
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2007262660 B2

(54) Title
Middleware broker

(51) International Patent Classification(s)
G06F9/45 (2006.01) H04L 29/06 (2006.01)

(21) Application No: 2007262660 (22) Date of Filing: 2007.06.21

(87) WIPO No: W007/147207

(30) Priority Data

(31) Number (32) Date (33) Country
2006903351 2006.06.21 AU

(43) Publication Date: 2007.12.27
(44) Accepted Journal Date: 2013.01.31

(71) Applicant(s)
Richard Slamkovic

(72) Inventor(s)
Slamkovic, Richard

(74) Agent / Attorney
Macpherson + Kelley Lawyers, Level 22 114 William Street, Melbourne, ACT, 3000

(56) Related Art
US 5 826 017 A
EP 0 690 599 A2
WO 2000/038389 A2
WO 1999/003036 A1
WO 2003/034183 A2
US 6 466 974 B1
US 2006/0140199 A1
US 6 625 804 B1
US 6 772 413 B2
US 6 085 250 A
US 6 971 090 B1
WO 1997/019411 A1
US 2001/0052031 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007) PCT (10) International Publication Number

WO 2007/147207 Al

w
o

20
07

/1
47

20
7 a

i I l
llll

llll
llll

 lll
llll

llll
ll l

llll
llll

llll
ll II

 lll
llll

llll
ll l

llll
llll

llll
llll

llll
llll

llll
llll

llll

(51) International Patent Classification:
G06F 9/45 (2006.01) H04L 29/06 (2006.01)

(21) International Application Number:
PCT/AU2007/000859

(22) International Filing Date: 21 June 2007 (21.06.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2006903351 21 June 2006 (21.06.2006) AU

(71) Applicant and
(72) Inventor: SLAMKOVIC, Richard [AU/AU]; 3 Hudson

Street, Hampton, Victoria 3188 (AU).

(74) Agent: MILLS OAKLEY PATENT ATTORNEYS;
4/121 William Street, PO Box 453, Collins Street West,
Melbourne, Victoria 8007 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available)·. AE, AG, AL, AM,

(54) Title: MIDDLEWARE BROKER

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available)·. ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid
ance Notes on Codes and Abbreviations" appearing at the begin
ning of each regular issue of the PCT Gazette.

(57) Abstract: A method of flow of an outbound communication to another module with interface using a broker which is able to
review all data structures, regardless of complexity, as being comprised of a finite set of primitive data types (e.g. integer, float etc.)
and with reference to the repository determine a mechanism for reading and writing these types to enable processing of structures of
arbitrary complexity, wherein the rules and mechanisms for reading these basic types are defined by the protocol and once the rules
are captured allow processing of any message over this protocol.

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

MIDDLEWARE BROKER

This invention relates to a middleware broker for middleware. In particular it relates to a

data transfer means between various protocol systems to provide an integrated system.

Background

Middleware is a software layer that aims to provide the glue between interacting

components in a distributed computing environment. There is a variety of middleware
types: among others, synchronous procedural RPC (Remote Procedure Call) oriented

middleware, such as DCE-RPC, and asynchronous MOM (Message-Oriented-

Middleware) based products, such as IBM’s MQ-Series; transaction-oriented middleware

include BEA’s TUXEDO and IBM’s. CICS; more recently, object-based middleware, the
best known of these being OMG’s CORBA, Microsoft’s DCOM and Java/RMI. Systems

based on one of these methods are not directly protocol-level compatible with systems

based on another. For example, a CORBA client is not plug-compatible with a DCOM
server, even if both run on an NT platform. Although both systems are based on an object
model, the implementations of these object-based systems are quite different.

The current corporate climate has placed pressure on many organisations to expand or to
become part of larger existing networks. Companies are taking-over or merging with
others, and small companies increasingly have had to join global networks to compete
locally (e.g. “small companies, global networks”). The resulting super-organisations

typically include a mix of generally incompatible IT systems, which need to be integrated

to fully exploit the new structures. The problem of protocol-level systems integration is

compounded if both companies use different operating environments. For example, a
large company may use an IBM mainframe, while a smaller one uses Windows-based

PCs, Ideally, the middleware should provide a pipeline to transparently support this
communication. However, integration with legacy systems still requires significant

amounts of coding.

The different approaches to inter-operability can bc classified as;

• Handcrafted Solutions: It consists of writing ad-hoc software to implement
each interoperation requirement. Although this approach is widely applicable,

and very commonly used, it is labour-intensive and requires considerable
expertise not always available. Such approaches are also difficult to maintain

1

WO 2007/147207 PCT/AU2007/000859

over time.

• Proprietary approaches (commercial BAI products): Usually result in the user

being locked-in with a proprietary solution.

• Architectural approaches: Provide mainly a high level modelling view of

5 systems, and are not of much practical benefit to the low level systems

integrator, Certainly, they do not allow for any automated protocol-level

integration.

• Specific middleware approach: Systems such as ASTER [14] provide an API

that allows different protocols to be translated to CORBA. (i.e. ASTER relies

10 on a single middleware, CORBA, to provide all remote (RPC) and component
services.)

tl

Protocol-level integration of legacy systems with other systems has been repotted to be a
major challenge with no obvious general solutions. Low-level systems integration is

15 difficult, because application semantics must be addressed and low-level manual data

marshalling is often required.

Direct translation between two different formats or, more generally, two different
protocols is the oldest method of achieving data interchange. By writing custom computer

20 source code that is later compiled and installed on the target platform, it is possible to

achieve interoperability between two different data formats. If the source code is carefully
tuned by someone very skilled in the art, the resulting translator will be a high-
performance one. However, it will not work if any change in data format or protocol

occurs, and will require additional programming and installation effort to adapt to any

25 such change. Direct translation can offer excellent performance, but it is even less flexible

than the static adapters used by "middleware" systems.

Instead of a static adapter or custom-coded direct translator, it is the use of some kind of
data or protocol description that can offer greater flexibility and, thereby, connectivity.

30 U.S. Pat. No.5,826,017 to Holzmann (the Holzmann implementation) generically

describes a known apparatus and method for communicating data between elements of a
distributed system using a general protocol. The apparatus and method employs protocol
descriptions written in a device-independent protocol description language. A protocol

interpretation means or protocol description language interpreter executes a protocol to

35 interpret the protocol description. Each entity in a network must include a protocol

2

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

apparatus that enables communication via a general protocol for any protocol for which

there is a protocol description. The general protocol includes a first general protocol

message which includes a protocol description for a specific protocol. The protocol

apparatus at a respective entity or node in a network which receives the first protocol

message employs a protocol description language interpreter to interpret the included

protocol description and thereby execute the specific protocol.

One known but not commonly known automated approach is that proposed by Dashofy et

al who investigated using various off-the-shelf middleware products to build bridges or

connectors for distributed systems. They present their views from a software architecture

perspective, restricted to the C2 architectural model. They have built software connectors

that are specific to four middleware packages, Q, Polylith, RMI, and ILU, This means that
to add support for another middleware package, a new specific connector (program)

would need to be developed. Commercial tools such as those provided by commercial

Enterprise Application Integration (EAI) products are similarly restricted.

A recently published granted US patent document is US 6,772,413 which discloses a high
level transformation method and apparatus for converting data formats in the context of
network applications, among other places, A flexible transformation mechanism is

provided that facilitates generation of translation machine code on the fly. A translator is

dynamically generated by a translator compiler engine. The translator compiler engine
implemented according to the present invention uses a pair of formal machine-readable

format descriptions (FMRFDs) and a corresponding data map (DMAP) to generate

executable machine code native to the translator platform CPU, When fed an input

stream, the translator generates an output stream by executing the native object code
generated on the fly by the translator compiler engine. In addition, the translator may be

configured to perform a bi-directional translation between the two streams as well as
translation between two distinct protocol sequences;

However this document discloses a translation method by generating a set of executable
machine instructions for direct processing, said executable machine instructions being
generated as a function of a data segment mapping, input format description and output

format description, said executable machine instructions to translate an input data stream

directly into an output data stream. Further the disclosure is primarily ainied at XML

3

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

formats. This system is highly data bit intensive and therefore is primarily only suitable

for repetitive processing of a single known protocol to another single known protocol.

It is an object of the invention to provide an easier and flexible approach to provide a

middleware broker for middleware protocols, as well as for legacy systems.

It is also an object of the invention to provide protocol-level inter-operability which

supports a wide range of protocols, including legacy systems and could allow new
protocol support to be added with no impact on existing systems (i.e. protocols can be

changed (added or removed) without re-compilation of application software).

In accordance with the invention there is provided a system of intercommunication
including the steps of:

defining the structure of one or more protocols used in communication and storing
said structure in a library;

at run time analysing an input communication and determining an appropriate

input structure of protocol of the input communication from the library and analysing the
path of the intended output communication and determining an appropriate output
structure of protocol of the output communication from the library;

providing a dynamic marshaller for processing at run time and sending the

information in accordance with the identified output structure ftom the corresponding
relevant sections of the.identified input structure;

wherein the system allows ready communication between various protocols.

The system can include the library having a predefined conversion of the structure of one

or more protocols to the structure of another of the one or more protocols.

The dynamic marshaller can provide buffering or addressing as required.

The system also provides for the dynamic marshaller to include definable predefined

processing steps of corresponding relative sections of the identified output structure to the

identified input structure.

It can therefore be seen that the predefined processing steps can be protocol neutral such
that an end user can define the processing steps in a generic manner and the dynamic

4

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

marshaller undertakes the required manipulation of the data in any communication based

on the predefined processing step of the relevant section of the communication protocol

structure. This provides a required effect regardless of the protocols of communication.
The end user therefore need not be aware of the details of the protocol languages to enable

a required manipulation. In particular there can be user defined or third party defined

modules can be invoked at particular points during marshalling and un-marshalling
(message processing). (

In accordance with the invention there is provided a method of intercommunication of
middleware including the steps of:

providing a table of initial definition of structure characteristics, including format

and parameter data types, of one or more protocols;
converting said one or more structure protocol definitions into a selected format;

storing said one or more structure protocol definitions in said selected format in

one or more repositories;

at run time assessing the incoming message and selecting an appropriate structure
protocol definition to be used from the table and using the selected format of the

converted structure protocol definition to communicate.

It can be seen that the method does not undertake a full conversion but instead, before the

time of the message, a structure of the protocol has been defined and the data and

information in the form of the protocol structure can be readily communicated in a
protocol structure format that would be understood by the receiver.

The invention, also provides a method of flow of an outbound communication to another

module with interface including the steps of:
assessing the application of the outbound communication to determine and select

a protocol to try from a table of protocols in a priority arrangement;

using the selected protocol to determine the format and arguments for the

outbound communication;
using the protocol definitions stored to prepare the outbound communication for

the particular middleware or application service;
providing required buffer;

determining which protocol to use for transmission;
looking up table of end-point resolutions to determine the communication

5

WO 2007/147207 PCT/AU2007/000859

parameters required to communicate with the selected transmission protocol;

attempting to communicate with the designated host using the appropriate
communication parameters; and

if communication with the selected protocol fails selecting the next protocol to try
5 from the table of protocols in the priority arrangement.

The invention also provides a method of flow of an inbound communication from another

module with interface including the steps of:

receiving inbound message in the protocol that it was sent;
10 looking up table to determine whether the message needs marshalling into another

protocol before passing the inbound communication to the target application on the local
system;

if message needs marshalling into another protocol, determining the preferred
protocol from a table according to priority;

15 determining the format and arguments for the inbound communication;
using stored protocol definitions for the selected protocol to prepare the inbound

communication for the target middleware or application service;
buffering the inbound communication as required;
determining protocol to use for transmission.

20 determining local end point of the target application on the local system; and

at run time passing the inbound communication to the target application on the
local system.

It can be seen that the invention provides an easier and flexible approach in which rules

25 and middleware characteristics are specified in a repository, for the system broker to

provide the connection and transformation for the middleware protocols, as well as for

legacy systems. In particular it is not necessary to have a converter at either end of the
communication. Further it is not necessary for there to be two way communication in

order to ensure the receiver knows what format is arriving, instead the conversion due to

30 the relevant structure format correlations allows ready flow of data from one input
protocol to form readable by output protocol.

It should be noted that protocols are specified in a language neutral machine independent
definition language. The language specifies the structure of messages and the parameter

35 templates to establish a connection and exchange messages.

6

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

In one form of the invention the language neutral machine independent definition is

compiled into binary modules known as protocol implementation modules (PIMs) and

transport interface modules (TIMs), The TIMs contain the communication partameters.

These PIMs and TIMs are loaded at runtime and executed by interpreters (virtual
machines). PIMs are processed by the dynamic adaptive marshaller (DAM) and the TIMs
are handled by the transport mediation server (TMS). Both of these modules are

controlled by the message distribution server (MDS). The MDS is also responsible for

any interface mapping that is required. It uses either the processed request or response
message and a mapping definition. The actual mapping is performed by a mapper module

under the direction and control of the MDS.

