(19) **日本国特許庁(JP)**

(51) Int. Cl.

(12) 特 許 公 報(B2)

FL

(11)特許番号

特許第4161382号 (P4161382)

(45) 発行日 平成20年10月8日(2008.10.8)

(24) 登録日 平成20年8月1日(2008.8.1)

大阪府堺市戎島町5丁1番地 堺化学工業

最終頁に続く

株式会社内

CO1G 53/00	(2006.01) CO10	5 53/00	A
CO1G 51/00	(2006.01) CO16	§ 51/00	A
HO1M 4/02	(2006.01) HO1M	1 4/02	С
HO1M 4/58	(2006.01) HO1M	I 4/58	
HO1M 10/36	(2006.01) HO1M	I 10/36	Z
			請求項の数 5 (全 21 頁)
(21) 出願番号	特願平9-84293	(73) 特許権者	新 000174541
(22) 出願日	平成9年2月25日 (1997.2.25)		堺化学工業株式会社
(65) 公開番号	特開平10-236826		大阪府堺市堺区戎之町西1丁1番23号
(43) 公開日	平成10年9月8日(1998.9.8)	(74) 代理人	100079120
審查請求日	平成15年11月6日 (2003.11.6)		弁理士 牧野 逸郎
		(72) 発明者	青木 昌史
前置審查			大阪府堺市戎島町5丁1番地 堺化学工業
			株式会社内
		(72) 発明者	深井 清志
			犬阪府堺市戎島町5丁1番地 堺化学工業
			株式会社内
		(72) 発明者	中尾 日六士
		11 ' '	

(54) 【発明の名称】 2層構造粒子状組成物の製造方法

(57)【特許請求の範囲】

【請求項1】

水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これに水酸化リチウムを混合して、焼成することからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1 μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2~1の範囲にあるリチウムイオン二次電池用正極活物質用2層構造粒子状組成物の製造方法。

【請求項2】

10

水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これを酸化して、含水酸化ニッケルコバルトを調製し、次いで、これを水分散媒中、水酸化リチウムと水熱反応を行うことからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から 0 . 1 μ m の深さまでのコバルト / (ニッケル+コバルト)原子比が 0 . 2 ~ 1 の範囲にあるリチウムイオン二次電池用正極活物質用 2 層構造粒子状組成物の製造方法。

【請求項3】

中心層が一般式(I)

LipNi_{1-x}A_xO_y

(式中、A は、B、Mg、A 1、S i、S c、T i、V、C r、Mn、F e、C o、C u、Z n、G a、Y、Z r、N b、M o、R u、S n、S b、L a、C e、P r、N b、H f、T a 及び P b よりなる群から選ばれる少なくとも 1 種の元素を示す。 p は 0 . 9 0 ~ 1 . 1 0 の範囲の数を示し、 x は 0 ~ 0 . 2 5 の範囲の数を示し、 y は 1 . 8 2 5 ~ 2 . 3 の範囲の数を示す。) で表わされるリチウムニッケル複合酸化物からなる請求項 1 又は 2 に記載の 2 層構造粒子状組成物の製造方法。

【請求項4】

表面層が一般式(II)

Li_qCo_{1-a}Z_aO_b

10

(式中、 Z は、 B、 M g、 A 1、 S i、 S c、 T i、 V、 C r、 M n、 F e、 N i、 C u、 Z n、 G a、 Y、 Z r、 N b、 M o、 R u、 S n、 S b、 L a、 C e、 P r、 N d、 H f、 T a 及び P b よりなる群から選ばれる少なくとも 1 種の元素を示す。 q は 0 . 9 0~1.10の範囲の数を示し、 a は 0~0.25の範囲の数を示し、 b は 1.825~2.3の範囲の数を示す。)で表わされるリチウムコバルト複合酸化物からなることを特徴とする請求項 1 又は 2 に記載の 2 層構造粒子状組成物の製造方法。

【請求項5】

平均粒子径が3~100μmであり、実質的に球状である請求項<u>1</u>から<u>4</u>のいずれかに記載の2層構造粒子状組成物の製造方法。

【発明の詳細な説明】

20

[00001]

【発明の属する技術分野】

本発明は、リチウムイオン二次電池における正極活物質として好適に用いることができる2層構造粒子状組成物の製造方法に関する。

[0002]

【従来の技術】

リチウムニッケル複合酸化物は、高出力、高エネルギー密度電池として、例えば、ノート型パソコン、PHS、携帯電話等に使用されているリチウムイオン二次電池における正極活物質として近年注目されている材料の1つである。このリチウムニッケル複合酸化物は、例えば、「超音波噴霧熱分解法による球状LiCoO₂微粉体の合成とリチウム二次電池用活物質への応用」(萩原隆、斉藤善彦、柳川昭明、小形信男、吉田幸吉、高島正之、米沢晋、水野泰晴、永田憲史、小川賢治、ジャーナル・オブ・ザ・セラミック・ソサイエティー・オブ・ジャパン(Journal of the Ceramic Society of Japan)、第101巻、第1159~1163頁(1993年)に記載されているように、LiMO₂(式中、Mは、Cr、Mn、Ni、Fe、Co又はVである。)で表わされる一群の化合物の一つであって、LiCoO₂と同様に、特に、充放電電圧が高いので、正極活物質として非常に有用である。

[0003]

