the higher priority Smtp and ftp traffic 
classes which limits the discp0 attack P(a)). The discp24 high 
priority attack does suppress the lower priority http and Smtp 
applications which allows the discp24 attack to significantly 
increase its P(a)) and hence its likelihood for detection. 

Attack detection is a method for comparing the current 
measured traffic P(()) against an established baseline for nor 
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8 
mal traffic Q(co). The baseline for measuring Q(()) is shown as 
the first 666 secs of the test time. The actual operational 
baseline learning window would be variable over time with 
the goal of developing a reliable baseline without attack cor 
ruption. 

Potential formulas for exponential weighted moving aver 
age (EWMA) baseline update for Q, are based on: 

Where 
QNew Predicted Baseline 
P=Measured 
Q =Old Baseline 

Some options for calculation of new baseline constructed 
from an in number of old baselines are depicted in FIG. 14. 

Formula used for past baselines to form new baseline for 
these test results is: 

on 
On = P + 

(2-1 - 1) 
2 - 1 2-1 

Other embodiments could include additional formulas 
and/or sampling techniques that can detect normal baselines 
during attacks. 
To establish statistical thresholds Maximum Entropy Esti 

mation has been adopted for the initial investigations. Refer to 
a following section which references Maximum Entropy 
Estimation. 
Maximum Entropy estimation is for obtaining aparametric 

probability distribution model from training data and a set of 
constraints which produces a model with the most uniform 
distribution among all the distributions satisfying the given 
constraints. A mathematical metric of the uniformity of a 
distribution P(o) over a set of traffic classes is its entropy: 

tue 

Maximizing the likelihood of the distribution with respect 
to P(a)) is equivalent to minimizing the Kullback-Leibler 
(K-L) divergences of P(co) with respect to Q(co). For each 
traffic class () in our model we check for anomalies by com 
paring the baseline distribution Q(co) to the empirical distri 
bution P(a)). 
We then calculate a Maximum Entropy Detection Valued 

P(a)) 
d = Pologo. 

The goal is to establish a range of detection threshold 
values (d) that are used to triggeralarms when the measured 
P(()) is compared against the learned baseline Q(()) and 
did has occurred. 
The did measurement is based on a number (h) of time 

bins w, within a measurement time window W. An alarm is 
sounded when dexceeds a specified detection threshold value 
(d)htimes during time window W where his the confidence 
factor. 

FIG. 15 shows detection values d from the probability 
distribution shown in FIG. 13. As can be seen the high level 
dscp24 attack can be detected with detection thresholds set at 
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0.5. Attacks that cause less loss of QoS/BW are not detected 
until the threshold is set below 0.05. 

FIG. 16 shows the probability distribution in the CT 
domain with the threshold detection=0.5. 

FIG. 17 shows the probability distribution with the thresh 
old detection=0.05. It can be seen that threshold detection at 
this low level will set alarms for attack traffic that has mini 
mum impact on QoS. 
A second test was conducted to determine the impact on 

Q(()) of variable normal traffic loading in delayed time incre 
ments. The traffic flow for normal and attack in bps is shown 
FIG. 18 for the PT domain. 
The attackbps in the CT PCore is shown in FIG. 19. 
FIG. 20 shows the same traffic shown in FIG. 19 except it 

is in packets per sec (pps) instead of bit per sec. The pps 
measurement does not consider packet size where bps is 
dependent on packet size. 
The conversion of pps to a PT probability distribution is 

shown in FIG. 21. As can be seen the baseline learning win 
dow has normal traffic with variable levels and start times. 
The late start time for the dscp0 traffic class means the base 
line Q(CD) averaged over the learning window for dscp0 is 
going to be much smaller than the real normal traffic. The goal 
is to measure the impact on threshold detection d. 

FIG.22 shows that a lower measures baseline for the discp0 
attack raises the detection value d to just below 0.5. The 
detection value for the dscp24 attack is over 0.6. 

FIG. 23 shows the probability distribution and the 0.6 
thresh detection level measured in the CT PCore. Within the 
CT PCore the actual dscp0 traffic is reduced by CT router 
queuing which would reduce the dscp0 detection values 
shown in FIG. 24. The result of the new baseline learning is 
that a high threshold in the 0.5-0.6 range still successfully 
detects discp24 attack traffic 

(c) 2.4.2 Attack Response 
The response to a flooding DoS attack should be to identify 

the Source of the attack and then limit the attacks impact on 
the dynamic QoS. The response would be implemented when 
the threshold value was exceeded. Exemplary response 
options are: 
Option 1: Remark Packets 
A first option, shown in FIG. 24, is to remark all packets 

from the attacking source IP address in the CT router to discp0 
if they exceed the detection threshold of 0.5. This does not 
eliminate the bandwidth reduction but does limit it to the 
lowest priority traffic. 
Option 2; Policing Attack 
A second option, shown in FIG. 25, is to police (monitor 

network traffic) all discp24 traffic class traffic in attack 2 that 
exceeds the threshold detection 0.5 to <30 pps. Actual value 
needs additional testing. Policing only applies to the attack 
source IP address. 

