United States Patent [19]

Artz

[54] HERBICIDAL SULFONAMIDES

- [75] Inventor: Steven P. Artz, Kennett Square, Pa.
- [73] Assignee: E. I. Du Pont de Nemours and Company, Wilmington, Del.
- [21] Appl. No.: 860,229
- [22] Filed: May 12, 1986

Related U.S. Application Data

- [63] Continuation-in-part of Ser. No. 743,955, Jun. 12, 1985, abandoned.
- [51] Int. Cl.⁴ A01N 43/54; C07D 239/69; C07D 401/12; C07D 413/12

[11] Patent Number: 4,678,498

[45] Date of Patent: Jul. 7, 1987

- [56] References Cited

U.S. PATENT DOCUMENTS

4,511,392 4/1985 Rorer 71/90

Primary Examiner-John M. Ford

[57] ABSTRACT

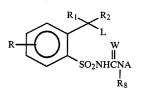
Novel compounds of Formula I are useful as herbicides and plant growth regulants.

24 Claims, No Drawings

20

35

HERBICIDAL SULFONAMIDES


1

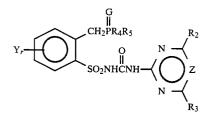
RELATED APPLICATION

This is a continuation-in-part of application U.S. Ser. No. 743,955 filed June 12, 1985, now abandoned.

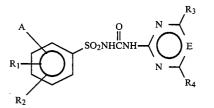
BACKGROUND OF THE INVENTION

No. EP-A-44,209 discloses herbicidal sulfonamides of ¹⁰ formula

wherein


R is H, F, Cl, Br, NO₂, CF₃, C₁-C₃ alkyl or C₁-C₃ alkoxy; 25

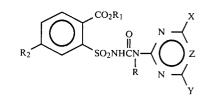
R₁ is H, Cl or C₁-C₄ alkyl;


R₂ is H or CH₃; and

L is, among other values, CO_2R_{10} , $CONR_3R_4$, CN, Cl, Br, NR_3R_4 , $S(O)_nR_7$, $SO_2NR_3R_4$ and OR_9 .

No. EP-A-112,803 discloses, in part, herbicidal sul-³⁰ fonamides of formula

South African Patent Application No. 84/2722 discloses herbicidal sulfonamides of formula



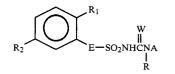
wherein

A is CR₆R₇XR₈, CR₉R₁₀R₁₁ or CHR₇SCQR₂₁;

 $\begin{array}{ll} R_9 \mbox{ and } R_{10} \mbox{ are, among other values, H or CH_3; and} \\ R_{11} \mbox{ is } COR_{24} \mbox{ or a } C_1-C_4 \mbox{ alkyl group substituted with,} \\ \mbox{ among other values, CN, NO_2, OH, } C_1-C_4 \mbox{ alkyl, C_1-$

No. EP-A-162,723 discloses 2,5-substituted herbicidal sulfonamides of formula

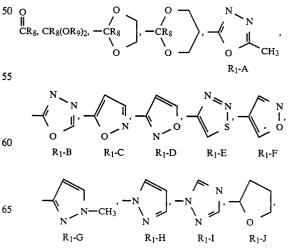
wherein R is H or CH;


 R_1 is C_1-C_3 alkyl; and

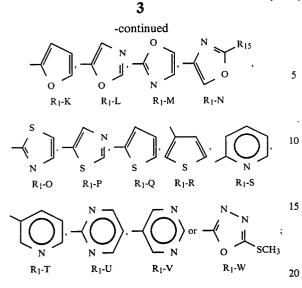
R₂ is C₂-C₆ alkoxy, C₁-C₆ alkylthio, C₃-C₆ alkenyl, C₃-C₆ alkynyloxy, C₃-C₆ alkenylthio, C₃-C₆ alkynyloxy, C₃-C₆ alkenylthio, OCH₂CH₂OCH₃, OCH₂CH₂SCH₃, CH₂F, CHF₂, OCF₂H, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, OCH₂CH₂Cl, C₂-C₆ alkyl substituted with 1-3 atoms of F or Cl or C₁-C₄ alkyl substituted with C₁-C₂ alkoxy or C₁-C₂ alkylthio.

SUMMARY OF THE INVENTION

This application pertains to novel compounds of Formula I, agriculturally suitable compositions containing them and their method-of-use as preemergent and/or postemergent herbicides or plant growth regulants.


I

wherein E is CH₂ or a single bond; W is O or S;



R₁ is F, Cl, Br, NO₂, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, OCH₂CH₂OCH₃, C₁-C₄ haloalkenyloxy, C₃-C₄ alkenyloxy, C₂-C₄ haloalkenyloxy, C₃-C₄ alkynyloxy, CO₂R₃, CONR₄R₅, SO₂NR₄R₅, SO₂N(OCH₃)CH₃, S(O)_nR₆, OSO₂R₇, C₁-C₂ alkyl substituted with C₁-C₂ alkoxy, OH or C₁-C₂ alkylthio, CH₂CN, C₆H₅,

60

65

R₂ is

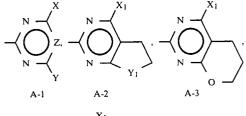
 $\begin{array}{c} O & S \\ \parallel & \parallel \\ CH(R_{16})CN, CH(R_{17})SCN, CH(R_{17})PR_{10}R_{11}, CH(R_{17})PR_{10}R_{11}, \end{array} 25$

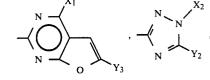
CH(R17)NR12R13, CH(R17)SeR14, CH(R17)N3, CH(R17)NO2,

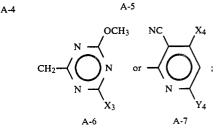
$$CH(R_{17})NC, CR_{17}, -C(OR_{18})_2, -C(SR_{18})_2, -C_{C}^{S} \\ \downarrow \\ R_{17} \\ R_{$$

R3 is C1-C4 alkyl, C3-C4 alkenyl, C3-C4 alkynyl,

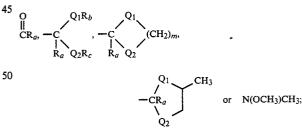
CH₂CH₂Cl, CH₂CH₂F, or C₁-C₂ alkyl substituted with OCH₃ or SCH₃;

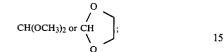

R4 is C1-C3 alkyl;


- R_5 is H or $C_1\text{-}C_3$ alkyl; R_4 and R_5 may be taken together to form (CH_2)_3 or
- (CH₂)₄;


 R_6 is C₁-C₃ alkyl, CH₂CH=CH₂ or CH₂C=CH;

- R7 is C1-C3 alkyl or N(CH3)2;
- R₈ is H, C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, ₅₅ CH₂CH₂Cl, CH₂CH₂F, C₁-C₂ alkyl substituted with OCH₃ or SCH₃ or C₃-C₆ cycloalkyl;
- R₉ is C_1 - C_2 alkyl;
- R_{10} and R_{11} are independently C_1-C_2 alkyl, C_1-C_2 alkoxy, C_1-C_2 alkylthio, NHCH₃ or N(CH₃)₂;
- R_{12} and R_{13} are independently H or C_1 - C_2 alkyl;
- R_{14} is C_1 - C_3 alkyl;
- R₁₅ is H or CH₃;
- R_{16} is H, C_1 - C_2 alkyl or F;
- R_{17} is H or C_1 - C_2 alkyl;
- R_{18} is C_1-C_2 alkyl;
- R_{19} is H, Si(CH₃)₃ or C₁-C₂ alkyl;
- R_{20} is H or C_1 - C_2 alkyl;


p is 1 or 2; n is 0, 1, or 2; A is


- X is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino or di(C₁-C₃ alkyl-)amino:
- Y is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₂-C₅ alkylthioalkyl, C₂-C₅ alkylsulfinylalkyl, C₂-C₅ alkylsulfonylalkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, C₃-C₅ cycloalkyl, azido, cyano,

m is 2 or 3; Q₁ and Q₂ are independently O or S; R_a is H or C₁-C₃ alkyl; R_b and R_c are independently C₁-C₃ alkyl; Z is CH, N, CCH₃, CC₂H₅, CCl or CBr; Y₁ is O or CH₂; X₁ is CH₃, OCH₃, OC₂H₅ or OCF₂H; X₂ is CH₃, C₂H₅ or CH₂CF₃; Y₂ is OCH₃, OCH₂H₅, SCH₃, SC₂H₅, CH₃ or CH₂CH₃; X₃ is CH₃ or OCH₃; Y₃ is H or CH₃; X₄ is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl; Y₄ is CH₃, OCH₃, OC₂H₅ or Cl;

and their agriculturally suitable salts; provided that

- (1) when X is halogen, then Z is CH and Y is OCH₃, OC₂H₅, NH₂, NHCH₃, N(CH₃)₂, OCF₂H or N(OCH₃)CH₃:
- (2) when X or Y is C_1 haloalkoxy, then Z is CH;
- (3) when W is S, then R is H, A is A-1, Z is CH or N, and Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CF_3 , SCH_3 , $OCH_2CH=CH_2$, $OCH_2C=CH$, 10 $OCH_2CH_2OCH_3$,

- (4) when the total number of carbon atoms of X and Y is greater than four, then the combined number of carbons of R1 and R2 is less than or equal to six; 20
- (5) when R_2 is C(O) R_{17} , then R_1 is other than C_1-C_4 haloalkyl or C2 alkyl substituted with C1-C2 alkoxy or C1-C2 alkylthio, and Y is other than cyclopropyl;
- (6) when Y is C₂-C₅ alkylthioalkyl, C₂-C₅ alkylsulfi- 25 nylalkyl or C_2 - C_5 alkylsulfonylalkyl, then R_2 is other than CH(R₁₇)NO₂; and

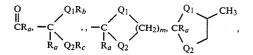
(7) X_4 and Y_4 are not simultaneously Cl.

In the above definitions, the term "alkyl", used either alone or in compound words such as "alkylthio" or ³⁰ "haloalkyl", denotes straight chain or branched alkyl, e.g., methyl, ethyl, n-propyl, isopropyl or the different butyl isomers.

Alkoxy denotes methoxy, ethoxy, n-propoxy, isopro-35 poxy and the different butoxy isomers.

Alkenyl denotes straight chain or branched alkenes, e.g., vinyl, 1-propenyl, 2-propenyl, 3-propenyl and the different butenyl isomers.

Alkynyl denotes straight chain or branched alkynes, e.g., ethynyl, 1-propynyl, 2-propynyl and the different butynyl isomers.


Cycloalkyl denotes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", denotes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl" said alkyl may be monohalogenated or fully substituted with halogen atoms, which 50 may be the same or different. Examples of haloalkyl include CH2CH2F, CF2CF3 and CH2CHFCl.

The total number of carbon atoms in a substituent group is indicated by the C_i-C_j prefix where i and j are 55 numbers from 1 to 5. For example, C1-C3 alkylsulfonyl would designate methylsulfonyl through propylsulfonyl, C2 alkoxyalkoxy would designate OCH2OCH3; C4 alkoxyalkoxy would designate the various isomers of an alkoxy group substituted with a second alkoxy group ⁶⁰ containing a total of 4 carbon atoms, examples including OCH₂OCH₂CH₂CH₃ and OCH₂CH₂OCH₂CH₃; as a further example, C₂ cyanoalkyl would designate designate 65 CH_2CN and C_3 cyanoalkyl would CH₂CH₂CN and CH(CN)CH₃.

Preferred for reasons of increased ease of synthesis and/or greater herbicidal efficacy are:

- 1. Compounds of Formula I where W is O; and R is H:
- 2. Compounds of Preferred 1 where
- E is a single bond;
 - X is C_1-C_2 alkyl, C_1-C_2 alkoxy, Cl, F, Br, I, OCF₂H, CH₂F, CF₃, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, $CH_2Cl \text{ or } CH_2Br; and$
 - Y is H, C1-C2 alkyl, C1-C2 alkoxy, CH2OCH3, CH2OCH2CH3, NHCH3, N(OCH3)CH3, N(CH3)2, CF_3 , SCH_3 , $OCH_2CH=CH_2$, $OCH_2C=CH$, OCH₂CH₂OCH₃, CH₂SCH₃,

OCF₂H, SCF₂H, cyclopropyl, C≡CH or $C \equiv CCH_3;$

Z is CH or N;

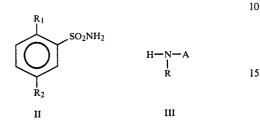
3. Compounds of Preferred 2 where R_2 is CH_2CN , CH_2N_3 ,

4. Compounds of Preferred 3 where A is A-1.

5. Compounds of Preferred 4 where R1 is F, Cl, Br, NO₂, C_1 - C_3 alkyl, C_1 - C_2 alkyl substituted with 1-3 F or Cl or 1 Br, C2-C3 alkenyl, C2-C3 alkenyl substituted with 1-3 F or Cl, C_1 - C_2 alkoxy, C_1 - C_2 alkoxy substituted with 1-3 F or Cl or 1-Br, allyloxy, propar- $OC(Cl) = CHCl, CO_2CH_3,$ gyloxy, $CO_2C_2H_5$, CO2CH2CH=CH2, CO2CH2CH2CL, CO2CH2C-H2OCH3, CONH(C1-C2 alkyl), CONCH3(C1-C2 alkyl), SO2N(OCH3)CH3, SO2NH(C1-C2 alkyl), $SO_2n(C_1-C_2 alkyl)_2$, $S(O)_nC_1-C_3alkyl$, OSO_2 - C_1-C_3 alkyl, C_1-C_2 alkyl substituted with OCH₃ or SCH₃, C₆H₅ and R₁-A, R₁-B, R₁-C, R₁-D, R₁-E, R₁-F, R₁-G, R₁-H, R₁-I, R₁-J, R₁-K, R₁-L, R₁-M, R1-N, R1-O, R1-P, R1-Q R1-R, R1-S, R1-T, R1-U, R_1 -V or R_1 -W;

6. Compounds of Preferred 5 where

- X is CH3, OCH3, OCH2CH3, Cl, OCF2H or OCH₂CF₃; and
- Y is CH₃, OCH₃, C₂H₅, CH₂OCH₃, NHCH₃ or CH(OCH₃)₂.
- 7. Compounds of Preferred 6 where R₁ is F, Cl, Br, NO₂, CH_3 , CF_3 C_1 - C_2 alkoxy, allyloxy, OC(Cl)=CHCl, CO2CH3, CO2C2H5, CO2NHCH3, $CO_2N(CH_3)_2$, SO_2NHCH_3 $SO_2N(CH_3)_2$, SO_2CH_3 , $SO_2C_2H_5$, OSO_2CH_3 , $OSO_2C_2H_5$, R_1 -A, R_1 -B or R₁-C.


Specifically preferred for reasons of greatest ease of synthesis and/or greatest herbicidal efficacy are:

- 4-(cyanomethyl)-2-[[4,6-dimethoxypyrimidin-2yl)aminocarbonyl]aminosulfonyl]benzoic acid, methyl ester, m.p. 177°-179° C.; and
- 4-(cyanomethyl)-2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]benzoic acid. methyl ester, m.p. 160°-163° C.

DETAILED DESCRIPTION OF THE INVENTION

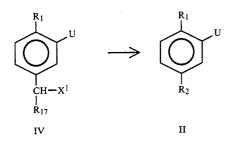
Synthesis

The compounds of Formula I can be prepared from sulfonamides of Formula II and heterocyclic amines of Formula III by one or more methods described in the literature.

Several representative routes are described below.

- U.S. Pat. No. 4,394,506 (issued 7/19/83) teaches the conversion of sulfonamides to sulfonyl isocyanates and sulfonyl isothiocyanates, and their subsequent coupling with heterocyclic amines of Formula III to give sulfonylureas. 25
- U.S. Pat. No. 4,398,939 (issued 8/16/83) teaches the formation of n-butylsulfonylureas from sulfonamides followed by phosgenation to give the sulfonyl isocyanates. Alternatively, the sulfonamides can be treated with thionyl chloride followed by phosgenation to 30 afford the sulfonyl isocyanates. Additionally, methylcarbamate derivatives of compounds of Formula III react with sulfonamides in the presence of trimethylaluminum to give sulfonylureas.
- U.S. Pat. No. 4,443,245 (issued 4/17/84) teaches two 35 methods for the synthesis of sulfonylureas. Either a phenyl carbamate of a sulfonamide and a heterocyclic amine, or a sulfonamide and a phenyl carbamate of a heterocyclic amine couple to give a sulfonylurea in an inert solvent with base.

The preparation of sulfonamides from sulfonyl chlorides is widely reported in the literature; for reviews see: F. Hawking and J. S. Lawrence. "The Sulfonamides," H. K. Lewis and Co., London, 1950 and E. H. Northey, "The Sulfonamides and Allied Compounds," 45 Reinhold Publishing Corp., New York, 1948.


Additionally, primary sulfonamides, such as those of Formula II, can be formed by removal of an N-t-butyl protecting group from the corresponding secondary 50 sulfonamide with trifluoroacetic acid (J. D. Catt and W. L. Matier, J. Org. Chem., 39, 566 (1974)) or polyphosphoric acid (J. G. Lombardino, J. Org. Chem., 36 (1971), 1843).

The requisite sulfonyl chlorides may be synthesized 55 by known methods or with slight modifications thereof, by one skilled in the art. Several representative teachings are listed below.

- Aromatic nitro groups may be transformed into sulfonyl chlorides by reduction, diazotization and cou- 60 pling with sulfur dioxide/cupric chloride as taught in U.S. Pat. No. 4,310,346 (issued 1/12/82).
- European Publication No. 94,821 (published 11/23/83) describes the displacement of aromatic halides with thiolate anions and subsequent oxidative chlorination 65 AZIDES (R2=CH(R17)N3) to yield sulfonyl chlorides.
- Halogen-metal exchange of aromatic halides or protonmetal exchange of aromatics followed by quenching

with sulfur dioxide gives sulfinate salts. These salts vield sulfonyl chlorides upon reaction with Nchlorosuccinimide as taught in U.S. Pat. No. 4,481,029 (issued 11/6/84). Directed proton-metal exchange of aromatic compounds has been reviewed by Gschwend and Rodriguez, Org. Reactions, 26 (1979), 1. Directed lithiation of aryl-N-t-butylsulfonamides is described by J. G. Lombardino, J. Org. Chem., 36 (1971), 1843. Also, aryllithiums may be converted directly to arylsulfonyl chlorides with sulfuryl chloride as described in S. N. Bhattacharya, et. al., J. Chem. Soc. C, (1968), 1265.

- Electrophilic chlorsulfonation of an aromatic ring to give a sulfonyl chloride is well known in the literature. This technique works best for alkyl aryl ethers and alkyl aromatics. Its application is described by E. H. Huntress and F. H. Carten, J. Am. Chem. Soc., 62 (1940), 511-14 and 603-4.
- Transformation of phenols to sulfonyl chlorides can be 20 accomplished by the formation of a thiocarbamate, rearrangement, hydrolysis and oxidative chlorination as described by M. S. Newman and H. A. Kames, J. Org. Chem., 31 (1966), 3980.
 - Compounds of Formula II can be prepared by a variety of methods known in the literature. The most universal scheme, where benzyl halides of Formula IV are reacted with the appropriate reagent, is shown below.

wherein U is SO₂NH₂ or a previously described sulfonamide precursor, and X^1 is Cl, Br or I and R_2 is of the structure $-CH(R_{17})$ -. Some specific methods are listed below.

- NITRILES (R2=CH(R17)CN)
- Nitriles can be prepared by nucleophilic displacement of benzyl halides, usually benzyl chlorides or bromides, with potassium or sodium cyanide. Many solvents are applicable, but frequently dimethylsulfoxide is used. Thus, a benzyl bromide of formula IV can be contacted with potassium cyanide in dimethylsulfoxide for 0.5 h to 24 h at 20° to 140° C. For a review of this reaction, refer to Friedrich and Wallenfels, in Rappoport, "The Chemistry of the Cyano Group", pp. 77-86, Interscience Publishers, New York, 1970.

ISONITRILES (R2=CH(R17)NC)

Heavy metal cyanides and benzylhalides react to give isonitriles. The reaction is best carried out in the dark using silver cyanide and a benzyl iodide. Typical procedures are given by A. Gautier, Ann. Chem., 142 (1867), 28 and H. L. Jackson and B. C. McKusick, Org. Syn., Col. Vol. IV, 438.

Compounds of Formula II may be prepared by reacting an azide anion with a benzyl halide. Typically sodium azide in alcohol or wet acetone is mixed

with a benzyl bromide at $20^{\circ}-100^{\circ}$ C. This nucleophilic displacement is reviewed in Biffin, Miller and Paul, in Patai, "The Chemistry of the Azido Group," pp. 57–119, Interscience Pub., New York, 1971.

PHOSPHONATES (R2=CH(R17)P(O)R10R11)

Alkyl phosphites are heated with benzylic halides to give phosphonates. The reaction is known as the Arbuzov reaction and it is reviewed by Arbuzov, *Pure Appl. Chem.*, 9 (1964), 307–335.

AMINES $(R_2 = CH(R_{17})NR_{12}R_{13})$

- Tertiary amines are prepared by alkylation of a secondary amine with a benzylic halide. The reaction is well documented in the literature.
- Primary amines can be prepared by reduction of compounds of Formula II where R₂ is azide. Generally lithium aluminum hydride or hydrogen and palladium catalyst are used.

NITRO ($R_2 = CH(R_{17})NO_2$)

Nitrites react with benzylic halides to give benzylic nitro compounds. The reaction is usually carried out with sodium nitrite on a benzylic bromide in dimethylformamide or dimethylsulfoxide. When silver nitrite is used, diethyl ether at 0°-25° C. are the preferred reaction conditions. The reaction is exhaustively discussed by N. Kornblum, *Org. Reactions*, 12 (1962), 101.

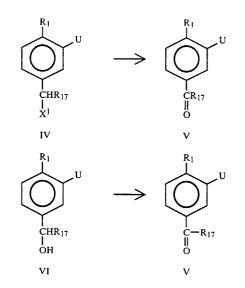
SELENO ETHERS (R2=CH(R17)SeR14)

Alkali alkylselenides can be prepared by in situ combination of an alkali metal t-butoxide with the selenol HSeR₁₄ in the solvent to be used for the displacement reaction. The selenols, HSeR₁₄, can be prepared by a variety of methods reviewed by D. L. Klayman, "Selenols and their Derivatives" in 35 Organic Selenium Compounds: Their Chemistry and Biology, D. L. Klayman, W. H. H. Gunther ed., New York, 1973, and K. J. Irgolic and M. V. Kudchadker, "Organic Chemistry of Selenium" in Selenium, R. A. Zingaro, W. C. Cooper ed., Van Nos-40 trand Reinhold, New York, 1974.

Benzyl halides may be formed through a variety of methods described in the literature. Several are listed below.

BENZYLIC CHLORIDES (X1-C1)

- Treatment of alkyl benzene derivatives with Nchlorosuccinimide, NCS, in a suitable solvent, such as carbon tetrachloride or dichloromethane, and catalyzed by light or a free radical initiator, such as azoisobutyronitrile or benzoyl peroxide, gives the benzylic chloride.
- Treatment of a benzylic alcohol with thionyl chloride, either neat or in the presence of a base such as pyridine, gives the benzylic chloride. For typical 55 examples, see H. Gilman and J. E. Kirby, J. Am. Chem., Soc., 51, 3475 (1929) and M. S. Newman, J. Am. Chem. Soc., 62, 2295 (1940).

