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NON-CONTACT OXYGEN SATURATION ESTIMATION USING AMBIENT
LIGHT
TECHNICAL FIELD
The present invention generally relates to oxygen saturation estimation, and in particular to a method
and a system for non-contact estimation of oxygen saturation and a method for generating an oxygen

saturation estimation model useful in such non-contact estimation of oxygen saturation.

BACKGROUND
Oxygen saturation is the fraction of oxygen-saturated hemoglobin relative to total hemoglobin
(unsaturated + saturated) in the blood. The human body requires and regulates a very precise and
specific balance of oxygen in the blood. Normal arterial blood oxygen saturation (Sa02) levels in
humans are 95-100 %. If the level is below 90 %, it is considered low and called hypoxemia. Arterial
blood oxygen levels below 80 % may compromise organ function, such as the brain and heart.
Continued low oxygen levels may lead to respiratory or cardiac arrest.

Oxygen saturation can be measured in different tissues, including arterial oxygen saturation (Sa02) as
determined by arterial blood gas test, venous oxygen saturation (SvO2) typically used under treatment
with a heart lung machine (extracorporeal circulation), tissue oxygen saturation (StO2) measured by
near infrared spectroscopy and peripheral oxygen saturation (SpO2), which is an approximation of Sa02
usually measured by a pulse oximeter device. SpO2 can be calculated with pulse oximetry according to
the formula:

HbO,
HbO, + Hb

Sp0, =
where HbO: is oxygenated hemoglobin (oxyhemoglobin) and Hb is deoxygenated hemoglobin. The
pulse oximeter consists of a small device that clips to the body (typically a finger, an earlobe or an
infant's foot) and transfers its readings to a reading meter by wire or wirelessly. The pulse oximeter
uses light-emitting diodes of different wavelengths in conjunction with a light-sensitive sensor to
measure the absorption of red and infrared light in the extremity. The difference in absorption between
oxygenated and deoxygenated hemoglobin makes the calculation possible according to the above

presented formula.
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There is, though, a need for more convenient measurements of oxygen saturation, and in particular for
non-contact oxygen saturation measurements that do not require attaching or connecting any

measurement equipment to the body of a subject.

U.S. Patent No. 11,103,144 discloses a method of measuring a physiological parameter, such as
oxygen saturation level, in a contactless manner. The method includes acquiring a plurality of image
frames for a subject, acquiring a first color channel value, a second color channel value, and a third
color channel value for at least one image frame included in the plurality of image frames. The method
further includes calculating a first difference and a second difference on the basis of the first color
channel value, the second color channel value, and the third color channel value for at least one image
frame included in the plurality of image frames. The first difference represents a difference between the
first color channel value and the second color channel value for the same image frame, and the second
difference represents a difference between the first color channel value and the third color channel

value for the same image frame.

U.S. Patent No. 10,888,280 discloses a photoplethysmography (PPG) circuit that obtains PPG signals
at a plurality of wavelengths. A signal processing module obtains at least a first spectral response
around a first wavelength and a second spectral response around a second wavelength. The signal
processing device generates PPG input data using the PPG signals. The PPG input data includes one
or more parameters obtained from each of the first spectral response and the second spectral
response. A neural network processing device generates an input vector including the PPG input data
and determines an output vector including health data. The health data includes an oxygen saturation
level, a glucose level or a blood alcohol level.

SUMMARY
It is general objective to provide a non-contact oxygen saturation estimation that does not require
special lighting conditions.

This and other objectives are met by embodiments of the invention.

The present invention is defined in the independent claims. Further embodiments of the invention are
defined in the dependent claims.
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An aspect of the invention relates to a method for non-contact estimation of oxygen saturation. The
method comprises pre-processing a photoplethysmography (PPG) signal of light reflected from a skin of
a subject illuminated by ambient light by filtering the PPG signal to obtain a smoothed pulse signal. The
method also comprises extracting a plurality of frequency domain and time domain features from the
smoothed pulse signal by extracting time domain features from the smoothed pulse signal with respect
to time and extracting frequency domain features from the smoothed pulse signal with respect to
frequency. The method additionally comprises computing statistical parameters of the time domain
features. The statistical parameters represent measured quantities of a statistical population describing
the respective time domain features. The method further comprises estimating oxygen saturation for
the subject based on the frequency domain features and the statistical parameters of the time domain
features and an oxygen saturation estimation model trained for estimating oxygen saturation based on
input frequency domain features and input statistical parameters of time domain features.

Another aspect of the invention relates to computer-implemented method of generating an oxygen
saturation estimation model. The method comprises pre-processing a plurality of PPG signals of light
reflected from skins of a plurality of subjects illuminated by ambient light by filtering the PPG signals to
obtain a plurality of smoothed pulse signals. The method also comprises extracting, from each
smoothed pulse signal of the plurality of smoothed pulse signals, a plurality of frequency domain and
time domain features from the smoothed pulse signal by extracting time domain features from the
smoothed pulse signal with respect to time and extracting frequency domain features from the
smoothed pulse signal with respect to frequency. The method additionally comprises computing
statistical parameters of the time domain features. The statistical parameters represent measured
quantities of a statistical population describing the respective time domain features. The method further
comprises training the oxygen saturation estimation model based on the frequency domain features
and the statistical parameters of the time domain features and actual oxygen saturation values obtained
for the plurality of subjects.

A further aspect of the invention relates to a non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the processor to pre-process a PPG signal of
light reflected from a skin of a subject illuminated by ambient light by filtering the PPG signal to obtain a
smoothed pulse signal. The processor is also caused to extract a plurality of frequency domain and
time domain features from the smoothed pulse signal by extracting time domain features from the
smoothed pulse signal with respect to time and extracting frequency domain features from the
smoothed pulse signal with respect to frequency. The processor is additionally caused to compute
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statistical parameters of the time domain features. The statistical parameters represent measured
quantities of a statistical population describing the respective time domain features. The processor is
further caused to estimate oxygen saturation for the subject based on the frequency domain features
and the statistical parameters of the time domain features and an oxygen saturation estimation model
trained for estimating oxygen saturation based on input frequency domain features and input statistical

parameters of time domain features.

Yet another aspect of the invention relates to a non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the processor to pre-process a plurality of PPG
signals of light reflected from skins of a plurality of subjects illuminated by ambient light by filtering the
PPG signals to obtain a plurality of smoothed pulse signals. The processor is also caused to extract,
from each smoothed pulse signal of the plurality of smoothed pulse signals, a plurality of frequency
domain and time domain features from the smoothed pulse signal by extracting time domain features
from the smoothed pulse signal with respect to time and extracting frequency domain features from the
smoothed pulse signal with respect to frequency. The processor is additionally caused to compute
statistical parameters of the time domain features. The statistical parameters represent measured
quantities of a statistical population describing the respective time domain features. The processor is
further caused to train an oxygen saturation estimation model based on the frequency domain features
and the statistical parameters of the time domain features and actual oxygen saturation values obtained
for the plurality of subjects.

An aspect of the invention relates to a system for non-contact estimation of oxygen saturation. The
system comprises a camera configured to record a PPG signal of light reflected from a skin of a subject
illuminated by ambient light, The system also comprises at least one memory configured to store an
oxygen saturation estimation model trained for estimating oxygen saturation based on input frequency
domain features and input statistical parameters of the domain features and store the PPG signal
recorded by the camera. The system further comprises at least one processor configured to pre-
process the PPG signal by filtering the PPG signal to obtain a smoothed pulse signal. The at least one
processor is also configured to extract a plurality of frequency domain and time domain features from
the smoothed pulse signal by extracting time domain features from the smoothed pulse signal with
respect to time and extracting frequency domain features from the smoothed pulse signal with respect
to frequency. The processor is additionally caused to compute statistical parameters of the time domain
features. The statistical parameters represent measured quantities of a statistical population describing
the respective time domain features. The at least one processor is further configured to estimate
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oxygen saturation for the subject based on the frequency domain features and the statistical
parameters of the time domain features and the oxygen saturation estimation model stored in the at

least one memory.

The present invention enables non-contact or contactless estimation of oxygen saturation without the
need for special lighting, such as a dedicated infrared light source. In clear contrast, contactless
estimation of oxygen saturation can be conducted in ambient light conditions. Hence, no dedicated light
source with special light spectrum is needed as ambient light sources and even daylight could be used
as ‘light source” when conducting the contactless oxygen saturation estimation.

BRIEF DESCRIPTION OF THE DRAWINGS
The embodiments, together with further objects and advantages thereof, may best be understood by
making reference to the following description taken together with the accompanying drawings, in which:

Fig. 1 are diagrams illustrating pre-processing of a photoplethysmography (PPG) signal. (A) raw PPG
signal, (B) PPG signal smoothed using a median filter, (C) smoothed PPG signal filtered using a 3-
standard deviation filter, (D) truncated PPG signal, and (E) final PPG pulse signal smoothed using a
moving average filter.

Fig. 2 illustrates time domain features for estimating oxygen saturation.

Fig. 3 schematically illustrates a regression-based random forest algorithm.

Fig. 4 is a diagram illustrating feature permutation scores when training the random forest model for
predicting oxygen saturation.

Fig. 5 is a diagram illustrating a Leave one out cross-validation of oxygen saturation estimation (full
arrow represents actuation SpO: signal and hatched arrow represents estimated SpOz signal).

Fig. 6 is a flow chart illustrating a method for non-contact estimation of oxygen saturation according to

an embodiment.

Fig. 7 is a flow chart illustrating a computer-implemented method of generating an oxygen saturation

estimation model according to an embodiment.
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Fig. 8 is a flow chart illustrating an additional, optional step of the method shown in Fig. 7.

Fig. 9is a flow chart illustrating an embodiment of the additional, optional step of Fig. 8.

Fig. 10 is a flow chart illustrating various embodiments of the pre-processing step in the methods shown
in Figs. 6 and 7.

Fig. 11 is a schematic illustration of a device configured to generate an oxygen saturation estimation

model according to an embodiment.

Fig. 12 is a schematic illustration of a device configured to non-contact estimate oxygen saturation

and/or generation of an oxygen saturation estimation model according to an embodiment.

Fig. 13 is a schematic illustration of a system for non-contact estimation of oxygen saturation according

to an embodiment.

DETAILED DESCRIPTION
The present invention generally relates to oxygen saturation estimation, and in particular to a method
and a system for non-contact estimation of oxygen saturation and a method for generating an oxygen

saturation estimation model useful in such non-contact estimation of oxygen saturation.

The current techniques for estimating oxygen saturation in a subject, typically a human subject, are
either contact-dependent techniques or require special measurement conditions. The contact-
dependent techniques use a pulse oximeter device clipped to a body extremity of the subject to perform
the oxygen saturation estimations by measuring absorption of red and infrared light in the body
extremity. Contactless techniques have been proposed in the art to estimate tissue oxygen saturation
(StO2) by near infrared (NIR) spectroscopy. These contactless techniques therefore require the
presence of an infrared light source in order to perform the StO2 measurements.