This option could be implemented for all traffic classes 
based on their expected throughput within the CT PCore 
router. This would eliminate the need of threshold detection 
but may unnecessarily limit normal traffic flow. 

FIG. 26 shows a graphic of the CT Analytic Engine in 
which a collector of flows (such as a Cisco NetFlow v9) 
receives cyphertext from the CT Core Router, which is passed 
to a computer, which is also connected to the Analytic Engine. 

FIG. 27 show the CT flow analysis steps, in which: 
The CT Analytic Engine collects CT flows representing nor 
mal traffic from the CT router to serve as training data (step 
120). 
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10 
Run the Maximum Entropy Estimation Algorithm to learn the 
normal data set (step 122). 
Collect in real time CT traffic to be analyzed by the CT 
Analytic Engine (step 124). 
Raise an alarm when there is a level of divergence between the 
training data set and analyzed traffic (step 126). 

Maximum Entropy Estimation 

The Maximum Entropy Estimation will now be described. 
Our approach to anomaly detection: 
We use a collection of anomaly-free packets as training data 
to estimate the distribution of normal traffic. Then we observe 
the network traffic, and compare its distribution to our esti 
mate. Whenever the observed distribution is significantly dif 
ferent from our estimated distribution, we determine that an 
anomaly is occurring. 
Defining the Probability Space 

Because we are observing encrypted traffic, we have very 
little information about the packets. We classify packets by 
destination Internet Protocol (IP) address, and by IP Type of 
Service (TOS). 

For each combination of destination IP address d and TOS 
value t, we define the traffic class ()=(d, t) as the set of all 
possible packets with that address and TOS. Let C2 be the set 
of all traffic classes that are valid in our network. We make C2 
the domain of a probability space. Let P be the probability 
distribution of the training packets; then P(co) is the propor 
tion of the training packets that are in class (), and Xopo 1. 
Estimating the Distribution of Normal Packets 

In order to detect anomalies, we need a distribution P that 
estimates the distribution of normal traffic. We could use Pas 
our estimate, but P is affected by random sampling error. 
Instead, we construct a P that is described by fewer param 
eters than P; therefore P should be less affected by random 
sampling, and be a better estimate of the true distribution of 
normal traffic. In otherwords, using Pinstead of Phelps avoid 
overtraining. 
Our method for constructing P is called maximum entropy 

estimation based on feature functions. A feature function is a 
function from S2 to {0, 1}. Such a function f can be identified 
with the subset of S2 consisting of all () such that f(c))=1. 
Given a set of n feature functions f, . . . . if, we considerall 
distributions P such that the expected values E.(f) and Ee(?) 
are equal for 1 sisn. Among Such distributions we choose the 
P with the maximum entropy. This distribution is computed 
using an algorithm based on 4. 
Feature Selection 

It remains to describe how the n feature functions f, . . . . 
j, are chosen. Note that with n large enough, the constraints 
E.(f)=E2(f) would force P=P, which would defeat the pur 
pose of maximum entropy estimation. Let k be the number of 
traffic classes that occur in the training data, or in other words, 
the number of coeS2 such that P(co)>0. Since we want P 
described by fewer parameters than P, we require insk. We 
have obtained good results using in k-2. These features are 
chosen from a set of candidates described in the next subsec 
tion. 
A singleton feature function is an f such that f(c))=1 for 

only one (DeS2, it corresponds to a Subset of S2 with one 
element. We use singleton features sparingly because they 
seem more likely to produce overtraining. We have obtained 
good results by limiting the number of singleton features to 
n=1+LVk). (Here LJ represents the integer floor.) These for 
mulas for n and n are provisional; further research could 
optimize them. 
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The feature selection process consists of n steps. Let P be 
the maximum entropy distribution for the features f. . . . . f. 
In the ith step we choose the feature f, that minimizes the 
Kullback-Leibler divergence between P and the resulting P. 
After the nth step we let P=P. 
Candidate Features 
We use five groups of candidate features. They are more 

easily described via the corresponding subsets of G2: 
1. For each traffic class (DeS2, the singleton feature {(i)}: 
2. For each destination IP in the network, the feature con 

sisting of all traffic classes in S2 with that destination IP: 
3. For each Service class marking in the network, the 

feature consisting of all traffic classes in C2 with that TOS 
marking: 

4. For each service class level in the network, the feature 
consisting of all traffic classes in C2 with destination IP 
at that classification level; 

5. For each node in the network, the feature consisting of all 
traffic classes in C2 with destination IP at that node. (By 
"node' we mean a physical location, Such as a ship.) 

