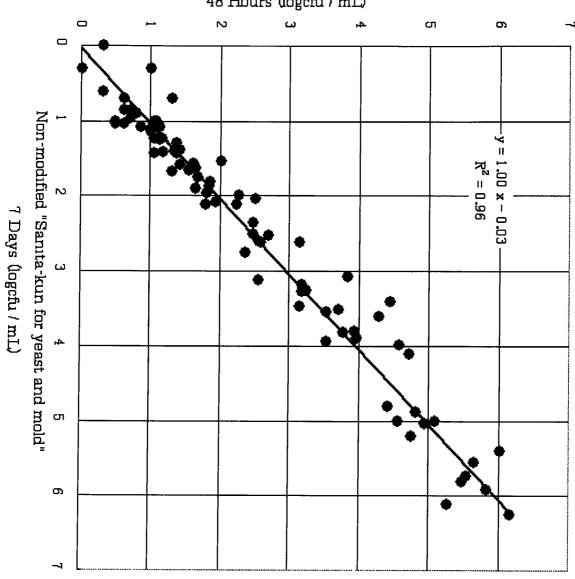
(12) UK Patent Application (19) GB (11) 2 416 173 (13) A

(43) Date of A Publication

18.01.2006

(21)	Application No:	0514298.9	(51)	INT CL: C12N 1/14 (2006.01)	
(22)	Date of Filing:	12.07.2005		C12N 1/16 (2006.01)	
(30)	Priority Data: (31) 2004204336 (32) 12.07.2004	(33) JP	(52)	UK CL (Edition X): C6F FAC F102 F103	
(71)	Applicant(s): Chisso Corporation (Incorporated in Japan)		(56)	Documents Cited: GB 2407584 A US 5962251 A	EP 1088896 A2 US 20030049718 A1
	6-32 Nakanoshima 3-chome, Kita-ku, Osaka-shi, Osaka, Japan		(58)	Field of Search: INT CL ⁷ C12N	UPL PLOCIO TYTE
(72)	Inventor(s): Masashi Ushiyama			Other: Online: EPODOC, W BIOTECHNO, CAPLUS, EN SCISEARCH	
(74)	Agent and/or Address for Service: Withers & Rogers LLP Goldings House, 2 Hays Lane, LONDON SE1 2HW, United Kingdom	l,			


- (54) Abstract Title: Microorganism culture medium
- (57) A microorganism culture medium comprising a derivative A' of a chromogen A, and a chromogen B,

wherein the chromogen A is a chromogen being oxidized to a colored material, and the chromogen B is a chromogen being reduced to a colored material,

the derivative A' acts as a substrate of an enzyme generated when a microorganism is growing, and is then converted to the chromogen A,

and the derivative A' and the chromogen B are substantially not colored in the culture medium unless a microorganism is inoculated.

Modified "Sanita-kun for yeast and mold" (NBT addition) 48 Hours (logcfu / mL)

MICROORGANISM CULTURE MEDIUM

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION (0001)

The present invention relates to a medium for culturing microorganisms. More specifically, it relates to a medium for examination of foods or the environment, which can be used to detect microbial contamination in foods or the environment more quickly than conventional standard media.

DESCRIPTION OF RELATED ART (0002)

The conventional microorganism examination is carried out in the following manner. In the case of yeasts and molds, first a powder agar medium is dissolved, autoclaved and poured into Petri dish, which is then cooled and solidified to keep the surface dry. The predetermined amount of a test sample such as a homogenate of foods is applied on the above prepared agar medium and incubated at 25°C for maximum 7 days, and the number of grown colonies is then counted. For enumeration of yeasts and molds in the environment, the predetermined extent of area of a testing object is wiped with a cotton swab or gauze, and then any microorganism caught on the swab or gauze is washed with sterilized water to be suspended in the sterilized water. This homogenate is applied on the above prepared agar medium and incubated, and then the number of grown colonies is counted. In the case of total viable counts, first a powder agar medium is dissolved and autoclaved, and is then kept at approx. 45°C. The predetermined quantity of this agar medium is poured into sterilized Petri dish, and mixed with 1 ml of a test sample such as a homogenate of foods, which has been pre-poured into the Petri dish, and is then solidified. Incubation is carried out at 35°C for 2 days, and the number of grown microorganism colonies is counted. Thus, the conventional method of examining microorganisms requires 7 days of incubation for yeasts and molds enumeration, and 2 days for a total viable count.

