wO 2007/001941 A2 |10 0 00T O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

(10) International Publication Number

WO 2007/001941 A2

(51) International Patent Classification:
GOG6F 15/173 (2006.01)

(21) International Application Number:

PCT/US2006/023706
(22) International Filing Date: 19 June 2006 (19.06.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/692,715 21 June 2005 (21.06.2005) US
11/455,011 15 June 2006 (15.06.2006) US

(71) Applicant (for all designated States except US): CISCO
TECHNOLOGY, INC. [US/US]; 170 West Tasman
Drive, San Jose, California 95134-1706 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUMAR, Sandeep
[US/US]; 170 West Tasman Drive, San Jose, California
95134-1706 (US). RAMAN, Rajesh [US/US]; 170 West
Tasman Drive, San Jose, California 95134-1706 (US).

DASHORA, Vinod [US/US]; 170 West Tasman Drive,
San Jose, California 95134-1706 (US).

Agents: PALERMO, Christopher et al.; HICKMAN
PALERMO TRUONG & BECKER LLP, 2055 Gateway
Place, Suite 550, San Jose, CA 95110-1089 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU,
LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG,
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: IDENTITY BROKERING IN A NETWORK ELEMENT

2504 Reoeive specification of (1)
where.identity information.or -

credentials are located in transport

protocol and (2) whether to extract

2502, Identify inbound |-
application message
fransport protocol

2506 Receive specification of
requirements for authentication of
identity information or credentials

2508 Identify inbound
application message
protocol

2509 Receive specification of (1)
where identity information or
credentials are located in message
protocol and (2) whether fo extract

2510 Receive specification of
reguirements for authentication of
identity information or credentials

2512 identify inbound
application message 2514 Recelve specification of (1)
body where identity Information or
credentials are located In message
body and (2) whether to extract
2518 Ildentify 2516 Receive specification of
required authorization requirements for authentication of
operations identity information or credentials

(57) Abstract: A network infrastructure element such as
a router or switch performs brokering network user identity
and credential information. An application or administrative
user can declare a policy for user identity information
extraction, authentication and authorization. Based on the
policy, the network element extracts user identity information
or credentials from a transport-layer message header,
application-layer message header, and message body. Based
on the policy, the network element performs one or more
authentication or authorization operations with the user identity
information or credentials. As a result, a network element can
broker identity information among incompatible applications
and perform identity operations for the applications.

WO 2007/001941 A2 {0 0A0 000 0T 0000 0 000 D O

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, For two-letter codes and other abbreviations, refer to the "Guid-
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:
— without international search report and to be republished
upon receipt of that report

WO 2007/001941 ‘ PCT/US2006/023706
ISENHEITY BROKERING IN A NETWORK ELEMENT

FIELD OF THE INVENTION
[0001] The present invention generally relates to network elements in computer
networks. The invention relates more specifically to a method and apparatus for determining

the identity associated with a message in network element.

BACKGROUND
[0002] The approaches described in this section could be pursued, but are not necessarily
approaches that have been previously conceived or pursued. Therefore, unless otherwise
indicated herein, the approaches described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in this section.
[0003] In a business-to-business environment, applications executing on computers
commonly communicate with other applications that execute on other computers. For
example, an application “A” executing on a computer “X” might send, to an application “B”
executing on a computer “Y,” a message that indicates the substance of a purchase order.
[0004] Computer “X” might be remote from computer “Y.” In order for computer “X” to
send the message to computer “Y,” computer “X” might send the message through a
computer network such as a local area network (LAN), a wide-area network (WAN), or an
inter-network such as the Internet. In order to transmit the message through such a network,
computer “X” might use a suite of communication protocols. For example, computer “X”
might use a network layer protocol such as Internet Protocol (IP) in conjunction with a
transport layer protocol such as Transport Control Protocol (TCP) to transmit the message.
[0005] Assuming that the message is transmitted using TCP, the message is encapsulated
into one or more data packets; separate portions of the same message may be sent in separate
packets. Continuing the above example, computer “X” sends the data packets through the
network toward computer “Y.” One or more network elements intermediate to computer “X”
and computer “Y” may receive the packets, determine a next “hop” for the packets, and send
the packets towards computer “Y.”
[0006] For example, a router “U” might receive the packets from computer “X” and
determine, based on the packets being destined for computer “Y,” that the packets should be
forwarded to another router “V” (the next “hop” on the route). Router “V” might receive the
packets from router “U” and send the packets on to computer “Y.” At computer “Y,” the
contents of the packets may be extracted and reassembled to form the original message,

which may be provided to application “B.” Applications “A” and “B” may remain oblivious

WO 2007/001941 PCT/US2006/023706
B8 Faattharitig pakdts were routed through routers “U” and “V.” Indeed, separate

packets may take different routes through the network.

[0007] A message may be transmitted using any of several application layer protocols in
conjunction with the network layer and transport layer protocols discussed above. For
example, application “A” may specify that computer “X” is to send a message using
Hypertext Transfer Protocol (HTTP). Accordingly, computer “X” may add HTTP-specific
headers to the front of the message before encapsulating the message into TCP packets as
described above. If application “B” is configured to receive messages according to HT'TP,
then computer “Y” may use the HTTP-specific headers to handle the message.

[0008] In addition to all of the above, a message may be structured according to any of
several message formats. A message format generally indicates the structure of a message.
For example, if a purchase order comprises an address and a delivery date, the address and
delivery date may be distinguished from each other within the message using message
format-specific mechanisms. For example, application “A” may indicate the structure of a
purchase order using Extensible Markup Language (XML). Using XML as the message
format, the address might be enclosed within “<address>" and “</address>” tags, and the
delivery date might be enclosed within “<delivery-date>" and “</delivery-date>" tags. If
application “B” is configured to interpret messages in XML, then application “B” may use
the tags in order to determine which part of the message contains the address and which part
of the message contains the delivery date.

[0009] A web browser (“client””) might access content that is stored on remote server by
sending a request to the remote server’s Universal Resource Locator (URL) and receiving the
content in response. Web sites associated with very popular URLSs receive an extremely large
volume of such requests from separate clients. In order to handle such a large volume of
requests, these web sites sometimes make use of a proxy device that initially receives
requests and distributes the requests, according to some scheme, among multiple servers.
[0010] One such scheme attempts to distribute requests relatively evenly among servers
that are connected to the proxy device. A proxy device employing this scheme is commonly
called a “load balancer.” When successful, a load balancer helps to ensure that no single
server in a server “farm” becomes inundated with requests.

[0011] When a proxy device receives a request from a client, the proxy device determines
to which server, of many servers, the request should be directed. For example, a request
might be associated with a session that is associated with a particular server. In that case, the
proxy device might need to send the request to the particular server with which the session is

associated.

WO 2007/001941 PCT/US2006/023706
J0018) IfEeReivED {5 which the proxy device sent the request is not able to service the

request, one of several scenarios may occur. In one scenario, the server might send no
response whatsoever. Under this scenario, after a specified amount of time has passed since
the client sent the request without receiving a corresponding response, the client may
determine that a “timeout” event has occurred. The client may take a specified action that is
associated with the timeout event, such as notifying a user that a response to the request could
not be obtained.

[0013] In another scenario, the server might send an HTTP-specific response that
indicates that the server is not able to service the request. For example, the server might send
a “500” code in an HTTP header. The client may receive the HTTP-specific response and
take a specified action that is associated with the HTTP-specific response, such as notifying a
user that the request could not be serviced.

[0014] Under either scenario, the only recourse left to the client is to resend the request.
However, when the client resends the request, the resending wastes both network bandwidth
and the client’s processing resources. Furthermore, although HTTP provides codes whereby
a server can notify a client, in a protocol header, that the server is unable to service a request,
sometimes clients and servers communicate using protocols other than HTTP. Some of these
other protocols do not have such built-in notification mechanisms.

[0015] A less wasteful, more productive, and more widely applicable technique for
managing server failure, or the inability of a server to service a request, is needed.

[0016] Present approaches in data processing are inadequate with respect to network
topology visibility, transmission of verbose XML documents, processing network identities
of users, validating XML schemas, load balancing, and processing database application

messages. Improved approaches in these areas are needed.

BRIEF DESCRIPTION OF THE DRAWINGS
[0017] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals
refer to similar elements and in which:
[0018] FIG. 1 is a block diagram that illustrates an overview of one embodiment of a
system in which one or more network elements manage server failover based on application
layer messages;
[0019] FIG. 2 depicts a flow diagram that illustrates an overview of one embodiment of a
method of managing servér failure at a network element;
[0020] FIG. 3A depicts a flow diagram that illustrates one embodiment of a method of

network element-managed server failover based on application layer messages;

-3-

WO 2007/001941 PCT/US2006/023706
0023) FrasssB-El depict a flow diagram that illustrates one embodiment of a method of
ep

balancing data traffic among multiple servers based on application layer message content;
[0022] FIG. 4 depicts a sample flow that might be associated with a particular message
classification;

[0023] FIG. 5 is a block diagram that illustrates a computer system upon which an
embodiment may be implemented;

[0024] FIG. 6 is a block diagram that illustrates one embodiment of a router in which a
supervisor blade directs some packet flows to an AONS blade and/or other blades;

[0025] FIG.7 is a diagram that illustrates the various components involved in an AONS
network according to one embodiment;

[0026] FIG. 8 is a block diagram that depicts functional modules within an example
AONS node;

[0027] FIG. 9 is a diagram that shows multiple tiers of filtering that may be performed on
message traffic in order to produce only a select set of traffic that will be processed at the
AONS layer;

[0028] FIG. 10 is a diagram that illustrates the path of a message within an AONS cloud
according to a cloud view;

[0029] FIG. 11A and FIG 11B are diagrams that illustrate a request/response message
flow;

[0030] FIG. 12A and FIG 12B are diagrams that illustrate alternative request/response
message flows;

[0031] FIG. 13 is a diagram that illustrates a one-way message flow;

[0032] FIG. 14 is a diagram that illustrates alternative one-way message flows;

[0033] FIG. 15A and FIG 15B are diagrams that illustrate a request/response message
flow with reliable message delivery;

[0034] FIG. 16 is a diagram that illustrates a one-way message flow with reliable
message delivery;

[0035] FIG. 17 is a diagram that illustrates synchronous request and response messages;
[0036] FIG. 18 is a diagram that illustrates a sample one-way end-to-end message flow;
[0037] FIG. 19 is a diagram that illustrates message-processing modules within an AONS
node;

[0038] FIG. 20 is a diagram that illustrates message processing within AONS node;
[0039] FIG. 21, FIG. 22, and FIG. 23 are diagrams that illustrate entities within an AONS
configuration and management framework; and

[0040] FIG. 24 is a diagram that illustrates an AONS monitoring architecture.

4

WO 2007/001941 ‘ PCT/US2006/023706
[0041] FIG: 254 BWIFIG. 25B are flow diagrams of a process of brokering identity

information.

[0042] FIG. 26 is a flow diagram of a process of brokering session information.

DETAILED DESCRIPTION
[0043] A method and apparatus for network element-management using application layer
messages is described. In the following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In other instances, well-known
structures and devices are shown in block diagram form in order to avoid unnecessarily
obscuring the present invention.
[0044] Embodiments are described herein according to the following outline:
1.0 General Overview
2.0 Structural and Functional Overview
21 Maintaining Session State at Network Elements
2.2 Transparent Application and Network Visibility and Other
Approaches
3.0 Implementation Examples
3.1 Network Element-Managed Server Failover Based on
Application Layer Messages
3.2 Multi-Blade Architecture
3.3 Action Flows
3.4 AONS Examples
3.4.1 AONS General Overview
3.42 AONS Terminology
3.4.3 AONS Functional Overview
3.4.4 AONS System Overview
3.4.5 AONS System Elements
3.4.6 AONS Example Features
3.4.7 AONS Functional Modules
3.4.8 AONS Modes of Operation
3.4.9 AONS Message Routing
3.4.10 Flows, Bladelets™, and Scriptlets™

-5-

WO 2007/001941 PCT/US2006/023706
3.4.11 AONS Services

3.4.12 AONS Configuration and Management
3.4.13 AONS Monitoring
3.4.14 AONS Tools
4,0 Identity Brokering in a Network Element
5.0 Implementation Mechanisms—Hardware Overview
6.0 Extensions and Alternatives
[0045] 1.0 GENERAL OVERVIEW
[0046] The needs identified in the foregoing Background, and other needs and objects
that will become apparent for the following description, are achieved in the present invention,
which comprises, in one aspect, a data processing apparatus, comprising a plurality of
network interfaces that are coupled to a data network for receiving one or more packets
therefrom and sending one or more packets thereto; one or more processors; a switching
system coupled to the one or more processors and packet forwarding logic, wherein the
switching system and packet forwarding logic are configured to receive packets on a first
network interface, determine a second network interface on which to send the packets, and to
send the packets on the second network interface; logic comprising one or more stored
instructions which when executed by the one or more processors are operable to cause:
receiving over the network an application-layer message comprising one or more of the
packets; receiving a message identity policy that defines any one or more of: first identity
information in a transport-layer protocol header of the application-layer message and whether
to extract the first identity information from the transport-layer protocol header; second
identity information in an application-layer protocol header of the application-layer message
and whether to extract the second identity information from the application-layer protocol
header; and third identity information in a message body of the application-layer message and
whether to extract the third identity information from the message body; extracting any one
or more of the first identity information, second identity information, and third identity
information as specified in the message identity policy; determining one or more
authentication operations to authenticate the one or more of the first identity ihformation,
second identity information, and third identity information; performing the one or more
authentication operations, and in response, receiving one or more message sender identity
attributes; creating an outbound application-layer message that includes the message sender
identity attributes; forwarding the outbound application-layer message to a next endpoint.
[0047] In one feature, the apparatus comprises a router or switch for a packet-switched

network.
-6-

WO 2007/001941 PCT/US2006/023706
{00488 14 iGNt iEbAbure, the logic comprises further instructions which when executed

cause forwarding the outbound application-layer message to a next endpoint using an
outbound transport protocol that is specified in the message identity policy.

[0049] In yet another feature, the message identity policy further specifies the one or
more authentication operations to authenticate the one or more of the first identity
information, second identity information, and third identity information.

[0050] In still another feature, the logic comprises further instructions which when
executed cause binding the one or more message sender identity attributes to a previously
created outbound application-layer message.

[0051] In a further feature, the logic comprises further instructions which when executed
cause receiving over the network the application-layer message in a first application-layer
message format; extracting from the received application-layer message one or more session
identity attributes; creating the outbound application-layer message in a second application-
layer message format that is different from the first application-layer message format; storing
the session identity attributes in the outbound application-layer message according to the
second application-layer message format.

[0052] In yet another feature, the logic comprises further instructions which when
executed cause receiving over the network the application-layer message in a first
application-layer message format; extracting from the received application-layer message one
or more session identity attributes; creating the outbound application-layer message in a
second application-layer message format that is different from the first application-layer
message format; creating a normalized session object that can store the session identity
attributes in a format independent of the first application-layer message format and the
second application-layer message format; storing the session identity attributes in the
outbound application-layer message according to the second application-layer message
format.

[0053] In still another feature, the instructions that cause performing the one or more
authentication operations comprise instructions for performing a sign-on operation which
when executed cause a message sender associated with the one or more message sender
identity attributes to sign in to a destination server.

[0054] In yet a further feature, the logic comprises further instructions which when
executed cause selecting the next endpoint from among a plurality of endpoint identifiers
based on the one or more message sender identity attributes.

[0055] In other aspects, the invention encompasses a method and a computer-readable

medium configured to carry out steps that implement the foregoing logic.

-7-

WO 2007/001941 PCT/US2006/023706
[0056] 2O TRVTIPRAL AND FUNCTIONAL OVERVIEW
[0057] FIG. 1 is a block diagram that illustrates an overview of one embodiment of a
system 100 in which one or more of network elements 102, 104, 106, and 108 manage server
failover based on application layer messages. Network elements 102, 104, 106, and 108 may
be proxy devices and/or network switches and/or routers, such as router 600 depicted in FIG.
6 below, for example.
[0058] Client application 110 is coupled communicatively with network element 102.
Server applications 112A-N are coupled communicatively to network element 106. Server
applications 114A-N are coupled communicatively to network element 108. Client
application 110 and server applications 112A-N and 114A-N may be separate processes
executing on separate computers. According to one embodiment, server applications 112A-N
and 114A-N are web servers. According to one embodiment, server applications 112A-N
and 114A-N are database servers that communicate with databases.
[0059] Network elements 102 and 104 are coupled communicatively with a network 116.
Network elements 104 and 106 are coupled communicatively with a network 118. Network
elements 104 and 108 are coupled communicatively with a network 120. Each of networks
116, 118, and 120 is a computer network, such as, for example, a local area network (LAN),
wide area network (WAN), or internetwork such as the Internet. Networks 116, 118, and 120
may contain additional network elements such as routers.
[0060] Client application 110 encapsulates application layer messages within data packets
and addresses the data packets to virtual addresses, such as virtual IP addresses, each of
which may be associated with multiple servers. For example, a first virtual IP address may
be associated with server applications 112A-N, and a second virtual IP address may be
associated with server applications 114A-N. Network elements that intercept data packets
destined for the first virtual IP address route the data packets toward network element 106.
Network elements that intercept data packets destined for the second virtual IP address route
the data packets toward network element 108.

[0061] Network elements 106 and 108 intercept the data packets that contain the
messages. Network elements 106 and 108 select, from among server applications 112A-N
and server applications 114A-N, respectively, particular server applications toward which the
data packets should be sent. The particular server applications may be selected based on a
load-balancing algorithm, or based on session mappings, or based on relative priorities of the
server applications.

[0062] For example, each of server applications 112A-N may be assigned a priority
relative to each other of server applications 112A-N. If server application 112A has a higher

priority than server application 112B, then network element 106 may attempt to send data
-8-

WO 2007/001941 PCT/US2006/023706
padierd tdisetvier.applichtion 112A before sending data packets to server application 112B;

network element 106 might send data packets to server application 112B only if server
application 112A is unable to service a request contained with the data packets.

[0063] In one embodiment, network elements 106 and 108 store intercepted requests and
determine whether the server applications to which requests are sent in this manner are
unable to service the requests. In response to determining that a particular server application
is unable to service a request, network elements 106 and 108 select another server application
and send the request to that other server application. In one embodiment, network elements
106 and 108 repeat this server application selection process until network elements 106 and
108 intercept, from a selected server, a response that does not indicate that the request could
not be serviced. Network elements 106 and 108 send such “actual” responses to client
application 110.

[0064] Because network elements 106 and 108 ensure that requests are distributed to
server applications that are capable of responding to those requests, client application 110
does not need to be sent any responses that indicate that those requests could not be serviced.
Thus, network bandwidth may be reserved for transporting “actual” responses, and client
application 110 does not even need to be “aware” that network elements 106 and 108 are
handling server failover. To client application 110, it does not appear that any of server
applications 112A-N and 114A-N have failed.

[0065] FIG. 2 depicts a flow diagram 200 that illustrates an overview of one embodiment
of a method of managing server failure at a network element. Such a method may be
performed, for example, by network element 106 or 108.

[0066] In block 202, the inability of a first server to service a request is detected at a
network element. For example, network element 106 may intercept a request from client
application 110, store a copy of the request, select server application 112A from among
server applications 112A-N, send the request to server application 112A, and detect that
server application 112A is unable to service the request. Network element 106 may make
this determination in any one of several ways.

[0067] For example, network element 106 might determine that a specified amount of time
has passed since network element 106 sent the request to server application 112A, and that in
that time, no corresponding response has been received on the TCP connection to server
application 112A. For another example, network element 106 may determine that a specified
amount of time has passed since network element 106 sent a TCP SYN packet to server
application 112A, and that in that time no TCP SYN/ACK packet has been received from
server application 112A. As a result of detecting such timeout events, network element 106

may determine that server application 112A has failed and is unable to service the request.
-9-

WO 2007/001941 PCT/US2006/023706
L0061 Hor naikstEkEmple, network element 106 might intercept, from server application

112A, an HTTP-specific message that indicates that server application 112A is unable to
service the request. More specifically, server application 112A might send, toward client
application 110, a message that has an HTTP header that indicates status code “500.”
Network element 106 may intercept the data packets that contain this message, assemble and
inspect the message, and determine from the code that server application 112A is unable to
service the request.