The present invention enables contactless estimation of oxygen saturation but does not require the
presence of a dedicated infrared light source. In clear contrast, the oxygen saturation estimation of the
invention can be conducted in ambient light conditions. Hence, no dedicated light source with special
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light spectrum is needed as ambient light sources and even daylight could be used as “light source”
when conducting the oxygen saturation estimation.

An aspect of the invention relates to a method for non-contact estimation of oxygen saturation, see Fig.
6. The method comprises pre-processing, in step S1, a photoplethysmography (PPG) signal of light
reflected from a skin of a subject illuminated by ambient light by filtering the PPG signal to obtain a
smoothed pulse signal. A next step S2 comprises extracting a plurality of frequency domain and time
domain features from the smoothed pulse signal by extracting time domain features from the smoothed
pulse signal with respect to time and extracting frequency domain features from the smoothed pulse
signal with respect to frequency. Statistical parameters of the time domain features are computed in
step S3. The statistical parameters represent measured quantities of a statistical population describing
the respective time domain features. The method also comprises estimating oxygen saturation for the
subject in step S4 and based on the frequency domain features and the statistical parameters of the
time domain features and an oxygen estimation model. According to the invention, the oxygen
estimation model is trained for estimating oxygen saturation based on input frequency domain features
and input statistical parameters of time domain features.

PPG is a non-invasive optical method that measures volumetric variations of blood circulation
representing blood volume changes in the microvascular bed of the monitored tissue of the subject.
According to the invention, the PPG signal is of light reflected from the skin of the subject illuminated by
ambient light. The ambient light is preferably ambient visible light, i.e., light having wavelengths in the
range of 400 to 700 nm. The ambient light illuminating the skin of the subject could be from one or more
light sources or lamps present in the room or facility where the oxygen saturation estimation is
conducted. The at least one light source could, for instance, be one or more light sources arranged in
the ceiling, one or more light sources arranged at a wall and/or one or more stand-alone light sources.
The at least one light source is not arranged to specifically illuminate the subject but merely to provide
background or ambient illumination. The present invention is, however, not limited to having one or
more light sources for conducting the non-contact estimation of oxygen saturation. In clear contrast,
daylight from one or more windows could be sufficient as ambient light illuminating the skin of the

subject.

The PPG signal is pre-processed in step S1 by filtering the PPG signal to obtain a smoothed pulse
signal. Fig. 1A is an example of a raw PPG signal of light reflected from the skin of a human subject
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illuminated by ambient light. Figs. 1B to 1E illustrate various examples of pre-processed PPG signals

according to embodiments.

Frequency domain and time domain features are then extracted in step S2 from the smoothed pulse
signal obtained in step S1. Time domain features are features extracted from the smoothed pulse
signal with respect to time. Frequency domain features are features extracted from the smoothed pulse
signal with respect to frequency rather than time. lllustrative, but non-limiting examples, of time domain
features are given in Table 1 and frequency domain features are given in Table 2. A time-domain graph
of the smoothed pulse signal indicates how the signal changes with time, whereas a frequency-domain
graph of the smoothed pulse signal shows how much of the signal lies within each given frequency
band over a range of frequencies.

Statistical parameters are then computed in step S3 of the time domain features. These statistical
parameters represent measured quantities of a statistical population that summarizes or describes an
aspect of the respective time domain features. Statistical population as used herein means multiple,
i.e., at least two, statistical parameters that describe a time domain feature. lllustrative, but non-limiting,
examples of such statistical parameters include mean (or average), median, standard deviation, mean

(or average) absolute deviation and interquartile range (IQR).

The statistical parameters of the time domain features as computed in step S3 and the frequency
domain features extracted in step S2 are input into an oxygen saturation estimation model in step S4 to
estimate the oxygen saturation for the subject. The oxygen saturation estimation model has been
trained for estimating oxygen saturation based on input frequency domain features and input statistical
parameters of time domain features, which is further described herein in connection with Fig. 7. Hence,
the non-contact estimation of oxygen saturation uses an oxygen saturation estimation model that
outputs an estimate of oxygen saturation given input frequency domain features and statistical

parameters of time domain features.

Fig. 7 is a flow chart illustrating a computer-implemented (Cl) method of generating an oxygen
saturation model. The method comprises pre-processing, in step S11, a plurality of PPG signals of light
reflected from skins of a plurality of subjects illuminated by ambient light by filtering the PPG signals to
obtain a plurality of smoothed pulse signals. A next step S12 comprises extracting, from each
smoothed pulse signal of the plurality of smoothed pulse signals, a plurality of frequency domain
features and time domain features by extracting time domain features from the smoothed pulse signal
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with respect to time and extracting frequency domain features from the smoothed pulse signal with
respect to frequency. Statistical parameters are computed in step S13 of the time domain features
extracted in step S12. The statistical parameters represent measured quantities of a statistical
population describing the respective time domain features. The oxygen saturation estimation model is
then trained in step S14 based on the frequency domain features and the statistical parameters of the
time domain features and actual oxygen saturation values obtained for the plurality of subjects.

Thus, an oxygen saturation estimation model is trained based features extracted from pre-processed
PPG signals obtained for different subjects. Respective features domain features and statistical
parameters of time domain features are determined for each of the PPG signals and therefore for the
different subjects. For instance, step S12 could comprise extracting, for each smoothed pulse signal
obtained in step S11, a set of plurality of frequency domain features and time domain features. This
means that a plurality of such sets of features are extracted from the smoothed pulse signal in step
S12, and more preferably one set of features per smoothed pulse signal and subject. Correspondingly,
a plurality of sets of frequency domain features and statistical parameters of time domain features are
obtained following the computations in step S13. The oxygen saturation estimation model is then
trained using the plurality of sets of frequency domain features and statistical parameters of time
domain features and the actual oxygen saturation values of the subjects in step S14. The training in
step S14 thereby learns the oxygen saturation estimation model to correlate the frequency domain

features and statistical parameters of time domain features with oxygen saturation values.

The oxygen saturation estimation model can be trained in Fig. 7 to accurately estimate oxygen
saturation of a subject based on a processing of a PPG signal of light reflected from the skin of the
subject illuminated merely by ambient light. Thus, by providing a number of such PPG signals from
various subjects, the oxygen saturation estimation model will learn how changes in the PPG signals, as
represented by the extracted frequency domain features and the computed statistical parameters of the

extracted time domain features, reflect changes in oxygen saturation.

The actual oxygen saturation values input to the oxygen saturation estimation model during the training
step S14 are preferably measured according to well-known oxygen saturation methods or techniques,

for instance pulse oximetry measurements using a pulse oximeter device.

The oxygen saturation estimation model may be implemented according to various embodiments. For

instance, the oxygen saturation estimation model is a computer-implemented oxygen saturation model
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and could be in the form a machine learning (ML) model. Generally, ML algorithms build a
mathematical model based on training data, i.e., input frequency domain features and statistical
parameters of time domain features according to the invention, in order to make predictions or
decisions without being explicitly programmed to do so. There are various types of ML algorithms that
differ in their approach, the type of data they input and output, and the type of task or problem that they
are intended to solve. lllustrative, but non-limiting, examples of such ML algorithms include supervised
learning algorithms, unsupervised learning algorithms, semi-supervised learning algorithms,
reinforcement learning algorithms, self-learning algorithms, feature learning algorithms, sparse

dictionary learning algorithms, anomaly detection algorithms, and association rule learning algorithms.

Performing machine learning involves creating a model, which is trained on training data and can then
process additional data to make predictions or decisions. Various types of ML models could be used
according to the embodiments, including, but not-limited to artificial neural networks, decision trees,
support vector machines, regression analysis, Bayesian networks and Genetic algorithms.

Furthermore, deep learning, also known as deep structured learning, is a ML method based on artificial
neural networks with representation learning. Learning can be supervised, semi-supervised or
unsupervised. Deep learning architectures, such as deep neural networks, deep belief networks,
recurrent neural networks and convolutional neural networks, could be used to train and implement the
oxygen saturation estimation model. "Deep" in deep learning comes from the use of multiple layers in
the network. Deep learning is concerned with an unbounded number of layers of bounded size, which
permits practical application and optimized implementation, while retaining theoretical universality under
mild conditions. In deep learning the layers are also permitted to be heterogeneous and to deviate
widely from biologically informed connectionist models, for the sake of efficiency, trainability and
understandability.

Hence, in an embodiment, step S14 in Fig. 7 comprises training an oxygen saturation estimation ML
model, such as a random forest (RF) based oxygen saturation model. Hence, in a preferred
embodiment, the oxygen saturation estimation model trained in step S14 of Fig. 7 and used in step S4
in Fig. 6 is preferably a RF-based oxygen saturation model.

Random forests or random decision forests are an ensemble learning method for classification,
regression and other tasks that operates by constructing a multitude of decision trees at training time.
For classification tasks, the output of the random forest is the class selected by most trees. For

10
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regression tasks, the mean or average prediction of the individual trees is returned. Random decision
forests correct for decision trees’ habit of overfitting to their training set. Random forests generally
outperform decision trees.

Hence, by using multiple decision trees for prediction, the RF-based oxygen saturation estimation
model eliminates prediction bias that occurs if a single decision tree is used for decision making. Also,
the random selection of data for training and testing reduces variance in the data that prevents
overfitting.

Another advantage of using the RF algorithm is that it performs feature selection during training.
Features that are most correlated with the training targets are selected by the RF algorithm using
permutation scores. RF permutes feature values to estimate if the permutation deteriorates the
prediction performance compared to a baseline. The features that are not correlated show no changes
when the values are permutated suggesting that there is no difference between the permuted values
and the original sequence of values. This suggests that the feature is a noise that does not contribute to
training and can be discarded. On the other hand, the permutation of features that are correlated with
the training targets results in reducing the prediction accuracy.

Fig. 8 is a flow chart illustrating an additional, optional step of the method shown in Fig. 7 according to
an embodiment. In this embodiment, the method continues from step S13 in Fig. 7. A next step S20
comprises selecting frequency and/or time domain features among the plurality of frequency domain
and time domain features to train the RF-based oxygen saturation estimation model. The method then
continues to step S14 in Fig. 7, where the selected frequency domain features and/or statistical
parameters of the selected time domain features are used to train the RF-based oxygen saturation

estimation model.