(0003)

As a culture medium that can detect growing microorganism colonies by using a chromogenic reagent, a medium using an indole derivative is described, for example, in Reference 1, and a medium using TTC (2,3,5-triphenyl tetrazolium chloride) as a tetrazolium salt is described, for example, in Reference 2.

Reference 1: Japanese Tokkyo Kokai Koho (Un-Examined Patent Publication) 2001-231541

Reference 2: Japanese Tokkyo Kokai Koho 2001-245693

SUMMARY OF THE INVENTION (0004)

The present invention aims to provide a microorganism culture medium which can shorten the incubation time of conventionally 7 days for yeasts and molds enumeration and 2 days for total viable counts, and which can achieve quantitative accuracy of the test results in a short time.

(0005)

Various studies have been carried out to solve the above problem to find that it is effective to add a derivative A' of a chromogen A, and a chromogen B; wherein the chromogen A is a chromogen being oxidized to a colored material, and the chromogen B is a chromogen being reduced to a colored material; the derivative A' acts as a substrate of an enzyme generated when a microorganism is growing, and then is converted to the chromogen A; and the derivative A' and the chromogen B are substantially not colored in the culture medium unless a microorganism is inoculated. These findings enable a quick detection of growth of microorganisms; namely, coloring occurs in about 2 days in the case of yeasts and molds enumeration, and within 24 hours in the case of total viable counts.

The constituting features of the present invention are as follows.

(1) A microorganism culture medium comprising a derivative A' of a chromogen A, and a chromogen B,

wherein the chromogen A is a chromogen that can be oxidized to form a colored material (i.e. colored by oxidation), and the chromogen B is a chromogen that can be reduced to form a colored material (i.e. colored by reduction),

the derivative A' acts as a substrate of an enzyme generated when a microorganism is growing, and is then converted to the chromogen A,

and the derivative A' and the chromogen B are substantially not colored in the culture medium unless a microorganism is inoculated.

- (2) The microorganism culture medium described in the above item
- (1), wherein the derivative A' of the chromogen A is an oxyindole derivative or a halogen-substituted oxyindole derivative.
- (3) The microorganism culture medium described in the above item
- (1), wherein the chromogen B is a tetrazolium salt having the half wave potential of 300 mv or less at its absolute value.
- (4) The microorganism culture medium described in the above item
- (2), wherein the oxyindole derivative or the halogen-substituted oxyindole derivative is an acetic acid ester, a fatty acid ester, a phosphoric acid ester, a sulfuric acid ester or a glucoside.

EFFECT OF THE INVENTION (0007)

According to the present invention, examination time of microorganisms can be shortened, so that the number of microorganisms can be determined in 2 days in the case of yeasts and molds enumeration, and within 24 hours in the case of total viable counts. Especially, examination time of yeasts and molds enumeration is greatly shortened.

DETAILED DESCRIPTION OF THE INVENTION (0008)

The present invention is characterized in that;

the chromogen A, which is unstable per se and converted to a pigment by oxidation, is kept in a stabilized condition as the derivative A', which acts as a substrate of an enzyme generated when a microorganism is growing;

the derivative A' coexists with the chromogen B which is converted to a colored material by reduction;

and when the microorganism inoculated into the medium is growing to make colonies while generating an enzyme, the derivative A' is decomposed into the chromogen A by the generated enzyme; further the chromogen A is sharply colored by a redox reaction with the chromogen B;

so that the colonies of microorganism can be detected in a short time.

(0009)

In the description of "derivative A' of chromogen A" and "chromogen B", the meaning of the phrase "substantially not colored in the culture medium unless the microorganism is inoculated" is as follows. That is, the derivative A' of the chromogen A is never to be decomposed to the chromogen A and causes no color reaction unless an enzyme generated from microorganisms is present. It is important that the derivative A' does not cause a redox reaction with the chromogen B. A derivative which causes background color of the medium without microorganism inoculation is not desirable as the derivative A', because such a derivative makes it difficult to distinguish the color of growing microorganism colonies from the background color. However, if a derivative slightly causes background color which is well distinguishable from the color of the inoculated microorganism, such a derivative can be used as the derivative A' without any problem and is acceptable to the aims of the present invention.