At some point we may want to add candidate features for 
both IP and/or IP. 
Anomaly Detection 
The anomaly detection algorithm depends on four param 

eters Ö, d, w, and h. Some values we have used are Ö=1 second, 
w=10, h=6, and three values for d, d=0.05, d=0.2, d=0.5. We 
divide time into intervals of a duration 8. For each interval, we 
observe the network traffic during that interval, count all the 
packets in each traffic class, and divide by the total to produce 
the observed distribution Q during that time interval. For each 
traffic class (), we compute the “relative entropy of class (o': 

D(Oil P)(a) = Qolog, (1) 

A positive value of D(QP)(c)) means that class () is more 
prevalent than it would be in normal data; the discrepancy is 
considered significant if D(QP)(a))ced. An alarm is raised 
whenever we find some () such that D(QCDP)(c))>d during at 
least h out of w consecutive time intervals. 
A simpler way to describe how it works: 
We divide the packets into traffic classes: each possible 

combination of destination IP and DSCP is a traffic class. (For 
example, there’s a traffic class consisting of all packets with 
destination 224.0.1.39 and DSCP 0.) In the training data, we 
count the number of packets in each traffic class. Then we 
compute each traffic class’s percentage of the total. These 
percentages form a probability distribution on the set of traffic 
classes. 

In the operational data, we expect the normal packets (i.e. 
the legitimate, non-attackpackets) to have a distribution simi 
lar to the training distribution. So whenever we find that the 
operational distribution is very different from the training 
distribution, we raise an alarm, because we believe that the 
difference is caused by an attack. Of course, we never expect 
the operational distribution to perfectly match the training 
distribution, because both of them are affected by random 
variation. That’s where Maximum Entropy Estimation comes 
in. 
We create a model distribution that approximates the train 

ing distribution, but the model is simpler and less affected by 
random variation. So we expect the model distribution to be 
better for predicting the distribution of normal packets. 
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12 
Here's how we build the model: we choose certain groups 

of traffic classes to use as “features”. Here are some possible 
examples of features: 
1. all traffic classes with the destination 224.0.1.39 
2, all traffic classes with the DSCP 0 
3. all traffic classes with a destination at the shore site 
4. all traffic classes with a destination in an unclassified 
enclave. 

If a particular feature includes a large percentage of the 
training packets, we build the model to reflect that fact. We 
always allow for the possibility of seeing traffic classes that 
did not occur in the training packets. For example, if the 
destinationX and the DSCPyare both common in the training 
packets, then we build the model to expect a significant num 
ber of (x, y) packets, even if there were no (x, y) packets in the 
training data. On the other hand, if X and y were both absent 
or rare in the training data, then the model will expect (x,y) to 
be very rare. 
The idea is that we are trying to estimate a probability 

distribution that is unknown, but not completely arbitrary, 
because it is created by people who do things for a reason. We 
expect the distribution to have certain regularities. 
Our Candidate Features: 
1. For each DSCP, all traffic classes with that DSCP 
2. For each node, all traffic classes with a destination IP at that 
node 
3. For each IP, all traffic classes with that destination IP 
4. For each classification level, all traffic classes with a des 
tination IP at that classification level. 
Some or all of the steps of the present invention may be 

stored on a computer readable storage medium, wherein the 
steps are represented by computer readable programming 
code. The steps of the method may also be computer-imple 
mented using a programmable device, Such as a computer 
based system. The method may comprise instructions that, 
when loaded into a computer-based system, cause the system 
to execute the steps of the method. The method may be 
implemented using various programming languages, such as 
“Java”, “C”. or “C++”. 

Various storage media, Such as magnetic computer disks, 
optical disks, and electronic memories, as well as computer 
readable media and computer program products, can be pre 
pared that can contain information that can direct a device, 
Such as a micro-controller, to implement the above-described 
systems and/or methods. Once an appropriate device has 
access to the information and programs contained on the 
storage media, the storage media can provide the information 
and programs to the device, enabling the device to perform 
the above-described systems and/or methods. 

