» UK Patent Application .. GB 2392998 .. A

(43) Date of A Publication 17.03.2004
(21) Application No: 0221465.8 (61) INTCL:
GO6F 9/46
(22) Date of Filing: 16.09.2002
(52) UK CL (Edition W):
G4A AFlI AMB
(71) Applicant(s):
ARM Limited (66) Documents Cited:
{Incorporated in the United Kingdom) JP 050158688 A
110 Fulbourn Road, Cherry Hinton,
CAMBRIDGE, CB1 9NJ, United Kingdom (58) Field of Search:
UK CL (Edition V) G4A
(72) Inventor(s): INT cL’? GO6F
Richard Roy Grisenthwaite Other: WPI, EPODOC, PAJ, INSPEC, IBM TDB,
David James Seal COMPDX, INTERNET
(74) Agent and/or Address for Service:
D Young & Co
21 New Fetter Lane, LONDON, EC4A 1DA,
United Kingdom
(54) Abstract Title: Handling interrupts during multiple access program instructions
(57) A data processing apparatus 2 supports multiple memory . 2
access program instructions LDM, STM which serve to load .L%RUJT = <
data values from multiple program registers 16 to respective 14 N commor L/
memory locations or to store data values from multiple ’%m’i
memory locations to respective program registers. A DECODER e] ImE 2 .
memory management unit 8 within the system stores FONT OF 10
device or strongly ordered memory attribute values which xir::: Soime [MLZORZ
control whether or not a multiple memory access instruction g =iy

involving such a memory location may be early terminated
when an interrupt is received during its operation. Early
termination is permitted in those circumstances where the
multiple memory access instruction may be safely restarted
and rerun in its entirety, whereas early termination is not
permitted and the operation completes before the interrupt
is taken in those circumstances where the memory locations
are subject to a guaranteed number of memory accesses as
this appears within the controlling program instructions.

I Memrea

I

id i
[HIT _T {ATTRIEUTE(S)

CACHE

o)

HMU

FIG. 1

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Printed on Recycled Paper

V 866 ¢6EC 99

173

Ik

et

AJOW3INW
[

A

AN

(8)31ngLLyY

I Ol

NN

S

3HOVO

; t_.__
v

O3IY WIN »

8l~ 1
Dw._./

21901

TOHLINOD

TdILTINN

JOVIH3INI
[4

«NYNL3Y
__ON 40 1LNIOd.

4

v

)

1NI
VL

21/

ONIAN3d
LNI

o)

Q1901
TOULNOD
1dNYETLNI

O34 Wan

od

vid

¥30003d
NOILONYLSNI

/or

/ve

ﬁ ﬁ AINI
ANI 1Sv4d

2/3

.
senecee

20
L

INT PENDING
RECIEVED?

Y

A 4

MEM REQ

3

IN OPERATION?

Y

4

A

MULTIPLE?

Y

y

PAST POINT OF

&

NO RETURN?

Y

Y

IS ATTRIBUTE
DEVICE OR

STRONGLY ORDERED?

Y

<

4

MEM REQ
FINISHED?

Y

A 4

y

GENERATE
TAKE INT

/z

32

FIG. 2

|

3/3

(X XX BJ
L]
L]
*
(X XXX X4
L]
I X NN J

34
4
X INTERRUPT CONTROL

LOGIC RECEIVES
INTERRUPT?

Y

y

INT PENDING SENT
TOLSU

/36

38 <

\ '

TAKE INT RECEIVED
FROM LsSuU?

Y

y

STORE PC TO R14 AND
TAKE INTERRUPT
VECTOR

e

FIG. 3

10

15

20

25

30

2392998

HANDLING INTERRUPTS DURING MULTIPLE ACCESS PROGRAM
INSTRUCTIONS

This invention relates to the field of data processing. More particularly, this

invention relates to the handling of interrupts within data processing systems having

multiple memory access program instructions.

It is known to provide data processing systems, such as those based upon the
ARM microprocessor architecture, which support multiple memory access program
instructions. Example ARM instructions which are of this type are the LDM and
STM which respectively load data values from a sequence of memory locations to a
respective sequence of program registers or store data from a sequence of program
registers to a respective sequence of memory locations. The provision of such
multiple memory access instructions provides the ability to advantageously reduce
code size. However, a problem associated with such multiple memory access
program instructions is that they typically can take many processing cycles to

complete and accordingly can have an adverse impact upon interrupt latency.