In one preferred form of the invention the middleware broker is The Ubiquitous Broker

Environment (the TUBE system). TUBE allows any defined interface to be marshaled

across any defined protocol. This is achieved using existing clients and servers. There are
no code changes, The protocol may be switched from A to ... at runtime without

requiring a stop/start of the application or TUBE runtime. The mode of the interaction
may also be switched from say synchronous to asynchronous without operational impact.
The client is oblivious to the change. In other words TUBE can make a synchronous
protocol asynchronous and visa-versa. TUBE implements protocols using loadable

modules called Protocol Implementation Modules (PIMs).

The major premise behind TUBE is that all data structures, regardless of complexity, are

comprised of a finite set of primitive data types (e.g. integer, float etc.). Once we have a
mechanism for reading and writing these types, we are able to process structures of

arbitrary complexity. The rules and mechanisms for reading these basic types are defined
by the protocol. Therefore, once we capture these rules we can process any message over

this protocol.

For example CORBA uses an encoding known as CDR (Common Data Representation)
for reading and writing basic data types. Once we have the rules of CDR or a callable
library that implements the rules of CDR, we are able to process CDR-based (CORBA)

messages. All we now have to do is define the structure of a CORBA request and

response message.

7

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

This allows users or third-parties to create new protocols and drop them directly into their

environment. The protocol does not even have to be physically implemented in a client or

a server. A TUBE PIM on one side can act as the client and another PIM can act as a

server on the target side. This enables use of the protocol without any coding. For

example, an existing client using protocol XX is able to make a call to a server using XX,
Without disruption to either client or server TUBE can intercept the XX message, convert

it to the new protocol and send it across to the receiving node. At the receiving end,

TUBE can convert back to protocol XX and pass to the original server. This allows users

“to play” with protocols before actually implementing (or rewriting) existing clients or

servers.

What if we want to add a new middleware? Let’s say a bank wants to develop its own
internal, secure middleware. They don’t want to change all their client-side source code.

Let us assume that the server-side has already been modified to support the new

middleware. For the remainder of this discussion we shall refer to this new middleware as

OSM (Our Secure Middleware) and to the existing middleware as XX. OSM requires that
its payload be encrypted using its own crypto algorithm. The clients are still making calls
via XX and are unaware of this requirement. OSM also introduces a new transport layer
that is also encrypted. Without re-writing all the client code to use the new OSM APIs,

How can the bank achieve integration?

TUBE provides a middleware definition tool specifically for this purpose. The tool

consists of a number of modules, each dedicated to a specific task related to the definition.

The first thing that needs to be defined is the payload format This is defined as a binary
sequence. It is also defined that this binary sequence must be obtained by a call-out to an

OSM API, which carries-out the encryption.

The API module-name, signature and parameters are obtained in either of two ways; they
can be imported from a C-language header or Java class definition, or be specified in the

tool. This information is stored temporarily in a meta-language format called PDL

(Protocol Definition Language).

The next part of the definition involves the interaction with the OSM transport. This
specifies how we get messages into and out of OSM. This operation is divided up into

8

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

three phases; the method of establishing a connection, the method of conducting a session,

and termination actions. These definitions include any API interactions.

When we are satisfied with our definitions, we generate the specification. The

specification consists of two parts; protocol implementation and transport interface. The

PDL compiler generates these specifications (modules) and. stores them in the Protocol

Definition Repository (PDR) and Transport Interface Repository (TIR) respectively: Once

these have been generated, we specify the end-point information in the End-Point

Resolution Table (EPRT) and add OSM to the Distribution Priority Table (DPT), and set

it as the preferred protocol for the interface defined in MDR. The interface was already
defined in the MDR, only we were using XX rules to marshal any interactions.

If TUBE wasn’t aware of the interfaces used over XX, then the IDL compiler would need
to be run to import the interface definitions and the XX clients would need to be pointed

to a TUBE XX module. This allows TUBE to intercept the client calls, while the clients
still believe they are talking to an XX server, The bank can now exchange messages over

OSM using its existing XX-based clients. No modules required modification. The only
changes were at a configuration level, Anytime an XX-based message is intercepted by
TUBE, the OSM-PIM and OSM-TIM are invoked by DAM and TMS respectively to

marshal and send messages via OSM.

Before the bank makes the significant investment of actually implementing its “secret”

protocol, they would like to test out its robustness and resilience to attack.

They are able to do this using TUBE as the implementation. All they need to implement is

the encryption library, which TUBE will call during marshal and un-marshal operations.
This way their algorithm remains secret. TUBE is unaware of its detail or structure. It
merely handles the (potentially) complex traversal of the interface definitions. Usually

these would have to be hand-coded for each interface, TUBE saves the bank a vast

amount of work.

With traditional middleware and EAI tools:
* new connectors fully implementing OSM would need to be developed for

every interface that
would be processed.

9

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

• New Protocols cannot simply be defined and “virtually” implemented.

• Protocols must be fully implemented end-to-end.

Using TOBE the bank is able to;
• test-drive its new protocol before investing in complete implementation

• choose whether or not to physically implement OSM in its servers or

clients

• revert back to XX at anytime by a simple configuration change
• set-up redundancy by using TUBE’S protocol alias and prioritization

features

’ enable clients of any protocol (e.g. web-based SOAP clients) to access

services

supplied by OSM. TUBE handles the SOAP to OSM conversion
• future-proof its clients and servers from middleware changes. Coding is

only required if the
bank wishes to change the functionality of its clients or servers.

' using TUBEs' rule engine may even alleviate that requirement

TUBE uses a modified IDL style language (Protocol Definition Language or PDL) to
define protocols. This PDL definition is compiled into a set of binary op-codes. This

collection of op-codes is known as a Protocol Implementation Module (P1M). The

Dynamic Adaptive Marshaller (DAM) is a virtual machine, which loads and executes the

op-codes in the PIM at run-time. The op-codes in the PIM contain instructions for
traversing the interface definitions stored in the Module Definition Repository (MDR).

These definitions are obtained by parsing the IDL description for the interface.

Constructs defined in the script, which are not part of the message payload (for example

the header) are stored in a run-time variable segment and only used for same-protocol
exchanges. The items that constitute the body of the message (as defined in MDR) are

stored in an intermediate format known as a TLV (Type, Length, Value) buffer. When
marshaling an out-bound (target) message, the values are obtained from the TLV buffer.

In order that the invention is more readily understood an embodiment will be described by

way of illustrationonly with reference to the drawings wherein:

10

5

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

Figure 1: is a diagrammatic view of the TUBE build time processing system in

accordance with one embodiment of the invention;

Figure 2 is a diagrammatic view of TUBE Component Architecture of one
embodiment of the middleware broker of the invention;

Figure 3 is a diagrammatic view of TUBE out-bound message scenario; ·

Figure 4 is a diagrammatic view of TUBE in-bound message scenario;

Figure 5: is a diagrammatic view of Fragment of mathServer IDL

Figure 6: is a diagrammatic view of Structure of request message (highlighting
payload)

Figure 7: is a diagrammatic view of Structure of a successful response message
(highlighting payload)

Figure 8; is a diagrammatic view of Structure of an unsuccessful response message
with an exception as payload

• Figure 9: is a diagrammatic view of structure of a PIM

Figure 10: is a diagrammatic view of structure of a PIM Header
Figure 11: is a diagrammatic view of structure of a Marshalling Map

Figure 12: is a diagrammatic view of mapping op-code target to variable value
Figure 13: is a diagrammatic view of declaration of a byteSequence
Figure 14: is a declaration for an array
Figure 15: is a declaration of a null terminated string

Figure 16: is a declaration of an object reference
Figure 17: is a control clause
Figure 18: is a response message declaration showing bufferjength variable

Figure 19: is a diagrammatic view of the process of invoking DAM from a PCM

Figure 20 is a PDL definition of CORBA using the PDL compiler of the invention;

Table 1: State Parameter entry

Table 2: Structure of a (Code) State-Block

Table 3: Format of Constant Segment Entry
Table 4: Format of Variable-Definition Segment Entry
Table 5: in-memory layout of Variable Value Table
Table 6: Extensions to OMG IDL

Table 7; TUBE internal variables
Table 8: op-codes generated for reading a byteSequence
Table 9: op-codes for reading a null terminated string

11

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

Table 10; op-codes for reading an object reference

Table 11: Op-codes for processing "control" clause

Table 12: Post-Marshal map for CORBA message

' Table 13: PDL Op-codes

Referring to the drawings and tables there is shown a method of intercommunication of

middleware including the steps of providing a table of initial definition of structure

characteristics, including format and parameter data types, of one or more protocols;
converting said one or more structure protocol definitions into a selected format; storing

said one or more structure protocol definitions in said selected format in one or more

repositories; and at run time assessing the incoming message and selecting an appropriate
structure protocol definition to be used from the table and using the selected format of the

converted structure protocol definition to communicate.

As shown in Figure 1 middleware broker of the invention includes The Ubiquitous
Broker Environment (the TUBE system) which uses PDL (Protocol Definition

Language), and a declarative scripting language (based on OMG-EDL) to define the
characteristics of a particular protocol. The TUBE Protocol Definition tool provides a
GUI interface for users to produce PDL scripts. This script is then submitted to the PDL

compiler, which converts it into an internal format that TUBE can process at runtime.
The output of the PDL compiler is stored in the Protocol Definition Repository. The

TUBE interface Description Language (IDL) compiler processes the IDL definition of
the interfaces that need to communicate. These files define the format and data types of
the parameters passed between clients and servers. TUBE stores this information in its

Module Definition Repositoty. This data in conjunction with the protocol definition

(stored in the Protocol Definition Repository) is all that TUBE needs to convert messages
between different middleware formats.

The Distribution Priority Table stores the names of the various protocols supported for

each interface defined in the Module Definition Repository. These protocols are stored in
priority order; that is, starting by the preferred protocol, followed by each subsequent
protocol. Each entry in the Distribution Priority Table corresponds to an entry in the End
Point Resolution Table. This table defines the communication parameters necessary to

communicate with the interface over the specified protocol. In the case of CORBA, for
example, this would be the IOR for a server that implements the desired interface. The

12

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

information stored here depends entirely on the protocol. These two tables are used in

conjunction by TUBE to determine where and how to send messages between different

middleware. ·

Figure 2 shows the main components of the architecture of The Ubiquitous Broker

Environment (TUBE). Systems that work through TUBE will use the TUBE API, or use
their own middleware API, and have these calls intercepted and processed by TUBE.

TUBE consists of four (4) main process components, in addition to its four (4)

repositories.

The TUBE server provides the entry-points for the APIs. Both client code and TUBE

internal code communicate through the interfaces provided.

The Message Distribution Server (MDS) associates each request for a service with a

particular protocol. It reads the Distribution Priority Table to determine which protocol to

use to process the message.

The Dynamic adaptive marshaller (DAM) prepares requests for a particular protocol.

Given a request from the MDS, it looks-up the definition of marshalling rules for the
requested protocol, and the target interface definition in the Module Definition

Repository, It then marshals the target interface into the desired protocol, based on the

definitions from both repositories. It also un-marshals from the source protocol into an
internal protocol-neutral format.

The Transport Mediation Server (TMS) determines the target end-point for the interface
from the End-Point Resolution Table. It uses the combination of interface and protocol,

such as the IP-address and port number of an ORB, to workout the destination.

The Module Definition Repository (MDR) stores the meta-definition of the particular

interface. This includes the interface identifier and the data types of the parameters

passed. This information is derived from the EDL for the interface.

The Distribution Priority Table (DPT) provides for each interface defined in the MDR, a
list of protocols that can be used to communicate with this interface, stored in priority

order. '

13

WO 2007/147207 PCT/AU2007/000859

The Protocol Definition Repository (PDR) stores the marshalling rules for each protocol.
These rules are generic for each protocol and not specific to any interface stored in the

MDR,
5

The End-Point Resolution Table (EPRT) stores the target communication address for
each interfaee/protocol combination. This address could be, for example, the IOR for a

CORBA server, or a queue definition for MQ series. This table stores the necessary
information to send a message to, or communicate with, a defined interface using a

10 particular protocol.

The protocol structure undergoes a language neutral machine independent definition and
is compiled into binary modules known as protocol implementation'modules (PIMs) and

transport interface modules (TEMs). The TIMs contain the communication partameters,
15

These PIMs and TIMs are loaded at runtime and executed by interpreters (virtual

machines), PTMs are processed by the dynamic adaptive marshaller (DAM) and the TIMs
are handled by the transport mediation server (TMS). Both of these modules are

controlled by the message distribution server (MDS), The MDS is aslso responsible for
20 any interface mapping that is required. It uses either the processed request or response

message and a mapping definition. The actual mapping is performed by a mapper module

under the direction and control of the MDS.