(0010)

Examples of the derivative A' according to the present

invention include various derivatives of oxyindole halogen-substituted oxyindole. These derivatives enzymatically hydrolyzed to oxyindole or halogen-substituted oxyindole as the chromogen A, which is further oxidatively polymerized to form a colored indigo compound. The speed of the oxidative polymerization can be accelerated with the aid of an exidizer to show quicker coloring. Use of the chromogen B, which is reduced to a colored material, as an oxidizer can further accelerate the coloring. When detecting yeasts and molds or total viables, it is preferred to use, as the derivative A', a derivative acting as a substrate of an enzyme such as esterase, phosphatase, lipase, sulfatase or glucosidase, microorganisms universally have. Examples of such a derivative include indoxyl butyrate, 5-bromo-4-chloro-3-indoxyl acetate or 5-bromo-4-chloro-3-indoxyl phosphate. (0011)

Examples of the chromogen B which is reduced to a colored material include tetrazolium salts.
(0012)

In the combined use of the derivative of oxyindole or halogen-substituted oxyindole and tetrazolium microorganisms hydrolyze the derivative of oxyindole or halogen-substituted oxyindole to form oxyindole halogen-substituted oxyindole. The resultant oxyindole or halogen-substituted oxyindole is oxidatively polymerized by oxygen to form a colored indigo compound. The tetrazolium salt also oxidizes the oxyindole or halogen-substituted oxyindole. While the polymerization is accelerated, the tetrazolium salt itself is reduced to form colored formazan. Further, the tetrazolium salt is reduced with metabolism of the microorganisms.

(0013)

When combining the chromogen A which is oxidized to a colored material and the chromogen B which is reduced to a colored material, it is preferable that both of these chromogens form the same type of colored materials. This is because the color

is intensified to enhance the visibility. (0014)

Many tetrazolium salts can be reduced with metabolism of microorganisms to form colored formazans. In order to act as an oxidizer at an ordinary incubation temperature of 25 - 35°C those having a low redox potential are preferable. "Half wave potential $(E_{1/2})$ " measured by polarography is used to express a value of redox potential. The method for polarographic measurement of the half wave potential $(E_{1/2})$ is detailed, for example, in "Jikken Kagaku Koza (Lectures of Experimental Chemistry), 4th. edition", edited by The Chemical Society of Japan, published by MARUZEN Co. Ltd., Vol. 9, pages 297 - 9, "6.4.4 Polarography". The value of the half wave potential $(E_{1/2})$ is indicated by positive number in some references and by negative number in other references. Therefore, its absolute value should be adopted as this criterion. In the case of using a tetrazolium salt as the chromogen B in the present invention, the absolute value of its half wave potential is preferably 300 mv or less. Half wave potentials of various tetrazolium salts are described in detail in E. Seidler, "Progress Histochemistry and Cytochemistry", (1991), 24(1), pages 21 -3, (especially in "Table 5" on page 22), or in F. P. Altman, "Tetrazolium Salts and Formazans", (1976), published by Gustav Fischer Verlag, pages 23 - 5, (especially in "Table 7" on page 24). In the present invention, a preferable tetrazolium salt can be selected based on the above criterion of the absolute value of half wave potential $(E_{1/2})$. (Hereinafter, the expression "half wave potential" or " $E_{1/2}$ " means its absolute value.) (0015)

Examples of these suitable tetrazolium salts are given below. (CAS registry number is indicated in brackets [].)