When a data processing system, such as a microprocessor, is executing a
program, it is known to provide interrupt mechanisms whereby an asynchronous, and
often external, signal may trigger an interrupt processing routine to be executed
instead of the program which was previous executing. Such interrupt mechanisms are
a fundamental part of many data processing systems and a significant performance
parameter is the interrupt latency of the system. The interrupt latency is considered to
be the worst case time it takes the system to start to execute interrupt handling code
after receipt of an interrupt signal. In this context, the provision of multiple memory
access program instructions which can take many processing cycles to complete (e.g.
a worst case situation involving multiple cache misses and TLB misses several
hundred processing cycles) and can be a controlling influence in establishing the
worst case interrupt latency of the system. In some situations a system in which the
maximum interrupt latency is controlled by such multiple memory access instruction

may be unacceptable.

It is known to provide compilers which include control parameters that will

limit the optimisations made such that memory accesses will not be concatenated

10

15

20

25

30

together above a certain number into multiple memory access program instructions. It
is also known to provide compiler control options that can serve to suppress the use of

multiple memory access program instructions entirely.

Viewed from one aspect the present invention provides apparatus for
processing data, said apparatus comprising:

processing logic operable in response to a multiple memory access program
instruction specifying multiple memory accesses to perform a sequence of memory
accesses to respective memory address locations;

an interrupt controller operable in response to an interrupt request signal to
trigger an interrupt; and

control logic operable when a multiple memory access program instruction is
pending and responsive to a stored attribute value associated with at least one of said
memory address locations to control said interrupt controller to either:

(1) terminate said multiple memory access program instruction part way
through said sequence of memory accesses and trigger said interrupt; or

(ii) wait until said sequence of memory accesses has completed and

trigger said interrupt.

The invention recognises that whilst the normal control criteria of waiting until
the currently executing memory access program instruction, (whether that be a single
or multiple memory access program instruction) is completed is safe, there are a large
number of situations in which a multiple memory access program instruction may be
terminated part way through its operation and then safely restarted from its beginning
without any adverse affects. More particularly, the invention recognises that the
situations in which such multiple memory access program instructions may and may
not be safely terminated part way through can be mapped onto predetermined memory
locations or areas of memory locations. Thus, an attribute associated with a memory
location may be used to control whether or not a multiple memory access program
instruction accessing that memory location can be safely terminated part way through
when an interrupt has been received and interrupt handling needs to be triggered.
This allows multiple memory access program instructions to be used with the
resulting advantages of improved code density, while safely providing a mechanism

that avoids the disadvantageously long interrupt latencies that can be associated with

10

15

20

25

30

such multiple mémory access program instructions. Furthermore, those situations in
which it would not be safe to terminate a multiple memory access program instruction
part way through, such as memory accesses including memory locations that are read
sensitive, may be prevented from occurring by associating an appropriate attribute
value with those memory locations so that multiple memory access program
instructions involving those memory locations will not be terminated part way
through. This provides a safety net to assist in avoiding incorrect operation, but does
mean that a programmer should avoid including any multiple memory access program
instructions involving such memory locations which cannot support early termination

if they are to get the benefit of a reduced maximum worst case interrupt latency.

Whilst it will be appreciated that the stored attribute could be used to control
interrupt behaviour during multiple memory access program instructions for a variety
of different reasons, it is particularly well suited to embodiments in which the stored
attribute is indicative of whether a memory location is such that a memory access to
the memory location changes behaviour of the system upon subsequent memory
accesses. Such memory locations may be thought of as “read sensitive” or ones in

which the number of accesses must be as it appears in the controlling program code.

More particularly preferred examples of how such a stored attribute are used
are those in which the stored attribute indicates whether a memory location is one or
more of a memory location associated with a device or a memory location which must
be accessed in a predetermined position within a sequence of memory accesses (e.g.
defined within the memory map as a device memory location (such as a peripheral) or
a strongly ordered area of memory in which memory accesses must be performed in

the sequence in which they appear in the program).

It will be appreciated that the present technique may be applied to different
types of multiple memory access program instructions, such as load multiple
instructions and store multiple instructions, but is particularly well suited to load

multiple instructions.