TUBE uses different data formats internally depending on the situation. In the diagrams

25 the Protocol Independent Data Streams (PIDS) are the format used internally to pass data

between the TUBE API, the server and the DAM components. The Protocol Oriented
Data streams (PODS) on the other-hand consist of data that has been marshalled into a
protocol-specific format (e.g. CORBA) by DAM. These are passed internally between

DAM, the MDS, TMS and, if required middleware-specific APIs.

30
TUBE provides the ability to use either or both synchronous and asynchronous

communication modes, and that the desired method can be changed at anytime without
system impact. When it is required to switch from one mode to the other, all that i$
required is to change the configuration. This can be done on a per module/interface basis,

35 , even while the system is running. There is no need to shutdown and re-start the broker.

14

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

The following scenario depicted in Figure 3 describes the process-flow of an out-bound

message through TUBE through the following steps:

1. The application call is passed to the TUBE API via the TUBE server.

2. The TUBE server passes the call to the Message Distribution Server.

3. The Message Distribution Server selects a protocol to try from the
Distribution Priority Table.

4. The Message Distribution Server passes the interface/module identifier
and the preferred protocol to the Dynamic adaptive marshaller.

5. The Dynamic adaptive marshaller reads the Module Definition Repository
to determine the format and arguments for the call.

6. The Dynamic adaptive marshaller uses the protocol definitions stored in
the Protocol Definition Repository to prepare the call for the particular
middleware or application service.

7. The Dynamic adaptive marshaller passes the marshalled buffer back to the

Message Distribution Server.
8. The Message Distribution Server passes the marshalled message to the

Transport Mediation Server and tells it which protocol to use for transmission.

9. · The Transport Mediation Server reads the End-Point Resolution Table to

determine the host and port number required to communicate over this
protocol.

10. The Transport Mediation Server attempts to communicate with the
designated host using the appropriate communication, parameters.

If communication with the preferred protocol fails, TUBE will try each subsequent

protocol (in priority order). The application will only receive notification of
communication failure once all the listed protocols have been exhausted. If

communication succeeds, TUBE sends a positive notification to the application. The way
that this occurs depends on the application’s relationship with TUBE. If the application

has invoked TUBE via the API, then TUBE will return the status directly to the

application. If, on the other-hand, TUBE has intercepted an out-bound call made by a
proxy or stub, then the status will be given to that module for return to the application.

The scenario shown in Figure 4 describes the process-flow of an in-bound message

through TUBE with the following steps:

15

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

1. the external call is intercepted by a TUBE module.

2. the interceptor uses the TUBE API to pass the message to foe TUBE

server, which passes the call to the Message Distribution Server.

3. foe TUBE server passes the message to the Message Distribution Server in
the protocol that it was received.

4. the Message Distribution Server looks-up foe Distribution Priority Table

to determine whether the message needs marshalling into another protocol.
Steps 5, 6, 7 and 8 are only executed if foe protocol needs to be converted by the

Dynamic adaptive marshaller. If not then the message can be passed through to Step 9.
5. The Message Distribution Server passes the interface/module identifier and

the preferred protocol to the Dynamic adaptive marshaller.
6. The Dynamic adaptive marshaller reads foe Module Definition Repository

to determine the format and arguments for the call,
7. The Dynamic adaptive marshaller uses the protocol definitions stored in

foe Protocol Definition Repository to prepare the call for foe particular

middleware or application service.
8. The Dynamic adaptive marshaller passes the marshalled buffer back to foe

Message Distribution Server.
9. The Message Distribution Server passes foe (possibly converted) message

to the Transport Mediation Server and tells it which protocol to use for
transmission.

10. The Transport Mediation Server reads the End-Point Resolution Table to
determine how to contact foe end-point for this protocol. In this case, it

determines that foe end-point is local.

11. The Transport Mediation Server then passes foe message to the “Target

Application” on the local system.

It can be seen that the middleware broker of the invention using The Ubiquitous Broker

Environment (TUBE) aims to provide protocol-level inter-operability with the following

30 characteristics:

• Supports a wide range of protocols, including legacy systems.

• Protocol descriptions are to be declared, and developed with a utility tool supplied
with TUBE. This allows new protocol support to be added with no impact on existing
systems. This effectively provides future-proofing of IT investments. As new

35 protocols emerge, they can be utilised declaratively with very little (if any)

16

WO 2007/147207 PCT/AU2007/000859

development.

• Protocols can be changed (added or removed) without re-compilation of
application Software,

5 From a user perspective, a major advantage of this approach is that application programs

don’t have to be re-compiled to use TUBE. TUBE is installed, and descriptions of the
protocols supported are declared and stored in a protocol definition repository.

Applications specify the service that they want by using the API of the service. These

calls are intercepted by TUBE, which determines a service provider and marshals the call

10 appropriately. The service providers and the protocols that can satisfy a call are specified

for each interface. If the required service is not available through a preferred protocol,
then alternative protocols are tried. For example, the default may be CORBA, and calls
will target CORBA end-points (e.g. an IOR); however, an alternative may be MQ-Series,

which will be tried if a CORBA service cannot be reached. (The onus will be on the

15 systems integrator to specify those protocols that are interchangeable for each interface.)

Unlike some proprietary EAI products, which attempt to control workflow and broadcast

(publish) each message on a universal messaging bus, TUBE only communicates with

designated end-points. TUBE is capable of broadcasting or publishing to a universal bus,

20 if that is required. Since TUBE will provide fully synchronous or asynchronous methods,
the desired communication type may be changed at anytime without system impact. For
example, if synchronous behaviour is required from an (essentially) asynchronous

middleware platform (e.g. MQ-Series), TUBE will handle the synchronisation through
blocking and buffering. If it is then required to go back to purely asynchronous, the

25 application software does not need to change, provided that the protocol is supported for

the called interface. This will allow remote modules to be developed independently, and
for each to use the middleware that best suits their purposes. There will be no need for

independent development groups to be familiar with each other’s protocols.

30 The messaging life-cycle employed depends upon the type of communication mode we
are engaged in. If we are engaged in a synchronous mode operation, then we will be in a

blocked or waiting state. In the asynchronous mode, we are also waiting but can continue
to perform other tasks whilst we wait- We need to be able to handle both modes
independently of one another, and also be able to combine them. Let us consider the

17

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

following example, a client may make a synchronous request on a server using the same

protocol as always; the client is unaware that the server implementation has been changed

to use asynchronous queuing. We need to hold the synchronous session with the client,

which is awaiting a response and is thus blocked. At the same time we must monitor a

queue on the server-side and we must wait for a response that could come at anytime.

However, we are not blocked, we are waiting to be notified when something is put on the

queue. When our response arrives we send it back to the waiting client. This entire
process involves more than sending and receiving of the request and response; we must
marshal the data to and ftom the source and target protocols.

During the marshalling process the message data need to he buffered and copied from the

source to the target. Depending on message size, this could be a fast or slow task. If we
are brokering a synchronous request over an asynchronous invocation to the server, we

will keep the client blocked until we have completely marshalled and sent the request

message. The client will continue to remain blocked until we return the response to it.

The component in the TUBE architecture that is responsible for managing the messaging

life-cycle and ensuring that chents either; receive the response in synchronous mode or

are notified of responses in the asynchronous mode is the Message Distribution Server

(MDS). The MDS is the first and last module to handle a message and its subsequent
response (assuming a two-way exchange). The MDS is also responsible for determining

the target end-point from the DPT and EPRT, and providing that to the other modules via
an API. When clients elect to use the TUBE server directly via APIs, the TUBE server

creates an instance of MDS to handle the message. The same thing occurs when a

protocol interceptor intercepts a message; it uses an instance of MDS to manage the

session.

The basic operation of MDS may be described as follows:

• Receive an in-coming message

• Invoke the DAM to un-marshal the source message into protocol-neutral (TLV)

format

• Determine the target protocol and end-point from the DPT and EPRT

• Call DAM to marshal from the TLV format into the target format

• Invoke the TMS to perform the actual communication and await the response

18

WO 2007/147207 PCT/AU2007/000859

There are some situations where the semantics required by a particular protocol cannot be

handled by MDS. The job of the MDS is primarily to distribute messages amongst other
TUBE components to ensure that they are marshaled and delivered correctly. This generic

5 model would be compromised if we tried to build the logic into MDS to handle these very

protocol-specific situations. Instead we relegate these protocol-specific tasks to what we
call “Protocol Control Modules”. The PCM assists the MDS with higher-level semantics

that deviate from the standard synchronous and asynchronous communication modes. An
example of this is the LOCATION-FORWARD response received in CORBA.

10

This response tells the client to resubmit the original request to a new target end-point.
We chose not to embed the logic to handle this in MDS. This is a very CORBA-specific
situation and it did not make sense to design any specific protocol related operations into

MDS. Had we done so, we would have most likely found ourselves adding logic to handle

15 the idiosyncrasies of other protocols. This would endanger MDS of becoming over

complicated and difficult to maintain as new protocols were added. A major design goal
of MDS, and for that matter all of TUBE, is to be protocol-neutral. The only parts that are

intended to be protocol-specific are the PIMs generated from the PDL scripts . The MDS
uses the PCM to make higher-level decisions about message processing. The MDS will

20 pass the full request or response to the PCM and will delegate all further processing to it.
MDS will wait for the PCM to either submit another request or return a response to the

client.

Protocol definition language (PDL) as its name implies is a language (symbolism) for

25 defining protocols. In the same way as IDL defines interfaces, PDL defines protocol
structure. The language defines The structure of both request and response messages.

When we say it defines the structure, we are referring to the things that we need defined
in order to exchange messages with a server on behalf of a client. We discuss earlier in

the paper that the purpose of TUBE is as a broker between disparate systems. As a broker,
30 it sometimes needs to convert from one client protocol to another to communicate with a

server. We have various types of protocols; we have text-based protocols such as XML,
HTTP and SOAP5. Then we have binary protocols, some of which are object-based

(examples include CORBA, COM and Java-RMl) and others such as DCE-RPC, which
are not object-based. Finally, we have the MOM type protocols such as MQ and JMS.

19

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

Each protocol wraps or encapsulates the actual message content in different ways, SOAP
for example wraps the content in a structure called a SOAP body, and then wraps this in

another structure known as a SOAP envelope. In the following discussion, we shall refer

to this content as the payload. This is the body of the message as defined for the interface.

To clarify this, let us use our simple math-server definition again; partially reproduced in

Figure 5 for convenience of the reader. Figure 6 and Figure 7 show the basic structure of a
request and successful response message for an “add” operation of the numbers “1000”
and “15” on the mathServer interface. The server may also return an exception or error

condition. This is shown in Figure 8, where we assume that the div (divide) operation was
called with “1000” and “0”. This is an illegal operation and hence the server returns an

exception. The exception we have defined is a structure, which contains one member, a

string describing the error. It could however be considerably more complex. The example

exception shown is protocol-neutral, that is, it does not represent any specific protocol

mapping. It is merely illustrative.

Referring to the interface definition above, if we are dealing with a request, our payload

will be a math_req structure (see Figure 6), If we are dealing with a response, we will
have a math_resp structure (see Figure 7) or some failure indication (see Figure 8). The

payload for a message is either the (serialized) input parameters to the operation, or the
(serialized) response from the operation, whether successful or not. We know from the

above definition how to marshal these structures; we know at least what native types
constitute them. What we do not know however, is how to marshal them over a particular

protocol. Do we want the integer (int) values converted to text so we can send them in

XML? Does the protocol wrap the payload in some other structures, such as headers or

trailers? If we only know the structure of the interface, then we cannot broker between
protocols. We must know what to add to the message or what to convert2 so that the target

system can receive and process it, We must also know the address (in protocol-specific

terms) of the end-point (target). This may be a host name and port number or a queue
name or, perhaps a directory name. These are the items of “protocol structure”, which

PDL is designed to address.

2 This is not character-set conversion such as ASCII to EBCDIC, rather conversion of numbers to strings
and so on.

20

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

There are also certain aspects of message structure, which are similar although not the

same between protocols. That is, they may contain varying values depending on the

protocol, or appear in different places within a message. These items are mandatory for

any message exchange regardless of protocol. We refer to such items as TUBE internal
variables. These are the variables TUBE uses to keep track of such things (amongst

others) as; message lengths, sequence numbers, and whether we are dealing with a request
or a response. Table 7 provides details of all these variables. In the discussion that

follows, we refer to TUBE internal variables and user variables. User variables are those
that only have meaning for the particular protocol. We obtain their value from the EPRT

entry for the interface. Although the variable is applicable to the entire protocol, its value
is determined on an interface-by-interface basis. In other words, the same variable may

have a different value in each EPRT entry. An example of a user-defined variable in an

EPRT entry is a CORBA object-key . This identifies the object to instantiate (or invoke)
on the target end. We discuss both types of variables and their PDL definition later.