^{*} Neotetrazolium Blue [298-95-3], Chemical name:

^{3,3&#}x27;-(1,1'-biphenyl-4,4'-diyl)-bis(2,5-diphenyl-2H-tetrazol

```
ium chloride),
    E_{1/2} = 170 \text{ mV}
* INT [146-68-9],
 Chemical name:
    2-(4-
iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium
chloride,
    E_{1/2} = 90 \text{ my}
* Tetrazolium Blue [1871-22-3],
 Chemical name:
3,3'-[3,3'-dimethoxy-(1,1'-biphenyl)-4,4'-diyl]-bis(2,5-dip
henyl-2H-tetrazolium chloride),
   E_{1/2} = 80 \text{ mv}
* Nitro Blue Tetrazolium [298-83-9],
 Chemical name:
3,3'-[3,3'-dimethoxy-(1,1'-biphenyl)-4,4'-diyl]-bis[2-(4-ni
trophenyl)-5-phenyl-2H- tetrazolium chloride],
   E_{1/2} = 50 \text{mv}
* Tetranitrotetrazolium Blue [1184-43-6],
 Chemical name:
3,3'-(3,3'-dimethoxy-4,4'-biphenylene)-bis[2,5-bis(p-nitrop
henyl) -2H-tetrazolium chloride],
   E_{1/2} = 50 \text{mv}
(0016)
```

When using tetrazolium salt as the chromogen B, it is preferable to select a tetrazolium salt having the absolute value of the half wave potential of 300 mv or less. However, it is experimentally confirmed that a certain tetrazolium salt

meeting this half wave potential criterion is colored in the medium without microorganism inoculation. This exception is MTT [2348-71-2] having $E_{1/2}$ of 110 mv, which is not suitable as the chromogen B according to the invention. Contrary to this, when the chromogen B is INT having lower $E_{1/2}$ (90 mv) than MTT, no coloring occurs in the medium unless a microorganism is inoculated. Accordingly, this criterion of $E_{1/2}$ being 300 mv or less is proper for carrying out the present invention. This criterion is supported enough under the condition that no coloring occurs unless a microorganism is inoculated when the derivative A' and the chromogen B are mixed in the medium. (0017)

The present invention can be carried out by adding to a nutrient microorganism culture medium the derivative A' of the chromogen A and the chromogen B both fulfilling the above requirements. The nutrient to be contained in the medium can be selected appropriately depending on the microorganism to be incubated. When the present invention is used for culturing yeasts and molds, an appropriate nutrient is glucose, yeast extract, peptone, malt extract, potato extract or a mixture of these two or more. When the present invention is used for culturing total viables, an appropriate nutrient is glucose, yeast extract, peptone, meat extract, a salt or a mixture of these two or more. The shape of the medium is not limited, and it may be an agar medium, or a sheet type medium for a simple examination of microorganism.

For preparing an agar medium for yeasts and molds, a medium composition such as potato dextrose agar, Sabouraud agar, yeast mold agar or the like is added to an oxyindole derivative or a halogen-substituted oxyindole derivative as the derivative A', such as indoxyl butyrate, 5-bromo-4-chloro-3-indoxyl acetate acetate, or 5-bromo-4-chloro-3-indoxyl phosphate; and a tetrazolium salt as the chromogen B to prepare an agar medium for yeasts and molds.

(0019)

For preparing an agar medium for total viable counts, a medium composition such as plate count agar, tryptic soy agar, soybean-casein digest agar or the like is added to an oxyindole derivative or a halogen-substituted oxyindole derivative as the butyrate, indoxyl as such A'. derivative acetate, 5-bromo-4-chloro-3-indoxyl acetate 5-bromo-4-chloro-3-indoxyl phosphate; and a tetrazolium salt as the chromogen B to prepare an agar medium for total viable counts.

(0020)

For preparing a sheet type medium, a sheet type medium for yeasts and molds described, for example, in Japanese Tokkyo Kokai Koho 2001-231541, or a sheet type medium for total viable counts described, for example, in Japanese Tokkyo Kokai Koho 2001-245693 is added to an oxyindole derivative or a halogen-substituted oxyindole derivative as the derivative A', such as indoxyl butyrate, 5-bromo-4-chloro-3-indoxyl acetate acetate, or 5-bromo-4-chloro-3-indoxyl phosphate; and a tetrazolium salt as the chromogen B to prepare a sheet type medium for yeasts and molds or total viable counts.