Fig. 9 is a flow chart illustrating an embodiment of the selecting step S20 in Fig. 8. This embodiment
comprises conducting steps S21 to S24 in Fig. 9 for t = 1 to T. The parameter T represents a number of
decision trees in the RF-based oxygen saturation estimation model. Step S21 of Fig. 9 comprises
computing a prediction error E: = Y: - ¥, for a decision tree t. The parameter Y: represents an actual
oxygen saturation value and the parameter ¥, represents a prediction of the oxygen saturation value.
Step S22 comprises selecting a feature f among the plurality of frequency domain and time domain
features and permuting feature values until dir = 0. Step S23 comprises estimating a new prediction
error Ex and step S23 comprises computing a difference dir = Ex - E. Hence, permutations for a

11
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particular feature f are performed until the difference dy is equal to zero. At that point, the method
continues to step S25, which comprises computing a mean dr and standard deviation or over the T
decision trees and computing a feature permutation importance as /r = —d#or. This feature permutation
importance Iris optionally compared to a threshold value Tr. Furthermore, the embodiment as shown in
Fig. 9 comprises discarding the feature fif the feature permutation importance /s is equal to lower than
the threshold value Trin step S26. However, if the feature permutation importance /r is above the
threshold value Trthe feature is kept in the optional step S27 and is thereby selected for usage when
training the RF-based oxygen saturation estimation model.

Generally, a value of the feature permutation importance /r close to zero indicates a low prediction
ability of the particular feature f. Hence, frequency domain features and time domain features resulting
in a feature permutation importance /r well above zero generally have high prediction ability for usage
by the RF-based oxygen saturation estimation model when predicting or estimating oxygen saturation
based on PPG signals.

An illustrative, but non-limiting, example of a threshold value Tr that can be used according to the
embodiments is 0.08.

Fig. 10 is a flow chart illustrating various embodiments of pre-processing the PPG signals in step S1in
Fig. 6 and step S11in Fig. 7.

In an embodiment, steps S1 and S11 comprise filtering the PPG signal in step S30 using a median
average filter.

In a particular embodiment, this step S30 comprises filtering the PPG signal using the median average
filter by sorting PPG values within a filter window in ascending order and replacing the middle PPG
signal value within the filter window by the median PPG signal value within the filter window. Fig. 1B
illustrates the raw PPG signal shown in Fig. 1A smoothed using such a median average filter. Hence, in
an embodiment, step S30 produces a median average filtered PPG signal.

In an embodiment, steps S1 and S11 also comprise filtering the median average filtered PPG signal
using a 3-standard deviation filter in step S31.

12
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In a particular embodiment, step S31 comprises filtering the median average filtered PPG signal using
the 3-standard deviation filter by calculating z-scores of data points in the median average filtered PPG
signal by subtracting an average value up of the median average filtered PPG signal P of length n from
a data point P, of the median average filtered PPG signal and then by dividing the output using a
standard deviation o, of the median average filtered PPG signal. Step S31 also comprises, in this
particular embodiment, substituting data points in the median average filtered PPG signal having a z-
score higher than a threshold value T: or lower than a threshold value —T: by a value of a preceding
data point. An illustrative, but non-limiting, example of the threshold value Tz is 3. Fig. 1C illustrates the
3-standard deviation filtered signal obtained by filtering the median average filtered PPG signal in Fig.
1B using a 3-standard deviation filter. Hence, in an embodiment, step S31 produces a 3-standard
deviation filtered signal.

In an embodiment, steps S1 and S11 further comprise truncating the 3-standard deviation filtered signal
in step S32.

In a particular embodiment, step S32 comprises truncating the part of the 3-standard deviation filtered
signal between a first valley and a last valley of the 3-standard deviation filtered signal. Fig. 1D
illustrates the truncated signal obtained by truncating the 3-standard deviation filtered signal shown in
Fig. 1C.

In an embodiment, steps S1 and S11 additionally comprises filtering the truncated signal with a moving
average filter in step S33.

In a particular embodiment, step S33 comprises filtering the truncated signal with the moving average
filter by calculating smoothed signal values

- + v, _ .t
Pk — Pn-k+1 Pn-k+2 Pn fOI'k= 1n

w

wherein k represents a data point of the truncated signal p and w is the size of a filter window. Fig. 1E
illustrates the truncated signal shown in Fig. 1D filtered using a moving average filter.

In an embodiment, step S4 in Fig. 6 comprises estimating SpO: for the subject based on the frequency

domain features and the statistical parameters of the time domain features and the oxygen saturation

estimation model. In such an embodiment, the oxygen saturation estimation model is trained for
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estimating SpO2 based on input frequency domain features and input statistical parameters of time

domain features.

Hence, a currently preferred oxygen saturation value as estimated by the oxygen saturation estimation
model is a peripheral oxygen saturation value (SpO2), which in turn can be regarded as a
representation of arterial oxygen saturation (Sa0Ox).

In an embodiment, steps S3 and S13 of Figs. 6 and 7 comprise computing at least two of, preferably at
least three of, more preferably at least four of, and most preferably all of mean, median, standard
deviation, mean absolute deviation, and interquartile range of the time domain features. These
statistical features have been shown to be relevant in order to obtain an oxygen saturation estimation
model that can accurately predict oxygen saturation of a subject from a PPG signal of light reflected
from the skin of the subject when illuminated by ambient light.

In an embodiment, steps S2 and S12 of Figs. 6 and 7 comprises extracting at least two frequency
domain features selected from the group consisting of amplitude of a first frequency peak of the
smoothed pulse signal, frequency of the first frequency peak of the smoothed pulse signal, area under
curve in the frequency range 0-2 Hz, area under the curve in the frequency range 2-5 Hz, ratio between
area under curve in the frequency range 0-2 Hz and area under the curve in the frequency range 2-5
Hz, ratio between first and second frequency peaks of the smoothed pulse signal, ratio between first
and third frequency peaks of the smoothed pulse signal, ratio between the frequency of the first
frequency peak and the frequency of the second frequency peak of the smoothed pulse signal, ratio
between the frequency of the first frequency peak and the frequency of the third frequency peak of the
smoothed pulse signal, highest frequency in the smoothed pulse signal, magnitude at the highest
frequency of the smoothed pulse signal, heart rate and average mean arterial pressure of the smoothed
pule signal. The above mentioned group of frequency domain features is presented in Table 2 herein.

In an embodiment, steps S2 and S12 comprises extracting at least three frequency domain features
selected from the group, preferably extracting at least four frequency domain features selected from the
group, and more preferably extracting at least five frequency domain features selected from the group.
More than five, such as six, seven, eight, nine, ten, eleven, twelve or even all thirteen frequency domain
features selected from the group could be extracted in steps S2 and S12 from the smoothed pule
signal.

14



10

15

20

25

30

WO 2023/163644 PCT/SE2023/050166

In a particular embodiment, the group of frequency domain features consists of amplitude of a first
frequency peak of the smoothed pulse signal, frequency of the first frequency peak of the smoothed
pulse signal, area under curve in the frequency range 0-2 Hz, area under the curve in the frequency
range 2-5 Hz, ratio between area under curve in the frequency range 0-2 Hz and area under the curve
in the frequency range 2-5 Hz, ratio between first and second frequency peaks of the smoothed pulse
signal, ratio between first and third frequency peaks of the smoothed pulse signal, ratio between the
frequency of the first frequency peak and the frequency of the second frequency peak of the smoothed
pulse signal, ratio between the frequency of the first frequency peak and the frequency of the third
frequency peak of the smoothed pulse signal, highest frequency in the smoothed pulse signal,

magnitude at the highest frequency of the smoothed pulse signal.

In an embodiment, steps S2 and S12 of Figs. 6 and 7 comprises extracting at least two time domain

features selected from the group consisting of the time domain features presented in Table 1.

In a particular embodiment, steps S2 and S12 comprises extracting at least two time domain features
selected from the group consisting of difference between height of a peak of the smoothed pulse signal
and average height of two valleys adjacent the peak, time duration between a peak of the smoothed
pulse signal and a valley preceding the peak, time duration between two valleys of a pulse wave in the
smoothed pulse signal, width at a selected percentage, preferably 25% or 50%, peak height between a
rising branch and peak point in the smoothed pulse signal, periodic energy of the smoothed pulse
signal, area under a pulse cycle in the smoothed pulse signal, time between systolic peaks and a
dicrotic notch in the smoothed pulse signal, distance between diastolic valleys in the smoothed pulse
signal, dicrotic notch downward curve in the smoothed pulse signal, ratio of systolic peak time to peak-
to-peak interval of the smoothed pulse signal, ratio of a height of a notch to a systolic peak amplitude of
the smoothed pulse signal, ratio of pulse width from right at a selected percentage, such as 75%, of
systolic amplitude to notch time, time interval from a foot of the smoothed pulse signal to a time at
which a first derivative of the smoothed pulse signal occurred, first maximum peak from a second
derivative of the smoothed pulse signal after first maximum peak from a first derivative of the smoothed
pulse signal and ratio of time interval from the foot of the smoothed signal to a time at which the first

minimum peak occurred to a peak-to-peak interval of the smoothed pulse signal.

In an embodiment, steps S2 and S12 comprises extracting at least three time domain features selected
from Table 1 or from the above mentioned the group, preferably extracting at least four time domain
features selected from Table 1 or from the above mentioned the group, and more preferably extracting
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at least five time domain features selected from Table 1 or from the above mentioned the group. More
than five, such as six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen,
seventeen, eighteen, nineteen, twenty or more time domain features selected from Table 1 or from the

above mentioned the group could be extracted in steps S2 and S12 from the smoothed pule signal.

Fig. 11 is a schematic illustration of a device 100 configured to generate an oxygen saturation
estimation model 150 according to an embodiment. The device 100 comprises a memory 120
configured to, at least temporarily, store sets 140 of statistical parameters of time domain features 141
and frequency domain features 142. The memory 120 also comprises the trained oxygen saturation
estimation model 150. The device 100 in Fig. 11 has been shown with a single memory 120. The
embodiments are, however, not limited thereto. In clear contrast, the device 100 could comprise or be,
wirelessly or with wire, connected to multiple memories 120, such as memory system of multiple
memories. The device 100 also comprises a processor 110 configured to process received PPG
signals, extract frequency and time domain features, compute statistical parameters of time domain
features and train the oxygen saturation estimation model 150 based on the input data. The device 100
further comprises a general input and output (I/0) unit 130 configured to communicate with external
devices. The 1/O unit 130 could represent a transmitter and receiver, or transceiver, configured to
conduct wireless communication. Alternatively, or in addition, the 1/O unit 130 could be configured to
conduct wired communication and may then, for instance, comprise one or more input and/or output

ports.

Fig. 12 is a schematic block diagram of a device 200, such as computer, comprising a processor 210
and a memory 220 that can be used to generate an oxygen saturation estimation model and/or
estimate oxygen saturation using such an oxygen saturation estimation model. In such an embodiment,
the training or generation and/or estimation could be implemented in a computer program 240, which is
loaded into the memory 220 for execution by processing circuitry including one or more processors 210
of the device 200. The processor 120 and the memory 220 are interconnected to each other to enable
normal software execution. An 1/0 unit 230 is preferably connected to the processor 210 and/or the
memory 220 to enable reception of PPG signals.