Before this discussion, it is important to gain an understanding of some terms and

concepts that we refer to when describing PDL. Of particular importance are code-blocks

and op-codes. A code-block, also referred to as a state-block (see Table 2) is a structure
consisting of the following elements:

• Op-code

• A target variable to store the result of the operation

♦ Array of parameters for the operation

♦ Offsets into other data structures required by the operation

These code-blocks are processed at runtime by a Virtual Machine (VM), which interprets

the op-codes and executes the given instruction. We call this VM the DAM (Dynamic

adaptive marshaller). We decided that using a VM would enable the addition of
functionality to PDL by expanding the range of op-codes.

The op-code is a symbolic value used to determine the operation to be carried-out. For
example, the op-code READ_INT instructs the marshaller to read a signed 32-bit numeric
value from the input source. Likewise, the op-code WRITE_INT instructs the marshaller

to write a signed 32-bit value to the output target.

21

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

The PDL is a series of extensions to OMG EDL . The rationale behind extending an

existing language is that most software engineers have some exposure to, or knowledge of
it. This is mostly the case with DDL. It defines CORBA interfaces and is the description

language for Java RMI. OMG IDL itself is an extension of the original DCE RPC DDL .

Microsoft also has a language based-on extension to RPC IDL called MIDL (Microsoft

Interface Definition Language). It primarily defines C++ COM interfaces . Extending an

existing language reduces the learning curve for the users, and shortens the development

time for the PDL and supporting tools. An example of PDL is explained later with
reference to Figure 20. The example uses CORBA HOP Vi.0 to illustrate in detail:

1. The use of the IDL extensions
2. How the PDL compiler interprets the extensions

3. The op-codes that are emitted

In a later section we discuss the DAM, and show how DAM interprets these op-codes to

handle messages.

In the PDL compiler, PDL scripts are not compatible with IDL and therefore standard

IDL compilers cannot process them, as they would not recognise the extensions, which
would cause parsing errors. We need a special compiler to process PDL. The PDL
compiler reads the PDL definition (also referred to as a script or PD) and generates two
types of output, a Protocol Interface Module (PIM) and a Transport Interface Module
(TIM). There are two PIMs generated for each protocol definition, one for handling

requests and the other for handling responses. This simplifies the logic required in both

the compiler’s code generator and the runtime interpreter (DAM). The DAM loads the
appropriate PIM based-on the current message type (i.e. request or response), The PIM is
comprised of code-blocks, derived from constructs within the PDL script. For example,

for each “struct” keyword encountered In the PD, the compiler generates whatwe refer to

as a code-block. This code-block is a series of instruction blocks. An instruction block
consists of op-codes and state definitions, which define operations, variables (internal and
user-defined) and initial values. Each op-code and state is (generally) associated with a
source or target variable . The Figure 9 diagram illustrates the structure of a PIM.

22

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

The PIM header contains information and structures that assist in the loading and

processing of the rest of the file. The header is comprised of the fields shown in Figure
10.'

We will deal with each of the header elements in turn, and then discuss the other portions

of the PIM structure. The entire PIM structure and all the constituent parts are shown in

the tables and explained as we encounter them.

1. The File-Identifier is a hexadecimal value, which identifies this file as a valid
TUBE PIM. If this value is not found or does not match, then the rest of the file is

ignored and the load aborted.

2. The Marshalling class-name specifies the name of the class that implements the

TUBE.commsBuffer interface. This is the class that will be used for all reading

and writing operations whilst processing this PIM. The actual disk layout of this

item is an integer specifying the length of the name string, followed by the string,
This string contains the actual name. A length of zero (0) signifies an empty class-
name and there is no string following. In this case, the DAM will use a default
(internal TUBE) implementation for encoding and decoding of native values.

3. The Constant-Segment stores all constant values. The entries specify a type, the

length of the value and the actual value. We always encode the value in a byte
array despite the data type. The compiler encodes offsets into this segment into

instructions that require access to these values.

4. The Variable-Definition Segment contains information about all the variables
defined in the PD. It stores the name, data type and a flag to define the variable as

an internal or user-defined variable. If the variable has an initial value specified by
an “init” clause (see Table 6), then an index into the CS is also stored.

The Marshalling map, Pre-Marshal map and Post-Marshal maps all have the same basic
structure (illustrated in Figure 11). These blocks contain the op-codes and other

information necessary to the execution of the operation. The Declarations section of the

file contains pointers into these maps for instruction-blocks generated from “declare” (see

23

WO 2007/147207 PCT/AU2007/000859

Figure 13) statements. These blocks contain all the code required to handle the declared
type. We now discuss variable handling and explain these relationships.

When the compiler encounters a simple (native) type in a struct definition, if it specifies
5 an initial value, the compiler generates an entry in the CS and stores an offset to this value

in a state-parameter entry (see Table 1). The compiler adds the entry to the state-block it
is currently generating. If the variable does not have an initial value, the compiler

generates a VDS definition as an empty slot for the value. This slot is a placeholder for
the value when it is read-in. It is also the source for the value when writing. Refer to

10 Table 5 for a description of the runtime usage of this entry.

In the case of compound (declared) types, the compiler generates references to two
separate code-blocks, one in the reading PIM and one in the writing PIM. These code

blocks have a type of USER-DEFINED and have an entry created in the Declarations
15 section using the name of the structure with either a “_READ” or “_WRITE” appended.

This modified name is stored in the CS and the CS index is stored in the definition entry.

The PDL compiler patches offsets to the actual code-blocks once it has completely

processed the PDL script. Tire instructions to handle the declared type are generated into
the Marshalling map. The first instruction-block for handling this type contains a pointer

20 to the modified name in the CS. This is how the compiler finds the value to patch into the
declaration entry. This is also, how the DAM identifies and loads individual code-blocks
at runtime.

We write the Constant-Segment to disk in its entirety. It is read-only at runtime. These

25 values never change during the execution of the PIM.

The compiler writes the Variable-Definition Segment to disk in the format shown in

Table 4). This is what the DAM reads when loading the PIM. At runtime, we create

another structure for storage of variable values for efficiency. We call this runtime-only

30 structure the Variable Value Table (WT)· The layout of the VVT appears in Table 5.

The Variable Value Table stores the values for variables as we read them from the input

source. If we are marshalling this value, then we use this entry as the source and write the
current value to the output target using either, user-supplied methods or internal (default)

35 handlers. We extract the native type from the Object wrapper for writing and we coerce it

24

WO 2007/147207 PCT/AU2007/000859

from the native value into the wrapper when reading. This casting of native types to and
from objects adds some processing overhead, however we compensate for this with the

ability to handle all data types in the same manner. Refer to the section on DAM for a
more in-depth discussion on runtime variable management.

5

Figure 12 illustrates a read-octet operation for a target variable, which has an offset of

two (2) in the Variable-Definition Segment. If we follow this offset, the VDS entry stores
an offset of five (5) into the CS. This is where we find the name of the variable

“objectKey”. Because this is a USER-DEFINED variable (indicated by the declaration

10 “$objectKey$” in the PDL script in the Figure 20 CORBA example), initially we obtain
this value from the EPRT entry for this interface. This entry then remains constant for the

life of the PIM, unless explicitly changed by invoking set method or executing a code
block. When we have read the value, it will be stored in offset two (2) of the Variable
Value Table (WT). We create this table only at runtime to manage the storage of actual

15 values, which are not constants. After the read, the entry at offset two (2) contains the

value “$OBJECT:myObject”. When we marshal this in a request, its value comes from
this WT entry.

In the application of extensions to OMG IDL, table 6 shows the new keywords and

20 constructs introduced to extend OMG IDL. A brief description of each is also given. We

expand these descriptions as we work through our CORBA example.

Table 7 describes the internal TUBE variables that may appear in a PDL definition. The

entry referred to in the text, unless otherwise noted, is a record in the Variable-Definition

25 Segment.

These are reserved words and are expected enclosed in the character (e.g. %count%).
The PDL compiler throws an exception if it encounters any other usage.

30 We will now examine each section of the PDL script (see Figure 20 CORBA example) in

detail. We also assume throughout the discussion that the compiler has built a symbol
table and other internal structures during the parsing phase. Our discussion will
concentrate on the code generated from these constructs, rather than their actual

construction. Most of the examples show the instructions generated for reading. We must

25

WO 2007/147207 PCT/AU2007/000859

note that for each set of read instructions generated, there is also a corresponding set of

write instructions emitted.

5

10

15

20

25

30

35

We begin with the protocol declaration,
protocol CORBA

{

The first keyword that we encounter is “protocol” followed by the value “CORBA”. This
tells the compiler to generate the following two filenames:

• CORBA_Req.PIM - defines rules for marshalling requests

• CORBA Resp.PIM — defines rule for marshalling responses

The “{“ character identifies this as the opening of the PD script.

Next, we encounter three “typedef’ statements. These behave the same way in PDL as in

standard IDL and programming languages such as C and C++. In that, they define an alias
for the type. For instance, the following statement;

“typedef sequencecoctet, 3> reserved;”

causes the compiler to create a variable named “reserved” and whenever it encounters this
variable to point to a code-block. The code-block will define op-codes for reading and

writing a sequence of three octets. The definition for GIOP__MAG1C is very similar
except that it also generates a four-byte entry in the CS with the value ‘G”I”O”P’.
Whenever we begin to read a message, we first look for those four bytes and conversely,

when writing a message we always write this initial value. The definition for “olist”

specifies an octet sequence of unbounded length. The important distinction to note here is
that sequences of native items (such as octets) defined with “typedef “ do not have their

length encoded and neither do. we expect to read the length during decoding. If the length
is required when reading or writing, we must define this using a “declare” clause (see
byteSequence in above) as explained next.

Before we explain the “declare” clause however, we need to skip ahead a little and

explain the “bufferFormat” construct and how the DAM uses it in conjunction with the
MDR at runtime. The “bufferFormat” definition tells DAM, which code-blocks to use

26

WO 2007/147207 PCT/AU2007/000859

when marshalling the payload. The payload can be made-up of either native types or

constructed complex types. The complex types may contain native types and other

complex types. We must provide the DAM with marshalling instructions for the following

standard constructed types:

5

• STRING - how to marshall a String

• BYTESEQ - marshall an arbitrary byte sequence

• ARRAY — marshall an array (fixed-size sequence) of native or complex types

• SEQUENCE - marshall a variable-length sequence of native or complex types

10 · OBJECTDEF — marshall an object definition

The DAM assumes that a message may only be comprised of a combination of those
items and native types. If we do not provide these instructions in the PDL, consequently

there will be no handlers (code-blocks) generated, as there will be no “declare” clauses to

15 define them. In this case, DAM will use internal marshalling rules, which may or may not
be suitable for the particular protocol. For example, an object definition is very protocol
specific, if none is given, DAM will simply encode and decode an item defined in MDR

as an object, as an un-interpreted array of bytes, Tf we look at the PDL definition for an

“objectDef’ in our CORBA example, we can see that if we omitted the “declare” and
20 “bufferFormat” statements, the default behaviour would not be suitable for our protocol3.

If the PDL compiler encounters multiple bufferFormat statements, it throws an exception

and terminates processing.

The next keyword we encounter is “declare”. We use this for defining compound or

25 complex types, which may he composed of many native and or other, compound types.

Referring to Figure 13 we are defining a “byteSequence”. This will generate op-codes
that tell the DAM how to read and write an arbitrary sequence of bytes. We define a

reference to an internal TUBE variable “%num_bytes%” (see Table 7: TUBE internal
30 variables). This indicates how many bytes (octets) to read or write next. We then have a

reference to an “olist”. Next we find the end of this declare clause, signified by

3 For example, strings would not be null terminated.

27

WO 2007/147207 PCT/AU2007/000859

The compiler will now create a code-block named “byteSequenceJTEAD” with the op
codes shown in Table 8.

5

10

15

20

25

30

From this point on wherever a reference to “byteSequence” appears, the compiler will

encode an instruction to load this code-block and execute it Any other code-blocks that

refer to this code-block will have a flag set that specifies a reference to a “USER-

DEFIND” code-block. The instruction (in the referring block) will also have an offset (in
the CS) to the name of this block.

Referring to Figure 14, the next declaration we encounter is for an array. This entry
. specifies how DAM should handle arrays. This is very similar to the byteSequence

example, except that we use another special variable “array_size” to keep track of the
number of actual entries. An array is a fixed-size sequence. The interpreter derives the
upper-limit of the array dimension at runtime by referencing the MDR entry for the

particular interface being marshalled. Currently PDL supports only single dimension

arrays.

