
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/018814.0 A1

US 2003O188140A1

Henry et al. (43) Pub. Date: Oct. 2, 2003

(54) APPARATUS AND METHOD FOR (52) U.S. Cl. .. 712/226
CONDITIONAL INSTRUCTION EXECUTION

(75) Inventors: G. Glenn Henry, Austin, TX (US);
Rodney E. Hooker, Austin, TX (US); (57) ABSTRACT
Terry Parks, Austin, TX (US)

Correspondence Address:
JAMES WHUFFMAN A conditional execution apparatus in a microprocessor is
1832 N. CASCADEAVE. provided. The conditional execution apparatus includes
COLORADO SPRINGS, CO 80907-7449 (US) translation logic and extended execution logic. The transla

tion logic translates an extended instruction into correspond
(73) Assignee: IP-First LLC, Fremont, CA ing micro instructions. The extended instruction has and

extended prefix and an extended prefix tag. The extended
(21) Appl. No.: 10/144,592 prefix specifies a condition, where execution of an operation
22) Filled: May 9, 2002 prescribed by the extended instruction depends upon real
(22) File ay 9, ization of the condition. The extended prefix tag indicates

Related U.S. Application Data the extended prefix, where the extended prefix tag is an
otherwise architecturally specified opcode within an instruc

(60) Provisional application No. 60/369,570, filed on Apr. tion Set for the microprocessor. The extended execution
2, 2002. logic is coupled to the translation logic. The extended

execution logic receives the corresponding micro instruc
Publication Classification tions, and evaluates the condition. If the condition is not

realized, then the extended execution logic precludes execu
(51) Int. Cl." ... G06F 9/00 tion of the operation.

CONDITION
FLAGS

901

OPERAND 1

CONDITIONAL
EXECUTION
CONTROL

Extended Execution Logic -90

90.3

RESULT

904 902 905

OPERAND 2 ADD EAX,EBX

909

910

Patent Application Publication Oct. 2, 2003 Sheet 1 of 7 US 2003/0188140 A1

Fig. 1 (Related Art) -100
Microprocessor Instruction Format

101 101 102 103 103

ADDRESS ADDRESS
PREFX OOO PREFIX OPCODE SPECIFIER OOO SPECFER

Fig. 2 (Related Art) -200
8-Bit Opcode Map

201 201

0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || A B C D E F
0 (00' 002103040506 10708090AIOBIOctop 10E OF
1 on 12 131415 1617 is 19 IAB IncidenF
2 2012 122 12324 is 26 on 12s 292A robiocodide of
3 goal is is 34 is is 7 as 39 IAIB code of
414014142143 44 4s. 14647 4s 49 4A 4B I4c14D14E14F
5 50 is 52 is 54 is 5657 is 59 saisBisc isDise ISF
6 60611626, 1646s 6667 16s 696A1GBIGC IIGDIGEIGF
8 Iso is 1828318485 1868, 18889 ISA SBIscisDISE ISF
9 1909 1929, 1949s 1969, 19s 9919A19B. 19c. 19D9E 9F

B Bo B1 (B2B3B4 IBs B6 IB7 B8IB9 BABBBc BDIBEIBF
CO IC1

D mood D2 Da D4Ds ID61D7 Ds D9DAIDBIDCIDDIDE IDF
E Eog E2 IEE4Es E6 IE7 IEs E9EAEBECEDIEEEF
FIFo(IFBIF2 if I F4Fs F6F, IFs Irgra IFBIFC FDI FEI IFF

201 201
202

Patent Application Publication Oct. 2, 2003 Sheet 2 of 7 US 2003/0188140 A1

Fia. 25 (1 -300

303

Extended Instruction Format

304 305 301

PREFIX

301 302 303

EXTENDED
PREFIX

ADDRESS
SPECIFIER

ADDRESS
OOO SPECIFIER ESCAPE

INSTR

Fie. 4 400
8-Bit Extended Prefix Map /

401 401

oil 1 2 3 4 5 6 7 8 9 A B C DEF
o Eoleo Eoleogeodeoseoseo, Eos E09 ElaeoBEoc EODEOE Eof
1 Elo Eliezes e4 else genets E9EAEBecedeteer
2 E20 E2 E22 lease24E25 E26 E2, E2s E29 EAE2BE2c lead E2EE2F
3 Teso Eses essessessesses, leasessesalesbesceedlese ear

5 esoleses essessessesses, essessesalesalescesdieselest
6 ecolleges esses essesses, essess E6AEGBEcclead EGEEof

8 Teso Estes essessessesses, less E89 Esa EsbescesDesE ESF
9 egoes E9E9E94 essess E97 essessesaleseece dese ef
A Eaoea. EAEAEAEAs easea leaseaseAAEABEacEADEAEEAF
B Ebo EBeB2 EBEB4EBs EBs EBEB EB9|EBAEBBEBcEBDEBEEBF

Dedoed EDED EDIEDs EDGED, ED ED9EDAEDBEDceDDEDEEDF
EeeoEEEEEEEEEEs EEGEE, essees EEAEEBeeceedeeeeer
Feroerero ersepersers era ersers eraerberclerDEFEEFF

Patent Application Publication Oct. 2, 2003 Sheet 3 of 7 US 2003/0188140 A1

Fig. 5
Microprocessor for Extended Conditional Execution ? 500

NSTRUCTION
FETCH CACHEMEM

INS QUEUE

TRANSLATION LOGIC

504
EXTENDED

TRANSLATION

TRANSLATE LOGC

MICRO
NSTRUCTION
OUEUE

EXECUTION LOGIC

EXECUTE 507
EXTENDED
EXECUTION

LOGIC

Patent Application Publication Oct. 2, 2003 Sheet 4 of 7 US 2003/0188140 A1

Fig. 6
Extended Prefix for Conditional Execution -60

601 602

SPARE CONDITION

Fig. 7
Condition Field Logic States -700

1110 NOT GREATER

1111 GREATER

Patent Application Publication Oct. 2, 2003 Sheet 5 of 7 US 2003/0188140 A1

Fig. 3
Translate Stage Details ? 800

801
POWER-UPSTATE

NSTRUCTION

TRANSLATION LOGIC
808

- ESC INS DISABLE TRANSLATION
DETECT CONTROLLER

809 807

up - EXT PREF

DECODER
811

- NS

DECODER

814 15 8 813 816 817

Patent Application Publication Oct. 2, 2003 Sheet 6 of 7 US 2003/0188140 A1

Fig. 9
Extended Execution Logic -90

901 902 905

OPERAND 1

903 904

OPEXT ADD EAX,EBX OPERAND 2

906

CONDITION
FLAGS

CONDITIONAL
EXECUTION
CONTROL

909

90

RESULT

Fig. 10
Conditional Execution Instruction Flow 1 1OOO

CONVENTIONAL EXECUTION CONDITIONALEXECUTION C CODE FLOW C CODE FLOW FLOW FOW

MOVEAX, A MOVEAX, A)
CMP EAX, B)
JLEELSE CMEE.P.
MOVIC, 3

JMP COMMON EY&i.3.
ELSE: MOVE (C), 1
COMMON: LE MOVIC), 1

IF (A>B); C=3
ELSE CE 1

Patent Application Publication Oct. 2, 2003 Sheet 7 of 7 US 2003/0188140 A1

Fig, 11
Extended Conditional Execution

1100
?