(0021)

An effective amount of the derivative A' to be contained in the medium is 0.01 g/m^2 or more for the sheet type medium and 0.002 g/L or more for the agar medium, with no special upper limit set. The appropriate content may be determined by taking the economical efficiency into consideration.

An effective amount of the chromogen B to be contained in the medium is $0.005~\mathrm{g/m^2}$ or more for the sheet type medium and $0.002~\mathrm{g/L}$ or more for the agar medium. And $0.1~\mathrm{g/m^2}$ or less for the sheet type medium and $0.05~\mathrm{g/L}$ or less for the agar medium are preferable in that the background is not colored excessively.

EXAMPLES

(0023)

The present invention will be described in more detail by

the following Examples, which no way limit the present invention. "Sanita-Kun (commercial name) for yeast and mold" (manufactured by Chisso Corporation) used in the Examples is a sheet type medium having the following construction.

(0024)

"Sanita-Kun for yeast and mold"

35 g of a polyvinyl alcohol having a saponification ratio of 89% and a molecular weight of 83,000 was added to 0.3 L of water and dissolved by heating. The whole mixture was then applied on a 0.5 m by 1 m sheet of polyester film having a thickness of 20 um, and dried at 120°C for 6 minutes to form the first water-soluble polymer layer. On the above obtained first layer, a solution of 15 g of the above polyvinyl alcohol, 1.2 g of yeast extract, 4.5 g of glucose and 0.375 g of chloramphenical dissolved in 0.25 L of water was applied in whole, and dried at 110°C for 7 minutes to form the second water-soluble polymer layer. On the above second layer, a solution of 5 g of the above polyvinyl alcohol, 0.4 g of yeast extract, 1.5 g of glucose, 0.125 g of chloramphenical and 0.03 g of 5-bromoindoxyl acetate dissolved in 0.1 L of water was applied in whole. Then a nylon melt-blown nonwoven fabric having basis weight of 65 g/m2 and air permeability of 110 L/(m2.sec) was laminated on it and dried at 100°C for 30 seconds. A solution of 20 g of peptone dissolved in 1 L of water was applied on the above nonwoven fabric using 60 mesh of a rotogravure roll having 60 mesh of pyramid cells, which was then dried at 100°C for 20 seconds. The laminated medium material thus obtained was cut into 45 mm by 45 mm pieces. Each piece was adhered on a white polyester adhesive sheet (substrate), which was then covered with a polypropylene film, and sterilized with ethylene oxide gas to prepare "Sanita-Kun for yeast and mold".

(0025)

Example 1 (Preparation of a sheet type medium using "Sanita-kun for yeast and mold".)

The sheet type medium "Sanita-kun for yeast and mold" (manufactured by Chisso Corporation) containing 5-bromoindoxyl

acetate as the derivative A' was used. It was uncovered, and $0.5\,\mathrm{mL}\,\mathrm{of}\,\mathrm{Nitro}\,\mathrm{Blue}\,\mathrm{Tetrazolium}\,\mathrm{ethanol}\,\mathrm{solution}$ (concentration $0.1\,\mathrm{mg/mL}$) was added onto the surface of the nonwoven fabric, which was then dried at $50^{\circ}\mathrm{C}$ for 5 hours. Thus, a modified "Sanita-kun for yeast and mold" with the addition of Nitro Blue Tetrazolium was prepared.

(0026)

Example 2 (Test of the sheet type medium using "Sanita-kun for yeast and mold".)

A homogenate testing sample was prepared either by adding a 9-fold amount of sterilized water to each food, treated with a blender, for example, a stomacher and diluting to an appropriate concentration, or by wiping each testing object with a cotton swab, putting the swab into 10 mL of sterilized water with vigorous shaking before being subjected to agitation movement such as shaking or slow vibration. 1 mL of the homogenate sample was added to the modified "Sanita-kun for yeast and mold" prepared in Example 1. For comparison, 1 mL of the same sample was added to "Sanita-kun for yeast and mold" (non-modified). The incubation was carried out at 25°C for 48 hours in the modified "Sanita-kun for yeast and mold" and for 7 days in "Sanita-kun for yeast and mold" (non-modified). The number of the grown blue colonies in each medium was counted for comparison. As shown in Fig. 1, the results of the count in both cases are approximately the same. The regression equation 1s;

"y = 1.00 x - 0.03",

(y: the count of 48-hour incubation in the modified "Sanita-kun for yeast and mold"; x: the count of 7-day incubation in "Sanita-kun for yeast and mold" (non-modified).); its correlation factor (r^2) is 0.96.