Referring to Figure 15, the declaration for “nString” demonstrates the use of op-codes to
add and subtract constant values to and from those currently being processed. The “+ 1 ”

tells the compiler that we always have one extra byte than the actual string length. Here
we read the length of the string including the null byte, and then we must subtract one (1)

from it. This is so we do not consume the null as part of the string. We read it separately
and discard it. Conversely, when we are writing the string, we first add one (1) to the

length and write it. We then write the string itself, and finally we write the null byte.

The compiler generates the code-block as per Table 9.

Referring to Figure 16, the “objectDef” declaration illustrates the usage of declared types

within declared types.

Tabic 10 illustrates the resultant code-block.

The interpreter executes the instructions above whenever an “object” definition is
encountered in the payload and the value being marshalled is defined as an “object” type

28

WO 2007/147207 PCT/AU2007/000859

in the MDR. The statement “OBjECT=objectDef;" in the bufferFormat clause defines this

association.

The “bufferFonnat” clause is the next construct that we encounter. As we have already

5 explained the bufferFormat clause above, we will not repeat it here.

Referring to Figure 17 the next significant construct we encounter is the "control”

statement. The compiler writes the op-codes generated here, (see Table 11) into the Pre-

Marshal map. These are loaded and executed just before marshalling the payload. When
10 the interpreter encounters the special op-code STARTPAYLOAD, it will search for a

pre-marshal map. If none is found, then the DAM will traverse the payload according to

the MDR definition for the interface being processed. Otherwise, if there is a map present

we invoke a module to handle the tests.

15 The statement above tells the compiler to generate some branching op-codes based-on the
value of the internal variable reply_status. When the value of repiy_status is read from the

input at runtime it is examined and tested for the values: 0, 1, 2 and 3. The value

determines what action to take for encoding or decoding the payload. After executing the

appropriate action, we exit this module and return to the main interpreter code. According
20 to the rules specified above, we will execute the following process:

If the value is zero (0) we push a false onto the stack. This indicates that we will follow

the MDR definition for the interface and marshall the values accordingly. In this case, the

module returns a Boolean false. If it is not zero (0) we then perform a test for one (1), and

25 if this is true we follow the definition of the exception for this operation (as defined) in
the MDR- Unlike the case for zero above where we return false, for MDR-defined
exceptions we return true to indicate that it is not the standard payload; although, we are

still following an MDR definition. Otherwise, we test for two (2), and if this is true, we
push the name of the code-block defined as “systemException_READ” and return it.

30 Finally, we test for a value of three (3). If this is true, we load the name of the
"objectDef^READ” code-block and return. If none of the defined values exists, the DAM
throws a marshalling exception.

In summary, the module that performs the “control” instructions returns one of three
35 values to the main interpreter. It returns false if we are marshalling the payload by

29

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

following the MDR representation, or it returns true if we must handle the. payload

differently. A string value indicates that this module has pushed the name of a

USER_DEFINED code-block (that was defined with the declare clause) onto the stack.

The main interpreter loop will load and execute this code-block. After marshalling the

payload, the interpreter will search for a Post-Marshal map.

Table 11 shows op-codes for processing “control” clause. Unlike the control clause for
pre-marshal maps, there is no keyword to indicate the start of a post-marshalling map4.

The compiler will always generate code to write-out the body (payload) length after
marshalling the payload. Therefore wherever the variable %buffer_length% is

encountered this tells the compiler that this is the payload length. We initially marshal the
length as zero (0) and then we re-write it with the correct value after marshalling the
body.

Referring to Figure 18, statements that contain the bufferjength variable, such as the one
shown, automatically cause the compiler to create a post-marshalling block. This block

contains instructions to save the current point in the buffer, calculate the new position,

write the length and return to the current position.

Table 12 shows post marshal maop for CORD A message.

Next, we encounter the “external” clause. This defines the full class-name (including

packages) of the class that the interpreter is to call for marshalling native types. Because

CORBA uses CDR encoding for primitive data, the default TUBE codec is not suitable.

Therefore, we define our own special class to handle the CDR padding of the bytes that

the PIM reads or writes. We only need to define this class once in the PDL. From then on,
it will be available for marshalling any defined interface across this protocol. For
example, when the ΡΪΜ contains a READ INT op-code, the DAM will call
MYORB.marshaJler.CDRBuffer.read into to obtain the value. Conversely, when we

encounter WRITEJNT, we call MYORB.Marshaller.CDRBuffer.writeJnt(value) to

output the value. This clause causes the compiler to populate the Marshalling class-name

member of the PIM header (see Figure).

4 We may introduce one or more if we feel it would add flexibility to PDL.

30

WO 2007/147207 PCT/AU2007/000859

The final construct we shall deal with in this example is the “endPoint” definition. It

5

10

15

20

25

30

35

appears in PDL as follows:
endPoint; "TCP"

{
//
ϋ These are transport and protocol-specific items
//

// This is the host for the object
// This is the port on the host

The value following the is transport for the protocol, in this case “TCP** for IIOP. The
DAM must find these values in the EPRT entry for this interface. The compiler generates

code into the TIM for loading and using these values. As the definition for this endpoint

defines the use of TCP/IP, the TIM will use these values to create a sockets-based
connection to the defined host on the designated port. We cover the operation of TIMs in

more detail in the section on the Transport Mediation Server (TMS).

In the next section, we will continue with Our CORBA example and show how parts of
the message may be re-marshalled.

The Dynamic adaptive marshaller (DAM) is the name we have given to the VM, or

interpreter, which executes the PIMs that we discussed in the previous section. As the
name suggests, this component must dynamically adapt to the protocol that it needs to
marshal. Before we discuss the DAM in detail however, it is important to understand the

two (2) types of invocation modes (i.e. the ways we invoke DAM).

We can invoke DAM in either of the following ways:

• Via a Protocol Control Module (PCM)

• Via the Message Distribution Server (MDS)

Both invocations actually occur via MDS, however in the case of a PCM, the MDS first
routes to the PCM, which then invokes the DAM. In the other case, the MDS invokes the
DAM directly.

31

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

Firstly, we must discuss the role of the Message Distribution Server (MDS) in the

message processing cycle. We assume throughout the discussion, that we are processing a

synchronous (two-way) message.

When a request is intercepted by a protocol listener, the listener creates an instance of

MDS and passes it the message. The MDS will then attempt to create an instance of a

Protocol Control Module (discussed below) using the Java Reflection API. If the creation
is successful, MDS hands the request to the PCM and takes no further part in the process

until the PCM returns the response. Whereas, if the creation fails; MDS passes the request

to DAM and waits for DAM to return a protocol-neutral representation of the request (a

TLV buffer). The MDS will now look-up the DPT to ascertain the target protocol. The
ί

MDS passes the TLV buffer back to DAM for marshalling into the target protocol. After
DAM returns the marshalled request, MDS passes the message to TMS for transmission

to the target end-point. The MDS now waits for TMS to return the response. When MDS

receives the response, it carries out the reverse of the above procedure; it uses DAM to

convert the response from the target protocol into the source protocol. The MDS returns

the marshalled response to the listener,

A Protocol Control Module (PCM) is a piece of software written by a user. This module
provides higher-level protocol semantics than those required for marshalling. As an
example, consider our CORBA PDL definition (see

). In this script, we have a “control” clause, which is a switch statement that controls what
sort of message payload we are dealing with. The decision as to what to do with this

payload after marshalling and return belongs to the PCM. The PCM implements the same
switch logic as that specified in the control clause with the addition of logic to handle the

resultant payload. To further clarify this we will again give an example based on our

CORBA PDL using a response message. The PCM must decide what to do with this

response based on the value of the reply_status field of the message.

One of the values specified for replyjstatus in the control clause is a three (3), which

signifies that the response payload is a CORBA object-reference (defined as ohjectDef).
To a CORBA client or server the value of three (3) actually means more than the type of

response payload; it means the response is a LOCATION-FORWARD response
<.CORJBA $pee >. This indicates that we should re-marshal the original request and submit

it to the object whose reference is contained in the response message. We believe an

32

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

attempt to support the specification of this logic in PDL would result in an overly

complex language. That is why we have chosen to delegate these higher-level semantics
to a user-supplied module. The PDL still provides support for the marshalling of the

various payload types, without however attempting to interpret their meaning. That is, the
decision whether or not to re-submit the request to the new object is left to the PCM. The

DAM APT provides methods for retrieval and population of various fields within the

message by name. Therefore, the PCM makes a request of DAM to re-marshall the

request using the new object-reference received in the response. We must emphasise that
only one PCM is required for a given protocol, and this can manage any message for any

defined interface handled by this protocol. Using a CORBA LOCATION-FORWARD

response message, the PCM performs the following steps (illustrated in Figure 19):

1. Receive the original request from MDS
2. Invoke DAM to marshal the request

3. Invoke TMS to send the request and wait for a reply
4. Receive the response from TMS

5. Invoke DAM to un-marshal the response
6. Make a decision of what to do based-on the reply status in the response

If the PCM decides to re-submit the request
o Use DAM APIs to set appropriate fields in the request with new values
o Return to step 2.

7. Return the response to MDS for subsequent return to client

The main difference between the MDS direct invocation of DAM and the PCM

invocation is that MDS does not attempt to interpret any of the messages. The MDS

simply routes the messages to the other components.

Once we invoke DAM either, directly from MDS or via a PCM it must dynamically adapt

to the source protocol of the in-bound message, and to the target protocol of the out
bound message. The MDS or PCM will tell DAM what protocol the in-coming message is

encoded in. The DAM will then search the Protocol Definition Repository (PDR) for a
request PIM that implements the un-marshalling rules for the particular protocol, The

DAM will throw an exception if it does not find the required PIM.

33

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

Once the source PIM is located, it is loaded and DAM checks the header for external class

declarations. Tf we find any, DAM creates an instance of the classes using the Java
Reflection API. We recall from our discussion in that these classes must implement

TUBE-defined interfaces. This allows DAM to handle different buffer types and encoding

schemes uniformly. Users are free to wrap or implement any underlying methods or

formats that they choose. The DAM calls pre-defined method signatures to read and write
the different natiye data types. Therefore, if a user requires compression or encryption and

does not want to reveal the algorithm in the PDL definition, they can implement the

algorithm in their commsBuffer class. This way the details remain hidden, whilst still
taking advantage of DAM and a PIM to perform the actual traversal of the interface and

its data structures. This applies to any interface, regardless of complexity. Provided we

define the interface in the MDR, DAM and the PIM ensure encoding of the message as

per the rules specified in the PDL definition for the protocol. The fact that we encrypt the

values with a proprietary algorithm does not interfere with the encoding and de-coding

process. We feel that this is a very powerful feature of the TUBE approach to message
processing; special protocol handling code only needs to be written once, not for every
interface. This allows optimal re-use of code and uniform treatment of all interfaces over

the protocol.

The DAM uses the source PIM to un-marshal the in-bound message into an internal

protocol-neutral format known as TLV (Type, Length and Value). The next step in the
process is to determine the target protocol. We achieve this by using MDS APIs to look
up the Distribution Priority Table (DPT) and determine, which protocol has the highest

priority. The DAM creates a request marshalling PIM for the target protocol. The DAM

then uses values from the TLV to populate values within the target PIM.

TUBE’S major objective to provide brokerage between different types of middleware is

implemented by storing interaction rules in PIMs and TIMs. The major categories of
information required by TUBE to mediate between disparate middleware are:

• On-the-wire protocol and payload format.

• Communications sessions. The communication sessions are further decomposed
into a number of operations. These are; session-establishment (hand-shaking), session-

management and session-termination. Each in-tum may require further de

composition, depending on the middleware in question. For example, session-
management may involve simply sending data, or sending data and waiting for a

34

WO 2007/147207 PCT/AU2007/000859

response. The exact nature of the interaction depends on several factors; the target

middleware, the session type (one-way or two-way) and the invoking application
(interface) requirements.

5

10

15

20

25

30

35

As discussed, the Module Definition Repository holds the definition of the interface. This

is necessary because there is likely to be an impedance mismatch between the two
middleware interfaces, such as for example, with CORBA, which is object-based, as

opposed to MQ that is message-based. The interface definition may need to be altered to

reflect this. If MathServer is MQ-based, whereas its clients are CORBA-based, method

calls in CORBA must be properly mapped to MQ messages to ensure that the correct

operation is performed by the receiving end.

The MathServer IDL defines four methods: add, sub, mul and div. To specify the

operation to MQ, we encode the parameters using information from the MDR. If the

information were sent as is (i.e. with only math_req encoded), the MQ server would not

know which operation to perform. Therefore, the IDL needs to be modified to reflect
what MQ requires as established by the MQ server team. For example, let us assume that

the MQ team established the following COBOL definition for the MathSorver

interface.