1102
BEGIN

FETCH NEXT INSTRUCTION

PROVIDEMICRO 1116
INSTRUCTIONSEQUENCE

1106 TO QUEUE FOR EXECUTION

EXTENDED
ESCAPE CODE

RETRIEVE EXTENDED 1118
MICRONSTRUCTION FOR

EXECUTION

1108 DECODE CONDITION CODE
INEXTENDED PREFX

READ PRESCRIBED CODES 1120
FROM CONDITION CODE

PRESCRIBE CONDITION
CODESNEXTENSONFED
NMICRO INSTRUCTION

SEQUENCE

STRUCTURE 1110

1122

CONDITIONS
TRUE DECODETRANSLATE 1112

PREF1X, OPCODE, AND
ADDRESS SPECIFIERS

NFIGUREMEC 1124 EXECUTE OPERATION
o'Eo 1114 SPECIFIED BY

MICRO OPCODE
FIELDSNMICRO

INSTRUCTIONSEQUENCE

1126

US 2003/0188140 A1

APPARATUS AND METHOD FOR CONDITIONAL
INSTRUCTION EXECUTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority based on U.S.
Provisional Application, Serial No. 60/369570, filed Apr. 2,
2002, entitled “APPARATUS AND METHOD FOR CON
DITIONAL INSTRUCTION EXECUTION.

0002 This application is related to the following co
pending U.S. Patent Applications, which are filed on the
Same day as this application, and which have a common
assignee and common inventors.

SERIAL DOCKET
NUMBER NUMBER TITLE

CNTR2176 APPARATUS AND METHOD FOR
EXTENDING AMCROPROCESSOR
INSTRUCTION SET

CNTR-2188 APPARATUS AND METHOD FOR
SELECTIVE CONTROL OF
CONDITION CODE WRITE BACK

CNTR2189 MECHANISM FOR EXTENDING
THE NUMBER OF REGISTERS
INAMICROPROCESSOR

CNTR.2198 APPARATUS AND METHOD FOR
SELECTIVE CONTROL OF
RESULTS WRITE BACK

BACKGROUND OF THE INVENTION

0003) 1. Field of the Invention
0004. This invention relates in general to the field of
microelectronics, and more particularly to a technique for
incorporating conditional execution capabilities into an
existing microprocessor instruction Set architecture.
0005 2. Description of the Related Art
0006 Since microprocessors were fielded in the early
1970's, their use has grown exponentially. Originally
employed in the Scientific and technical fields, microproces
Sor use has gravitated from those specialty fields into
commercial consumer fields that include products Such as
desktop and laptop computers, Video game controllers, and
a host of other common household and busineSS devices.

0007 Along with this explosive growth in use over the
past 30 years, the art has experienced a corresponding
technology pull that is characterized by an escalating
demand for increased Speed, expanded addressing capabili
ties, faster memory accesses, larger operand size, more
operations (e.g., floating point, Single-instruction multiple
data (SIMD), conditional moves, etc.), and added specialty
operations (e.g., multi-media operations). This technology
pull has resulted in an incredible number of advances in the
art which have been incorporated in microprocessor designs
Such as extensive pipelining, Super-Scalar architectures,
cache Structures, out-of-order processing, burst access,
branch predication, and Speculative eXecution. Quite
frankly, a present day microprocessor is an amazingly com
pleX and capable machine in comparison to its 30-year-old
predecessors.

Oct. 2, 2003

0008 But unlike many other products, there is another
very important factor that has constrained, and continues to
constrain, the evolution of microprocessor architecture. This
factor, legacy compatibility, moreover accounts for a great
deal of complexity in a present day microprocessor. For
market-driven reasons, many producers have opted to incor
porate new architectural features into updated microproces
Sor designs, but at the same time in these newer products
they choose to retain all of the capabilities that are required
to insure compatibility with older, So-called legacy applica
tion programs.
0009 Nowhere has this legacy compatibility burden been
more noticeable than can be seen in the development history
of X86-compatible microprocessors. It is well known that a
present day virtual-mode, 32-/16-bit x86 microprocessor is
Still capable of executing 8-bit, real-mode, application pro
grams which were produced during the 1980's. And those
skilled in the art will also acknowledge that a significant
amount of corresponding architectural "baggage' is carried
along in the x86 architecture for the Sole purpose of Sup
porting compatibility with legacy applications and operating
modes. Yet, while in the past developers have been able to
incorporate newly developed architectural features into
existing instruction Set architectures, the means whereby use
of these features is enabled-programmable instructions
are becoming Scarce. More Succinctly, there are no more
"spare’ instructions in certain instruction Sets of interest that
provide designers with a means to incorporate newer fea
tures into an existing architecture.
0010. In the x86 instruction set architecture, for example,
there are no undefined 1-byte opcode States that have not
already been used. All 256 opcode States in the primary
1-byte x86 opcode map are taken up with existing instruc
tions. As a result, x86 microprocessor designers must pres
ently make a choice between providing new features and
abandoning legacy compatibility. If new programmable fea
tures are to be provided, then they must be assigned to
opcode States. And if spare opcode States do not remain in
an existing instruction Set architecture, then Some of the
existing opcode States must be redefined to provide for the
new features. Thus, legacy compatibility is Sacrificed in
order to provide for new feature growth.
0011. One area of growth that is yet to be addressed in
many instruction Set architectures is known as conditional
execution. Programmable conditional execution features
allow a programmer to specify test conditions (e.g., greater
than, less than, etc.) as part of an operative instruction (e.g.,
addition, Subtraction, movement of operands from memory
to registers, etc.). So programmed, a conditional instruction
moves through a microprocessor pipeline, and immediately
prior to execution of the operation Specified by the condi
tional instruction, the test conditions are evaluated. If the
conditions are true (i.e., realized), then the operation is
performed, and results are generated. If the conditions are
not false (i.e., not realized), then the operation is not
performed and the conditional instruction is retired. Condi
tional execution capabilities would be extremely advanta
geous in a present day pipeline architecture because these
capabilities would virtually eliminate the deep pipeline
flushes that are now experienced as a consequence of branch
mispredictions associated with conventional conditional
branch instructions which are currently employed to effect
conditional flow in application programs.

US 2003/0188140 A1

0012 What is needed, therefore, is a technique that
allows conditional execution features to be incorporated into
an existing microprocessor instruction Set architecture that
has a completely populated opcode Structure, and where the
technique retains legacy application compatibility.