このようなリチウムニッケル複合酸化物をリチウムイオン二次電池の正極活物質として使用するに際して、その性能を高めるために、リチウムニッケル複合酸化物の組成を変化させたものや、リチウムニッケル複合酸化物の物理的性質を改善したものが提案されている

40

30

[0004]

リチウムニッケル複合酸化物の組成を変化させたものとしては、特開平 4-328278 号公報に、 Li_xMO_2 (Mは遷移金属を示す。0.05x<1.10)で表わされ、 $LiCO_3$ 含有量が0.5x<1.5重量%であるものが記載されている。

[0005]

また、特開平6-150929号公報には、Na、Kのうち少なくとも1種を含むLiNiO2が記載されている。特開昭62-256371号公報、特開平5-36411号公報、特開平7-307150号公報には、Co、V、Cr、Fe、P、B、Si、Mo、

W等の元素を含む Li Ni O $_2$ が記載されている。リチウムニッケル複合酸化物の物理的性質を改善したものとして、特開平 $_7$ - 10590号公報には、一次粒子が 1 $_4$ m以下の二次以上の集合粒子からなる Li Ni O $_2$ 粒子が開示されている。この Li Ni O $_2$ 粒子はリチウムイオン二次電池の正極活物質に用いた場合、再現性にすぐれ、高充放電量を得ることができることが記載されている。

[0006]

しかし、このようにして改善されたリチウムニッケル複合酸化物を用いて製作した電池であっても、これを高温の環境雰囲気に長時間放置した場合、例えば、真夏の日中、上記電池を搭載した携帯電話を停車している自動車に放置した場合、正極活物質のリチウムニッケル複合酸化物と非水電解液が反応して、非水電解液の一部が分解、ガス化し、電池容器内圧が上昇して、電池が破裂し、電池装着機器の破損等、火災を招き、また、環境を汚損する等の危険性がある。

[0007]

そこで、このような問題を解決するために、特開平8-138670号公報には、リチウムニッケル複合酸化物(LiNiO $_2$)粉末の表面層をコバルトのような異種の遷移元素の濃度の高い層としたものを二次電池の正極活物質として用いる非水溶媒二次電池が提案されている。しかし、上記公報の実施例に示されているリチウムニッケル複合酸化物粉末のように、粉末粒子の表面層に存在する異種元素、例えば、コバルトの濃度が低く、異種元素のニッケルに対する原子比が0.2以下であって、上述した問題の解決は、未だ十分ではない。

[0 0 0 8]

【発明が解決しようとする課題】

本発明は、従来のリチウムニッケル複合酸化物における上述したような問題を解決するためになされたものであって、酸化物を構成する金属種が相互に相違するリチウム複合酸化物からなる2層構造を有する粒子状組成物<u>の製造方法</u>であって、<u>この粒子状組成物</u>を正極活物質として用いてなるリチウムイオンニ次電池を構成すれば、この電池は、高温に保持した場合にも、非水電解液の分解を最小に抑えることができるようなリチウム複合酸化物粒子状組成物の製造方法を提供することを目的とする。

[0009]

より詳細には、リチウムニッケル複合酸化物粒子を正極活物質とするリチウムイオン二次電池を高温で保持した場合、その活物質の粒子と非水電解液との界面で非水電解液の分解反応が起こって、分解ガスが発生し、電池容器内の圧力が上昇して、電池が破裂するおそれが生じる。そこで、この非水電解液の分解を抑制するためには、活物質粒子と非水電解液の界面をできるだけ小さくすればよい、即ち、活物質粒子の比表面積をできるだけ小さくすればよい。しかし、一般に、活物質粒子の比表面積を小さくするときは、充放電容量が低下すると共に、充放電の応答性が低下するという不具合も生じる。従って、これらの特性のバランスのとれた電池特性が得られる比表面積を有する活物質粒子を用いることがリチウムイオン二次電池を製作するうえで重要な要件であった。

[0 0 1 0]

しかし、本発明者らは、活物質粒子の比表面積に関係なく、高温安定性にすぐれたリチウムイオン二次電池用活物質用粒子状組成物<u>の製造方法</u>を見出して、本発明に至ったものである。

[0011]

【課題を解決するための手段】

本発明によれば、水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これに水酸化リチウムを混合して、焼成することからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1µmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2~1の

20

10

30

40

<u>範囲にあるリチウムイオン二次電池用正極活物質用2層構造粒子状組成物の製造方法が提</u>供される。

[0012]

また、本発明によれば、水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これを酸化して、含水酸化ニッケルコバルトを調製し、次いで、これを水分散媒中、水酸化リチウムと水熱反応を行うことからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2~1の範囲にあるリチウムイオンニ次電池用正極活物質用2層構造粒子状組成物の製造方法が提供される

[0014]

【発明の実施の形態】

以下に本発明による2層構造粒子状組成物について詳しく説明する。

本発明による粒子状組成物は、中心層と表面層の2層からなる粒子状組成物であって、中心層はリチウムニッケル複合酸化物からなり、表面層はリチウムコバルト複合酸化物からなる。しかし、電池特性に有害な影響を与えない範囲において、中心層と表面層は、それぞれその他の酸化物や複合酸化物を有していてもよい。

[0015]

本発明による2層構造粒子状組成物は、2層構造を有すれば、どのような形状であってもよく、例えば、リチウムニッケル複合酸化物からなる一次粒子である中心層をリチウムコバルト複合酸化物からなる表面層が被覆する構造を有するもののほか、上記中心層、表面層又はこれらの両方がそれぞれの複合酸化物からなる一次粒子の集合体でもよい。後述するように、その形状は、実質的に球状であることが好ましいが、しかし、実質的に立方体状であってもよいし、その他の形状でもよい。