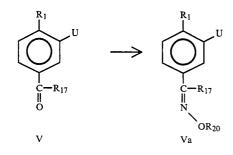

BENZYLIC BROMIDES (X¹=Br)

- Treatment of alkyl benzene derivatives with N- 60 bromosuccinimide by a method analogous to the case of N-chlorosuccinimide gives the benzylic bromide. Benzylic alcohols in an inert solvent such as benzene or dichloromethane react with phosphorus tribromide to give benzylic bromides. 65 BENZYLIC IODIDES (X¹==I)
 - Treatment of a benzylic chloride or benzylic bromide with sodium iodide gives the benzylic iodide. The

reaction, known as the Finkelstein reaction, works well in refluxing acetone.

Benzylic alcohols may be treated with iodine and phosphorus (red) or phosphorus (red) and phosphorus (yellow) to give the benzylic iodide.

Compounds of Formua II, where R_2 contains an oxygen functionality, such as an aldehyde or ketone, may be prepared by a variety of methods known to one skilled in the art. Two such routes are shown below.



Primary and secondary benzylic halides may be oxidized to aldehydes and ketones, respectively using dimethylsulfoxide. For reviews of this reaction see Durst, *Adv. Org. Chem.*, 285-388 (1969) pp. 343-356 and W. Epstein and F. Sweat, *Chem. Rev.*, 67 (1967), 247-60.

Primary benzylic alochols may be oxidized to aldehydes and secondary benzylic alcohols may be oxidized to ketones by one skilled in the art. One or more of a variety of methods, such as an oxidizing agent, catalytic dehydrogenation, Oppenauer oxidation or halosuccinimide oxidation may be used.

Acetals, thioacetals, ketals and thioketals are easily prepared by one skilled in the art from compounds of Formula V.

Oximes, and oxime ethers of Formula Va are easily prepared by one skilled in the art from compounds of Formula V and hydroxylamine or o-alkyl-hydroxylamine with or without an appropriate base.

Benzylic alcohols and alkyl benzene derivatives are either known or may be prepared by one skilled in the art.

65

The heterocyclic amines A-1 to A-7 are either known, disclosed in this application or can be prepared by methods obvious to one skilled in the art.

For a review of the synthesis and reactions of 2-. aminopyrimidines (A-1, Z=CH) see *The Chemistry of* ⁵ *Heterocyclic Compounds*, Vol 16, Wiley-Interscience, New York (1962). For a review of the synthesis and reactions of 2-amino-1,3,5-triazines (A-1, Z=N) see *The Chemistry of Heterocyclic Compounds*, Vol. 13, Wiley- 10 Interscience, New York (1959), F. C. Schaefer, U.S. Pat. No. 3,154,537 and F. C. Schaefer and K. R. Huffman J. Org. Chem., 28 (1963), 1812.

The synthesis of bicyclic amines A-2 and A-3 is taught in U.S. Pat. No. 4,339,267.

The synthesis of amino furo[2,3-d]pyrimidines, A-4, is taught in U.S. Pat. No. 4,487,626.

The synthesis of aminotriazoles, A-5, is taught in U.S. Pat. No. 4,421,550.

The synthesis of aminomethylheterocycles, A-6, is taught in U.S. Pat. No. 4,496,392.

The synthesis of aminocyano heterocycles, A-7, is taught in European Publication No. 125,864 (published 11/21/84). 25

Agriculturally suitable salts of compounds of Formula I are also useful herbicides and can be prepared in a number of ways known to the art. For example, metal salts can be made by contacting copounds of Formula I with a solution of an alkali or alkaline earth metal salt having a sufficiently basic anion (e.g. hydroxide, alkoxide, carbonate or hydride). Quaternary amine salts can be made by similar techniques.

Salts of compounds of Formula I can also be pre-³⁵ pared by exchange of one cation for another. Cationic exchange can be effected by direct contacting of an aqueous solution of a salt of a compound of Formula I (e.g., alkali metal or quaternary amine salt) with a solution containing the cation to be exchanged. This method is most effective when the desired salt containing the exchanged cation is insoluble in water, e.g., a copper salt, and can be separated by filtration.

Exchange may also be effected by passing an aqueous 45 solution of a salt of a compound of Formula I (e.g., an alkali metal or quaternary amine salt) through a column packed with a cation exchange resin containing the cation to be exchanged. In this method, the cation of the resin is exchanged for that of the original salt of the ⁵⁰ resin is exchanged for that of the original salt and the desired product is eluted from the column. This method is particularly useful when the desired salt is water-soluble, e.g., a potassium, sodium or calcium salt. ⁵⁵

Acid addition salts, useful in this invention, can be obtained by reacting a compound of Formula I with a suitable acid, e.g., p-toluenesulfonic acid, trichloroacetic acid or the like.

The preparation of the compounds of this invention is 60 further illustrated by the following examples.

EXAMPLE 1

5-Bromomethyl-N-(1,1-dimethylethyl)-2-methoxybenzenesulfonamide

A mixture of 27 g of N-(1,1-dimethylethyl)-2methoxy-5-methylbenzenesulfonamide (E. H. Huntress and F. H. Carten, J. Am. Chem. Soc., 62 (1940), 603), 19.6 g NBS and 0.3 g azobisisobutyronitrile in 200 ml CH_2Cl_2 was refluxed and illuminated with a sun lamp. After 8 hours the lamp was turned off and the reaction was refluxed for another 24 hr. The reaction was allowed to cool. The reaction mixture was washed with 200 ml of a 1:1:1:1 mixture of brine:sodium sulfite:sodium bicarbonate:water. The organic layer was dried (MgSO₄), treated with charcoal and filtered through a 5 g plug of silica gel. The plug was washed with 100 ml of chloroform. The combined organic fractions were evaporated to give 34 g of solid, m.p. $137^{\circ}-142^{\circ}$ C.

NMR (CDCl₃, 200 MHz) δ : 1.15 (s, CH₃, 9H), 4.0 (s, OCH₃, 3H), 4.45 (s, CH₂, 2H), 4.95 (bs, NH, 1H), 7.0-8.6 (m, ArH, 3H).

EXAMPLE 2

5-Cyanomethyl-N-(1,1-dimethylethyl)-2-methoxybenzenesulfonamide

A mixture of 1.63 g potassium cyanide and 8 g of the compound from Example 1 in 50 ml of DMSO was stirred at room temperature overnight. The solution became darker in color with time, going from orange to purple to black. After being stirred overnight the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried (MgSO₄), filtered and the solvent evaporated. The residual red oil was eluted through a dry silica column with 20% ethyl acetate-80% dichloromethane. The product band was isolated to give 3.0 g solid m.p. 146° -147° C.

NMR (CDCl₃, 90 MHz): 1.1 (s, CH₃, 9H), 3.7 (s, CH₂CN, 2H), 4.0 (s, OCH₃, 3H), 5.0 (s, NH, 1H), 6.9–8.0 (m, ArH, 3H).

EXAMPLE 3

5-Cyanomethyl-2-methoxybenzenesulfonamide

A suspension of 3.0 g of the compound from Example 2 and 0.1 g p-toluenesulfonic acid in 100 ml of dry toluene was refluxed in a flask equipped with a Dean-Stark apparatus. After being refluxed overnight the solution was concentrated and allowed to cool. The precipitate was filtered off to give 0.5 g light brown solid. The mother liquor was chromatographed over silica gel with 20:73:2:5, ethyl acetate:methylene chloride:methanol:THF to give additional product, m.p. 173° - 177° C.

NMR (DMSO-d₆, 90 MHz) δ : 3.9 (s, OCH₃, 3H), 4.0 (s, CH₂CN, 2H), 7.1 (bs, NH₂, 2H), 7.2–7.8 (m, ArH, 3H).

EXAMPLE 4

5-(Cyanomethyl)-N-((4,6-dimethoxy-pyrimidin-2-yl)aminocarbonyl)-2-methoxybenzenesulfonamide

To a suspension of 0.3 g of the compound from Example 3 and 0.37 g 4,6-dimethoxy-2-pyrimidinylcarbamic acid, phenyl ester in 15 ml of dry acetonitrile was added 0.198 ml DBU. After being stirred overnight the clear solution was diluted with 50 ml of water, acidified with 1N HCl and the precipitate was filtered off. The

residue was washed with water and triturated with ether to give 0.44 g solid, m.p. 168°-171° C. (dec.).

IR (nujol) 1711 cm⁻¹. NMR (200 MHz, DMSO-d₆) δ : 3.76 (s, OCH₃, 3H), 3.91 (s, OCH₃, 6H), 4.10 (s, CH₂, 2H) 6.02 (s, Het-H, 1H), 7.2-7.9 (m, ArH, 3H), 10.5+12.8 (S, NH, 2×1H).

EXAMPLE 5

5-(Bromomethyl)-2-carboxymethylbenzenesulfonamide 10

A solution of 3.5 g (0.0153 mole) of 5-methyl-2-carboxymethylbenzenesulfonamide, 2.86 g N-bromosuccinimide, 0.05 g azobisisobutyronitrile in 50 ml of carbon tetrachloride and 50 ml dichloromethane was prepared under a nitrogen atmosphere. The solution was ¹⁵ refluxed and irradiated with a sun lamp for 4 h. Then 0.6 g N-bromosuccinimide was added. After three hours of further irradiation the reaction was cooled and filtered to give 4.7 g of a white solid. The solid was washed ²⁰ with 200 ml of dichloromethane to leave 1.0 g of product. The mother liquor was eluted through a dry silica gel column with 5% diethyl ether/95% dichloromethane to give an additional 2.3 g of product, m.p. $171^{\circ}-173^{\circ}$ C.

NMR (CDCl₃, 200 MHz) δ : 4.0 (s, OCH₃, 3H), 4.52 (s, CH₂Br, 2H) 5.76 (s, NH₂, 2H), 7.6–8.2 (m, ArH, 3H).

EXAMPLE 6

5-(Cyanomethyl)-2-carboxymethylbenzenesulfonamide ³⁰

To a solution of 0.31 g potassium cyanide in 20 ml of dry dimethylsulfoxide was added 1.4 g (4.55 mmol) of the compound from Example 5. After being stirred for 6 h, the reaction mixture was partitioned between ethyl ³⁵ acetate and water. The water layer was neutralized to pH 7, the layers separated and the organic layer was dried (MgSO₄). This solution was placed on a dry silica gel column and eluted with 40% ethyl acetate/60% 40 hexane followed by 60% ethyl acetate/40% hexane. The product band (R_f 0.5, 60% ethyl acetate/40% hexane) was extracted with ethyl acetate, concentrated and the residue triturated with diethyl ether to give 0.26 g of a solid, m.p. 125°-129° C. 45

MS (m/e) 254 (M+). IR (Nujol) 1711 cm $^{-1}$.

NMR (200 MHz, DMSO-d₆)δ: 3.82 (s, OCH₃), 4.24 (s, CH₂CN), 7.36 (s, NH₂), 7.65 (dd, ArH, 2H), 7.95 (s, ArH, 1H).

EXAMPLE 7

4-(Cyanomethyl)-2-[((4,6-dimethoxypyrimidin-2yl)aminocarbonyl)aminosulfonyl]benzoic acid, methyl ester

To a suspension of 0.12 g of the compound from Example 6 and 0.143 g of 4,6-dimethoxy-2-pyrimidinylcarbamic acid, phenyl ester in 15 ml of dry acetonitrile was added 72.7 μ l of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). After being stirred at room temperature for one ⁶⁰ hour, the reaction mixture was diluted with 50 ml of water, acidified with 1N hydrochloric acid to pH 2 and extracted with ethyl acetate. The organic solution was dried (MgSO₄), filtered and concentrated to an oil. ⁶⁵ Trituration of the residue with 3:1 (ethyl ether:acetonitrile) gave 0.16 g of a white solid, m.p. 177°–179° C.

IR (nujol) 1725 cm^{-1} .

NMR (DMSO-d₆, 200 MHz) δ : 3.78 (s, OCH₃, 3H), 3.92 (s, OCH₃, 6H), 4.31 (s, CH₂, 2H), 6.01 (S, Het-H, 1H), 7.7-8.2 (m, ArH, 3H), 10.6 and 12.7 (two s, NH, 2×1 H).

EXAMPLE 8

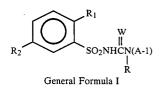
5-Acetyl-2-ethoxybenzenesulfonamide

To a solution of 30.6 g of 4-ethoxyacetophenone in 100 ml of chloroform was added 40 ml of chlorosulfonic acid dropwise. The reaction was then reluxed for five hours after which it was poured into 800 ml of ice water. The reaction mixture was extracted with 400 ml of 15 chloroform. The organic layer was washed with brine, dried (MgSO₄) and filtered through charcoal. The filtrate was concentrated under reduced essure to give 12.3 g of an oil. The oil was dissolved in 200 ml tetrahydrofuran. The solution was cooled to 5° C. followed by dropwise addition of 10 ml of concentrated ammonium hydroxide. After stirring overnight at room temperature, the reaction was partitioned between water and ethyl acetate. The organic layer was washed with 1N hydrochloric acid, brine, dried (MgSO₄), filtered and stripped. The residue was crystallized from acetonitrile/diethyl ether. The solid was washed with methanol and dried to give 2.3 g of solid, m.p. 148°-151° C.

NMR (90 MHz, CDCl₃) δ : 1.5 (m, CH₃, 3H), 2.55 (s, CH₃, 3H), 4.35 (q, CH₂O, 2H), 5.1 (bs, NH₂), 7.0–8.6 (m, ArH, 3H).

EXAMPLE 9

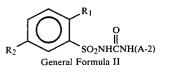
5-Acetyl-N-((4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-2-ethoxybenzenesulfonamide

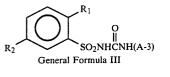

To a stirred suspension of 0.2 g of the compound from Example 8, 0.23 g of 4,6-dimethoxy-2-pyrimidinylcarbamic acid, phenyl ester in 10 ml of dry acetonitrile was added 127 μ l of DBU. After being stirred for 1 hr, the mixture was treated with 40 ml of water and 1N HCl in a dropwise manner until the pH was 3. The precipitate 45 was filtered off and washed with water and ether/hexane (1/1), to give 0.27 g of a solid, m.p. 192°-193° C.

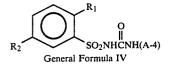
IR (nujol) 1680 and 1705 cm⁻¹.

NMR (200 MHz, DMSO-d₆)δ: 1.1 (t, CH₃, 3H), 2.58
(s, CH₃, 3H), 3.91 (s, OCH₃, 6H), 4.27 (q, CH₂, 2H), 6.03
(s, Het-H, 1H), 7.2-8.4 (m, ArH, 3H), 10.6 and 12.7 (s, NH, 2×1H).

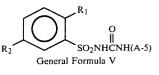
The invention is further exemplified, but not limited to the compounds in Tables I-VII. The compounds ⁵⁵ depicted in these tables may be prepared by methods described in Examples 1-9, or by modifications thereof apparent to those skilled in the art.

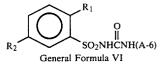


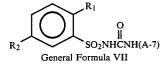



-continued General Structures

-continued General Structures







•

TABLE I

.

20

General Formula I							
R ₁	R ₂	w	R	x	Y	Z	m.p. (°C.)
F	CH ₂ CN	0	Н	OCH ₃	Н	CH	
F	CH ₂ CN	0	CH3	2	CH ₃	CH	
F	CH ₂ CN	0	н	CH ₃	OCH ₃	N	
F	CH ₂ SCN	0	н	OCH ₃	OCH ₃	CH	
F	CH ₂ SCN	0	н	OCH3	CH ₂ CH ₃	CH	
F	CH ₂ SCN	0	н	CH ₂ CH ₃	OCH ₃	N	
F	$CH_2P(O)(OCH_3)_2$	0	н	OCH3	CH ₂ OCH ₃	CH	
F	$CH_2P(O)(OCH_3)_2$	0	н	OCH ₃	OCH ₃	CH	
F	$CH_2P(O)(OCH_3)_2$	0	н	OCH ₂ CH ₃	CH ₃	CH	
F	$CH_2P(O)(CH_3)_2$	0	н	OCH ₃	CH ₃	N	
Cl	CH ₂ CN	0	н	OCH ₃	CH ₂ CH ₂ OCH(CH ₃) ₂	CH	
Cl	CH ₂ CN	0	Н	Cl	OCH3	CH	
Cl	CH ₂ CN	0	Н	OCH ₃	CH(CH ₃)(CH ₂ OCH ₃)	CH	142 152
Cl	CH ₂ SCN	0	Н	СН	CH3	CH ₃	
Cl	CH ₂ SCN	0	Н	OCH ₃	CH3	N	100-106
Cl	CH ₂ SCN	0	Н	OCH ₃	CH ₃	CH	174-180
Cl	CH ₂ SCN	0	H	Cl	OCH ₃	CH	oil
Cl	CH ₂ SCN	0	H	OCH ₃	OCH3	N	oil
Cl	CH ₂ SCN	0	Н	OCH ₃	(CH ₂) ₄ CH ₂ OCH ₂ CH ₃	CH	
Cl	$CH_2P(O)(OCH_3)_2$	0	H	OCH ₃	CH ₃	N	
Cl	$CH_2P(O)(OCH_3)_2$	0	H	OCF ₂ H	CH ₃	CH	
Cl	$CH_2P(O)(OCH_3)_2$	0	н	OCH ₃	NH ₂	CH	
Cl	CH ₂ P(O)(OCH ₂ CH ₃) ₂	0	Н	OCH3	NHCH3	N CH	
Br	CH ₂ CN	0	Н	CH3	NHCH ₂ CH ₃	CH	
Br	CH ₂ CN	0	Н	OCH ₃	OCH ₃	N	
Br	CH ₂ CN	S	Н	OCH ₃	CH3	CH	
Br	CH ₂ SCN	0	H	CH ₂ F	OCH3 NHCH(CH3)2	CH	
Br	CH ₂ SCN	0	н н	OCH ₃ OCH ₃	CH ₃	N	
Br	CH ₂ SCN	0	н	5	OCH ₃	СН	
Br	$CH_2P(O)(OCH_3)_2$	ő	н Н	OCH ₂ CH ₂ F OCH ₃	N(CH ₃) ₂	CH	
Br	$CH_2P(O)(OCH_3)_2$	ŏ	н	OCH3	OCH ₃	N	
Br	CH ₂ P(O)(SCH ₃) ₂	ŏ	н	OCH3	OCH ₃	СН	
NO ₂	CH2CN CH2CN	ŏ	H	OCH3 ·	CH ₃	CH	
NO ₂	CH ₂ CN CH ₂ CN	ŏ	Н	CH ₃	OCH ₃	CH	
NO ₂	CH ₂ SCN	ŏ	н	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	N	
NO ₂ NO ₂	CH ₂ SCN	ŏ	H	CH ₂ CH ₃	OCH3	СН	
NO ₂	CH ₂ SCN	ŏ	Ĥ	OCH ₃	OCH2CH2CH2Cl	CH	
NO ₂ NO ₂	CH ₂ P(O)(OCH ₃) ₂	ŏ	н	OCH ₃	OCH3	N	
NO ₂ NO ₂	$CH_2P(O)(OCH_3)_2$	ŏ	н	CH ₂ CH ₂ CH ₂ CH ₃	OCH ₃	CH	
NO ₂ NO ₂	$CH_2P(O)(OCH_3)_2$	ŏ	н	OCH3	SCH ₂ CH ₂ F	CH	
NO ₂	CH ₂ P(S)(SCH ₃) ₂	ŏ	Ĥ	OCH ₃	OCH ₃	N	
CH ₃	CH ₂ CN	ŏ	Ĥ	CH ₃	SCH ₃	CH	
CH ₃	CH ₂ CN	ŏ	Ĥ	OCH3	OCH ₃	CH	
CH ₃	CH ₂ SCN	ŏ	н	OCH ₃	SCH(CH ₃) ₂	N	
CH ₃	CH ₂ SCN	õ	H	OCH ₂ CH(CH ₃) ₂	OCH ₃	CH	
CH ₃	$CH_2P(O)(OCH_3)_2$	ŏ	н	Br	OCH ₃	CH	
CH ₃	$CH_2P(O)(N(CH_3)_2)_2$	õ	н	OCH ₃	OCH ₃	Ν	
CH ₂ CH ₃	CH ₂ CN	õ	H	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	OCH ₃	CH	
CH ₂ CH ₃	CH ₂ SCN	Ō	н	OCH ₃	OCH2CH2OCH3	CH	
n-C ₄ H ₉	CH ₂ P(O)(OCH ₃) ₂	Ō	н	OCH ₃	OCH ₃	N	
CH=CH ₂	CH ₂ CN	0	н	F	OCH ₃	CH	
	-				-		