SUMMARY OF THE INVENTION

0013 The present invention, among other applications, is
directed to overcoming these and other problems and dis
advantages of the prior art. The present invention provides
a Superior technique for extending a microprocessor instruc
tion Set beyond its current capabilities to provide compre
hensive conditional execution features. In one embodiment,
a conditional execution apparatus in a microprocessor is
provided. The conditional execution apparatus includes
translation logic and extended execution logic. The transla
tion logic translates an extended instruction into correspond
ing micro instructions.
0.014. The extended instruction has and extended prefix
and an extended prefix tag. The extended prefix specifies a
condition, where execution of an operation prescribed by the
extended instruction depends upon realization of the condi
tion. The extended prefix tag indicates the extended prefix,
where the extended prefix tag is an otherwise architecturally
Specified opcode within an instruction Set for the micropro
ceSSor. The extended execution logic is coupled to the
translation logic. The extended execution logic receives the
corresponding micro instructions, and evaluates the condi
tion. If the condition is not realized, then the extended
execution logic precludes execution of the operation.
0.015. One aspect of the present invention contemplates
an extension mechanism, for adding conditional execution
features to an existing microprocessor instruction Set. The
extension mechanism includes an extended instruction, a
translator, and conditional execution control logic. The
extended instruction specifies a Subset of a plurality of
condition codes upon which execution of a specified opera
tion depends, where the extended instruction comprises one
of the instructions in the existing microprocessor instruction
set followed by an n-bit extended features prefix. The one of
the instructions indicates the instruction extension and the
n-bit extended features prefix indicates the Subset. The
translator receives the extended instruction, and generates a
micro instruction Sequence directing conditional execution
of the Specified operation according to the Subset. The
conditional execution control logic is coupled to the trans
lator. The conditional execution control logic evaluates the
condition codes corresponding to the Subset, and executes
the Specified operation if the Subset is realized.
0016. Another aspect of the present invention compre
hends an instruction Set eXtension apparatus, for providing
Supplemental conditional execution capabilities to an exist
ing microprocessor instruction Set. The instruction Set eXten
Sion apparatus has an escape tag and a condition Specifier.
The escape tag is received by translation logic, and indicates
that accompanying parts of a corresponding instruction
prescribe an extended operation to be conditionally per
formed by a microprocessor, where the escape tag is a first
opcode entity within the existing microprocessor instruction
Set. The condition Specifier is coupled to the escape tag and
is one of the accompanying parts. The condition Specifier
prescribes a condition codes State, upon which performance

Oct. 2, 2003

of the extended operation depends. The condition codes State
is provided to conditional execution control logic, where the
conditional execution control logic enables/disables perfor
mance of the extended operation.
0017. A further aspect of the present invention provides
a method for extending a microprocessor instruction Set to
provide programmable conditional execution capabilities.
The method includes providing an extended instruction, the
extended instruction including an extended tag along with a
condition Specifier prefix, where the extended tag is one of
the opcodes in the microprocessor instruction Set, prescrib
ing, via the condition specifier prefix and remaining parts of
the extended instruction, an operation to be executed, where
execution of the operation depends upon realization of a
condition Specified by the condition Specifier prefix; and
evaluating condition code entities to determine whether or
not the condition is realized and, if the condition is realized,
executing the operation and, if the condition is not realized,
precluding the eXecuting.

BRIEF DESCRIPTION OF THE DRAWINGS

0018. These and other objects, features, and advantages
of the present invention will become better understood with
regard to the following description, and accompanying
drawings where:
0019 FIG. 1 is a block diagram illustrating a related art
microprocessor instruction format;
0020 FIG. 2 is a table depicting how instructions in an
instruction set architecture are mapped to logic states of bits
in an opcode byte within the instruction format of FIG. 1;
0021 FIG. 3 is a block diagram featuring an extended
instruction format according to the present invention;
0022 FIG. 4 is a table showing how extended architec
tural features are mapped to logic States of bits in an 8-bit
extended prefix embodiment according to the present inven
tion;
0023 FIG. 5 is a block diagram illustrating a pipeline
microprocessor for performing conditional execution of
instructions according to the present invention;
0024 FIG. 6 is a block diagram featuring one embodi
ment of an extended prefix for conditional execution accord
ing to the present invention;
0025 FIG. 7 is a table showing conditions specified by
values of the extended prefix of FIG. 6;
0026 FIG. 8 is a block diagram featuring details of
translate stage logic within the microprocessor of FIG. 5;
0027 FIG. 9 is a block diagram illustrating extended
execution logic within the microprocessor of FIG. 5;
0028 FIG. 10 is a table contrasting conditional execution
flow with conventional execution flow for a common IF
THEN-ELSE statement; and
0029 FIG. 11 is a flow chart depicting a method for
translating and executing conditional instructions according
to the present invention.

DETAILED DESCRIPTION

0030 The following description is presented to enable
one of ordinary skill in the art to make and use the present

US 2003/0188140 A1

invention as provided within the context of a particular
application and its requirements. Various modifications to
the preferred embodiment will, however, be apparent to one
skilled in the art, and the general principles discussed herein
may be applied to other embodiments. Therefore, the present
invention is not intended to be limited to the particular
embodiments shown and described herein, but is to be
accorded the widest Scope consistent with the principles and
novel features herein disclosed.

0031. In view of the above background discussion on the
techniques employed within present day microprocessors to
extend the architectural features of those microprocessors
beyond the capabilities of their associated instruction Sets, a
related art example will now be discussed with reference to
FIGS. 1-2. The discussion highlights the dilemma that
microprocessor designers routinely face where, on the one
hand, they desire to incorporate more recently developed
architectural features into a microprocessor design and
where, on the other hand, they wish to retain the capability
to execute legacy application programs. In the example of
FIGS. 1-2, a fully populated opcode map rules out the
possibility of adding new opcodes to the exemplary archi
tecture, thus compelling the designers to choose either to
incorporate the new features and Sacrifice legacy compat
ibility to Some degree, or to forego more recent architectural
advances altogether in favor of maintaining the micropro
ceSSor's compatibility with older application programs. Fol
lowing the related art discussion, a discussion of the present
invention will be provided with reference to FIGS. 3-11. By
identifying and exploiting an existing, but unemployed,
opcode as a prefix tag for an extended instruction that
follows, the present invention enables microprocessor
designers to overcome the limitations of completely full
instruction Set architectures, thereby allowing them to pro
vide conditional execution capabilities while at the same
time retaining compatibility with legacy application pro
grams.

0.032 Turning to FIG. 1, a block diagram is presented
illustrating a related art microprocessor instruction format
100. The related art instruction 100 has a variable number of
data entities 101-103, each set to a specified value, that
together make up a specific instruction 100 for a micropro
cessor. The specific instruction 100 directs the microproces
Sor to perform a specific operation Such as adding two
operands together, or moving an operand from memory to a
register within the microprocessor. In general, an opcode
entity 102 within the instruction 100 prescribes the specific
operation to be performed, and optional address Specifier
entities 103 follow the opcode 101 prescribing additional
information about the Specific operation Such as how the
operation is to be performed, where the operands are
located, etc. The instruction format 100 additionally allows
a programmer to prefix an opcode 102 with prefix entities
101. The prefixes 101 direct the application of specified
architectural features during the execution of the Specific
operation prescribed by the opcode 102. In general, these
architectural features span the breadth of operations that can
be prescribed by any of the opcodes 102 in the instruction
set. For example, prefixes 101 exist today in a number of
microprocessors that can cause operations to be executed
using different size operands (e.g., 8-bit, 16-bit, 32-bit). And
while many of these processors are programmed to a default
operand size (say, 32-bit), prefixes 101 are provided in their
respective instruction Sets that enable programmerS to Selec

Oct. 2, 2003

tively override the default operand size (say, to perform
16-bit operations) on an instruction-by-instruction basis.
Selectable operand size is merely one example of an archi
tectural feature that spans a significant number of operations
(e.g., add, Subtract, multiply, Boolean logic, etc.) specifiable
by opcodes 102 within many present day microprocessors.