01 MATH_REQ.

OP_ CODE PIC X VALUE SPACES,

88 ADD__OP VALUE Ά' .

88 SVB_ OP VALUE 'S' .

88 MUL^OP VALUE Ή' .

88 DIV__OP VALUE Ό',

03

03
NUMl

NUM2

PIC 9(4) VALUE 0.

PIC 9(4) VALUE 0.

01 MATH_ RESP.

03 RESP NUM PIC 9(4) VALUE 0.

We assume for the remainder of the discussion that the server has been changed from
CORBA to MQ-based and that the clients remain CORBA-based.

The data structures math_req and math_resp arc almost the same, except for the op_code

in the request structure. The client development team creates the IDL shown below.

35

WO 2007/147207 PCT/AU2007/000859

interface MathServer

5

10

15

20

25

30

35

struct math_req

{

char op_code;

int numl;

int num2;

}?

struct mat’n_resp

{
int resp_nuitl;

// methods for each operation

struct resp_nuni add(in struct

struct resp_nutft sub(in struct

struct resp_num mul(in struct

struct resp_num div(in struct

math_req);

math_req);

math_req);

math_req):

}}

It is worth noting that:

• The interface remains largely un-aitered

• The request and response parameters have not changed

• None of the object-oriented properties of the client interface has been violated

• Simply tbe op code member has been added to the request structure.

We may now use this interface with object-based and non-object based systems.

If the IDL were left in its original state, the CORBA call obj->add(l 0,9) would be

encoded by TUBE into an MQ message as method-name serialised-parameters, for

example: .
add 10 9// spaces between values are for readability only

This is the default behaviour based on the IDL definition. The onus is on the systems
integrator (the client development team in this case) to ensure that the definitions match.

Conversely, if the call was being marshalled from an MQ message to a CORBA call and

the IDL were in its original state, TUBE would not be able to determine which method to

call. This is because TUBE only receives a sequence of bytes representing the

36

WO 2007/147207 PCT/AU2007/000859

5

10

15

20

25

30

35

math_req structure, and therefore there is no way that the operation can be determined

from the original math^r eq structure. The necessary information is just not there. Using

the new IDL, a mapping ts defined that instructs TUBE to use the op^code member of

the request structure to determine the method to call on the CORBA object. There is still,

however, a missing a link between the op_code value and the actual method-name.

Therefore, a mapping definition such as the following is defined:

<FieldMap action="operation">

<Field name=”math__req - op^code" offset=’O” type="byte"

lqn="l">

<XForm Map="Azadd M,mul D,div S,sub" />

</Field>

</FieldMap>

The XML (fragment above shows that to derive a method-name, we use either
• A byte from offset zero (0) in the in-bound buffer, and then map it according to the rules defined

by the XML tag XForm, This is used when only a buffer of bytes is available, such in an MQ or JMS
BytesMessage,

• The op_code member of the math_req structure, This is used where the structure of the buffer
(a SOAP message for example) is known, and then map it according to the rules defined by the XML
tag XForm. This shows, for example, that an Ά' is mapped to '■'add".

The following example shows a complete translation from an in-bound MQ client request to a CORBA-
based object request to illustrate the mapping process, We use the add operation with the decimal numbers
1000 and 15 respectively.
MQ Message Buffer (Hexadecimal little-endian) as extracted by MOP/.M

00000 — 41--------------------------ASCII character Ά'

00001 — e8 03 00 00 ----- Decimal number 1000

00005 — Of 00 00 00 ------ Decimal number 15

Using the rules defined in the XML shown above we derive the method name add from the byte at offset
zero in this buffer. We now show how the CORBA PIM marshals these values into lhe CORBA GIOP
request buffer. (The PIM actually receives an intermediate representation of the buffer, which is not shown
here for brevity.)
GIOP Header

00000 -- 47 49 4f 50 — GIOP

00004 — 01 01 ---- HOP version = 1.1

00006 — 01 ■— Byte Order = Little-Endian

00007 -- 00 — Message Type - Request

00008 — 3c 00 00 00 — Message Length = 60 bytes (octets)

37

5

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

00 00 00 00 -- NULL (zero-length) Service Context List

01 00 00 00 — Request-id = 1

01---------------------- Response Expected = true // two-way call

00 00 00 --τ— 3 Reserved octets

Request Header

00012

00016

00020

00021

Ob ject Key
00024 — 13 00 00 00 — Length of Object Key (octet sequence) = 19

octets

00028 2f 31 35 3332 2f 31 30 34 35 32 37 31 32 38 39 2f 5f 30

00 /1532/1045271289/ 0.

Operation and parameters

00048 — 04 00 00 00 — Length of Method Name = 4

00052 — 61 64 64 00 — NULL terminated string = "add"

00056 — 00 00 00 00 — NULL (zero-length) Requesting Principal

00060 — 41 op_code = Ά'

00061 — 00 00 00 CDR padding for alignment of 4

byte boundary for long value.

00064 - e8 03 00 00----- Decimal number 1000

00068 — Of 00 00 00 — Decimal number 15

The following excerpt from the EPRT (End-Point Resolution Table) for the

MathServer interface shows the specification for the remote object key at offset 28 in

the example above.
«Interface Name-"MathServer" Mode="Synch" >
CCORBA ObjectKey="/1532/1045271Z89/_0" Ho»t-M192.168.1.3" Port="1978“ endian="l"/>

«/Interfaced

The CORBA TIM uses the Host and Port values to establish communication with the remote ORB, and the ·
CORBA PIM uses the ObjectKey value to ensure that the correct object is invoked at the end-point

Once the EDL definition is complete, the IDL is submitted to the TUBE IDL compiler,

which populates the Module Definition Repository with the interface information. This
information is protocol-independent. That' is, the same MDR definition is used to marshal
CORBA, MQ or any other supported middleware protocol. The protocol marshalling rules

are already contained in the relevant PIMs and the transport (communication-level)

interactions are defined in TIMs.

We will now present a detailed example of the items discussed and as shown in Figure 20.
A PDL definition of CORBA using HOP V1.0 is shown. The PDL script and each

construct and data member are shown and how the PDL compiler processes them. We
will use symbolic names to Represent op-code and offset values. The actual numeric

38

WO 2007/147207 PCT/AU2007/000859

values are not relevant to our discussion and we feel that symbolic names are easier to

understand.

It should be understood that the above description is of a preferred embodiment and
5 included as illustration only, it is not limiting of the invention. Clearly variations of the

middleware broker and method of intercommunication would be understood by a person

skilled in the art without any inventiveness and such variations are included within the

scope of this invention.

10

39

20
07

26
26

60

14
 D

ec
 20

12

CLAIMS

1. A protocol-level middleware inter-operability system which

supports a wide range of communication protocols, including legacy

systems, the middleware inter-operability system having

a. an input for receiving communication message in a

communication protocol;

b. a repository in which general rules and middleware

characteristics are specified, to provide the connection and transformation

for middleware protocols, as well as for legacy systems to allow exchange

of said communication message;

c. a broker which is able to review all data structures,

regardless of complexity, as being comprised of a finite set of primitive

data types and with reference to the repository determine a mechanism for

reading and writing these types to enable processing of structures of

arbitrary complexity, wherein the rules and mechanisms for reading these

basic types are defined by the protocol and once the rules are captured

allow processing and exchange of any communication message over this

protocol, and wherein the broker uses a modified IDL style language

(Protocol Definition Language or PDL) to define protocols, the PDL

definition being compiled into a set of binary op-codes known as a

Protocol Implementation Module (PIM), the op-codes in the PIM

containing instructions for traversing the interface definitions stored in the

repository with the definitions obtained by parsing the IDL description for

the interface and including a Dynamic Adaptive Marshaller (DAM) which

is a virtual machine, which loads and executes the op-codes in the PIM at

run-time

d. a dynamic marshaller for the conversion based on the rules

determined by the broker due to the relevant structure format correlations

to allow ready flow of data from one input protocol to be readable by

output protocol; and

e. an output in a language neutral machine independent

definition language specifying the structure of communication messages

and the parameter templates to establish a connection and to exchange the

{M-0451088.1) 40

20
07

26
26

60

14
 D

ec
 20

12

communication messages;

wherein the system provides the interface definitions of the selected

communication protocol and allows the communication messages to be

sent and understood at the receiver and further allows new protocol

support to be added without impact on existing systems and without re

compilation of application software.

2. The system of claim 1 wherein a middleware definition tool

for this purpose consists of a number of modules, each dedicated to a

specific task related to the definition of mechanism for reading and

writing data types.

3. A method of intercommunication across communication

protocols including the steps of:

a. defining the structure of one or more protocols used in

communication using a Protocol Definition Language, compiling this

structure into a byte-code structure and storing said result structure in a

library;

b. at run time analysing an input communication and determining

an appropriate input structure of protocol of the input communication

from the library and analysing the path of the intended output

communication and determining an appropriate output structure of

protocol of the output communication from the library;

c. providing a dynamic marshaller for processing of the byte-code

structure at run time and sending the information in accordance with the

identified output structure from the corresponding relevant sections of the

identified input structure;

(M-0451088:1) 41

20
07

26
26

60

14
 D

ec
 20

12

d. providing an output in a language neutral machine independent

definition language specifying the structure of communication messages

and the parameter templates to establish a connection and to exchange the

communication messages;

e. providing ability to define new encoders and decoders using

said Protocol Definition Language or to specify external pre-existing

encoders and decoders using said Protocol Definition Language; and

f. providing ability to define new transport mechanisms or specify

external pre-existing transport mechanisms using said Protocol Definition

Language;

g. wherein the method allows ready communication between

various communication protocols and middleware systems.

4. A method of intercommunication according to claim 3

including the library having a predefined conversion of the structure of

one or more protocols to the structure of another of the one or more

protocols.

5. A method of intercommunication according to claim 3 or 4

wherein the dynamic marshaller provides buffering and/or addressing as

required.

6. A method of intercommunication according to any one of

claims 3 to 5 also providing for the dynamic marshaller to include

definable predefined processing steps of corresponding relative sections of

the identified output structure to the identified input structure.

7. A method of intercommunication according to claim 6

wherein the dynamic marshaller is able to review all data structures,

regardless of complexity, as being comprised of a finite set of primitive

data types and with reference to the repository determine a mechanism for

reading and writing these types to enable processing of structures of

arbitrary complexity, wherein the rules and mechanisms for reading these

{M-0451088:1} 42

20
07

26
26

60

14
 D

ec
 20

12

basic types are defined by the protocol and once the rules are captured

allow processing of any message over this protocol.

8. A method of intercommunication according to any one of

claims 6 or 7 wherein the predefined processing steps are protocol neutral

such that an end user output defines the processing steps in a generic

manner and the dynamic marshaller undertakes the required manipulation

of the data in any communication based on the predefined processing step

of the relevant section of the communication protocol structure so as to

provide a required effect regardless of the protocols of communication.

9. A method of intercommunication according to any one of

claims 3 to 8 wherein the language neutral machine independent definition

is compiled into binary modules known as protocol implementation

modules (PIMs) and transport interface modules (TIMs) which contain the

communication parameters, and wherein the PIMs and TIMs are loaded at

runtime and executed by interpreters (virtual machines) with the PIMs

processed by a dynamic adaptive marshaller (DAM) and the TIMs

handled by a transport mediation server (TMS) and both of these modules

are controlled by a message distribution server (MDS) which is also

responsible for any interface mapping that is required and uses either the

processed request or response message and a mapping definition with the

actual mapping being performed by a mapper module under the direction

and control of the MDS.

10. A method of intercommunication of middleware including

the steps of:

a. providing a table of initial definition of structure characteristics,

including format and parameter data types, of one or more protocols;

b. converting said one or more structure protocol definitions into a

selected format;

c. storing said one or more structure protocol definitions in said

selected format in one or more repositories;

{M-0451088:1} 43

20
07

26
26

60

14
 D

ec
 20

12

d. at run time assessing the incoming message and selecting an

appropriate structure protocol definition to be used from the table and

using the selected format of the converted structure protocol definition to

communicate;

e. including a user or third-parties to create new further

protocols and inserting directly into the conversion environment wherein a

broker PIM on one side can act as the client and another PIM can act as a

server on the target side enabling use of the protocol without any coding

wherein a message in one communication protocol can be intercepted, the

message converted to the new protocol and sent across to the receiving

node where it can be can converted back to original protocol and pass to

the original server;

wherein before run time of a message, a structure of the protocol has

been defined and the data and information in the form of the protocol

structure can be readily communicated in a protocol structure format that

would be understood by the receiver.

11. The method of intercommunication of middleware of claim

10 wherein the data structures are reviewed, regardless of complexity, and

assessed as comprised of a finite set of primitive data types and a

mechanism determined for reading and writing these types, to process

structures of arbitrary complexity, with the rules and mechanisms for

reading these basic types defined by the protocol and wherein after

capturing the rules any message can be processed over this protocol by

defining the structure of a request and response message on said

communication protocol.