15

,

	1/			10		
		TA	BLE I-continued			
	······		General Formula I			
		_	Jeneral Formula I			
R	R ₂	WR	X	Y	Z	m.p.
CH=CHCH3						(°C.)
CH=CHCH ₃ CH ₂ CH=CH ₂	CH2CN CH2SCN	ОН	-	OCH ₃	CH	
CCl=CCl ₂	CH ₂ SCN CH ₂ SCN	он		OCH ₃ OCH ₃	N CH	
CECCH ₃	$CH_2P(O)(OCH_3)_2$	ОН		OCH3 OCH3	СН	
CH ₂ C≡CH	CH ₂ CN	O H		CH ₂ CH ₃	N	
CH ₂ Cl	CH ₂ CN	ОН		OCH ₃	СН	
CH ₂ Cl	CH ₂ SCN	ОН		OCH ₃	CH	
CH ₂ Br	$CH_2P(O)(OCH_3)_2$	ОН		OCH ₃	N	
CH ₂ Br CF ₃	CH ₂ CN	OH	,	OCH ₃	CH	
CF3 CF3	CH2CN CH2CN	O H O H		CH ₃	N	
CF3	CH ₂ SCN	ОН	5	OCH ₃ OCH ₃	CH CH	
CF ₃	CH ₂ SCN	он		CH ₂ CH ₂	N	
CF ₃	CH ₂ P(O)(OCH ₃) ₂	ОН		OCH ₃	СН	
CF ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	2 5	CH ₃	CH	
CF3	CH ₂ NH ₂	ОН	5	Н	CH	
CH ₂ CHClCH ₂ Cl CH ₂ CF ₃	CH ₂ CN	OH	5	OCH ₃	N	
OCH ₃	CH ₂ CN CH ₂ CN	O H O H		OCH3	CH	
OCH3	CH ₂ CN CH ₂ CN	ОН		CH ₂ OCH ₃ OCH ₃	CH CH	
OCH ₃	CH ₂ CN	он	5	OCH3	N	166–170°
OCH ₃	CH ₂ CN	ОН		NHCH3	СН	100-170
OCH ₃	CH ₂ CN	ОН	OCH ₃	OCH ₃	N	
OCH3	CH ₂ CN	ОН		OCH ₃	CH	
OCH3	CH ₂ CN	OH		OCH ₃	CH	168-171°
OCH ₃ OCH ₃	CH ₂ CN	OH		CH ₃	N	
OCH3 OCH3	CH ₂ SCN CH ₂ SCN	O H O H	-	OCH ₃	CH	
OCH ₃	CH ₂ SCN	он	5	OCH3 N(CH3)2	ĊH N	
OCH ₃	CH ₂ SCN	он		OCH ₃	CH	
OCH ₃	CH ₂ SCN	ОН	5	OCH ₃	СН	
OCH ₃	CH ₂ SCN	ОН	OCH3	SCH ₃	N	
OCH ₃	$CH_2P(O)(OCH_3)_2$	ОН	- · ·	CH ₃	CH	
OCH3	$CH_2P(O)(OCH_3)_2$	ОН	5	CF ₃	CH	
OCH3 OCH3	$CH_2P(O)(OCH_3)_2$	OH	5	OCH ₃	N	
OCH ₃	$CH_2P(O)(OCH_3)_2$ $CH_2P(O)(OCH_3)_2$	O H O H		CH ₃	CH	
OCH ₃	$CH_2P(O)(OCH_3)_2$	он		OCH3 CH3	CH N	
OCH ₃	$CH_2P(O)(OCH_3)_2$	ŏн	= = = - 5	CH ₃	CH	
OCH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН		OCH ₃	CH	
OCH ₃	$CH_2N(CH_3)_2$	ОН		OCH ₃	CH	
OCH3	$CH_2N(CH_3)_2$	ОН	5	CH ₃	CH	
OCH3 OCH3	$CH_2N(CH_3)_2$	ОН		CH ₃	CH	
OCH ₃	CH ₂ N(CH ₃) ₂ CH ₂ N(CH ₃) ₂	O H O H		OCH ₃ OCH ₃	CH N	
OCH ₃	$CH_2N(CH_3)_2$	он		CH ₃	N	
OCH ₃	CH ₂ SeCH ₃	бй	5	OCH ₃	СН	135-138
OCH ₃	CH ₂ SeCH ₃	ОН		CH ₃	CH	101-110
OCH ₃	CH ₂ SeCH ₃	ОН		OCH3	CH	
OCH3	CH ₂ SeCH ₃	ОН	5	CH3	CH	101-103
OCH3 OCH3	CH ₂ SeCH ₃	OH		OCH3	N	101-105
OCH ₃	CH ₂ SeCH ₃ CH ₂ SeCH ₃	O H O H	-	CH3	N	120-127
OCH ₃	CH ₂ N ₃	он		NHCH3 OCH3	N CH	142-144
OCH ₃	CH ₂ N ₃	он		CH ₃	CH	129-132
OCH ₃	CH ₂ N ₃	ОН		OCH ₃	CH	144-146
OCH ₃	CH ₂ N ₃	он		CH ₃	CH	137-142
OCH ₃	CH ₂ N ₃	ОН	5	OCH ₃	N	137-142
OCH3 OCH3	CH ₂ N ₃ CH ₂ NO ₂	он он	5	CH ₃	N	96-101
OCH ₃	CH ₂ NO ₂	ОН		OCH ₃ OCH ₃	CH CH	
OCH ₃	CH ₂ NO ₂	бн		OCH ₃	СН	
OCH ₃	CH ₂ NO ₂	он		CH ₃	СН	
OCH ₃	CH ₂ NQ	ОН		OCH ₃	N	
OCH ₃	CH ₂ NO ₂	ОН		CH ₃	N	
OCH ₃	CH ₂ NC	ОН	5	OCH ₃	CH	
OCH3 OCH2CH3	CH ₂ NC	ОН	5	CH ₃	CH	
OCH ₂ CH ₃ OCH ₂ CH ₃	CH ₂ CN CH ₂ SCN	он он	5	OCH ₃	CH	
OCH ₂ CH ₃	CH ₂ SCN	он		SCH3 OCH3	CH CH	
OCH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	он		OCH3 OCH3	N	
OCH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	о н		OCH ₂ CH=CH ₂	N	
OCH ₂ CH ₃	CH ₂ N ₃	ОН	OCH3	OCH ₃	СН	
OCH ₂ CH ₃	CH ₂ NO ₂	ОН	5	OCH ₃	CH	
OCH ₂ CH ₃	CH ₂ N(CH ₃) ₂	ОН		CH ₃	N	
OCH(CH ₃) ₂ o-n-C ₄ H ₉	CH ₂ CN	ОН	5	OCH ₃	CH	
o-n-C4H9 OCH2CH2OCH3	CH2CN CH2CN	ОН		OCH ₃	CH	
OCH ₂ CH ₂ OCH ₃	CH ₂ CN	он		OCH ₂ C≡CH CH ₃	N CH	
	-		,		CII	

,

TABLE I-continued

<u></u>		Ge	neral Formula I			
R ₁	R ₂	WR	х	Y	Z	m.p. (°C.)
OCH2CH2OCH3	CH ₂ SCN	ОН	OCH ₃	OCH ₃	CH	
OCH ₂ CH ₂ OCH ₃	CH ₂ SCN	ОН	OCH ₃	OCH ₃	N	
OCH ₂ CH ₂ OCH ₃	CH ₂ SCN	ΟН	CH3	OCH ₂ CH ₂ OCH ₃	СН	
OCH2CH2OCH3	$CH_2P(O)(OCH_3)_2$	ОН	OCH ₃	CH ₃	CH	
OCH ₂ CH ₂ OCH ₃	$CH_2P(O)(OCH_3)_2$	ОН	OCH ₃	OCH ₃	N	
OCH ₂ CH ₂ OCH ₃	$CH_2NH(CH_2CH_2CH_3)$	ОН	OCH ₃	OCH ₃	CH CH	
OCF ₂ H	CH ₂ CN	он	OCH ₃	CH3 OCH3	N	
OCF ₂ H	CH ₂ CN	ОН ОН	CH ₃ OCH ₃	CH ₂ SCH ₃	СН	
OCF2H OCF2H	CH2SCN CH2SCN	он	OCH ₃	CH ₂ SCH ₃	N	
OCF ₂ H OCF ₂ H	$CH_2P(O)(OCH_3)_2$	ŏн	OCH ₃	CH ₃	CH	
OCF ₂ H	$CH_2P(O)(OCH_3)_2$	ОН	OCH ₃	OCH ₃	CH	
OCF ₂ H	CH ₂ N(CH ₂ CH ₃) ₂	ОН	OCH ₃	OCH ₃	N	
OCF ₂ H	CH ₂ N(CH ₃) ₂	ОН	CH ₃	CH ₃	CH	
OCH ₂ CH ₂ F	CH ₂ CN	ОН	OCH3	OCH3	CH	
OCH ₂ CH ₂ F	CH ₂ CN	O H O H	OCH3	OCH ₃ CH ₃	N CH	
OCH ₂ CF ₃	CH ₂ CN	O H O H	OCH3 OCH3	OCH ₃	CH	
OCH ₂ CH ₂ Cl	CH2CN CH2CN	он	OCH ₃	CH ₃	CH	
OCH2CH2Cl OCH2CH2Cl	CH ₂ SCN	он	CH ₃	OCH ₃	СН	
OCH2CH2Cl	CH ₂ SCN	он	OCH ₃	CH2CH2OCH2CH3	Ν	
OCH2CH2Cl	CH ₂ SCN	ОН	CH ₂ CH ₃	OCH ₃	CH	
OCH2CH2CI	CH ₂ P(O)(OCH ₃) ₂	ОН	I	OCH ₃	CH	
OCH ₂ CH ₂ Cl	$CH_2P(O)(OCH_3)_2$	он	OCH ₃	OCH ₃	N	
OCH ₂ CH ₂ Cl	CH ₂ SeCH ₃	ОН	CH ₃	OCH3	CH	
$OCH_2CH=CH_2$	CH ₂ CN	ОН	OCH3	NH ₂ OCH ₃	CH N	
$OCH_2CH=CH_2$	CH ₂ CN	ОН ОН	OCH3 CH3	NHCH2CH2CH3	СН	
$OCH_2CH = CH_2$	CH2CN CH2CN	он	OCH ₃	OCH ₃	СН	
$OCH_2CH=CH_2$ $OCH_2CH=CH_2$	CH ₂ SCN	он	OCH ₃	OCH ₃	N	
OCH ₂ CH=CH ₂	CH ₂ SCN	он	CH ₃	OCH ₃	CH	
OCH ₂ CH=CH ₂	CH ₂ P(O)(OCH ₃) ₂	ОН	OCH3	OCH ₂ C CH	CH	
OCH ₂ CH=CH ₂	CH ₂ SeCH ₂ CH ₃	ΟН	OCH3	OCH ₃	N	
OCH ₂ C=CH	CH ₂ CN	ОН	CH_2C_3	OCH3	CH	
OCH ₂ C CH	CH ₂ CN	ОН	OCH ₃	$OCH_2CH_2CH_2=CH_3$	CH	
OCH ₂ C≡CH	CH ₂ CN	ОН	OCH ₃	OCH3	N CH	
OCH ₂ C≡CH	CH ₂ SCN	ОН ОН	CH ₃ OCH ₃	CH ₂ SCH ₃ OCH ₃	CH	
OCH ₂ C≡CH	CH2SCN CH2SCN	он	CH ₃	OCH ₃	N	
$OCH_2C \equiv CH$ $OCH_2C \equiv CH$	$CH_2P(O)(OCH_3)_2$	он	OCH ₃	CH ₂ SCH ₂ CH ₂ CH ₂	СН	
OCH ₂ C=CH	$CH_2P(O)(OCH_3)_2$	он	CH ₃	OCH ₃	CH	
OC(CI)=CHCl	CH ₂ CN	ОН	OCH ₃	CH ₂ CH ₂ F	N	
OC(CI)=CHCI	CH ₂ CN	ОН	I	OCH ₃	CH	
OC(Cl)=CHCl	CH ₂ SCN	ОН	OCH ₃	OCH ₂ C≡CH	CH	
OC(Cl)=CHCl	CH ₂ P(O)(OCH ₃) ₂	ОН	OCH ₃	C≡CH	N CH	
OC(CI)=CHCI	CH ₂ P(O)(OCH ₃) ₂	O H O H	CH ₃ OCH ₃	OCH ₃ OCH ₃	CH	177-179
CO ₂ CH ₃ CO ₂ CH ₃	CH2CN CH2CN	он	OCH3	CH ₃	CH	172-175
CO ₂ CH	CH ₂ CN	он	CH ₃	CH ₃	CH	174-177
CO ₂ CH ₃	CH ₂ CN	он	CH ₂ CH ₃	OCH3	CH	
CO ₂ CH ₃	CH ₂ CN	ΟН	OCH ₃	CH ₃	N	160-163
CO ₂ CH ₃	CH ₂ CN	ОН	CH ₂ CH ₂	OCH ₃	CH	101 105
CO ₂ CH ₃	CH ₂ CN	ОН	CI	OCH3	CH	181-185
CO ₂ CH ₃	CH ₂ CN	ОН	OCH ₃	OCH3 OCH3	N CH	126-132
CO ₂ CH ₃	CH ₂ SCN CH ₂ SCN	ОН ОН	CH3 Cl	OCH3	СН	
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ SCN CH ₂ SCN	он	OCH ₃	OCH ₃	N	
CO ₂ CH ₃	CH ₂ SCN	он	CH ₃	CH ₃	CH	
CO ₂ CH ₃	CH ₂ SCN	ОН	OCH ₃	OCH3	CH	126
CO ₂ CH ₃	CH ₂ SCN	ОН	OCH ₃	CH ₃	N	
CO ₂ CH ₃	CH ₂ SCN	он	NHCH3	OCH3	CH	
CO ₂ CH ₃	CH ₂ SCN	ОН	OCH3	CH(OCH ₃) ₂	CH	oil
CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	ОН	OCH3	OCH3 OCH3	N CH	oil
CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	O H O H	CH3 CH3	CH ₃	CH	oil
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂ CH ₂ P(O)(OCH ₃) ₂	он	OCH ₃	CH ₃	N	oil
CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	он	cyclo-	OCH ₃	CH	
			propyl	-		
CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	OCH3	OCH ₃	CH	oil
CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	CH ₃	OCH ₂ CF ₃	N	
CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	CH ₃	CH ₃	CH	
CO ₂ CH ₃	$CH_2P(S)(SCH_3)_2$	ОН	CH ₃	OCH3	CH N	
CO ₂ CH ₃	CH ₂ P(O)(SCH ₃) ₂	O H O H	OCH3 cyclo-	OCH3 OCH3	CH	
CO ₂ CH ₃	CH ₂ NH ₂	ол	propyl	Jenj		
CO ₂ CH ₃	CH ₂ NH ₂	он	Cl	OCH ₃	CH	
CO ₂ CH ₃	CH ₂ NH ₂	он	OCH3	OCH3	Ν	
CO ₂ CH ₃	CH ₂ NH ₂	ОН	CH ₃	OCH ₃	CH	
CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	ОН	OCH ₃	OCH ₃	CH	

TABLE I-continued

				neral Formula I			
R ₁	R ₂	w		x	Y	z	m.p. (°C.)
CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	0	Н	OCH ₃	CH ₃	СН	(0.)
CO ₂ CH ₃	$CH_2N(CH_3)_2$ CH ₂ N(CH ₃) ₂	ŏ	н	CH ₃	OCH ₃	N	
CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	0	Н	OCH ₃	OCH ₃	N	
CO ₂ CH ₃	$CH_2N(CH_3)_2$	0	Н	CH ₂ CH ₃	OCH ₃	CH	
CO ₂ CH ₃ CO ₂ CH ₃	$CH_2N(CH_3)_2$ $CH_2N(CH_3)(CH_2CH_3)$	0	H H	Cl OCH ₃	OCH ₃ OCH ₃	CH N	
CO ₂ CH ₃	$CH_2NH(CH(CH_3)_2)$	ŏ	н	CH ₃	OCH ₃	CH	
CO ₂ CH ₃	CH ₂ SeCH ₃	0	н	OCH ₃	CH3	CH	
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ SeCH ₃ CH ₂ SeCH ₃	0	н н	OCH ₃ CH ₃	OCH ₃ CH ₃	N	
CO ₂ CH ₃	CH ₂ SeCH ₃	ŏ	н	OCH ₃	OCH ₃	CH CH	
CO ₂ CH ₃	CH ₂ SeCH ₃	0	Н	OCH ₃	CH ₃	N	
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ SeCH ₃ CH ₂ N ₃	0	н Н	Cl OCH ₃	OCH ₃ CH ₃	CH	
CO ₂ CH ₃	CH ₂ N ₃	ŏ	H	OCH3	OCH ₃	CH N	
CO ₂ CH ₃	CH ₂ N ₃	0	Н	Cl	OCH ₃	CH	136-141
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ N ₃ CH ₂ N ₃	0	H H	OCH ₂ CH ₃ OCH ₃	NHCH3 CH3	CH	
CO ₂ CH ₃	CH ₂ N ₃	ŏ	H	CH ₃	CH ₃ CH ₃	N CH	117–118 174–176
CO ₂ CH ₃	CH ₂ N ₃	0	Н	OCH ₃	OCH ₃	CH	159-160
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ NO ₂ CH ₂ NO ₂	0 0	H H	CH3 CH3	OCH3 CH3	N	
CO ₂ CH ₃	CH ₂ NO ₂	ŏ	н	CH ₃	OCH ₃	CH CH	
CO ₂ CH ₃	CH ₂ NO ₂	0	Н	OCH ₃	OCH ₃	N	
CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ NO ₂ CH ₂ NO ₂	0 0	H H	OCH3 Cl	OCH ₃ OCH ₃	CH	
CO ₂ CH ₃	CH ₂ NC	ŏ	н	OCH3	OCH ₃	CH N	
CO ₂ CH ₃	CH ₂ NC	0	Н	CH ₃	OCH ₃	N	
CO ₂ CH ₂ CH ₃ CO ₂ CH ₂ CH ₃	CH2CN CH2CN	0 0	H H	OCH ₃ OCH ₃	OCH ₃ . CH ₃	CH	132-136
CO ₂ CH ₂ CH ₃	CH ₂ CN	ŏ	н	CH ₃	OCH ₃	CH N	
CO ₂ CH ₂ CH ₃	CH ₂ CN	0	Н	OCH ₃	N(OCH ₃)CH ₃	N	
CO ₂ CH ₂ CH ₃ CO ₂ CH ₂ CH ₃	CH ₂ SCN CH ₂ SCN	0 0	H H	CH ₂ CH ₃ OCH ₃	OCH ₃	CH	
CO ₂ CH ₂ CH ₃	CH ₂ SCN	ŏ	н	OCH ₃	OCH ₃ OCH ₃	CH N	
CO ₂ CH ₂ CH ₃	CH ₂ SCN	0	н	CH ₃	OCH ₃	CH	
$CO_2CH_2CH_3$ $CO_2CH_2CH_3$	$CH_2P(O)(OCH_3)_2$ $CH_2P(O)(OCH_3)_2$	0 0	H H	OCH ₃ OCH ₃	CH ₃ OCH ₃	CH N	
CO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	ŏ	н	CH ₃	OCH ₃	CH	
CO ₂ CH ₂ CH ₃	CH ₂ N ₃	0	н	OCH ₃	OCH ₃	CH	160-164
$CO_2CH_2CH_3$ $CO_2CH(CH_3)_2$	CH ₂ N ₃ CH ₂ CN	0 0	H H	OCH3 OCH3	CH3 OCH3	N CH	106-109
$CO_2CH(CH_3)_2$	CH ₂ CN	ŏ	Ĥ	OCH ₃	CH ₃	CH	
$CO_2CH_2CH=CH_2$	CH ₂ CN	0	Н	OCH3	OCH ₃	N	
$CO_2CH_2CH=CH_2$ $CO_2CH_2CH=CH_2$	CH2SCN CH2SCN	0 0	H H	OCH3 OCH3	OCH3 CN	CH CH	
CO ₂ CH ₂ C≡CH	CH ₂ P(O)(OCH ₃) ₂	ŏ	н	OCH ₃	OCH ₃	N	
CO ₂ CH ₂ CH ₂ Cl	CH ₂ P(O)(OCH ₃) ₂	0	н	CH ₃	OCH ₃	CH	
CO ₂ CH ₂ CH ₂ Cl CO ₂ CH ₂ CH ₂ F	CH2CN CH2CN	0	H H	OCH3 CH3	OCH ₃ OCH ₃	CH CH	
CO ₂ CH ₂ CH ₂ F	CH ₂ SCN	ŏ	н	CH ₃	CHO	СН	
CO ₂ CH ₂ CF ₃	CH ₂ SCN	0	н	CH ₃	OCH ₃	CH	
CO ₂ CH ₂ CH ₂ OCH ₃ CO ₂ CH ₂ CH ₂ OCH ₃	$CH_2P(O)(OCH_3)_2$ $CH_2P(O)(OCH_3)_2$	0 0	H H	OCH3 OCH3	OCH ₃ OCH ₃	N CH	•
CO ₂ CH ₂ CH ₂ SCH ₃	CH ₂ CN	ŏ	н	OCH ₃	N ₃	CH	
CO ₂ CH ₂ CH ₂ SCH ₃	CH ₂ SCN	0	Н	OCH ₃	CH ₃	Ν	
C(O)NHCH ₃ C(O)NHCH ₃	CH2CN CH2SCN	0	H H	OCH3 OCH3	OCH3 CH3	CH CH	
C(O)NHCH ₃	CH ₂ SCN	ŏ	н	OCH ₃	OCH ₃	CH	
·C(O)NHCH ₃	CH ₂ P(O)(OCH ₃) ₂	0	н	OCH ₃	OCH ₃	N	
C(O)N(CH ₃) ₂ C(O)N(CH ₃) ₂	CH2CN CH2CN	0 0	H H	CH ₂ CH ₃ OCH ₃	OCH3 CH3	CH CH	
$C(O)N(CH_3)_2$	CH ₂ CN	ŏ	н	OCH ₃	OCH ₃	N	
$C(O)N(CH_3)_2$	CH ₂ CN	0	Н	OCH ₃	OCH ₃	CH	
C(O)(CH ₃) ₂ C(O)N(CH ₃) ₂	CH2SCN CH2SCN	0 0	н н	Cl OCH ₃	OCH3 OCH3	CH N	
$C(O)N(CH_3)_2$	CH ₂ SCN	ŏ	H	CH ₃	OCH3 OCH3	CH	
$C(O)N(CH_3)_2$	CH ₂ P(O)(OCH ₃) ₂	0	Н	OCH ₃	OCH ₃	CH	
$C(O)N(CH_3)_2$ $C(O)N(CH_3)_2$	CH ₂ P(O)(OCH ₃) ₂ CH ₂ SeCH ₂ CH ₂ CH ₃	0 • 0	H H	OCH3 OCH3	OCH3	N	
$C(O)N(CH_3)_2$	$CHN(CH_3)_2$	0	н Н	OCH ₃ OCH ₃	OCH3 CH(OCH3)2	CH CH	
SO ₂ NHCH ₃	CH ₂ CN	0	Н	OCH ₃	OCH3	Ν	
SO ₂ NHCH ₃ SO ₂ NHCH ₃	CH ₂ CN CH ₂ CN	0	Н	OCH ₃	OCH ₃	CH	
SO ₂ NHCH ₃ SO ₂ NHCH ₃	CH2CN CH2CN	0	H H	OCH3 OCH3	CH ₃ . OCH ₃	CH N	
SO ₂ NHCH ₃	CH ₂ SCN	0	н	OCH ₃	CH3	CH	
SO ₂ NHCH ₃ SO ₂ NHCH ₃	CH ₂ SCN CH ₂ SCN	0 0	H H	OCH ₃	OCH3	CH	
SO ₂ NHCH ₃ SO ₂ NHCH ₃	CH ₂ SCN CH ₂ SCN	0	н Н	CH3 Cl	OCH3 OCH3	N CH	
<u> </u>		-			00113	CII	