0033) One well-known instance of the instruction format
100 shown in FIG. 1 is the x86 instruction format 100,
which is employed by all present day X86-compatible micro
processors. More specifically, the x86 instruction format 100
(also known as the x86 instruction set architecture 100) uses
8-bit prefixes 101, 8-bit opcodes 102, and 8-bit address
specifiers 103. The x86 architecture 100 has several prefixes
101 as well, two of which override default address/data sizes
of an x86 microprocessor (i.e., opcode states 66H and 67H),
another which directs the microprocessor to interpret a
following opcode byte 102 according to different translation
rules (i.e., prefix value OFH, which causes translation to be
performed according to the So-called 2-byte opcode rules),
and others which cause particular operations to be repeated
until some criteria is satisfied (i.e., the REP opcodes: FOH,
F2H, and F3H).
0034) Referring now to FIG. 2, a table 200 is presented
depicting how instructions 201 in an instruction Set archi
tecture are mapped to logic States of bits in an opcode byte
102 within the instruction format of FIG. 1. The table 200
presents an exemplary 8-bit opcode map 200 that associates
up to 256 values of an 8-bit opcode entity 102 with corre
sponding microprocessor opcode instructions 201. The table
200 maps a particular value of an opcode entity 102, say
value 02H, to a corresponding opcode instruction 201 (i.e.,
instruction I02). In the case of the x86 opcode map, it is well
known in the art that opcode value 14H is mapped to the x86
Add With Carry (ADC) instruction, which directs that an
8-bit immediate operand be added to the contents of archi
tectural register AL. One skilled in the art will also appre
ciate that the x86 prefixes 101 alluded to above (i.e., 66H,
67H, OFH, FOH, F2H, and F3H) are actually opcode values
201 that contextually specify the application of certain
architectural extensions to the operation prescribed by a
following opcode entity 102. For example, preceding
opcode 14H (normally, the ADC opcode discussed above)
with prefix OFH results in an x86 processor executing an
Unpack and Interleave Low Packed Single-Precision Float
ing-Point Values (UNPCKLPS) operation instead of the Add
With Carry (ADC). Features such as described in this x86
example are enabled in part in a present day microprocessor
because instruction translation/decoding logic in the micro
processor interprets the entities 101-103 of an instruction
100 in order. Hence, the use of specific opcode values as
prefixes 101 in instruction Set architectures has, in past
times, allowed microprocessor designers to incorporate a
Significant number of advanced architectural features into a
complying microprocessor design without disadvanta
geously impacting the execution of older programs which do
not employ those Specific opcode States. For example, a
legacy program that never uses x86 opcode OFH will still run
on a present day X86 microprocessor. And a newer applica
tion program, by employing x86 opcode OFH as a prefix 101,
can utilize a Substantial number of x86 architectural features
Such as Single instruction multiple data (SIMD) operations,
conditional move operations, and etc.

US 2003/0188140 A1

0035. Notwithstanding the fact that architectural features
have been provided for in the past by designating available/
spare opcode values 201 as prefixes 101 (also known as
architectural feature tags/indicatorS 101 or escape instruc
tions 101), many instruction set architectures 100 have run
into a brick wall in terms of providing enhancements for a
very Straightforward reason: all of the available/spare
opcode States have been used up, that is, all of the opcode
values in the opcode map 200 have been architecturally
specified. When all of the available opcode values have been
assigned as either opcode entities 102 or prefix entities 101,
then there are no more values left to provide for the
incorporation of new features. This significant problem
exists in many microprocessor architectures today and con
Sequently forces designers to choose between adding archi
tectural features to a design and retaining compatibility with
older programs.
0036). It is notable that the instructions 201 shown in FIG.
2 are depicted generically (i.e., I24, I86) rather than specifi
cally (i.e., Add With Carry, Subtract, Exclusive-OR). This is
because fully occupied opcode maps 200 are presently
precluding the incorporation of more recent architectural
advances in a number of different microprocessor architec
tures. And although an 8-bit opcode entity 102 is alluded to
in the example of FIG. 2, one skilled in the art will
appreciate that the Specific size of the opcode 102 is irrel
evant in any Sense other than its use as a specific case to
teach the problem of a full opcode structure 200. Accord
ingly, a full 6-bit opcode map would have 64 architecturally
Specified opcodes/prefixes 201 and would provide no avail
able/spare opcode values for expansion.
0037. One alternative short of entirely obliterating an
instruction set and replacing it with a new format 100 and
opcode map 200 is to Substitute new instruction meanings
for only a subset of existing opcodes 201, say opcodes 40H
through 4FH in FIG. 2. Under this hybrid technique, a
conforming microprocessor is provided with means to oper
ate in a legacy-compatible mode, where opcodes 40H-4FH
are interpreted according to legacy rules, or to operate in an
enhanced mode, where opcodes 40H-4FH are interpreted
according to enhanced architectural rules. This technique
does allow designers to incorporate new features into a
design, however, disadvantages prevail when the conform
ing microprocessor is running in an enhanced mode because
it excludes execution of any application program that uses
opcodes 40H-4FH. Hence, from the standpoint of retaining
legacy compatibility, the legacy-compatible/enhanced mode
technique is unacceptable.

0.038. The present inventors, however, have noted the use
of opcodes 201 in instruction sets 200 having fully-popu
lated opcode Spaces over the gamut of application programs
composed for execution on compliant microprocessors, and
they have observed that there are some instructions 202
which, although they are architecturally specified, are not
employed within application programs that are capable of
being executed by the microprocessors. Instruction IF1 202
is depicted in FIG. 2 as Such an example of this phenom
enon. In fact, the same opcode value 202 (i.e., F1H) maps to
a valid instruction 202 that is not used in the x86 instruction
set architecture. While the unused x86 instruction 202 is a
valid x86 instruction 202 that directs an architecturally
Specified operation on an x86 microprocessor, it is not
employed in any application program that can be executed

Oct. 2, 2003

on any present day X86 microprocessor. The particular X86
instruction 202 is called In Circuit Emulation Breakpoint
(i.e., ICE BKPT, opcode value F1H), and was formerly
employed exclusively in a class of microprocessor emula
tion equipment that no longer exists today. ICE BKPT 202
was never employed in an application program outside of an
in-circuit emulator, and the form of in-circuit emulation
equipment that formerly employed ICE BKPT202 no longer
exists. Hence, in the x86 case, the present inventors have
identified a means within a completely occupied instruction
set architecture 200 whereby they can exploit a valid, yet
unused, opcode 202 to allow for the incorporation of
advanced architectural features in a microprocessor design
without Sacrificing legacy compatibility. In a fully-occupied
instruction set architecture 200, the present invention
employs an architecturally specified, yet unemployed,
opcode 202 as a indicator tag for in an n-bit prefix that
follows, thus allowing microprocessor designers to incor
porate up to 2" more recently developed architectural fea
tures into a microprocessor design, while concurrently
retaining complete compatibility with all legacy Software.
0039 The present invention exploits the prefix tag/ex
tended prefix concept by providing an n-bit condition code
Specifier prefix whereby programmers are allowed to pro
gram a conventional operation for execution by a micropro
cessor (e.g., addition, Subtraction, Boolean operation, oper
and manipulation, etc.) and, within the same instruction,
Specify a condition upon which execution of the operation
depends. In one embodiment, the State of a microprocessor's
condition codes, stored in a condition code register, are
evaluated prior to executing the Specified operation. If
evaluation of the condition codes determines that the con
dition is realized, then the Specified operation is performed.
If it is determined that the condition is not met, then the
Specified operation is not performed. The present invention
will now be further discussed with reference to FIGS. 3-11.