(0027)

Example 3 (Preparation of a sheet type medium for yeasts and molds.)

14 g of a polyvinyl alcohol having a saponification ratio of 89% and a molecular weight of 83,000 was added to 0.12 L of

water and dissolved by heating. The whole mixture was then applied on a 0.4 m by 0.5 m sheet of polyester film having a thickness of 20 μm_{\star} and dried at 120°C for 6 minutes to form the first water-soluble polymer layer. On the above obtained first layer, a solution of 6 g of the above polyvinyl alcohol, 0.64 g of yeast extract, 2.4 g of glucose and 0.2 g of chloramphenical dissolved in 0.1 L of water was applied in whole, and dried at 110°C for 7 minutes to form the second water-soluble polymer layer. On the above second layer, a solution of 2 g of the above polyvinyl alcohol, 0.012 g of 5-bromoindoxyl acetate and 0.005 g of Nitro Blue Tetrazolium dissolved in 0.04 L of water was applied in whole. Separately, a solution of 20 g of peptone dissolved in 1 L of water was applied on a nylon melt-blown nonwoven fabric having basis weight of 65 g/m2 and air permeability of 110 L/(m² sec) using a rotogravure roll having 60 mesh of pyramid cells, which was then dried at 100°C for 20 seconds. Then, the thus pre-treated nylon melt-blown nonwoven fabric was further laminated and dried at 100°C for 30 seconds to obtain a laminated medium material. The laminated medium material thus obtained was cut into 45 mm by 45 mm pieces. Each piece was adhered on the center of a white polyester adhesive sheet (manufactured by Kyowa Limited, thickness 100 µm, acryl adhesive is applied thereon, cut into 80 mm by 85 mm pieces). The sheet was covered with a 80 mm by 85 mm sheet of polypropylane film having a thickness of 0.06 mm in such a way as to make an uncovered portion of 5 mm along the 85 mm direction, and sealed with a back sealing tape (manufactured by Kyowa Limited, width 9 mm) in such a way as to cover the uncovered portion of the adhesive sheet, which was then sterilized with ethylene oxide gas to prepare a sheet type medium for yeasts and molds. (0028)

Example 4 (Test of the sheet type medium for yeasts and molds)

Comparison was made between the sheet type medium prepared
in Example 3 and "Sanita-kun for yeast and mold" (non-modified)
in the same manner as in Example 2. The colony counts in the
48-hour incubation of the sheet type medium prepared in Example

3 and in the 7-day incubation of "Sanita-kun for yeast and mold" (non-modified) were approximately the same, like the comparison result of Example 2.

(0029)

Example 5 (Variations of sheet type media for yeasts and molds)

Sheet type media for yeasts and molds were prepared in the same manner as in Example 3, except for using indoxyl acetate, indoxyl butyrate, indoxyl phosphate and 5-bromo-4-chloro-3-indoxyl acetate, respectively, instead of 5-bromoindoxyl acetate. Comparison tests were carried out in the same manner as in Example 2. The testing results were also the same as Example 2.

(0030)

Example 6 (Agar medium for total viable counts)

Plate count agar was dissolved in water and autoclaved, and then cooled to 50°C to prepare an agar medium. To 1 L of this agar medium were added 1mL each of ethanol solutions of 0.06 mg/mL indoxyl acetate and 0.025 mg/mL Nitro Blue Tetrazolium and stirred.