TABLE I-continued

	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Ge	neral Formula I			
R1	R ₂	w	R	x	Y	Z	m.p. (°C.)
SO ₂ NHCH ₃	CH ₂ P(O)(OCH ₃) ₂	0	Н	CH ₃	OCH ₃	СН	
SO ₂ NHCH ₃	$CH_2P(O)(OCH_3)_2$	0	Н	OCH ₃	OCH ₃	N	
SO ₂ NHCH ₂ CH ₃	CH ₂ CN	0	н	OCH ₃	OCH ₃	CH	
SO ₂ NHCH ₂ CH ₃	CH ₂ CN	0	н	OCH ₃	CH ₃	CH N	
SO ₂ NHCH ₂ CH ₃	CH ₂ SCN	0	Н	OCH ₃	OCH3 OCH3	CH	
SO ₂ NHCH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	0	Н Н	CH3 OCH3	OCH ₃	СН	
SO ₂ N(CH ₃)(CH ₂ CH ₃) SO ₂ NHCH ₂ CH ₂ CH ₃	CH2CN CH2CN	ő	н	OCH ₃	CH ₃	CH	
SO ₂ N(CH ₂ CH ₃) ₂	CH ₂ SCN	ŏ	н	Cl	OCH3	CH	
$SO_2N(CH_3)(CH(CH_3)_2)$	CH ₂ SCN	Ó	Н	OCH ₃	OCH ₃	N	
SO ₂ N(CH ₃)(OCH ₃)	$CH_2P(O)(OCH_3)_2$	0	Н	OCH ₃	OCH ₃	CH	
SO ₂ N(CH ₃)(OCH ₃)	CH ₂ P(O)(OCH ₃) ₂	0	н	OCH ₃	CH ₃	CH	
SO ₂ N(CH ₃)(OCH ₃)	CH ₂ CN	0	Н	OCH ₃	OCH3	CH	
SO ₂ N(CH ₃)(OCH ₃)	CH ₂ CN	0	н	OCH ₃	OCH3	N CH	
$SO_2N(CH_3)_2$	CH ₂ CN	0	H H	OCH ₃ OCH ₃	OCH ₃ · CH ₃	CH	
SO ₂ N(CH ₃) ₂ SO ₂ N(CH ₃) ₂	CH2CN CH2CN	ŏ	H	CH ₃	OCH ₂ CH=CH ₂	СН	
$SO_2N(CH_3)_2$ $SO_2N(CH_3)_2$	CH ₂ CN	ŏ	н	OCH ₃	CH ₃	N	
SO ₂ N(CH ₃) ₂	CH ₂ SCN	ō	Н	CH ₂ CH ₃	OCH3	CH	
$SO_2N(CH_3)_2$	CH ₂ SCN	0	Н	OCH ₃	N(CH ₃)(CH(CH ₃) ₂)	CH	
SO ₂ N(CH ₃) ₂	CH ₂ SCN	0	Н	OCH ₃	OCH3	N	
SO ₂ N(CH ₃) ₂	CH ₂ SCN	0	H	OCH ₃	OCH3	CH	
SO ₂ N(CH ₃) ₂	$CH_2P(O)(OCH_3)_2$	0	Н	OCH ₃	CH ₃	CH N	
$SO_2N(CH_3)_2$	$CH_2P(O)(OCH_3)_2$	0	н Н	OCH3 CH3	OCH_3 $OCH_2C(CH_3)=CH_2$	CH	
SO ₂ N(CH ₃) ₂ SO ₂ N(CH ₃) ₂	CH ₂ P(O)(OCH ₃) ₂ CH ₂ P(O)(OCH ₃) ₂	ŏ	H	OCH ₃	OCH ₃	CH	
$SO_2N(CH_3)_2$ $SO_2N(CH_3)_2$	CH ₂ NO ₂	ŏ	Ĥ	OCH ₃	CH ₂ S(CH ₂) ₃ CH ₃	N	
SO ₂ CH ₃	CH ₂ CN	Ō	Н	OCH ₃	OCH3	CH	
SO ₂ CH ₃	CH ₂ CN	0	Н	OCH ₃	(CH ₂) ₄ CH ₂ SCH ₂ CH ₃	CH	
SO ₂ CH ₃	CH ₂ CN	0	Н	OCH ₃	OCH ₃	N	
SO ₂ CH ₃	CH ₂ CN	0	Н	CH ₃	OCH3	CH	
SO ₂ CH ₃	CH ₂ SCN	0	н	OCH3	CH ₃	CH CH·	166-168
SO ₂ CH ₃	C(O)H	0	Н Н	OCH3 OCH3	OCH ₃ OCH ₃	CH	177-175
SO ₂ CH ₃ SO ₂ CH ₃	CH2N3 CH2SCN	0	н	OCH ₃	OCH ₃	N	111-115
SO ₂ CH ₃	CH ₂ SCN	ŏ	н	OCH ₃	cyclopropyl	CH	
SO ₂ CH ₃	CH ₂ SCN	ŏ	Ĥ	OCH ₃	OCH ₃	CH	
SO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	Ō	н	CH ₃	OCH ₃	N	
SO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	0	н	OCH ₃	OCH3	CH	
SO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	0	Н	CH ₃	OCH3	CH	
SO ₂ CH ₂ CH ₃	CH ₂ CN	0	H	OCH ₃	OCH3	N	
SO ₂ CH ₂ CH ₃	CH ₂ CN	0	н	OCH3	OCH ₃	CH CH	
SO ₂ CH ₂ CH ₃	CH ₂ CN	0	н	OCH ₃	2-methylcyclo- propyl	cn	
SO ₂ CH ₂ CH ₃	CH ₂ CN	о	н	OCH ₃	CH ₃	N	
SO ₂ CH ₂ CH ₃	CH ₂ CN	ŏ	н	CH ₃	OCH3	СН	
SO ₂ CH ₂ CH ₃	CH ₂ SCN	ō	H	OCH ₃	OCH ₃	CH	
SO ₂ CH ₂ CH ₃	CH ₂ SCN	0	н	OCH ₃	CH ₃	CH	
SO ₂ CH ₂ CH ₃	CH ₂ SCN	0	н	CH ₃	С≡СН	CH	
SO ₂ CH ₂ CH ₃	CH ₂ SCN	0	Н	OCH ₃	cyclopentyl	N CH	
SO ₂ CH ₂ CH ₃	CH ₂ SCN	0	Н	CH ₂ CH ₃ OCH ₃	OCH ₃	СН	
SO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	0 0	H H	OCH3 OCH3	CH3 OCH3	N	
SO ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂ CH ₂ P(O)(OCH ₃) ₂	ő	H	OCH ₃	OCH3	СН	
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	ŏ	Ĥ	OCH ₃	OCH ₃	CH	157-158
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	0	Н	OCH ₃	CH ₃	CH	151-156
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	0	н	CH ₃	CH ₃	CH	160-162
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	0	н	Cl	OCH3	CH	151-160
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	0	н	OCH ₃	OCH ₃	N	157-167
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	0	н	OCH ₃	CH ₃	N CH	206–208 164–168
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	0 0	H H	OCH3 OCH3	OCH ₃ CH ₃	CH	157-159
SO ₂ CH ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₂ CH ₃	CH2N3 CH2N3	ő	н	CH ₃	CH ₃	CH	163-166
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	ŏ	Ĥ	Cl	OCH ₃	CH	182-184
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	ŏ	н	OCH ₃	OCH ₃	Ν	176-178
SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	0	н	OCH ₃	CH ₃	Ν	179-181
SCH ₃	CH ₂ CN	0	H	OCH ₃	OCH3	CH	
SCH ₂ CH ₂ CH ₃	CH ₂ CN	0	H	vOCH3	OCH3	N	
S(O)CH ₂ CH ₃	CH ₂ SCN	0	н	CH ₃	OCH3	CH CH	
S(O)CH ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	0	H H	OCH3 OCH3	OCH3 CH3	N	
OSO ₂ CH ₃ OSO ₂ CH ₃	CH2CN CH2CN	0	н	CH ₃	OCH ₃	СН	
OSO ₂ CH ₃ OSO ₂ CH ₃	CH ₂ CN CH ₂ CN	0	н	OCH ₃	CHO	СН	
OSO ₂ CH ₃	CH ₂ CN	ŏ	Ĥ	OCH ₃	OCH3	N	
OSO ₂ CH ₃	CH ₂ CN	ŏ	н	OCH ₃	OCH ₃	CH	
OSO ₂ CH ₃	CH ₂ SCN	0	Н	OCH ₃	C CCH3	CH	
OSO ₂ CH ₃	CH ₂ SCN	0	Н	OCH ₃	OCH3	N	
OSO ₂ CH ₃	CH ₂ SCN	0	H	OCH ₃	CH ₃	CH	
OSO ₂ CH ₃	CH ₂ SCN	0	Н	OCH3	OCH ₃	СН	

.

	20			20	
		TAB	LE I-continued		
		*			
		Ge	neral Formula I		
R ₁	R ₂	WR	х	Y	m.p. Z (°C.)
OSO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	CH ₃	OCH3	N
OSO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	он	OCH ₃	COCH ₃	СН
OSO ₂ CH ₂ CH ₃	CH ₂ CN	ОН	CH ₃	OCH ₃	СН
OSO ₂ CH ₂ CH ₃	CH ₂ CN	ОН	OCH ₃	OCH ₃	N
OSO ₂ CH ₂ CH ₃ OSO ₂ CH ₂ CH ₃	CH2CN CH2CN	О Н О Н	OCH ₃	OCH3	СН
OSO ₂ CH ₂ CH ₃	CH ₂ CN CH ₂ CN	он	OCH ₃ OCH ₃	CH(OCH ₃) ₂ CH ₃	CH N
OSO ₂ CH ₂ CH ₃	CH ₂ SCN	он	CH ₃	OCH ₃	СН
OSO ₂ CH ₂ CH ₃	CH ₂ SCN	ОН	OCH ₃	OCH ₃	СН
OSO ₂ CH ₂ CH ₃ OSO ₂ CH ₂ CH ₃	CH ₂ SCN	ОН	OCH ₃	CH ₃	CH
OSO ₂ CH ₂ CH ₃ OSO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂ CH ₂ P(O)(OCH ₃) ₂	O H O H	CH ₃ OCH ₃	OCH ₃ CH ₃	CH
OSO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$ CH_2P(O)(OCH_3)_2	он	CH ₂ CH ₃	OCH ₃	N CH
OSO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	ОН	OCH3	CH(SCH ₃)(OCH ₂ CH ₃)	CH
OSO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN	ОН	OCH ₃	OCH ₃	N
OSO ₂ CH ₂ CH ₂ CH ₃ OSO ₂ CH ₂ CH ₂ CH ₃	CH ₂ CN CH ₂ CN	он он	OCH3 OCH3	OCH3 CH3	CH CH
CH ₂ OCH ₃	$CH_2P(O)(OCH_3)_2$	ОН	OCH ₃	OCH ₃	N
CH ₂ SCH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	CH3	C(CH ₃)(SCH ₃) ₂	СН
CH ₂ CH ₃ OCH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	OCH ₃	OCH ₃	CH
CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃	CH ₂ CN CH ₂ CN	O H O H	OCH ₃ OCH ₃	OCH ₃	N
CH ₂ CH ₂ SCH ₂ CH ₃	CH ₂ CN	ОН	OCH3	OCH3 1,3-dioxolan-2-yl	CH CH
CH ₂ CN	CH ₂ CN	он	OCH ₃	OCH3	N
C ₂ H ₅	CH ₂ CN	ОН	OCH ₃	OCH ₃	СН
C ₂ H ₅	CH ₂ CN	ОН	OCH ₃	CH ₃	СН
C ₂ H ₅ C ₂ H ₅	CH2SCN CH2SCN	O H O H	OCH3	OCH ₃	N
02115	CH2SCN	Он	OCH ₃	2-methyl-1,3- oxathion-2-yl	CH
COCH ₃	CH ₂ SCN	ОН	OCH ₃	OCH3	СН
COCH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	ОН	CH ₃	OCH ₃	N
COC CCH3	CH ₂ CN	ОН	OCH ₃	CH ₃	СН
$COCH_2CH_2Cl$ C(O)—cyclo-	CH2CN CH2CN	он он	CH3 OCH3	OCH3 OCH3	CH N
propyl	enzen	0 11	OCITY	0en3	IN
C(O)-cyclo-	CH ₂ CN	ОН	CH ₃	OCH ₃	CH
propyl					
C(O)—cyclo- propyl	CH ₂ SCN	ОН	OCH ₃	CH ₃	CH
CH(OCH ₃) ₂	CH ₂ SCN	ОН	OCH ₃	OCH ₃	N
CH(OCH ₃) ₂	CH ₂ SCN	он	CH ₃	OCH3	CH
CH(OCH ₂ CH ₃) ₂	CH ₂ P(O)(OCH ₃) ₂	ОН	OCH ₃	OCH ₃	CH
CH(OCH ₂ CH ₃) ₂ 1,3-dioxyl-2-yl	CH ₂ P(O)(OCH ₃) ₂	ОН	OCH ₃	CH ₃	CH
1,3-dioxyl-2-yl	CH2CN CH2CN	он он	CH3 OCH3	OCH3 CH3	CH N
R ₁ —A	CH ₂ CN	он	CH ₂ CH ₃	OCH ₃	CH
R ₁ —A	CH ₂ CN	о н	OCH ₃	1,3-oxathion-2-yl	CH
$R_1 - A$	CH ₂ CN	ОН	OCH3	OCH ₃	N
$R_1 - A$ $R_1 - A$	CH2CN CH2CN	ОН ОН	OCH3 OCH3	OCH3 CH3	CH CH
R ₁ —A	CH ₂ SCN	он	OCH ₃	OCH ₃	N
R ₁ —A	CH ₂ SCN	ОН	CH ₃	2-methyl-1,3-	СН
D				dithian-2-yl	
$R_1 - A$ $R_1 - A$	$CH_2P(O)(OCH_3)_2$ $CH_2P(O)(OCH_3)_2$	ОН	OCH ₃	OCH3	CH
$R_1 - A$	$CH_2P(O)(OCH_3)_2$ $CH_2P(O)(OCH_3)_2$	ОН ОН	OCH3 OCH3	OCH3 OCH3	N CH
R1-B	CH ₂ CN	он	OCH3	CH ₃	CH
$R_1 - B$	CH ₂ CN	ОН	OCH ₃	OCH3	N
$R_1 - B$	CH ₂ CN	ОН	OCH ₃	OCH ₃	CH
$R_1 - B_1$	CH ₂ CN	ОН	OCH3	4-methyl-1,3- dioxolan-2-yl	СН
R ₁ —B	CH ₂ SCN ·	ОН	OCH ₃	OCH ₃	N
$R_1 - B$	CH ₂ SCN	ОН	CI	OCH3	CH
$R_1 - B$	CH ₂ SCN	ОН	OCH ₃	OCH ₃	CH
$R_1 \rightarrow B$	CH ₂ SCN	ОН	CH ₃	OCH3	N
$R_1 - B$ $R_1 - B$	$CH_2P(O)(OCH_3)_2$ $CH_2P(O)(OCH_3)_2$	O H O H	OCH3 CH3	OCH3 OCH3	CH CH
$R_1 - C$	CH ₂ CN	ОН	OCH ₃	OCH3 OCH3	N
$R_1 - C$	CH ₂ CN	ОН	OCH ₃	OCH3	СН
$R_1 - C$	CH ₂ CN	ОН	OCH ₃	4-methyl-1,3-	CH
$R_1 - C$	CH-CN	~ "	0.011	oxathiolan-2-yl	
$R_1 - C$	CH2CN CH2SCN	он он	OCH3 CH3	CH ₃	N
$R_1 - C$	CH ₂ SCN CH ₂ SCN	ОН	OCH ₃	OCH3 OCH3	CH CH
$R_1 - C$	CH ₂ SCN	ОН	OCH ₃	CH ₃	CH
$R_1 - C$	$CH_2P(O)(OMe)_2$	ОН	CH ₃	OCH3	CH
$R_1 - C$	$CH_2P(O)(OMe)_2$	ОН	OCH3	OCH3	N
$R_1 - C$ $R_1 - D$	CH ₂ P(O)(OMe) ₂ CH ₂ P(O)(OMe) ₂	ОН ОН	CH ₂ CH ₃ OCH ₃	OCH ₃ 2,4-dimethyl-1,3-	CH CH
. –		0 11	00113	2, umcnyi-1,3-	

•

TABLE I-continued

	IABLE I-COntinued								
Ρ.	R ₂	w	R	x	Y	z	m.p. (°C.)		
<u>R1</u>	K2				dithiolan-2-yl				
$R_1 - D$	CH ₂ P(O)(OMe) ₂	0	н	OCH ₃	OCH ₃	N CH			
$R_1 - E$	$CH_2P(O)(OMe)_2$	0 0	H H	OCH ₃ OCH ₃	OCH ₃ OCH ₃	CH			
R ₁ —F R ₁ —G	CH2CN CH2CN	ŏ	н	OCH ₃	N(OCH ₃)CH ₃	СН			
R ₁ -H	CH ₂ CN	0	Н	OCH ₃	OCH ₃	N			
R ₁ -I	CH ₂ CN	0 0	H H	CH ₃ OCH ₃	CH3 OCH3	CH CH			
R ₁ —J R ₁ —K	CH2SCN CH2SCN	ő	H	OCH3	OCH ₃	N			
$R_1 - L$	CH ₂ SCN	0	Н	OCH ₃	OCH ₃	CH			
$R_1 - M$	CH ₂ SCN	0	H H	OCH ₃	CH ₃ OCH ₃	CH N			
$R_1 - N$ $R_1 - O$	CH2CN CH2CN	0	н Н	OCH ₃ OCH ₃	OCH3 OCH3	СН			
$R_1 - P$	CH ₂ CN	0	Н	Cl	OCH ₃	СН			
$R_1 - Q$	CH ₂ CN	0	н н	OCH ₃ OCH ₃	OCH3 OCH3	N CH			
$R_1 - R$ $R_1 - S$	CH ₂ P(O)(OMe) ₂ CH ₂ P(O)(OMe) ₂	ő	н	OCH3 OCH3	OCH ₃	CH			
CO ₂ CH ₂ CH ₃	CH ₂ N ₃	0	н	OCH ₃	CH ₃	CH			
CO ₂ CH ₂ CH ₃	CH ₂ N ₃	0	н	CH ₃	CH ₃	CH CH	165–170 146–148		
CO ₂ CH ₂ CH ₃ CO ₂ CH ₂ CH ₃	CH ₂ N ₃ CH ₂ N ₃	0	н н	Cl OCH3	OCH ₃ OCH ₃	N	140-140		
CO ₂ CH ₂ CH ₃	CH ₂ CN	ŏ	H	Cl	OCH ₃	CH	104-115		
CO ₂ CH(CH ₃) ₂	CH ₂ N ₃	0	н	OCH ₃	OCH ₃	CH	149-150		
$CO_2CH(CH_3)_2$	CH ₂ N ₃	0	H H	OCH3 Cl	CH ₃ OCH ₃	CH CH	142–144 161–162		
$CO_2CH(CH_3)_2$ $CO_2CH(CH_3)_2$	CH ₂ N ₃ CH ₂ N ₃	ŏ	н	CH ₃	CH ₃	СН	171-173		
GO ₂ CH(CH ₃) ₂	CH ₂ N ₃	0	Н	OCH ₃	OCH ₃	N	133-134		
CO ₂ CH(CH ₃) ₂	CH ₂ N ₃	0	Н	OCH3	CH3 OCH3	N CH	125–127 138–140		
CO ₂ CH(CH ₃) ₂ CO ₂ CH(CH ₃) ₂	CH2CN CH2CN	0	H H	OCH3 Cl	OCH3 OCH3	CH	150-140		
$CO_2CH(CH_3)_2$	CH ₂ CN	õ	н	OCH ₃	CH3	CH			
CO ₂ CH(CH ₃) ₂	CH ₂ CN	0	Н	CH ₃	CH ₃	CH N	167-169		
$CO_2CH(CH_3)_2$	CH2CN CH2CN	0	H H	OCH3 OCH3	OCH3 CH3	N			
CO ₂ CH(CH ₃) ₂ Cl	CH(CH ₃)CN	ŏ	н	OCH ₃	OCH ₃	CH			
OCH3	CHFCN	0	Н	OCH ₃	CH ₃	CH			
CO ₂ CH ₃	CH(CH ₂ CH ₃)SCN CH(CH ₃)P(O)(OCH ₃) ₂	0	H H	CH3 OCH3	CH ₃ OCH ₃	CH CH			
NO2 SO2N(CH3)2	$CH(CH_3)I(O)(OCH_3)_2$ $CH(CH_2CH_3)P(S)(CH_3)_2$	ŏ	н	OCH3	CH ₃	Ν			
$CO_2N(CH_3)_2$	CH(CH ₃)N(CH ₃) ₂	0	Н	Cl	OCH ₃	CH			
OCH3 OCH3	CH(OC(O)CH ₃) ₂ CH(CH ₂ CH ₃)N ₃	0	H H	OCH ₃ OCH ₃	OCH ₃ CH ₃	N CH			
Cl	CH(CH ₃)SeCH ₃	ŏ	н	OCH ₃	OCH ₃	CH			
CO ₂ CH ₂ CH ₃	CH(CH ₂ CH ₃)N ₃	0	н	OCH ₃	OCH ₃	CH			
OCH ₂ CH ₃	CH(CH ₃)N ₃ CH(CH ₃)N ₃	0	H H	OCH3 OCH3	OCH3 CH3	CH CH			
OCH ₂ CH ₃ OCH ₂ CH ₃	CH(CH ₃)N ₃	ŏ	н	Cl	OCH3	CH			
OCH ₂ CH ₃	CH(CH ₃)N ₃	0	Н	OCH ₃	OCH ₃	N -			
OCH ₂ CH ₃	CH(CH ₃)N ₃	0	H H	OCH3 OCH3	CH3 OCH3	N CH			
OCH ₂ CH ₃ OCH ₂ CH ₃	CH(CH3)CN CH(CH3)CN	ŏ	н	OCH3	CH ₃	CH			
OCH ₂ CH ₃	CH(CH ₃)CN	0	н	OCH ₃	CH ₃	N			
CO ₂ CH ₃	CH(CH ₂ CH ₃)NC CH(OCH ₃) ₂	0 0	H H	OCH3 OCH3	OCH3 OCH3	CH CH			
Cl NO ₂	$CH(OCH_3)_2$ $CH(OCH_3)_2$	ŏ	н	OCH ₃	OCH ₃	CH			
SO ₂ N(CH ₃) ₂	CH(OCH ₃) ₂	0	H	OCH ₃	OCH3	CH			
SO ₂ N(CH ₃) ₂	CH(OCH ₃) ₂	0	H H	Cl OCH ₃	OCH3 OCH3	CH N			
OCH3 OCH3	CH(OCH ₃) ₂ CH(OCH ₃) ₂	ŏ	ĥ	OCH ₃	OCH3	СН			
OCH ₂ CH ₃	CH(OCH ₃) ₂	0	н	OCH ₃	OCH ₃	N			
CO ₂ CH ₃	CH(OCH ₃) ₂	0 0	H H	OCH ₃ OCH ₃	OCH ₃ CH ₃	CH CH			
CO ₂ CH ₃ CO ₂ CH ₃	CH(OCH ₃) ₂ CH(OCH ₃) ₂	ŏ	H	OCH3	CH ₃	N			
CO ₂ CH ₃	CH(OCH ₂ CH ₃) ₂	0	н	OCH ₃	OCH ₃	CH			
CO ₂ CH ₃	$C(CH_3)(OCH_3)_2$	0	H	OCH ₃	OCH3	CH CH			
CO ₂ CH ₃ CO ₂ CH ₃	C(CH ₃)(OCH ₃) ₂ C(CH ₃)(OCH ₃) ₂	0 0	H H	OCH3 OCH3	CH3 OCH3	N			
CO ₂ CH ₃	C(CH ₃)(OCH ₃) ₂	0	н	CH ₃	CH ₃	CH			
CO ₂ CH ₃	$C(CH_3)(OCH_3)_2$	0	H	Cl OCH-	OCH3	CH CH			
OCH3 OCH2CH3	C(CH ₃)(OCH ₃) ₂ C(CH ₃)(OCH ₃) ₂	0	н н	OCH3 OCH3	OCH3 OCH3	CH			
OCH ₂ CH ₃	C(CH ₃)(OCH ₃) ₂	ŏ	н	OCH ₃	CH ₃	CH			
OCH ₂ CH ₃	C(CH ₃)(OCH ₃) ₂	0	н	OCH ₃	OCH ₃	N CH			
OCH ₂ CH ₃ CO ₂ CH ₃	C(CH ₃)(OCH ₃) ₂ C(CH ₂ CH ₃)(OCH ₃) ₂	0	H H	CH3 OCH3	CH3 CH3	CH			
CO ₂ CH ₃	CH(SCH ₃) ₃	0	Н	OCH ₃	OCH ₃	CH			
CO ₂ CH ₃	C(CH ₂ CH ₃)(SCH ₃) ₂	0	н	OCH ₃	OCH3	CH			