0040 Turning to FIG. 3, a block diagram is presented
featuring an extended instruction format 300 according to
the present invention. Very much like the format 100 dis
cussed with reference to FIG. 1, the extended instruction
format 300 has a variable number of data entities 301-305,
each Set to a specified value, that together make up a specific
instruction 300 for a microprocessor. The specific instruc
tion 300 directs the microprocessor to perform a specific
operation Such as adding two operands together, or moving
an operand from memory to a register within the micropro
ceSSor. In general, an opcode entity 302 in the instruction
300 prescribes the specific operation to be performed, and
optional address specifier entities 303 follow the opcode 302
prescribing additional information about the Specific opera
tion Such as how the operation is to be performed, where the
operands are located, etc. The instruction format 300 also
allows a programmer to prefix an opcode 302 with prefix
entities 301, which direct the application of existing archi
tectural features during the execution of the Specific opera
tion prescribed by the opcode 302.
0041. The extended instruction 300 according to the
present invention, however, is a SuperSet of the instruction
format 100 described above with reference to FIG. 1, having
two additional entities 304, 305 which are optionally pro
Vided as an instruction extension to precede all remaining
entities 301-303 in a formatted extended instruction 300.
The purpose of the two additional entities 304, 305 is to

US 2003/0188140 A1

enable/disable a plurality of conditional execution features
which would otherwise be not specifiable within a fully
populated instruction Set architecture. The optional entities
304, 305 are an extended instruction tag 304 and an
extended conditional execution prefix 305. The extended
instruction tag 305 is an otherwise architecturally specified
opcode within a microprocessor instruction Set. In an x86
embodiment, the extended instruction tag 304, or escape tag
304, is opcode state F1H, the formerly used ICE BKPT
instruction. The escape tag 304 indicates to microprocessor
logic that the conditional execution prefix 305, or extended
features specifier 305, follows, where the extended features
specifier 305 prescribes a condition upon which an operation
prescribed by the extended instruction 300 depends. In one
embodiment, the extended instruction tag 304 indicates that
accompanying parts 301-303, 305 of a corresponding
extended instruction 300 prescribe an extended operation to
be conditionally performed by the microprocessor. The
extended prefix 305, or condition specifier prescribes a
condition codes State that is provided to conditional execu
tion control logic that is configured to enable/disable per
formance of the extended operation.
0042. To summarize the conditional execution extension
technique according to the present invention, an instruction
extension is configured from one of the opcodes/instructions
304 in an existing instruction Set architecture and an n-bit
extended features prefix 305. The selected opcode instruc
tion serves as an indicator 304 that the instruction 300 is a
conditional execution instruction 300 (that is, it prescribes
conditional execution extensions to the microprocessor
architecture), and the n-bit features prefix 305 specifies a
Subset of a plurality of condition codes upon which execu
tion of a Specified operation depends, the Specified operation
being prescribed by remaining entities of the extended
instruction 300. In one embodiment, the extended prefix 305
is 8-bits in size, providing for the Specification of up to 256
different subsets of the plurality of condition codes upon
which processing of current instructions in an existing
instruction Set could depend. An n-bit prefix embodiment
provides for the specification of up to 2" different condition
code combinations to be employed during conditional
execution of a specified operation.
0043. Now turning to FIG. 4, a table 400 is presented
showing how conditional execution extensions are mapped
to logic states of bits in an 8-bit extended prefix embodiment
according to the present invention. Similar to the opcode
map 200 discussed with reference to FIG. 2, the table 400
of FIG. 4 presents an exemplary 8-bit condition code prefix
map 400 that associates up to 256 values of an 8-bit
extended prefix entity 305 with corresponding conditions
code states 401 (e.g., E34, E4D, etc.) of a conforming
microprocessor. In the case of an x86 embodiment, the 8-bit
extended feature prefix 305 according to the present inven
tion Serves to provide for extended conditional execution
specifiers 401 (i.e., E00-EFF) which are not provided for by
the current x86 instruction Set architecture.

0044) The extended features 401 shown in FIG. 4 are
depicted generically rather than Specifically because the
technique according to the present invention is applicable to
a variety of different architectural extensions 401 and spe
cific instruction set architectures. One skilled in the art will
appreciate that many different architectural features 401, a
few of which are noted above, can be incorporated into an

Oct. 2, 2003

existing instruction Set according to the escape tag 304/
extended prefix 305 technique described herein. The 8-bit
prefixembodiment of FIG. 4 provides for up to 256 different
features 401, however, an n-bit prefixembodiment can allow
for programming of up to 2" different features 401.
0045. In embodiments that correspond to the types of
condition code Storage and representation means common to
many present day microprocessors, conditions can be speci
fied Such as Zero, not Zero, even parity, odd parity, Sign, not
Sign, overflow, not overflow, carry, not carry, and combina
tions of conditions can also be specified to include above
(i.e., not carry and not Zero), below or equal (i.e., carry and
Zero), greater (i.e., not Zero and sign equals carry), etc. In
many of these microprocessors, a condition code Status
entity (i.e., a register) is configured with a plurality of
condition code bits (or flags), each of which represents
whether or not a recently generated result has crossed Some
result boundary condition Such as generating a carry bit, or
having a sign bit indicating that the result is a negative
number. The states of the conditions described above, how
ever, are not intended to limit the Scope of the present
invention to one particular Set of microprocessor condition
codes. The above embodiments are provided as examples of
how a conditional prefix 305 is encoded according to the
present invention to provide condition Subsets upon which
execution of an operation by a conforming microprocessor
depends. One skilled in the art will appreciate that configu
ration of a particular extended conditions prefix 305 is based
upon how condition codes are represented and Stored in a
corresponding microprocessor.
0046) Now referring to FIG. 5, a block diagram is
presented illustrating a pipeline microprocessor 500 for
executing extended conditional execution instructions 300
according to the present invention. The microprocessor 500
has three notable Stage categories: fetch, translate, and
execute. The fetch stage has fetch logic 501 that retrieves
instructions from an instruction cache 502 or external
memory 502. The retrieved instructions are provided to the
translate Stage via an instruction queue 503. The translate
Stage has translation logic 504 that is coupled to a micro
instruction queue 506. The translation logic 504 includes
extended translation logic 505. The execute Stage has execu
tion logic 507 having extended execution logic 508 therein.
0047. In operation, the fetch logic 501 retrieves formatted
instructions according to the present invention from the
instruction cache/external memory 502, and places these
instructions in the instruction queue 503 in execution order.
The instructions are retrieved from the instruction queue 503
and are provided to the translation logic 504. The translation
logic 504 translates/decodes each of the provided instruc
tions into a corresponding Sequence of micro instructions
that direct the microprocessor 500 to conditionally perform
the operations prescribed by the instructions, Subject to
realization of Specified conditions. The extended translation
logic 505 detects those instructions having the extended
prefix tag according to the present invention and also
provides for translation/decoding of corresponding condi
tion specifier prefixeS. In an x86 embodiment, the extended
translation logic 505 is configured to detect an extended
prefix tag of value F1H, which is the x86 ICE BKPT opcode.
Micro instruction fields are provided in the micro instruction
queue 506 to specify condition code States that are pre
Scribed within extended instructions.

US 2003/0188140 A1

0.048. The micro instructions are provided from the micro
instruction queue 506 to the execution logic 507, wherein
the extended execution logic 508 detects micro instructions
having conditional execution enabled as indicated by the
micro instruction fields and evaluates condition code Storage
entities prior to execution of the Specified operation. If the
evaluation of the entities determines that the condition code
states are true, then the extended execution logic 508 per
forms the Specified operation. If the condition code States are
false, then performance of the Specified operation is pre
cluded.