A 9-fold amount of sterilized physiological saline was added to each of various foods and treated with a blender such as a stomacher, which was then diluted to an appropriate concentration to prepare a homogenate testing sample. 1 mL of the homogenate sample was poured into Petri dish, and then mixed with the above agar medium to which indoxyl acetate and Nitro Blue Tetrazolium were added. For comparison, the same sample was mixed with the agar medium to which indoxyl acetate and Nitro Blue Tetrazolium were not added. After each agar was solidified, the incubation was carried out at 35°C for 20 hours in the agar with indoxyl acetate and Nitro Blue Tetrazolium, and for 48 hours in the agar without indoxyl acetate and Nitro Blue Tetrazolium. The grown colony counts of both cases were approximately the same.

(0031)

1

Example 7 (Variations of agar media for total viable count)

Agar media for total viable count were prepared in the same

manner as in Example 6, except for using each dimethylformamide solution of 5-bromo-6-chloro-3-indoxyl acetate, 5-bromo-6-chloro-3-indoxyl phosphate and 5-bromo-6-chloro-3-indoxyl butyrate; and each ethanol solution of 6-chloro-3-indoxyl acetate, 6-chloro-3-indoxyl phosphate and 6-chloro-3-indoxyl butyrate, respectively, instead of the ethanol solution of indoxyl acetate. The tests were carried out in the same manner as in Example 6. The testing results were the same as Example 6. Further, Nitro Blue Tetrazolium used in Example 6 was replaced by INT and a test was conducted again in the same manner as in Example 6. The colonies were purple colored, and the results were also the same as Example 6. (0032)

Example 8 (Preparation of a sheet type medium for total viable counts)

12 g of a polyvinyl alcohol having a saponification ratio of 89% and a polymerization degree of 1,700 was added to 0.1 L of water and dissolved by heating. Then the mixture was applied on a 0.4 m by 1 m polyester film having a thickness of 20 µm, and dried at 120°C for 5 minutes to form a film layer. On this film layer, a solution of 6 g of the above polyvinyl alcohol, 1.24 g of peptone, 0.25 g of meat extract, 0.32 g of yeast extract, 0.04 g of sodium carbonate and 0.16 g of glucose dissolved in 0.1 L of water was applied and dried at 110 $^{\circ}\text{C}$ for 7 minutes. Further on this layer, a solution of 2 g of the above polyvinyl alcohol, 0.02 g of 5-bromo-4-chloro-3-indoxyl acetate and 0.01 g of Nitro Blue Tetrazolium dissolved in 0.04 L of water was laminated. Separately, a solution of 15 g of peptone and 40 g of disodium hydrogenphosphate dissolved in 1 L of water was applied on a nylon melt-blown nonwoven fabric having basis weight of 65 g/m^2 and air permeability of 110 $L/(m^2 \cdot sec)$ using a rotogravure roll having 60 mesh of pyramid cells, followed by drying at 100°C for 20 seconds. The thus pre-treated nylon melt-blown nonwoven fabric was further laminated and dried at 100°C for 30 seconds to obtain a laminated medium material. This laminate was cut into 45 mm by 45 mm pieces. Each piece was adhered

on the center of a white polyester adhesive sheet (manufactured by Kyowa Limited, thickness 100 µm, acryl adhesive is applied thereon, cut into 80 mm by 85 mm pieces). The sheet was covered with a 80 mm by 85 mm sheet of polypropylene film having a thickness of 0.06 mm in such a way as to make an uncovered portion of 5 mm along the 85 mm direction, and sealed with a back sealing tape (manufactured by Kyowa Limited, width 9 mm) in such a way as to cover the uncovered portion of the adhesive sheet, which was then sterilized with ethylene oxide gas to prepare a sheet type medium for total viable counts. (0033)

Example 9 (Test of the sheet type medium for total viable counts)

A 9-fold amount of sterilized physiological saline was added to each of various foods and treated with a blender such as a stomacher, which was then diluted to an appropriate concentration to prepare a homogenate testing sample. 1 mL of the homogenate sample was added onto the media prepared in Example 8 and also Petri dish which was then mixed with a plate count agar medium, and incubated at 35 °C. Comparison was made to find out that the colony counts of 20-hour incubation of the medium in Example 8 and 48-hour incubation of the plate count agar medium were approximately the same.