The term processor should be interpreted in a general sense as any circuitry, system or device capable

of executing program code or computer program instructions to perform a particular processing,
determining or computing task. The processing circuitry including one or more processors 210 is, thus,
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configured to perform, when executing the computer program 240, well-defined processing tasks such
as those described herein.

The processor 210 does not have to be dedicated to only execute the above-described steps,

functions, procedure and/or blocks, but may also execute other tasks.

In an embodiment, the computer program 240 comprises instructions, which when executed by a
processor 210, cause the processor 210 to pre-process a PPG signal of light reflected from a skin of a
subject illuminated by ambient light by filtering the PPG signal to obtain a smoothed pulse signal. The
processor 210 is also caused to extract a plurality of frequency domain and time domain features from
the smoothed pulse signal by extracting time domain features from the smoothed pulse signal with
respect to time and extracting frequency domain features from the smoothed pulse signal with respect
to frequency. The processor 210 is further caused to compute statistical parameters of the time domain
features. The statistical parameters represent measured quantities of a statistical population describing
the respective time domain features. The processor 210 is additionally caused to estimate oxygen
saturation for the subject based on the frequency domain features and the statistical parameters of the
time domain features and an oxygen saturation estimation model trained for estimating oxygen
saturation based on input frequency domain features and input statistical parameters of time domain
features.

In another embodiment, the computer program 240 comprises instructions, which when executed by a
processor 210, cause the processor 210 to pre-process a plurality of PPG signals of light reflected from
skins of a plurality of subjects illuminated by ambient light by filtering the PPG signals to obtain a
plurality of smoothed pulse signals. The processor 210 is also caused to extract, from each smoothed
pulse signal of the plurality of smoothed pulse signals, a plurality of frequency domain and time domain
features from the smoothed pulse signal by extracting time domain features from the smoothed pulse
signal with respect to time and extracting frequency domain features from the smoothed pulse signal
with respect to frequency. The processor 210 is further caused to compute statistical parameters of the
time domain features. The statistical parameters represent measured quantities of a statistical
population describing the respective time domain features. The processor 210 is additionally caused to
train an oxygen saturation estimation model based on the frequency domain features and the statistical
parameters of the time domain features and actual oxygen saturation values obtained for the plurality of

subjects.
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The proposed technology also provides a non-transitory computer-readable storage medium 250
comprising the computer program 240. By way of example, the software or computer program 240 may
be realized as a computer program product, which is normally carried or stored on the non-transitory
computer-readable medium 250, in particular a non-volatile medium. The non-transitory computer-
readable medium 250 may include one or more removable or non-removable memory devices
including, but not limited to a Read-Only Memory (ROM), a Random Access Memory (RAM), a
Compact Disc (CD), a Digital Versatile Disc (DVD), a Blu-ray disc, a Universal Serial Bus (USB)
memory, a Hard Disk Drive (HDD) storage device, a flash memory, a magnetic tape, or any other
conventional memory device. The computer program 240 may, thus, be loaded into the operating

memory 220 of the computer for execution by the processor 210 thereof.

Hence, an embodiment relates to a non-transitory computer-readable medium 250 storing instructions
that, when executed by a processor 210, cause the processor 210 to pre-process a plurality of PPG
signals of light reflected from skins of a plurality of subjects illuminated by ambient light by filtering the
PPG signals to obtain a plurality of smoothed pulse signals. The processor 210 is also caused to
extract, from each smoothed pulse signal of the plurality of smoothed pulse signals, a plurality of
frequency domain and time domain features from the smoothed pulse signal by extracting time domain
features from the smoothed pulse signal with respect to time and extracting frequency domain features
from the smoothed pulse signal with respect to frequency. The processor 210 is further caused to
compute statistical parameters of the time domain features. The statistical parameters represent
measured quantities of a statistical population describing the respective time domain features. The
processor 210 is additionally caused to train an oxygen saturation estimation model based on the
frequency domain features and the statistical parameters of the time domain features and actual
oxygen saturation values obtained for the plurality of subjects.

Another embodiment relates to a non-transitory computer-readable medium 250 storing instructions that,
when executed by a processor 210, cause the processor 210 to pre-process a plurality of PPG signals
of light reflected from skins of a plurality of subjects illuminated by ambient light by filtering the PPG
signals to obtain a plurality of smoothed pulse signals. The processor 210 is also caused to extract,
from each smoothed pulse signal of the plurality of smoothed pulse signals, a plurality of frequency
domain and time domain features from the smoothed pulse signal by extracting time domain features
from the smoothed pulse signal with respect to time and extracting frequency domain features from the
smoothed pulse signal with respect to frequency. The processor 210 is further caused to compute
statistical parameters of the time domain features. The statistical parameters represent measured
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quantities of a statistical population describing the respective time domain features. The processor 210
is additionally caused to train an oxygen saturation estimation model based on the frequency domain
features and the statistical parameters of the time domain features and actual oxygen saturation values
obtained for the plurality of subjects.

In an embodiment, the instructions cause the processor 210 to select frequency domain and/or time
domain features among the plurality of frequency domain and time domain features to train a random
forest based oxygen saturation estimation model. In such an embodiment, the processor 210 is caused
to, for t=1to T, wherein T represents a number of decision trees in the random forest based oxygen
saturation estimation model, compute a prediction error E: = Y: - ¥, for a decision tree t, wherein Y:is an
actual oxygen saturation value and Y, is a prediction of the oxygen saturation value; select a feature f
among the plurality of frequency domain and time domain features and permuting feature values until
dir = 0; estimate a new prediction error E¢;, and compute a difference dy = Ex - Ev. The processor 210 is
also caused to compute a mean dr and standard deviation orover the T decision trees and computing a
feature permutation importance as /r = —d#/0r and discard the feature f if /r is equal to lower than a
threshold value T, wherein Tris preferably 0.08.

In an embodiment, the instructions cause the processor 210 to filter the PPG signal using a median
average filter. In a particular embodiment, the instructions cause the processor 210 to filter the PPG
signal using the median average filter by sorting PPG signal values within a filter window in ascending
order and replacing the middle PPG signal value within the filter window by the median PPG signal

value within the filter window.

In an embodiment, the instructions cause the processor 210 to filter the median average filtered PPG
signal using a 3-standard deviation filter. In a particular embodiment, the instructions cause the
processor 210 to filter the median average filtered PPG signal using the 3-standard deviation filter by
calculating z-scores of data points in the median average filtered PPG signal by subtracting an average
value up of the median average filtered PPG signal P of length n from a data point P, of the median
average filtered PPG signal and then by dividing the output using a standard deviation o, of the
median average filtered PPG signal; and substituting data points in the median average filtered PPG
signal having a z-score higher than a threshold value T or lower than a threshold value -7z, wherein T

is preferably 3, by a value of a preceding data point.
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In an embodiment, the instructions cause the processor 210 to truncate the 3-standard deviation filtered
signal. In a particular embodiment, the instructions cause the processor 210 to truncate the part of the
3-standard deviation filtered signal between a first valley and a last valley of the 3-standard deviation

filtered signal.

In an embodiment, the instructions cause the processor 210 to filter the truncated signal with a moving
average filter. In a particular embodiment, the instructions cause the processor 210 to filter the
truncated signal with the moving average filter by calculating smoothed signal values

- + v, _ .t
Pk — Pn-k+1 Pn-k+2 Pn fOI'k= 1n

w

wherein k represents a data point of the truncated signal p and w is the size of a filter window.

In an embodiment, the instructions cause the processor 210 to filter compute at least two of, preferably
at least three of, more preferably at least four of, and most preferably all of mean, median, standard
deviation, mean absolute deviation, and interquartile range of the time domain features.

In an embodiment, the instructions cause the processor 210 to extract at least two frequency domain
features selected from the group consisting of amplitude of a first frequency peak of the smoothed
pulse signal, frequency of the first frequency peak of the smoothed pulse signal, area under curve in
the frequency range 0-2 Hz, area under the curve in the frequency range 2-5 Hz, ratio between area
under curve in the frequency range 0-2 Hz and area under the curve in the frequency range 2-5 Hz,
ratio between first and second frequency peaks of the smoothed pulse signal, ratio between first and
third frequency peaks of the smoothed pulse signal, ratio between the frequency of the first frequency
peak and the frequency of the second frequency peak of the smoothed pulse signal, ratio between the
frequency of the first frequency peak and the frequency of the third frequency peak of the smoothed
pulse signal, highest frequency in the smoothed pulse signal, and magnitude at the highest frequency
of the smoothed pulse signal.

In an embodiment, the instructions cause the processor 210 to extract at least two time domain
features selected from the group consisting of difference between height of a peak of the smoothed
pulse signal and average height of two valleys adjacent the peak, time duration between a peak of the
smoothed pulse signal and a valley preceding the peak, time duration between two valleys of a pulse
wave in the smoothed pulse signal, width at a selected percentage, preferably 25% or 50%, peak

height between a rising branch and peak point in the smoothed pulse signal, periodic energy of the
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smoothed pulse signal, area under a pulse cycle in the smoothed pulse signal, time between systolic
peaks and a dicrotic notch in the smoothed pulse signal, distance between diastolic valleys in the
smoothed pulse signal, dicrotic notch downward curve in the smoothed pulse signal, ratio of systolic
peak time to peak-to-peak interval of the smoothed pulse signal, ratio of a height of a notch to a systolic
peak amplitude of the smoothed pulse signal, ratio of pulse width from right at a selected percentage,
such as 75%, of systolic amplitude to notch time, time interval from a foot of the smoothed pulse signal
to a time at which a first derivative of the smoothed pulse signal occurred, first maximum peak from a
second derivative of the smoothed pulse signal after first maximum peak from a first derivative of the
smoothed pulse signal and ratio of time interval from the foot of the smoothed signal to a time at which

the first minimum peak occurred to a peak-to-peak interval of the smoothed pulse signal.

The present invention also relates to a system 300 for non-contact estimation of oxygen saturation, see
Fig. 13. The system 300 comprises a camera 360 configured to record a PPG signal of light reflected
from a skin of a subject illuminated by ambient light. The system 300 also comprises at least one
memory 320 configured to store an oxygen saturation estimation model 350 trained for estimating
oxygen saturation based on input frequency domain features and input statistical parameters of time
domain features. The at least one memory 320 is also configured to store the PPG signal 340 recorded
by the camera 360. The system 300 further comprises at least one processor 310. The at least one
processor 310 is configured to pre-process the PPG signal 340 by filtering the PPG signal 340 to obtain
a smoothed pulse signal. The at least one processor 310 is also configured to extract a plurality of
frequency domain and time domain features from the smoothed pulse signal by extracting time domain
features from the smoothed pulse signal with respect to time and extracting frequency domain features
from the smoothed pulse signal with respect to frequency and compute statistical parameters of the
time domain features. The statistical parameters represent measured quantities of a statistical
population describing the respective time domain features. The at least one processor 310 is further
configured to estimate oxygen saturation for the subject based on the frequency domain features and
the statistical parameters of the time domain features and the oxygen saturation estimation model 350

stored in the at least one memory 320.
The memory 320 and the at least one processor 310 may be implemented in a device 370, such as a

computer, of the system 300. This device 370 may then be connected, wirelessly or using wires, to the

camera 360 using an 1/O unit 330.
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The camera 360 could be any camera 360 that is able to record a PPG signal of light reflected from the
skin of a subject illuminated by ambient light. The camera 360 is preferably a camera 360 capable of
recording at least 100 frames per seconds, preferably at least 125 frames per seconds, such as at least
150 frames per seconds, and more preferably at least 200 frames per seconds, such as at least 250
frames per seconds or at least 300 frames per seconds. An illustrative, but non-limiting, example of a
camera 360 that could be used according to the invention is a Basler MED ace camera.

EXAMPLES
The present Examples involve development of method for estimating oxygen saturation under ambient
light. The method involves training a machine learning model using features extracted from a
photoplethysmography (PPG) signal recorded using a high-speed camera under ambient lighting
conditions. The method comprises three main method steps: 1) pre-processing of a PPG pulse signal,
2) extraction of features from the PGG pulse signal, and 3) using features to train a random forests (RF)
algorithm to estimate oxygen saturation.

Video recording

Subjects were video recorded using a high-speed Basler MED ace camera equipped with a Sony
IMX174 complementary metal-oxide—semiconductor (CMOS) sensor, connected to a computer.
Subjects were seated at a distance of one meter from the camera facing towards the camera lens. A
ten-second video was recorded for each subject with a frame rate of 396.5 frames per second (fps) and

an image resolution of 640 x 480 RGB pixels.

Pre-processing

Once a raw PPG signal was extracted from the recorded high-speed video using the Eulerian
Magnification algorithm (Fig. 1A), the raw PPG signal was filtered using a median average filter to get a
smoothed PPG signal. The median filter sorted the values of the raw PPG signal in the window in
ascending order and replaced the middle value with the median value in the window. In this way, spikes
in the raw PPG signal were reduced without affecting the peaks and the valleys in the raw PPG signal.
The smoothed PPG signal obtained from the raw PPG pulse signal smoothed using a median average
filter is shown in Fig. 1B.

The smoothed PPG signal was further filtered using a 3-standard deviation filter to reduce the height of
the peaks that were abnormally high as can be observed in Fig. 1B. In a first step, a 3-standard
deviation filter was applied to the smoothed PPG signal. This was done by calculating the z-scores of
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the data points in the smoothed PPG signal. A z-score is the number of standard deviations by which a
data point is above or below the average value of the smoothed PPG pulse signal P. The z-score Zx
was computed by subtracting the average value of the smoothed PPG signal P of length n, given as up,
from an individual data point of the smoothed PPG signal, given as Pk, and then by dividing the output
using the standard deviation or of the smoothed PPG signal (equation 1).

Zp = fork=1...n (1)

Once the z-score was calculated, the data points in the smoothed PPG signal that had a z-score higher
than 3 and lower than -3 were substituted by the value of the previous data point consequently reducing
spikes in the smoothed PPG pulse signal as shown in Fig. 1C.

Once filtered, the smoothed PPG signal was truncated by keeping the part of the filtered and smoothed
PPG signal that lied between the first and the last valleys of the filtered and smoothed PPG signal. The
first and last peaks of the filtered and smoothed PPG signal were removed because the initial and the
end of the filtered and smoothed PPG signal may consist of movements of the subject to get into
position for recording. This was done by applying a valley finder algorithm and the part of the filtered
and smoothed PPG signal between the second and the second-last valley was selected for further
processing. The truncated PPG signal is shown in Fig. 1D.

The truncated PPG signal was further smoothed using a moving average filter to remove signal
aberrations. A moving average filter, also referred to as a rolling average filter, creates a series of
averages of values of samples within a window, that then rolls over to the full dataset to smooth out
short-term fluctuations. The moving average filter for the truncated PPG pulse signal p of length n is

given in equation 2.

_ +p,- .t
Pk — Prn-k+1 Pn-k+2 Pn fOI'k= 1n (2)

w

where k is the data point of the truncated PPG signal p and w is the size of the window. The final PPG
pulse signal Pis shown in Fig. 1E. This final PPG signal was used for feature extraction.

Feature extraction
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A total of 493 frequency and time domain features were extracted from the final PPG signal P.

Statistical parameters of time domain features, shown in Fig. 2 and including mean, median, standard

deviation, mean absolute deviation, and interquartile range, were computed. Time domain features are

given in Table 1 and frequency domain features are given in Table 2.

Table 1. Time domain features for estimating oxygen saturation. Statistical parameters, such as mean,

standard deviation, median, mean absolute deviation, and interquartile range were computed for each

feature. Total features = 96 features x 5 statistical parameters = 480 time domain features.

No. Feature Description

1 h1 Height of the peak of a pulse wave
2 (h2+h3)/2 The average height of two subsequent valleys in a pulse wave.

Difference between the height of the peak of the pulse wave
3 h1(c) - ((h2(c)+h3(c))/2) . :

and the average height of two adjacent valleys
A “ The time duration between a peak and the valley on the left of
the peak
5 0 The time duration between a peak and the valley on the right of
the peak
6 t1+2 The time duration between two valleys of a pulse wave
7 t1-12 Time difference between two valleys of a pulse wave
8 t1/t2 Time ratio between two valleys of a pulse wave
9 s1 Area of the rising branch of waveform
10 s2 Area of the falling branch of waveform
11 s1+s2 The total area under the pulse wave
The ratio of the area of the rising branch and the total area
12 s1/(s1+s2)
under the pulse waveform

The ratio of the area of the falling branch and the total area

13 s2/(s1+s2)
under the pulse waveform
y " The ratio of the area of the rising branch and the falling branch
sl/s
of the pulse waveform

15 p1 The slope of the rising branch of a pulse waveform
16 p2 The slope of the falling branch of a pulse waveform

Width at 25% peak height between a rising branch and peak
17 Lt wt25 ”

poin
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Width at 50% peak height between the rising branch and peak

18 Lt wt50 ,
point
Width at 75% peak height between the rising branch and peak
19 Lt wt75 _
point
Width at 25% peak height between the falling branch and peak
20 Rt_wt25 _
point
Width at 50% peak height between the falling branch and peak
21 Rt_wt50 ,
point
Width at 25% peak height between the falling branch and peak
22 Rt_wt75 .
point
23 KTE Instantaneous waveform energy using Teager Energy Operator
24 K Characteristic quantify of a pulse waveform
25 En Periodic energy of pulse waveform
26 Cycle area The area under a pulse cycle
27 PTT Pulse transit time in a pulse cycle
28 Cycle MAP Mean arterial pressure in a cycle
29 Pk Systolic peak height
30 Dk Diastolic valley height
31 Pdias The area under dicrotic notch and diastolic valley
32 Psys The area under systolic peak and diastolic notch
33 KTE_signal Instantaneous signal energy using Teager Energy Operator
Height at 25% of the total time of the rising branch of a
34 Lt_ht25
waveform
Height at 50% of the total time of the rising branch of a
35 Lt_ht50
waveform
Height at 75% of the total time of the rising branch of a
36 Lt_ht75
waveform
Height at 25% of the total time of the falling branch of a
37 Rt_ht25
waveform
Height at 50% of the total time of the falling branch of a
38 Rt_ht50
waveform
Height at 75% of the total time of the falling branch of a
39 Rt_ht75

waveform
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Dicrotic notch time - Time between the locations of the first

40 NT
diastolic valley of the waveform and dicrotic notch
41 NH Dicrotic notch height
1 op| The time between systolic peaks and dicrotic notch in a pulse
waveform
43 Pk_time(2) - Pk_time(1) Distance between systolic peaks
DV_time (2) - DV_time . o
44 ) Distance between diastolic valleys
Inflection point area — A1 is the area under the first diastolic
45 A1/A2 valley and the dicrotic notch. A2 is the area under the dicrotic
notch and the second diastolic valley in a pulse waveform.
Augmentation index - a ratio of dicrotic notch height and
46 NH/Pk . .
systolic peak height
(Pk-NH) . . . :
4 | Alternative Augmentation Index - Difference between systolic
oK and dicrotic notch height divided by systolic peak height
18 1Pk Systolic peak output curve - The ratio of systolic peak time to
systolic peak amplitude
NH Dicrotic notch downward curve - The ratio of diastolic peak
49 / amplitude to the differences between pulse interval and height
((t1-t2)-(t1-NT) ) of notch time
( Pk_time(1) -
DV_time(1)) | | | |
50 | The ratio of systolic peak time to the peak-to-peak interval of
. . the PPG waveform, Pk: Systolic peak, DV: Diastolic valley
( Pk_time(2) - Pk_time(1)
)
(NT - DV_time(1) )
51 / The ratio of dicrotic notch time to the peak-to-peak interval of
( Pk_time (2) - the PPG waveform
Pk_time(1) )
(NT - Pk_time(1) )/ _ o . .
. The ratio of dicrotic notch time to the peak-to-peak interval of
52 ( Pk_time (2

) -
Pk_time(1) )

the PPG waveform
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53

NH/Pk

The ratio of the height of notch to the systolic peak amplitude

(NT - DV_time(1) )

54 / The ratio of the notch time to the height of the notch
NH
Pk
/ . . . .
. . The ratio of systolic peak amplitude to the difference between
55 | ((DV_time (2) - DV_time . . .
. pulse interval and systolic peak time
(1)) - (Pk_time (1) -
DV_time (1)) )
NH
/ . . .
. . The ratio of the height of notch to the difference between pulse
56 | ((DV_time (2) - DV_time . .
interval and notch time
(1)) - (NT - DV_time (1)
)
Lt wt25
57 / The ratio of pulse width from the left at 25% of systolic
( Pk_time (1) - DV_time amplitude to systolic peak time
(1))
Rt_wt25
58 / The ratio of pulse width from right at 25% of systolic amplitude
( Pk_time (1) - DV_time to systolic peak time
(1))
Lt wt25 _ _ .
59 | The ratio of pulse width from the left at 25% of systolic
. amplitude to notch time
(NT - DV_time (1))
Rt_wt25 _ _ . .
50 | The ratio of pulse width from right at 25% of systolic amplitude
to notch time
(NT - DV_time (1))
Lt wt25 _ _ .
51 | The ratio of pulse width from the left at 25% of systolic
, amplitude to DT
(NT - Pk_time (1))
6 Rt_wt25 The ratio of pulse width from right at 25% of systolic amplitude

/

to notch time
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(NT - Pk_time (1))

Lt_wt25
/ The ratio of pulse width from the left at 25% of systolic
o (DV_time (2) - DV_time amplitude to pulse interval
(1)
Rt_wt25
/ The ratio of pulse width from right at 25% of systolic amplitude
o (DV_time (2) - DV_time to pulse interval
(1)
Lt_wt50
/ The ratio of pulse width from the left at 50% of systolic
% ( Pk_time (1) - DV_time amplitude to systolic peak time
(1)
Rt_wt50
/ The ratio of pulse width from right at 50% of systolic amplitude
% ( Pk_time (1) - DV_time to systolic peak time
(1)
Lt_wt50 :
The ratio of pulse width from the left at 50% of systolic
o / amplitude to notch time
(NT - DV_time (1))
Rt_wt50
68 | The ratio of pulse width from right at 50% of systolic amplitude
(NT - Pk_time (1)) b1
Lt_wt50 , :
The ratio of pulse width from the left at 50% of systolic
o / amplitude to DT
(NT - Pk_time (1))
Rt_wt50
70 | The ratio of pulse width from right at 50% of systolic amplitude
(NT - Pk_time (1)) b1
Lt_wt50
71 / The ratio of pulse width from the left at 50% of systolic

(DV_time (2) - DV_time
(1)

amplitude to pulse interval
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Rt_wt50
79 / The ratio of pulse width from right at 50% of systolic amplitude
(DV_time (2) - DV_time to pulse interval
(1)
Lt_wt75
/ The ratio of pulse width from the left at 75% of systolic
& ( Pk_time (1) - DV_time amplitude to systolic peak time
(1)
Rt_wt75
” / The ratio of pulse width from right at 75% of systolic amplitude
( Pk_time (1) - DV_time to systolic peak time
(1)
Lt_wt75
The ratio of pulse width from the left at 75% of systolic
~ / amplitude to notch time
(NT-DV_time (1))
Rt_wt75
- | The ratio of pulse width from right at 75% of systolic amplitude
(NT-DV_fime (1)) to notch time
Lt_wt75 .
The ratio of pulse width from the left at 75% of systolic
" / amplitude to DT
( NT- Pk_time (1) )
Rt_wt75
- | The ratio of pulse width from right at 75% of systolic amplitude
( NT- Pk_time (1) ) b1
Lt_wt75
79 / The ratio of pulse width from the left at 75% of systolic
(DV_time (2) - DV_time amplitude to pulse interval
(1)
Rt_wt75
/ The ratio of pulse width from right at 75% of systolic amplitude
0 (DV_time (2) - DV_time to pulse interval
(1)
81 af The first maximum peak from the first derivative of the PPG
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waveform
8 a1 The time interval from the foot of the PPG waveform to the time
at which the first derivative of the PPG waveform occurred
83 2 The first maximum peak from the second derivative of the PPG
waveform after a1
The time interval from the foot of the PPG waveform
84 ta2 to the time at which the first maximum peak from the second
derivative of the PPG occurred
5 o The first minimum peak from the first derivative of the PPG
waveform after the first maximum peak
8 o1 The time interval from the foot of the PPG waveform to the time
at which the first minimum peak occurred
87 b? The first minimum peak from the second derivative of the PPG
waveform
88 09 The time interval from the foot of the PPG waveform to the time
at which b2
89 b2/a2 The ratio of b2 to a2
% b1/af The ratio of the first minimum peak of the first derivative after
al to the first maximum peak of the first derivative
tal
o1 / The ratio of ta1 to the peak-to-peak interval of the PPG
( Pk_time (2) - waveform
Pk_time(1))
ta2
0 / The ratio of ta2 to the peak-to-peak interval of the PPG
( Pk_time (2) - waveform
Pk_time(1))
th1
03 / The ratio of th1 to the peak-to-peak interval of the PPG
( Pk_time (2) - waveform
Pk_time(1))
o th2 The ratio of th2 to the peak-to-peak interval of the PPG
/ waveform
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( Pk_time (2) -
Pk_time(1))
(tal-ta2)
/ The ratio of the difference between ta1 and ta2 to the peak-to-
» ( Pk_time (2) - peak interval of the PPG waveform
Pk_time(1))
(th1-1b2)
/ The ratio of the difference between th1 and th2 to the peak-to-
% ( Pk_time (2) - peak interval of the PPG waveform
Pk_time(1))

Table 2. Frequency features for estimating oxygen saturation.

No. Feature Description
97 Peak-1 The amplitude of the first frequency peak of the pulse signal.
98 Freg-1 The frequency at the first peak of the pulse signal.
99 A0-2 The area under the curve in the frequency range 0-2 Hz
100 A2-5 The area under the curve in the frequency range 2-5 Hz
101 AQ-2/A2-5 Ratio between A0-2 and A2-5

Ratio between first and seconds frequency peaks of the pulse
102 Peak-1/Peak-2 .

signal

The ratio between the first and third frequency peaks of the
103 Peak-1/Peak-3 .

pulse signal

The ratio between the frequency at the first peak and the
104 Freq-1/Freq-2 .

frequency at the second peak of the pulse signal

The ratio between the frequency at the first peak and the
105 Freq-1/Freq-3 . .

frequency at the third peak of the pulse signal
106 Fmax The highest frequency in the pulse signal
107 mag_Fmax Magnitude at the highest frequency of the pulse signal
108 HR Heart rate
109 MAP Average mean arterial pressure of a pulse signal

Training Random Forests for estimating oxygen saturation
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Random forests (RF) are an ensemble-based method of machine learning. An RF algorithm operates
by dividing the training data into random subsets and training multiple decision trees by using these
subsets through a process called Bagging. Bagging splits training data in a way that two-thirds of the
data that is randomly selected from the full training set is used for training a decision tree in the forests.
The rest of the one-third of the data is used for testing that decision tree. The test data are termed out-
of-bag (OOB) samples. An error in predicting an " OOB sample is computed using equation 3.

E [Y] =Y,-Y, 3)

where Y;is the actual value of the OOB sample, and Y; is the prediction of the OOB sample by an it
decision tree. An average value of predictions produced by all the decision trees in the forests is the

prediction from the model as shown in Fig. 3.

For oxygen saturation estimation, which is a regression problem, the overall performance of the RF

algorithm was analyzed based on the R? coefficient computed using equation 4.

A\ 2
iYi =Y
PP (i 2 _ (4)
XY, —E[YD
where E[Y] is the average OOB prediction error. By using multiple decision trees for prediction, the
algorithm eliminates prediction bias that occurs if a single decision tree is used for decision making.
Also, the random selection of data for training and testing reduces variance in the data that prevents

overfitting.

Another advantage of using the RF algorithm is that it performs feature selection during training.
Features that are most correlated with the training targets are selected by the RF algorithm using
permutation scores. RF permutes feature values to estimate if the permutation deteriorates the
prediction performance compared to a baseline. The features that are not correlated show no changes
when the values are permutated suggesting that there is no difference between the permuted values
and the original sequence of values. This suggests that the feature is a noise that does not contribute to
training and can be discarded. On the other hand, the permutation of features that are correlated with

the training targets results in reducing the prediction accuracy.

A feature’s permutation score was computed as follows:
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for an RF with a total of T decision trees and a total number of F features
fort=1toT
compute the baseline OOB prediction error E¢for a tree f;
select a feature fand permute feature values;
estimate a new OOB prediction error Ex,
compute the difference between the baseline and new prediction error using o = Exf - E,
if dr =0
stop permutations;
end
compute mean drand standard deviation o7 over T trees;
feature permutation importance is computed as /r= —d#0r,

end

A value of Irequals or near to 0 suggests low prediction ability of feature f.

Twenty features produced permutation importance scores above 0.08 as shown in Fig. 4. These
features were selected for training the RF algorithm. A list of the selected features is given in Table 3.

Table 3. Selected features for training the random forests

No. | Feature

—_

Mean of feature number 3

Mean absolute deviation of feature number 4

The standard deviation of feature number 6

Mean absolute deviation of feature number 17

The standard deviation of feature number 18

The standard deviation of feature number 25

The interquartile range of feature number 25

The standard deviation of feature number 26

WO| O N O O A Wl M

Mean absolute deviation of feature number 26

—_
o

The standard deviation of feature number 42

—_
—_

The standard deviation of feature number 44

—_
N

Mean absolute deviation of feature number F44
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13 | The standard deviation of feature number 49

14 | Mean absolute deviation of feature number 49

15 | Median of feature number 50

16 | Mean absolute deviation of feature number 53

17 | Median of feature number 76

18 | The standard deviation of feature number 82

19 | Median of feature number 83

20 | The interquartile range of feature number 93

Finally, the model performance based on a Leave one out cross-validation using 50 samples is shown

in Fig. 5.

The embodiments described above are to be understood as a few illustrative examples of the present
invention. It will be understood by those skilled in the art that various modifications, combinations and

changes may be made to the embodiments without departing from the scope of the present invention.

In particular, different part solutions in the different embodiments can be combined in other
configurations, where technically possible. The scope of the present invention is, however, defined by

the appended claims.
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CLAIMS

1. Amethod for non-contact estimation of oxygen saturation, the method comprising:

pre-processing (S1) a photoplethysmography (PPG) signal of light reflected from a skin of a
subject illuminated by ambient light by filtering the PPG signal to obtain a smoothed pulse signal;

extracting (S2) a plurality of frequency domain and time domain features from the smoothed
pulse signal by extracting time domain features from the smoothed pulse signal with respect to time
and extracting frequency domain features from the smoothed pulse signal with respect to frequency;

computing (S3) statistical parameters of the time domain features, wherein the statistical
parameters represent measured quantities of a statistical population describing the respective time
domain features; and

estimating (S4) oxygen saturation for the subject based on the frequency domain features and
the statistical parameters of the time domain features and an oxygen saturation estimation model
trained for estimating oxygen saturation based on input frequency domain features and input statistical

parameters of time domain features.

2. A computer-implemented method of generating an oxygen saturation estimation model, the
method comprising:

pre-processing (S11) a plurality of photoplethysmography (PPG) signals of light reflected from
skins of a plurality of subjects illuminated by ambient light by filtering the PPG signals to obtain a
plurality of smoothed pulse signals;

extracting (S12), from each smoothed pulse signal of the plurality of smoothed pulse signals, a
plurality of frequency domain and time domain features from the smoothed pulse signal by extracting
time domain features from the smoothed pulse signal with respect to time and extracting frequency
domain features from the smoothed pulse signal with respect to frequency;

computing (S13) statistical parameters of the time domain features, wherein the statistical
parameters represent measured quantities of a statistical population describing the respective time
domain features; and

training (S14) the oxygen saturation estimation model based on the frequency domain features
and the statistical parameters of the time domain features and actual oxygen saturation values obtained
for the plurality of subjects.

3. The method according to claim 1 or 2, wherein the oxygen saturation estimation model is a

random forest based oxygen saturation estimation model.
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4. The method according to claim 3 when dependent on claim 2, wherein training the random forest
based oxygen saturation estimation model comprises:
selecting (S20) frequency domain and/or time domain features among the plurality of frequency
domain and time domain features to train the random forest based oxygen saturation estimation model
by:
for t =1 to T, wherein T represents a number of decision trees in the random forest based
oxygen saturation estimation model,
computing (S21) a prediction error E: = Y; — ¥, for a decision tree f, wherein Y:is an
actual oxygen saturation value and Y, is a prediction of the oxygen saturation value;
selecting (S22) a feature f among the plurality of frequency domain and time domain
features and permuting feature values until di = 0;
estimating (S23) a new prediction error Ex;
computing (S24) a difference di = Exr— E;
computing (S25) a mean dr and standard deviation or over the T decision trees and
computing a feature permutation importance as /r = —d#or, and
discarding (S26) the feature fif Iris equal to lower than a threshold value Ty, wherein Tris
preferably 0.08.

5. The method according to any of the claims 1 to 4, wherein pre-processing (S1, S11) comprises
filtering (S30) the PPG signal using a median average filter.

6.  The method according to claim 5, wherein filtering (S30) the PPG signal comprises filtering (S30)
the PPG signal using the median average filter by sorting PPG signal values within a filter window in
ascending order and replacing the middle PPG signal value within the filter window by the median PPG

signal value within the filter window.

7. The method according to claim 5 or 6, wherein pre-processing (S1, S11) further comprises
filtering (S31) the median average filtered PPG signal using a 3-standard deviation filter.

8.  The method according to claim 7, wherein filtering (S31) the median average filtered PPG signal
comprises filtering (S31) the median average filtered PPG signal using the 3-standard deviation filter by
calculating z-scores of data points in the median average filtered PPG signal by subtracting an

average value pp of the median average filtered PPG signal P of length n from a data point P, of the
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median average filtered PPG signal and then by dividing the output using a standard deviation o, of
the median average filtered PPG signal; and

substituting data points in the median average filtered PPG signal having a z-score higher than a
threshold value T: or lower than a threshold value —T-, wherein T is preferably 3, by a value of a

preceding data point.

9.  The method according to claim 7 or 8, wherein pre-processing (S1, S11) further comprises
truncating (S32) the 3-standard deviation filtered signal.

10. The method according to claim 9, wherein truncating (S32) the 3-standard deviation filtered
signal comprises truncating (S32) the part of the 3-standard deviation filtered signal between a first

valley and a last valley of the 3-standard deviation filtered signal.

11. The method according to claim 9 or 10, wherein pre-processing (S1, S11) further comprises
filtering (S33) the truncated signal with a moving average filter.

12.  The method according to claim 11, wherein filtering (S33) the truncated signal comprises filtering
(S33) the truncated signal with the moving average filter by calculating smoothed signal values

- + v, _ .t
Pk — Pn-k+1 Pn-k+2 Pn fOI'k= 1n

w

wherein k represents a data point of the truncated signal p and w is the size of a filter window.

13.  The method according to any of the claims 1 to 12, wherein computing (S3, S13) statistical
parameters comprises computing (S3, S13) at least two of, preferably at least three of, more preferably
at least four of, and most preferably all of mean, median, standard deviation, mean absolute deviation,

and interquartile range of the time domain features.

14.  The method according to any of the claims 1 to 13, wherein extracting (S2, S12) a plurality of
frequency domain features comprises extracting (S2, S12) at least two frequency domain features
selected from the group consisting of amplitude of a first frequency peak of the smoothed pulse signal,
frequency of the first frequency peak of the smoothed pulse signal, area under curve in the frequency
range 0-2 Hz, area under the curve in the frequency range 2-5 Hz, ratio between area under curve in
the frequency range 0-2 Hz and area under the curve in the frequency range 2-5 Hz, ratio between first
and second frequency peaks of the smoothed pulse signal, ratio between first and third frequency
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peaks of the smoothed pulse signal, ratio between the frequency of the first frequency peak and the
frequency of the second frequency peak of the smoothed pulse signal, ratio between the frequency of
the first frequency peak and the frequency of the third frequency peak of the smoothed pulse signal,
highest frequency in the smoothed pulse signal, and magnitude at the highest frequency of the

smoothed pulse signal.

15.  The method according to any of the claims 1 to14, wherein extracting (S2, S12) a plurality of time
domain features comprises extracting (S2, S12) at least two time domain features selected from the
group consisting of difference between height of a peak of the smoothed pulse signal and average
height of two valleys adjacent the peak, time duration between a peak of the smoothed pulse signal and
a valley preceding the peak, time duration between two valleys of a pulse wave in the smoothed pulse
signal, width at a selected percentage, preferably 25% or 50%, peak height between a rising branch
and peak point in the smoothed pulse signal, periodic energy of the smoothed pulse signal, area under
a pulse cycle in the smoothed pulse signal, time between systolic peaks and a dicrotic notch in the
smoothed pulse signal, distance between diastolic valleys in the smoothed pulse signal, dicrotic notch
downward curve in the smoothed pulse signal, ratio of systolic peak time to peak-to-peak interval of the
smoothed pulse signal, ratio of a height of a notch to a systolic peak amplitude of the smoothed pulse
signal, ratio of pulse width from right at a selected percentage, such as 75%, of systolic amplitude to
notch time, time interval from a foot of the smoothed pulse signal to a time at which a first derivative of
the smoothed pulse signal occurred, first maximum peak from a second derivative of the smoothed
pulse signal after first maximum peak from a first derivative of the smoothed pulse signal and ratio of
time interval from the foot of the smoothed signal to a time at which the first minimum peak occurred to

a peak-to-peak interval of the smoothed pulse signal.

16. A non-transitory computer-readable medium (250) storing instructions that, when executed by a
processor (210), cause the processor (210) to

pre-process a photoplethysmography (PPG) signal of light reflected from a skin of a subject
illuminated by ambient light by filtering the PPG signal to obtain a smoothed pulse signal;

extract a plurality of frequency domain and time domain features from the smoothed pulse signal
by extracting time domain features from the smoothed pulse signal with respect to time and extracting
frequency domain features from the smoothed pulse signal with respect to frequency;

compute statistical parameters of the time domain features, wherein the statistical parameters
represent measured quantities of a statistical population describing the respective time domain
features; and
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estimate oxygen saturation for the subject based on the frequency domain features and the
statistical parameters of the time domain features and an oxygen saturation estimation model trained
for estimating oxygen saturation based on input frequency domain features and input statistical

parameters of time domain features.

17. A non-transitory computer-readable medium (250) storing instructions that, when executed by a
processor (210), cause the processor (210) to

pre-process a plurality of photoplethysmography (PPG) signals of light reflected from skins of a
plurality of subjects illuminated by ambient light by filtering the PPG signals to obtain a plurality of
smoothed pulse signals;

extract, from each smoothed pulse signal of the plurality of smoothed pulse signals, a plurality of
frequency domain and time domain features from the smoothed pulse signal by extracting time domain
features from the smoothed pulse signal with respect to time and extracting frequency domain features
from the smoothed pulse signal with respect to frequency;

compute statistical parameters of the time domain features, wherein the statistical parameters
represent measured quantities of a statistical population describing the respective time domain
features; and

train an oxygen saturation estimation model based on the frequency domain features and the
statistical parameters of the time domain features and actual oxygen saturation values obtained for the

plurality of subjects.

18. A system (300) for non-contact estimation of oxygen saturation, the system (300) comprising:
a camera (360) configured to record a photoplethysmography (PPG) signal of light reflected from
a skin of a subject illuminated by ambient light,
at least one memory (320) configured to store:
an oxygen saturation estimation model (350) trained for estimating oxygen saturation
based on input frequency domain features and input statistical parameters of the domain features; and
the PPG signal (340) recorded by the camera (360); and
at least one processor (310) configured to:
pre-process the PPG signal (340) by filtering the PPG signal (340) to obtain a smoothed
pulse signal;
extract a plurality of frequency domain and time domain features from the smoothed pulse
signal by extracting time domain features from the smoothed pulse signal with respect to time and
extracting frequency domain features from the smoothed pulse signal with respect to frequency;

39



WO 2023/163644 PCT/SE2023/050166

compute statistical parameters of the time domain features, wherein the statistical
parameters represent measured quantities of a statistical population describing the respective time
domain features; and

estimate oxygen saturation for the subject based on the frequency domain features and
the statistical parameters of the time domain features and the oxygen saturation estimation model (350)

stored in the at least one memory (320).

40



PCT/SE2023/050166

WO 2023/163644

S3INVHd 000¢ 000¢ 0001

| "B14
S3ANVH4

00

A

v'0

90

80
aNH

S3dNvVdd 000 000 0001 0

,,,,,,,,,,,,,,, PPV PPV F PRV R PRV VPRV R PRVEVFRVAVEV R PRVEV R PR VIV FRPLVEVFRPRVEVELPEVERERPRVFOPRPRvITPRPRE

001

0cl

ovl

091

aNH

000¢€

000¢

0001

1001

+ Ok

+0Cl

0¢l

LEDT

1/11



WO 2023/163644 PCT/SE2023/050166

4 . ’ |
s
e ” w
w5 Ly,
et 7 £
PP
R
R .
gy
Y i
g et
NTRPR: &
355 Z
4
ORI
I
;i
”
AR AR
h »
' ' g7y
Trvrd.
& %4 % 7% gy s,
s ind T, 4% -
- i S
ey, s iy, P e e -
- et L Gt b Yo Y

2/11



WO 2023/163644 PCT/SE2023/050166

e

Time(s)
Fig. 2

0.50 075

% % % %z
T T A
i TR - SRR v S
apmndury

3/11



PCT/SE2023/050166

WO 2023/163644

AR
N
e
SNt
e -
N -
SRREE =

s
AN P
Ay o

s
SR

O sy

SN o

nduy wwmmwm mwm 1591

4/11



PERMUTATION IMPORTANCE

WO 2023/163644 PCT/SE2023/050166

A PIIRRTRI AR

AR

osrass

o
(I
vvvvvvvvv m
< 5

A, L H

TSI, LL
” x
o
ke
L
» L

........................................................ ” A

G

S e S ST T Lt

SCORE (I,)

Lute oy
i o

e
it St

5/11



WO 2023/163644 PCT/SE2023/050166

=y
o

e 7 H ¥

R
s 05 7

&

s

]

2

».»sf -

. 5 4 57
o

54
{t}
G v
Whs
w oo P PRI
< o
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Z
o, /9.!, 3

s
paig

ot

ReRS
oerE

g PRI

s

i

4]
o

Random Forest Regression - Leave-ong-out

- st ‘
] e g [

H 3 3 3 p ) F
; “
% o w3 i 7
P P

7% £ e) 7% (7




PCT/SE2023/050166

WO 2023/163644

. "Bi-

13dOW NOILVINILSE
NOILVHNLYS NIOAXO NIVHL

SHI1dNVHVYd
1VOILSILVLS 31NdINOD

S3dNLv3dd 10VdLXd

TVYNOIS ©dd SS300dd-3dd

1423)

€LsS

AR

LLS

9 ‘b4

NOILVHNLYS
NIOAXO FLVINILSE

N\

SHI1dNVHVYd
1VOILSILVLS 31NdINOD

N\

S3dNLv3dd 10VdLXd

N\

TVYNOIS ©dd SS300dd-3dd

vS

€S

¢S

1S

7/11



PCT/SE2023/050166

WO 2023/163644

LCS

1S d431S Ol

Jd4N1v3S
ddvosId

9¢sS

NOILVIAIA A4vavlis
ANV NV3N 3LNdINOD

N\

3d0N34d3441d 31NdINOD

N\

S[O)=}=E|
NOILOId3ddd M3AN F1VINILSE

)

JdN1Lv34d L0313S

S[O)=}=E|
NOILOId3dd 31NdINOD

N\

€LS d41S NOH4

STAS)

1£43)

A

A

1ZS

g ‘b4

1S d31S O1

|

S3dNLv3dd LO313S

f

€LS d41S NOH4

0¢s

8/11



PCT/SE2023/050166

WO 2023/163644

0l ‘614

Zls 2sdals ol

I

TVYNOIS ©dd
d317114 3OVH3IAVY ONIAOIN

\

TVYNOIS ©Odd 31VONNEL

\

TVYNOIS ©dd
d317114 NOILVIAIA dLS-€

N\

TVYNOIS ©dd
d317114 3OVHIAVY NVIA3IN

€es

AR

1E€S

0€sS

9/11



PCT/SE2023/050166

WO 2023/163644

L1 B4

Ol

d40SS300dd

™\
™~ oLl
J3qow Nouvmwilss | — 1 08t
NOILVHNLYS NIDAXO
vl
h\\\\\\\
S3YNLY34 NIVINOT AONINOIHA 11 - opL
B 4
T
SERIINEE % \
NIVINOQ JWIL 40 SYILINVHYd TVOILSILVLS /
~ / ozl
l // /
/ AHOWIIN 00}

10/11



PCT/SE2023/050166

WO 2023/163644

¢l b4

2l b4
0/€
VHINWYD
/ “ /oom
¥0SS3AD0YHd
ore AHONAN - f LINN O/I q
“ ~0¢2
1 NYHO0Hd m
02¢ ¥3LNdNOD [\ !
¥0SS3AD0YHd N
ove TYNDIS Odd ~ // oLz
ol = ”vm 002
zmm@mﬁmm NYHO0dd
Y3LNdNOD
0SS — NOILYHN1YS ove -~
NIDAXO
INNIa3IN 05z
IOVHOLS
0zs AHJONAN 371gvavay
\ -43LNdNOD
/
0ce

/

00¢€

11/11



INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE2023/050166

A

CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, PAJ, WPI data, BIOSIS, COMPENDEX, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20200367773 A1 (WANG WENJING ET AL), 26 1-3, 5-7, 9-18
November 2020 (2020-11-26); abstract; paragraphs [0013]-
[0046], [0067], [0082], [0087]-[0095], [0110]-[0118], [0121]-
[0137]; claims 1-15
A 4,8
X US 20180214088 A1 (NEWBERRY ROBERT STEVEN), 2 1-3, 5-7, 9-18
August 2018 (2018-08-02); abstract; paragraphs [0021]-
[0022], [0068], [0214], [0223]-[0231], [0239]; claims 1-29
A 4,8

& Further documents are listed in the continuation of Box C.

& See patent family annex.

*

CA
“y”
“R”

“p

“Q”

«p»

Special categories of cited documents:

document defining the general state of the art which is not
considered to be of particular relevance

document cited by the applicant in the international application
earlier application or patent but published on or after the
international filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the intemational filing date but later than
the priority date claimed

o

D&

oy

“g”

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

S-102 42 STOCKHOLM
Facsimile No. + 46 8 666 02 86

10-03-2023 10-03-2023

Name and mailing address of the ISA/SE Authorized officer

Patent- och registreringsverket .

Box 5055 Henrik Andersson

Telephone No. + 46 8 782 28 00

Form PCT/ISA/210 (second sheet) (July 2022)




INTERNATIONAL SEARCH REPORT International application No.

PCT/SE2023/050166

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

EP 3207862 A1 (COVIDIEN LP), 23 August 2017 (2017-08-
23); abstract; paragraphs [0014]-[0022], [0028]-[0035], [0040]-
[0046], [0072], [0080], [0113]

EP 3087915 A1 (TATA CONSULTANCY SERVICES LTD), 2
November 2016 (2016-11-02); abstract; paragraphs [0004]-
[0010], [0034]-[0040]; claims 1-15

He Liu; Kamen Ivanov; Yadong Wang; Lei Wang, "A novel
method based on two cameras for accurate estimation of
arterial oxygen saturation", BIOMEDICAL ENGINEERING
ONLINE, 20150530, BIOMED CENTRAL LTD, LONDON, GB,
ISSN 1475-925X; whole document

WO 2015003938 A1 (KONINKL PHILIPS NV), 15 January
2015 (2015-01-15); whole document

WO 2017137435 A1 (KONINKLIJKE PHILIPS NV ET AL), 17
August 2017 (2017-08-17); whole document

EP 3485813 A1 (KONINKLIJKE PHILIPS NV), 22 May 2019
(2019-05-22); whole document

WO 2017093379 A1 (KONINKLIJKE PHILIPS NV ET AL), 8
June 2017 (2017-06-08); whole document

CN 109008964 A (LIUYANG ANSHENG INTELLIGENT TECH
CO LTD), 18 December 2018 (2018-12-18); whole document

1-3, 5-7,9-18

4,8

1-3, 5-7,9-18

4,8

1-3, 5-7,9-18

1-18

Form PCT/ISA/210 (continuation of second sheet) (July 2022)




INTERNATIONAL SEARCH REPORT International application No.

PCT/SE2023/050166

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

P, X

P, X

Harvey J; Salehizadeh S M A; Mendelson Y; Chon K H,
"OxiMA: A Frequency-Domain Approach to Address Motion
Artifacts in Photoplethysmograms for Improved Estimation of
Arterial Oxygen Saturation and Pulse Rate", IEEE
Transactions on Biomedical Engineering, 20190201, IEEE,
USA, ISSN 0018-9294; whole document

Hafqat K; Langford R M; Pal S K; Kyriacou P A, "Estimation of
Venous oxygenation saturation using the finger
Photoplethysmograph (PPG) waveform", Engineering in
Medicine and Biology Society (EMBC), 2013 34th Annual
International Conference of the IEEE, 20120828, IEEE, ISSN
1557-170X; whole document

US 11324406 B1 (NOUR MAJID ET AL), 10 May 2022 (2022-
05-10); whole document

WO 2022177501 A1 (SPACE PTE LTD), 25 August 2022
(2022-08-25); whole document

1-18

Form PCT/ISA/210 (continuation of second sheet) (July 2022)




INTERNATIONAL SEARCH REPORT International application No.
PCT/SE2023/050166

Continuation of: second sheet
International Patent Classification (IPC)

A61B 5/1455 (2006.01)
A61B 5/103 (2006.01)

Form PCT/ISA/210 (extra sheet) (July 2022)



INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/SE2023/050166
us 20200367773 A1 26/11/2020 EP 3664704 A1 17/06/2020
EP 3440996 A1 13/02/2019
WO 2019030124 A1 ___14/02/2019
us 20180214088 A1 02/08/2018 US 10888280 B2  12/01/2021
EP 3207862 A1 23/08/2017 CA 2958010 A1 19/08/2017
CA 2958003 C 05/04/2022
EP 3207863 A1  23/08/2017
us 20220257143 A1 18/08/2022
us 20220211296 A1 07/07/2022
us 11350850 B2  07/06/2022
us 11317828 B2  03/05/2022
us 20200289024 A1 17/09/2020
us 20200268281 A1 27/08/2020
us 10667723 B2  02/06/2020
us 10702188 B2  07/07/2020
us 20190307365 A1 10/10/2019
us 10398353 B2  03/09/2019
us 20170238842 A1 24/08/2017
o US 20170238805 AT 24/08/2017
EP 3087915 A1 02/11/2016 AU 2016201690 C1  01/10/2020
CN 106073743 A 09/11/2016
JP 6761265 B2  23/09/2020
JP 2016202892 A 08/12/2016
SG 10201602109 A 29/11/2016
us 9855012 B2  02/01/2018
us 20160310084 A1 27/10/2016
ZA 201601864 B 27/09/2017 _
WO 2015003938 A1 15/01/2015 CA 2917635 A1 15/01/2015
CN 105377126 B 05/02/2019
EP 3019078 A1 18/05/2016
JP 2016528960 A 23/09/2016
JP 6449271 B2  09/01/2019
MX 2016000083 A 01/03/2016
MX 361026 B 26/11/2018
RU 2016104071 A 15/08/2017
RU 2677765 C2  21/01/2019
us 20170319114 A1 09/11/2017

Form PCT/ISA/210 (patent family annex) (July 2022)




INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/SE2023/050166
WO 2017137435 A1 17/08/2017 CN 108701357 B 02/08/2022
CN 108604376 B 01/04/2022
EP 3414738 A1 19/12/2018
EP 3414739 B1  08/04/2020
JP 6538287 B2  03/07/2019
JP 2019510532 A 18/04/2019
JP 2019508116 A 28/03/2019
RU 2018132127 A 11/03/2020
us 10818010 B2  27/10/2020
us 20190057502 A1 21/02/2019
us 20190050985 A1 14/02/2019
WO 2017137415 A1___17/08/2017 _
EP 3485813 A1 22/05/2019 CN 111629666 A 04/09/2020
EP 3709883 A1  23/09/2020
JP 2021503323 A 12/02/2021
us 11419511 B2  23/08/2022
us 20200345252 A1 05/11/2020
WO 2019096753 A1 23/05/2019
WO 2017093379 A1 08/06/2017 CN 108471962 B 20/04/2021
EP 3383258 A1 10/10/2018
JP 2019500932 A 17/01/2019
JP 6654700 B2  26/02/2020
. US____ 20180333102 A1 __ 22/11/2018
CN_ ] 109008964 A 18/12/2018 NONE .
US___ 11324406 B1__10/05/2022 NONE
WO 2022177501 A1 25/08/2022 NONE

Form PCT/ISA/210 (patent family annex) (July 2022)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report
	Page 56 - wo-search-report
	Page 57 - wo-search-report
	Page 58 - wo-search-report
	Page 59 - wo-search-report