0049. One skilled in the art will appreciate that the
microprocessor 500 described with reference to FIG. 5 is a
Simplified representation of a present day pipeline micro
processor 500. In fact, a present day pipeline microprocessor
500 comprises upwards to 20-30 different pipeline stages.
However, these Stages can be generally categorized into
those three Stage groups shown in the block diagram and
thus, the block diagram 500 of FIG. 5 serves to teach the
essential elements that are required to implement embodi
ments of the present invention as described hereinabove.
Those extraneous elements of a microprocessor 500, for
clarity Sake, are not depicted for discussion.
0050 Turning now to FIG. 6, a block diagram is pre
sented featuring one embodiment of an extended prefix 600
for conditional execution according to the present invention.
The extended condition specifier prefix 600 is an 8-bit
extended prefix 600 and has a condition field 602 compris
ing bits 3:0 and a spare field 601 comprising bits 7:4.
0051 FIG. 7 is a table 700 showing exemplary condi
tions specified by values of the extended prefix of FIG. 6.
Some of the conditions, Such as parity even and not sign,
represent the State of individual condition code flags in many
present day microprocessor architectures, while other con
ditions, Such as not above and greater or equal, represent
combinations of individual condition code flags.
0.052 The exemplary embodiment discussed with refer
ence to FIGS. 6 and 7 are provided to illustrate the
flexibility of the present invention to adapt to the Specific
means of condition code representation of a candidate
instruction Set architecture. One skilled in the art will,
however, appreciate that the examples of FIGS. 6 and 7 do
not limit the Scope of the present invention to 4-bit condition
Specifiers.

0.053 Turning now to FIG. 8, a block diagram is pre
sented featuring details of translate stage logic 800 within
the microprocessor of FIG. 5. The translate stage logic has
an instruction buffer 804 that provides an extended condi
tional execution instruction according to the present inven
tion to translation logic 805. The translation logic 805 is
coupled to a machine Specific register 802 that has an
extended features field 803. The translation logic 805 has a
translation controller 806 that provides a disable signal 807
to an escape instruction detector 808 and an extended prefix
decoder 809. The escape instruction detector 808 is coupled
to the extended prefix decoder 809 and an instruction
decoder 810. The extended prefix decoding logic 809 and
the instruction decoding logic 810 access a control read-only
memory (ROM) 811, wherein are stored template micro
instruction Sequences that correspond to Some of the
extended instructions. The translation logic 805 also has a
micro instruction buffer 812 having an opcode extension

Oct. 2, 2003

field 813, a micro opcode field 814, a destination field 815,
a source field 816, and a displacement field 817.
0054 Operationally, during power-up of the micropro
cessor, the state of the extended field 803 within the machine
Specific register 802 is established via Signal power-up State
801 to indicate whether the particular microprocessor is
capable of translating and executing extended conditional
execution instructions according to the present invention. In
one embodiment, the signal 801 is derived from a feature
control register (not shown) that reads a fuse array (not
shown) that was configured during fabrication of the part.
The machine specific register 802 provides the state of the
extended features field 803 to the translation controller 806.
The translation control logic 806 controls whether or not
instructions from the instruction buffer 804 are translated
according to extended conditional execution translation
rules or according to existing translation rules. Such a
control feature is provided to allow Supervisory applications
(e.g., BIOS) to enable/disable extended execution features
of the microprocessor. If conditional execution is disabled,
then instructions having the opcode State Selected as the
extended features tag would be translated according to
existing translation rules. In an x86 embodiment having
opcode State F1H Selected as the tag, then an occurrence of
F1H under conventional translation would result in an illegal
instruction exception. Under extended translation rules,
however, occurrence of the tag would be detected by the
escape instruction detector 808. The escape instruction
detector 808 would accordingly disable operation of the
instruction decoder 810 during translation/decode of a fol
lowing extended condition Specifier prefix by the extended
prefix decoder 809 and would enable the instruction decoder
810 for translation/decode of the remaining parts of the
extended instruction. Certain instructions would cause
access to the control ROM 811 to obtain corresponding
micro instruction Sequence templates. The opcode extension
field 813 of the micro instruction buffer 812 is configured by
the prefix decoder 809 to prescribe the condition upon which
execution of a specified operation depends. The remaining
buffer fields 814-817 are configured by the instruction
decoder 810. Configured micro instructions 812 are pro
vided to a micro instruction queue (not shown) for Subse
quent execution by the processor.
0055. Now referring to FIG. 9, a block diagram is
presented illustrating extended execution logic 900 within
the microprocessor of FIG. 5. The extended execution logic
900 has an arithmetic logic unit (ALU) 909 that is coupled
to conditional execution control logic 907 via an enable
signal GO 908. The conditional execution controller 907
accesses a condition flags Storage mechanism 906, or con
dition flags register 906. Two operands, OPERAND 1 and
OPERAND 2, are retrieved from operand registers 901, 905
by the ALU 909. A micro instruction register 902 provides
a micro instruction to both the ALU 909 and the conditional
execution controller 907. The micro instruction register 902
has an opcode extension field 903 and a remaining field 904.
The ALU is additionally coupled to a result register 910.
0056. In operation, when an extended conditional execu
tion instruction is translated into a micro instruction
Sequence according to the present invention, extended micro
instructions are provided to the extended execution logic
900 via the micro instruction register 902 along with appli
cable operands in registers 901 and 905. If the opcode

US 2003/0188140 A1

extension field 903 indicates conditions upon which execu
tion of an operation prescribed by the remaining field 904
depends, then prior to execution of the operation, the con
ditional execution control logic 907 accesses the condition
flags storage 906 to evaluate whether or not the conditions
are true. If the conditions are true, then the execution
controller 907 directs the ALU 909 via signal GO 908 to
perform the Specified operation, thus providing a result to
the result register 910. If the conditions are false, then signal
GO 908 is not asserted, thus directing the ALU 909 to
preclude execution of the operation and hence, no result is
provided to the result register 910.
0057 Now turning to FIG. 10, a table 1000 is provided
contrasting conditional execution flow with conventional
execution flow for a common IF-THEN-ELSE statement. In
the left-hand column, the table 1000 shows a very common
C Code expression that compares two operands, A and B. If
A is greater than B, then operand C is Set to 3. If A is not
greater than B, then operand C is set to 1. This type of
expression is very common to many application programs.
Furthermore, the outcome of this type of comparison is not
always predictable.
0058. The middle column of the table 1000 shows a
conventional x86 execution flow that implements the C
expression. First, instruction MOV EAX, A) fetches oper
and Afrom memory to register EAX. Next, instruction CMP
EAX, B compares the contents of register EAX with
operand B in memory. Conditional jump instruction JLE
ELSE checks the Status of condition codes generated by the
previous compare instruction. If the condition codes indicate
that a less than or equal condition resulted from the compare,
then program flow branches to label ELSE, when operand C
is Set to 1. otherwise, operand C is set to 3 and program flow
is directed by a following unconditional jump instruction,
JMP COMMON, to label COMMON where program flow
continues.

0059. In a deeply pipelined present day microprocessor,
if branch prediction logic mispredicts the outcome of the
conditional jump instruction, JLE ELSE, then numerous
instructions must be flushed from the instruction pipeline to
begin execution of instructions according to correct program
flow.