12. A method of flow of an outbound communication to

another module with interface including the steps of:

i. assessing the application of the outbound communication to

determine and select a protocol to try from a table of protocols in a

priority arrangement;

ii. using the selected protocol to determine the format and

arguments for the outbound communication;

(M-0451088:!} 44

20
07

26
26

60

14
 D

ec
 20

12

iii. using the protocol definitions stored to prepare the outbound

communication for the particular middleware or application service;

iv. providing required buffer;

v. determining which protocol to use for transmission;

vi. looking up table of end-point resolutions to determine the

communication parameters required to communicate with the selected

transmission protocol;

vii. attempting to communicate with the designated host using the

appropriate communication parameters; and

viii. if communication with the selected protocol fails selecting the

next protocol to try from the table of protocols in the priority

arrangement.

13. A method of flow of an outbound communication to

another module with interface according to claim 12 using a broker which

is able to review all data structures, regardless of complexity, as being

comprised of a finite set of primitive data types and with reference to the

repository determine a mechanism for reading and writing these types to

enable processing of structures of arbitrary complexity, wherein the rules

and mechanisms for reading these basic types are defined by the protocol

and once the rules are captured allow processing of any message over this

protocol

14. A method of flow of an inbound communication from

another module with interface including the steps of:

i. receiving inbound message in the protocol that it was sent;

ii. looking up table to determine whether the message needs

marshalling into another protocol before passing the inbound

communication to the target application on the local system;

iii. if message needs marshalling into another protocol,

determining the preferred protocol from a table according to priority;

iv. determining the format and arguments for the inbound

communication;

v. using stored protocol definitions for the selected protocol to

{M-0451088:1} 45

20
07

26
26

60

14
 D

ec
 20

12

prepare the inbound communication for the target middleware or

application service;

vi. buffering the inbound communication as required;

vii. determining protocol to use for transmission.

viii. determining local end point of the target application on the

local system; and

ix. at run time passing the inbound communication to the target

application on the local system.

15. A method of flow of an inbound communication from

another module with interface according to claim 14 using a broker which

is able to review all data structures, regardless of complexity, as being

comprised of a finite set of primitive data types and with reference to the

repository determine a mechanism for reading and writing these types to

enable processing of structures of arbitrary complexity, wherein the rules

and mechanisms for reading these basic types are defined by the protocol

and once the rules are captured allow processing of any message over this

protocol

16. A method of flow of an inbound communication from

another module with interface according to claim 14 or 15 in which rules

and middleware characteristics are specified in a repository, for the system

broker to provide the connection and transformation for the middleware

protocols, as well as for legacy systems and wherein it is not necessary to

have a converter at either end of the communication and further it is not

necessary for there to be two way communication in order to ensure the

receiver knows what format is arriving, instead the conversion due to the

relevant structure format correlations allows ready flow of data from one

input protocol to form readable by output protocol.

17. A programmable semiconductor device programmed to

perform the steps of the method as defined in any one of claims 3 to 13.

{M-0451088:1} 46

18. A method of intercommunication substantially as

hereinbefore described with reference to the drawings.

20
07

26
26

60

14
 D

ec
 20

12

{M-0451088:1} 47

WO 2007/147207 PCT/AU2007/000859

en

Fi
gu

re
 1

TU
BE

 B
ui

ld
-ti

m
e

pr
oc

es
sin

g

WO 2007/147207 PCT/AU2007/000859

2/23

Figure 2 TUBE Component Architecture

WO 2007/147207 PCT/AU2007/000859

3/23

Figure 3 TOBE Out-bound message scenario

4/23

WO 2007/147207 PCT/AU2007/000859

Figure 4 TUBE ίπ-bound message scenario

WO 2007/147207 PCT/AU2007/000859

5/23

interface mathServer
{

// request structure
struct mathreq
{

char op;
int numl;
int num2;

};

// response structure
struct math_resp
{

int ret_num;
};

// define the exception
exception mathException
{

string errorjext;
};

// methods (services, functions, operations)
struct math_resp add(in math._req mr) raises (mathException);
struct mathresp div(in mathjeq mr) raises (mathException);

H Remainder omitted for brevity

};

Figure 5: Fragment of mathServer DDL

WO 2007/147207 PCT/AU2007/000859

6/23

Figure 6: Structure of request message (highlighting payload)

Figure 7: Structure of a successful response message (highlighting payload)

Figure 8:Structure of an unsuccessful response message with an exception as payload

WO 2007/147207 PCT/AU2007/000859

7/23

PIM Header

Marshalling Map

Declarations

Pre-Marshal Map

Post-Marshal Map

Figure 9: Structure of a PIM

Field Description
File-identifier This identifies this file as a valid PIM

Marshalling class-name The name of a class specified in an
external clause. This can be empty.

Constant-Segment (CS) Contains all constant values.
Variable-Definition Segment (VDS) Contains information about all variables

defined in PD,

Figure 10: Structure of a PIM Header

Marshalling Map
Constant Segment entry

v
Variable Definition Segment Entry

Figure 11: Structure of a Marshalling Map

WO 2007/147207 PCT/AU2007/000859

8/23

Tagot variable is at offset
z in to variable Dewfen

OPCODE TARGETJVAR.OFF

OP_READ_OCTET3 (=)

PlrtliiCoa«(lftslnJttionl Scgmoru.
Block

Offset Flag O«Ue Type Nome Offset Vpr-tt

0 USER_DEF STRl'NG 4 -1

NUU ̂BYTES1 SYS^DEF INTEGER -1
A

USER.DEF OCTET co -1

partial Variable

$9gm«nt,

Offset Data Type Value Length Value

0 INTEGER 4 1

·· —

4 STRING 4 Tioet"

OCTET 9 "object Key"

Partial Conalartt
Segment

Offwt Fteg • Pete Type Marne Onset Value

0 USER_DEF STRING 4 "tocemosr

1 SYS_DEF INTEGER -1

LU U$ER_DEF OCTET
0

’SOBJECTunyOWecr

Variable value to at otiaet
2 h the Variable Value
Table. Same offset as in
Variable Definition
Segment

Partial Variable Value
Table (ronffrae only)VariaWa daw* ϋ at offset

5 in the Constant
Segment

figure 12: Mapping op-eode target to variable value

WO 2007/147207 PCT/AU2007/000859

9/23

declare byteSequence
{
int %num~bytes%; // no of bytes in olist
olist bytes;

};

Figure 13: declaration of a byteSequence

declare array
{
int %array_size%;

olist bytes;

// no of items in sequence, arrays don't have this encoded
// although, we can calculate it at runtime
// actual sequence of items (can be simple or complex)

};

Figure 14: declaration for an array

declare nString
{
int %num_bytes% + I;
olist string-bytes;
init octet nullbyte =* 0;

};

// length of string_bytes (inch null)
// the actual bytes of the string
// the terminating null

/

Figure 15: declaration of a null terminated string

declare objectDef
{
nString repo_id;
int profilecount;
int profile_id;
int length;
short version;
nString host;
short port;
byteSequence objectjkey;

};

// repository-id of object
// number of profiles in reference
// id of profile
// length of following stream
// ΠΟΡ version for this profile
// Host for this object
// Port for this object
// Object key - includes length and byte[]

Figure 16: declaration of an object reference

control
{

switch(%reply_status%)
{

case 0:

WO 2007/147207 PCT/AU2007/000859

10/23

buffer = body;
case 1:

buffer = USERJBXCEPTTON;
case 2:

buffer = systemfixception;
case 3:

buffer = objectDef,
}

};

// follow MDR

// follow Exception in MDR

// use declared structure

// use declared structure

Figure 17; The control clause

// Response message ,
struct GIOPRespMessage
{
GIOPHdr hdn
int %buffer_length%; // the length of the following buffer (body)
GIOPRespBody body;

};

Figure 18: Response message declaration showing bufferlength variable

Figure 19: The process of invoking DAM From a PCM

WO 2007/147207 PCT/AU2007/000859

11/23

// *******************&********************♦**********************************
// Items surrounded in % symbols are :
// internal TUBE variables (eg. buffer length - %buffer_length%)
// Items surrounded in § symbols are :
// user-defined variables (eg. ObjectKey —> $QbjectKey$)
//
// The user-defined variables are expected to be found in either;
// - The End Point Resolution Table (EPRT)
// - The XFORM map for protocol mapping rules (different to
// marshalling rules)
//
// The generated PIM will look in both of these repositories and generate a
// runtime error if the name is not found.
//H ***

protocol CORBA
{

typedef sequence<octet, 3> reserved;
typedef sequence<octet> olist;
typedef sequence<octet, 4> GIOP MAGIC;
//
// This is an arbitrary sequence of bytes
// This is referenced in the bufferFormat
// statement below.
//
declare byteSequence
(
int %num_bytes%; // no of bytes in olist
olist bytes;

//
// An idl sequence^.., size>
// This is a bounded (fixed-size) sequence
// The only difference between an array and a sequence
// is that arrays don't have a length encoded because
// their size is fixed!
// This is referenced in the bufferFormat
// statement below.
//
declare array
{
int %array_size%; // no of items in sequence, arrays don’t have this encoded

// although, we can calculate it at runtime
olist bytes; // actual sequence of items (can be simple or complex)
};

//
// An idl sequence<,.>
// This is an un-bounded sequence (see array above for a bounded sequence)
//This is referenced in the bufferFormat
// statement below.
//

WO 2007/147207 PCT/AU2007/000859

12/23

declare sequence
{
int %sequence_size%; // no of items to read/write
olist bytes; // the items as defined in IDL

};

//
// CORBA uses a hybrid (between C &. Pascal) String structure
// The length precedes the bytes (as in Pascal) and the String is zero (null) terminated (as in C)
// Therefore the number of bytes to write and read is always one more than the actual string
// length.
//
// define an nString - a null terminated string
//
declare nString
{
int %num_bytes% + 1; // length of string_bytes (incl, null)
olist string_bytes; // the actual bytes of the string
init octet null_byte = 0; // the terminating null

};

//
// declare a CORBA Object Reference
//
declare objectDef
{
nString repo_id; // repository-id of object
int profilecount; // number of profiles in reference
int profilejd; // id of profile
int length; // length of following stream
short version; //HOP version for .this profile
nString host; // Host for this object
short port; // Port for this object
byteSequence object key; I! Object key - includes length and byte[]

};

//
// define how to handle a (CORBA) System Exception (ref. CORBA spec.)
//
declare systemException
{
nString excjepoid; // repository-id of Exception
int minorjode; // minor-code .
int completion status; // completion-status

};

//
// This is how to treat a buffer - payload
// This item is referenced using the keyword, "buffer"
// in any subsequent declarations below
// This declaration statement can only appear once! 1! 1
//
bufierFormat
{
STRING = nString; // marshall a string
BYTESEQ byteSequence; // marshall a buffer of bytes

WO 2007/147207 PCT/AU2007/000859

13/23

ARRAY ~ array;
OBJECT=objectDef;

SEQUENCE=sequence;
};

//marshall a sequence^..., size>
H an Object definition
// all other items are assumed to be native or constructed
// from those above
// marshall an un-bounded sequence (sequencer ..>)

//
// The following control clause uses the reply_status member of the request body
// to perform some decision-making. The payload in the response message may be
// either of four (4) different types depending on foe value of reply_status.
// 0 - normal payload as per MDR definition of operation
// 1 - a USER defined EXCEPTION as defined in the MDR entry
// 2 - a SYSTEM EXCEPTION of a fixed format
// 3 - an OBJECTJtEFERENCE as encoded for a
// LOCATION FORWARD response (see CORBA spec.)
//
control
{

swltch(%rep ly_status%)
{

case 0:
buffer = body; // follow MDR

case I:
buffer = USERJEXCEPTION; // follow Exception in MDR

case 2;
buffer = systcmExeeption; // use declared structure

case 3:
buffer = objectDefi // use declared structure

}
};

//
// The “external” clause defines our own CDR marshalling class.
// This class implements interface TUBE.oommsBuffer and supplies methods to marshall
// native data types using CDR encoding (refer to CORBA spec).
// When we have to marshall an int The DAM will call readjnt or write_int on this
// class
//
external

class = "MYORB.marshaller-CDRBuffer”; // the foil classname
};

// Define a Request
Request
{
GIOPReqMessage message;

};

// Request message
struct GIOPReqMessage
{
GIOPHdr hdr;
int %buffer_Iength%; // the length of the following buffer (body)
GIOPRcqBody body;

WO 2007/147207 PCT/AU2007/000859

14/23

//’GT0”P'- first 4 bytes
// major version, default 1
// minor version, default 0
// the endian-ness ofthe host
// built-in flag determines message type