	29			30	
		TAB	LE I-continue	ed	
· · · · · · · · ·			eneral Formula I	4 T"#T##	······
D					m.p.
$\frac{R_1}{CO_1 CU_2}$	R ₂	W R	<u>X</u>	Y	Z (°C.)
CO ₂ CH ₃	o II	ОН	OCH3	OCH ₃	СН
	CH(OCCH ₃) ₂				
OCH ₃	Q	ОН	OCH ₃	OCH ₃	СН
	∥ CH(OCCH ₃) ₂		-		
60 M					
CO ₂ CH ₃ CO ₂ CH ₃	CH(CN)(OSi(CH ₃) ₃) CH(CN)(OSi(CH ₃) ₃)	он он	OCH ₃ OCH ₃	OCH3 CH3	CH CH
CO ₂ CH ₃	C(CH ₃)(CN)OH	ОН	OCH ₃	OCH ₃	CH
CO ₂ CH ₃ CO ₂ CH ₃	C(CH ₂ CH ₃)(CN)OCH ₃ 1,-3-dithiolan-2-yl	О Н О Н	OCH ₃ OCH ₃	OCH3 OCH3	CH N
CO ₂ CH ₃	1,-3-dithiolan-2-yl	о н	CI	OCH3	СН
Cl CO ₂ CH ₃	1,-3-dithiolan-2-yl 1,-3-dioxolan-2-yl	ОН ОН	OCH3 OCH3	OCH3 OCH3	CH CH
CO ₂ CH ₃	1,-3-dioxolan-2-yl	он	OCH ₃	CH ₃	CH
NO ₂ CO ₂ CH ₃	1,-3-dioxolan-2-yl 2-methyl-1,3-	О Н О Н	OCH ₃	OCH3	CH
	dioxolan-2-yl	Оп	OCH ₃	OCH ₃	CH
CO ₂ CH ₃ CO ₂ CH ₃	1,-3-dioxolan-2-yl 1,-3-dioxolan-2-yl	ОН ОН	OCH ₃	OCH3	N
CO ₂ CH ₃ CO ₂ CH ₃	1,-3-dioxolan-2-yl	он	OCH3 Cl	CH3 OCH3	CH CH
$SO_2N(CH_3)_2$	1,-3-dithian-2-yl	ОН	OCH ₃	OCH ₃	CH
CO ₂ CH ₃	2-methyl-1,3- dioxan-2-yl	он	OCH ₃	OCH3	CH
C ₆ H ₅	CH ₂ CN	ОН	OCH3	OCH ₃	СН
Cl	O II	ОН	OCH ₃	OCH3	СН
	Сн				
NO ₂	O II	О [.] Н	OCH ₃	OCH3	СН
	II CCH3				
	-				
SO ₂ N(CH ₃) ₂	O II	ОН	OCH ₃	OCH3	CH
	ĊН3				
OCH ₃	0	он	OCH ₃	OCH3	СН
	O II H		,	5	
OCH ₃	o II	ОН	OCH ₃	CH ₃	CH
	ĊН				
OCH ₃	0	он	OCH ₃	OCH3	СН
	O II CCH		2		•
	CCH3				·
OCH ₂ CH ₃	о II СН	О Н	OCH ₃	OCH ₃	CH
	Сн				
OCH2CH3	0	О́Н	OCH3	OCH ₃	CH 192—192
0 0112 0113	O II CCH3	0 11	oeiii,	oeny	Cir 1)2-1)2
	CCH3				
OCH ₂ CH ₃	0	ОН	OCH ₃	CH ₃	N 188-190
	O II CCH3				
0.011 011					
OCH ₂ CH ₃	O II CCH3	он	CH ₃	CH ₃	CH 180–181
	CCH3				
OCH ₂ CH ₃	0	ОН	OCH3	CH3	CH 137-138
25	O II CCH3	• •	0 0 Lij	City	U II 157 150
OCH ₂ CH ₃	O II	ОН	Cl	OCH ₃	CH
	O CCH3				
			0.011		
OCH ₂ CH ₃	O II CCH3	он	OCH3	OCH ₃	N 135–136
-	CCH ₃				

	31		4,678,498	32		
		TAI	BLE I-continued			
• <u>•</u> ••••••			eneral Formula I			
R ₁	R ₂	WR	х	Y	z	m.p. (°C.)
OCH ₂ CH ₃	O II CCH ₂ CH ₃	ОН	OCH ₃	OCH3	СН	
OCH ₂ CH ₃	О ССН2СН3	Ó H	OCH3	OCH ₃	N	
OCH ₂ CH ₃	О ССН2СН3	ОН	Cl	OCH3	СН	
CO ₂ CH ₃	о СН	О Н	OCH3	OCH3	СН	189-190
CO ₂ CH ₃	O CH	о н	OCH ₃	CH3	СН	115
CO ₂ CH ₃	о СН	ОН	Cl	OCH3	СН	182-184
CO ₂ CH ₃	о СН	ОН	OCH3	OCH ₃	N	174–175
CO ₂ CH ₃	О СН	ОН	OCH3	CH ₃	N	150-154
CO ₂ CH ₃	о СН	ОН	CH3	CH3	СН	145–147
CO ₂ CH ₃	О ССН3	ОН	OCH3	OCH ₃	СН	
CO ₂ CH ₃	O II CCH3	ОН	OCH ₃	CH3	СН	
CO ₂ CH ₃	О ССН₃	ОН	OCH3	OCH3	N	
CO ₂ CH ₃	O II CCH3	ОН	OCH3	CH3	N	
CO ₂ CH ₂ CH ₃	O II CCH3	он	OCH3	OCH3	СН	
CO ₂ CH ₂ CH ₃	O II CCH3	ОН	OCH3	CH3	СН	
CO ₂ CH ₂ CH ₃	о Сн	ОН	Cl	OCH3	СН	123–124
OSO ₂ CH ₃	О СН	он	OCH3	CH3	СН	
SO ₂ CH ₂ CH ₃	О СН	ОН	OCH3	OCH ₂ CH ₃	СН	
C(O)N(CH ₂ CH ₃) ₂ Cl Cl Cl Cl Cl Cl Cl	$\begin{array}{c} Cl \\ CH_2N_3 \end{array}$	0 H 0 H 0 H 0 H 0 H 0 H 0 H	OCH3 OCH3 CH3 Cl OCH3	CH3 OCH3 CH3 CH3 OCH3 OCH3 CH3	CH CH CH CH N N	180-183 150-152 138-139 167-170 145-147 134-137 oil

.

.

TABLE I-continued										
			Ge	neral Formula	a I					
R ₁	R ₂	w	R	x	Y	Z	m.p. (°C.)			
CO ₂ CH ₂ CH ₃	о II СН	0	н	OCH ₃	OCH ₃	CH	144-146			
CO ₂ CH ₂ CH ₃	O CH	0	Н	CH3	CH ₃	СН	144-146			
CO ₂ CH ₂ CH ₃	о СН	0	н	OCH ₃	OCH3	N	146-148			
CO ₂ CH ₂ CH ₃	O II CH	0	н	OCH3	CH ₃	N	142-145			
$\begin{array}{l} & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ & \text{CO}_2\text{CH}_3\\ & \text{OCH}_2\text{CH}_3\\ & \text{CO}_2\\ & \text{NO}_2\\ & \text{NO}_2\\ & \text{NO}_2\\ & \text{NO}_2\\ & \text{NO}_2\\ & \text{NO}_2\\ & \text{CO}_2\\ & \text{CO}_2\\ & \text{CI}_3\\ & \text{CH}_3\\ & \text{CH}_3\\ & \text{CH}_3\\ & \text{CH}_3\\ & \text{CH}_3\\ & \text{SO}_2\text{CH}_3\\ & \text{SO}_2\text{CH}_3\\ & \text{SO}_2\text{CH}_3\\ & \text{SO}_2\text{CH}_3\\ & \text{SO}_2\text{CH}_3\\ & \text{SO}_2\text{CH}_3\\ & \text{OSO}_2\text{CH}_3\\ & \text{OSO}_2\text{CH}_3\\ & \text{CH}_2\text{OCH}_3\\ & \text{CH}$	CH CH ₂ N ₃ CH ₂ CN CH ₂ NOCH ₃ CH=NOCH ₃ CH=NOCH ₃ CH=NOCH ₃ C(H ₃)=NOH C(CH ₃)=NOCH ₃ C(CH ₃)=NOH C(CH ₃)=NOCH ₃ C(CH ₃)=NO		ннннннннннннннннннннннннннннннннннннннн	OCH_3 OCH_3 CH_3 CH_3 OCH	OCH_3 CH_3 OC	$ \begin{array}{c} CH CH CH CH Z \\ Z \\ Z \\ CH CH CH Z \\ Z \\ Z \\ CH CH CH Z \\ Z \\ Z \\ CH \mathsf$	128 131-132 144-147 156-158 134-135 0il 130-131 144-145 150-152 178-181 0il 0il 171-174 188-190 182-185 185-188 167-169 136-138 170-171 183-185 180-182 115-118 95-100 112-116 185-187			

	00				•
		TAB	LE I-continue	d	
		Ge	neral Formula I		
RI	R ₂	WR	х	Y	Z (°C.)
CH ₂ OCH ₃	C(CH ₃)=NOCH ₃	ОН	OCH ₃	OCH3	СН
CH ₂ SCH ₃	CH=NOH	ОН	OCH ₃	OCH ₃	CH
CH ₂ SCH ₃	CH=NOCH ₃	ОН	OCH ₃	OCH ₃	CH
CH ₂ SCH ₃	$C(CH_3) = NOH$	ОН	OCH ₃	OCH ₃	CH
CH ₂ SCH ₃	$C(CH_3) = NOCH_3$	ОН	OCH ₃	OCH ₃	СН
CH ₂ CN	CH=NOH	ОН	OCH ₃	OCH ₃	СН
CH ₂ CN	CH=NOCH ₃	ОН	OCH ₃	OCH ₃	СН
CH ₂ CN	C(CH ₃)=NOH	ОН	OCH ₃	OCH ₃	СН
CH ₂ CN	$C(CH_3) = NOCH_3$	ОН	OCH ₃	OCH ₃	CH
CH(OCH ₃) ₂	CH=NOH	ОН	OCH ₃	OCH ₃	CH
CH(OCH ₃) ₂	CH=NOCH ₃	ОН	OCH ₃	OCH ₃	CH
CH(OCH ₃) ₂	$C(CH_3) = NOH$	ОН	OCH ₃	OCH ₃	СН
CH(OCH ₃) ₂	$C(CH_3) = NOCH_3$	ОН	OCH ₃	OCH3	CH
RI-A	CH=NOH	ОН	OCH ₃	OCH3	СН
R ₁ -B	CH=NOH	• он	OCH ₃	OCH ₃	СН
$R_1 - C$	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - D$	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - E$	CH=NOH	ОН	OCH ₃	OCH ₃	CH
R ₁ -F	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - G$	CH=NOH	ОН	OCH ₃	OCH3	CH
R1-H	CH=NOH	ОН	OCH ₃	OCH3	CH
$R_1 - I$	CH=NOH	ОН	OCH ₃	OCH ₃	СН
R ₁ —J	CH=NOH	ОН	OCH ₃	OCH ₃	СН
R ₁ -K	CH=NOH	ОН	OCH ₃	OCH ₃	СН
$R_1 - L$	CH=NOH	ОН	OCH ₃	OCH ₃	СН
$R_1 - M$	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - N$	CH=NOH	ОН	OCH ₃	OCH ₃	CH •
R1-O	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - P$	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - Q$	CH=NOH	ОН	OCH ₃	OCH ₃	CH
$R_1 - R$	CH=NOH	он	OCH ₃	OCH ₃	CH
R ₁ -S	CH=NOH	ОН	OCH ₃	OCH ₃	СН

TABLE II

TABLE II-continued

					- 25	General Formula II				
	General Formula	a II			35					m.p.
R ₁	R ₂	X 1	Y ₁	т.р. (°С.)		R ₁	R ₂	x ₁	Y1	(°C.)
F	CH ₂ CN	CH ₃	0		-	R ₁ -C	CH=NOCH3	OCH3	0	
F Cl3	CH ₂ CN CH ₂ SCN	OCH ₃	ŏ							
CF ₃	$CH_2P(O)(OCH_2CH_3)_2$		CH ₂		40			_		
NO ₂	CH ₂ CN	OCH ₃	0				TABLE II	I		
OCH ₃	CH ₂ CN	OCH ₃	ō			<u></u>	General Formula	III		
OCH ₃	CH ₂ SCN	OCH ₃	CH_2			D .		X1	m 1	o. (°C.)
OCH ₂ CH ₃	CH ₂ SCN	OCH ₃	ο			<u>R1</u>	R ₂			J. (C.)
OCH ₂ CH ₃	CH ₂ CN	OCH ₃	CH ₂			F	CH ₂ CN	CH3		
CO ₂ CH ₃	CH ₂ CN	OCF ₂ H	0		45	Cl	CH ₂ SCN	OCH ₃		
CO ₂ CH ₃	CH ₂ CN	OCH ₃	CH_2			CF ₃	$CH_2P(O)(OCH_2CH_3)_2$	OCH ₃		
CO ₂ CH ₃	CH ₂ SCN	OCH3	0			NO ₂	CH ₂ CN	OCH ₃		
CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH3	0			OCH ₃	CH ₂ CN	OCH3		
CO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH ₃	0			OCH ₃	CH ₂ SCN	OCH ₃		
CO ₂ CH ₂ CH ₃	CH ₂ CN	OCH3	CH3			OCH ₂ CH ₃	CH ₂ SCN	OCH3		
$CO_2N(CH_3)_2$	CH ₂ CN	CH ₃	0		50	OCH ₂ CH ₃	CH ₂ CN	OCH ₃		
SO ₂ NHCH ₃	CH ₂ CN	OCH3	0		50	CO ₂ CH ₃	CH ₂ CN	OCF ₂ H		
SO ₂ N(CH ₃) ₂	CH ₂ CN	OCH3	CH_2			CO ₂ CH ₃	CH ₂ CN	OCH ₃		
SO ₂ N(CH ₃) ₂	CH ₂ SCN	OCH ₃	0			CO ₂ CH ₃	CH ₂ SCN	OCH3		
SO ₂ CH ₃	CH ₂ SCN	OCH ₃	0			CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH ₃		
SO ₂ CH ₃	CH ₂ CN	OCF ₂ H	CH ₂			CO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH3		
SO ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	0		55	CO ₂ CH ₂ CH ₃	CH ₂ CN	OCH3		
SO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH ₃	0		55	CO ₂ N(CH ₃) ₂	CH ₂ CN	CH ₃		
OSO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH3	CH_2			SO ₂ NHCH ₃	CH ₂ CN	OCH3		
OSO ₂ CH ₃	CH ₂ CN	OCH ₂ CH ₃	0			SO ₂ N(CH ₃) ₂	CH ₂ CN	OCH3		
OSO ₂ CH ₂ CH ₃	CH ₂ SCN	OCH ₃	0			SO ₂ N(CH ₃) ₂	CH ₂ SCN	OCH3		
$R_1 - A$	CH ₂ CN	CH ₃	0			SO ₂ CH ₃	CH ₂ SCN	OCH3		
R₁—A v	CH ₂ SCN	OCH ₃	CH ₂		~~	SO ₂ CH ₃	CH2CN CH2CN	OCF ₂ H OCH ₃		
$R_1 - B$	CH ₂ P(O)(OCH ₃) ₂	OCH ₃	0		60	SO ₂ CH ₂ CH ₃		OCH3		
$R_1 - C$	CH ₂ CN	OCH ₃	0			SO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH ₃		
F	CH=NOH	CH ₃	0			OSO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂ CH ₂ CN	OCH3 OCH2CH3		
OCH ₃	CH=NOH ₃	OCH3	$O \\ CH_2$			OSO ₂ CH ₃ OSO ₂ CH ₂ CH ₃	CH ₂ SCN	OCH ₂ CH ₃		
COOCH ₃	C(CH ₃)=NOH	OCF ₂ H					CH ₂ SCN CH ₂ CN	CH ₃		
$CO_2N(CH_3)_2$	C(CH ₃)=NOCH ₃	CH3	0 0			$R_1 - A$ $R_1 - A$	CH ₂ SCN	OCH ₃		
$SO_2N(CH_3)_2$	CH=NOH	OCH3 OCH3	CH ₂		65	$R_1 - B$	CH ₂ P(O)(OCH ₃) ₂	OCH ₃		
SO ₂ CH ₃	CH=NOCH ₃	OCH3 OCF2H	0			$R_1 - C$	CH ₂ CN	OCH ₃		
OSO ₂ CH ₂ CH ₃	C(CH ₃)=NOH	CH ₃	ő			F	CH=NOH	CH ₃		
R ₁ A	C(CH ₃)=NOCH ₃ CH=NOH	CH3 CH3	CH ₂			OCH ₃	CH=NOCH ₃	OCH ₃		
R1—В		U 113	Chi			00113		C CAN		

38

	÷.						•••			
	TABLE III-con	tinued					TABLE IV-co	ontinued		
	General Formula	1II			-		General Form	ula IV		
R ₁	R ₂	X1	m. p.	(°C.)	_	_				m.p.
$COOCH_3 CO_2N(CH_3)_2 SO_2N(CH_3)_2 CO_2N(CH_3)_2 CO_2N(CH_3)_2 CO_2N(CH_3)_2 CO_2N(CH_3)_2 CO_2N(CH_3)_2 CO_2N(CH_3)_2 SO_2N(CH_3)_2 CO_2N(CH_3)_2 SO_2N(CH_3)_2 SO_2N(CH_3)_3 SO_2N(CH_3$	$C(CH_3)=NOH$ $C(CH_3)=NOCH_3$ CH=NOH	OCH ₃ OCF ₂ H CH ₃			5	R ₁ SO ₂ CH ₃ SO ₂ CH ₃	R ₂ CH ₂ SCN CH ₂ CN	X ₁ OCH ₃ OCF ₂ H	Y ₃ H CH ₃	(°C.)
SO ₂ CH ₃ OSO ₂ CH ₂ CH ₃ R ₁ —A R ₁ —B	$CH = NOCH_3$ $C(CH_3) = NOH$ $C(CH_3) = NOCH_3$ $CH = NOH$	OCH ₃ CH ₃ OCH ₃				SO ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₃ OSO ₂ CH ₃	CH ₂ CN CH ₂ P(O)(OCH ₃) ₂ CH ₂ P(O)(OCH ₃) ₂	OCH ₃ OCH ₃ OCH ₃	Н Н СН3	
R1C	CH=NOCH ₃	OCF ₂ H OCH ₃			10	OSO_2CH_3 $OSO_2CH_2CH_3$ $R_1 - A$ $R_1 - A$	CH2CN CH2SCN CH2CN CH2SCN	OCH ₂ CH ₃ OCH ₃ CH ₃ OCH ₃	Н Н Н СН3	
	TABLE IV					$R_1 - B$ $R_1 - C$	CH ₂ P(O)(OCH ₃) ₂ CH ₂ CN	OCH ₃ OCH ₃ OCH ₃	H H	
	General Formula			m.p.	15	F OCH3	CH=NOH CH=NOH	CH ₃ CH ₃	H CH3	
R ₁	R ₂	X1	Y3	(°C.)		COOCH3	C(CH ₃)=NOH	OCH ₃	н	
F Cl CF ₃ NO ₂ OCH ₃ OCH ₃ OCH ₂ CH ₃	CH ₂ CN CH ₂ SCN CH ₂ P(O)(OCH ₂ CH ₃) ₂ CH ₂ CN CH ₂ CN CH ₂ CN CH ₂ SCN CH ₂ SCN	CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	Н Н СН3 Н Н СН3 Н		20	CO ₂ N(CH ₃) ₂ SO ₂ N(CH ₃) ₂ SO ₂ CH ₃ OSO ₂ CH ₂ CH ₃ R ₁ A R ₁ B R ₁ C	C(CH ₃)=NOCH ₃ CH=NOH CH=NOCH ₃ C(CH ₃)=NOH C(CH ₃)NOCH ₃ CH=NOH CH=NOCH ₃	OCH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ OCH ₃ OCH ₃	H H CH ₃ H H CH ₃ H	

TABLE V

	General Fo	ormula V		
R1	R ₂	X2	Y ₂	m.p. (°C.)
F	CH ₂ CN	CH ₃	OCH ₃	
Cl	CH ₂ SCN	CH ₃	OCH ₂ CH ₃	
CF ₃	CH ₂ P(O)(OCH ₂ CH ₃) ₂	CH3	OCH ₃	
NO ₂	CH ₂ CN	CH3	SCH ₃	
OCH ₃	CH ₂ CN	CH ₂ CH ₃	OCH ₃	
OCH ₃	CH ₂ SCN	CH3	SCH ₂ CH ₃	
OCH ₂ CH ₃	CH ₂ SCN	CH3	OCH ₃	
OCH ₂ CH ₃	CH ₂ CN	CH ₂ CF ₃	OCH ₃	
CO ₂ CH ₃	CH ₂ CN	CH ₃	CH ₃	
CO ₂ CH ₃	CH ₂ CN	CH ₃	OCH ₃	
CO ₂ CH ₃	CH ₂ SCN	CH ₃	CH ₂ CH ₃	
CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	CH ₂ CH ₃	OCH ₃	
CO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	CH ₃	OCH ₃	
CO ₂ CH ₂ CH ₃	CH ₂ CN	CH ₃	OCH ₂ CH ₃	
$CO_2N(CH_3)_2$	CH ₂ CN	CH_2CF_3	OCH ₃	
SO ₂ NHCH ₃	CH ₂ CN	CH ₃	OCH ₃	
SO ₂ N(CH ₃) ₂	CH ₂ CN	CH ₃	SCH ₃	
SO ₂ N(CH ₃) ₂	CH ₂ SCN	CH ₂ CH ₃	OCH ₃	
SO ₂ CH ₃	CH ₂ SCN	CH ₃	OCH ₃	
SO ₂ CH ₃	CH ₂ CN	CH ₃	SCH ₂ CH ₃	
SO ₂ CH ₂ CH ₃	CH ₂ CN	CH ₃	OCH ₃	
SO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	CH ₂ CF ₃	OCH ₃	
OSO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	CH3	CH3	
OSO ₂ CH ₃	CH ₂ CN	CH ₃	OCH ₃	
OSO ₂ CH ₂ CH ₃	CH ₂ SCN	CH ₂ CH ₃	OCH ₃	
R ₁ —A	CH ₂ CN	CH ₃	OCH ₃	
$R_1 - A$	CH ₂ SCN	CH ₃	CH ₂ CH ₃	
$R_1 - B$	$CH_2P(O)(OCH_3)_2$	CH ₃	OCH ₃	
R ₁ —C	CH ₂ CN	CH ₃	OCH ₃	
F	CH=NOH	CH ₃	OCH ₃	
OCH3	CH=NOHCH ₃	CH ₃	CH ₃	
COOCH ₃	C(CH ₃)=NOH	CH ₂ CH ₃	OCH ₃	
$CO_2N(CH_3)_2$	C(CH ₃)=NOCH ₃	CH ₂ CF ₃	CH ₃	
SO ₂ N(CH ₃) ₂	CH=NOH.	CH ₃	OCH ₂ CH ₃	
SO ₂ CH ₃	CH=NOCH3	CH ₃	OCH ₃	
OSO2CH2CH3	C(CH ₃)=NOH	CH ₂ CF ₃	OCH ₃	
R ₁ —A	C(CH ₃)=NOCH ₃	CH ₂ CH ₃	CH ₃	
R ₁ —B	CH=NOH	CH ₃	OCH ₃	
R ₁ -C	CH=NOCH ₃	CH ₃	CH ₃	