0060 Conditional execution flow of the same C expres
sion is shown in the right-hand column of the table 1000 to
illustrate how extended instructions according to the present
invention are employed to eliminate pipeline flushes due to
mispredicted branch outcomes. In contrast to executing a
conditional jump instruction (i.e., JLE ELSE) and a Subse
quent unconditional jump instruction (i.e., JMP COM
MON), two extended conditional move instructions
(GTMOVIC), 3 followed by LEMOVIC), 1) are executed.
Execution of the first move operation is conditioned upon
result of the compare instruction (i.e., CMP EAX, IB). If
the result of the compare is greater than, then the first move
operation is performed, Setting operand C to 3. If the result
of the compare is less than or equal, then the first move
operation is precluded, and a Second move operation is
executed to Set operand C to 1. Hence, instruction flow
according to the present invention eliminates all pipeline
flushes that presently are encountered due to branch out
come mispredictions.
0061. Now referring to FIG. 11, a flow chart 1100 is
presented depicting a method for translating and executing

Oct. 2, 2003

conditional instructions according to the present invention.
Flow begins at block 1102 wherein a program configured
with conditional execution instructions is provided to a
microprocessor. Flow then proceeds to block 1104.
0062. At block 1104, a next instruction is fetched from
cache/memory. Flow then proceeds to decision block 1106.
0063 At decision block 1106, the next instruction fetched
in block 1104 is evaluated to determine whether or not it
contains an extended escape tag/code. If not, then flow
proceeds to block 1112. If the extended escape code is
detected, then flow proceeds to block 1108.
0064. At block 1108, because an extended escape tag has
been detected in block 1106, translation/decoding is per
formed on an extended prefix to determine a Specified
condition upon which execution of a corresponding opera
tion depends. Flow then proceeds to block 1110.
0065. At block 1110, corresponding fields of a micro
instruction Sequence are configured to indicate the Specified
condition as prescribed by the extended prefix. Flow then
proceeds to block 1112.
0066. At block 1112, the remaining parts of the instruc
tion (e.g., prefix entities, opcode, address specifiers) are
translated/decoded to determine the operation to be condi
tionally performed along with associated operand attributes.
Flow then proceeds to block 1114.
0067. At block 1114, remaining fields of a micro instruc
tion Sequence are configured to prescribe the Specified
operation along with its operand specifications. Flow then
proceeds to block 1116.
0068. At block 1116, the micro instruction sequence,
comprising the opcode extension field configured in block
1110 along with the remaining fields configured in block
1114, is provided to a micro instruction queue for execution
by the microprocessor. Flow then proceeds to block 1118.
0069. At block 1118, the micro instruction sequence is
retrieved by extended conditional execution logic according
to the present invention. Flow then proceeds to block 1120.
0070. At block 1120, the extended conditional execution
logic accesses a condition code Storage Structure to read the
State of codes corresponding to the condition Specified in the
opcode extension field. Flow then proceeds to decision
block 1122.

0071 At decision block 1122, the state of the codes are
evaluated to determine whether or not the Specified condi
tion is realized. If so, then flow proceeds to block 1124. If
the Specified condition is not realized, then flow proceeds to
block 1126, thus precluding execution of the Specified
operation.

0072 At block 1124, because the specified condition is
true, the Specified operation is executed. Flow then proceeds
to block 1126.

0073. At block 1126, the method completes.
0074 Although the present invention and its objects,
features, and advantages have been described in detail, other
embodiments are encompassed by the invention as well. For
example, the present invention has been described in terms
of a technique that employs a single, unused, opcode State
within a completely full instruction Set architecture as a tag

US 2003/0188140 A1

to indicate that an extended feature prefix follows. But the
Scope of the present invention is not limited in any Sense to
full instruction Set architectures, or unused instructions, or
Single tags. On the contrary the present invention compre
hends instruction Sets that are not entirely mapped, embodi
ments having used opcodes, and embodiments that employ
more than one instruction tag. For example, consider an
instruction Set architecture where there are no unused
opcode States. One embodiment of the present invention
comprises Selecting an opcode State that is presently used as
the escape tag, where the Selection criteria is determined
according to market-driven factors. An alternative embodi
ment comprehends employing a peculiar combination of
opcodes as the tag, Say back-to-back occurrences of opcode
state 7FH. The essential nature of the present invention thus
embodies use of a tag Sequence followed by an n-bit
extension prefix that conditions execution of an operation
Specified by an extended instruction upon Satisfaction of a
Subset of a plurality of conditions prescribed by the n-bit
extension prefix.
0075. In addition, the present invention has been exem
plified by a microprocessor having a Set of condition codes,
or flags, that indicate boundary conditions of a previously
generated result to include parity, Overflow, Sign, and Zero.
And although these types of condition indicators prevail in
use today, it is not the intention of the present invention to
restrict application to only these types of conditions. For
instance, alternative embodiments of the present invention
comprehend alternative Specified conditions Such as the State
of contents of a particular register, whether or not a port or
other I/O device is in use, the availability of memory or
cache, and etc.
0.076 Furthermore, although a microprocessor setting
has been employed to teach the present invention and its
features and advantages, one skilled in the art will appreciate
that its Scope extends beyond the boundaries of micropro
ceSSor architecture to include all forms of programmable
devices Such as Signal processors, industrial controllers,
array processors, and the like.
0.077 Those skilled in the art should appreciate that they
can readily use the disclosed conception and Specific
embodiments as a basis for designing or modifying other
Structures for carrying out the same purposes of the present
invention, and that various changes, Substitutions and alter
ations can be made herein without departing from the Spirit
and Scope of the invention as defined by the appended
claims.

What is claimed is:
1. In a microprocessor, a conditional execution apparatus,

comprising:
translation logic, for translating an extended instruction

into corresponding micro instructions, wherein Said
extended instruction comprises:
an extended prefix, for Specifying a condition, wherein

execution of an operation prescribed by Said
extended instruction depends upon realization of
Said condition; and

an extended prefix tag, for indicating Said extended
prefix, wherein Said extended prefix tag is an other
wise architecturally specified opcode within an
instruction Set for the microprocessor, and

Oct. 2, 2003

extended execution logic, coupled to Said translation
logic, for receiving Said corresponding micro instruc
tions, and for evaluating Said condition, wherein, if Said
condition is not realized, then Said extended execution
logic precludes execution of Said operation.

2. The conditional execution apparatus as recited in claim
1, wherein Said extended instruction further comprises archi
tecturally specified entities according to Said instruction Set.

3. The conditional execution apparatus as recited in claim
2, wherein Said architecturally specified entities comprise:

an opcode entity, for prescribing Said operation.
4. The conditional execution apparatus as recited in claim

1, wherein Said extended prefix comprises a plurality of bits,
and wherein each logic State of Said plurality of bits corre
sponds to a Subset of a plurality of result conditions.

5. The conditional execution apparatus as recited in claim
4, wherein Said plurality of result conditions comprises
overflow, carry, Zero, below, Sign, parity, greater than, and
less than.

6. The conditional execution apparatus as recited in claim
5, wherein Said plurality of result conditions are maintained
in a flags register in the microprocessor.

7. The conditional execution apparatus as recited in claim
1, wherein Said extended prefix comprises 8 bits.

8. The conditional execution apparatus as recited in claim
1, wherein Said instruction Set comprises the x86 instruction
Set.

9. The conditional execution apparatus as recited in claim
8, wherein said extended prefix tag comprises opcode F1
(ICE BKPT) in the x86 instruction set.

10. The conditional execution apparatus as recited in
claim 1, wherein Said corresponding micro instructions
comprise a micro opcode field and a micro opcode extension
field.

11. The conditional execution apparatus as recited in
claim 10, wherein Said extended execution logic employs
Said micro opcode extension field to determine Said condi
tion, and wherein Said extended execution logic employs
Said micro opcode field to determine Said operation.

12. The conditional execution apparatus as recited in
claim 11, where said extended execution logic comprises:

a conditional execution controller, configured to evaluate
Said condition, and to enable/disable execution of Said
operation according to Said condition.

13. The conditional execution apparatus as recited in
claim 1, wherein Said translation logic comprises:

escape instruction detection logic, for detecting Said
extended prefix tag, and

extended prefix decoding logic, coupled to Said escape
instruction detection logic, for translating Said extended
prefix, and for configuring a micro opcode extension
field within Said corresponding micro instructions, Said
micro opcode extension field prescribing Said condi
tion.

14. The conditional execution apparatus as recited in
claim 13, wherein Said translation logic further comprises:

instruction decoding logic, for configuring other fields
within Said corresponding micro instructions, Said other
fields prescribing Said operation according to Said
instruction Set.

US 2003/0188140 A1

15. An extension mechanism, for adding conditional
execution features to an existing microprocessor instruction
Set, the extension mechanism comprising:

an extended instruction, configured to Specify a Subset of
a plurality of condition codes upon which execution of
a specified operation depends, wherein Said extended
instruction comprises one of the instructions in the
existing microprocessor instruction Set followed by an
n-bit extended features prefix, Said one of the instruc
tions indicating Said extended instruction and Said n-bit
extended features prefix indicating Said Subset;

a translator, configured to receive Said extended instruc
tion, and configured to generate a micro instruction
Sequence directing conditional execution of Said Speci
fied operation according to Said Subset; and

conditional execution control logic, coupled to Said trans
lator, configured to evaluate Said condition codes cor
responding to Said Subset, and configured to execute
Said Specified operation if Said Subset is realized.

16. The extension mechanism as recited in claim 15,
wherein Said extended instruction further comprises:

a plurality of instruction parts, configured to prescribe
Said Specified operation.

17. The extension mechanism as recited in claim 16,
wherein Said plurality of instruction parts are formatted in
accordance with the existing microprocessor instruction Set.

18. The extension mechanism as recited in claim 15,
wherein Said plurality of condition codes comprises over
flow, carry, Zero, below, Sign, parity, greater than, and leSS
than.

19. The extension mechanism as recited in claim 15,
wherein Said n-bit extended features prefix comprises 8 bits.

20. The extension mechanism as recited in claim 15,
wherein the existing microprocessor instruction Set is the
x86 microprocessor instruction Set.

21. The extension mechanism as recited in claim 20,
wherein Said one of the instructions comprises instruction
ICE BKPT (i.e., opcode F1) in the x86 microprocessor
instruction Set.

22. The extension mechanism as recited in claim 15,
wherein Said translator comprises:

an escape instruction detector, for detecting Said one of
the instructions, and

an extended prefix decoder, coupled to Said eScape
instruction detector, for translating Said n-bit extended
features prefix, and for generating a micro opcode
extension field within Said Sequence of micro instruc
tions that prescribes Said Subset.

23. An instruction Set eXtension apparatus, for providing
Supplemental conditional execution capabilities to an exist
ing microprocessor instruction Set, the instruction Set eXten
Sion apparatus comprising:

an escape tag, for reception by translation logic, and for
indicating that accompanying parts of a corresponding
instruction prescribe an extended operation to be con
ditionally performed by a microprocessor, wherein Said
escape tag is a first opcode entity within the existing
microprocessor instruction Set, and

a condition Specifier, coupled to Said escape tag and being
one of Said accompanying parts, for prescribing a

Oct. 2, 2003

condition codes State, upon which performance of Said
extended operation depends, Said condition codes State
being provided to conditional execution control logic,
wherein Said conditional execution control logic is
configured to enable/disable performance of Said
extended operation.

24. The instruction Set eXtension apparatus as recited in
claim 23, wherein the remainder of Said accompanying parts
comprise a Second opcode entity and an optional plurality of
address Specifier entities.

25. The instruction Set eXtension apparatus as recited in
claim 23, wherein Said condition specifier comprises an 8-bit
data entity.

26. The instruction Set eXtension apparatus as recited in
claim 23, wherein the existing microprocessor instruction
Set is the x86 microprocessor instruction Set.

27. The instruction Set eXtension apparatus as recited in
claim 26, wherein Said first opcode entity comprises the ICE
BKPT opcode entity (i.e., opcode F1) in the x86 micropro
ceSSor instruction Set.

28. The instruction Set eXtension apparatus as recited in
claim 23, wherein Said translation logic translates Said
escape tag and Said accompanying parts into corresponding
micro instructions that direct extended execution logic to
perform Said extended operation.

29. The instruction Set eXtension apparatus as recited in
claim 28, wherein Said conditional execution control logic
evaluates a condition codes entity to determine if Said
condition codes State is true, and if Said condition codes State
is false, then said conditional execution control logic directs
Said extended execution logic to preclude performance of
Said extended operation.

30. The instruction Set eXtension apparatus as recited in
claim 23, wherein Said translation logic comprises:

escape tag detection logic, for detecting Said escape tag,
and for directing that Said accompanying parts be
translated according to extended translation conven
tions, and

decoding logic, coupled to Said eScape tag detection logic,
for performing translation of microprocessor instruc
tions according to conventions of the existing micro
processor instruction Set, and for performing translation
of Said corresponding instruction according to Said
extended translation conventions to enable Said
extended operation.

31. A method for extending a microprocessor instruction
Set to provide programmable conditional execution capa
bilities, comprising:

providing an extended instruction, the extended instruc
tion including an extended tag along with a condition
Specifier prefix, wherein the extended tag is one of the
opcodes in the microprocessor instruction Set;

prescribing, via the condition Specifier prefix and remain
ing parts of the extended instruction, an operation to be
executed, wherein execution of the operation depends
upon realization of a condition Specified by the condi
tion specifier prefix; and

evaluating condition code entities to determine whether or
not the condition is realized and, if the condition is
realized, executing the operation and, if the condition is
not realized, precluding Said executing.

US 2003/0188140 A1

32. The method as recited in claim 31, wherein said
prescribing comprises:

first Specifying the operation, Said first Specifying
employing a different one of the opcodes in the micro
processor instruction Set.

33. The method as recited in claim 31, wherein said
providing comprises employing a condition Specifier prefix
that has a size of 8 bits.

34. The method as recited in claim 33, wherein said
providing comprises using the one of the opcodes from the
x86 microprocessor instruction Set as the extended tag.

35. The method as recited in claim 34, wherein said using
comprises selecting the x86 ICE BKPT opcode (i.e., opcode
F1) as the extended tag.

Oct. 2, 2003

36. The method as recited in claim 31, further comprising:
translating the extended instruction into micro instruc

tions that direct extended execution logic to determine
whether or not the condition is realized prior to execut
ing the extended operation.

37. The method as recited in claim 36, wherein said
translating comprises:

within translation logic, detecting the extended tag, and
decoding the condition Specifier prefix and the remaining

parts of the extended instruction according to condi
tional execution translation rules.