[0016]

本発明による上記粒子状組成物の形状や大きさは、特に、限定されるものではないが、リチウムイオン二次電池の正極活物質として用いる場合、平均粒子径 $3\sim100~\mu$ mであって、実質的に球状であることが好ましい。このように、粒子状組成物が実質的に球状であるとき、充填性にすぐれる、即ち、充填密度を大きくすることができるので好ましい。また、その平均粒子径が $3~\mu$ m未満であるときは、リチウムイオン二次電池の正極活物質として用いた場合に、充填率が低いので、電池の単位容積当たりの電気容量が低くなり、他方、平均粒子径が $1~0~0~\mu$ mを越えるときには、その粒子が、例えば、ポリプロピレン等の重合体の多孔性フイルムからなるセパレータを貫通して、正極と負極との間に短絡を生じるおそれがあるので、好ましくない。特に、本発明による粒子状組成物の大きさは、好ましくは、 $3~5~0~\mu$ mの範囲である。

[0017]

しかし、必要に応じて、球状以外の形状を有する上記粒子状組成物をリチウムイオン二次 電池用正極活物質として用いてもよい。

本発明による粒子状組成物は、その中心層がリチウムニッケル複合酸化物からなり、好ましくは、一般式(I)

Li_pNi_{1-x}A_xO_y

(式中、Aは、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nb、Hf、Ta及びPbよりなる群から選ばれる少なくとも1種の元素を示す。pは0.90~1.10の範囲の数を示し、xは0~0.25の範囲の数を示し、yは1.825~2.3の範囲の数を示す。)

で表わされるリチウムニッケル複合酸化物からなる。

[0018]

20

10

30

40

他方、本発明による粒子状組成物は、その表面層がリチウムコバルト複合酸化物からなり、好ましくは、一般式(II)

LigCo_{1 a}Z_aO_b

(式中、Zは、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta及びPbよりなる群から選ばれる少なくとも1種の元素を示す。 q は 0 .9 0 ~ 1 .1 0 の範囲の数を示し、a は 0 ~ 0 .2 5 の範囲の数を示し、b は 1 .8 2 5 ~ 2 .3 の範囲の数を示す。)

で表わされるリチウムコバルト複合酸化物からなる。

[0019]

上記一般式(I)及び(II)において、 x 又は a が 0 ~ 0 . 2 5 の範囲にあるような粒子状組成物をリチウムイオン二次電池における正極活物質として用いることによって、電池の保存特性を一層高めることができる。しかし、 x 又は a が 0 . 2 5 を越えるときは、電池の充放電容量を大きく低下させるので好ましくない。

[0020]

本発明による2層構造粒子状組成物は、上述したように、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とからなり、ここに、リチウムニッケル複合酸化物は、190mAh/g以上の高い充放電容量を有するものの、高温で非水電解液を分解しやすく、他方、リチウムコバルト複合酸化物は、充放電容量がリチウムニッケル複合酸化物よりも低く、150mAh/g程度であるが、高温に保持されても、非水電解液を分解させ難い。かくして、本発明による粒子状組成物は、2つのリチウム複合酸化物の有する利点のみを利用し、欠点を補うように組合わせてなるものである。

[0021]

即ち、本発明による上記 2 層構造粒子状組成物をリチウムイオン二次電池の正極活物質として用いた場合、非水電解液に接触するのは表面積層のリチウムコバルト複合酸化物のみであり、このリチウムコバルト複合酸化物は、前述したように、高温に保持された場合にも、非水電解質を分解し難いので、電池の安定性に寄与し、更に、上記 2 層構造粒子状組成物は、充放電容量の大きいリチウムニッケル複合酸化物を中心層として有し、従って、全体として、高い充放電容量を有する。

[0022]

かくして、本発明による2層構造粒子状組成物をリチウムイオン二次電池の正極活物質として用いるとき、高温安定性にすぐれると共に、高い充放電容量を有する二次電池を得ることができる。

[0023]

本発明において、表面層と中心層の量的比率は、特に、限定されるものではなく、充放電容量を重視する場合は、中心層の比率を多くし、高温安定性を重視する場合には、表面層の比率を多くすればよく、目的の電池特性によって、任意の比率を用いることができる。しかしながら、本発明による 2 層構造粒子状組成物においては、表面層のコバルト原子と 2 原子の原子数の和(C o + Z) と中心層のニッケル原子と A 原子の原子数の和(N i + A)、即ち、表面層の(C o + Z) / 中心層の(N i + A)原子比は、通常、 5 / 1 0 0 ~ 5 0 / 1 0 0 の範囲にあり、好ましくは、 1 0 / 1 0 0 ~ 3 0 / 1 0 0 の範囲にある

[0024]

本発明による 2 層構造粒子状組成物において、粒子の表面は、リチウムコバルト複合酸化物にて完全に被覆されていることが理想的であるが、しかし、実用上、粒子表面から 0 . 1 μ mの深さまでのコバルト / (ニッケル + コバルト)原子比が 0 . 2 ~ 1 の範囲にあるとき、このような組成物をリチウムイオン二次電池における正極活物質として用いることによって、目的とする電池の安定性を得ることができる。特に、本発明によれば、上記粒子表面から 0 . 1 μ mの深さまでのコバルト / (ニッケル + コバルト)原子比は 0 . 3 ~ 1 の範囲にあることが好ましく、更に、 0 . 5 ~ 1 の範囲にあることが好ましい。