[0069] For another example, network element 106 might intercept a message that
indicates, in the body of the message itself, that server application 112A is unable to service
the request. More specifically, server application 112A might send, toward client application
110, an XML document that contains a specified XML element that indicates that server
application 112A cannot service the request. One or more protocol headers, such as an FTP
header, a Simple Mail Transfer Protocol (SMTP) header, or some other protocol header, may
precede the XML document within the collective payload portions of multiple TCP data
packets. A protocol header may relate to a proprietary protocol. Network element 106 may
intercept the packets that contain the XML document, assemble and inspect the XML
document, and determine, from the presence of the specified XML element within the XML
document, that server application 112A is unable to service the request.

[0070] In one embodiment, when a network element such as network element 106
determines that a server application such as server application 112A is unable to service
requests, the network element generates an entry for the server application in a list of server
applications that the network element will not select, at least for a specified period of time.
The entry may be associated with a timestamp that indicates to the network element when the
entry should be removed from the list.

[0071] Inblock 204, in response to detecting the inability of the first server to service the
request, a second server is selected from among a plurality of servers. For example, in
response to detecting that server application 112A is unable to service the request, network
element 106 may select server application 112B from among server applications 112A-N.,
The selection may be based on a load-balancing algorithm, for example, or based on relative
priorities assigned to server applications 112A-N.

[0072] Inblock 206, the request is sent toward the second server. Thus, the first server
“fails over” to the second server. For example, using the copy of the request that network
element 106 stored earlier, network element 106 may send the request to server application
112B. If network element 106 intercepts, from server application 112B, an actual response to

the request, then network element 106 may send the response toward client application 110.

-10-

WO 2007/001941 PCT/US2006/023706
Cligitti Applicatidhizt FOlddies not need to be made aware that server application 112A was

unable to service the request.

[0073] 2.1 MAINTAINING SESSION STATE AT NETWORK ELEMENTS

[0074] According to one embodiment, network elements 102, 104, 106, and 108 inspect
the contents of communications that those network elements intercept. The network elements
determine, from the contents, both session-identifying information and session state
information. Using the session-identifying information to identify the sessions, the network
elements store the session state information and associate the session state information with
the session to which the session state information pertains.

[0075] Because the network elements store session state information, server applications
112A-N and server applications 114A-N do not need to store session state information. For
example, when network element 106 intercepts a request from client application 110, network
element 106 may determine state information, such as the identities of items in a shopping
cart, based on the request. Network element 106 may generate a new request for only those
information items that network element 106 needs in order to generate a response to client
110, and send the new request to one of server applications 112A-N. The server application
receiving the request may respond to network element 106 with the requested information
items. Receiving the response, network element 106 may generate a new response using the
state information stored at network element 106 and the information contained in the
response from the server application. After generating the new response, network element
106 may send the new response toward client application 110.

[0076] Because all, or at least some, session state information may be stored at the
network elements in addition to or instead of the server applications, the consequences of
server application failure can be managed. When a server application fails, the session state
information for session that the server application was handling is not lost, since the session
state information is stored on a network element. Thus, when a server application fails,
recovery may be achieved by the network element directing requests to a different server
application. This may all occur without the knowledge of client application 110.

[0077] Furthermore, server applications do not need to synchronize session states among
themselves. As a result, the overheard associated with inter-server-application
communications that would be needed to accomplish such synchronization may be avoided.
[0078] Asis discussed above, in one embodiment, server applications 112A-N and 114A-
N are database servers. Client application 110 may communicate with these database servers
using a proprietary database protocol. If a client is a database application using JDBC or
ODBC, then the network elements may behave like JDBC drivers that interpret the database

protocol. For example, client application 110 may send SQL statements to the database
-11-

WO 2007/001941 PCT/US2006/023706
“sepvErd.) Wecorditig'ta.one-embodiment, network elements 102, 104, 106, and 108 inspect

communications between client application 110 and the database server for database
connection information. Database connection information may include parameters that are
negotiated in order to establish a communications path between the client application and the
database server. Obtaining such database connection information, the network elements store
the database connection information locally as database connection state. If a database
connection fails, or if a database server using such a connection fails, then the network
element can reconstruct the database connection with the same or a different database server
using the stored database connection state. All of this may be performed without the
knowledge of client application 110. Because the database connection state information
stored at the network element is used to reconstruct a database connection, the client
application 110 does not need to intervene or have any special logic to handle the
reconnection. The failure is being managed without any disruption to client application 110.
[0079] Among the information items which may be stored at a network element as part of
the database connection state, and used to reconstruct a database connection, are the
following: The URL for the connection, whether auto commit mode is “true” or “false,”
whether read only mode is “true” or “false,” prepared statements that have been precompiled
for optimization, and callable statements that have been precompiled for optimization.
[0080] In one embodiment, the network elements “virtualize” database connections to
database servers. In other words, client application 110 might indicate a particular database
object (e.q., in an SQL query) that the client application wants to access, but client
application 110 might not indicate any particular database server to which the client
application’s request should be directed. Intercepting the request, network element 106, for
example, may select a database server from among servers 112A-N, and direct the client
application’s request to the selected database server. If the database object is only accessible
through a particular subset of database servers, then client application 110 may select one of
the database servers within the particular subset.

[0081] When a database connection fails, network elements may reconstruct database
connections immediately, in response to the failure. Alternatively, network elements may
wait for subsequent requests from client applications that were using the failed database
connections before reconstructing database connections for those client applications.
Alternatively, each network element may maintain a “pool” of database connections to each
database server, and allocate/modify a currently unused database connection in the pool
whenever a database connection fails.

[0082] Whether the state information stored at the network server is session state

information or database connection state information, the session identifier determined from
~12-

WO 2007/001941 PCT/US2006/023706
‘nlekEaddiseritifain clietty application 110 may be determined from an express indication of

the session identifier within the message, or by implication from other information associated
with the messages. For example, network element 106 may look into the HTTP header of an
HTTP request and inspect a cookie that expressly indicates a session identifier. For another
example, network element 106 may examine the HTTP body of an HTTP request and locate a
string “sessionid=123,” where “123” is the session identifier. For another example, network
element 106 look into the content of a database transport protocol and locate the binary data
that identifies the database connection the request is associated with. For yet another
example, network element 106 may determine an IP address from which the message came,
and determine that the IP address is associated with a particular session identifier. Such
associations may be maintained within the network elements.

[0083] According to one embodiment, each network element comprises multiple “blades.”
Each blade may store session state information. Two or more blades may synchronize
session state with each other so that if one blade fails, the other blades have the session state
that was maintained by the failed blade, and operations may continue without any
interruption noticeable by client application 110. An administrator may specify which blades
synchronize with each other.

[0084] Session state information may be obtained from a sequence of packets by
appending the packets together at a network element, and inspecting the contents of the
payload sections of the packets. Such inspection may involve, for example, inspecting the
body of an HTTP message that is collectively contained in the payload sections. The session
state information may be contained in the body. Techniques described herein may be applied
to protocols other than HTTP, however; the techniques described herein should not be read as
being limited to a particular protocol.

[0085] 2.2 TRANSPARENT APPLICATION AND NETWORK VISIBILITY AND
OTHER APPROACHES

[0086] The present art of data processing provides inadequate solutions for transparent
application and network visibility and action-taking, transmission of verbose XML
documents, processing network identities of users, validating XML schemas, load balancing,
and processing database application messages. According to an embodiment, improved
approaches for all the foregoing issues are provided within a network element. In this
description, the term “network element” refers to broadly to any device forming a part of an
infrastructure of a packet-switched network, such as a router or switch, as opposed to an end-
station device such as a PC, workstation, server, or printer.

[0087] Transparent Application and Network Visibility and Action-Taking Through

Intelligent Message Processing in a Network Element. According to an embodiment,
-13-

WO 2007/001941 PCT/US2006/023706
‘ithprovddnohzihiasivelfatwork and application topology visibility is provided through

network message sniffing at a network element. In an embodiment, transport-layer messages
are intercepted at a network element. The network element tracks network response time,
indicating time to perform applications, based on examining timestamps associated with the
transport-layer messages, or using other techniques. In a management station that is coupled
to the network element, using a management application that graphically displays an image
representing a network topology or application topology, the image is updated to show
topology attributes that are determined based on response times. For example, link cost
values in the display for links of one node associated with an application client to another
node for an application server may be updated based on how long the application server is
taking to service requests. Thus, application performance attributes may be mapped to
network topology elements in the display.

[0088] In arelated embodiment, incompatibility of software versions is detected through
application-level message interception. For example, a network element may intercept an
application-layer message representing a client request to a server. The network element may
store, in local storage, version values for client applications of clients that are routable or
reachable using the network element, and version values for server applications of servers
that are routable or reachable using the network element. When a new application-layer
request message arrives from a client, the network element may identify the associated
application, compare the version values in local storage, and apply policy to the message
depending on whether the version values are compatible. Determining compatibility does not
necessarily require an exact match. For example, the network element may store information
indicating which versions of a server are compatible or incompatible with versions of a client
within ranges or to reflect backward or forward compatibility. Applying policy may include
blocking communication of the message to the server, automatically generating a reply
message on behalf of the server indicating incompatibility, applying a different quality of
service treatment to the message based on the expectation that the server will reject the
message, etc.

[0089] In arelated embodiment, a network element may perform a responsive action
based upon application responses detected in application messages. For example, the
network element may dynamically re-provision a server with different configuration
information. As another example, the network element may change a configuration of a load-
balancing device, e.g., by changing weight values associated with making load-balancing
decisions, based on response times detected from monitoring application client request
messages and server responses. As yet another example, the network element may change

QoS attributes of flows processed in the network element if network latency is detected as a
-14-

WO 2007/001941 PCT/US2006/023706
"pidBlehd s duitied éxample, the network element may change path routing based on

application behavior if high network latency is detected. Changes in path routing may be
performed, for example, using Cisco Optimized Edge Routing (OER), a feature of Cisco
IOS® Software from Cisco Systems, Inc., San Jose, California.

[0090] Mapping Application QoS to Network QoS Through Intelligent Message
Processing in a Network Element. According to an embodiment, a network element
comprises program instructions or hardware elements that are configured to understand
application quality of service (QoS) settings, configuration or requirements based on message
processing in the network. The network element receives one or more application-layer
messages. The network element determines one or more network QoS levels by integrating
with network elements. The network element creates and stores a mapping of an application
QoS value to one or more network QoS values to provide value-based quality of service.
[0091] As anexample, application-layer messages carrying trade orders for trading in
stocks or other securities cannot be differentiated from messages requesting stock quotes
within a network element. In an embodiment, by message processing in the network element,
a network element can differentiate trade orders and quote request messages and then, based
on configured policies, map a higher priority quality of service to trades and than quotes and
other normal traffic.

[0092] Binary XML. According to an embodiment, a network element serves as a
conversion device for transforming application-layer messages containing payloads
structured according to extensible markup language (XML) from the verbose standard XML
text format to binary XML format. In an embodiment, the network element performs all such
transformation internally.

[0093] In arelated embodiment, the network element performs transformation of verbose
XML text format messages to binary XML messages, and sends the binary XML format
messages to another node or to an application that understands the binary format. In a related
embodiment, the network element converts Java® programmatic objects in application-layer
messages to standard XML format, transforms the standard XML format to binary XML
format, sends the transformed binary XML format messages to another node, and converts
reply messages communicated in the opposite direction. Thus, a network element performs
message mediation and can interoperate between a binary version and standard version
without an application having to pay the penalty of using XML in conventional verbose text
format.

[0094] XML Schema Validation. According to an embodiment, a network element
performs XML schema validation transparently as application-layer messages arrive in the

network element. Upon receiving application-layer messages, the network element examines
-15-

WO 2007/001941 PCT/US2006/023706
e idskhipes atid:detdrhiines whether the messages contain XML payloads. If so, the

network element examines the XML payloads and determines if the payloads conform to one
or more XML schemas that are stored in the network element.

[0095] Thus, a network element can effectively offload the computationally intensive
work of validating a message against an XML schema from an application server. This
approach enables the network element to reply to a client that has sent an invalid XML
message earlier and without consuming unnecessary network bandwidth in forwarding the
message to a server for validation. The validation process occurs transparently, from the
standpoint of an application, within the network element. The approach also enables a
network element to enforce application-level security by preventing a malicious or
unauthorized user from sending a flood of mal-formed XML messages as part of a denial-of-
service attack directed to the server.

[0096] In an embodiment, a network element can include one or more hardware
acceleration elements that process XML messages. For example, the network element can
include a processor, ASIC, or other electronics that can tokenize an XML payload into an
XML stream in hardware, validate the tokenized XML stream, and produce a signal
indicating whether the XML payload validly matches a stored schema. The XML token
stream may use a format that is optimized for validation.

[0097] Adaptive and Transparent Load Balancing and Failover of Endpoints Based
on Request Message and Server Response Inspection. According to an embodiment, a
network element performs load-balancing operations based on application performance. In
one embodiment, a network element transparently intercepts application requests and
forwards the requests to optimal endpoints based on a set of metrics. Thus, the network
element can virtualize endpoints. An application can send a request message to a virtual
endpoint and the network element determines to which actual endpoint among a plurality the
request should be directed. To determine which endpoint is optimal, in one embodiment, a
network element uses time and state values associated with a request, response and
intermediate state to adaptively load balance and fail over the endpoints.

[0098] For example, a network element actively generates and sends periodic inquiry
application-layer messages to other network elements that provide an application-based load-
balancing feature, or to an application server. The network element determines an
application link latency value based on the time that is required for the other node or server to
respond. Thus, the inquiry messages function as a form of “ping” message that is
communicated at the application layer. The application link latency value may be provided

to a load-balancing router as an additional input value for use in a load-balancing decision.

-16-

WO 2007/001941 PCT/US2006/023706
{009%) DaEd-OFidited Networking. According to an embodiment, a network element

performs data-oriented networking functions by assisting in processing application-layer
messages that relate to a server-based relational database system. For example, a network
element receives application-layer message and determines that the message is a database
query. The message originates from a database client. The network element processes the
message in the network element to facilitate database operations. As a specific example,
relating to database query submission and reply processing, the network element may form a
JDBC query based on the application message. The network element may then create
multiple application-layer messages all of which contain a copy of the JDBC query. The
network element can send the multiple messages to multiple load-balanced databases that are
registered with another network element that implements the techniques herein. The network
element receives multiple database and merge replies from the multiple servers. The network
element consolidates the replies, forms a client reply message, and sends the client reply
message to the client.

[0100] Further, a network element can mediate database transaction fail and restart,
including storing and delivering startup state for crash recovery. As other examples, a
network element can receive an application-layer message that contains a flat file payload,
convert the flat file payload to a relational database table, and forward the table to an
RDBMS server. The network element also can apply security policies to application-layer
database queries, such as authenticating the originating client, before sending the queries to
the DB server.

[0101] Providing Reliable and Ordered Application Message Processing Across
Multiple Network Elements. According to an embodiment, because a network element
configured as indicated in this disclosure understands application-layer messages natively in
the network, the network element can apply delivery semantics upon message delivery
transparently. The delivery semantics can be applied using various approaches: once and
only once, at least once and at most once. This approach applies reliable and ordered
processing principles in a highly available manner across multiple blades in the network. The
approach addresses the biggest known performance problem with guaranteed delivery and
reliability (GDR), which is the overhead of persisting messages. Using integration with
storage management products, optimal SAN-based protocols can be leveraged for fast I/O
and persistence to disk.

[0102] Runtime Behavior Adaptability and Extensibility in a Network Element.
Conventional network elements are primarily static, and any configuration or change is done
via policies. Any changes in an operating system or applications running on the network

element are performed in a controlled manner using standard upgrade approaches. According
-17-

WO 2007/001941 PCT/US2006/023706
“td. ek Bodimignt Wsiddia true extensibility framework, a network element can allow

customers and partners to dynamically change the runtime behavior of application message
processing rules by allowing the user to write code in any language, deploy it a hot manner
and update the runtime to load this new code — all during normal processing of the network
element.

[0103] In an embodiment, custom bladelets allow for software code to be modified and
loaded by customers dynamically into network elements for changing the processing logic
applied on messages as they flow through the network. Custom protocol adapters allow for
software code to modified and loaded by customers dynamically into network elements for
changing which protocols are understood and managed in intermediate network nodes.
[0104] Today network elements generally do not have or have limited support for
extensibility where customers can define their own software programs and upload into the
network element. However, an Application Oriented Network (AON) as disclosed herein
provides an environment in which customers can create programs that can be dynamically
loaded and executed on the network device. In order to ensure that such dynamically loaded
code is well behaved and do not accidentally or deliberately hamper the functioning of the
network device, a sandboxed environment may be provided that protects the network element
from such harm.

[0105] Currently network elements do not allow custom code to be uploaded onto the
device to provide a programmable environment. If custom code is required to be installed on
the device, typically a new operating system image containing the new functionality is
created. The access control and security of such code is controlled largely at build time or by
providing options to control behavior of the module via a command line interface. Hence the
problem of code behavior is addressed in a static manner and does not change dynamically
other than in a predictable manner by defining how the behavior can be controlled.

[0106] The problem of runtime program behavior is currently only addressed in a static
manner. This was adequate because network devices do not allow custom code to be
dynamically uploaded into a device without altering the running image. The method and
apparatus presented herein solves the problem of securing and controlling the behavior of
such dynamically uploaded code in a network device (a feature introduced by AON and
covered in another patent application) by:

[0107] 1. Providing a mechanism to specify permissions on the executing code that
cannot be overridden and controlled by the network device itself. Permissions can be

specified that either allow or deny access to resources;

-18-

WO 2007/001941 , PCT/US2006/023706
[oo®] 2:Pibiidtnlg! #mechanism to specify permissions that a user can override and can

control whether or not particular operations are allowed. Permissions can be specified that
either allow or deny access to resources;

[0109] 3, Providing a mechanism to customize permissions so that the user or
administrator can determine which permissions to override. Permissions can be specified that
either allow or deny access 10 resources;

[0110] 4. Provide an inheritance scheme that allows these permissions to be extended or
inherited by custom code extensions.

[0111] At runtime, the network element verifies the permissions associated with the
resource before permitting or denying execution.

[0112] This method and apparatus allows a network administrator or user to provision
custom programs into the network device and provides a secure sandboxed environment in
which they can execute without harming the network device. Unlike prior approaches, the
approach herein:

[0113] 1. Provides a secure environment in which custom programs that are deployed in a
network device can execute.

[0114] 2. Provides a data driven approach to easily customize and extend the security
capabilities of the device.

[0115] 3. Provides a language independent mechanism to express security permissions so
that the security can be leveraged regardless of the implementing language.

[0116] 4. Provides a secure container in which custom code executes regardless of the
implementing language.

[0117] A complete description is provided in Appendix A to the provisional application.
[0118] Method and apparatus to dynamically add application logic and protocol
adapters to a programmable network element. Today network elements generally do not
have, or have limited support for, an extensibility capability with which customers can define
their own software programs and upload into the network element. Any need for executing
custom logic is typically accomplished by statically compiling it into the image and
uploading a new image to the network device. While this works well for packet level
networking, where the protocols and standards are fairly mature, the method is inadequate for
an Application Oriented Network (AON) because of the number of custom protocols and the
large amount of custom code that already exists. The relative immaturity of the standards in
the application area further complicate the problem, because it increases the amount of
proprietary code that has been developed to meet enterprise needs. Since an AON provides
optimized services that application developers can exploit directly from the network, this

often involves requiring the ability to deploy the existing, well tested, custom code
-19-

WO 2007/001941 PCT/US2006/023706
(appudationcogelor oustom protocols) to the network device. Clearly the static solution of

compiling this code into the image will not work since it will require creating a custom image
for each customer.

[0119] An embodiment provides a method and apparatus by which custom code can be
dynamically added to a network device without requiring an image upgrade. The custom
code can be for the purpose of executing custom business logic in the network or for
understanding custom application protocols that are not natively supported by the network
device, thereby providing programmability support in the network, which is a capability
presently unavailable in network devices.

[0120] Currently network elements do not allow custom code to be uploaded onto the
device to provide a programmable environment. If custom code is required to be installed on
the device, developers typically create a new image containing the new functionality.

[0121] An embodiment provides a method to dynamically create, package, provision and
execute custom code for the purpose of providing custom business logic, or application
protocols in the network device. This provides the following capabilities, which are not
available in current network devices:

[0122] 1. Programmability in the network in a scalable, manner without requiring
customization of the image;

[0123] 2. Ability to introduce new protocol support in the network that are not natively
understood by the base platform without an image upgrade;

[0124] 3. Ability to execute custom code in the network without performing an image
upgrade.

[0125] An embodiment provides a method to create, package, provision, and execute
custom business logic and/or understand custom application protocols dynamically without
requiring an image upgrade.