Whilst the attribute value could be stored in a variety of different ways, such

as in its own dedicated memory or set of registers etc, preferred embodiments of the

10

15

20

25

30

invention utilise a memory management unit operable to store the attribute value. A
memory management unit is often provided within data processing systems for storing
a variety of control parameters associated with memory locations, such as the
cacheable nature of the location, the write back status of the location etc, and re-using
such a memory management unit to also store the attribute value associated with the

present technique is advantageously efficient.

Whilst the above discusses a mode of operation in which a multiple memory
access program instruction either may or may not be early terminated depending upon
an attribute value associated with a memory location, preferred embodiments of the
invention also provide a different mode of operation in which the interrupt controller
waits until the sequence of memory accesses has completed irrespective of the
attribute value. Such operation is particularly useful when seeking to debug programs
and it is suspected that problems may be being caused by multiple memory access

program instructions that are inappropriately used.

It will be appreciated that depending upon the state of the system when the
interrupt was taken, it may be necessary to restart the multiple memory access
program instruction if this was terminated partway through. Accordingly, preferred
embodiments of the invention serve to store a re-start program counter value which
varies depending upon whether or not the multiple memory access program

instruction was or was not fully completed. A normal restart location associated with

an interrupt does not vary.

Viewed from another aspect the invention provides a method of processing
data, said method comprising the steps of:

in response to a multiple memory access program instruction specifying
multiple memory accesses, performing a sequence of memory accesses to respective
memory address locations;

in response to an interrupt request signal triggering an interrupt; wherein

when a multiple memory access program instruction is pending and responsive
to a stored attribute value associated with at least one of said memory address

locations controlling operation to either:

10

15

20

25

30

(1) terminate said multiple memory access program instruction part way
through said sequence of memory accesses and trigger said interrupt; or

(i1) wait until said sequence of memory accesses has completed and

trigger said interrupt.

As previously mentioned, if the maximum worst case interrupt latency is to be
held low it is important that multiple memory access program instructions are not
used to access memory locations having attribute values which will not permit such

multiple memory access program instructions to be early terminated.

Accordingly, another aspect of the invention provides a computer program
including identifiers associated with data values stored at memory locations having
attributes that will not permit early termination of multiple memory access program
instructions involving those memory locations such that a compiler during
compilation of the computer program does not use multiple memory access program

instructions which will involve such memory locations.

It will be appreciated that a computer program having the above mentioned
identifiers correctly applied will have the advantage that upon compilation
optimisation to use multiple memory access program instructions in circumstances
where an increase in code density may be achieved without harming interrupt latency
will be allowed whereas those circumstances in which such use of multiple memory
access program instructions would adversely impact the maximum worst case
interrupt latency can be avoided. A program written in this way should not include
any multiple memory access program instructions that would fall into the category of
those which could not be early terminated. Preferred embodiments of such computer
programs use identifiers associated with a data type statement within the computer

program and are particularly well suited to computer programs written in the C

language.

A further aspect of the invention provides a computer program for controlling
an apparatus for data processing as claimed in any one of claims 1 to 8, said computer
program including one or more multiple memory access program instructions

associated with memory locations having stored attribute values permitting

10

15

20

25

30

termination of said multiple memory access program instruction part way through said
sequence of memory accesses and single memory access program instructions
associated with all memory accesses to memory locations having attribute values not
permitting termination of multiple memory access program instructions part way

through a sequence of memory accesses.

An embodiment of the invention will now be described, by way of example

only, with reference to the accompanying drawings in which:

Figure 1 schematically illustrates a data processing apparatus including

interrupt controlling logic;

Figure 2 is a flow diagram schematically illustrating a processing operation

performed in controlling interrupt behaviour; and

Figure 3 is a flow diagram schematically illustrating the handling of an

interrupt.

Figure 1 illustrates a data processing apparatus 2 including a processor core 4
coupled to a cache memory 6, a memory management unit 8 and a level2 memory
interface 10. It will be appreciated that, for the sake of clarity, not all elements within

this data processing apparatus 2 have been illustrated.

The processor core 4 includes interrupt control logic 10 responsive to applied
interrupt signals, such as a fast interrupt signal and a normal interrupt signal, and
which controls the triggering of interrupt handling routines. The processor core 4 also
includes a load store unit 12 for controlling load and store operations, including
multiple memory access operations following multiple memory access program

instructions. An instruction decoder 14 and a register bank 16 are also illustrated.