CO ₂ CH ₃ CO ₂ CH ₃	CH2CN CH2CN	OCF ₂ H OCH ₃	H CH3		_	TABLE VI		
CO ₂ CH ₃	CH ₂ SCN	OCH3	н			General Formula VI		
CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH ₃	H		R ₁	R ₂	- X1	m.p. (°C.)
CO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH3	H		<u> </u>		-	
CO ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	CH_3	65	F	CH ₂ CN	OCH ₃	
$CO_2N(CH_3)_2$	CH ₂ CN	CH3	н		Cl	CH ₂ SCN	OCH_3	
SO ₂ NHCH ₃	CH ₂ CN	OCH ₃	н		CF ₃	$CH_2P(O)(OCH_2CH_3)_2$	OCH ₃	
SO N(CH ₃) ₂	CH ₂ CN	OCH ₃	н		NO ₂	CH ₂ CN	CH ₃	
SO ₂ N(CH ₃) ₂	CH ₂ SCN	OCH ₃	н		OCH ₃	CH ₂ CN	OCH ₃	

tereta Teretari

TABLE VI-continued

·····	General Formula VI			
R ₁	R ₂	X3	m.p. (°C.)	
OCH ₃	CH ₂ SCN	CH3		5
OCH ₂ CH ₃	CH ₂ SCN	OCH ₃		-
OCH ₂ CH ₃	CH ₂ CN	CH ₃		
CO ₂ CH ₃	CH ₂ CN	OCH ₃		
CO ₂ CH ₃	CH ₂ CN	CH ₃		
CO_2CH_3	CH ₂ SCN	OCH ₃		
CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	CH ₃		10
CO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH ₃		
CO ₂ CH ₂ CH ₃	CH ₂ CN	CH3		
$CO_2N(CH_3)_2$	CH ₂ CN	OCH ₃		
SO ₂ NHCH ₃	CH ₂ CN	CH ₃		
SO ₂ N(CH ₃) ₂	CH ₂ CN	OCH ₃		
SO ₂ N(CH ₃) ₂	CH ₂ SCN	CH ₃		15
SO ₂ CH ₃	CH ₂ SCN	OCH ₃		15
SO ₂ CH ₃	CH ₂ CN	OCH ₃		
SO ₂ CH ₂ CH ₃	CH ₂ CN	CH ₃		
SO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH ₃		
OSO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	CH ₃		
OSO ₂ CH ₃	CH ₂ CN	OCH ₃		
OSO ₂ CH ₂ CH ₃	CH ₂ SCN	OCH ₃		20
R ₁ -A	CH ₂ CN	CH ₃		
R ₁ —A	CH ₂ SCN	OCH ₃		
R ₁ —B	CH ₂ P(O)(OCH ₃) ₂	CH ₃		
$R_1 - C$	CH ₂ CN	OCH ₃		
F	CH=NOH	OCH ₃		
OCH ₃	CH=NOCH3	OCH ₃		25
COOCH ₃	C(CH ₃)=NOH	CH ₃		
$CO_2N(CH_3)_2$	C(CH ₃)=NOCH ₃	CH ₃		
SO ₂ CH ₃	CH=NOH	OCH ₃		
OSO ₂ CH ₂ CH ₃	C(CH ₃)=NOCH ₃	OCH ₃		
R ₁ -A	C(CH ₃)=NOH	OCH ₃		
R1B	C(CH ₃)=NOCH ₃	CH ₃		30
$R_1 - C$	CH=NOH	OCH3		. JU

40

Formulations

Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include ⁵ dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray volumes of from a few liters to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain about 0.1% to 99% by weight of active ingredient(s) and at least one of 15 (a) about 0.1% to 20% surfactant(s) and (b) about 1% to 99.9% solid or liquid inert diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

	Active	Weigh	t Percent*
	Ingredient	Diluent(s)	Surfactant(s)
Wettable Powders	20-90	0-74	1-10
Oil Suspensions,	3-50	40-95	0-15
Emulsions, Solutions,			
(including Emulsifiable			
Concentrates)			
Aqueous Suspension	10-50	40-84	1-20
Dusts	1-25	70-99	0-5
Granules and Pellets	0.1-95	5-99.9	0-15
High Strength	90–99	0-10	0-2

TABLE VII

	General I	Formula VII		
R ₁	R ₂	X4	Y4	m.p. (°C.)
F	CH ₂ CN	CH ₃	OCH ₃	
Cl	CH ₂ SCN	OCH ₃	CH ₃	
CF ₃	CH ₂ P(O)(OCH ₂ CH ₃) ₂	OCH ₂ CH ₃	OCH ₃	
NO ₂	CH ₂ CN	CH ₂ OCH ₃	OCH3	
OCH ₃	CH ₂ CN	Cl	OCH ₃	
OCH ₃	CH ₂ SCN	CH ₃	OCH ₂ CH ₃	
OCH ₂ CH ₃	CH ₂ SCN	OCH ₃	OCH3	
OCH ₂ CH ₃	CH ₂ CN	OCH3	Cl	
CO ₂ CH ₃	CH ₂ CN	CH_3	OCH3	
CO ₂ CH ₃	CH ₂ CN	OCH ₃	OCH ₃	
CO ₂ CH ₃	CH ₂ SCN	OCH3	CH ₃	
CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH ₂ CH ₃	OCH ₃	
CO ₂ CH ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH3	OCH ₃	
CO ₂ CH ₂ CH ₃	CH ₂ CN	OCH3	OCH ₂ CH ₃	
$CO_2N(CH_3)_2$	CH ₂ CN	CH ₂ OCH ₃	OCH3	
SO ₂ NHCH ₃	CH ₂ CN	OCH ₃	CH ₃	
$SO_2N(CH_3)_2$	CH ₂ CN	OCH3	OCH ₃	
SO ₂ N(CH ₃) ₂	CH ₂ SCN	CI	OCH3	
SO ₂ CH ₃	CH ₂ SCN	OCH ₃	CH3	
SO ₂ CH ₃	CH ₂ CN	OCH3	OCH ₃	
SO ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	OCH ₃	
SO ₂ CH ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	CH ₃	OCH3	
OSO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH ₃	OCH ₂ CH ₃	
OSO ₂ CH ₃	CH ₂ CN	OCH ₃	OCH ₃	
OSO ₂ CH ₂ CH ₃	CH ₂ SCN	OCH ₂ CH ₃	OCH ₃	
R ₁ —A	CH ₂ CN	OCH ₃	OCH ₃	
R ₁ —A	CH ₂ SCN	OCH3	CH ₃	
R ₁ —B	CH ₂ P(O)(OCH ₃) ₂	CH ₂ OCH ₃	OCH3	
$R_1 - C$	CH ₂ CN	OCH3	OCH ₃	
F	CH=NOH	CH3	OCH ₃	
OCH ₃	CH=NOCH3	OCH ₃	CH3	
COOCH ₃	C(CH ₃)=NOH	OCH ₂ CH ₃	OCH3	
$CO_2N(CH_3)_2$	$C(CH_3) = NOCH_3$	CH ₂ OCH ₃	OCH ₃	
SO ₂ CH ₃	CH=NOH ₃	Cl	OCH ₃	
OSO ₂ CH ₂ CH ₃	$C(CH_3) = NOCH_3$	CH ₃	OCH ₂ CH ₃	
$R_1 - A$	C(CH ₃)=NOH	OCH ₃	OCH ₃	
$R_1 - B$	CH(CH ₃)=NOCH ₃	OCH3	CI	
$R_1 - C$	CH=NOH	CH ₃	OCH ₃	

	Active	Weigh	t Percent*
	Ingredient	Diluent(s)	Surfactant(s)
Compositons			····

*Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent.

Lower or higher levels of active ingredient can, of the physical properties of the compound. Higher ratios of surfactant to active ingredient are somtimes desirable, and are achieved by incorporation into the formulation or by tank mixing. 15

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, N.J. but other solids, either mined or manufactured, may be used. The more absorptive diluents are preferred for wettable 20 powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable against phase separation at 0° C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, N.J., as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publish-³⁰ ing Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, microbiological growth, etc. 35

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, Littler, U.S. Pat. No. 3,060,084). Granules and pellets may be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration", 45 Chemical Engineering, Dec. 4, 1967, pp. 147ff. and "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York, 1963, pp. 8-57ff.

For further information regarding the art of formulation, see for example:

- H. M. Loux, U.S. Pat. No. 3,235,361, Feb. 15, 1966, Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41:
- R. W. Luckenbaugh, U.S. Pat. No. 3,309,192, Mar. 14, 1967, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182;
- H. Gysin and E. Knusli, U.S. Pat. No. 2,891,855, June 23, 1959, Col. 3, line 66 through Col. 5, line 17 and $_{60}$ Examples 1-4:
- G. C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York. 1961, pp. 81-96; and
- J. D. Fryer and S. A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, 65 Oxford, 1968, pp. 101–103.

In the following examples, all parts are by weight unless otherwise indicated.

EXAMPLE 10

High Strength Concentrate

5-(cyanomethyl)-2-methoxy-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide: 99%

trimethylnonyl polyethylene glycol ether: 1%

The surfactant is sprayed upon the active ingredient course, be present depending on the intended use and 10 in a blender and the mixture sifted through a U.S. S. No. 40 sieve (0.42 mm openings) prior to packaging. The concentrate may be formulated further for practical use.

EXAMPLE 11

Wettable Powder

5-(cyanomethyl)-N-[(4,6-dimethoxypyrimidin-2yl)aminocarbonyl]-2-methoxybenzenesulfonamide: 65%

dodecylphenol polyethylene glycol ether: 2% sodium ligninsulfonate: 4%

sodium silicoaluminate: 6%

montmorillonite (calcined): 23%

The ingredients are thoroughly blended. The liquid 25 surfactant is added by spraying upon the solid ingredients in the blender. After grinding in a hammer mill to produce particles essentially all below 100 microns, the material is reblended and sifted through a U.S.S. No. 50 sieve (0.3 mm opening) and packaged.

EXAMPLE 12

Aqueous Suspension

5-(cyanomethyl)-2-methoxy-N-[(4-methoxy-6-methyl-

1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide: 50.0%

polyacrylic acid thickener: 0.3%

dodecylphenol polyethylene glycol ether: 0.5% disodium phosphate: 1%

40 monosodium phosphate: 0.5%

polyvinyl alcohol: 1.0%

water: 56.7%

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

EXAMPLE 13

Oil Suspension

- 50 5-(cyanomethyl)-2-methoxy-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide: 35%
 - blend of polyalcohol carboxylic esters and oil soluble petroleum sulfonates: 6%
- 55 xylene: 59%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 3 microns. The product can be used directly, extended with oils, or emulsified in water.

EXAMPLE 14

Oil Suspension

5-(cyanomethyl)-N-[(4,6-dimethoxypyrimidin-2-

yl)aminocarbonyl]-2-methoxybenzenesulfonamide: 25%

polyoxyethylene sorbitol hexaoleate: 5% highly aliphatic hydrocarbon oil: 70%

The ingredients are ground together in a sand mill until the solid particles have been reduced to under about 5 microns. The resulting thick suspension may be applied directly, but preferably after being extended 5 with oils or emulsified in water.

EXAMPLE 15

Aqueous Suspension

5-(cyanomethyl)-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-2-methoxybenzenesulfonamide: 25%

hydrated attapulgite: 3%

crude calcium ligninsulfonate: 10% sodium dihydrogen phosphate: 0.5%

water: 61.5%

The ingredients are ground together in a ball or roller mill until the solid particles have been reduced to diameters under 10 microns.

EXAMPLE 16

Wettable Powder

5-(cyanomethyl)-2-methoxy-N[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide: 40%

dioctyl sodium sulfosuccinate: 1.5%

sodium ligninsulfonate: 3%

low viscosity methyl cellulose: 1.5% attapulgite: 54%

The ingredients are thoroughly blende, passed through an air mill, to produce an average particle size under 15 microns, reblended, and sifted through a 35 U.S.S. No. 50 sieve (0.3 mm opening) before packaging.

All compounds of the invention may be formulated in

the same manner.

EXAMPLE 17

Granule

wettable powder of Example 16: 15% gypsum: 69%

potassium sulfate: 16%

The ingredients are blended in a rotating mixer and water sprayed on to accomplish granulation. When most of the material has reached the desired range of 1.0 to 0.42 cm (U.S.S. #18 to 40 sieves), the granules are ⁵⁰ removed, dried, and screened. Oversized material is crushed to produce additional material in the desired range. These granules contain % active ingredient.

EXAMPLE 18

Wettable Powder

5-(cyanomethyl)-N-[(4,6-diemthoxypyrimidin-2-yl)-

aminocarbonyl]-2-methoxybenzenesulfonamide: 50% $_{60}$ sodium alkylnaphthalenesulfonate: 2%

low viscosity methyl cellulose: 2%

diatomaceous earth: 46%

The ingredients are blended, coarsely hammer-milled and the air milled to produce particles of active essentially all below 10 microns in diameter. The product is reblended before packaging.

EXAMPLE 19

Extruded Pellet

5-(cyanomethyl)-N-[(4,6-dimethoxypyrimidin-2-

yl)aminocarbonyl]-2-methoxybenzenesulfonamide: 25%

anhydrous sodium sulfate: 10%

crude calcium ligninsulfonate: 5%

sodium alkylnaphthalenesulfonate: 1%

calcium/magnesium bentonite: 59%

The ingredients are blended, hammer-milled and then moistened with about 12% water. The mixture is extruded as cylinders about 3 mm diameter which are cut 15 to produce pellets about 3 mm long. These may be used directly after drying, or the dried pellets may be crushed to pass a U.S.S. No. 20 sieve (0.84 mm openings). The granules held on a U.S.S. No. 40 sieve (0.42 mm openings) may be packaged for use and the fines recycled.

EXAMPLE 20

Wettable Powder

 25 5-(cyanomethyl)-2-methoxy-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide: 80%
 sodium alkylnaphthalenesulfonate: 2%

sodium ligninsulfonate: 2%

30 synthetic amorphous silica: 3%

kaolinite: 13%

40

The ingredients are blended and then ground in a hammermill to produce particles with an average particle size less than 25 microns in diameter. The material is reblended and sifted through a U.S.S. No. 50 sieve (0.3 mm opening) before being packaged.

EXAMPLE 21

High Strength Concentrate

5-(cyanomethyl)-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-2-methoxybenzenesulfonamide: 98.5%

silica aerogel: 0.5%

45 synthetic amorphous fine silica: 1.0%

The ingredients are blended and ground in a hammer mill to produce a high strength concentrate essentially all passing a U.S.S. No. 50 sieve (0.3 mm openings). This material may then be formulated in a variety of ways.

Utility

Test results indicate that the compounds of the present invention are highly active preemergent or postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired, such as around fuel to all vegetation is desired, such as around fuel storage tanks, ammunition depots, industrial storage areas, parking lots, drive-in theaters, around billboards, highway and railroad structures. Some of the compounds have utility for selective weed control in crops such as wheat. Alternatively, the subject compounds are useful to modify plant growth.

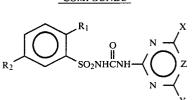
The rates of application for the compounds of the invention are determined by a number of factors, in-

cluding their use as plant growth modifiers or as herbicides, the crop species involved, the types of weeds to be controlled, weather and climate, formulations selected, mode of application, amount of foliage pre-sent, 5 etc. In general terms, the subject compounds should be applied at levels of around 0.001 to 10 kg/ha, the lower rates being suggested for use on lighter soils and/or those having a low organic matter content, for plant term persistence is required.

The compounds of the invention may be used in combination with any other commercial herbicide; examples of which are those of the triazine, triazole, uracil, 15 urea, amide, diphenylether, carbamate and bipyridylium types.

The herbicidal properties of the subject compounds were discovered in a number of greenhouse tests. The test procedures and results follow. 20

Test A


Seeds of crabgrass (Digitaria spp.), barnyardgrass (Echinochloa crusgalli), cheatgrass (Bromus Secalinus), giant foxtail (Setaria faberii), wild oats (Avena fatua), 25 velvetleaf (Abutilon theophrasti), morningglory (Ipomoea spp., cocklebur (Xanthium pensylvanicum), sor-

ghum, corn, barley, soybean, sugarbeet, cotton, rice, wheat and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with the test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were treated with a soil/foliage application. At the time of treatment, the plants ranged in height from 2 to 18 cm. Treated plants and controls were maintained in a greenhouse for growth modification or for situations where only short- 10 sixteen days, after which all species were compared to controls and visually rated for response to treatment. The ratings, summarized in Table A, are based on a numerical scale extending from 0=no injury, to 10=complete kill. The accompanying descriptive symbols have the following meanings:

B = burn;

- C=chlorosis/necrosis;
- D=defoliation;
- E=emergence inhibition;
- G = growth retardation;
- H=formative effect;
- U=unusual pigmentation;
- X=axillary stimulation;
- S = albinism; and
- 6Y=abscised buds or flowers.

	C	OMPOUNDS		
		R_1 R_1 $SO_2NHCNH (N$	\int_{Y}^{X}	
Compound	R ₁	R ₂	х	Y Z
1	OCH3	CH ₂ CN	CH3	OCH ₃ CH
2	OCH ₃	CH ₂ CN	OCH ₃	CH3 N
3	CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH_3	OCH ₃ CH
4	CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	CH ₃	CH ₃ CH
5	CO ₂ CH ₃	$CH_2P(O)(OCH_3)_2$	OCH ₃	OCH ₃ N ·
6 7	CO ₂ CH ₃	CH ₂ P(O)(OCH ₃) ₂	OCH ₃	CH ₃ N
8	CO ₂ CH ₃	CH ₂ SCN	OCH ₃	OCH ₃ CH
9	CO ₂ CH ₃ CO ₂ CH ₃	CH ₂ CN	OCH ₃	OCH ₃ CH
10	OCH ₃	CH ₂ CN CH ₂ N ₃	OCH ₃ OCH ₃	CH3 N OCH3 CH
10	OCH3	CH ₂ N ₃ CH ₂ N ₃	OCH ₃ OCH ₃	OCH3 CH CH3 CH
12	OCH ₃	CH ₂ N ₃ CH ₂ N ₃	CH ₃	CH ₃ CH CH ₃ CH
12	OCH3	CH ₂ N ₃ CH ₂ N ₃	OCH ₃	Cl CH
13	OCH ₃	CH ₂ N ₃ CH ₂ N ₃	OCH ₃	OCH ₃ N
15	OCH ₃	CH ₂ N ₃ CH ₂ N ₃	OCH ₃	CH ₃ N
16	OC ₂ H ₅	C(O)CH ₃	OCH ₃	OCH ₃ CH
17	OC ₂ H ₅	C(O)CH ₃	OCH ₃	CH ₃ CH
18	OC ₂ H ₅	C(O)CH ₃	CH ₃	CH ₃ CH
19	OC ₂ H ₅	C(O)CH ₃	OCH ₃	OCH ₃ N
20	OC ₂ H ₅	C(O)CH ₃	OCH ₃	CH ₃ N
21	COOCH(CH ₃) ₂	CH ₂ N ₃	OCH ₃	OCH ₃ CH
22	COOCH(CH ₃) ₂	CH ₂ N ₃	OCH ₃	CH ₃ CH
23	COOCH(CH ₃) ₂	CH ₂ N ₃	CH ₃	CH ₃ CH
24	COOCH(CH ₃) ₂	CH ₂ N ₃	Cl	OCH ₃ CH
25	COOCH(CH ₃) ₂	CH ₂ N ₃	OCH ₃	OCH ₃ N
26	COOCH(CH ₃) ₂	CH ₂ N ₃	OCH ₃	CH ₃ N
27	Cl	CH ₂ SCN	CH3	OCH ₃ CH
28	Cl	CH ₂ N ₃	OCH ₃	OCH ₃ CH
29	Cl	CH ₂ N ₃	CH ₃	OCH ₃ CH
30	Cl	CH ₂ N ₃	CH_3	CH ₃ CH
31	Cl	CH ₂ N ₃	Cl	OCH ₃ CH
32	Cl	CH ₂ N ₃	OCH ₃	OCH ₃ N
33	Cl	CH ₂ N ₃	OCH ₃	CH ₃ N
34	SO ₂ CH ₃	C(O)H	OCH ₃	OCH ₃ CH
35	SO ₂ CH ₃	CH ₂ N ₃	OCH ₃	OCH ₃ CH
36	SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	OCH ₃	OCH ₃ CH

Compound	R ₁	. R ₂	x	Y	z
37	SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	CH ₃	OCH ₃	CH
38	SO ₂ CH ₂ CH ₂ CH ₃	CH ₂ N ₃	OCH ₃	CH ₃	N
39	COOCH3	CH ₂ CN	OCH ₃	CH ₃	CH
40	COOCH ₃	CH ₂ CN	CH3	CH ₃	CH
41	COOCH ₃	CH ₂ CN	Cl	OCH ₃	CH
42	COOCH ₃	CH ₂ CN	OCH ₃	OCH ₃	N
43	COOCH ₂ CH ₃	C(O)H	OCH ₃	OCH ₃	CH
44	COOCH ₂ CH ₃	C(O)H	CH ₃	CH ₃	CH
45	COOCH ₂ CH ₃	C(O)H	Cl	OCH3	CH
46	COOCH ₂ CH ₃	C(O)H	OCH ₃	CH3	N
47	COOCH(CH ₃) ₂	CH ₂ CN	OCH ₃	OCH ₃	CH
48	COOCH(CH ₃) ₂	CH ₂ CN	CH_3	CH_3	CH
49	COOCH ₃	C(O)H	OCH ₃	OCH3	CH
50	COOCH3	C(O)H	OCH ₃	CH3	CH
51	COOCH ₃	C(O)H	CH_3	CH ₃	CH
52	COOCH3	C(O)H	Cl	OCH ₃	CH
53	COOCH3	C(O)H	OCH3	CH3	N
54	COOCH ₂ CH ₂ CH ₃	CH ₂ N ₃	OCH ₃	OCH ₃	CH
55	COOCH ₂ CH ₂ CH ₃	CH ₂ N ₃	OCH ₃	CH_3	CH
56	COOCH ₂ CH ₂ CH ₃	CH_2N_3	CH3	CH ₃	CH
57	COOCH ₂ CH ₂ CH ₃	CH ₂ N ₃	Cl	OCH3	CH
58	COOCH ₂ CH ₂ CH ₃	CH ₂ N ₃	OCH ₃	OCH ₃	N
59	COOCH ₂ CH ₂ CH ₃	CH_2N_3	OCH ₃	CH ₃	N
60	COOCH ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	OCH ₃	CH
61	COOCH ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	CH3	CH
62	COOCH ₂ CH ₂ CH ₃	CH ₂ CN	CH3	CH3	CH
63	COOCH ₂ CH ₂ CH ₃	CH ₂ CN	Cl	OCH3	CH
64	COOCH ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	OCH3	N
65	COOCH ₂ CH ₂ CH ₃	CH ₂ CN	OCH ₃	CH_3	N
66	OCH_2CH_2	$C(CH_3) = NOH$	OCH ₃	OCH ₃	CH
67	OCH ₂ CH ₃	$C(CH_3) = NOH$	OCH ₃	CH3	CH
68	OCH ₂ CH ₃	$C(CH_3) = NOH$	Cl	OCH3	СН
69	OCH ₂ CH ₃	$C(CH_3) = NOH$	OCH3	OCH ₃	N
70	OCH ₂ CH ₃	$C(CH_3) = NOH$	OCH3	CH ₃	N
71	OCH ₂ CH ₃	$C(CH_3) = NOCH_3$	OCH ₃	OCH ₃	CH
72	COOCH ₃	CH=NOCH ₃	OCH ₃	OCH ₃	CH
73	COOCH ₃	CH=NOCH ₃	OCH ₃	CH ₃	CH
74	COOCH3	CH=NOCH ₃	CH ₃	CH ₃	CH
75	COOCH ₃	CH=NOCH ₃	Cl	OCH ₃	CH
76	COOCH ₃	CH=NOCH ₃	OCH ₃	OCH ₃	N
77	COOCH ₃	CH=NOCH ₃	OCH3	CH3	N