[0126] 1. By providing this capability, the network device becomes programmable and
can be extended to leverage existing, tested code for application logic or custom application
protocols, without requiring an image upgrade.

[0127] 2. Customers who use an AON device can deploy new functions in the network
without requiring a device upgrade resulting in significant cost savings.

[0128] 3. Provides the ability to offload some key functions, like application protocols,
which are infrastructﬁral functions and belong in the network device. Typically this would be
done by middleware servers increasing operational costs.

[0129] A complete description is provided in Appendix A to the provisional application.
[0130] 3.0 IMPLEMENTATION EXAMPLES

-20-

WO 2007/001941 PCT/US2006/023706
“[0131] 3ENBETWORK ELEMENT-MANAGED SERVER FAILOVER BASED ON

APPLICATION LAYER MESSAGES

[0132] FIGS. 3A-3B depict a flow diagram 300A that illustrates one embodiment of a
method of network element-managed server failover based on application layer messages.
Such a method may be performed, for example, by network element 106 or 108. Other
embodiments may omit one or more of the operations depicted in flow diagram 300A. Other
embodiments may contain operations additional to the operation depicted in flow diagram
300A.

[0133] In block 302, a request, which originated from a client, is intercepted at a network
element. The request is not addressed to the network element. For example, network
element 106 may intercept a request that client application 110 addressed to a virtual IP
address associated with server applications 112A-N.

[0134] In block 304, a server is selected from among a plurality of servers that excludes
servers that are on a list of failed servers. For example, assuming that server application
112A is not on a list of failed servers maintained by network element 106, network element
106 may select, from among server applications 112A-N, server application 112A.

[0135] In block 306, the request is sent toward the selected server. A copy of the request
is also stored at the network element. For example, network element 106 may send the
request to server application 112A.

[0136] In block 308, data packets sent from the selected server are intercepted at the
network element. For example, network element 106 may intercept multiple TCP data
packets that server application 112A addressed to client application 110. Payload portions of
the data packets may collectively contain an application layer message that server application
112A generated in response to determining that server application 112A was unable to
service the request. Because each of the data packets may contain a separate portion of the
message, under some circumstances, none of the data packets independently contains the
entire message. The application layer message may contain an indication that server
application 112A is unable to service the request. For example, the message may be an XML
document that contains a specified XML element that indicates that server application 112A
is unable to service the request.

[0137] The message may be carried according to any of a variety of protocols, including
HTTP, SMTP, and FTP. Thus, within the payload portions of the data packets, protocol
headers used by such protocols may precede the message. The protocol headers are separate
from the message itself.

[0138] In block 310, an application layer message collectively contained in the data

packets is constructed at the network element. For example, network element 106 may
21-

. WO 2007/001941 PCT/US2006/023706
~assdmbldihe ¢onilelitd dEthe payload portions of the data packets intercepted from server

application 112A. Network element 106 may disregard any protocol headers, such as HTTP,
FTP, or SMTP headers, which precede the application layer message constructed from the
contents of the payload portions.

[0139] In block 312, it is determined, at the network element, whether the application
layer message contains an indication that the selected server is unable to service the request.
For example, assuming that the message is an XML document, network element 106 may
determine whether the XML document contains a specified XML element. If the XML
document does contain the specified XML element, then network element 106 may conclude
that server application 112A is unable to service the request. If the application layer message
contains the indication, then control passes to block 314, Otherwise, control passes to block
316.

[0140] In block 314, the selected server is added to the list of failed servers. For
example, network element 106 may add, to the list of failed servers, an entry that identifies
server application 112A. The entry may be associated with a timestamp that indicates a time
at which the entry will be removed, automatically, from the list of failed servers. Control
passes back to block 304, in which another server is selected to receive the request, which
was previously stored at the network element. For example, network element 106 may select
server application 112B and send the request to server application 112B.

[0141] Alternatively, in block 316, the application layer message is sent toward the client.
For example, network element 106 may add the protocol headers back to the application layer
meésage, encapsulate the application layer message and protocol headers into one or more
data packets, and send the data packets toward client application 110.

[0142] 3.2 MULTI-BLADE ARCHITECTURE

[0143] According to one embodiment, an Application-Oriented Network Services
(AONS) blade in a router performs the actions discussed above. FIG. 6 is a block diagram
that illustrates one embodiment of a router 600 in which a supervisor blade 602 directs some
of packet flows 610A-B to an AONS blade and/or other blades 606N. Router 600 comprises
supervisor blade 602, AONS blade 604, and other blades 606A-N. Each of blades 602, 604,
and 606A-N is a single circuit board populated with components such as Processors, memory,
and network connections that are usually found on multiple boards. Blades 602, 604, and
606A-N are designed to be addable to and removable from router 600. The functionality of
router 600 is determined b}; the functionality of the blades therein. Adding blades to router
600 can augment the functionality of router 600, but router 600 can provide a lesser de gree of
functionality with fewer blades at a lesser cost if desired. One of more of the blades may be

optional.
-22-

WO 2007/001941 PCT/US2006/023706
‘[0144) Routen 600 HEdeives packet flows such as packet flows 610A-B. More

specifically, packet flows 610A-B received by router 600 are received by supervisor blade
602. Supervisor blade 602 may comprise a forwarding engine and/or a route processor such
as those commercially available from Cisco Systems, Inc.

[0145] In one embodiment, supervisor blade 602 classifies packet flows 610A-B based on
one or more parameters contained in the packet headers of those packet flows. If the
parameters contained in the packet header of a particular packet match specified parameters,
then supervisor blade 602 sends the packets to a specified one of AONS blade 604 and/or
other blades 606A-N. Alternatively, if the parameters contained in the packet header do not
match any specified parameters, then supervisor blade 602 performs routing functions
relative to the particular packet and forwards the particular packet on toward the particular
packet’s destination.

[0146] For example, supervisor blade 602 may determine that packet headers in packet
flow 610B match specified parameters. Consequently, supervisor blade 602 may send
packets in packet flow 610B to AONS blade 604. Supervisor blade 602 may receive packets
back from AONS blade 604 and/or other blades 606 A-N and send the packets on to the next
hop in a network path that leads to those packets’ destination. For another example,
supervisor blade 602 may determine that packet headers in packet flow 610A do not match
any specified parameters. Consequently, without sending any packets in packet flow 610A to
AONS blade 604 or other blades 606A-N, supervisor blade 602 may send packets in packet
flow 610A on to the next hop in a network path that leads to those packets’ destination.
[0147] AONS blade 604 and other blades 606A-N receive packets from supervisor blade
602, perform operations relative to the packets, and return the packets to supervisor blade
602. Supervisor blade 602 may send packets to and receive packets from multiple blades
before sending those packets out of router 600. For example, supervisor blade 602 may send
a particular group of packets to other blade 606A. Other blade 606 A may perform firewall
functions relative to the packets and send the packets back to supervisor blade 602.
Supervisor blade 602 may receive the packet from other blade 606A and send the packets to
AONS blade 604. AONS blade 604 may perform one or more message payload-based
operations relative to the packets and send the packets back to supervisor blade 602.

[0148] According to one embodiment, the following events occur at an AONS router
such as router 600. First, packets, containing messages from clients to servers, are received.
Next, access control list-based filtering is performed on the packets and some of the packets
are sent to an AONS blade or module. Next, TCP termination is performed on the packets.
Next, Secure Sockets Layer (SSL) termination is performed on the packets if necessary.

Next, Universal Resource Locator (URL)-based filtering is performed on the packets. Next,
23-

WO 2007/001941 PCT/US2006/023706
trlebagdd Header thsdd Al message content-based filtering is performed on the packets.

Next, the messages contained in the packets are classified into AONS message types. Next, a
policy flow that corresponds to the AONS message type is selected. Next, the selected policy
flow is executed. Then the packets are either forwarded, redirected, dropped, copied, or
fanned-out as specified by the selected policy flow.

[0149] FIGS. 3B-C depict a flow diagram 300B that illustrates one embodiment of a
method of balancing data traffic among multiple servers based on application layer message
content. For example, one or more of network elements 102, 104, 106, and 108 may perform
such a method. More specifically, AONS blade 604 may perform one or more steps of such a
method. Other embodiments may omit one or more of the operations depicted in flow
diagram 300B. Other embodiments may contain operations additional to the operation
depicted in flow diagram 300B. Other embodiments may perform the operations depicted in
flow diagram 300B in an order that differs from the order depicted in flow diagram 300B.
[0150] Referring first to FIG. 3B, in block 322, user-specified input is received at a
network element. The user-specified input indicates the following: one or more criteria that
are to be associated with a particular message classification, and one or more actions that are
to be associated with the particular message classification. The user-specified input may
indicate an order in which the one or more actions are to be performed. The user-specified
input may indicate that outputs of actions are to be supplied as inputs to other actions. For
example, network element 104, and more specifically AONS blade 604, may receive such
user-specified input from a network administrator.

[0151] In block 324, an association is established, at the network element, between the
particular message classification and the one or more criteria. For example, AONS blade 604
may establish an association between a particular message classification and one or more
criteria. For example, the criteria may indicate a particular string of text that a message needs
to contain in order for the message to belong to the associated message classification. For
another example, the criteria may indicate a particular path that needs to exist in the
hierarchical structure of an XML-formatted message in order for the message to belong to the
associated message classification. For another example, the criteria may indicate one or more
source IP addresses and/or destination IP addresses from or to which a message needs to be
addressed in order for the message to belong to the associated message classification.

[0152] In block 326, an association is established, at the network element, between the
particular message classification and the one or more actions. One or more actions that are
associated with a particular message classification comprise a “policy” that is associated with
that particular message classification. A policy may comprise a “flow” of one or more

actions that are ordered according to a particular order specified in the user-specified input,
24-

‘WO 2007/001941 PCT/US2006/023706
~ahdforids or sifore.Othetactions that are not ordered. For example, AONS blade 604 may

establish an association between a particular message classification and one or more actions.
Collectively, the operations of blocks 322-326 comprise “provisioning” the network element.
[0153] In block 328, one or more data packets that are destined for a device other than the
network element are intercepted by the network element. The data packets may be, for
example, data packets that contain IP and TCP headers. The IP addresses indicated in the IP
headers of the data packets differ from the network element’s IP address; thus, the data
packets are destined for a device other than the network element. For example, network
element 104, and more specifically, supervisor blade 602, may intercept data packets that
client application 110 originally sent. The data packets might be destined for server
application 112, for example.

[0154] In block 330, based on one or more information items indicated in the headers of
the data packets, an application layer protocol that was used to transmit a message contained
in the payload portions of the data packets (hereinafter “the message™) is determined. The
information items may include, for example, a source IP address in an IP header, a
destination IP address in an IP header, a TCP source port in a TCP header, and a TCP
destination port in a TCP header. For example, network element 104, and more specifically
AONS blade 604, may store mapping information that maps FTP (an application layer
protocol) to a first combination of IP addresses and/or TCP ports, and that maps HTTP
(another application layer protocol) to a second combination of IP addresses and/or TCP
ports. Based on this mapping information and the IP addresses and/or TCP ports indicated by
the intercepted data packets, AONS blade 604 may determine which application layer
protocol (FTP, HTTP, SMTP, etc.) was used to transmit the message.

[0155] Referring now to FIG. 3C, in block 332, a message termination technique that is
associated with the application layer protocol used to transmit the message is determined.
For example, AONS blade 604 may store mapping information that maps FTP to a first
procedure, that maps HTTP to a second procedure, and that maps SMTP to a third procedure.
The first procedure may employ a first message termination technique that can be used to
extract, from the data packets, a message that was transmitted using FTP. The second
procedure may employ a second message termination technique that can be used to extract,
from the data packets, a message that was transmitted using HTTP. The third procedure may
employ a third message termination technique that can be used to extract, from the data
packets, a message that was transmitted using SMTP. Based on this mapping information
and the application layer protocol used to transmit the message, AONS blade 604 may

determine which procedure should be called to extract the message from the data packets.

. =25-

WO 2007/001941 PCT/US2006/023706
T0496] 1 Blodk384)ithe contents of the message are determined based on the termination

technique that is associated with the application layer protocol that was used to transmit the
message. For example, AONS blade 604 may provide the data packets as input to a
procedure that is mapped to the application layer protocol determined in block 332. The
procedure may use the appropriate message termination technique to extract the contents of
the message from the data packets. The procedure may return the message as output to
AONS blade 604. Thus, in one embodiment, the message extracted from the data packets is
independent of the application layer protocol that was used to transmit the message.

[0157] In block 336, a message classification that is associated with criteria that the
message satisfies is determined. For example, AONS blade 604 may store mapping
information that maps different criteria to different message classifications. The mapping
information indicates, among possibly many different associations, the association
established in block 324. AONS blade 604 may determine whether the contents of the
message satisfy criteria associated with any of the known message classifications. In one
embodiment, if the contents of the message satisfy the criteria associated with a particular
message classification, then it is determined that the message belongs to the particular
message classification.

[0158] Although, in one embodiment, the contents of the message are used to determine a
message’s classification, in alternative embodiments, information beyond that contained in
the message may be used to determine the message’s classification. For example, in one
embodiment, a combination of the contents of the message and one or more IP addresses
and/or TCP ports indicated in the data packets that contain the message is used to determine
the message’s classification. For another example, in one embodiment, one or more IP
addresses and/or TCP ports indicated in the data packets that contain the message are used to
determine the message’s classification, regardless of the contents of the message.

[0159] In block 338, one or more actions that are associated with the message
classification determined in block 336 are performed. If two or more of the actions are
associated with a specified order of performance, as indicated by the user-specified input,
then those actions are performed in the specified order. If the output of any of the actions is
supposed to be provided as input to any of the actions, as indicated by the user-specified
input, then the output of the specified action is provided as input to the other specified action.
[0160] A variety of different actions may be performed relative to the message. For
example, an action might be a “load-balancing” action that specifies one or more parameters.
The parameters might include a pointer or reference to a load-balancing algorithm, such as a
round-robin algorithm, a weighted round-robin algorithm, or an adaptive load-balancing

algorithm. When the “load-balancing” action is performed, the load-balancing algorithm
06-

WO 2007/001941 PCT/US2006/023706

||||||

‘reterefiblidl Byithalattiddids invoked. Additionally, the parameters might include a pointer or
reference to a session identifier locating technique. When the “load-balancing” action is
performed, the session identifier locating technique referenced by the action is invoked. If a
message contains a session identifier, then the message is sent towards the server application
to which the session identifier is mapped.

[0161] As a result of the method illustrated in flow diagram 300B, network routers may
be configured to perform data traffic load-balancing operations. Different load-balancing
algorithms may be used in relation to different types of data traffic. Thus, for example,
“purchase order” messages may be distributed among servers according to a first load-
balancing algorithm, while “account transaction” messages may be distributed among servers
according to a second, different load-balancing algorithm.

[0162] 3.3 ACTION FLOWS

[0163] FIG. 4 depicts a sample flow 400 that might be associated with a particular
message classification. Flow 400 comprises, in order, actions 402-414; other flows may
comprise one or more other actions. Action 402 indicates that the content of the message
should be modified in a specified manner. Action 404 indicates that a specified event should
be written to a specified log. Action 406 indicates that the message’s destination should be
changed to a specified destination. Action 408 indicates that the message’s format should be
translated into a specified message format. Action 410 indicates that the application layer
protocol used to transmit the message should be changed to a specified application layer
protocol. Action 412 indicates that the message should be encrypted using a particular key.
Action 414 indicates that the message should be forwarded towards the message’s
destination.

[0164] In other embodiments, any one of actions 402-414 may be performed individually
or in combination with any others of actions 402-414.

[0165] 3.4 AONS EXAMPLES

[0166] 3.4.1 AONS GENERAL OVERVIEW

[0167] Application-Oriented Network Systems (AONS) is a technology foundation for
building a class of products that embed intelligence into the network to better meet the needs
of application deployment. AONS complements existing networking technologies by
providing a greater degree of awareness of what information is flowing within the network
and helping customers to integrate disparate applications by routing information to the
appropriate destination, in the format expected by that destination; enforce policies for
information access and exchange; optimize the flow of application traffic, both in terms of
network bandwidth and processing overheads; provide increased manageability of

information flow, including monitoring and metering of information flow for both business
7

WO 2007/001941 _ ~_ PCT/US2006/023706
“ahtinfdstriottize plpddes; and provide enhanced business continuity by transparently

backing up or re-routing critical business data,

[0168] AONS provides this enhanced support by understanding more about the content
and context of information flow. As such, AONS works primarily at the message rather than
at the packet level, Typically, AONS processing of information terminates a TCP connection
to inspect the full message, including the “payload” as well as all headers. AONS also
understands and assists with popular application-level protocols such as HTTP, FTP, SMTP
and de facto standard middleware protocols.

[0169] AONS differs from middleware products running on general-purpose computing
systems in that AONS’ behavior is more akin to a network appliance, in its simplicity, total
cost of ownership and performance. Furthermore, AONS integrates with network-layer
support to provide a more holistic approach to information flow and management, mapping
required features at the application layer into low-level networking features implemented by
routers, switches, firewalls and other networking systems.

[0170] Although some elements of AONS-like functionality are provided in existing
product lines from Cisco Systems, Inc., such products typically work off a more limited
awareness of information, such as IP/port addresses or HTTP headers, to provide load
balancing and failover solutions. AONS provides a framework for broader functional
support, a broader class of applications and a greater degree of control and management of
application data.

[0171] 342 AONS TERMINOLOGY

[0172] An “application” is a software entity that performs a business function either
running on servers or desktop systems. The application could be a packaged application,
software running on application servers, a legacy application running on a mainframe, or
custom or proprietary software developed in house to satisfy a business need or a script that
performs some operation. These applications can communicate with other applications in the
same department (departmental), across departments within a single enterprise (intra
enterprise), across an enterprise and its partners (inter-enterprise or B2B) or an enterprise and
its customers (consumers or B2C). AONS provides value added services for any of the above
scenarios.

[0173] An “application message” is a message that is generated by an application to
communicate with another application. The application message could specify the different
business level steps that should be performed in handling this message and could be in any of
the message formats described in the section below. In the rest of the document, unless

otherwise specified explicitly, the term “message” also refers to an application message.

08-

WO 2007/001941 PCT/US2006/023706
“[od7alt i Are AIONE!Higde” is the primary AONS component within the AONS system (or

network). As described later, the AONS node can take the shape of a client proxy, server
proxy or an intermediate device that routes application messages.

[0175] Each application message, when received by the first AONS node, gets assigned
an AONS message ID and is considered to be an “AONS message” until that message gets
delivered to the destination AONS node. The concept of the AONS message exists within the
AONS cloud. A single application message may map to more than one AONS message.
This may be the case, for example, if the application message requires processing by more
than one business function. For example, a “LoanRequest” message that is submitted by a
requesting application and that needs to be processed by both a “CreditCheck” application
and a “LoanProcessing” application would require processing by more than one business
function. In this example, from the perspective of AONS, there are two AONS messages:
The “LoanRequest” to the “CreditCheck” AONS message from the requesting application to
the CreditCheck application; and the “LoanRequest” to the “LoanProcessing” AONS
message from the CreditCheck application to the LoanProcessing Application.

[0176] In one embodiment, AONS messages are encapsulated in an AONP (AON
Protocol) header and are translated to a “canonical” format. Reliability, logging and security
services are provided from an AONS message perspective.

[0177] The set of protocols or methods that applications typically use to communicate
with each other are called “application access protocols” (or methods) from an AONS
perspective. Applications can communicate to the AONS network (typically end point
proxies: a client proxy and a server proxy) using any supported application access methods.
Some examples of application access protocols include: IBM MQ Series, Java Message
Service (JMS), TIBCO, Simple Object Access Protocol (SOAP) over Hypertext Transfer
Protocol (HTTP)/HTTPS, and SMTP. Details about various access methods are explained in
later sections of this document.

[0178] There are a wide variety of “message formats™ that are used by applications.
These message formats may range from custom or proprietary formats to industry-specific
formats to standardized formats. Extensible Markup Language (XML) is gaining popularity
as a universal language or message format for applications to communicate with each other.
AONS supports a wide variety of these formats.

[0179] In addition, AONS provides translation services from one format to another based
on the needs of applications. A typical deployment might involve a first AONS node that
eceives an application message (the client proxy) translating the message to a “canonical”

‘ormat, which is carried as an AONS message through the AONS network. The server proxy

-29-

WO 2007/001941 PCT/US2006/023706
niiighit tdnstateitiie tesgage from the “canonical” format to the format understood by the

receiving application before delivering the message. For understanding some of the non-
industry standard formats, a message dictionary may be used.