// Common GIOP header
struct GlOPHdr
{
init GIOPJvfAGIC GlOPId = "GIOP";
init octet majver = I;
init octet minver = 0;
init octet flags = %endian%;
init octet msgjype = %isResponse%;

};

//
// This is how a service context is encoded
//
declare ServiceContext
{
int contextjd;
byteSequence cOntextData;

};

// This is a list (sequence) of service contexts - will generate a loop wrapper
// around the declared code-block
typedef sequence<ServiceContexC> contextList;

//Request body
struct GIOPReqBady
{
contextList clist;
int %request_id%;
octet %expect_resp%;
reserved res;
byteSequence SobjectKeyS;
nString %operation%;
byteSequence req principal;
buffer params;

// sequence of ServiceContexts
// request-id
// do we expect a response
// 3 reserved bytes
// another byte sequence
// declared type (NULL terminated string)
// another byte sequence
// a buffer, which can contain various
// parameters (native/constructed) follows MDR format
// uses bufferFomnat clause above

};

// Define a Response
Response
{
GlOPRespMessage response;

};

// Response message
struct GlOPRespMessage
I
GlOPHdr hdr;
int %buffer_length%; H die length of the following buffer (body)
GIOPRespBody body;
);

// Response body

WO 2007/147207 PCT/AU2007/000859

15Z23

struct GIOPRespBody
{
contextList clist;
int %request_id%;
int %reply_staius%;
buffer response;

It a byte sequence of the form <Iengthxbytes,...>
// request-id
// a reply code, identifies the response format
// a buffer, which can contain various
// parameters (native/constructed) follows MDR format
// uses bufferFormat clause above

};

//
// These are values that are encoded into the EPRT
// The generated TIM will look for these items in the EPRT entry
//
endpoint; "TCP" // The transport (eg, TCP, http, JM$ etc)
{
//
// These are transport and protocol-specific items
//
"host"; // This is the host for the object
"port"; // This is the port on the host
};

};

Figure 20 a PDL definition of CORBA using HOP VI .0. First, we will show the PDL
script and then examine in detail, each construct and data member and show how the

PDL compiler processes them.

WO 2007/147207 PCT/AU2007/000859

16/23

Type Name Description
Integer Type Type of this variable.
Integer Use Usage of this variable. Add or subtract from

another value or use value as-ts.
Integer yalue offset Offset to constant value of this variable in CS.

Table 1: State Parameter entry

...............
Integer

Name_________
op code

Description
Specifies the action to perform.

Integer target_var Target variable indicates the variable to use as
the source or target for this operation.

State param state param A state parameter entry for this op-code.-
Integer handler offset Offset to “declared” type handler map.
Integer handler name Offset of handler name in CS.

Table 2: Structure of a (Code) State-Block

Type Name Description
Integer Type Type of constant.
Integer length Length of constant value.
Byte[] Name Name of constant.
Byted Value Constant value.

Table 3: format of Constant Segment Entry

Type Name Description
Integer Flag Flag to indicate if this is a system or user-

defined variable.
Integer Type Type of this variable.
Integer name offset Offset to name of this variable in CS,
Integer var_id Symbolic identifier for this variable. This is -1

for a user-defined variable,
Table 4: Format of Variable-Definition Segment Entry

Type
Integer

Name
flag

Description
Flag to indicate if this is a system or user-
defined variable,

Integer type Type of this variable.
Integer name offset Offset to name of this variable in CS.
Object var_value The current value of this variable. This may be

initially empty until we read the value.
Table 5: In-memory layout of Variable Value Table

WO 2007/147207 PCT/AU2007/000859

17/23

Keyword Description
Protocol Signifies the beginning of a PDL script. This replaces the module

or interface keywords found in IDL.
Request

Response
%var%

Defines the structure of a request message.
Defines the structure of a response message.
Represents an internal TUBE variable. There are several of these
explained in Table 7beiow. An example is %operation%, which
represents the operation or method to invoke on an objeet-based
interface. It may be empty; its value depends on the protocol.

init Defines a variable of the specified type with an initial value. Refer
to the Variable-Definition Segment discussion below <sec. ref>.
As an example, we want to define an integer variable mynum and
initialise it to the value one (1); we would write
“init int mynum=l

control Specifies a field in the message to use as a switch (decision
making) value. This allows us to handle different types of payload
depending on the value of this field. For instance, we may receive
an exception rather than the expected return value. The CORBA
example below demonstrates this usage.

buffer Signals the start of the payload (as defined in the interface) within
the message. The compound (complex) types defined by “declare” .
statements can be marshalled and un-marshalled from this
position in the message. The processing follows the MDR
definition. The only exception to this is if some condition
specified in a “control” clause has been met, and this specified the

var
execution of another code-block.
Specifies a user-defined variable. We retrieve the values for these
variables at marshal time from the EPRT <$ec. ref.>, During un
marshalling we read them from the input stream. In either case,
the value is stored in the Variable-Definition Segment entry. An
example of a user-defined variable is a CORBA object-key, we
define it as follows: “byteSequence $objeclKey$”. This means
when we reach this point in the message, read a byteSequence
structure and assign its value to the variable “objectKey”.

struct This is not strictly an extension to the syntax, rather a usage of the
keyword struct. We use this to define individual parts of the
message, such as header, body or trailer. Each struct declaration
causes the generation of a CODEJ3LOCK (see Error! Reference
source not found,). This allows different parts of the message to
be handled out-of sequence. Where it may be necessary to re-
marshal only some values. We explain this fully in the DAM
CORBA example.

declare Define marshalling rules for a particular compound (complex)
tygg;

WO 2007/147207 PCT/AU2007/000859

18/23

Keyword Description
bufferFormai

endPoint
external

Defines how to encode/decode declared types encountered in the
payload (refer to Error! Reference source not found,).
Defines the communications end-point in protocol-specific terms.
Defines an external class that will provide marshalling functions
for this protocol and communication management functions. If
•there are no external classes defined, TUBE will use its own to
carry out these operations. The specified classes must implement
specific TUBE defined interfaces. These classes may be used as
wrappers around vendor-specific or home-grown APIs.

sequence This is not an extension. It causes the generation of a looping
wrapper around the CODE BLOCK, which marshals the defined
type. This is closely associated to the %count% (internal) variable,
which holds the value of the loop count. TUBE must know from
this definition, at what point and from where in the message, to
read this value. In the case of marshalling, TUBE will write this
value into this point in the message. The encoding of the specified
sequence then follows.

Table 6; Extensions to OMG IDL

Variable Description
Marshalling Un-marshalling

Value stored for
reference only.

Read before
payload.

endian Defines the endian
representation of the
target host.

Value obtained
from EPRT entry.

bufferjength

requested

Specifies the overall
length of the payload.
Ensures processing in
correct sequence.

Encoded after
payload.
Read from entry
and encoded.

Stored in entry.

isResponse

operation

Determines if this is a
response message.

Read from entry
and encoded.

Stored in entry.

Specifies the method
to invoke. Only
applies to protocols
that support methods1.

Read from entry
and encoded or
obtained from an
ATOWw.ap.

Stored in entry.

Marshalling Un-marshalling
Stored in entry.expect_resp Specifies if this is a

two-way invocation.
Read from entry
and encoded.

WO 2007/147207 PCT/AU2007/000859

19/23

Variable Description
num_bytes The number of bytes

in. the next set of
bytes.

Read from entry
and used to write
next block of
bytes.

Stored in entry and
used to read next
block of bytes.

reply_status The status of the
communication
session. Only applies
to responses.

Read from entry
and encoded. The
value is protocol-
specific.

Stored in entry.

target_tlv Read/Write the value
from a TLV entry. We
use the TLV primarily
for payload
processing.

Read from TLV
entry and
encoded.

Stored in TLV
entry.

count Internally created
when we encounter
“sequence” in PDL.

Written at the
start of a loop
wrapper.

Read from stream
at expected start of
a loop.

array_size Internally created
when an item is
defined as an ARRAY

Value obtained
from MDR entry.

Value obtained
from MDR entry.

sequence_size The size (in elements)
of the sequence to
read/write

Read from entry
and encoded.

Written from entry.

Table 7: TUBE internal variables

OP-Code Source / Target variable Comment
READ INT
PUSH
POP

Read an integer from input
Put on top of value stack
Get value on top of value
stack

ASSIGNJTO NUMBYTES Assign value to internal
NUM BYTES

GET FROM NUM BYTES Retrieve NUM BYTES
READ OCTETARRAY Read NUM BYTES octets
PUSH Put octet array on top of

value stack. Caller will POP
and retrieve value.

END BLOCK End of this code-block

Table 8: op-codes generated for reading a byteSequence

WO 2007/147207 PCT/AU2007/000859

20/23

OP-Code Source / Target variable Comment
READ ENT Read an integer from input ·
SUB

PUSH

Subtract a value from the
offset into the CS from the
value jnst read
Put on top of value stack

We have an offset to the
value “1” in the CS.

We now have value ■ 1
USER DEFINED A declared code block
POP Get value on top of value

stack
ASSIGNJTO NUMJJYTES Assign value to

NUM BYTES
GET FROM NUM BYTES Retrieve NUM BYTES
READ OCTETARRAY Read NUM BYTES octets
PUSH Put octet array on top of

value stack. Caller will POP
and retrieve value.

READ OCTET Read null byte
END BLOCK End of this code-block

Table 9: op-codes for reading a noil terminated string

OP-Code Source / Target variable Comment
USER DEFINED A declared code-block
LOAD_BLOCK repo id Load and execute the block

named “nStringREAD” and
place the value in the variable
“repojd”

READJNT profile_count Read an integer and assign it
to the variable “profile count”

READJNT profilejd Read an integer and assign it
to the variable “profile id”

READJNT length Read an integer and assign it
to the variable “length”

READ SHORT version Read a short and assign it to
the variable “version”

LOADJ3LOCK host Load and execute the block
named “nStringJLEAD” and
place the value in the variable
“host”

READ_SHORT port Read a short and assign it to
the variable “port”

WO 2007/147207 PCT/AU2007/000859

21/23

OP-Code Source / Target variable Comment
LOADBLOCK object_key Load and execute the block

named
“byteSequence_READ” and
place the value in the variable
“object key”

END BLOCK End of this code-block

Table 10: op-codes for reading an object reference

OP-Code Source / Target variable Conuueut
TEST EQ REPLY STATUS Test if reply status —0
JUMP LABELJ) The test returns true. Jump to

the given label.
TEST EQ REPLY STATUS Test if reply status — 1
JUMP LABEL_1 The test returns true. Jump to

the given label.
TEST EQ REPLY STATUS Test if reply_status = 2
JUMP LABEL_2 The test returns true. Jump to

the given label.
TEST EQ REPLY STATUS Test if reply status = 3
JUMP LABEL_3 The test returns true. Jump to

the given label.
PUSH Exception All tests failed. Push an

Exception value onto the
stack. This causes the
interpreter to throw an
exception.

JUMP
LABEL 0

LABEL_4 Jump to the last label. _ ____

PUSH False Push a false value onto the
stack. This is the return value.
Therefore, we follow the
MDR,

JUMP LABEL 4 Jump to the last label.
LABEL 1 This is an MDR-defined

Exception.
PUSH True Return true

LABEL 2
PUSH “systemExceptionJREAD” Push the name of the block to

decode a system exception.
JUMP LABEL 4 Jump to the last label.

WO 2007/147207 PCT/AU2007/000859

22/23

OP-Code Source / Target variable
LABEL 4

Comment
JUMP Jump to the last label.
LABEL 3
PUSH

JUMP
LABEL_4

“objectDefREAD”

LABELjl

Push the name of the block to
decode an object definition.
Jump to the last label.

Return value on top of stack.

Table II: Op-codes for processing "control" clause

OP-Code Source / Target variable Comment
SAVEPOS BUFFER POS Save current buffer position.
SETPOS BUFFER_POS (POS=8) Set the buffer position to the

value of the constant at the
offset given by the parameter.

SUBTRACT A constant value of “Ί2”
from the buffer length.
Header length (8) +
length of integer (4) = 12.
BUFFERJLENGTH

Subtract the length of the
header + the length of the
integer from the bufferjength
to give only payload length.

WRITEJNT Write-out die value of the
internal variable buffer length

GETPOS BUFFER POS Get the saved buffer position.
SETPOS BUFFERJPOS Set the buffer position to the

saved value,

Table 12: Post-Marshal map for COltBA message

OP-Code Description Comments
READ_OCTET Read a single octet (byte)

from a source.
WRITE_OCTET Write a single octet (byte)

to a target
JUMP Jump to the given LABEL

LABEL The target of a JUMP
instruction.

LOOP The start of a looping
sequence.

LOOP_END The end of a looping
sequence.

Etc.

WO 2007/147207 PCT/AU2007/000859

OP-Code

23/23