Within the load store unit 12 there is a provided control logic 18 which serves
to control whether or not a multiple memory access which is currently in operation

will or will not be early terminated upon receipt of an interrupt in dependence upon

10

15

20

25

30

attribute values associated with memory locations involved in that memory access

operation.

In operation, program instructions are received by the instruction decoder from
a computer program which is being used to control the operation of the processor core
4. The processor core 4 may be an ARM processor core using the ARM instruction
set. There are many different types of program instruction which the processor core 4
may respond to, such as arithmetic and logical instructions, as well as load and store
instructions and other data manipulation instructions. The present technique is
concerned with multiple memory access instructions of the LDM and STM type and
accordingly the various hardware elements within the processor core 4 associated with
different program instructions have not been illustrated. When the instruction decoder
receives a multiple memory access program instruction, such as an LDM or STM, it
signals that it has received a memory request to the load store unit 12 and also that the
memory request is a multiple memory access memory request. The load store unit 12
will then service this instruction in the normal way providing an interrupt does not
occur. Such a memory request will typically be referred to the cache memory 6 to see
if a hit occurs indicating that the data values to which accesses are being made are
ones that are stored within the cache memory 6. A check within the memory
management unit 8 will also be made to ensure that the memory access is permitted
and to recover other control parameters associated with the memory access. Included
within the parameters recovered from the memory management unit 8 are attribute
values associated with the memory locations being accessed that indicate whether or
not those memory locations are classified as device memory locations or strongly
ordered memory locations. Device memory locations are typically associated with
devices such as FIFOs, peripherals and the like. Strongly ordered memory locations
might be associated with control registers for the memory system in which it is
important that memory accesses occur in the sequence in which they appear in the
controlling program in order that proper operation should occur. A common factor
between the device classification and the strongly ordered classification of memory
locations is that a memory access to those memory locations may alter subsequent

memory accesses and subsequent system behaviour.

10

15

20

25

30

The attribute values device and strongly ordered read from the memory
management unit 8 are supplied to the control logic 18 within the load store unit 12.
This control logic 18 also receives signals from the instruction decoder that specify
that a memory access request is in operation and that the memory access request is a
multiple memory access request. Another signal which is passed to the control logic
18 is an “point of no return” signal derived form the level2 memory interface 10. This
“point of no return” signal may be provided in the form of a combination of other
signals returned from the level2 memory interface 10 as well as state retained within
the load store unit 12, but the combination of the signals and state may be decoded by
the control logic 18 as indicating that a memory access has passed the point within the
level2 memory interface 10 at which state external of the level2 memory interface 10
has or will be changed. It should be noted that in the context of the particular
example embodiment being described herein, memory locations which are device
memory locations or strongly ordered memory locations cannot be cached and
accordingly will be accessed via the level2 memory interface 10 whenever they occur.
Whilst this is true of this particular example embodiment, it is not a necessary

requirement for the current technique in all situations.

The interrupt control logic 10 is responsive to interrupt signals such as the fast
interrupt signal and the normal interrupt signal to trigger an interrupt vector to be
taken. The standard mechanisms for responding to interrupts and triggering interrupt
handling, such as via stored interrupt vectors, may be employed subject to the
modifications described herein relating to multiple memory access program
instructions that are in operation when an interrupt is received. When the interrupt
control logic 10 receives an interrupt signal, it issues an “interrupt pending” signal to
the load store unit 12, and more particularly to the control logic 18 within the load
store unit 12. The interrupt control logic 10 then waits for a “take interrupt” signal to
be returned from the load store unit 12 as generated by the control logic 18 before
triggering the interrupt to be initiated. The interrupt control logic 10 in this
embodiment issues the interrupt pending signal and waits for the take interrupt signal

irrespective of whether or not the current program instruction being decoded is a

memory access request.

10

15

20

25

30

As will be discussed in more detail below, if the current program instruction is
not a memory access request, then the take interrupt signal may be immediately
returned by the load store unit 12 and the interrupt control logic 10 can proceed to
trigger the interrupt in its normal way. The interrupt control logic 10 triggers an
interrupt by saving the current program counter PC value in a register R14 within the
register bank 16 (and saving other processing status information elsewhere) and then
loading a new program counter value PC as read from an interrupt vector stored in
memory associated with the interrupt signal that has been received. Program
execution is thus forced to an interrupt handling routine. When it is desired to resume
normal program execution, the stored program counter value from the register R14 is

returned to the program counter PC and execution resumed.