[0180] A node that performs the gateway functionality between multiple application
access methods or protocols is called a “protocol gateway.” An example of this would be a
node that receives an application message through File Transfer Protocol (FTP) and sends the
same message to another application as a HTTP post. In AONS, the client and server proxies
are typically expected to perform the protocol gateway functionality.

[0181] If an application generates a message in Electronic Data Interchange (EDI) format
and if the receiving application expects the message to be in an XML format, then the
message format needs to be translated but the content of the message needs to be kept intact
through the translation. In AONS, the end point proxies typically perform this “message
format translation” functionality.

[0182] In some cases, even though the sending and receiving application use the same
message format, the content needs to be translated for the receiving application. For example,
if a United States-resident application is communicating with a United Kingdom-resident
application, then the date format in the messages between the two applications might need to
be translated (from mm/dd/yyyy to dd/mm/yyyy) even if the applications use the same data
representation (or message format). This translation is called “content translation.”

[0183] 343 AONS FUNCTIONAL OVERVIEW

[0184] As defined previously, AONS can be defined as network-based intelligent
intermediary systems that efficiently and effectively integrate business and application needs
with more flexible and responsive network services.

[0185] In particular, AONS can be understood through the following characteristics:
[0186] AONS operates at a higher layer (layers 5-6) than traditional network element
products (layers 2-4). AONS uses message-level inspection as a complement to packet-level
inspection—by understanding application messages, AONS adds value to multiple network
element products, such as switches, firewalls, content caching systems and load balancers, on
the “message exchange route.” AONS provides increased flexibility and granularity of
network responsiveness in terms of security, reliability, traffic optimization (compression,
caching), visibility (business events and network events) and transformation (e.g., from XML
to EDI).

[0187] AONS is a comprehensive technology platform, not just a point solution. AONS
can be implemented through distributed intelligent intermediary systems that sit between
applications, middleware, and databases in a distributed intra- and inter-enterprise

environment (routing messages, performing transformations, etc.). AONS provides a flexible
' -30-

W0 2007/001941 . ~ PCT/US2006/023706
"frahi¢Wwbik foterid skt Bbnfiguration of business flows and policies and partner-driven

extensibility of AONS services.

[0188] AONS is especially well suited for network-based deployment. AONS is
network-based rather than general-purpose server-based. AONS is hybrid software-based
and hardware-based (i.e., application-specific integrated circuit (ASIC)/field programmable
gate array (FPGA)-based acceleration). AONS uses out-of-band or in-line processing of
traffic, as determined by policy. AONS is deployed in standalone products (network
appliances) as well as embedded products (service blades for multiple switching, routing, and
storage platforms).

[0189] 3.4.4 AONS SYSTEM OVERVIEW

[0190] This section outlines the system overview of an example AONS system. FIG. 7 is
a diagram 700 that illustrates the various components involved in an example AONS network
702 according to one embodiment of the invention. The roles performed by each of the nodes
are mentioned in detail in subsequent sections.

[0191] Within AONS network 702, key building blocks include AONS Endpoint Proxies
(AEPs) 704-710 and an AONS Router (AR). Visibility into application intent may begin
within AEP 704 placed at the edge of a logical AONS “cloud.” As a particular client
application of client applications 714A-N attempts to send a message across the network to a
particular server application destination of server applications 716A-N and 718A-N, the
particular client application will first interact with AEP 704.

[0192] AEP 704 serves as either a transparent or explicit messaging gateway which
aggregates network packets into application messages and infers the message-level intent by
examining the header and payload of a given message, relating the message to the appropriate
context, optionally applying appropriate policies (e.g. message encryption, transformation,
etc.) and then routing the message towards the message’s application destination via a
network switch.

[0193] AONS Router (AR) 712 may intercept the message en route to the message’s
destination endpoint. Based upon message header contents, AR 712 may determine that a
new route would better serve the needs of a given application system. AR 712 may make this
determination based upon enterprise-level policy, taking into account current network
conditions. As the message nears its destination, the message may encounter AEP 706,
which may perform a final set of operations (e.g. message decryption, acknowledgement of
delivery) prior to the message’s arrival. In one embodiment, each message is only parsed
once: when the message first enters the AONS cloud. It is the first AEP that a message
traverses that is responsible for preparing a message for optimal handling within the

underlying network.
-31-

WO 2007/001941 PCT/US2006/023706
[0 ABPEFEAYYS can further be classified into AEP Client Proxies and AEP Server

Proxies to explicitly highlight roles and operations performed by the AEP on behalf of the
specific end point applications.

[0195] A typical message flow involves a particular client application 714A submitting a
message to the AEP Client Proxy (CP) 704 through one of the various access protocols
supported by AONS. On receiving this message, AEP CP 704 assigns an AONS message id
to the message, encapsulates the message with an AONP header, and performs any necessary
operatioﬂs related to the AONS network (e.g. security and reliability services). Also, if
necessary, the message is converted to a “canonical” format by AEP CP 704. The message i
catried over a TCP connection to AR 710 along the path to the destination application 718A.
The AONS routers along the path perform the infrastructure services necessary for the
message and can change the routing based on the policies configured by the customer. The
message is received at the destination AEP Server Proxy (SP) 706. AEP SP 706 performs
necessary security and reliability functions and translates the message to the format that is
understood by the receiving application, if necessary. AEP SP 706 then sends the message t«
receiving application 718A using any of the access protocols that application 718A and
AONS support. A detailed message flow through AONS network 702 is described in later
sections.

[0196] 3.4.5 AONS SYSTEM ELEMENTS

[0197] This section outlines the different concepts that are used from an AONS
perspective.

[0198] An “AEP Client Proxy” is an AONS node that performs the services necessary fo
applications on the sending side of a message (a client). In the rest of this document, an
endpoint proxy also refers to a client or server proxy. The typical responsibilities of the
client proxy in processing a message are: message pre-classification & early rejection,
protocol management, message identity management, message encapsulation in an AONP
header, end point origination for reliable delivery, security end point service origination
(encryption, digital signature, authentication), flow selection & execution/infrastructure
services (logging, compression, content transformation, etc.), routing--next hop AONS node
or destination, AONS node and route discovery/advertising role and routes, and end point
origination for the reliable delivery mechanism (guaranteed delivery router).

[0199] Not all functionalities described above need to be performed for each message.
The functionalities performed on the message are controlled by the policies configured for
the AONS node.

[0200] An “AEP Server Proxy” is an AONS node that performs the services necessary

for applications on the receiving side of a message (a server). In the rest of the document, a
-32-

WO 2007/001941 . s o PCT/US2006/023706
*SerienProxy ayh alsblBé referred as an end point proxy. The typical responsibilities of the

Server Proxy in processing a message are: protocol management, end point termination for
reliable delivery, security end point service termination (decryption, verification of digital
signature, etc.), flow selection & execution/infrastructure services (logging, compression,
content translation, etc.), message de-encapsulation in AONP header, acknowledgement to
sending AONS node, application routing/request message delivery to destination, response
message correlation, and routing to entry AONS node.

[0201] Note that not all the functionalities listed above need to be performed for each
message. The functionalities performed on the message are controlled by the policies
configured for the AONS node and what the message header indicates.

[0202] An “AONS Router” is an AONS node that provides message-forwarding
functionalities along with additional infrastructure services within an AONS network. An
AONS Router communicates with Client Proxies, Server Proxies and other AONS Routers.
An AONS Router may provide service without parsing a message; an AONS Router may rely
on an AONP message header and the policies configured in the AONS network instead of
parsing messages. An AONS Router provides the following functionalities: scalability in the
AONS network in terms of the number of TCP connections needed; message routing based
on message destination, policies configured in the AONS cloud, a route specified in the
message, and/or content of the message; a load at the intended destination—re-routing if
needed; availability of the destination—re-routing if needed; cost of transmission (selection
among multiple service providers); and infrastructure services such as sending to a logging
facility, sending to a storage area network (SAN) for backup purposes, and interfacing to a
cache engine for cacheable messages (like catalogs).

[0203] AONS Routers do not need to understand any of the application access protocols
and, in one embodiment, deal only with messages encapsulated with an AONP header.
[0204] Application-Oriented Networking Protocol (AONP) is a protocol used for
communication between the nodes in an AONS network. In one embodiment, each AONS
message carries an AONP header that conveys the destination of the message and additional
information for processing the message in subsequent nodes. AONP also addresses policy
exchange (static or dynamic), fail-over among nodes, load balancing among AONS nodes,
and exchange of routing information. AONP also enables application-oriented message
processing in multiple network elements (like firewalls, cache engines and routers/switches).
AONP supports both a fixed header and a variable header (formed using type-length-value
(TLV) fields) to support efficient processing in intermediate nodes as well as flexibility for

additional services.

-33-

WO 2007/001941 _ .. PCT/US2006/023706
TO205) Wnlbss skplititly specified otherwise, “router” or “switch” refers herein to a

typical Layer 3 or Layer 2 switch or a router that is currently commercially available,

[0206] 3.4.6 AONS EXAMPLE FEATURES

[0207] In one embodiment, an underlying “AONS foundation platform of subsystem
services” (AOS) provides a range of general-purpose services including support for security,
compression, caching, reliability, policy management and other services. On top of this
platform, AONS then offers a range of discreet functional components that can be wired
together to provide the overall processing of incoming data traffic. These “bladelets™” are
targeted at effecting individual services in the context of the specific policy or action
demanded by the application or the information technology (IT) manager. A series of access
method adaptors ensure support for a range of ingress and egress formats. Finally, a set of
user-oriented tools enable managers to appropriately view, configure and set policies for the
AONS solution. These four categories of functions combine to provide a range of end-
customer capabilities including enhanced security, infrastructure optimization, business
continuity, application integration and operational visibility.

[0208] The enhanced visibility and enhanced responsiveness enabled by AONS solutions
provides a number of intelligent, application-oriented network services. These intelligent
services can be summarized in four primary categories:

[0209] Enhanced security and reliability: enabling reliable message delivery and
providing message-level security in addition to existing network-level security.

[0210] Infrastructure optimization: making more efficient use of network resources by
taking advantage of caching and compression at the message level as well as by integrating
application and network quality-of-service (QoS).

[0211] Business and infrastructure activity monitoring and management: by reading
information contained in the application layer message, AONS can log, audit, and manage
application-level business events, and combine these with network, server, and storage
infrastructure events in a common, policy-driven management environment.

[0212] Content-based routing and transformation: message-based routing and
transformation of protocol, content, data, and message formats (e.g., XML transformation).
The individual features belonging to each of these primary categories are described in greater
detail below.

[0213] 3.4.6.1 ENHANCED SECURITY AND RELIABILITY

[0214] Authentication: AONS can verify the identity of the sender of an inbound message
based upon various pieces of information contained within a given message

(username/password, digital certificate, Security Assertion Markup Language (SAML)

34

WO 2007/001941 PCT/US2006/023706
“abdeitibhl-etd. Ji-atldy babbd upon these credentials, determine whether or not the message

should be processed further.

[0215] Authorization: Once principal credentials are obtained via message inspection,
AONS can determine what level of access the originator of the message should have to the
services it is attempting to invoke. AONS may also make routing decisions based upon such
derived privileges or block or mask certain data elements within a message once it’s within
an AONS network as appropriate.

[0216] Encryption/Decryption: Based upon policy, AONS can perform encryption of
message elements (an entire message, the message body or individual elements such as credit
card number) to maintain end-to-end confidentiality as a message travels through the AONS
network. Conversely, AONS can perform decryption of these elements prior to arrival at a
given endpoint.

[0217] Digital Signatures: In order to ensure message integrity and allow for non-
repudiation of message transactions, AONS can digitally sign entire messages or individual
message elements at any given AEP. The decision as to what gets signed will be determined
by policy as applied to information derived from the contents and context of each message.
[0218] Reliability: AONS can complement existing guaranteed messaging systems by
intermediating between unlike proprietary mechanisms. It can also provide reliability for
HTTP-based applications (including web services) that currently lack reliable delivery. As
an additional feature, AONS can generate confirmations of successful message delivery as
well as automatically generate exception responses when delivery cannot be confirmed.
[0219] 3.4.62 INFRASTRUCTURE OPTIMIZATION

[0220] Compression: AEPs can compress message data prior to sending the message data
across the network in order to conserve bandwidth and conversely decompress it prior to
endpoint delivery.

[0221] Caching: AONS can cache the results of previous message inquires based upon
the rules defined for a type of request or based upon indicators set in the response. Caching
can be performed for entire messages or for certain elements of a message in order to reduce
application response time and conserve network bandwidth utilization. Message element
caching enables delta processing for subsequent message requests.

[0222] TCP Connection Pooling: By serving as an intermediary between message clients
and servers AONS can consolidate the total number of persistent connections required
between applications. AONS thereby reduces the client and server-processing load otherwise
associated with the ongoing initiation and teardown of connections between a mesh of

endpoints.

-35-

WO 2007/001941 ... oy oy o PCT/US2006/023706
A[0203) Batshihg” AHEA ONS intermediary can batch transactional messages destined for

multiple destinations to reduce disk I/O overheads on the sending system. Similarly,
transactional messages from multiple sources can be batched to reduce disk I/O overheads on
the receiving system.

[0224] Hardware Acceleration: By efficiently performing compute-intensive functions
such as encryption and Extensible Stylesheet Language Transformation (XSLT)
transformations in an AONS network device using specialized hardware, AONS can offload
the computing resources of endpoint servers, providing potentially lower-cost processing
capability.

[0225] Quality of Service: AONS can integrate application-level QoS with network-level
QoS features based on either explicit message prioritization (e.g., a message tagged as “high
priority”) or via policy that determines when a higher quality of network service is required
for a message as specific message content is detected.

[0226] Policy Enforcement: At the heart of optimizing the overall AONS solution is the
ability to ensure business-level polices are expressed, implemented and enforced by the
infrastructure. The AONS Policy Manager ensures that once messages are inspected, the
appropriate actions (encryption, compression, routing, etc.) are taken against that message as
appropriate.

[0227] 34.6.3 ACTIVITY MONITORING AND MANAGEMENT

[0228] Auditing/Logging/Metering: AONS can selectively filter messages and send them
to a node or console for aggregation and subsequent analysis. Tools enable viewing and
analysis of message traffic. AONS can also generate automatic responses to significant real-
time events, both business and infrastructure-related. By intelligently gathering statistics and
sending them to be logged, AONS can produce metering data for auditing or billing purposes.
[0229] Management: AONS can combine both message-level and network infrastructure
level events to gain a deeper understanding of overall system health. The AONS
management interface itself is available as a web service for those who wish to access it
programmatically.

[0230] Testing and Validation: AONS” ability to intercept message traffic can be used to
validate messages before allowing them to reach destination applications. In addition to
protecting from possible application or server failures, this capability can be leveraged to test
new web services and other functions by examining actual message flow from clients and
servers prior to production deployment. AONS also provides a “debug mode” that can be
turned on automatically after a suspected failure or manually after a notification to assist with

the overall management of the device.

-36-

WO 2007/001941 s s o 10 _ PCT/US2006/023706
“[0233] Wetldbad '@ﬁl&noing and Failover: AONS provides an approach to workload

balancing and failover that is both policy- and content-driven. For example, given an AONS
node’s capability to intermediate between heterogeneous systems, the AONS node can
balance between unlike systems that provide access to common information as requested by
the contents of a message. AONS can also address the issue of message affinity necessary to
ensure failover at the message rather than just the session level as is done by most existing
solutions. Balancing can also take into account the response time for getting a message reply,
routing to an alternate destination if the preferred target is temporarily slow to respond.
[0232] Business Continuity: By providing the ability to replicate inbound messages to a
remote destination, AONS enables customers to quickly recover from system outages.
AONS can also detect failed message delivery and automatically re-route to alternate
endpoints. AONS AEPs and ARs themselves have built-in redundancy and failover at the
component level and can be clustered to ensure high availability.

[0233] 3.4.6.4 CONTENT-BASED ROUTING AND TRANSFORMATION

[0234] Content-based Routing: Based upon its ability to inspect and understand the
content and context of a message, AONS provides the capability to route messages to an
appropriate destination by matching content elements against pre-established policy
configurations. This capability allows AONS to provide a common interface (service
virtualization) for messages handled by different applications, with AONS examining
message type or fields in the content (part number, account type, employee location,
customer zip code, etc.) to route the message to the appropriate application. This capability
also allows AONS to send a message to multiple destinations (based on either statically
defined or dynamic subscriptions to message types or information topics), with optimal fan-
out through AONS routers. This capability further allows AONS to redirect all messages
previously sent to an application so that it can be processed by a new application. This
capability additionally allows AONS to route a message for a pre-processing step that is
deemed to be required before receipt of a message (for example, introducing a management
pre-approval step for all travel requests). Thus capability also allows AONS to route a copy
of a message that exceeds certain criteria (e.g. value of order) to an auditing system, as well
as forwarding the message to the intended destination. This capability further allows AONS
to route a message to a particular server for workload or failover reasons. This capability
also allows AONS to route a message to a particular server based on previous routing
decisions (e.g., routing a query request based on which server handled for the original order).
This capability additionally allows AONS to route based on the source of a message. This
capability also allows AONS to route a message through a sequence of steps defined by a

source or previous intermediary.
-37-

WO 2007/001941 PCT/US2006/023706

......................

10235 MegkaePkdlscol Gateway: AONS can act as a gateway between applications
using different transport protocols. AONS supports open standard protocols (e.g. HTTP,
FTP, SMTP), as well as popular or de facto standard proprietary protocols such as IBM
Websphere MQ.

[0236] Message Transformations: AONS can transform the contents of a message to
make them appropriate for a particular receiving application. This can be done for both XML
and non-XML messages, the latter via the assistance of either a message dictionary definition

or a well-defined industry standard format.

-38-

WO 2007/001941 PCT/US2006/023706

[0237] 3.4.7 AONS FUNCTIONAL MODULES

[0238] FIG. 8 is a block diagram that depicts functional modules within an example
AONS node. AONS node 800 comprises AOS configuration and management module 802,
flows/rules 804, AOS common services 806, AOS message execution controller 808, AOS
protocol access methods 810, and AOS platform-specific “glue” 812. AONS node 800
interfaces with Internetworking Operating System (IOS) 814 and Linux Operating System
816. Flows/rules 804 comprise bladelets™ 818, scriptlets™ 820, and scriptlet™ container
822.

[0239] In one embodiment, AOS common services 806 include: security services,
standard compression services, delta compression services, caching service, message logging
service, policy management service, reliable messaging service, publish/subscribe service,
activity monitoring service, message distribution service, XML parsing service, XSLT
transformation service, and QoS management service.

[0240] In one embodiment, AOS protocol/access methods 810 include: TCP/SSL,
HTTP/HTTPS, SOAP/HTTP, SMTP, FTP, IMS/MQ and JMS/RV, and Java Database
Connectivity (JDBC).

[0241] In one embodiment, AOS message execution controller 808 includes: an
execution controller, a flow subsystem, and a bladelet™ subsystem.

[0242] In one embodiment, AOS bladelets™ 818 and scriptlets™ 820 include: message
input (read message), message output (send message), logging/audit, decision, external data
access, XML parsing, XML transformation, caching, scriptlet container, publish, subscribe,
message validation (schema, format, etc.), filtering/masking, signing, authentication,
authorization, encryption, decryption, activity monitoring sourcing, activity monitoring
marking, activity monitoring processing, activity monitoring notification, message discard,
firewall block, firewall unblock, message intercept, and message stop-intercept.

[0243] In one embodiment, AOS configuration and management module 802 includes:
configuration, monitoring, topology management, capability exchange, failover redundancy,
reliability/availability/serviceability (RAS) services (tracing, debugging, etc.), archiving,
installation, upgrades, licensing, sample scriptlets™, sample flows, documentation, online
help, and language localization.

[0244] In one embodiment, supported platforms include: Cisco Catalyst 6503, Cisco
Catalyst 6505, Cisco Catalyst 6509, and Cisco Catalyst 6513. In one embodiment, supported
supervisor modules include: Sup2 and Sup720. In one embodiment, specific functional areas

relating to the platform include: optimized TCP, SSL, public key infrastructure (PKI),

-30.

WO 2007/001941 PCT/US2006/023706
,,,, éﬂérywﬂbh/déd'rybﬂo’h“ litterface to Cat6K supervisor, failover/redundancy, image

management, and QoS functionality.