10

20

30

20

30

40

50

[0025]

更に、本発明による 2 層構造粒子状組成物においては、前記式(I)で表わされるリチウムニッケル複合酸化物は、通常、Ni原子とA原子の和に対するLi原子の比、即ち、Li/(Ni+A)原子比が 1 である化学量論的な複合酸化物である、即ち、p=1 であるが、しかし、Li/(Ni+A)原子比が 1 でない非化学量論的な複合酸化物であってもよい。即ち、pは0.90~1.10の範囲の数である。

[0026]

[0027]

本発明による 2 層構造粒子状組成物は、例えば、次のような方法によって製造することができる。このような製造方法によれば、表面から 0 . 1 μ mの深さまでのコバルト / (ニッケル+コバルト)原子比が 0 . 2 ~ 1 の範囲にある本発明による 2 層構造粒子状組成物を得ることができる。

[0028]

(1)水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製する。これに水酸化リチウムを混合し、焼成することによって、本発明による粒子状組成物を得ることができる。

[0029]

(2)上記と同様の方法にて、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これを酸化して、含水酸化ニッケルコバルトを調製し、次いで、これを水分散媒中、高温高圧下に水酸化リチウムと水熱反応を行なうことによって、本発明による粒子状組成物を得ることができる。

[0030]

本発明によるリチウムイオン二次電池は、上述したような2層構造粒子状組成物を正極活物質として用いるものである。

[0031]

リチウムイオン二次電池の一例を図1に示す。正極1と負極2は、非水電解液を含浸させたセパレータ3を介して対向して電池容器4内に収容されており、上記正極1は正極集電体5を介して正極用リード線6に接続されており、また、負極2は負極集電体7を介して負極用リード線8に接続されて、電池内部で生じた化学エネルギーを上記リード線6及び8から電機エネルギーとして外部へ取り出し得るように構成されている。

[0032]

本発明による粒子状組成物は、これに導電剤、結着剤、充填剤等を配合し、混練して合剤とし、これを、例えば、ステンレスメッシュからなる正極集電体に塗布、圧着し、減圧下に加熱乾燥して、正極とする。また、上記合剤を円板状等、適宜形状に加圧成形し、必要に応じて、真空下に熱処理して、正極としてもよい。

[0033]

上記導電剤としては、リチウムイオン二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維、ポリフェニレン誘導体等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。

[0034]

上記合剤における上記導電剤の配合量は、特に、限定されるものではないが、通常、1~

50重量%が好ましく、特に、2~30重量%の範囲が好ましい。また、結着剤も、特に、限定されず、例えば、デンプン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリ塩化ビニル、ポリビニルピロリドン、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン・プロピレン・ジエン共重合体(EPDM)、スルホン化EPDM、スチレン・ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキサイド等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。合剤における上記結着剤の配合量も、特に、限定されないが、通常、1~50重量%の範囲であり、好ましくは、2~30重量%の範囲である。

[0035]

充填剤は、必要に応じて、正極活物質にに配合される。充填剤としては、リチウムイオン 二次電池において化学変化を起こさない繊維状材料であれば、特に限定されず、例えば、 ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維等を挙 げることができる。合剤におけるこれら充填剤の配合量も、特に限定されないが、通常、 0~30重量%の範囲が好ましい。

[0036]

本発明によるリチウムイオン二次電池において、負極としては、従来、リチウムイオン 二次電池に用いられているものであれば、特に、限定されるものではないが、例えば、リ チウム、リチウム合金、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素 等からなるシート状物や成形物を挙げることができる。

[0037]

正極及び負極<u>は</u>、通常、集電体上に形成される。集電体としては、特に、限定されるものではないが、通常、ステンレス鋼やそのメッシュ等が用いられる。

[0038]

また、非水電解液も、従来より知られているものであれば、いずれでもよいが、例えば、プロピレンカーボネート等のようなカーボネート類、スルホラン類、ラクトン類、1,2・ジメトキシエタン等のようなエーテル類等の有機溶媒中に過塩素酸リチウムやヘキサフルオロリン酸リチウム等の解離性リチウム塩類を溶解させたものを挙げることができる。セパレータとしては、例えば、ポリプロピレン等のような合成高分子量重合体からなる多孔性フィルム等が用いられるが、これに限定されるものではない。

[0039]

【発明の効果】

本発明による2層構造粒子状組成物は、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えていると共に、粒子表面から0.1 μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2~1の範囲にあり、本発明によるリチウムイオン二次電池は、このような2層構造粒子状組成物を正極活物質として用いてなるものである。

[0040]

従って、本発明によるリチウムイオン二次電池によれば、非水電解液は、高温に保持された場合にも、非水電解質を分解し難い表面層のリチウムコバルト複合酸化物のみに接触し、他方、上記粒子状組成物は、充放電容量の大きいリチウムニッケル複合酸化物を中心層として有し、ここに、上記粒子状組成物は、全体として、高い充放電容量を有する。かくして、本発明によるリチウムイオン二次電池は、高温安定性にすぐれると共に、高い充放電容量を有する。

[0041]

本発明によるリチウムイオン二次電池は、例えば、ノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリカード等の電子機器、ペースメーカー、補聴器等の医療機器等に好適に用いることができる。