It will be appreciated that if a program instruction is terminated part way
through, then the program counter value will not yet have been updated and
accordingly the stored return program counter value will restart the program
instruction which was early terminated. Conversely, if the interrupt was not taken
unti] the program instruction which was in operation had completed, then the program
counter value will have been incremented following that instruction and accordingly
the normal processing will restart at the following instruction once the interrupt

handling has finished.

Figure 2 is a flow diagram illustrating the processing operation performed by
the control logic 18. Tt will be appreciated that this processing may in practice be
carried out in parallel by an array of combinatorial logic, but for the sake of clarity
this has been illustrated in Figure 2 as a sequential flow diagram. At step 20, the
process waits until an interrupt pending signal is received from the interrupt control
logic 10. At step 22 a determination is made as to whether or not the instruction
decoder 14 indicates that the current instruction being decoded is a memory access
request instruction and accordingly it is this type of instruction that is currently in
operation and which potentially may be early terminated. If the determination at step
22 is that a memory access request is not currently in operation, then processing
proceeds to step 24 at which the take interrupt signal is generated and returned to the
interrupt control logic 10 thereby triggering the interrupt control logic to start the

interrupt handling process.

10

15

20

25

30

If the determination at step 22 was that a memory access request 1S in
operation, then step 26 determines whether or not that memory access operation is a
multiple memory access operation. If the determination at step 26 was that the
memory access in operation is not a multiple memory access, then processing
proceeds to step 24 and the access stopped via a signal to the level 2 interface,

otherwise processing proceeds to step 28.

Step 28 determines from a combination of state within the load store unit 12
and signals returned from the level2 to memory interface 10 whether or not a point of
no return has been passed for the multiple memory access operation in question, i.e.
signals have been passed external of the level 2 memory interface 10 with the result
that state external of the level 2 memory interface 10 may have been changed and
accordingly the multiple memory access operation cannot be early terminated without
further consideration. If the point of no return has not been passed, then processing

may proceed to step 24, otherwise processing proceeds to step 30.

Step 30 determines whether the attribute values read from the memory
management unit 8 in association with the multiple memory access request being
serviced indicate that the multiple memory access is associated with memory
locations classified as device memory locations or strongly ordered memory locations.
Such classification, if present, precludes early termination. If the attributes returned
do not indicate that the memory locations are device memory locations or strongly
ordered memory locations, then processing proceeds to step 24, otherwise processing
proceeds to step 32 where the process waits until the memory request in operation has

finished before processing proceeds to step 24.

It will be appreciated that the overall action of Figure 4 1s to allow memory
access instructions, including multiple memory access instructions, to be early
terminated except when those memory access instructions have had an effect external
of the level2 memory interface 10 and the attribute values associated with the
involved memory locations indicate that those memory locations are “read sensitive”
or “write sensitive” (Viewed in another way are such that a guarantee is required that

the number of accesses to those memory locations will be the same as it appears in the

10

10

15

20

25

30

controlling program). In these circumstances, the memory accesses are not early

terminated and the system waits until they finish before the interrupt is generated.

Figure 3 is a flow diagram schematically illustrating the processing operations
which may be considered as being performed by the interrupt control logic 10. At
step 34 the process waits for an interrupt signal to be received. Once an interrupt
signal has been received, step 36 passes an interrupt pending signal to the load store
unit 12. The process then waits at step 38 until a take interrupt signal is received back
from the load store unit 12. Once the take interrupt signal has been received from the
load store unit 12, processing proceeds to step 40 at which the current program
counter PC value stored within the register bank 16 is stored to register R14 and the
interrupt vector forced into the program counter register to redirect processing to the

interrupt handling program.

The above description of Figure 1 and its operation has involved an
operational mode in which multiple memory access program instructions are either
early terminated or not early terminated in dependence upon read memory location
attribute values. However, the apparatus may also operation in another mode in
which such multiple memory access program instructions are never early terminated.
This mode of operation may be achieved by modifying the operation of the control
logic 18 such that the step 30 in Figure 2 is not present and all memory access
program instructions which are muitiple memory access instructions and are beyond
their point of no return are passed to step 32 to await the memory access being
finished before step 24 is reached and the take interrupt signal generated. Such an
alternative mode of operation may be forced upon the control logic 18 by an
externally applied control signal or a registered control signal within a control register
or the like. Such a mode of operation may be particularly useful in debugging
situations, for example when interrupt latency is not a concern and it is desired to
investigate whether or not problems are occurring due to inappropriate multiple

memory access program instructions.

It will be appreciated that it is desirable for computer programs executing on
the data processing apparatus described above to have certain characteristics if they

are to gain benefit from the technique. In particular, the apparatus described in Figure

11

10

15

20

25

1 allows the early termination of multiple memory access program instructions which
are not to device or strongly ordered memory locations, but prevents the early
termination of memory access instructions which are to such memory locations. If
such multiple memory access program instructions which cannot be early terminated
are present within the computer program, then they may serve to control the
maximum worst case interrupt latency in a disadvantageous way. Accordingly,
computer programs aiming to exploit the present technique should be written so as not

to include multiple memory access program instructions to device or strongly ordered

memory locations.

One way of providing such computer programs is to include within the
computer programs identifiers of memory locations or pointers to memory locations
or data types referring to memory locations which are device or strongly ordered
memory locations. Having included such identifiers within the computer program,
which may be a C language computer program, a compiler operating upon that
computer program may be controlled so as to not generate any multiple memory
accesses program instruction which involved the memory locations marked out by the
identifiers. Conversely, multiple memory access instructions may be used for
improving the result in code density in those situations where early termination of

those multiple memory access program instructions would be allowed by the

apparatus for Figure 1.

In a more specific example utilising the C computer program language, the
data type associated with a pointer to a memory location that is a device or strongly
ordered memory location, may be given as “volatile”. The compiler programs
produced by ARM Limited and publicly available operate so that memory accesses to

memory locations identified as “volatile” are not included within LDM or STM

instructions generated by the compiler.

12

10

15

20

25

30

CLAIMS

1. Apparatus for processing data, said apparatus comprising:

processing logic operable in response to a multiple memory access program
instruction specifying multiple memory accesses to perform a sequence of memory
accesses to respective memory address locations;

an interrupt controller operable in response to an interrupt request signal to
trigger an interrupt; and

control logic operable when a multiple memory access program instruction 1s
pending and responsive to a stored attribute value associated with at least one of said
memory address locations to control said interrupt controller to either:

(i) terminate said multiple memory access program instruction part way
through said sequence of memory accesses and trigger said interrupt; or

(ii) wait until said sequence of memory accesses has completed and trigger

said interrupt.

2. Apparatus as claimed in claim 1, wherein said stored attribute 1s indicative of
whether a memory location is such that a memory access to said memory location

changes behaviour upon subsequent memory accesses.

3. Apparatus as claimed in any one of claims 1 and 2, wherein said stored
attribute is indicative of whether a memory Jocation is one or more of:

a memory location associated with a device;

a memory location which must be accessed in a predetermined position within

a sequence of memory accesses.

4, Apparatus as claimed in any one of claims 1, 2 and 3, wherein said a multiple
memory access program instruction is one of:

(i) a load multiple instruction specifying a sequence of memory locations from
which stored values are to be stored to a sequence of registers within a register bank;
and

(ii) a store multiple instruction specifying a sequence of registers within a

register bank from which stored values are to be stored to a sequence of memory

locations.

13

10

15

20

25

30

5. Apparatus as claimed in any one of the preceding claims, comprising a

memory management unit operable to store said attribute value.

6. Apparatus as claimed in any one of the preceding claims, wherein said control
logic is operable in a different mode of operation to control said interrupt controller to
wait until said sequence of memory accesses has completed and trigger said interrupt

independently of said stored attribute value.

7. Apparatus as claimed in any one of the preceding claims, wherein said
interrupt controller is operable to store a restart program counter value from which
program execution should be restarted following an interrupt, said restart program
counter value serving to restart program execution either:

(i) with said multiple memory access program instruction when said multiple
memory access program instruction was terminated part way through said sequence of
Mmemory accesses; or

(ii) with an instruction following said multiple memory access program

instruction when said sequence of memory accesses was allowed to complete.