[0245] 34.8 AONS MODES OF OPERATION

[0246] AONS may be configured to run in multiple modes depending on application
integration needs, and deployment scenarios. According to one embodiment, the primary
modes of operation include implicit mode, explicit mode, and proxy mode. In implicit mode,
an AONS node transparently intercepts relevant traffic with no changes to applications. In
explicit mode, applications explicitly address traffic to an intermediary AONS node. In
proxy mode, applications are configured to work in conjunction with AONS nodes, but
applications do not explicitly address traffic to AONS nodes.

[0247] In implicit mode, applications are unaware of AONS presence. Messages are
address to receiving applications. Messages are redirected to AONS via configuration of
application “proxy” or middleware systems to route messages to AONS, and/or via
configuration of networks (packet interception). For example, domain name server (DNS)-
based redirection could be used to route messages. For another example, a 5-tuple-based
access control list (ACL) on a switch or router could be used. Network-based application
recognition and content switching modules may be configured for URL/URI redirection.
Message-based inspection may be used to determine message types and classifications. In
implicit mode, applications communicate with each other using AONS as an intermediary
(implicitly), using application-native protocols.

[0248] Traffic redirection, message classification, and “early rejection” (sending traffic
out of AONS layers prior to complete processing within AONS layers) may be accomplished
via a variety of mechanisms, such as those depicted in FIG. 9. FIG. 9 shows multiple tiers of
filtering that may be performed on message traffic in order to produce only a select set of
traffic that will be processed at the AONS layer. Traffic that is not processed at the AONS
layer may be treated as any other traffic.

[0249] At the lowest layer, layer 902, all traffic passes through. At the next highest layer,
layer 904, traffic may be filtered based on 5-tuples. A supervisor blade or Internetwork
Operating System (IOS) may perform such filtering. Traffic that passes the filters at layer
904 passes to layer 906. At layer 906, traffic may be further filtered based on network-based
application recognition-like filtering and/or message classification and rejection. Traffic that
passes the filters at layer 906 passes to layer 908. At layer 908, traffic may be further filtered
based on protocol headers. For example, traffic may be filtered based on URLs/URIs in the
traffic. Traffic that passes the filters at layer 908 passes to layer 910. At layer 910, traffic
may be processed based on application layer messages, include headers and contents. For

example, XPath paths within messages may be used to process traffic at layer 910. An
-40-

WO 2007/001941 ..) PCT/US2006/023706
T AONS.blade niay péifo¥m processing at layer 910. Thus, a select subset of all network traffic

may be provided to an AONS blade.

[0250] In explicit mode, applications are aware of AONS presence. Messages are
explicitly addressed to AONS nodes. Applications may communicate with AONS using
AONP. AONS may perform service virtualization and destination selection.

[0251] In proxy mode, applications are explicitly unaware of AONS presence. Messages
are addressed to their ultimate destinations (i.e., applications). However, client applications
are configured to direct traffic via a proxy mode.

[0252] 349 AONS MESSAGE ROUTING

[0253] Components of message management in AONS may be viewed from two
perspectives: a node view and a cloud view.

[0254] FIG. 10 is a diagram that illustrates the path of a message within an AONS cloud
1010 according to a cloud view. A client application 1004 sends a message to an AONS
Client Proxy (CP) 1006. If AONS CP 1006 is not present, then client application 1004 may
send the message to an AONS Server Proxy (SP) 1008. The message is processed at AONS
CP 1006. AONS CP 1006 transforms the message into AONP format if the message is
entering AONS cloud 1010.

[0255] Within AONS cloud 1010, the message is routed using AONP. Thus, using
AONP, the message may be routed from AONS CP 1006 to an AONS router 1012, or from
AONS CP 1006 to AONS SP 1008, or from AONS router 1012 to another AONS router, or
from AONS router 1012 to AONS SP 1008. Messages processed at AONS nodes are
processed in AONP format.

[0256] When the message reaches AONS SP 1008, AONS SP 1008 transforms the
message into the message format used by server application 1014. AONS SP 1008 routes the
message to server application 1014 using the message protocol of server application 1014.
Alternatively, if AONS SP 1008 is not present, AONS CP 1006 may route the message to
server application 1014,

[0257] The details of the message processing within AONS cloud 1010 can be
understood via the following perspectives: Request/Response Message Flow, One-Way
Message Flow, Message Flow with Reliable Delivery, and Node-to-Node Communication.
[0258] FIG. 11A and FIG 11B are diagrams that illustrate a request/response message
flow. Referring to FIG. 11A, at circumscribed numeral 1, a sending application 1102 sends a
message towards a receiving application 1104. At circumscribed numeral 2, an AEP CP
1106 intercepts the message and adds an AONP header to the message, forming an AONP
message. At circumscribed numeral 3, AEP CP 1106 sends the AONP message to an AONS

41-

WO 2007/001941 oo 1o PCT/US2006/023706
“rliieriies:” st dirdubl$iribed numeral 4, AONS router 1108 receives the AONP message.

At circumscribed numeral 5, AONS router 1108 sends the AONP message to an AEP SP
1110. At circumscribed numeral 6, AEP SP 1110 receives the AONP message and removes
the AONP header from the message, thus decapsulating the message. At circumscribed
numeral 7, AEP SP 1110 sends the message to receiving application 1104,

[0259] Referring to FIG. 11B, at circumscribed numeral 8, receiving application 1104
sends a response message toward sending application 1102, At circumscribed numeral 9,
AEP SP 1110 intercepts the message and adds an AONP header to the message, forming an
AONP message. At circumscribed numeral 10, AEP SP 1110 sends the AONP message to
AONS router 1108. At circumscribed numeral 11, AONS router 1108 receives the AONP
message. At circumscribed numeral 12, AONS router 1108 sends the AONP message to
AEP CP 1106. At circumscribed numeral 13, AEP CP 1106 receives the AONP message and
removes the AONP header from the message, thus decapsulating the message. At
circumscribed numeral 14, AEP CP 1106 sends the message to sending application 1102.
Thus, a request is routed from sending application 1102 to receiving application 1104, and a
response is routed from receiving application 1104 to sending application 1102. .

[0260] FIG. 12A and FIG 12B are diagrams that illustrate alternative request/response
message flows. FIG. 12A shows three possible routes that a message might take from a
sending application 1202 to a receiving application 1204. According to a first route, sending
application 1202 sends the message toward receiving application 1204, but an AEP CP 1206
intercepts the message and sends the message to receiving application 1204. According to a
second route, sending application 1202 sends the message toward receiving application 1204,
but AEP CP 1206 intercepts the message, encapsulates the message within an AONP
message, and sends the AONP message to an AEP SP 1208, which decapsulates the message
from the AONP message and sends the message to receiving application 1204. According to
a third route, sending application 1202 sends the message toward receiving application 1204,
but AEP SP 1208 intercepts the message and sends the message to receiving application
1204,

[0261] FIG. 12B shows three possible routes that a response message might take from
receiving application 1204 to sending application 1202. According to a first route, receiving
application 1204 sends the message toward sending application 1202, but AEP CP 1206
intercepts the message and sends the message to sending application 1204. According to a
second route, receiving application 1204 sends the message toward sending application 1202,
but AEP SP 1208 intercepts the message, encapsulates the message within an AONP
message, and sends the AONP message to AEP CP 1206, which decapsulates the message

-42-

WO 2007/001941 PCT/US2006/023706
" 1l {H"AORPindsdddd and sends the message to sending application 1202. According to a

third route, receiving application 1204 sends the message toward sending application 1202,
but AEP SP 1208 intercepts the message and sends the message to sending application 1202.
[0262] FIG. 13 is a diagram that illustrates a one-way message flow. At circumscribed
numeral 1, a sending application 1302 sends a message towards a receiving application 1304.
At circumscribed numeral 2, an AEP CP 1306 intercepts the message and adds an AONP
header to the message, forming an AONP message. At circumscribed numeral 3, AEP CP
1306 sends an ACK (acknowledgement) back to sending application 1302. At circumscribed
numeral 4, AEP CP 1306 sends the AONP message to an AONS router 1308. At
circumscribed numeral 5, AONS router 1308 receives the AONP message. At circumscribed
numeral 6, AONS router 1308 sends the AONP message to an AEP SP 1310. At
circumscribed numeral 7, AEP SP 1310 receives the AONP message and removes the AONP
header from the message, thus decapsulating the message. At circumscribed numeral 8, AEP
SP 1310 sends the message to receiving application 1304.

[0263] FIG. 14 is a diagram that illustrates alternative one-way message flows. FIG. 14
shows three possible routes that a message might take from a sending application 1402 to a
receiving application 1404. According to a first route, sending application 1402 sends the
message toward receiving application 1404, but an AEP CP 1406 intercepts the message and
sends the message to receiving application 1404. AEP CP 1406 sends an ACK
(acknowledgement) to sending application 1402. According to a second route, sending
application 1402 sends the message toward receiving application 1404, but AEP CP 1406
intercepts the message, encapsulates the message within an AONP message, and sends the
AONP message to an AEP SP 1408, which decapsulates the message from the AONP
message and sends the message to receiving application 1404, Again, AEP CP 1406 sends an
ACK to sending application 1402. According to a third route, sending application 1402 sends
the message toward receiving application 1404, but AEP SP 1408 intercepts the message and
sends the message to receiving application 1404. In this case, AEP SP 1408 sends an ACK to
sending application 1402. Thus, when an AEP intercepts a message, the intercepting AEP
sends an ACK to the sending application.

[0264] According to one embodiment, AONP is used in node-to-node communication
with the next hop. In one embodiment, AONP uses HTTP. AONP headers may include
HTTP or TCP headers. AONP may indicate RM ACK, QoS level, message priority, and
message context (connection, message sequence numbers, message context identifier, entry
node information, etc.). The actual message payload is in the message body. Asynchronous

messaging may be used between AONS nodes. AONS may conduct route and node

-43-

WO 2007/001941 ., . o g _ PCT/US2006/023706
" diddvekiiviamtatic’cbhfiburation (next hop) and/or via dynamic discovery and route

advertising (“lazy” discovery).

[0265] FIG. 15A and FIG 15B are diagrams that illustrate a request/response message
flow with reliable message delivery. Referring to FIG. 154, at circumscribed numeral 1, a
sending application 1502 sends a message towards a receiving application 1504. At
circumscribed numeral 2, an AEP CP 1506 intercepts the message and adds an AONP header
to the message, forming an AONP message. At circumscribed numeral 3, AEP CP 1506
saves the message to a data store 1512. Thus, if there are any problems with sending the
message, AEP CP 1506 can resend the copy of the message that is stored in data store 1512.
[0266] At circumscribed numeral 4, AEP CP 1506 sends the AONP message to an AONS
router 1508. At circumscribed numeral 5, AONS router 1508 receives the AONP message.
At circumscribed numeral 6, AONS router 1508 sends the AONP message to an AEP SP
1510. At circumscribed numeral 7, AEP SP 1510 receives the AONP message and removes
the AONP header from the message, thus decapsulating the message. At circumscribed
numeral 8§, AEP SP 1510 sends the message to receiving application 1504.

[0267] At circumscribed numeral 9, AEP SP 1510 sends a reliable messaging (RM)
acknowledgement (ACK) to AONS router 1508. At circumscribed numeral 10, AONS router
1508 receives the RM ACK and sends the RM ACK to AEP CP 1506. At circumscribed
numeral 11, AEP CP 1506 receives the RM ACK and, in response, deletes the copy of the
message that is stored in data store 1512. Because the delivery of the message has been
acknowledged, there is no further need to store a copy of the message in data store 1512.
Alternatively, if AEP CP 1506 does not receive the RM ACK within a specified period of
time, then AEP CP 1506 resends the message.

[0268] Referring to FIG. 15B, at circumscribed numeral 12, receiving application 1504
sends a response message toward sending application 1502. At circumscribed numeral 13,
AEP SP 1510 intercepts the message and adds an AONP header to the message, forming an
AONP message. At circumscribed numeral 14, AEP SP 1510 sends the AONP message to
AONS router 1508. At circumscribed numeral 15, AONS router 1508 receives the AONP
message. At circumscribed numeral 16, AONS router 1508 sends the AONP message to
AEP CP 1506. At circumscribed numeral 17, AEP CP 1506 receives the AONP message and
removes the AONP header from the message, thus decapsulating the message. At
circumscribed numeral 18, AEP CP 1506 sends the message to sending application 1502.
[0269] FIG. 16 is a diagram that illustrates a one-way message flow with reliable
message delivery. At circumscribed numeral 1, a sending application 1602 sends a message

towards a receiving application 1604. At circumscribed numeral 2, an AEP CP 1606

-44-

WO 2007/001941 . PCT/US2006/023706
"ihdeiediittic iha¥sdighldild adds an AONP header to the message, forming an AONP

message. At circumscribed numeral 3, AEP CP 1606 saves the message to a data store 1612.
Thus, if there are any problems with sending the message, AEP CP 1606 can resend the copy
of the message that is stored in data store 1612. At circumscribed numeral 4, AEP CP 1606
sends an ACK (acknowledgement) back to sending application 1602. At circumscribed
numeral 5, AEP CP 1606 sends the AONP message to an AONS router 1608. At
circumscribed numeral 6, AONS router 1608 receives the AONP message. At circumscribed
numeral 7, AONS router 1608 sends the AONP message to an AEP SP 1610. At
circumscribed numeral 8, AEP SP 1610 receives the AONP message and removes the AONP
header from the message, thus decapsulating the message. At circumscribed numeral 9, AEP
SP 1610 sends the message to receiving application 1604,

[0270] At circumscribed numeral 10, AEP SP 1610 sends a reliable messaging (RM)
acknowledgement (ACK) to AONS router 1608. At circumscribed numeral 11, AONS router
1608 receives the RM ACK and sends the RM ACK to AEP CP 1606. At circumscribed
numeral 12, AEP CP 1606 receives the RM ACK and, in response, deletes the copy of the
message that is stored in data store 1612. Because the delivery of the message has been
acknowledged, there is no further need to store a copy of the message in data store 1612.
Alternatively, if AEP CP 1606 does not receive the RM ACK within a specified period of
time, then AEP CP 1606 resends the message.

[0271] FIG. 17 is a diagram that illustrates synchronous request and response messages.
At circumscribed numeral 1, an AONS node 1704 receives, from a client 1702, a request
message, in either implicit or explicit mode. At circumscribed numeral 2, AONS node 1704
reads the message, selects and executes a flow, and adds an AONP header to the message. At
circumscribed numeral 3, AONS node 1704 sends the message to a next hop node, AONS
node 1706. At circumscribed numeral 4, AONS node 1706 reads the message, selects and
executes a flow, and removes the AONP header from the message, formatting the message
according to the message format expected by a server 1708. At circumscribed numeral 5,
AONS node 1706 sends the message to the message’s destination, server 1708.

[0272] At circumscribed numeral 6, AONS node 1706 receives a response message from
server 1708 on the same connection on which AONS node 1706 sent the request message. At
circumscribed numeral 7, AONS node 1706 reads the message, correlates the message with
the request message, executes a flow, and adds an AONP header to the message. At
circumscribed numeral 8, AONS node 1706 sends the message to AONS node 1704. At
circumscribed numeral 9, AONS node 1704 reads the message, correlates the message with
the request message, executes a flow, and removes the AONP header from the message,

formatting the message according to the message format expected by client 1702. At
-45-

WO 2007/001941 | PCT/US2006/023706
< difclihddribediniinérhl £0, AONS node 1704 sends the message to client 1702 on the same

connection on which client 1702 sent the request message to AONS node 1704.

[0273] FIG. 18 is a diagram that illustrates a sample one-way end-to-end message flow.
At circumscribed numeral 1, an AONS node 1804 receives, from a client 1802, a request
message, in either implicit or explicit mode. At circumscribed numeral 2, AONS node 1804
reads the message, selects and executes a flow, and adds an AONP header to the message. At
circumscribed numeral 3, AONS node 1804 sends an acknowledgement to client 1802. At
circumscribed numeral 4, AONS node 1804 sends the message to a next hop node, AONS
node 1806. At circumscribed numeral 5, AONS node 1806 reads the message, selects and
executes a flow, and removes the AONP header from the message, formatting the message
according to the message format expected by a server 1808. At circumscribed numeral 6,
AONS node 1806 sends the message to the message’s destination, server 1808.

[0274] According to the node view, the message lifecycle within an AONS node,
involves ingress/egress processing, message processing, message execution control, and flow
execution.

[0275] FIG. 19 is a diagram that illustrates message-processing modules within an AONS
node 1900. AONS node 1900 comprises an AONS message execution controller (AMEC)
framework 1902, a policy management subsystem 1904, an AONS message processing
infrastructure subsystem 1906, and an AOSS 1908. AMEC framework 1902 comprises a
flow management subsystem 1910, a bladelet™ execution subsystem 1912, and a message
execution controller 1914. Policy management subsystem 1904 communicates with flow
management subsystem 1910. AOSS 1908 communicates with bladelet™ execution
subsystem 1912 and AONS message processing infrastructure subsystem 1906. AONS
message processing infrastructure subsystem 1906 communicates with message execution
controller 1914. Flow management subsystem 1910, bladelet™ execution subsystem, and
message execution controller 1914 all communicate with each other.

[0276] FIG. 20 is a diagram that illustrates message processing within AONS node 1900.
AMEC framework 1902 is an event-based multi-threaded mechanism to maximize
throughput while minimizing latency for messages in the AONS node. According to one
embodiment, received packets are re-directed, TCP termination is performed, SSL
termination is performed if needed, Layer 5 protocol adapter and access method processing is
performed (using access methods such as HTTP, SMTP, FTP, IMS/MQ, JMS/RV, JDBC,
etc.), AONS messages (normalized message format for internal AONS processing) are
formed, messages are queued, messages are dequeued based on processing thread

availability, a flow (or rule) is selected, the selected flow is executed, the message is

-AAL

WO 2007/001941 PCT/US2006/023706
forwarabling ﬁlﬁ‘é-ﬂué‘sé)éﬁ%"s destination, and for request/response-based semantics, responses

are handled via connection/session state maintained within AMEC framework 1902.

[0277] In one embodiment, executing the flow comprises executing each step (i.e.,
bladelet™/action) of the flow. If a bladelet™ is to be run within a separate context, then
AMEC framework 1902 may enqueue into bladelet™-specific queues, and, based on thread
availability, dequeue appropriate bladelet™ states from each bladelet™ queue.

[0278] 3.4.10 FLOWS, BLADELETS™, AND SCRIPTLETS™

[0279] According to one embodiment, flows string together bladelets™ (i.e., actions) to
customize message processing logic. Scriptlets™ provide a mechanism for customers and
partners to customize or extend native AONS functionality. Some bladelets™ and services
may be provided with an AONS node.

[0280] 3.4.11 AONS SERVICES

[0281] As mentioned in the previous section, a set of core services may be provided by
AONS to form the underlying foundation of value-added functionality that can be delivered
via an AONS node. In one embodiment, these include: Security Services, Standard
Compression Services, Delta Compression Services, Caching Service, Message Logging
Service, Policy Management Service (Policy Manager), Reliable Messaging Service,
Publish/Subscribe Service, Activity Monitoring Service, Message Distribution Service, XML
Parsing Service, XSLT Transformation Service, and QoS Management Service. In one
embodiment, each AONS core service is implemented within the context of a service
framework.

[0282] 3.4.12 AONS CONFIGURATION AND MANAGEMENT

[0283] In one embodiment, an AONS node is provisioned and configured for a class of
application messages, where it enforces the policies that are declaratively defined on behalf-
of the application end-points, business-domains, security-domains, administrative domains,
and network-domains. Furthermore, the AONS node promotes flexible composition and
customization of different product functional features by means of configurability and
extensibility of different software and hardware sub-systems for a given deployment scenario.
Due to the application and network embodiments of the AONS functionality, the AONS
architecture framework should effectively and uniformly address different aspects of
configurability, manageability, and monitorability of the various system components and
their environments.

[0284] The AONS Configuration and Management framework is based upon five
functional areas (“FCAPS”) for network management as recommended by the ISO network
management forum. The functional areas include fault management, configuration

management, accounting management, performance management, and security management.
-47-

WO 2007/001941 ..., ooy o o PCT/US2006/023706
‘Fhblirhhkagement i

Ié}:?ibrocess of discovering, isolating, and fixing the problems or faults in
the AONS nodes. Configuration management is the process of finding and setting up the
AONS nodes. Accounting management involves tracking usage and utilization of AONS
resources to facilitate their proper usage. Performance management is the process of
measuring the performance of the AONS system components and the overall system.
Security management controls access to information on the AONS system. Much of the
above functionality is handled via proper instrumentation, programming interfaces, and tools
as part of the overall AONS solution.