[0042]

10

20

30

【実施例】

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下の実施例において、中心層と表面層を調製するために用いたそれぞれの原料中の遷移元素の仕込み量(モル)と、それによる表面層元素量 / 中心層元素量モル比を表 1 及び表 2 にまとめて示す。

[0043]

実施例1

硝酸ニッケル水溶液に、アンモニウムイオン存在下、水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルからなる二次粒子粉末を得た。この粉末は、比表面積が148m²/gであった。この粉末の走査型電子顕微鏡写真を図2に示す。

[0044]

この球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)17.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約20gを得た。

[0045]

この粉末を X 線回折分析したところ、図 3 に示すように、水酸化ニッケル (N i (O H) 2) のピークのみ確認された。また、この粉末の走査型電子顕微鏡写真を図 4 に示すように、実質的に球状の粒子からなるものであった。

[0046]

また、図5に示すように、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。

[0047]

以上の分析結果から、上記粉末は、中心部が結晶性の水酸化ニッケル($Ni(OH)_2$)からなり、表層部が非晶質の水酸化コバルト($Co(OH)_2$)からなる実質的に球状の粒子であることが確認された。

[0048]

この粉末10.2gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO₂)からなり、表層部がリチウムコバルト複合酸化物(LiCoO₂)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0049]

実施例2

実施例1にて調製した球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)34.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.22モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0050]

この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH)2)のピークのみ確

20

10

30

40

認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面を E P M A (電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。

[0051]

以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル($Ni(OH)_2$)からなり、表層部が非晶質の水酸化コバルト($Co(OH)_2$)からなる実質的に球状の粒子であることが確認された。

[0052]

[0053]

実施例3

実施例1にて調製した球状の水酸化ニッケル18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル / L)68.0 m L を加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L / 分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.44 モル / L)を定量ポンプにて1.0 m L / 分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0054]

この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH) $_2$)のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。

[0055]

以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH) $_2$)からなり、表層部が非晶質の水酸化コバルト(Co(OH) $_2$)からなる実質的に球状の粒子であることが確認された。

[0056]

この粉末9.28gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO₂)からなり、表層部がリチウムコバルト複合酸化物(LiCoO₂)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0057]

実施例4

実施例1にて調製した球状の水酸化ニッケル18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)61.2 m L と硝酸鉄水溶液(1.2 モル/L)6.8 m L を加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶

10

20

30

40

液(0.44モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約26gを得た。

[0058]

の粉末をX線回折分析したところ、水酸化ニッケル(X i (X I) X)のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をX E X P M A (電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトと鉄がそれぞれ偏在していることが確認された。

[0059]

以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH) $_2$)からなり、表層部が非晶質の水酸化コバルト(Co(OH) $_2$)と水酸化第一鉄(Fe(OH) $_2$)からなる実質的に球状の粒子であることが確認された。

[0060]

この粉末9.27gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及び鉄の線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO $_2$)からなり、表層部がリチウムコバルト鉄複合酸化物(LiCo $_0$ 、 $_9$ Fe $_0$ 、 $_1$ O $_2$)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0061]

実施例5

硝酸ニッケルと硝酸コバルトをモル比85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気中で水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルコバルトからなる二次粒子粉末を得た。この粉末は、比表面積が160m2/gであった。

[0062]

この球状の水酸化ニッケルコバルト18.54gを1.0L容量のガラスビーカー中の水 0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸 コバルト水溶液(1.2モル/L)68.0mLを加え、ビーカーを密閉した後、攪拌し ながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。 30分後、水酸化ナトリウム水溶液(0.44モル/L)を定量ポンプにて1.0mL/ 分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中 、60 で一日乾燥して、粉末約26gを得た。

[0063]

この粉末をX線回折分析したところ、水酸化ニッケルコバルト(X i $_0$ $_1$ $_2$ $_3$ $_5$ (X O H) $_2$)のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をX E P M A (X 電子線プロープマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルとコバルトとが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。

[0064]

以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケルコバルト(Ni₀₈₅Co₀₁₅(OH)₂)からなり、表層部が非晶質の水酸化コバルト(Co(OH)₂)からなる実質的に球状の粒子であることが確認された。

[0065]

この粉末9.28gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルコバルト複合酸化物(LiNi_{0.85}Co_{0.15}O₂)から

10

20

30

40

なり、表層部がリチウムコバルト複合酸化物(LiCoO $_2$)からなる $_2$ 層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から $_0$. $_1$ $_2$ $_4$ $_5$ $_5$ でのコバルト / (ニッケル + コバルト)原子比を測定したところ、 $_0$. $_2$ 以上であった。

[0066]

実施例6

実施例1にて調製した球状の水酸化ニッケル粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)50.0 m Lを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.32 モル/L)を定量ポンプにて1.0 m L/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約24gを得た。

[0067]

この粉末をX線回折分析したところ、水酸化ニッケル(X1(X1)X2)のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をX1 F M A (電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。

[0068]

以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH) $_2$)からなり、表層部が非晶質の水酸化コバルト(Co(OH) $_2$)からなる実質的に球状の粒子であることが確認された。

[0069]

この粉末9.28gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700 で5時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物($LiNiO_2$)からなり、表層部がリチウムコバルト複合酸化物($LiCoO_2$)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1 μ mの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0070]

実施例7

実施例1にて調製した球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)50.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.32モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約24gを得た。

[0071]

この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH) $_2$)のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。