								4	9							4	,6	78	,4 <u>9</u>	98								5(D									
	Compound 12 0.05		0	H2	20	0.	0	0		2C.7H	3C,8G	ŋ Ĵ	2H 2C,2G			0	H8	20	0	0 0	00	0	0	0	0	D° c	2	pd. 25 Cmpd. 26	0.05 0.05							2C,9G 9C		
	1 10 Compound 11 0.05		3C,8H	л 8н 17 8н	2C,9G	5G	3C,9H	90 10 50	50,50	Ő	4C,9G	5C,9G 9H	3C,8G 3C,9G			8G		50,50	4G	9H 3C GH	30,96	Đ6	2C,9G	8H	10E	4C,9G	0	Cmpd. 24	0.05							0 3G		
	d 9 Compound 10 0.05		4G	40.9G	4C,9G	2C,5G	3C,8H	2C,8G	6G, 50	3C,9H	5C,9G	2C,9G 3C,9H	9C 4C,9G			D6	Č Č	04	3G	3C,8H 8H	3C,8G	1G	2C,7G	2C,8G	3C,9H	Č Č	Ď	mpd. 22 Cmpd. 23	0.05 0.05							0 10C		
	ind 8 Compound 9 0.05		10C		5C,9G	2C,8G	SC 2 2 2 2	5,50	ς Σ	7U,9C	S i	ç Ç	9C 2C,9G			4C,9G	3C,9H	10E	3C,7G	5C,9H 4C 8H	5C,9G	5C,9G	3C,9G 3C,9G	10E	5C,9H	200	þ	Cmpd. 21	0.05							2C,5G 9		
	nd 7 Compound 8 0.05		100		5	4C,9G	ပွ ပွ	2 2 2	χũ	7U,9C	S S	ັດ	S S			96	ц С	10E	4C,9G	4C,9H 4C 9G	5C,9G	10E	4C,9H 8H	10E	10E	4C,9G	Ď	9 Compound 20			0	4C,9G	202	4G	3C,8H	0 0	0 40 90	
A	6 Compound 7 0.05	ENCE	10C	2 D	9G	ŝĜ	4C,9H		4C,9G	4U,9G	5C,9G	šδ	ς γ		ENCE	D6		4C,9G	4C,8G	4C,9G 4C 8H	3C,8G	ŞĢ	ů Č	H6	2C,9G	00 20 20	Ş	8 Compound 19		ENCE	3G	4C,9G 2C 7G	0	4G	3C,7H	00	0 3C 9H	
TABLE	5 Compound 6 0.05	POST-EMERGENCE	2C,2G	50 S	0	HI	2H		00	2H	3H EC	202	3H 0		PRE-EMERGENCE	2G		òo	2G		0	2G	2G 4H	2G	0 0	0	I	7 Compound 18	0.05	POST-EMERGENCE	HI	00 19	0	0	1C,2H	00	0 3C.7H	
	F Compound 0.05		2C,3H	2H 2H	0	0	0 0		0	0	Η	20	HI 0		I	5G	o c	0	4G	0 50	0	0	0 2G	0	0 0	0	l	6 Compound 17	0.05		3G	5C,9H 4C,9G	3C,6G	3C,4G	3C,9H	20	2G 3C.9H	
	3 Compound 4 0.05		3C,9G	3C,7H	\$G	ğ	4C,9H		Ő	5C,9G	40,9G	40,9G	5C,8H 4C,7H			D C	2 1	0	92 10	20.5G	3C,6G	5G	40 0 0	2C	3C,5G	4C,8H	ç	Compound 1	0.05		IC, IH	3C.9G			1 3C,9H		i 5G 2C.9H	
	2 Compound 3 0.05		200	202	4C,9G	3C,7G	6C,9H		10 10	4U,9C	90 50 00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 20			Ð6	16	4C,8G	2C,8G	4C.9H	4C,8G	6G	3C,9G 3C,5H	4C,8H	4C,9H	10C		Compound 15	0.05 0.4		4C,8H 10C					3C,9G 3C,9G		
	Compound 2 0.05		4C,8H	2C,5G	2C,5G	2C,7G	4C,9H	50 00 10 00	90 00	3C,9G	4C,9G	5C,9H	9C 5C,9G			D6	30	0	0	505	3C,8G	3C,9H	2C,9H 3C.5H	5C,9H	9H 10 70	4 <u>ر</u> ،/ت	Ş	Compound 14	0.05		3C,9G	2C.9G	0	2G	2C,3H	2G	3G 3C.8H	
	Compound 1 0.05		10C	χŊ	2C,8G	2C,9G	3C,9H	10.96	00 00	5C,9H	50,9G	4C,9H	ς Σ Σ			96 1	56	3C,8G	0	4С,УП 8G	3C,8G	3C,9G	3C,9G 8H	3C,9H	10E	5	2	Compound 13	0.05		2C,4G	500	2C,4G	0	0 0	00		,
	Rate kg/ha		Morningglory	Velvetleaf	Nutsedge	Crabgrass	Barnyardgrass	Ulcaugi ass Wild Oats	Wheat	Corn	Soybean Digo	Sorghum	Sugar beet Cotton Giant Foxtail	Barley		Morningglory	Velvetleaf	Nutsedge	Crabgrass	barnyarograss Cheatgrass	Wild Oats	Wheat	Corn Sovhean	Rice	Sorghum	Sugar beet Cotton	Giant Foxtail Barley		Rate kg/ha		Morningglory	Cocklebur Velvetleaf	Nutsedge	Crabgrass	Barnyardgrass	Wild Oats	Wheat Corn	

4,678,498

1																	43																		
	10C 9C	ç õ	10C 4C,9G	2	9G		10E	3G 22 211	3C,8H	2C,8G	3C,9H	3C,7H	H6	3C,9H	5656	3C,5G	42 Cmpd. 43 0.05		10C	10C	2C,8G	2G	С С	0	0	4C,9U 2C,8H	4C.9G	06.05 01.05		1C.6G	õ	5 <u>7</u>	9Н 2C,4G	õ ĉ	H6
	5C,9G 9C	3C,9H 5C,9G	3C,9G	₽	⁸ G	I Ç	õ	4G	505	20 20	4G	2C,6G	8G	3C,8H	ງ ເງິ	2C,5G	Cmpd. 0.05		10C	10C	ς Σ	3C,7G	90 2023	9G	2C,9G	ಗ್ಗ	S S	3C.9G	ې کې	3C,8G	9C	ð S	8G 8G	10E 2C \$G	H8
	3H,4G 4C,9G	9H 5C,9G	U H C	2	9G	9H 8G	0	0	50°07	20	o ;	ې م	3C,7G	4C,8H	ې د د	2C.2G) Cmpd. 41 0.05		10C	100	žŇ	4C,8G	°C 10 10	5C,9G	9C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	°,	С С	ې 10	20	4C.9G	D6	9H 10C	10E	3C.9H
	3C,9G 9C	సిన	10C 4C,9G	ź	TH TH	H6 8G	Ď	2G	40°H	10	8G	4C,6H	4C,9H	5C,9H),),),),),),),),),),),),),)	4C,8G	Cmpd. 40 0.05		10C	201	20	5C,9G	č Š	ňñ	2C,9G	2,5 2,5	Š	ς Υ	ور اور	201	50	H6	ññ	10C	5C,9H
	4C,9G 4C,9G	2C,9H	50,9G 30,6G	R	H6	Н С	ß	2G	4C,9H	3C,7G	Ð6	3С,8Н	2C,8G	H6	ç Ç	3C,6G	Cmpd. 39 0.05		100	100	ζ ζ	S S	ပ္ရ ပ္ရ	ຽ	<u>с</u>	Šδ	S S	ς Σ	žē		20	10E	9H 10E	10E	5C,9H
	S S S	ຽັ	۶۲ 30,66	2	9G	10C	9G	0		Ď	9H	2C,7H	4C,9H	4C,9H	50,50	3C,7G 9G	Cmpd. 38 0.05		3C,8G	4C,9G	2G	0	2C,5H	00	0	2C,7H	3C,8G	3C,8H	40.8H	20	0	HL	7G	00	žC
	3H,5G 5C,9G	9H 6H	ŞĞ					C	ر) ار			2C,6G		H6	2		Cmpd. 37 0.05		5C,9G	4C,9H	5.5	0	3C,8H	202	3G	0 4C.9G	4C,8G	2C,7G	3С,/П 4С.9Н	20	4C,9G	3G .::	H6 H1	00	γH
	H, S, S	చే స్ల	3C,		Q Q	ັລ ດິ	0	0	ي م	0	0	ς ΣΥ	H6	ပ္ကိုင္	τ Έ	•	Cmpd. 36 0.05		10C	ပ္ဂပ္ပ	4C,9G	0	4C,9H	20	Б Б	2H 3C,9G	5C,9G	4C,9H	40.9G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 G	HI	SG 5G	ñ Ö	, D
ntinued	2C,5H 2C,9G	30,4H	3C,5G	ENCE	58 2	H8 D2	0	0	HC C	0	0	2C,4G	3C,9H	3C,8H	202) - -	Cmpd. 35 0.05	ENCE	S	S	38 S	U.	00	C,9G	0	500		υ	35	30	5C,9G GENCE	0:	8H 8G	őč	9C,9H
TABLE A-continued	2H 5G	500	Ċ)	PRE-EMERGENCE	H	4G H	I	C	ຸ			10,00	C,5G	00	50	•	Cmpd. 34 C 0.05 0	日	SC 1												8		9G 88	-	4C,9H 3
TABI	222	5 6	4	PRF	21	- 4	0	0 0	ŇC	0	0 6	о —	2	νn d	היא הל		Cmpd. 33 C 0.05 0														9 PR	'			Ċ
	3C,7G 2C,8G	H61 E	r)		Đ	8H 4C,9G	ריז	5	H6'2	3C,8G	060	C,7H	C,8H	C,9H	5 5 5 (1)	ł			10C	ပွင့်	2C,5G	2G	ີ (ເ	۶ ö	Ð	20 20 20	5C,9	5 0,5	ۍ ورځ	ູ່ອ	0	7G	1 09	10E	2C,7G
	* * *	44	8		8.5	24	ž	47	۳. ۳	, e	ñ i	ññ	4	Ř	₹∞		Cmpd. 32 0.05		10C	10C	20,2	0	3C,9H	2C,5G	0	3С,9H 4С,9G	4C,9G	2C,7G	у С	2C,4G	2G	8G	9C 9C	00	3C,7G
	2C,7G 4C,9G	30,00 0,00	5C,9G		58 53	H D	2C,7G	0	10,0H	3C,8G	50	3C,4G	4C,8H	4C,9H	10°C	l	Cmpd. 31 0.05	a	3G	C,9H		_	4H		_	2G		52	4C.8G	0	_	. <u>9</u> 2	9H 9G	10E	2G
	5C,9G	н н С	ő		90 11	8H 5C,9G	7G	5G 20 211	30,8H	5C,9G	ς Σ	S H	10E	5C,9H	20	1	Cmpd. 30 C					0	~		0						0				
	5C,9G		4C,8G		5						2C,9G	3C,6H		3C,9H	ן טייי טייי	1			0	4C,9H	20	0	00	00	0	ğ	50	3C,7H	ζ, Ω	201	0	50	9G 9G	ς Ω	2G
	יהיהי	~ ~	4		- 1	~ 5	4	0	ν¢	2	r4 r	ο Γ	2	ίΩ «	-1 +		Cmpd. 29 0.05		ő	Hf Do	4C,8G	0	3C,8H	5072 5072	0	эн. 3Н.9G.	8G	3C,9H	4C.9G	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50	7G	3G.	EDE S	4C,8H
	5C,9G 2C,8G	40,9G	2C,5G		HL	40 40	0	o -		2C,4G	6G 20 67	6H	Ğ	2C,7H	202		Cmpd. 28 0.05		10C	8H 10C	6C,9G	0	4C,9H	2.0	0	4C.9G	3C,9G	1G	40.9G	3C,7G	2C	5 <u>7</u>	96 96	ñ 3G	4C,7H
	. (30,50	3C,7G									2C,2G	2C	ÅG			Cmpd. 27 0.05		3C,7H										4C,6G						
	3H 5G	ຊິຕິ			v 8G	1 53	50		0 C 2	0	0	20	2C	2 2 2	2 Ç		58				00		ss 5H	00	0	HC HE	0	ð Ö	4 c		0	y 50	້ວິດ	00	
	Soybean Rice	Sorghum Sugar beet	Cotton Giant Foxtail Barlev	Dailey	Morningglory	Cocklebur Velvetleaf	Nutsedge	Crabgrass	Barnyardgrass	Wild Oats	Wheat	Sovbean .	Rice	Sorghum	Sugar peet Cotton	Giant Foxtail Barley	Rate kg/ha		Morningglory	Cocklebur	Nutsedge	Crabgrass	Barnyardgrass	Uncaugrass Wild Oats	Wheat	Sovbean	Rice	Sorghum	Sugar beet Cotton	Giant Foxtail	Barley	Morningglory	Cocklebur Velvetleaf	Nutsedge Crahoraes	Barnyardgrass

4,678,498

52

-

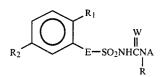
	-	•			04	
	4G 5G 5G 2C,9H 4C,9H 4C,9H 2C,9H 2C,9H 2C,9G 2C,4G 2C,4G) Cmpd. 60 0.05	10C 10C 10C 4C,9G 5C,9H 3C,5G	200 201,90 90,90 100 30,60 90,000 90,00000000	5G 7H 25 25 87 75 87 75 87 87 87 87 87 86 84 84 84 84 84 84 84 84 84 84 84 84 84	
	7G 7G 4C,9G 4C,9H 4C,9H 4C,9H 5C,9H 4C,9G 4C,9H	Cmpd. 59 0.05	10C 10C 9G 5G 5C,9H 2C,7G	26 3C,7H 3C,9G 9C,9G 9C 7G 5G 5G	66 77 77 76 76 76 76 76 76 76 76 76 76 7	
	8G 6C,9H 6C,9H 9H 9H 10E 10E 10B 5C,9G 5C,9G 3C,9H	7 Cmpd. 58 0.05	2C,7G 9C 3G 2C,6H 2C,6G	0 3C,7G 3C,7G 3C,8H 4C,9G 4C,9G 5G 5G 3G	6H 2C.2H 6G 56 56 56 56 56 56 56 56 56 56 56 56 56	
	10E 5C,9H 10E 5C,9H 9H 10E 10E 5C,9G 5C,9G 5C,9H	5 Cmpd. 57 0.05	10C 10C 2C,6G 2C,6G	26 50,90 40,00 60,90 60,90	8 3 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0	
	10E 6C,9H 10E 10B 10H 10H 9C 9C 9C 9C	Cmpd. 56 0.05	6C,9G 2C,9H 10C 3G 1C,7G 8G 2C,6G	76 20,9H 20,96 20,96 20,96 20,96 70 100 86	3H 2C,3H 2C,7G 2C,7G 7C,9H 2C,9H 2C,5G 3C,9H 3C,8H 3C,8H 3C,8H	
	3 7 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cmpd. 55 0.05	10C 9H 9C 3C,9G 3C,9G 2C,5G	20 20 30,94 30,96 90,96 20,96 86,96	76 	2C,4G 7G 8G 0.05 0.05
	66 56 57 57 57 57 57 56 57 56 57 56 57 56 57 56 57 56 57 56 56 56 56 56 56 56 56 56 56 56 56 56	Cmpd. 54 0.05	10C 10C 3C,9G 3C,9G 3C,9G	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 33 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 2G 5G Cmpd. 71 0.05
	3G 0 3C,7G 3C,7G 3C,7G 3C,7G 3C,7G 3C,7G 2G 2G 2G 2G	Cmpd. 53 0.05	3C,8H 3C,8H 2C,3H 0 8G 5C,9H	36 80,94 30,96 30,96 20,56 20,56	000000000000000000000000000000000000000	0 0 Cmpd. 70 0.05
TABLE A-continued	9H 3C,8G 10H 5C,9H 3C,7G 10E 10E 10H 10H 3C,8G 9G	Cmpd. 52 0.05	66 67 72H 72H 72 70 90 90 90 90	0 3C,9H 9C,7H 4C,9G 3C,5H 10C 6G 6G 6G 2ENCE	0 11H 86 86 86 86 87 94 94 22 33 94 34 33 36 94 94 31 30	8G 0 2C,5G 0.05 0.05
BLE A-	9H 2C,8G 6C,9H 7H 10E 5C,9H 9G 9G 9G 9G	Cmpd. 51 0.05	TOOL EMENCENCE 9C 6C 9C 9C 9C 9C <td>2G 3C,9G 5C,9G 9H 2C,6G 10C 4C,9G 2C,7G 2C,7G</td> <td>7H 2C,2H 46 76 76 76 8H 8H 76 76 76 76 76 76 76 76 76 76 76 76 76</td> <td>3C,9G 4G 4G Cmpd. 68 0.05</td>	2G 3C,9G 5C,9G 9H 2C,6G 10C 4C,9G 2C,7G 2C,7G	7H 2C,2H 46 76 76 76 8H 8H 76 76 76 76 76 76 76 76 76 76 76 76 76	3C,9G 4G 4G Cmpd. 68 0.05
TA	0 2G 2C,5G 3C,3H 3C,3H 3C,3H 8G 8G 8G 8G 8G 8G 2G 2G	0.05 Dv	u g g	355,96 555,96 355,96 355,96 357,96 357,76	1H 2 2 3 3 7 3 7 3 7 8 4 8 4 8 4 8 4 8 4 8 4 8 1 8 1 8 1 8 1	8G 3G 2G 0.05 0.05
	4G 5G 5G 2C,7G 3C,5H 9H 5G 10C 10C 8G 2C,8G		10C 9C 9C 9C 9C 4G 2C 4G	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8H 9H 9H 9H 7 7 8 7 7 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9	9G 6G 2C,9G 5 Cmpd. 68 0.05
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cmpd. 48 0.05	10C 10C 3C,8G 2C,9G 4C,9G 3C,9G 3C,9G 3C,9G	24,7,9 4,0,9 6,0,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7	8G 8H 88 87 37,96 87 94 97 94 97 94 97 94 97 94 97 94	9G 8G 9G 1 Cmpd. 65
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cmpd. 47 0.05	10C 10C 5C,9G 2C,9G 2C,5G 2C,5G 2C,5G	90 90 90 90 90 100 100 50,9H 30,8H	99 99 99 99 94 70 94 70 94 97 94 97 97 97 97 97 97 97 97 97 97 97 97 97	
	3C,7G 5G · 7 5G · 6 9G · 7 5G · 6 5G · 7 5G · 7 5G · 7 5G · 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Cmpd. 46 0.05	5C,8H 4C,9H 2G 1C,3G 9C 2C	0 96 5C,9G 3C,7H 3C,7H 2C,6G 0 0	0 0 0 2 2 5 5 H 8 H 0 0 0 0 0 0 0	0 0 Cmpd. 63 0.05
	56 26 27 27,6H 27,6H 10C 10C 10C 76 76 76	Cmpd. 45 0.05	5C,9G 2 2C,6G 2 2 3 3 H 2 2 3 3 H 2 2 3 4 H 2 3 4 H 2 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2C,4H 1C,1H 8G 3C,8G 0 0	2C,5G 2C,5H 3C,8G 3C,8H 0 0 2C,8H 2C,8H 0 2C,8H 0 0 0 0	1C,3G 0 7G Cmpd. 62 0.05
	0 0 2C,3G 8 6 8 8 2 6 2 6 2	Cmpd. 44 0.05	5C,9H 2C,8H 2C,8H 2C,8H 2C,8H 4C,9H 3G 0 0	2 2 2 2 2 2 5 6 6 2 2 6 6 2 2 6 6 7 2 6 6 6 7 8 6 6 6 7 1 7 1 7 1 7 7 1 7 7 7 7 7 7 7 7	46 20,76 46 20,76 20,76 20,94 20,94 20,94 20,46	19
	Cheatgrass Wild Oats Wheat Corm Soybean Sorghum Sugar beet Cotton Giant Foxtail Barley	Rate kg/ha	Morningglory Cocklebur Velvetleaf Nutsedge Barnyardgrass Cheatgrass Cheatgrass Wild Oats	wheat Corn Soybean Rice Sorghum Sugar beet Cuton Giant Foxatil Barley	Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Cheatgrass Cheatgrass Wheat Corn Soybean Soybean Sorghum Sugar beet	Cotton Giant Foxtail Barley Rate kg/ha