[0285] FIG. 21, FIG. 22, and FIG. 23 are diagrams that illustrate entities within an AONS
configuration and management framework. A configuring and provisioning server (CPS) is
the centralized hub for configuration and management of AONS policies, flows, scriptlets™
and other manageable entities. Configurable data is pushed to the CPS from an AONS design
studio (flow tool) and the AONS admin may then provision this data to the production
deployment. A promotion process is also provided to test and validate changes via a
development to staging/certification to production rollout process. A configuration and
provisioning agent (CPA) resides on individual AONS blades and provides the local control
and dispatch capabilities for AONS. The CPA interacts with the CPS to get updates. The
CPA takes appropriate actions to implement changes. The CPA is also used for collecting
monitoring data to report to third party consoles.

[0286] 3.4.13 AONS MONITORING

[0287] In one embodiment, AONS is instrumented to support well-defined events for
appropriate monitoring and visibility into internal processing activities. The monitoring of
AONS nodes may be accomplished via a pre-defined IMX MBean agent that is running on
each AONS node. This agent communicates with a remote JMX MBean server on the PC
complex. An AONS MIB is leveraged for SNMP integration to third party consoles. FIG. 24
is a diagram that illustrates an AONS monitoring architecture.

[0288] 34.14 AONS TOOLS

[0289] In one embodiment, the following tool sets are provided for various functional
needs of AONS: a design studio, an admin studio, and a message log viewer. The design
studio is a visual tool for designing flows and applying message classification and mapping
policies. The admin studio is a web-based interface to perform all administration and
configuration functions. The message log viewer is a visual interface to analyze message
traffic, patterns, and trace information.

[0290] 4.0 IDENTITY BROKERING IN A NETWORK ELEMENT

[0291] According to an embodiment, a network element performs user identity brokering

between users and applications, or between applications and applications where applications
-48-

MO 20071001941 ... o o PCT/US2006/023706
e Mﬂﬂe&t@‘bﬁ"béﬁh@%f users. In one embodiment, multiple network identities for a user

are advertised in application-level messages. In one embodiment, a network element
identifies application-layer messages that advertise network identities for users, extracts the
network identities, and stores the network identities in network element in a short-term cache.
However, the use of a cache is not required. In an embodiment, identity may not be cached
and the identity information is mapped or transformed to another identity and passed in the
outgoing message based only on brokering/mapping policies. As the network element
receives further application-layer messages, the network element automatically determines
which of a plurality of user identities to use, and informs a server-based application about that
identity. To do so, the network element transparently modifies the application-layer
messages to include the correct user identity, or automatically generates a new application-
layer message to the server-based application that advertises the correct user identity.

[0292] In a related embodiment, the network element performs actions to enforce the use
of only a selected user identity. For example, a network element detects whether a message
represents a valid transaction for a particular user identity for a particular application. If not,
the network element may take any of several responsive actions. In one form of response, the
network element notifies an application or administrator if a particular identity is not allowed
for a particular action. In another form of response, the network element passes or rejects
traffic depending on whether a particular identity is allowed for a particular action.

[0293] 4.1 IDENTITY BROKERING BACKGROUND

[0294] Many types of application programs need to identify the sender of a message. In
some cases, the applications have been developed over many years and run on many
operating systems, software and hardware platforms. The applications may run in different
environments such as a branch office, in the data center of a head office, in a DMZ, behind a
firewall, etc.

[0295] The applications may use the identity of the message sending application, and the
identity may be embedded in, or is derived from the message payload or the message
protocol. Applications may use identity information for many purposes, for example:
authenticating the message sender; authorizing the message sender; serving personalized
content back to the user or the message initiator; allowing the authorized access to the
information and placement of requests; and out-bound routing of messages based on the
identity.

[0296] In an organization different departments may store and manage department users
in separate credential repositories. The reasons for using separate repositories may be
organic or functional. However, yet applications operating across department boundaries

need to interoperate and exchange messages. Therefore, a client application may need to
-49-

WO 20070001941 PCT/US2006/023706
althéiititite s el aldiblt one identity domain, while the same user needs to be authorized

for access on the service provider application that may be using a different identity domain.
[0297] The applications, for a variety of reasons, may understand different forms of
identity encodings. Further, many security and application policy decisions and
enforcements are based on the identity of a message sender. Such policy decisions are stored
in a different policy server or identity server applications. Such policy decision points or
PDPs are an integral part of the application identity and trust management application
infrastructure in any enterprise. Example PDPs include IBM TIM, Netegrity SiteMinder, and
Oblix Policy Server. Some enterprises may have created PDPs based on Microsoft Active
Directory or other LDAP implementations provided by products such as Novell
NDS/eDirectory, Sun SunOne Directory or ID Manager products, or authentication,
authorization and accounting (AAA) servers that use the Tacacs+ or Radius protocols.
[0298] Due to different business reasons, different forms of identity are used and trusted
by the applications prior to making an application policy decision or enforcement. Some
applications may accept a weaker form of identity, such as a username and password that are
presented in the clear but encoded in a message. Other applications may require a stronger
form of identity information, such as a digital signature, bio-metric artifacts, cryptographic
keys and credentials, multiple forms of identities.

[0299] The reasons that applications use different forms of identity information are
numerous. Three fundamental reasons include the evolutionary nature of software
development and deployment over many years; applications belong to two separate
enterprises; and business activities such as mergers and acquisitions, especially in the
financial services field, in which many small-business or medium-business applications may
be integrated with data-center applications after a transaction closes.

[0300] These applications may also use different credential repositories that are not
synchronized with each other. For example, some client applications run on Microsoft
Windows workstations that belong to an Active Directory (AD) domain, whereas legacy
applications may be running on IBM mainframes that do not understand Microsoft Windows
interfaces, messages and protocols. As a further example, a branch office might be
Windows-based while a data center may use an IBM mainframe or J2EE server.

[0301] Many applications use different message formats and application message
protocols to carry such identities such as in HTTP(s), SSL, TCP, SOAP, JMS, MQ, FTP,
SMTP, etc.

[0302] As aresult, applications that participate in a network on a message in any capacity

or role may be incompatible with each other in determining the identity of the last message

-50-

VO 2007/001941 PCT/US2006/023706
" dehdbhISuch iedmphiibility, arising from the lack of a single unique identity for making

application-oriented decisions, seriously limits seamless application integration.

[0303] One possible way to address the issues described in this section 4.1 is to create
custom plug-in software to intercept and identify the message sender or receiver at each
application end-point or at the server. However, this approach has numerous drawbacks.
The approach is not scalable and inefficient as it results in many point-to-point solutions and
ends up in an O (n x m) complex integration problem. It is impractical to update all the
applications at once as the application needs evolve and policy changes are defined and yet
maintain business continuity. Many of the applications run on legacy hardware or systems
that have limited resources (capability, CPU, memory, etc.) to process complex credentials
and identity information.

[0304] Further, the business requirement to dynamically map and transform identity and
credential information as the message traverses across the network over multiple applications
to suit the target (or next-hop) application is unmanageable at the end-points unless the
problem is tackled in a central infrastructure such as a network device. Often, end-points
cannot be trusted to have access to all forms of credentials and policies for transforming them
as they are part of the message consuming and producing chain. It is more secure to rely on a
neutral entity that can be trusted and has highly restricted access to un-warranted access from
users. In a typical server end-point based approach, where technically feasible, the
knowledge of identity brokering and mapping must be proliferated across all servers for it to
be correct. Often such proliferation is not operationally feasible, and as a result the solution is
ineffective.

[0305] 4.2 IDENTITY MAPPING POLICIES FOR USE IN POLICY BROKERING
[0306] In an embodiment, identity mapping policies enable specifying identity
information of a first identity domain of an incoming message, in terms of an application
protocol or application message headers or body, and mapping the identity information to a
second identity domain of a different application protocol or a different application message
location, header, or body.

[0307] 4.2.1 IDENTITY MAPPING POLICY OVERVIEW

[0308] FIG. 25A and FIG. 25B are flow diagrams of a process of brokering identity
information. FIG. 26 is a flow diagram of a process of brokering session information. In an
embodiment, a user can define configuration and identity mapping policies that are used at
run-time to implement the processes of FIG. 25A, 25B, and FIG. 26 in a network element.
For instance, in one embodiment, such policies are specified in a declarative manner or in an
AON message processing flow definition (“flow”). Policies may be stored in a central

location and distributed to AON network elements in multiple locations.
-51-

WO 2007/001941 | PCT/US2006/023706
~[036971.1 15 Th'orklet b¥kieps shown in FIG. 25A, 25B, and FIG. 26 is not required; various

embodiments may use the steps in different order.

[0310] Referring first to FIG. 25A, the application message transport protocol of an
inbound message is identified at step 2502. Thus, FIG. 25A assumes that an application-
layer message has been received in a network element.

[0311] In an embodiment, step 2502 is driven by a written specification or policy that
describes what identity information to locate and how to process the identity information. In
an embodiment, as shown in step 2504, a policy can specify where, if any, identity
information and/or credentials are to be found in the application message transport protocol,
and whether there is an interest in extracting the credentials. As in step 2506, the policy also
can specify if the identity information and credentials must be authenticated or validated
against a specified repository, and where the domain to which the identity information or
credentials belong, is reachable and can be validated.

[0312] Examples of transport-layer identity information include a source IP address,
public digital certificate of the client exchanged during the “handshaking” phase of
establishing an SSL session, etc. Thus, step 2502 is generally concerned with identity
information carried in headers of frames, packets or segments at OSI Layer 2, 3, or 4.

[0313] In step 2508, an inbound application message protocol is identified. In an
embodiment, step 2508 is driven by a written specification or policy that describes what
identity information to locate and how to process the identity information for step 2508. In
an embodiment, as shown in step 2509, a policy can specify where, if any, identity
information and/or credentials are to be found in the application message protocol, and there
is an interest in extracting those credentials per the policy. Optionally, as shown in step
2510, the policy can specify if the identity information and credentials must be authenticated
or validated against a specified repository where the domain to which the identity information
or credentials belong, is reachable and can be validated.

[0314] Examples of application-layer identity information include a username and
password, Kerberos credentials embedded as the HTTP Basic Auth attribute, HTTP WWW
Negotiate/Authorize attributes, custom HTTP header information, SMTP email header From:
and To: addresses, etc. Thus, step 2508 is generally concerned with identity information
carried in the header of messages at OSI Layer 5, 6, or 7.

[0315] In step 2512, the inbound application message body is identified. In an
embodiment, step 2512 is driven by a written specification or policy that describes what
identity information to locate and how to process the identity information for step 2512. As
indicated in step 2514, the policy may specify where, if any, identity information and/or

credentials are to be found in the application message body, and there is an interest in
-52-

WO 2007/001941 . PCT/US2006/023706
‘ekebitietih bithosd deddlils per the policy. The specification of step 2514 is based on a

regular expression pattern, well-known header information, Xpath expression, etc.

[0316] In step 2516, the policy may optionally specify if the identity information and
credentials must be authenticated or validated against a specified repository where the
domain to which this identity and/or credentials belong, is reachable and can be validated.
Examples of identity information and credentials that may be specified in steps 2514, 2516
include a username and password, Kerberos credentials, binary security tokens, SAML
assertions that are embedded as generic encoded content in one or more name-value pairs in
the message body, a SOAP header, a SOAP body, etc.

[0317] In various embodiments, one or two steps among steps 2502, 2508, 2512 are
omitted. Thus, an embodiment may be implemented using only one of steps 2502, 2508,
2512. Further, an embodiment may implement all three steps, but a policy may specify
information relevant to only one of steps 2502, 2508, 2512. For example, a policy may
specify credential location information in an application message protocol header of an
inbound message that is relevant to step 2508, but not transport-layer identity information
(step 2502) or message body information (step 2512). Any combination of one or more of
steps 2502, 2508, 2512 may be implemented or processed for a particular message.

[0318] In step 2518, one or more required authorization operations are identified. In an
embodiment, step 2518 comprises identifying one or more functions or operations to be
performed after completing any or all of steps 2502, 2508, 2512. The functions may include
authorization or determining entitlement of the message sender to send the message or
perform an operation requested within the message.

[0319] Referring now to FIG. 25B, as part of step 2518 or in a separate step 2520, a test
is performed to determine if the information obtained in steps 2502, 2508, 2512 is an SAML
assertion. If so, then in step 2522 the process applies one or more fine-grained authentication
and authorization operations. As an example of a fine-grained operation, in the case of an
SAML assertion, the operation can be an assertion with authorization or authentication
statements. If an authorization assertion is used, then the authorization assertion indicates the
specific actions that are allowed on a specific resource. For example, user may be allowed to
invoke a stock quote function but not a “place order” function. Thus, applying fine-grained
control involves enforcing such decisions indicated in the assertion on application messages.
Therefore, if the message is a request message carrying a “place Order” request, then the
approach herein denies the request. However, if the request is for a quote then the approach
herein permits the request by forwarding the request to the intended application end-point.
Similarly, if the assertion is an authentication assertion, the approach herein can determine

that the assertion is valid, signed by a trusted authority and is not expired.
-53-

WO 2007/001941 PCT/US2006/023706

oy

are performed. For example, the process generates and sends one or more authentication
messages to authenticators which, in effect, present the identified credentials to an identified
repository. Step 2524 interacts with one or more authorization services or authentication
services represented as block 2526.

[0321] In response, in step 2528 the process receives one or more message sender identity
attributes. The identity attributes comprise additional attributes or signed or trusted artifacts
about the message sender’s identity. Attributes received at step 2528 may include entitlement
information about the sender, another valid identity, credentials, etc.

[0322] In step 2530, an outbound application-level message is created using a transport
protocol, message protocol and message content or body as specified by the policy. In step
2530, the identity attributes obtained in the previous step are embedded in the new outbound
message. Additionally or alternatively, step 2532 prepares for embedding the attributes in the
outbound message by an appropriate binding of the attributes to the outbound application
message transport protocol, message protocol, and message content or body as specified by
the mapping policy. The new identity information may now belong to the new domain.
[0323] ‘At step 2534, session information that may be maintained in the inbound message
may be brokered using the process of FIG. 26, which is described below.

[0324] In step 2536, the outbound message is routed to an appropriate next hop endpoint.
The next hop endpoint may be another network element, a server, or other endpoint. Step
2536 may involve sending the prepared message on a different transport or message protocol,
such as HTTP, JMS, SSL, SMTP, etc.

[0325] 422 SESSION BROKERING EXAMPLE

[0326] Referring now to FIG. 26, in an embodiment session brokering generally involves
converting a message of any protocol into a canonical object or format so that normalized
protocol headers can be used to hold parameters for session identification information. Once
the session is created, the protocol headers are de-normalized in relation to the destination
and a modified message is created.

[0327] In one embodiment a session brokering process involves the following steps. In
step 2602, session information is extracted from the header of the inbound application
message. In step 2604, an internal session object is created using a normalized format. Thus,
in step 2604 the same kind of object is created regardless of what transport protocol or
application message protocol is represented in the inbound message.

[0328] In step 2606, received session information is stored in the session object. Thus, in
step 2606 session identity information obtained from the inbound application message is

stored in fields or attributes of the normalized internal session object. In step 2608, an
-54-

WO 2007/001941 PCT/US2006/023706

'Sﬁﬁﬁwwfihééﬂg@{ i€ drbBted using a format indicated in the policy, and in step 2610 the
received session identity information is stored in the outbound message.

[0329] Using this approach, session identity information is effectively brokered among
different transport and application message protocols that are used for inbound messages and
outbound messages. For example, if a message is received over JMS, based on session
parameters such as inbox_address and subject name, the process can create a session cookie
that can be used to convey the message to the target service or application over HTTP and
reverse map the session identity information on the return path.

[0330] Network elements also may transform identity information among identity
domains. As an example, assume that a first network element is within a first network.
Based on the policy and the method described above, identity information is extracted from a
method, and authentication or authorization operations are performed. A related set of
attributes is fetched from the authentication service provider or authorization service
provider. One or more identity or domain attributes are passed in the outgoing message to a
second network element that is in a second network that has a different identity domain.
Assume that the first network and second network are respectively controlled, owned or
operated by separate parties that are involved in a business transaction. On the second
network element, the identity information is extracted from the incoming message along with
attributes and domain information. The extracted information is mapped to an identity in the
second network’s identity domain, and the mapped identity information is passed to the
application end-point on the second network. Thus, mapping of identities may be performed
on a single network element or more than one intermediate network elements between two
users or application end-points.

[0331] 423 BLADELET IMPLEMENTATION EXAMPLE

[0332] An embodiment may be implemented in a software element termed an Identity
Extraction (IDExt) Bladelet. In this embodiment, the IDExt bladelet extracts identity
information from incoming messages at different protocol layers of in the incoming message,
including transport layer and message layer.

[0333] In an embodiment, the IDExt bladelet receives incoming message(s) as input and
generates a list of Security Context data structures, each having identity information filled in.
The security contexts generated by IDExt then is used by other security bladelets, such as
Authentication and Authorization bladelets, to perform other security functions. In an
embodiment, the identities that are supported by the IDExt bladelet include:

[0334] 1. Transport Layer Identity including HI'TP Basic Authentication Header, HTTP
Negotiate Authentication Header, SSL Peer Certificate.

-55-

WO 2007/001941 PCT/US2006/023706
{033 2 Sk akS-Uiyer Identity including WS Security Username Token, WS Security

SPNEGO Token, WS Security X.509 Certificate, WS Security X.509 Certificate Chain, and
WS Security SAML assertion.

[0336] In an embodiment, the IDExt bladelet has the following parameters:

[0337] 1. Input Parameters:

[0338] 1.1 IdentityLevel: “Transport Level Identity” of “Message Level Identity”

[0339] 1.2 For Transport Level Identity: InputMessage: Single incoming message of type
“Message”; Identity Location: more than one location can be selected for extraction,
including HTTP:BasicAuth, HTTP:Negotiate Auth, and SSL:PeerCertificate.

[0340] 1.3 For Message Level Identity: InputContentList: list of contents, type
“ContentListlterator”. A list contains one or more object of type “Content.” Identity
Location: more than one location can be selected for extraction, such as
wsse:UsernameToken; wsse:SPNEGOToken; wsse: X509CertToken;

wsse: X509CertPathToken; saml: Assertion.

[0341] 2. Output Parameters:

[0342] 2.1 ExtractedIdentities: A list of SecurityContext objects of type
“SecurityContextListIterator”. Each security context corresponds to an incoming message or
content. If more than one content item is provided in the InputContentList, then the order of
the SecurityContext object in this list corresponds to the order of the contents in the
InputContentList.

[0343] 2.2 Output Path: Extracted: At least one piece of identity information is
successfully extracted. NotExtracted: no identity information is extracted.