[0072]

以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH) $_2$)からなり、表層部が非晶質の水酸化コバルト(Co(OH) $_2$)からなる実質的に球状の粒子であることが確認された。

20

10

30

40

[0073]

この粉末24.1gを水スラリー中、過硫酸ナトリウムで酸化した後、濾過、水洗して、オキシ水酸化ニッケルコバルトのケーキを得た。このオキシ水酸化ニッケルコバルトの全量に水酸化リチウムー水塩25.2gを混合し、得られた混合物にイオン交換水を加えて全量を400mLとした。このスラリーをオートクレーブに仕込み、温度200 にて4時間、加熱して、水熱処理を行なった。

[0074]

[0075]

実施例8

実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)17.0 m Lを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0 m L/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0076]

この粉末9.27gに水酸化リチウムー水塩3.8gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(L i $_0$. $_9$ $_0$ N i O $_1$. $_9$ $_5$)からなり、表層部がリチウムコバルト複合酸化物(L i $_0$. $_9$ $_0$ C O O $_1$. $_9$ $_5$)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μ mの深さまでのコバルト / (ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0077]

実施例9

実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)17.0 m Lを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0 m L/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0078]

この粉末9.2 7 g に水酸化リチウムー水塩 4.6 g を混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700 で10時間焼成して、黒色の粉末を得た。この粉末は、X 線回折、 E P M A によるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(L i 1 1 1 N i O 2 1 0 5)からなり、表層部がリチウムコバルト複合酸化物(L i 1 1 1 C 0 O 2 1 0 5)からなる 2 層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から 0.1 μ mの深さまでのコバルト / (ニッケル+コバルト)原子比を測定したところ、0.2 以上であった。

[0079]

実施例10

10

20

30

20

30

40

50

実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)15.8 m L と硝酸銅水溶液(1.0 モル/L)1.0 m L とを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11 モル/L)を定量ポンプにて1.0 m L/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[080]

この粉末 9 . 2 7gに水酸化リチウムー水塩 4 . 2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で 1 0時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO₂)からなり、表層部がリチウムコバルト複合酸化物(LiCo_{0.95} Cu_{0.05} О₂)からなる 2 層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から 0 . 1 μ mの深さまでのコバルト / (ニッケル + コバルト)原子比を測定したところ、 0 . 2 以上であった。

[0081]

実施例11

実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)15.0 m L と硝酸マグネシウム水溶液(1.0 モル/L)2.0 m L とを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11 モル/L)を定量ポンプにて1.0 m L/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0082]

この粉末9.24gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物($LiNiO_2$)からなり、表層部がリチウムコバルト複合酸化物($LiCo_{0...90}$ Mg $_{0...10}$ O $_{1...95}$) からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった

[0083]

実施例12

実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)15.8 m L と硝酸アルミニウム水溶液(1.0 モル/L)1.0 m L とを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0 m L/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0084]

この粉末9.27gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物($LiNiO_2$)からなり、表層部がリチウムコバル

ト複合酸化物(LiCo_{0.95} A 1 _{0 . 0 5} O $_2$)からなる 2 層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から 0 . 1 μ mの深さまでのコバルト / (ニッケル + コバルト)原子比を測定したところ、 0 . 2 以上であった。

[0085]

実施例13

実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0 L容量のガラスビーカー中の水0.1 Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2 モル/L)13.3 m L と硝酸チタン水溶液(1.0 モル/L)4.0 m L とを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5 L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.13 モル/L)を定量ポンプにて1.0 m L/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60で一日乾燥して、粉末約20gを得た。

[0086]

この粉末9.31gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO₂)からなり、表層部がリチウムコバルト複合酸化物(LiCo_{0.80}Ti_{0.20}〇_{2.1})からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0087]

実施例14

硝酸ニッケルと硝酸バナジウムとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケル・バナジウムからなる二次粒子粉末を得た。この粉末は、比表面積が150m²/gであった。

[0088]

上記球状の水酸化ニッケル・バナジウムからなる二次粒子粉末18.31gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約25gを得た。

[0089]

この粉末9.20gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びバナジウムの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルバナジウム複合酸化物($LiNi_{0...85}V_{0...15}$ 002 . 1 5)からなり、表層部がリチウムコバルト複合酸化物($LiCoO_2$)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1 μ mの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0090]

実施例15

硝酸ニッケルと硝酸クロムとを 8 5 : 1 5 の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケル - クロムからなる二次粒子粉末を得た。この粉末は、比表面積が 1 5 6 m² / gであった。

10

20

30

40

[0091]

上記球状の水酸化ニッケル・クロムからなる二次粒子粉末18.24gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約25gを得た。

[0092]

この粉末9.21gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びクロムの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルクロム複合酸化物(LiNi $_0$ 、 $_8$ 5 C r $_0$ 、 $_1$ 5 O $_2$)からなり、表層部がリチウムコバルト複合酸化物(LiCoO $_2$)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1 $_1$ mの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2 以上であった。

[0093]

実施例16

硝酸ニッケルと硝酸マンガンとを 8 5 : 1 5 の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケル・マンガンからなる二次粒子粉末を得た。この粉末は、比表面積が 1 4 5 m² / g であった。

[0094]

上記球状の水酸化ニッケル・マンガンからなる二次粒子粉末18.43gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約25gを得た。

[0095]

この粉末 9 . 2 4 g に水酸化リチウムー水塩 4 . 2 g を混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、 8 0 0 で 1 0 時間焼成して、黒色の粉末を得た。この粉末は、 X 線回折、 E P M A によるコバルト、ニッケル及びマンガンの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルマンガン複合酸化物(LiNi $_0$. $_8$ 5 M n $_0$. $_1$ 5 O $_2$)からなり、表層部がリチウムコバルト複合酸化物(LiCoO $_2$)からなる 2 層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から 0 . 1 $_1$ m の深さまでのコバルト / (ニッケル + コバルト)原子比を測定したところ、 0 . 2 以上であった。

[0096]

実施例17

硝酸ニッケルと硝酸ランタンとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルランタンからなる二次粒子粉末を得た。この粉末は、比表面積が170m²/gであった。

[0097]

上記球状の水酸化ニッケルランタンからなる二次粒子粉末21.46gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカー

20

10

30

40

20

40

50

を密閉した後、攪拌しながら、窒素ガスを 0 . 5 L / 分の割合にてスラリーに導入して、窒素置換を行なった。 3 0 分後、水酸化ナトリウム水溶液 (0 . 4 3 モル / L) を定量ポンプにて 1 . 0 m L / 分の割合で 8 時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、 6 0 で一日乾燥して、粉末約 2 8 g を得た。

[0098]

この粉末 1 4 . 4 5 g に水酸化リチウムー水塩 4 . 2 g を混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、8 0 0 で 1 0 時間焼成して、黒色の粉末を得た。この粉末は、 X 線回折、 E P M A によるコバルト、ニッケル及びランタンの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルマンガン複合酸化物(LiNi $_0$. $_8$ 5 L a $_0$. $_1$ 5 O $_2$)からなり、表層部がリチウムコバルト複合酸化物(LiCoO $_2$)からなる 2 層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から 0 . 1 $_1$ m の深さまでのコバルト / (ニッケル + コバルト)原子比を測定したところ、 0 . 2 以上であった。

[0099]

実施例18

硝酸ニッケルと硝酸ガリウムとを 8 5 : 1 5 の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルガリウムからなる二次粒子粉末を得た。この粉末は、比表面積が 1 5 0 m² / gであった。

[0100]

上記球状の水酸化ニッケルガリウムからなる二次粒子粉末19.38gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)14.2mLと硝酸ニッケル水溶液(1.0モル/L)3.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約21gを得た。

[0101]

この粉末9.65gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びガリウムの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルガリウム複合酸化物($LiNi_{0.85}$ Ga $_{0.15}$ O $_2$)からなり、表層部がリチウムコバルトニッケル複合酸化物($LiCo_{0.85}$ Ni $_{0.15}$ O $_2$)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。

[0102]

実施例19

硝酸ニッケル、硝酸コバルト及び硝酸鉄とを80:15:5の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルコバルト鉄からなる二次粒子粉末を得た。この粉末は、比表面積が160m²/gであった。

[0103]

上記球状の水酸化ニッケルコバルト鉄からなる二次粒子粉末18.52gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)15.0mLと硝酸ジルコニウム水溶液(1.0モル/L)1.0mLと硝酸イットリウム水溶液(1.0モル/L)1.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液

(0 . 1 1 モル / L) を定量ポンプにて 1 . 0 m L / 分の割合で 8 時間加えた。このよう にして得られた沈澱を濾過、水洗し、電気乾燥機中、60 で一日乾燥して、粉末約20 gを得た。

[0104]

この粉末9.31gに水酸化リチウムー水塩4.2gを混合した後、アルミナ製るつぼに 入れ、酸素雰囲気中、800 で10時間焼成して、黒色の粉末を得た。この粉末は、X 線回折、EPMAによる線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル コバルト鉄複合酸化物(LiNi_{0.85} Co_{0.15} Fe_{0.05} O₂)からなり、表 層部がリチウムコバルトジルコニウムイットリウム複合酸化物(LiCo 。 。。 Z r 。 _{.05} Y _{0.05} O _{2.025}) からなる 2 層構造の球状粒子であることが確認された。 更に、オージエ電子分光法にて粒子表面から 0 . 1 μ m の深さまでのコバルト / (ニッケ ル+コバルト)原子比を測定したところ、0.2以上であった。

[0105]

【表1】

	表 面 層		中 心 層		表面層元素/
実施例	元素	量 (モル)	元素	量(モル)	中心層元素モ
					ル比
1	Со	0.02	Νi	0.2	0.1
2	Со	0.04	Νi	0.2	0.2
3	Со	0.08	Νi	0.2	0.4
4	Со	0.072	Νi	0.2	0.4
	F e	0.008			
5	Со	0.08	Νi	0.017	0.4
			Со	0.003	
6	Со	0.06	Ni	0.2	0.3
7	Со	0.06	Ni	0.2	0.3
8	Со	0.02	Ni	0.2	0.1
9	Со	0.02	Ni	0.2	0.1
10	Со	0.019	Ni	0.2	0.1
	Cu	0.001			
11	Со	0.018	Ni	0.2	0.1
	Мв	0.002			
12	Со	0.019	Ni	0.2	0.1
	A 1	0.001			

[0106]