4,678,498

ŧ

		00	0	ن				.9G	•	.9G	1,9G		•	.9G		U U	.,9G	5,9G		5	H	C,8H	77		F	ł	06U	C,9H	06'0	F	щ	H	Ċ	'n	ŝ	
						Ũ		•••	•	7					•							•	1	-		•	•	•		-			-	-		
		00	100	201	2C,8G	ğ	H6	Š	Ŋ Ŋ	4C,9G	2C,8H	õ	ñ	4C,9G	10	4C,9G	4C,9G	4C,9G		õ	H6	4C,8H	õ	0	8H	H6	30,90	H6	1G	3C,8H	10E	H6	4C.8C	õ	ŠG	ő
		201	100	100	96,29	0	ñ	3C,9G	2C,5G	ğ	3C,9H	5C,9G	5C,9G	SC 0	о С	100	5C,9G	4C,9H		8G	3C,5H	SH	Ð	0	H6	H6	3C,6G	SG	3C,9H	H1	H6	3C,9H	ŝĜ	9G	3C,6G	7G
		ې کړ	100	201	С	3C,8H	Х С	۶C	о С	9G	9G	°C	9C	9C	100	°C	6C,9H	4C,9G		9G	H6	5C,9G	10E	2G	H6	H6	2C,9H	3C,9H	3C,9G	H6	IOE	10E	9 C	9G	1G	9G
		20	202		5 C	0	ő	9C	5C,9G	9G	2U,9G	<u>3</u> C	SC 2	5C,9G	10C	10C	6C,9G	4C,9G		ĐG	I	⁹ C	10E	g	H6	H6	30,90	3C,9G	3C,9H	H6	H6	H6	4C,9G	9G	3C,9H	9G
		100	201		5C,9G	7G	ъ С	9C	3C,8G	2C,9G	4U,9G	3C	SC	9C	100	10C	SC 2	3C,9G		9G	6H	2C,8G	Ð	0	8H	Ğ	ŝG	õ	9G	TH	3C,9H	<u>9</u> G	1G	7G	ũ	8G
		÷-	÷		r ")		۲ ۵		ر ې		Ŧ	Ŧ	75	F	77	77		לז							H	н			H		ۍ	H				
		4C,9H	3C,9F	၌	2C,8C	õ	2C,7C	0	. 2C,8C	Ő	3C,9F	4C,9I	2C,6C	2C,9I	2C,6C	2C,8C	Ô	30,80		2G	SH	0	0	1Η [΄]	2C,6I	2C,6I	0	2G	2C,6I	0	3C,7	2C,91	Õ	0	SH	•
-		2C,4G	SH	2C,5G	0	0	H9	0	2C,3G	0	3C,9H	2C,3H	ů Š	3C,9H	3C,7H	2C	2G	0		0	0	0	ñ	3G	ğ	g	4G	0	3G	0	5G	6G	5G	SG	I	4G
FABLE A-continued	RGENCE	HI	2C,7H	SH	0	0	0	2G	2G	4G	2C,5G	3C,7H	3C,9G	3C,9H	3C,6G	4G	2G	Ğ	GENCE	ğ	ł	3G	0	0	0	0	0	0	0	0	0	0	2G	4G	HOI	3G
LE A-	POSTEMEN	2H	2H	H	4 <u>9</u>	0	7H	0	0	0	0	IH	2G	5G	gg	0	2G	0	LEMER	0															0	
TAB	1																		PR																	
		2C,6G	ľ,	2C,5	2C,5	0	H6	Ő	2C,3	50,	2C,5	č	, Č	ິບຼິ	č	3C,	ŠČ,	1G		0	0	0	0	5G	Ū,	2G	2G	2G	SC,	HI	Ð	č,	8G	2G	ŝ	7G
		2C,5G	3C,9H	2C,9G	3C,9G	5 C	3C,9H	Q Q	õ	2G	3C,9H	SH	2C,7G	3C,6G	2C,7G	10	2C,6G	SG.		0	2H	0	0	0	0	0	0	0	2G	0	4G	5G	3G	0	0	0
		10C	10C	20	2C,8G	0	3C,9G	Ū.	2C,9G	3G	3C,9H	5C,9G	5C,9G	Ð	S S	S С	2C,7G	2C,6G		2C,8G	H9	4G	2C,8G	0	7H	H9	3C,8G	0	3C,6G	4C,8H	HOH	H6	3C,9G	2C,8G	0	2G
		10C	100	3C,9G	2C,8G	0	3C,8G	2C.5G	2C,7G	2G	2C,7G	4C,9G	2C,8G	3C,9H	<u> 2</u>	3C,8G	4G	4G		2C,8G	3C,7H	50	8G	0	7H	2G	2C,3G	0	2C,5G	3C,7H	H6	3C,8H	3C,8G	2C,5G	0	0
		10C	7)	Ď,			H6,	4G			,7H	.3H		.9G	,8H	D6		,6G		_	2C,4H								4G		_	_				
							•			•			-	-	-	-	-							-							•				4G	
		10C	100	о С	3C,9G	5G	ő	3C.9G	5C.9G	3C.9G	2U,9G	20	5C.9G	4C,9G	, С	<u>8</u>	3C.8G	H6		SH	H9	3C,8H	Dg	0	Ð	õ	3C,8H	9 <u>0</u>	3C,9H	50	H6	H6 .	3C,7G	2C,7G	SG	8G
		10C	20	100	4C,9G	ß	SC 0	4C.9G	2C.7G	3C.9G	Š	9C	5C.9G	5C,9G	°C,	10C	3C.8G	H6		4C.8G	HL	7H	8G	ß	H6	5C,9G	4C,8G	4C,9H	3C.9H	4C.7H	5C,9H	H6	3C	3C,8H	Q	Đ6
		Morningglory	Cocklebur	Velvetleaf	Nutsedge	Crabgrass	Barnyardgrass	Cheaterass	Wild Oats	Wheat	Corn	Sovbean	Rice	Sorghum	Sugar beet	Cotton	Giant Foxtail	Barley	•	Morningelorv	Cocklebur	Velvetleaf	Nutsedge	Crabgrass	Barnyardgrass	Cheatgrass	Wild Oats	Wheat	Corn	Sovbean	Rice	Sorghum	Sugar beet	Cotton	Giant Foxtail	Barley

30

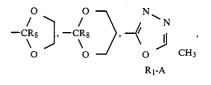

35

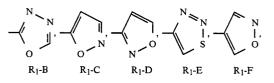
40

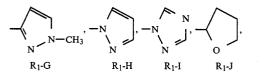
50

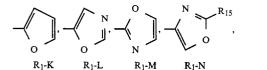
1. A compound of the formula:

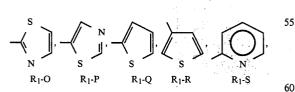
What is claimed is:

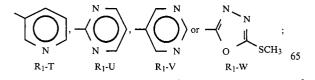

wherein

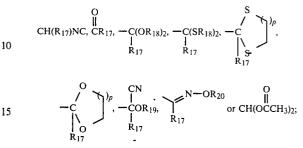

E is CH_2 or a single bond; W is O or S;


R is H or CH₃;


R₁ is F, Cl, Br, NO₂, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, OCH₂CH₂OCH₃, C₁-C₄ haloalkoxy, C₃-C₄ alkenyloxy, C₂-C₄ haloalkenyloxy, C₃-C₄ alkynyloxy, CO₂R₃, CONR₄R₅, ²⁰ SO₂NR₄R₅, SO₂N(OCH₃)CH₃, S(O)_nR₆, OSO₂R₇, C₁-C₂ alkyl substituted with C₁-C₂ alkoxy, OH or C₁-C₂ alkylthio,


 $[] CH_2CN, C_6H_5, CR_8, CR_8(OR_9)_2,$





 $\begin{array}{c} O & S \\ \parallel & \parallel \\ CH(R_{16})CN, \ CH(R_{17})SCN, \ CH(R_{17})PR_{10}R_{11}, \ CH(R_{17})PR_{10}R_{11}, \end{array}$

CH(R17)NR12R13, CH(R17)SeR14, CH(R17)N3, CH(R17)NO2,

R₃ is C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl,

25 CH₂CH₂Cl, CH₂CH₂F, or C₁-C₂ alkyl substituted with OCH₃ or SCH₃;

 R_4 is C_1 – C_3 alkyl;

 R_5 is H or C_1 - C_3 alkyl;

- R₄ and R₅ may be taken together to form (CH₂)₃ or (CH₂)₄;
- R₆ is C₁-C₃ alkyl, CH₂CH=CH₂ or CH₂C=CH; R₇ is C₁-C₃ alkyl or N(CH₃)₂;
- R₈ is H, C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, CH₂CH₂Cl, CH₂CH₂F, C₁-C₂ alkyl substituted with OCH₃ or SCH₃ and C₃-C₆ cycloalkyl;

R₉ is C₁-C₂ alkyl; R₁₀ and R₁₁ are independently C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, NHCH₃ or N(CH₃)₂;

 R_{12} and R_{13} are independently H or C_1 - C_2 alkyl; R_{14} is C_1 - C_3 alkyl;

R₁₅ is H or CH₃;

 R_{16} is H, C_1 – C_2 alkyl or F;

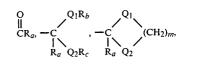
 R_{17} is H or C_1 - C_2 alkyl;

 R_{18} is C_1-C_2 alkyl;

45 R₁₉ is H, Si(CH₃)₃ or C₁-C₂ alkyl; R₂₀ is H or C₁-C₂ alkyl; p is 1 or 2;

n is 0, 1, or 2; A is

A-1


- X is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino or di(C₁-C₃ alkyl-)amino;
- Y is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₂-C₅ alkylthioalkyl, C₂-C₅

R₂ is

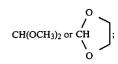
30

35

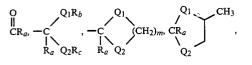
59 alkylsulfinylalkyl, C_2 – C_5 alkylsulfonylalkyl, C_1 – C_4 haloalkyl, C_2 – C_4 alkynyl, C_3 – C_5 cycloalkyl, azido, cyano,

 Q_1 CH_3 - CR_a or N(OCH_3)CH_3;

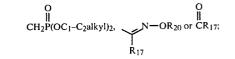
m is 2 or 3;


 Q_1 and Q_2 are independently O or S;

 R_a is H or C₁-C₃ alkyl;


 \mathbf{R}_b and \mathbf{R}_c are independently \mathbf{C}_1 - \mathbf{C}_3 alkyl;

Z is CH, CCH₃, CC₂H₅, CCl or CBr;


- and their agriculturally suitable salts; provided that (1) when X is halogen, then Z is CH and Y is OCH₃, OC₂H₅, NH₂, NHCH₃, N(CH₃)₂, OCF₂H or
 - $N(OCH_3)CH_3;$ (2) when X or Y is C₁ haloalkoxy, then Z is CH;
 - (3) when W is S, then R is H, Z is CH and Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CF₃, SCH₃,
 - OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CH₃, SCH₃, OCH₂CH=CH₂, OCH₂CE=CH, OCH₂CH₂OCH₃,

- (4) when the total number of carbon atoms of X and Y is greater than four, then the combined number of carbons of R₁ and R₂ is less than or equal to six;
- (5) when R_2 is C(O) R_{17} , then R_1 is other than C_1-C_4 40 haloalkyl or C_2 alkyl substituted with C_1-C_2 alkoxy or C_1-C_2 alkylthio, and Y is other than cyclopropyl;
- (6) when Y is C₂-C₅ alkylthioalkyl, C₂-C₅ alkylsulfinylalkyl or C₂-C₅ alkylsulfonylalkyl, then R_2 is $_{45}$ other than CH(R_{17})NO₂.
- 2. A compound of claim 1 where
- W is O; and
- R is H.
- 3. A compound of claim 2 where
- E is a single bond;
- X is C_1-C_2 alkyl, C_1-C_2 alkoxy, Cl, F, Br, I, OCF₂H, CH₂F, CF₃, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, CH₂Cl or CH₂Br; and
- Y is H, C_1-C_2 alkyl, C_1-C_2 alkoxy, CH_2OCH_3 , ⁵⁵ CH₂OCH₂CH₃, NHCH₃, N(OCH₃)CH₃, N(CH₃)₂, CF₃, SCH₃, OCH₂CH=CH₂, OCH₂C=CH, OCH₂CH₂OCH₃, CH₂SCH₃,

 OCF_2H , SCF_2H , cyclopropyl, $C \equiv CH$ or $C \equiv CCH_3$; Z is CH. 4. A compound of claim 3 where R_2 is CH_2CN , CH_2N_3 ,

- 5. A compound of claim 4 where R1 is F, Cl, Br, NO2, 10 C1-C3 alkyl, C1-C2 alkyl subsituted with 1-3F of Cl or 1Br, C₂-C₃ alkenyl, C₂-C₃ alkenyl substituted with 1-3F or Cl, C1-C2 alkoxy, C1-C2 alkoxy subsituted with 15 1-3F or Cl or 1-Br, allyloxy, propargyloxy, $CO_2C_2H_5$, OC(Cl)=CHCl, CO_2CH_3 , $CO_2CH_2CH_2Cl$, CO₂CH₂C- $CO_2CH_2CH=CH_2$, H2OCH3, CONH(C1-C2 alkyl), CONCH3(C1-C2 alkyl, SO₂N(OCH₃)CH₃, SO₂NH(C₁-C₂ alkyl), SO₂N(C₁-C₂ alkyl)₂, $S(O)_nC_1-C_3$ alkyl, $OSO_2C_1-C_3$ alkyl, C_1-C_2 alkyl substituted with OCH3 or SCH3, C6H5 and R1-A,
- R₁-B, R₁-C, R₁-D, R₁-E, R₁-F, R₁-G, R₁-H, R₁-I, R₁-J, R₁-K, R₁-L, R₁-M, R₁-N, R₁-O, R₁-P, R₁-Q R₁-R, R₁-S, 25 R₁-T, R₁-U, R₁-V or R₁-W.
 - 6. A compound of claim 5 where
 - X is CH₃, OCH₃, OCH₂CH₃, Cl, OCF₂H or OCH₂CF₃; and
 - Y is CH₃, OCH₃, C₂H₅, CH₂OCH₃, NHCH₃ or CH(OCH₃)₂.

7. A compound of claim 6 where R_1 is F, Cl, Br, NO₂, CH₃, CF₃ C₁-C₂ alkoxy, allyloxy, OC(Cl)=CHCl, CO₂CH₃, CO₂C₂H₅, CO₂NHCH₃, CO₂N(CH₃)₂, SO₂NHCH₃ SO₂N(CH₃)₂, SO₂CH₃, SO₂C₂H₅, OSO₂CH₃, OSO₂C₂H₅, R₁-A, R₁-B or R₁-C.

8. The compound of claim 1 which is 4-(cyanomethyl)-2-[[4,6-dimethoxypyrimidin-2-yl)aminocarbonyl-]aminosulfonyl]benzoic acid, methyl ester.

9. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 1 and at least one of the following: surfactant, solid or liquid diluent.

10. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 2 and at least one of the following: surfactant, solid or liquid diluent.

11. A composition suitable for controlling the growth
of undesired vegetation which comprises an effective amount of a compound of claim 3 and at least one of the following: surfactant, solid or liquid diluent.

12. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 4 and at least one of the following: surfactant, solid or liquid diluent.

13. A composition suitable for controlling the growth of undesired vegetation which comprises an effective
amount of a compound of claim 5 and at least one of the following: surfactant, solid or liquid diluent.

14. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 6 and at least one of the following: surfactant, solid or liquid diluent.

15. A composition suitable for controlling the growth of undesired vegetation which comprises an effective

amount of a compound of claim 7 and at least one of the following: surfactant, solid or liquid diluent.

16. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of the compound of claim 8 and at least one of the following: surfactant, solid or liquid diluent. 5

17. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim $_{10}$ 1.

18. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim 2.

19. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim 3.

20. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be

protected an effective amount of a compound of claim 4.

21. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim **5**.

22. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim 6.

23. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be
protected an effective amount of a compound of claim
7.

24. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be20 protected an effective amount of the compound of claim8.

* * * *

30

25

35

40

45

50

55

60

65

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : B1 4,678,498

Page 1 of 2

DATED : January 24, 1989 INVENTOR(S) : Steven P. Artz

1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

The title page should be deleted to appear as per attached title page.

Signed and Sealed this Thirteenth Day of June, 1989

Attesting Officer

Attest:

DONALD J. QUIGG

Commissioner of Patents and Trademarks

REEXAMINATION CERTIFICATE (1005th)

United States Patent [19]

Artz

[54] HERBICIDAL SULFONAMIDES

- [75] Inventor: Steven P. Artz, Kennett Square, Pa.
- [73] Assignee: E. I. Du Pont de Nemours and Company, Wilmington, Del.

Reexamination Request: No. 90/001,562, Jun. 24, 1988

Reexamination Certificate for:

Patent No.:	4,678,498						
Issued:	Jul. 7, 1987						
Appl. No.:	860,229						
Filed:	May 12, 1986						

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 743,955, Jun. 12, 1985, abandoned.

[11] **B1 4,678,498**

[45] Certificate Issued Jan. 24, 1989

[56] References Cited

U.S. PATENT DOCUMENTS

· FOREIGN PATENT DOCUMENIS

84/2722 10/1984 South Africa .

Primary Examiner—John M. Ford

[57] ABSTRACT

Novel compounds of Formula I are useful as herbicides and plant growth regulants.

REEXAMINATION CERTIFICATE (1005th)

United States Patent [19]

Artz

[54] HERBICIDAL SULFONAMIDES

- [75] Inventor: Steven P. Artz, Kennett Square, Pa.
- [73] Assignee: E. I. Du Pont de Nemours and Company, Wilmington, Del.

Reexamination Request: No. 90/001,562, Jun. 24, 1988

Reexamination Certificate for:

Patent No.:	4,678,498							
Issued:	Jul. 7, 1987							
Appl. No.:	860,229							
Filed:	May 12, 1986							

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 743,955, Jun. 12, 1985, abandoned.

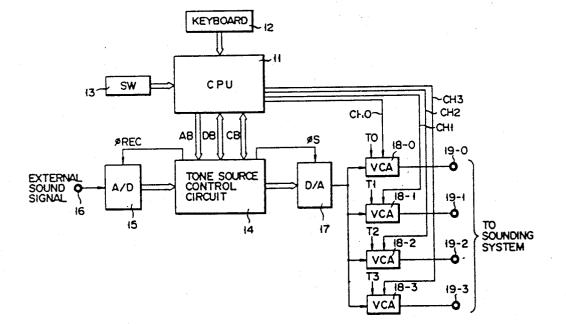
[11] **B1 4,678,498**

[45] Certificate Issued Jan. 24, 1989

[56] References Cited

U.S. PATENT DOCUMENTS

4,310,346 1/1982 Levitt et al. 71/92


FOREIGN PATENT DOCUMENTS

84/2722 10/1984 South Africa .

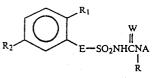
Primary Examiner-John M. Ford

[57] ABSTRACT

Novel compounds of Formula I are useful as herbicides and plant growth regulants.

REEXAMINATION CERTIFICATE ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.

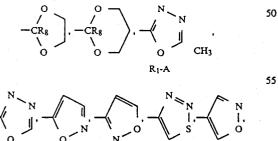

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the 10 patent; matter printed in italics indicates additions made to the patent.

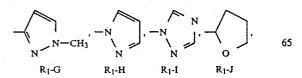
AS A RESULT OF REEXAMINATION, IT HAS 15 BEEN DETERMINED THAT:

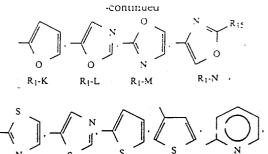
Claim 1 is determined to be patentable as amended.

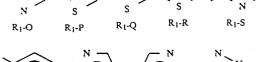
Claims 2-24, dependent on an amended claim, are 20 determined to be patentable.

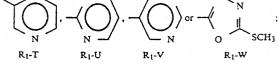
1. A compound of the formula:


wherein


E is CH₂ or a single bond; W is O or S:

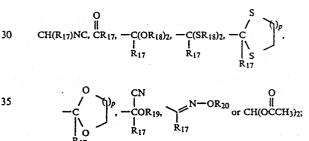

R is H or CH₃: R₁ is F, Cl, Br, NO₂, C₁-C₄ alkyl, C₂-C₄ alkenyl, C2-C4 haloalkenyl, C2-C4 alkynyl, C1-C4 haloalkyl, C1-C4 alkoxy, OCH2CH2OCH3, C1-C4 haloalkoxy, C_3-C_4 alkenyloxy, C_2-C_4 haloalk- C_2-C_4 haloalk- C_3-C_4 alkenyl, C_3-C_4 alkenyl, C_3-C_4 alkynyl, C_3-C_4 alkynyl, enyloxy, C3-C4 alkynyloxy, CO2R3, CONR4R5, SO2NR4R5, SO2N(OCH3)CH3, S(O)nR6, OSO2R7, C1-C2 alkyl substituted with C1-C2 alkoxy, OH or C1-C2 alkylthio,

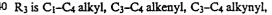

[] CH₂CN, C₆H₅, CR₈, CR₈(OR₉)₂,


R₁-B

R₂ is

25


45


60

5

S CH(R16)CN, CH(R17)SCN, CH(R17)PR10R11, CH(R17)PR10R11,

CH(R17)NR12R13, CH(R17)SeR14, CH(R17)N3, CH(R17)NO2,

CH₂CH₂Cl, CH₂CH₂F, or C₁-C₂ alkyl substituted with OCH3 or SCH3;

 R_4 is C_1 - C_3 alkyl;

 R_5 is H or C_1 - C_3 alkyl;

- R4 and R5 may be taken together to form (CH2)3 or (CH₂)4;
- R6 is C1-C3 alkyl, CH2CH=CH2 or CH2C=CH;
- R_7 is C_1 - C_3 alkyl or N(CH₃)₂;
- R₈ is H, C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkylnyl, CH2CH2Cl, CH2CH2F, C1-C2 alkyl substituted with OCH₃ or SCH₃ and C₃-C₆ cycloalkyl;

R₉ is C_1 - C_2 alkyl;

R₁₀ and R₁₁ are independently C₁-C₂ alkyl, C₁-C₂ alkoxy, C1-C2 alkylthio, NHCH3 or N(CH3)2;

 R_{12} and R_{13} are independently H or C_1 - C_2 alkyl;

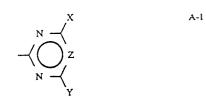
R₁₄ is C₁-C₃ alkyl;

R15 is H or CH3;

 R_{16} is H, C_1 - C_2 alkyl or F;

 R_{17} is H or C_1 - C_2 alkyl;

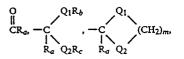
 R_{18} is C_1 - C_2 alkyl;

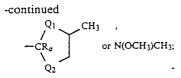

 R_{19} is H, Si(CH₃)₃ or C_1 - C_2 alkyl;

 R_{20} is H or C_1 - C_2 alkyl;

p is 1 or 2;

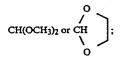
10


A is


X is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, 15 C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino or di(C₁-C₃ alkyl-)amino;

3

Y is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C_1 -C₄ haloalkylthio, C₁-C₄ alkylthio, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₂-C₅ alkylthiolkyl, C₂-C₅ alkylsulfinylalkyl, C₂-C₅ alkylsulfonylalkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, C₃-C₅ cycloalkyl, azido, cyano, 35



m is 2 or 3;

 Q_1 and Q_2 are independently O or S;

- R_4 is H or C_1 - C_3 alkyl;
- R_b and R_c are independently C_1 - C_3 alkyl; Z is CH, CCH₃, CC₂H₅, CCl or CBr;
- and their agriculturally salts; provided that
 - when X is halogen, then Z is CH and Y is OCH₃, OC₂H₅, NH₂, NHCH₃, N(CH₃)₂, OCF₂H or N(OCH₃)CH₃;
 - (2) when X or Y is C₁ haloalkoxy, then Z is CH;
 - (3) when W is S, then R is H, Z is CH and Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CF₃, SCH₃, OCH₂CH=CH₂, OCH₂C=CH, OCH₂CH₂OCH₃,

- (4) when the total number of carbon atoms of X and Y is greater than four, then the combined number of carbons of R₁ and R₂ is less than or equal to six;
- (5) when R₂ is C(O)R₁₇, then R₁ is other than C₁-C₄ haloalkyl or C₂ alkyl substituted with C₁-C₂ alkoxy, OH or C₁-C₂ alkylthio, and Y is other than cyclopropyl;

(6) when Y is C₂-C₅ alkylthioalkyl, C₂-C₅ alkylsulfinylalkyl or C₂-C₅ alkylsulfonylalkyl, then R₂ is other than CH(R₁₇)NO₂

- (7) when R_2 is $C(O)R_{17}$ then R_1 is other than $SO_2NR_4R_5$ and $SO_2N(OCH_3)CH_3$.
- 45

40

50

55

60

65