8. A method of processing data, said method comprising the steps of:

in response to a multiple memory access program instruction specifying
multiple memory accesses, performing a sequence of memory accesses to respective
memory address locations;

in response to an interrupt request si gnal triggering an interrupt; wherein

when a multiple memory access program instruction is pending and responsive
to a stored attribute value associated with at least one of said memory address
locations controlling operation to either:

(i) terminate said multiple memory access program instruction part way
through said sequence of memory accesses and trigger said interrupt; or

(ii) wait until said sequence of memory accesses has completed and trigger

said interrupt.

14

10

15

20

25

30

9. A method as claimed in claim 7, wherein said stored attribute is indicative of
whether a memory location is such that a memory access to said memory location

changes behaviour upon subsequent memory accesses.

10. A method as claimed in any one of claims 7 and 8, wherein said stored
attribute is indicative of whether a memory location is one or more of:
a memory location associated with a device;

a memory location which must be accessed in a predetermined position within

a sequence of memory accesses.

11. A method as claimed in any one of claims 7, 8 and 9, wherein said a multiple

memory access program instruction is one of:
(i) a load multiple instruction specifying a sequence of memory locations from

which stored values are to be stored to a sequence of registers within a register bank;

and
(ii) a store multiple instruction specifying a sequence of registers within a

register bank from which stored values are to be stored to a sequence of memory

locations.

12. A method as claimed in any one of claims 7 to 11, comprising a memory

management unit operable to store said attribute value.

13. A method as claimed in any one of claims 7 to 12, wherein said control logic
is operable in a different mode of operation to control said interrupt controller to wait
until said sequence of memory accesses has completed and trigger said interrupt

independently of said stored attribute value.

14. A method as claimed in any one of claims 7 to 13, wherein said interrupt
controller is operable to store a restart program counter value from which program
execution should be restarted following an interrupt, said restart program counter

value serving to restart program execution either:

(i) with said multiple memory access program instruction when said multiple
memory access program instruction was terminated part way through said sequence of

memory acCesses; or

15

10

15

20

25

30

(i1) with an instruction following said multiple memory access program

instruction when said sequence of memory accesses was allowed to complete.

15. A computer program for controlling an apparatus for data processing as
claimed in any one of claims 1 to 8, said computer program including at least one
identifier associated with a data value stored at a memory location having an attribute
value operable to control said interrupt controller to wait until at sequence of memory
accesses has completed before triggering an interrupt such that, during compilation of
said computer program by a compiler, a memory access to a memory location having
said identifier is not concatenated with other memory accesses to form a multiple

memory access program instruction.

16. A computer program as claimed in claim 15, wherein said identifier is

associated with a data type statement within said computer program.

17. A computer program as claimed in any one of claims 15 and 16, said computer

program being a C language computer program.

18. A computer program for controlling an apparatus for data processing as
claimed in any one of cfaims 1 to 8, said computer program including one or more
multiple memory access program instructions associated with memory locations
having stored attribute values permitting termination of said multiple memory access
program instruction part way through said sequence of memory accesses and single
memory access program instructions associated with all memory accesses to memory
locations having attribute values not permitting termination of multiple memory

access program instructions part way through a sequence of memory accesses.

19. Apparatus for data processing substantially as hereinbefore described with

reference to the accompanying drawings.

20. A method of data processing substantially as hereinbefore described with

reference to the accompanying drawings.

16

21. A computer program substantially as hereinbefore described with reference to

the accompanying drawings.

17

< 0 <
R dhe
- Patent ™ »\%
¢ Ofhice =
A, 7 ~ 4,"
'Px(«9& ‘g R
97 o 1%&:59 INVESTOR IN PEOPLE
Application No: GB 0221465.8 Examiner: Michael Powell
Waters
Claims searched: 1to021 Date of search: 9 May 2003
Patents Act 1977 : Search Report under Section 17
Documents considered to be relevant:
Category | Relevant | Identity of document and passage or figure of particular relevance
to claims
A JP 050158688 A (FUJITSU) see PAJ abstract
Categories:
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
& Member of the same patent family E Patent document published on or after, but with priority date earlier
than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

G4A

Worldwide search of patent documents classified in the following areas of the IPC’:

GO6F

The following online and other databases have been used in the preparation of this scarch report:

WPI, EPODOC, PAJ, INSPEC, IBM TDB, COMPDX, INTERNET

An Executive Agency of the Department of Trade and Industry