(0034)

Example 10 (Variations of sheet type media for total viable counts)

Sheet type media for total viable counts were prepared in the same manner as in Example 8, except for using indoxyl acetate, indoxyl butyrate, indoxyl phosphate and 5-bromoindoxyl acetate, respectively, instead of 5-bromo-4-chloro-3-indoxyl acetate. Comparison tests were carried out in the same manner as in Example 9. The testing results were the same as Example 9.

Example 11 (Second variations of sheet type media for yeasts and molds)

Sheet type media for yeasts and molds were prepared in the same manner as in Example 3, except for using Neotetrazolium

Blue, INT and Tetranitrotetrazolium Blue, respectively, instead of Nitro Blue Tetrazolium. Comparison tests were carried out in the same manner as Example 4. The testing results were also the same as in Example 4. The colony color of these sheet type media was light blue in the case of Neotetrazolium Blue, purple in the case of INT, and dark blue between indigo in the case of Tetranitrotetrazolium Blue.

(0036)

Example 12 (Second variations of sheet type media for total viable counts)

Sheet type media for total viable counts were prepared in the same manner as in Example 7, except for using Neotetrazolium Blue, INT and Tetranitrotetrazolium Blue, respectively, instead of Nitro Blue Tetrazolium. Comparison tests were carried out in the same manner as in Example 9. The testing results were also the same as Example 9. The colony color of these sheet type media was light blue in the case of Neotetrazolium Blue, purple in the case of INT, and dark blue between indigo in the case of Tetranitrotetrazolium Blue.

INDUSTRIAL APPLICABILITY (0037)

The medium of the present invention can be advantageously used for detecting microorganism contamination in foods or the environment quicker than conventional standard media.

BRIEF DESCRIPTION OF DRAWINGS (0038)

Fig. 1 shows the comparison between 48-hour incubation of modified "Sanita-kun for yeast and mold" to which Nitro Blue Tetrazolium was added and 7-day incubation of non-modified "Sanita-kun for yeast and mold".

What is claimed is:

1. A microorganism culture medium comprising a derivative A' of a chromogen A, and a chromogen B,

wherein the chromogen A is a chromogen being oxidized to a colored material, and the chromogen B is a chromogen being reduced to a colored material,

the derivative A' acts as a substrate of an enzyme generated when a microorganism is growing, and is then converted to the chromogen A,

and the derivative A' and the chromogen B are substantially not colored in the culture medium unless a microorganism is inoculated.

- 2. The microorganism culture medium of Claim 1, wherein the derivative A' of the chromogen A is an oxyindole derivative or a halogen-substituted oxyindole derivative.
- 3. The microorganism culture medium of Claim 1, wherein the chromogen B is a tetrazolium salt having the half wave potential of 300 my or less at its absolute value.
- 4. The microorganism culture medium of Claim 2, wherein the oxyindole derivative or the halogen-substituted oxyindole derivative is an acetic acid ester, a fatty acid ester, a phosphoric acid ester, a sulfuric acid ester or a glucoside.

Application No:

GB0514298.9

Examiner:

Dr Jeremy Kaye

Claims searched:

1-4

Date of search:

20 October 2005

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance
X,P	1	GB 2407584 A (KANTO KAGAKU KK) see p.3, l.18 - p.4, l.18; p.10, l.8 - p.13, l.4
X	1-4	EP 1088896 Λ2 (BECTON, DICKINSON CO.) see p.5, para.[0037] - p.7, para.[0056]
X	1-4	US 2003/0049718 A1 (RESTAINO) see para. [0026]
X	1-4	US 5962251 A (RAMBACH) see col.2, II.24-48; claim1

Categories:

X	Document indicating lack of novelty or inventive	Λ	Document indicating technological background and/or state
	step		of the art
Y	Document indicating lack of inventive step if combined with one or more other documents of	P	Document published on or after the declared priority date but before the filing date of this invention
&	same category Member of the same patent family	Е	Patent document published on or after, but with priority date earlier than, the filing date of this application

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC^X :

Worldwide search of patent documents classified in the following areas of the IPC 07

C12N

The following online and other databases have been used in the preparation of this search report

Online: EPODOC, WPI, BIOSIS, TXTE, BIOTECHNO, CAPLUS, EMBASE,

MEDLINE, SCISEARCH