[0344] In an embodiment, the configuration of IDExt bladelet is established using a
graphical user interface that is driven by the bladelet-info definition provided in table 1:
[0345] TABLE 1—Bladelet-info for Identity Extraction Bladelet

<?xml version="1.0" encoding="UTF-8"7>

<!-- XML file generated by XMLSPY v2004 rel. 4 U (http://www.xmlspy.com)-->

<bladelet-info>

<bladelet name="identify"

displayNameKey="identify.bladelet.name"
versionld="1"
categoryKey="security.category.name"
bundle="com.cisco.aons.bladelet.v1.IdentifyBladelet"
bladeletClass="com.cisco.aons.bladelet.v1.IdentityExtractionBladelet"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal.ocation=""
validatorClass="com.cisco.aons.bladelet.v1.IdentifyValidator"
validatorRules="com.cisco.aons.bladelet.v1.IdentifyValidatorRules"

<icon-ref>
<palette-icon href="identify16Icon.gif"/>
-56-

WO 2007/001941 PCT/US2006/023706
wdbeutretit-icon href="identify32Icon.gif"/>
</icon-ref>

<exceptions™>
<exception id="Invalid-Security-Token"
key="exception.invalidsecuritytoken.labe]"
desc="Invalid security token"
descKey="exception.invalidsecuritytoken.desc"
/>
</exceptions™>

<bladelet-design>
<bladelet-parameters>
<!-- Transport based credentials extraction -->
<configuration-group name="IdentityLevel" key="cg.identitylevel"
type="string" value="Transport Level Identity" valueKey="cg.identitylevel.transport"
type="radio" default="true">
<configuration-subgroup>
<parameter-group name="Source"
key="cg.identitylevel.transport.pg.source">
<parameter name="InputMessage"
key="cg.identitylevel.transport.pg.source.p.inputmessage" type="Message"
allowUserInput="false" />
</parameter-group>
<parameter-group name="Location"
key="cg.identitylevel.transport.pg.location">
<l-- they are checkboxes with all seclectable -->
<parameter name="HTTP:BasicAuth"
key="cg.identitylevel.transport.pg.location.p.basicauth" type="boolean" default-
value="false" editor="checkbox" />
<parameter name="HTTP:Negotiate Auth"
key="cg.identitylevel.transport.pg.location.p.negotiateauth" type="boolean" default-
value="false" editor="checkbox" />
<parameter name="SSL:PeerCertificate"
key="cg.identitylevel.transport.pg.location.p.peercert” type="boolean" default-value="false"
editor="checkbox" />
</parameter-group>
</configuration-subgroup>
</configuration-group>

<l-- Message based credentials extraction -->
<configuration-group name="IdentityLevel" key="cg.identitylevel"
type="string" value="Message Level Identity" valueKey="cg.identitylevel.message"
type="radio">
<configuration-subgroup>
<parameter-group name="Source"
key="cg.identitylevel.message.pg.source">
<parameter name="InputContentList"
key="cg.identitylevel. message.pg.source.p.inputcontentlist" type="ContentListIterator"
allowUserInput="false" />
</parameter-group>
<parameter-group name="Location"
key="cg.identitylevel.message.pg.location">

-57-

WO 2007/001941 PCT/US2006/023706
<!-- they are checkboxes with all seclectable -->
<parameter name="wsse:UsernameToken"

key="cg.identitylevel.message.pg.location.p.ut" type="boolean" default-value="false"
editor="checkbox" />
<parameter name="wsse:SPNEGOToken"
key="cg.identitylevel.message.pg.location.p.type.st" type="boolean" default-value="false"
editor="checkbox" />
<parameter name="wsse:X509CertToken"
key="cg.identitylevel. message.pg.location.p.type.x509cert" type="boolean" defauli-
value="false" editor="checkbox" />
<parameter name="wsse:X509CertPathToken"
key="cg.identitylevel.message.pg.location.p.type.x509certpath" type="boolean" default-
value="false" editor="checkbox" />
<parameter name="saml:Assertion"
key="cg.identitylevel. message.pg.location.p.type.samlassertion” type="boolean" default-
value="false" editor="checkbox" />
</parameter-group>
</configuration-subgroup>
</configuration-group>
</bladelet-parameters>
</bladelet-design>

<bladelet-runtime>
<exported-params>
<!-- These are parameters that the bladelet puts in the context -->

<param name="ExtractedIdentities" key="identify.export.extractedid"
type="SecurityContextListlterator"/>
</exported-params>
</bladelet-runtime>

<bladelet-deployment>
<system-params/>
</bladelet-deployment>

<output-paths number="static">
<output-path label="Extracted" key="outputpath.extracted.label"/>
<output-path label="NotExtracted" key="outputpath.notextracted.label"/>
</output-paths>

</bladelet>
</bladelet-info>
[0346] 4.3 BENEFITS OF VARIOUS EMBODIMENTS
[0347] Various embodiments provide various benefits in comparison to prior approaches.
Embodiments may be used to enable single-sign on in the network and to provide identity
based routing the in the network. Embodiments provide a non-intrusive policy enforcement
and mapping solution for identity brokering at the network device for the client and server
applications. There is no need to make any modification to the existing client and server

applications or install any program onto client or server side machines.

-58-

WO 2007/001941 PCT/US2006/023706
0348 1 T sTivg s trdrisparent redirection mechanism under WCCP or a similar protocol,

client applications do not need to change proxy settings on client side machines or
applications to use the identity brokering support provided herein.

[0349] The solution herein provides effective protection of all client and server side
applications from a central configuration server that manages the identity mapping policies
and distribution of information for fetching and storage of appropriate credentials and
repositories.

[0350] The approach herein allows easier and often seamless migration to a different
identity domain or protocol, where the change can be done from a centralized place. The
approach herein is much more efficient than trying to update each of the applications running
on multiple machines.

[0351] The approach herein enables brokering of sessions as an intelligent network
intermediary including but not limited to: Transformation of a transport session to a message
session; addition of tamper-proof, trustworthy attributes as assertions for disabling session-
based replay attacks from a “Man in the Middle,” including signed and encrypted time-
stamped session timeout values, session establishment, and session specific details. By
maintaining necessary state information within the network element, embodiments do not
force endpoint applications to use “cookies” or similar structures that are commonly needed
by one class of applications (such as a browser) but not supported by back-end applications.
[0352] The proposal is significantly more efficient, manageable, and secure as opposed to
a traditional server based solution.

[0353] 5.0 IMPLEMENTATION MECHANISMS -- HARDWARE OVERVIEW

[0354] FIG. 5 is a block diagram that illustrates a computer system 500 upon which an
embodiment of the invention may be implemented. The preferred embodiment is
implemented using one or more computer programs running on a network element such as a
proxy device. Thus, in this embodiment, the computer system 500 is a proxy device such as a
load balancer.

[0355] Computer system 500 includes a bus 502 or other communication mechanism for
communicating information, and a processor 504 coupled with bus 502 for processing
information. Computer system 500 also includes a main memory 506, such as a random
access memory (RAM), flash memory, or other dynamic storage device, coupled to bus 502
for storing information and instructions to be executed by processor 504. Main memory 506
also may be used for storing temporary variables or other intermediate information during
execution of instructions to be executed by processor 504. Computer system 500 further
includes a read only memory (ROM) 508 or other static storage device coupled to bus 502 for

storing static information and instructions for processor 504. A storage device 510, such as a
-59.

W0 20071001041, ., o PCT/US2006/023706
tolabkietibiisk i niddibry or optical disk, is provided and coupled to bus 502 for storing

information and instructions.

[0356] A communication interface 518 may be coupled to bus 502 for communicating
information and command selections to processor 504. Interface 518 is a conventional serial
interface such as an RS-232 or RS-322 interface. An external terminal 512 or other computer
system connects to the computer system 500 and provides commands to it using the interface
514. Firmware or software running in the computer system 500 provides a terminal interface
or character-based command interface so that external commands can be given to the
computer system.

[0357] A switching system 516 is coupled to bus 502 and has an input interface 514 and
an output interface 519 to one or more external network elements. The external network
elements may include a local network 522 coupled to one or more hosts 524, or a global
network such as Internet 528 having one or more servers 530. The switching system 516
switches information traffic arriving on input interface 514 to output interface 519 according
to pre-determined protocols and conventions that are well known. For example, switching
system 516, in cooperation with processor 504, can determine a destination of a packet of
data arriving on input interface 514 and send it to the correct destination using output
interface 519. The destinations may include host 524, server 530, other end stations, or other
routing and switching devices in local network 522 or Internet 528.

[0358] The invention is related to the use of computer system 500 for performing the
techniques described herein. According to one embodiment of the invention, computer
system 500 performs such techniques in response to processor 504 executing one or more
sequences of one or more instructions contained in main memory 506. Such instructions may
be read into main memory 506 from another computer-readable medium, such as storage
device 510. Execution of the sequences of instructions contained in main memory 506
causes processor 504 to perform the process steps described herein. One or more processors
in a multi-processing arrangement may also be employed to execute the sequences of
instructions contained in main memory 506. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with software instructions to implement
the invention. Thus, embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.

[0359] The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 504 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,

such as storage device 510. Volatile media includes dynamic memory, such as main memory
-60-

WO 2007/001941 PCT/US2006/023706

H 506, b dSimigstor! tddifincludes coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 502. Transmission media can also take the form of acoustic or light
waves, such as those generated during radio wave and infrared data communications.

[0360] Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium from which a computer can read.
[0361] Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 504 for execution. For example, the
instructions may initially be carried on a magnetic disk of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to ‘computer system 500 can receive the data
on the telephone line and use an infrared transmitter to convert the data to an infrared signal.
An infrared detector coupled to bus 502 can receive the data carried in the infrared signal and
place the data on bus 502. Bus 502 carries the data to main memory 506, from which
processor 504 retrieves and executes the instructions. The instructions received by main
memory 506 may optionally be stored on storage device 510 either before or after execution
by processor 504.

[0362] Communication interface 518 also provides a two-way data communication
coupling to a network link 520 that is connected to a local network 522. For example,
communication interface 518 may be an integrated services digital network (ISDN) card or a
modem to provide a data communication connection to a corresponding type of telephone
line. As another example, communication interface 518 may be a local area network (LAN)
card to provide a data communication connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, communication interface 518 sends and
receives electrical, electromagnetic or optical signals that carry digital data streams
representing various types of information.

[0363] Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data equipment operated by an
Internet Service Provider (ISP) 526. ISP 526 in turn provides data communication services
through the worldwide packet data communication network now commonly referred to as the
“Internet” 528. Local network 522 and Internet 528 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals through the various networks and

the signals on network link 520 and through communication interface 518, which carry the
-61-

WO 2007/001941 .oy -y e PCT/US2006/023706
b digitat B4t o éind"k'rbﬂlr"%‘fnputer system 500, are exemplary forms of carrier waves

transporting the information.

[0364] Computer system 500 can send messages and receive data, including program
code, through the network(s), network link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested code for an application program
through Internet 528, ISP 526, local network 522 and communication interface 518. In
accordance with the invention, one such downloaded application provides for performing the
techniques described herein.

[0365] Processor 504 may execute the received code as it is received and/or stored in
storage device 510 or other non-volatile storage for later execution. In this manner, computer
system 500 may obtain application code in the form of a carrier wave.

[0366] 6.0 EXTENSIONS AND ALTERNATIVES

[0367] In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be regarded in an illustrative

rather than a restrictive sense.

-62-

WO 2007/001941 PCT/US2006/023706

" CLAIMS™"

e anndt 7 fdt Hatt

What is claimed is:

1.

A data processing apparatus, comprising:

a plurality of network interfaces that are coupled to a data network for receiving one

or more packets therefrom and sending one or more packets thereto;

one or more processors,

a switching system coupled to the one or more processors and packet forwarding

logic, wherein the switching system and packet forwarding logic are
configured to receive packets on a first network interface, determine a second
network interface on which to send the packets, and to send the packets on the

second network interface;

logic comprising one or more stored instructions which when executed by the one or

more processors are operable to cause:

receiving over the network an application-layer message comprising one or
more of the packets;

receiving a message identity policy that defines any one or more of: first
identity information in a transport-layer protocol header of the .
application-layer message and whether to extract the first identity
information from the transport-layer protocol header; second identity
information in an application-layer protocol header of the application-
layer message and whether to extract the second identity information
from the application-layer protocol header; and third identity
information in a message body of the application-layer message and
whether to extract the third identity information from the message
body;

extracting any one or more of the first identity information, second identity
information, and third identity information as specified in the message
identity policy;

determining one or more authentication operations to authenticate the one or
more of the first identity information, second identity information, and
third identity information;

performing the one or more authentication operations, and in response,

receiving one or more message sender identity attributes;

-63-

WO 2007/001941 PCT/US2006/023706
treatihg drrbutbound application-layer message that includes the message

sender identity attributes;

forwarding the outbound application-layer message to a next endpoint.

2. The apparatus of claim 1, comprising a router or switch for a packet-switched
network.
3. The apparatus of claim 1, wherein the logic comprises further instructions which

when executed cause forwarding the outbound application-layer message to a next endpoint

using an outbound transport protocol that is specified in the message identity policy.

4. The apparatus of claim 1, wherein the message identity policy further specifies the
one or more authentication operations to authenticate the one or more of the first identity

information, second identity information, and third identity information.

5. The apparatus of claim 1, wherein the logic comprises further instructions which
when executed cause binding the one or more message sender identity attributes to a

previously created outbound application-layer message.

6. The apparatus of claim 1, wherein the logic comprises further instructions which
when executed cause:
receiving over the network the application-layer message in a first application-layer
message format;
extracting from the received application-layer message one or more session identity
attributes;
creating the outbound application-layer message in a second application-layer
message format that is different from the first application-layer message
format;
storing the session identity attributes in the outbound application-layer message

according to the second application-layer message format.

7. The apparatus of claim 1, wherein the logic comprises further instructions which
when executed cause:
receiving over the network the application-layer message in a first application-layer
message format;
extracting from the received application-layer message one or more session identity
attributes;
creating the outbound application-layer message in a second application-layer
message format that is different from the first application-layer message

format;
-64-

WO 2007/001'941" — PCT/US2006/023706
| Llbtit o wbrmlalizld session object that can store the session identity attributes in a

format independent of the first application-layer message format and the
second application-layer message format;
storing the session identity attributes in the outbound application-layer message

according to the second application-layer message format.

8. The apparatus of claim 1, wherein the instructions that cause performing the one or
more authentication operations comprise instructions for performing a sign-on operation
which when executed cause a message sender associated with the one or more message

sender identity attributes to sign in to a destination server.

0. The apparatus of claim 1, wherein the logic comprises further instructions which
when executed cause selecting the next endpoint from among a plurality of endpoint

identifiers based on the one or more message sender identity attributes.

10. A computer-readable storage medium encoded with logic to perform identity
brokering in a network element, the logic comprising one or more stored instructions which
when executed by one or more processors are operable to cause:
receiving over a network an application-layer message comprising one or more
packets;
receiving a message identity policy that defines any one or more of: first identity
information in a transport-layer protocol header of the application-layer
message and whether to extract the first identity information from the
transport-layer protocol header; second identity information in an application-
layer protocol header of the application-layer message and whether to extract
the second identity information from the application-layer protocol header;
and third identity information in a message body of the application-layer
message and whether to extract the third identity information from the
message body;
extracting any one or more of the first identity information, second identity
information, and third identity information as specified in the message identity
policy;
determining one or more authentication operations to authenticate the one or more of
the first identity information, second identity information, and third identity
information;
performing the one or more authentication operations, and in response, receiving one

or more message sender identity attributes;

-65-

WO 2007/001941 PCT/US2006/023706

ey

......

bt b i dranroutBdiiid application-layer message that includes the message sender

11.

identity attributes;

forwarding the outbound application-layer message to a next eridpoint.

A data processing apparatus, comprising:

a plurality of network interfaces that are coupled to a data network for receiving one
or more packets therefrom and sending one or more packets thereto;

One or more processors;

a switching system coupled to the one or more processors and packet forwarding
logic, wherein the switching system and packet forwarding logic are
configured to receive packets on a first network interface, determine a second
network interface on which to send the packets, and to send the packets on the
second network interface;

means for receiving over the network an application-layer message comprising one or
more of the packets;

means for receiving a message identity policy that defines any one or more of: first
identity information in a transport-layer protocol header of the application-
layer message and whether to extract the first identity information from the
transport-layer protocol header; second identity information in an application-
layer protocol header of the application-layer message and whether to extract
the second identity information from the application-layer protocol header;
and third identity information in a message body of the application-layer
message and whether to extract the third identity information from the
message body;

means for extracting any one or more of the first identity information, second identity
information, and third identity information as specified in the message identity
policy;

means for determining one or more authentication operations to authenticate the one
or more of the first identity information, second identity information, and third
identity information;

means for performing the one or more authentication operations, and in response,
receiving one or more message sender identity attributes;

means for creating an outbound application-layer message that includes the message
sender identity attributes;

means for forwarding the outbound application-layer message to a next endpoint.

-66-

I

WO 2007/001941 PCT/US2006/023706

......................

network.,

13, The apparatus of claim 11, further comprising means for forwarding the outbound
application-layer message to a next endpoint using an outbound transport protocol that is

specified in the message identity policy.

14. The apparatus of claim 11, wherein the message identity policy further specifies the
one or more authentication operations to authenticate the one or more of the first identity

information, second identity information, and third identity information.

15. The apparatus of claim 11, further comprising means for binding the one or more
message sender identity attributes to a previously created outbound application-layer

message.

16. The apparatus of claim 11, further comprising:

means for receiving over the network the application-layer message in a first
application-layer message format;

means for extracting from the received application-layer message one or more session
identity attributes;

means for creating the outbound application-layer message in a second application-
layer message format that is different from the first application-layer message
format;

means for storing the session identity attributes in the outbound application-layer

message according to the second application-layer message format.

17. The apparatus of claim 11, further comprising:

means for receiving over the network the application-layer message in a first
application-layer message format;

means for extracting from the received application-layer message one or more session
identity attributes;

means for creating the outbound application-layer message in a second application-
layer message format that is different from the first application-layer message
format;

means for creating a normalized session object that can store the session identity
attributes in a format independent of the first application-layer message format
and the second application-layer message format;

means for storing the session identity attributes in the outbound application-layer

message according to the second application-layer message format.

-67-

WO 2007/001941, o PCT/US2006/023706
g R e paratud 8 Blaim 11, further comprising means for performing a sign-on

operation which when executed cause a message sender associated with the one or more

message sender identity attributes to sign in to a destination server.

19. The apparatus of claim 11, further comprising means for selecting the next endpoint
from among a plurality of endpoint identifiers based on the one or more message sender

identity attributes.

20. A computer-implemented method, comprising:

receiving over a network an application-layer message comprising one or more
packets;

receiving a message identity policy that defines any one or more of: first identity
information in a transport-layer protocol header of the application-layer
message and whether to extract the first identity information from the
transport-layer protocol header; second identity information in an application-
layer protocol header of the application-layer message and whether to extract
the second identity information from the application-layer protocol header;
and third identity information in a message body of the application-layer
message and whether to extract the third identity information from the
message body;

extracting any one or more of the first identity information, second identity
information, and third identity information as specified in the message identity
policy;

determining one or more authentication operations to authenticate the one or more of
the first identity information, second identity information, and third identity
information;

performing the one or more authentication operations, and in response, receiving one
or more message sender identity attributes;

creating an outbound application-layer message that includes the message sender
identity attributes;

forwarding the outbound application-layer message to a next endpoint.

-68-

WO 20070001941 0o PCT/US2006/023706
21 e B etRodlof $hiin 20, wherein the first receiving step comprises receiving the

application-layer message in any of a router or switch for a packet-switched network.

22, The method of claim 20, further comprising forwarding the outbound application-
layer message to a next endpoint using an outbound transport protocol that is specified in the

message identity policy.

23. The method of claim 20, wherein the message identity policy further specifies the one
or more authentication operations to authenticate the one or more of the first identity

information, second identity information, and third identity information.

24, The method of claim 20, further comprising binding the one or more message sender

identity attributes to a previously created outbound application-layer message.

25. The method of claim 20, further comprising:

receiving over the network the application-layer message in a first application-layer
message format;

extracting from the received application-layer message one or more session identity
attributes;

creating the outbound application-layer message in a second application-layer
message format that is different from the first application-layer message
format;

storing the session identity attributes in the outbound application-layer message

according to the second application-layer message format.

26. The method of claim 20, further comprising:

receiving over the network the application-layer message in a first application-layer
message format;

extracting from the received application-layer message one or more session identity
attributes;

creating the outbound application-layer message in a second application-layer
message format that is different from the first application-layer message
format;

creating a normalized session object that can store the session identity attributes in a
format independent of the first application-layer message format and the
second application-layer message format;

storing the session identity attributes in the outbound application-layer message

according to the second application-layer message format.

RO

WO 2007/001941 PCT/US2006/023706
270" " "Pe' hethod $feldiin 20, further comprising performing a sign-on operation which

when executed cause a message sender associated with the one or more message sender

identity attributes to sign in to a destination server.

28. The method of claim 20, further comprising selecting the next endpoint from among a

plurality of endpoint identifiers based on the one or more message sender identity attributes.

29. The method of claim 20, wherein any one or more of the first identity information,
second identity information, and third identity information specifies a message sender using a
first identity domain of a first network, and wherein the message sender identity attributes
identify the message sender using a second identity domain of a second network, wherein the

second identity domain is different from the first identity domain.

30. The method of claim 29, wherein creating an outbound application-layer message
comprises transforming any one or more of the first identity information, second identity
information, and third identity information from the first identity domain into the message

sender identity attributes in the second identity domain.

31. The apparatus of claim 1, wherein any one or more of the first identity information,
second identity information, and third identity information specifies a message sender using a
first identity domain of a first network, and wherein the message sender identity attributes
identify the message sender using a second identity domain of a second network, wherein the

second identity domain is different from the first identity domain.

32. The apparatus of claim 31, wherein the logic operable to perform creating an

outbound application-layer message comprises logic operable to perform transforming any
one or more of the first identity information, second identity information, and third identity
information from the first identity domain into the message sender identity attributes in the

second identity domain.