【表2】

20

10

30

	表	面層	中	心層	表面層元素/
実施例	元素	量(モル)	元素	量(モル)	中心層元素モ
					ル比
13	Со	0.016	Νi	0.2	0.1
	Τi	0.004			
14	Со	0.08	Νi	0.017	0.4
			V	0.003	,
15	Со	0.08	Νi	0.017	0.4
			Сr	0.003	
16	Со	0.08	Νi	0.017	0.4
			Мn	0.003	
17	Со	0.08	Ni	0.017	0.4
			La	0.003	
18	Со	0.017	Ni	0.17	0.1
	Ni	0.003	Ga	0.03	
19	Со	0.018	Νi	0.16	0.1
	Ζr	0.001	Со	0.03	
	Y	0.017	Гe	0.01	

10

[0107]

実施例20

実施例 2 で調製した中心部がリチウムニッケル複合酸化物(LiNiO $_2$)からなり、表層部がリチウムコバルト複合酸化物(LiCoO $_2$)からなる 2 層構造粒子状組成物の粉末(正極活物質)、アセチレンブラック(導電剤)及びポリテトラフルオロエチレン(結着剤)を重量比 8 7 : 6 . 5 : 6 . 5 にてよく混練して、合剤を調製した。この合剤を正極集電体としての清浄なステンレスメッシュ(穴径 2 0 mm)に均一に塗布し、 2 0 0 kg / c m 2 の圧力にて圧着した後、減圧下、 1 5 0 で 1 7 時間乾燥して、正極を作製した。負極として円板状の金属リチウム箔(直径 2 0 mm、厚さ 0 . 2 mm)を用いた。また、セパレーターとしてポリピロピレンからなる多孔質フィルムを用いた。

[0108]

また、非水電解液は、過塩素酸リチウム(LiClO $_4$)のプロピレンカーボネート溶液(1 $_1$ M)と1,2-ジメトキシエタンとの混合物(1:1)で、水分を20ppm以下としたものを用い、これを上記セパレーターに含浸させた。

これらの構成要素を用いて、図 1 に示すようなリチウムイオン二次電池を製作し、これを用いて、電流値を $1.0 \, \text{mA} / \text{cm}^2$ の一定電流とし、電池電圧 $4.2 \, \text{c} 2.0 \, \text{V}$ の間で充放電を繰り返して、電池特性を調べた。その結果、本発明によるリチウム二次電池の初期容量は $1.82 \, \text{mAh} / \text{g}$ と高く、また、 $5.0 \, \text{th}$ サイクル目の充放電容量は $1.0 \, \text{th}$ サイクル目の $9.0 \, \text{th}$ であって、サイクル特性にもすぐれる。

[0109]

また、この電池を80 で長時間保持したときも、電解液は、リチウムコバルト複合酸化

30

40

物(LiCoO $_2$)を正極材活物質として用いた場合と同様であって、殆ど分解しておらず、高温での安定性にすぐれることも確認された。

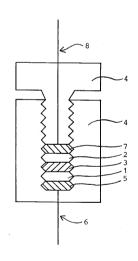
【図面の簡単な説明】

【図1】は、リチウムイオン二次電池の一例を示す断面図である。

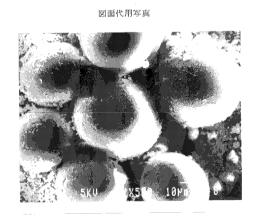
【図2】は、実施例1において得られた水酸化ニッケルの二次粒子粉末の走査型電子顕微鏡写真(倍率500倍)である。

【図3】は、上記水酸化ニッケルの粒子に水酸化コバルトを被覆してなる水酸化ニッケルコバルトのX線回折図である。

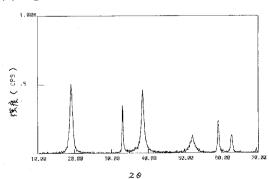
【図4】は、上記水酸化ニッケルコバルトの走査型電子顕微鏡写真(倍率500倍)である。


【図5】は、上記水酸化ニッケルコバルトの粒子断面のEPMA(電子線プローブマイクロアナライザー)による線分析を示す写真(倍率1000倍)である。

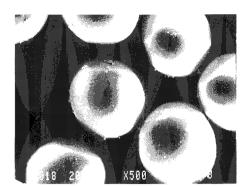
【図 6 】は、実施例 1 において得られた中心部がニッケル酸リチウム(LiNiO $_2$)からなり、表層部がコバルト酸リチウム(LiCoO $_2$)からなる 2 層構造の球状粒子の断面の E P M A (電子線プロープマイクロアナライザー)による線分析を示す写真(倍率 1000倍)である。


【符号の説明】

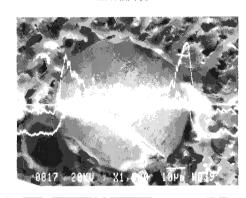
1 …正極、 2 … 負極、 3 … セパレータ、 4 …電池容器、 5 …正極集電体、 6 …正極用リード線、 7 … 負極集電体、 8 … 負極用リード線。


【図1】

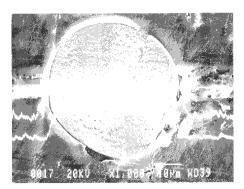
【図2】



【図3】


【図4】

図面代用写真


【図5】

図面代用写真

【図6】

図面代用写真

フロントページの続き

審査官 壺内 信吾

(56)参考文献 特開平07-235292(JP,A)

特開平09-050810(JP,A)

特開平09-035715(JP,A)

特開平08-138670(JP,A)

特開平09-055210(JP,A)

(58)調査した分野(Int.CI., DB名)

C01G25/00-47/00,49/10-57/00

H01M4/00-4/62