For example, if a computer disk containing appropriate 
materials. Such as a source file, an object file, or an executable 
file, were provided to a computer, the computer could receive 
the information, appropriately configure itself and perform 
the functions of the various systems and methods outlined in 
the diagrams and flowcharts above to implement the various 
functions. That is, the computer could receive various por 
tions of information from the disk relating to different ele 
ments of the above-described systems and/or methods, imple 
ment the individual systems and/or methods, and coordinate 
the functions of the individual systems and/or methods. 
From the above description, it is apparent that various 

techniques may be used for implementing the concepts of the 
present invention without departing from its scope. The 
described embodiments are to be considered in all respects as 
illustrative and not restrictive. In one embodiment, the 
Cyphertext Analytic Engine identifies cyber attacks on the CT 
network by recognizing anomalies within typical flows. 
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Alternative MetalEngine algorithms which may be used are 
Markov Models, Wavelet Analysis, and various Time Series 
methods. It should also be understood that system is not 
limited to the particular embodiments described herein, but is 
capable of many embodiments without departing from the 
scope of the claims. 
What is claimed is: 
1. In a cyphertext (CT) network, a method for detecting 

anomalies comprising: 
analyzing cyphertext data flows within the CT network 
where the CT network includes one or more encryption 
devices for encrypting plaintext data packets into 
cyphertext data packets such that the cyphertext data 
flows are directed to one or more destination devices, 
where the cyphertext data includes multiple CT data 
packets and where each CT data packet includes header 
information where each header includes source address 
information, destination address information and differ 
entiated service code point (DSCP) information repre 
sentative of traffic class information; and 

analyzing the traffic class information of each header, 
including using maximum entropy estimation for detect 
ing one or more anomalies within the traffic class distri 
bution of each flow based on the header information for 
that traffic class; 

identifying that a network attack is occurring within the CT 
network, 

identifying the IP address source of the network attack, and 
defining a detection threshold for indicating the occurrence 

of the network attack when the detection threshold is 
exceeded; 

where the traffic classes have different assigned DSCP 
priority levels and including defining a set of alarms for 
multiple levels of attack; 

policing a higher priority level of traffic classes by dynami 
cally readjusting the packet speed for the detected traffic 
class; 

where attack detecting includes comparing current mea 
Sured traffic against an established or learned baseline 
for normal traffic and comparing current measured traf 
fic against an established or learned baseline for normal 
traffic where the baseline is periodically updated for 
normal traffic; 

including calculating a range of maximum entropy detec 
tion threshold values for triggering alarms when the 
detection threshold values are exceeded; and 

where the threshold has a value of at least 0.05. 
2. The method of claim 1 where the threshold has a value of 

O.5. 
3. In a cyphertext (CT) network, a method for detecting 

anomalies comprising: 
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14 
analyzing cyphertext data flows within the CT network 
where the CT network includes one or more encryption 
devices for encrypting plaintext data packets into 
cyphertext data packets such that the cyphertext data 
flows are directed to one or more destination devices, 
where the cyphertext data includes multiple CT data 
packets and where each CT data packet includes header 
information where each header includes source address 
information, destination address information and differ 
entiated service code point (DSCP) information repre 
sentative of traffic class information, where the DSCP 
information is unchanged within the cyphertext data 
flows; and 

analyzing the traffic class information of each header, 
including using maximum entropy estimation for detect 
ing one or more anomalies within the traffic class distri 
bution of each flow based on the header information for 
that traffic class, including: 

identifying that a network attack is occurring within the CT 
network, 

identifying the IP address source of the network attack and 
defining a detection threshold for indicating the occurrence 

of the network attack when the detection threshold is 
exceeded; 

where the traffic classes have different assigned DSCP 
priority levels and including defining a set of alarms for 
multiple levels of attack, including: 

policing a higher priority level of traffic classes having a 
DSCP value between 18-24 by dynamically readjusting 
the packet speed for the detected traffic class; 

where attack detecting includes comparing current mea 
Sured traffic against an established or learned baseline 
for normal traffic; 

where attack detecting includes comparing current mea 
Sured traffic against an established or learned baseline 
for normal traffic where the baseline is periodically 
updated for normal traffic, including: 

calculating a range of maximum entropy detection thresh 
old values for triggering alarms when the detection 
threshold values are exceeded; 

including using a collection of anomaly-free packets as 
training packets to estimate the distribution of normal 
traffic. 

4. The method of claim 3 where destination X information 
and DSCP y information are both common in the training 
packets with the expectation of a significant number of (x, y) 
packets even if there are no (x, y) packets in the training data 
to allow for detecting traffic classes that do not occur in the 
training packets. 