33. The apparatus of claim 11, wherein any one or more of the first identity information,
second identity information, and third identity information specifies a message sender using a
first identity domain of a first network, and wherein the message sender identity attributes
identify the message sender using a second identity domain of a second network, wherein the

second identity domain is different from the first identity domain.

34, The apparatus of claim 33, wherein the means for creating an outbound application-
layer message comprises means for transforming any one or more of the first identity
information, second identity information, and third identity information from the first identity

domain into the message sender identity attributes in the second identity domain.

-70-

PCT/US2006/023706

WO 2007/001941

1/32

NOILVYOl'lddY
d3IAH3S
N¢l)

NOILYOlddV
SETRCER)
dctl

| "Old

NOILYOlddV
d3Ad3S
vell

ININTTE
HHOMLAN
90t

NOILYOI'ddY
BTN ER)
Nvll

AHOMLAN
8l7

NOILVOIlddY | |NOILYOl'lddY
®eoe | HINYIS d3Ad3S
avii il
INIWFTS
AHOMLAN
801
d10SNOD
INJNFOVNYIN
44!
ININT T
AHOMLAN
0l

»— 00}

ININF1H
HHOMIAN
<01

NOILYOIlddY
INANO
(113

WO 2007/001941 PCT/US2006/023706

2/32

200 —~¢
FIG. 2

202
DETECT, AT ANETWORK ELEMENT, THE INABILITY OF A
FIRST SERVER TO SERVICE A REQUEST

204
SELECT A SECOND SERVER FROM AMONG A
PLURALITY OF SERVERS

206
SEND THE REQUEST TOWARD THE SECOND SERVER

WO 2007/001941 PCT/US2006/023706

3/32

300A - FIG. 3A
302
INTERCEPT, AT A NETWORK ELEMENT, A REQUEST THAT ORIGINATED
FROM A CLIENT
304

SELECT A SERVER FROM AMONG A PLURALITY OF SERVERS THAT
EXCLUDES SERVERS THAT ARE ON A LIST OF FAILED SERVERS

'

306
SEND THE REQUEST TOWARD THE SELECTED SERVER

'

308
INTERCEPT, AT THE NETWORK ELEMENT, DATA PACKETS SENT FROM
THE SELECTED SERVER

'

310
CONSTRUCT, AT THE NETWORK ELEMENT, AN APPLICATION LAYER
MESSAGE COLLECTIVELY CONTAINED IN THE DATA PACKETS

312
DOES THE
APPLICATION LAYER

MESSAGE CONTAIN AN
INDICATION THAT THE SELECTED
SERVER ISUNABLE TO
SERVICE THE
REQUEST?

YES

316 314
SEND THE ADD THE SELECTED
APPLICATION LAYER SERVER TO THE LIST
MESSAGE TOWARD OF FAILED SERVERS
THE CLIENT I

WO 2007/001941 PCT/US2006/023706

4/32
300B 9
o FIG. 3B
RECEIVE USER-SPECIFIED INPUT AT A NETWORK
ELEMENT
324

ESTABLISH, AT THE NETWORK ELEMENT, AN
ASSOCIATION BETWEEN A PARTICULAR MESSAGE
CLASSIFICATION AND ONE OR MORE CRITERIA
INDICATED IN THE USER-SPECIFIED INPUT

l

326
ESTABLISH, AT THE NETWORK ELEMENT, AN
ASSOCIATION BETWEEN THE PARTICULAR MESSAGE |
CLASSIFICATION AND ONE OR MORE ACTIONS
INDICATED IN THE USER-SPECIFIED INPUT

l

328
INTERCEPT, AT THE NETWORK ELEMENT, ONE OR
MORE DATA PACKETS THAT ARE DESTINED FOR A
DEVICE OTHER THAN THE NETWORK ELEMENT

'

330
DETERMINE AN APPLICATION LAYER PROTOCOL THAT
WAS USED TO TRANSMIT A MESSAGE CONTAINED IN
THE DATA PACKETS

TO
BLOCK
332

WO 2007/001941 PCT/US2006/023706

5/32

o FIG. 3C

BLOCK
330

332
DETERMINE A MESSAGE TERMINATION TECHNIQUE
THAT IS ASSOCIATED WITH THE APPLICATION LAYER
PROTOCOL

|

334
DETERMINE, BASED ON THE MESSAGE TERMINATION
TECHNIQUE, THE CONTENTS OF THE MESSAGE

|

336
DETERMINE A MESSAGE CLASSIFICATION THAT IS
ASSOCIATED WITH CRITERIA THAT THE MESSAGE
SATISFIES

l

338
PERFORM ACTIONS THAT ARE ASSOCIATED WITH THE
MESSAGE CLASSIFICATION

PCT/US2006/023706

6/32

WO 2007/001941

QdVMEO0A
1252

1000104d

AIAONW
1157

¥ "Old

1YWHOA
AJIAONW
307

NOILYNILSZd
AdIGONW
90¥

0071
OL 3LIEMm
¥0¥

IN31INOD
AdIGOW
[4i%

PCT/US2006/023706

7/32

WO 2007/001941

9¢s

8¢S

§744 r .Nlﬂw
1SOH i EER
_ ONm _ .H ix
725 _ —
MHOMLIN “ J0vaINT || 708
- _ 9IS ¥0SSI0Yd
6lG I 91G WALSAS NOILVOINNWWOD
\ 5 ONIHOLIMS
< |
_ HH
1 |
v]
16 | —
| Snd
ds| |
— N
]
LINYIINI _
|
! 01% 705 p—
e ! 30IA3a S
! I9VHOLS on:
NETYER | O

WO 2007/001941 PCT/US2006/023706

8/32

600
ROUTER

610A > > 610A
SUPERVISOR BLADE

6108 —-\
Ol /

AONS BLADE

—% 510B

606A
OTHER BLADE

606N
OTHER BLADE

FIG. 6

PCT/US2006/023706

WO 2007/001941

9/32

NOILYOIddY
HINGES
N8l.

NOILYOIddY
SE/RES)
8L

NOILYOI'ddV
SEINER
d8lz

NOILYOIddV
ISE/RE
V8l

L Old

NOILYOINddV
d3ING3S
NS1.Z

NOILYI'lddV
l=E/R=E)
g8z

NOILYOlNddY
=E/YEN
V811

AXOdd
INIOdAON3
SNOV
807

HOLIMS
[d3LN0d
24

AXOtd HOLIMS
INIOJaNT
3L
SNOY s
90/ _

_
d31Nod

NOILYOIddY
INAMO
NY1LL

AXOdd
INIOdANA
SNOY

(¥

SNOY
47

0z

HOLIMS
/d431N0d

AXOdd
INIOdaN3
SNOV
0L

NOILYOI'ddY
IN3ITO
orLL

T~

NOILYOITddY
INAMO
arll

NOLLYOITddV
INAMO
Vil

WO 2007/001941

PCT/US2006/023706

10/32

8 Ol

XNNTT SOl
918 78
AN19 JI4103dS WH041LY1d SOY
718
SAOHLIW SSFIIV/1000.L08d SOV
08 |
YITIONLNOO NOILNOIXT FOVSSTNSOY | gng
_.-|II|.--|--I--In--|.!|--|:|}|--|l--|--|:|--|--|..
: YINIVLNOD |
| ¢¢8 _| 1311d140S i
! | !
| SLILLRIOS grg._ | SLIFAVIE | || INFWIOYNY
SF0INYTS L | i any
NOWNOD m | 079 | m NOILYEN9IANOD
sov " L h08 soy
_
908 m SIINY/SMOT ~ 08

PCT/US2006/023706

WO 2007/001941

11/32

6 Ol4

OIAVHL TV
706 NHOMLIN FHL 1Y

(1¥0d 1S3a1¥0d 324N0S (SITToY)
71020.108d l:mmeI%_ 308N0S) F1dNES SO 30 d1S LY
NOLLOIrFH/NOILYIIHISSYTO OSW

ms%%mz NOV 'SOldNS

(43aY3IH 1000.L0¥d ONIaYIY
(14N)
Y314V 1N9 IOVSSIN
%9&:@%855 ONISHYd FH0478) SNOV
(dNYOOT (Sal 'WS/SSI SFAVIE ¥IHLO
MOT4 (HLYdYNINOL)
VIA JAYS SINTINOD/EFAYIH
0. 3ZINILdO) I9VSSIN 39 <mmmww&mmo<m
. 0l6
!
JOVSSIW INVAT T SNOV

» _ 006

PCT/US2006/023706

12/32

WO 2007/001941

NOILYOllddY
SENYEN
710}

0l 'Ol

\\\\1

3OVSSIN
dNOV

[

-«
JOVSSIN

(dS)
SNOV
3001

d31N0Y
SNOV
¢lol

N\

\

dNOV

JOVSSIN

d31n0od
0c0l

HOLIMS
CHIAV]
9l0l

d31N0Y
8101

(dD)
SNOV
9001

<«
JOVSSaN

NOILLYOI'lddV
INAITO
v001

PCT/US2006/023706

WO 2007/001941

13/32

NOILYOI'lddY
ONIAIFO3Y
voll

JOVSSIN

Vil "old

O

FOVSSIN
dNOV

oY=

(ds)
dav
0T

®

d3LN0d
SNOV
8oLl

d31n0Y

HOLIMS
€ 43AY]

Jho

JOVSSIN
dNOV

d31N0Y

O,

(dD)
dav

90l

®

-
JOVSSaN

NOILYOI'ddY
ONION3S
¢l

MOT4
1S3No3y

PCT/US2006/023706

14/32

WO 2007/001941

NOILYOI'ddY
ONIAIFO3Y
volLl

JOVSSIN

dll 9l

@

JOVSSIN
dNOV

&/ —

)

d41n0d
SNOV
8011

d31N0d

HOLIMS
CHIAV]

@)

JOVSSIN
dNOV

d31N0Y

ION

JOVSSIN

NOILYOINddY
ONIONES
¢0bl

MO
4SNOJS3Y

PCT/US2006/023706

WO 2007/001941

15/32

NOILYOlNddY
ONIAIZOFH
y0cl

V¢l Old

-« |
FOVSSIN

JOVSSIN

(dS)

dav -

q0¢r JOVSSIN
dNOV

(dD)

90¢})

-«
JOVSSIN

JOVSSIN

NOILYOlddV
ONIAN3S
¢0cl

MO14
1S3N03

PCT/US2006/023706

16/32

WO 2007/001941

NOILYOINddY
ONIAIZOFYH
vocl

acl 'Ol

—
JOVSSIN

J9VSSIN

(dS)

dav

B80¢1) JOVSSIN
dNOV

(dD)
dav

Q|
N
—

JOVSSIN

N
AOVSSIN

NOILYOIlddY
ONIANAS
44

MO
ASNOJSTY

PCT/US2006/023706

17132

WO 2007/001941

NOILYOl'lddV
ONINZO3H
VOET

el

old

®

OV

JOVSSaN

431N0d
SNOV
80t}

RO,

JOVSSIN

dNOY

O .

JOVSSIN

(ds)

d31N0Y

dNOV

HOLIMS
€ H3AV]

43N0y

90¢}

®)

AV

-« ——
JOVSSIN

®

NOILYOddY
ONIANZS
¢0€l

MO
1S3N03Y

PCT/US2006/023706

18/32

WO 2007/001941

NOILYOlddY
ONIAIZOFH
vovl

vl Ol

D —
JOVSSIN

(ds)
nm<

/ -

-

JOVSSIN

\\</ NS

AOVSSIN dINOV

e
JOVSSIN

NOILYOIddY
ONIAONAS
417

MO
1S3aNo3y

PCT/US2006/023706

19/32

WO 2007/001941

NOILVYOI'lddV
ONIAIFZOY
y0Sl

d3LN0Y
SNOV
8091

VGl "ol
%@@
©
(
® &%W | yaLnoy
39vSSIN| pror

HOLIMS
REIN\A

OSW 313 13a @

d341N0y

(d0)
dav

9091

¢
JOVSSIN

0,

NOILYOIddV
ONIAONGS
¢09}

MO14
1S3N03Y

PCT/US2006/023706

20/32

WO 2007/001941

NOILYOIlddY
ONIAIFO3Y
v0sl

a9l "ol

@),

dOVSSIN

(dS)
dav

LGl

O,

N

JOVSSIN
dNOV

¥3LN0Y
a | sNov
JOVSSIN 804Gl
dNOY
HOLIMS
| [¥3100Y8 || eymam

=

d31N0Y

NS

NOILYOINddY
ONION3S
¢S}

MO
1S3N03d

PCT/US2006/023706

21/32

WO 2007/001941

NOILYOI'lddY
ONIAIFO3H
7091

O,

d341N0d
SNOV
8091

91 "9OId
ﬁ@@
(ds)
@ gy ||¥3nod
39VSSIN | gror

HOLIMS
€ "dAV]

OSW m;m_._m_o@

d31nod

(dD)
dav

9091

AV
— >

-«
JOVSSIN

®

NOILVOI'lddY
ONION3S
¢091

MOT4
1S3N03d

PCT/US2006/023706

22/32

WO 2007/001941

Ll Ol

ONISSFO0Hd OSIW ISNOJS3Y @

d3Ad3S
80L1

ONISS300dd OSIN ASNOLSTY @

V OL-ATd3Y dLLH @ dNOV/ EE_.EG VOL-Ald3d n_t:e
> > >
mo | [w mo][
JAONSNOY | . JAON SNOY |
-« 90T dNOv/edi .&.E@ o | 30NSAS/F A LLH
Egi%aﬁt:@ W\ @
ONISSIOOHd OSI E:o%@ ONISSFO0Hd DS 5%0&@

IN3MO
¢0.1

PCT/US2006/023706

WO 2007/001941

23/32

SENYER
8081

A E

ONISS300Hd OSN 1S3N03Y @

-
}30INI3S/8//-dLIH

O,

1no

NI

siov (£)

JdON SNOV

908}

-+

¥ OL-A1d3Y dLLH
'
1n0 NI
azo<\m%¢tz@ JAON SNOV |
7081 mo_imw\m\\“n_ﬁh%
ONISSIDOHd OSN B%Sm@

INAMO
081

PCT/US2006/023706

24/32

WO 2007/001941

61 'Ol

.. ONISSFOOHd

SSOV
806!

IW3LSASENS
FINLONGLSVYHANI

FOVSSIN SNOV
9061

u 2061
¥ATIONLINOD
NOLLNO3X3
3OVSSIN |

7161 :

WALSASENS
NOILNOIXd
1313avid
45

N3LSASENS
INFNFOYNYIA
MO
ot6l

NFLSASENS
INFNFOVNVIA
AJNOd
o6l

MHOMINYHA (OFNY) HITIOYLNOD NOILNIAXT FDVSSTN SNOV

PCT/US2006/023706

WO 2007/001941

25/32

&

weisAsgng ainjonyseyu|
Buisseoold abessay SNOY

B

0061

(apou SNOV ue Jo ssaooid eaep sy} jo ped)
yomawel 4 (DY) J8jj013uo) uoinoaxy abesssy SNOY

™~ 9061
A Y v ¢061
(peseg 4do1) peseg 401
lapusg obessol 9 E Jonsoay abessa|y
2c0¢
\ 9202 (8)
» 1ybiu| Joyojedsiq obessapy
1oBeue) \
220z l00g pesIyL 9002
O 7 (v)
—— 8002 ~
e I9||oJ3uo)) uonnoaxy abessspy
Y
| wiolsAsqng
Jajjoiuon) uonnoaxy 19epe|g @ JuswsBeuepy
19Beuep / mold
]004 pealyL @ g910¢ ¥10¢ 7
v 0l6lL
) 1o[epelg ansnpjisispe|g
8102 -)) 20z
0z0z \ﬁ R
/%\ I _
Jayojedsiq 19jepelg
wie)sAsqng » . orom|a|
uopnoexd jelepeld g1 @

0¢ "Oid

WO 2007/001941 PCT/US2006/023706
26/32
FIG. 21
%— Deploy —— Promote —i
2102
v y /
AONS
Configure — Configuration Persist —]
Services 2110
Pull or Push Configuration
Data
oY
1<
Y v Y
Blade Device AONS

2104

C

2106

L

2108

PCT/US2006/023706

WO 2007/001941

27132

0IAIBS . “_M_,HMNw__m_“_c_
8eee ogez
1o|9pelg »| STOV % s8joy
9¢ee yece
Mo| | Pess Aoy
$e7Z le . saijiug saniug R ajeAud/oland
|geinbiuon a|geinbijuon
AN AAd uonenbyuo)
uoneolddy 7 .
densjoog
ceec vicc 0cce—
abeuw)
wershs > dessjoog
ocee gLee—
uonyeinfByuoD uopjeinBiuon
Sbew jusnbasqgng » [enu| > obeu
8222 7 80ze 91zz 1
Olece
@ONNJ
SpoN | SPON
.wol4 paysnd, SNOV' = £g paiind.
uoljeinbyuod .
10} ,J9ALP, opelg (00Lg"M91eD)
3y} st SNOV 301N
/ /
voze c0ce
¢¢ Old

PCT/US2006/023706

WO 2007/001941

28/32

&€¢ 'Ol

" 2101
< uoneinbyuo) sjool <
» (Jasmoig) labeuepy -
G INO-ulyL Aaijod 3 moj4 0
1dAiosgpdAioug
i
< ddy Jo (SdL1H) woouaow (SdL1H) <
G > jeuod Jo ainbyuon - co;mimccoo < peojdn 3|0su09) < 0
-1 :
INSRIML fr (SdLLH/dv0S) _| || [7dmos L (Hss) o
ainbiuon _ ainbyuon
|
(SdLLH/dVOS)
uoisInold
N ;
Je|neg
ysed « JSIsiod DOSEE-INXYT
xs|dwod 0d
A
uoeInByuoD JUsh v Jushd uonelnbyuon
ind ajowold ajowiold Ind
Y Y
> SNOV SNOV -
><m>z_ _>_<m_>z_
) xa|dwoy uonnoex3y SNOV i
uoduw Asy n
Y _
_ SOl ~—speg

A9 1ed

PCT/US2006/023706

WO 2007/001941

29/32

peojdn moj4

aziuoiyoukg — 1001 MOl
uoneinbyuon ‘sa|0ld Alend
Y A h
(sjoo Aued pig) BETNETS
> uones R - > Buluoisinoid <
uonealddy Bulojuopy © uoneinbiuon
(syuang ‘obesn aalnosay uondiuosgng Jusag
‘sje1g awinuny ‘sbo ‘Alojuanui) ‘Buiuoisinold Aaljod (syepduiog ‘Aoijod ‘moj4)
SJUSA] oju] Juswebeuepy ‘uojelisIuIWpY sjoway Buluoisinoid
AljoN Aanp ‘uswiniisuj ‘Juswijjosus
\A Y
Juoby by
Buiuoisinold
Buriojiuopy
9 uoneinbiyuon
A LVONOL 1
SNOV -«
34avd
ve ‘Old

WO 2007/001941

30/32

PCT/US2006/023706

Fig. 25A

2502 Identify inbound
application message

A

A

transport protocol

2508 |dentify inbound

2504 Receive specification of (1)
where.identity.information.or -
credentials are located in transport
protocol and (2) whether to extract

A

application message

protocol

Y

2512 Identify inbound

A

2506 Receive specification of
requirements for authentication of
identity information or credentials

2509 Receive specification of (1)
where identity information or
credentials are located in message
protocol and (2) whether to extract

2510 Receive specification of
requirements for authentication of

application message

A

body

Y

2518 Identify
required authorization

operations

Y

FIG. 258

identity information or credentials

2514 Receive specifiéation of (1)
where identity information or

credentials are located in message
body and (2) whether to extract

2616 Receive specification of
requirements for authentication of

identity information or credentials

WO 2007/001941 PCT/US2006/023706

31/32

Fig. 25B

2522 Apply fine-grained
authentication and
authorization

2520 SAML

assertion?

2524 Perform required
authorization operations--e.g., !
generate and send authentication
message(s) to authenticators 2526 Authorization or
Authentication Service

2528 Receive message sender | |
identity attributes

2530 Create outbound application message using a transport protocol, message protocol,
message content or body as specified by policy

Y

2532 Bind received message sender identity attributes to outbound application message
transport protocol, message protocol, message content or body as specified by policy

Y

2534 Broker session information from inbound message

!

2536 Route message fo next endpoint using
outbound transport indicated in policy

WO 2007/001941

32/32

Fig. 26

2602 Extract session information from
header of inbound application message

L 4

2604 Create session object using normalized
format

|

2606 Store received session information in
session object

Y

2608 Create outhound message using format
~indicated in policy

Y

2610 Place received session information in
outbound message

PCT/US2006/023706

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings

