0 01/22682 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 March 2001 (29.03.2001)

A 00 O A

(10) International Publication Number

WO 01/22682 A2

(51) International Patent Classification’: HO04L 29/00

(21) International Application Number: PCT/US00/26084

(22) International Filing Date:
22 September 2000 (22.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/155,354
09/668,498

22 September 1999 (22.09.1999)
22 September 2000 (22.09.2000)

Us
Us

(71) Applicant: STREAMING21, INC. [US/US]; Suite 1, 170
Knowles Drive, Los Gatos, CA 95032 (US).

(72) Inventors: NGAI, Ray, T., E.; 3448 Bonita Avenue, Santa
Clara, CA 95051 (US). LEE, Horng-Juing; 6452 Trinidad
Drive, San Jose, CA 95120 (US). LEE, Yen-Jen; 3643
Madison Common, Fremont, CA 94538 (US). LIN, Joe,
M-J.; 2045 Paseo del Sol, San Jose, CA 95124 (US).

(74) Agents: LEBLANC, Stephen, J. et al.; Majestic, Parsons,
Siebert & Hsue P.C., Suite 1100, Four Embarcadero Center,
San Francisco, CA 94111-4106 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG,BR,BY,BZ, CA,CH,CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR PROVIDING REAL-TIME STREAMING SERVICES

(57) Abstract: A method and system for streaming media delivery is disclosed. The invention allows for providing streaming media
and interfacing with generic file systems, database, and other components.

15

20

25

30

WO 01/22682 PCT/US00/26084

METHOD AND SYSTEM FOR
PROVIDING REAL-TIME STREAMING
SERVICES

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority from provisional patent application 60/155,354

entitted METHOD AND SYSTEM FOR PROVIDING REAL-TIME STREAMING
VIDEO SERVICES filed 09/22/99.

The above referenced application(s) are incorporated herein by reference for all
purposes. These prior applications, in some parts, may indicate earlier efforts at
describing the invention or describing specific embodiments and examples. The present

invention is therefore best understood as described herein.

FIELD OF THE INVENTION
The invention generally relates to methods and/or devices related to data

transmission. More particularly, the invention in various aspects, relates to methods and

systems for providing real-time multimedia streaming over a communication network.

BACKGROUND OF THE INVENTION
The Internet is a rapidly growing communication network of interconnected

computers around the world. Together, these millions of connected computers form a
vast repository of hypermedia information that is readily accessible by users through
any of the connected computers from anywhere and anytime. As there is an increasing
number of users who are connected to the Internet and surf for various information,
there meanwhile is created tremendous demand for more content to be available and
methods to deliver that content on the Internet. Currently, the most commonly available
media information that is deliverable on the Internet may include text information,
images and graphics, videos and audio clips.

Typically, continuous or streaming media information, such as videos and audio,
comes in the form of streaming data. For example, streaming video is a sequence of
"moving images" that are sent in compressed form over a network and displayed by a

viewer as they arrive. With streaming video or streaming media, a Web user does not

10

15

20

25

30

WO 01/22682 PCT/US00/26084

have to wait to download a large file before seeing the video or hearing the sound.
Instead, the media is sent in a continuous stream and is played as it arrives, though
generally with some delay for buffering the media. The user uses a player (either
hardware or software) to play the media. In the case of a software player, a special
program is executed to uncompress and send video data to a display screen and audio
data to speakers.

There are many purposes of providing streaming media information on demand
over a data network including a cable network or the Internet. Consumers may enjoy
movies or receive latest news at their leisure time rather than at fixed schedule.
Businesses implement streaming media information on their Intranet to accelerate high-
value processes by providing faster and better quality communication with employees,
business partners, and customers. They gain the flexibility to take internally created or
externally acquired video information (content) and make it available to both internal
and external customers. In so doing, information can be shared among distribution
partners and suppliers and can even be repackaged for new business alliances and
customers.

Users are constantly demanding access to streaming media information on a
truly unprecedented scale, which can generate enough audio/video demands to
completely overwhelm a video server that provides the media information as well as an
unprotected data network. As a result, the quality of services of delivering the media
information suffers and the users are frustrated. Thus there have been high demands for
video server systems that can not only handle hundreds or thousands of requests at any
given time but also guarantee the quality of services of delivering the media
information.

Streaming services generally are provided via Web Servers or via specialized
Streaming Media Servers. (See, for example, www.microsoft.com/ntserver/mediaserv/
exec/comparison/WebServVStreamServ.asp.) Specialized streaming servers typically
include streaming media delivery software for managing the real-time deliver of data
and also include a specialized file system or format for storing data prior to streaming.
Typically, the link between a particular specialized file system and the logic functions

that managing the streaming sessions is very tight and is highly optimized.

10

15

20

25

30

WO 01/22682 PCT/US00/26084

SUMMARY
The present invention, in specific embodiments, involves an innovative software

engine (at times referred to herein as Real-Time Streaming Engine (RTSE)) that handles
large-scale real-time streaming services. According to specific embodiments of the
present invention, each stream can be understood as a user access from a client on one
computer to a server on the other computer. Users access real-time data such as audio
or video from a server and the server delivers, or streams, the real-time audio, video or
other data with certain time constraints to client via a computer or communications
network.

Unlike prior streaming engines, an RTSE according to the present invention has
an architecture that allows the central engine software to work with a variety of
streaming file systems and conventional file systems as well as a variety of live-data
hardware and/or software encoders. The present invention accomplishes this through a
innovative combination of known and innovative components into a new architecture
for providing streaming services. In various aspects, the invention includes innovative
methods for providing and/or managing streaming media according to this flexible
design.

The invention therefore in specific aspects handles streaming video/audio signals
that can be played on various types of video-capable terminal devices operating under
any type of operating system and regardless of what type of players are preinstalled in
the terminal devices.

According to specific embodiments of the present invention, the RTSE
accomplishes effective handling of streaming sessions with a flexible and extensible
architecture by dividing tasks among a plurality of managers, such as Reception
Manager, Streaming File Manager, Encoding File Manager, Network Manager,
Administration Manager, Streaming Manager, Database Manager, or User Interaction
Manager. While not all implementations of servers according to the invention will
include all of the managers, managers present in a server can be understood to
collaborate with each other to achieve large-scale streaming service.

Using multiple managers in an architecture according to the invention, the
present invention has the ability to handle various types of file systems (e.g. the

software according to the invention can be adapted to different streaming and

3-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

conventional file systems, thus the architecture is able to be adapted to a generic
streaming file system) and various types of software and hardware encoding modules,
database engines, networking protocols, real-time media, streaming engines, etc.

A server device, when loaded with and executing the server module, will
provide large scale real-time streaming media services (which can include both
delivering and/or accepting streaming data) to support a large number of streaming
sessions without compromising the quality of services in delivering the streaming media
information over a network. The network may include a cable network, a local area
network, a network of other private networks and the Internet.

The invention as described further below can be implemented in numerous ways
including a method, a computer readable medium, a system, and/or an apparatus. The
advantages of the invention are numerous and certain embodiments of the invention can
have one or more of the following advantages. One advantage of the invention is that it
provides a great deal of flexibility over the quality of service provided with respect to
delivering real-time streaming media data over a network. Another advantage of the
invention is that all that task-specific managers collaborate with each other to achieve
the large-scale real-time streaming service. Still another advantage of the invention is
that implementation and configuration of all the managers are easy to manage and
install. Although the media delivery system is described herein based on video
streaming signals, those skilled in the art can appreciate that the description can be
equally applied to continuous data delivery that may include streaming audio.

The detailed description of the present invention includes numerous specific
details that are set forth in order to provide a thorough understanding of the present
invention. However, it will become obvious to those skilled in the art that the present
invention may be practiced without these specific details. In other instances, well
known methods, procedures, components, and circuitry have not been described in
detail to avoid unnecessarily obscuring aspects of the present invention.

The present invention is presented largely in terms of procedures, steps, logic
blocks, processing, and other symbolic representations that resemble data processing
devices. These process descriptions and representations are the means used by those
experienced or skilled in the art to most effectively convey the substance of their work

to others skilled in the art. The method along with the system to be described in detail

4-

10

20

25

30

WO 01/22682 PCT/US00/26084

below and the appendix is a self-consistent sequence of processes or steps leading to a
desired result. These steps or processes are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these quantities may take the form
of electrical signals capable of being stored, transferred, combined, compared, displayed
and otherwise manipulated in a computer system or electronic computing devices. It
proves convenient at times, principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, operations, messages, terms, numbers, or the
like. It should be borne in mind that all of these similar terms are to be associated with
the appropriate physical quantities and are merely convenient labels applied to these
quantities. Unless specifically stated otherwise as apparent from the following
description, it is appreciated that throughout the present invention, discussions utilizing
terms such as “processing” or “computing” or “verifying” or “displaying” or the like,
refer to the actions and processes of a computing device that manipulates and transforms
data represented as physical quantities within the device’s registers and memories into
analog output signals via resident transducers.

It is well known in the art that logic or digital systems and/or methods can
include a wide variety of different components and different functions in a modular
fashion. The following will be apparent to those of skill in the art from the teachings
provided herein. Different embodiments of the present invention can include different
combinations of elements and/or functions. Different embodiments of the present
invention can include actions or steps performed in a different order than described in
any specific example herein. Different embodiments of the present invention can
include groupings of parts or components into larger parts or components different than
described in any specific example herein. For purposes of clarity, the invention is
described in terms of systems that include many different innovative components and
innovative combinations of innovative components and known components. No
inference should be taken to limit the invention to combinations containing all of the
innovative components listed in any illustrative embodiment in this specification. The
functional aspects of the invention, as will be understood from the teachings herein, may
be implemented or accomplished using any appropriate implementation environment or

programming language, such as C++, Cobol, Pascal, Java, Java-script, etc. All

10

15

20

25

30

WO 01/22682 PCT/US00/26084

publications, patents, and patent applications cited herein are hereby incorporated by
reference in their entirety for all purposes.

The invention and various specific aspects and embodiments will be better
understood with reference to the following drawings and detailed descriptions. In
different figures, similarly numbered items are intended to represent similar functions
within the scope of the teachings provided herein. In some of the drawings and detailed
descriptions below, the present invention is described in terms of the important
independent embodiment of delivering visual and/or audio content. This should not be
taken to limit the invention, which, using the teachings provided herein, can be applied
to other streaming data content. For purposes of clarity, this discussion refers to devices,
methods, and concepts in terms of specific examples. However, the invention and
aspects thereof may have applications to a variety of types of devices and systems. It is
therefore intended that the invention not be limited except as provided by the attached

claims and equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an exemplary configuration of a data network in which the

present invention may be practiced.

FIG. 2 is a general diagram showing various components of a system according
to various specific embodiments of the present invention.

FIG. 3 is a block diagram showing a general architecture arrangement of a
streaming service according to specific embodiments of the present invention.

FIG. 4 is a block diagram illustrating a further example architecture of a
streaming service according to specific embodiments of the invention.

FIG. 5 is a block diagram illustrating a further example architecture of a
streaming server according to specific embodiments of the invention.

FIG. 6 is a block diagram illustrating an example system diagram of a Streaming
File Manager according to specific embodiments of the invention.

FIG. 7 is a block diagram illustrating an example encoding manager according to
specific embodiments of the invention.

FIG. 8 is a flow chart illustrating example encoder operation according to

specific embodiments of the invention.

10

15

20

25

30

WO 01/22682 PCT/US00/26084

FIG. 9 is a block diagram showing a representative example logic device in

which aspects of the present invention may be embodied.

DESCRIPTION OF SPECIFIC EMBODIMENTS

General Description of Data Network
Referring to the drawings, FIG. | illustrates an exemplary configuration in

which the present invention may be practiced. Central video server 102 together with a
video database 104 is a video source comprising video files that can be accessed on
demand. A video source can also be provided by live encoders as described below. As
used herein, video files or titles are referred to any video footage, video films and/or
video/audio clips that typically in a compressed format such as MPEG or MP3. It should
be noted, however, that the exact format of the video files do not affect the operations of
the present invention. As will be noted and appreciated, the present invention applies to
any formats of the video files.

Preferably data network 106 is a data network backbone, namely a larger
transmission line. At the local level, a backbone is a line or set of lines that local area
networks connect to for a wide area network connection or within a local area network
to span distances efficiently (for example, between buildings). On the Internet or other
wide area network, a backbone is a set of paths that local or regional networks connect
to for long-distance interconnection. Coupled to data network A 106, there are two
representative proxy servers 108 and 110 that each service representative terminal
devices 116-119 via data network 112 and 114 respectively. It should be noted video
server 102 named “central” does not necessary mean that video server 102 is only
served as a repository of all the video titles. In some case, central video server 102 may
service terminal devices directly and may retrieve other video titles from other servers
such as proxy servers 108 and 110. A compiled version and linked version of the
present invention, as a server version, may be employed or installed in any of servers
102, 108 and 110.

Data network 112 and 114 are typically the Internet, a local area network or
phone/cable network through which terminal devices can receive video files. The
terminal devices may include, but not be limited to, multimedia computers (e.g. 116 and
119), networked television sets or other video/audio players (e.g. 117 and 118).

Typically the terminal devices are equipped with applications or capabilities to execute

-7-

15

20

25

30

WO 01/22682 PCT/US00/26084

and display received video files. For example, one of the popular applications is an
MPEG player provided in WINDOWS 98 from Microsoft. When an MPEG video file is
received in streaming from one of the proxy servers, by executing the MPEG player in a
multimedia computer, the video file can be displayed on a display screen of the
computer.

To receive a desired video, one of the terminal devices may send in a request
that may comprise the title of the desired video or another identifier. Additionally the
request may include a subscriber identification if the video services allow only
authorized access. Upon receiving the request, the proxy server will first check in its
cache if the selected video is provided therein, meanwhile the request is recorded by a
network manager in the server module. The description and representation provided
herein are the common means used by those experienced or skilled in the art to most
effectively convey the substance of their work to others skilled in the art. In other
instances, well known methods, procedures, components, and circuitry have not been
described in detail to avoid unnecessarily obscuring aspects of the present invention.

As a result of the processes carried by the server module, the selected video will
be provided as a streaming video to the terminal device if the entire video is in the
cache. Otherwise the proxy server proceeds to send a request to video central server 102
for the rest of the video if there are some units of the video in a cache memory of the
proxy server or the entire video if there is no any unit of the video.

FIG. 2 illustrates various components that may be included in a server
corresponding to server 102, 108 or 110 in FIG. 1. According to one embodiment of the
present invention, the server is loaded with a server module implemented in a compiled
and linked version of an embodiment of the present invention, when the server module
is executed by the processor, the server will perform the desired features as described

above and further in the description below.

Design Concept
FIG. 3 is a block diagram showing a general architecture arrangement of a

streaming service according to specific embodiments of the present invention. This
general architecture illustrates in concept how the present invention achieves the
flexible streaming server design by providing a central (or core) Reception Manager that

provides an interface for other parts of the streaming server. The architectural design

-8-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

according to the present invention can be further understood by considering the
modules/managers described below.

FIG. 4 is a block diagram illustrating a further example architecture of a
streaming service according to specific embodiments of the invention. This figure
shows an arrangement of a server in a specific embodiment.

FIG. 5 is a block diagram illustrating a further example architecture of a
streaming server according to specific embodiments of the invention. This figure shows
an arrangement of a server in a specific embodiment providing additional details and
components.

Core Reception Manager (RM)

RM defines a set of communication principles (protocols) for other managers to
use in collaborating with each other to complete streaming/management requests from
clients/consoles (e.g. users or administrators). This is the core manager in the RTSE
architecture to control/integrate loosely coupled managers to work together seamlessly
and coherently. RM provides an RTSE an extension capability because the RM design
allows easier adopting/integrating of streaming, file, encoding, network, database,
administration and/or user-interaction managers, whether additional proprietary
managers or written by third parties.

In a further embodiment, the RM provides the user authentication and access
control to provide different level of security with interface to various formats of user
profile repositories. Regarding RTSE messaging, the RM is the middleman to gather,
handle, store, and/or redistribute messages among managers. Different types of
managers can communicate and collaborate with each other with predefined disciplines
to achieve real-time tasks.

In various specific embodiments, tasks of the RM include one or more of the
followings: (1) retrieving stored data from real-time Streaming File Manager (FM); (2)
retrieving live data from real-time Encoding File Manager (EM); (3) processing requests
from real-time Network Manager (NM) via a network; (4) processing requests from
real-time Administration Manager (AM) via a network; (5) processing database requests
to/from Real-time Database Manager (DBM); (6) processing user interaction requests

from User Interaction Manager (UIM); (7) processing requests from Real-time

10

15

20

25

30

WO 01/22682 PCT/US00/26084

Streaming Manager (SM); (8) processing error handling of the whole engine; and (9)
processing special events of the whole engine.

File Managers (FM)

FMs manage stored real-time data in storage systems such as Disk Array, CD-
ROM Jukebox, MO Jukebox, and tape storage. FM schedules concurrent stream
requests from Streaming Manager and is designed to satisfy all accepted stream requests
in real-time fashion.

FM includes several components such as Admission Control module, Real-time
scheduler, Media Disk module, and Cache module. FM communicates with subsystems
such as a proprietary Streaming File System (SFS), Window File System (WFS), and/or
other 3" party file systems.

In a particular embodiment, FM provides a generic Applications Programming
Interface (API) to handle various underlying file systems. As understood in the art, an
API is a set of functions, possibly with associated data (such as class definitions in
C++), that programs or other logic modules can use to access system provided services,
such as operating system services, file system services, etc.

Streaming Manager (SM)

This is the streaming delivery module of RTSE. SM handles requests from
Network Manager and performs appropriate actions to call Streaming File Manager and
Encoding File Manager as needed. Streaming Manager receives data from either
Streaming File Manager or Encoding File Manager and schedules data delivery to
remote clients via any pre-negotiated networking protocols.

Encoding File Manager (EM)

EM and EM instances bridge different vendors of hardware and software
encoders to Reception Manager to handle real-time encoding of audio and video and
deliver the real-time data to Reception Manager using RTSE’s generic File System API.
EM schedules concurrent stream requests from Streaming Manager. EM is required to
satisfy all accepted stream requests in real-time fashion. The Encoding File Manager
includes several components as discussed in more detail below.

Network Manager (NM)

NM listens to incoming requests from remote clients and performs the

corresponding actions for each request. NM handles single listen thread or multiple

-10-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

collaborating threads to work together to improve the load balance and performance of

the RTSE.

Data Manager (DBM)
DBM handles requests related to user management profile, log and event profile,

file system profile, and media meta-files. DBM isolates database-related requests with a
generic API to access information stored on data servers such as (but not excluding) Jet
Database, SQL Database server, or other database engines or in plain text file data

storage.

Administration Manager (AM)
AM listens to incoming monitoring or management requests from remote

management consoles and handles the corresponding management jobs according to the

incoming requests.

User Interface Manager (UIM)
UIM queries Reception Manager for management, monitoring, status report, and

more and is designed to provide a user-friendly graphical interface to expose the
functionality of the whole RTSE through the Reception Manager. UIM enables a
verified user (such as a network administrator) to perform user authentication, server
control, media object management, user profile management & server settings

configuration.

EXAMPLE SPECIFIC EMBODIMENT
FIG. 4 is a block diagram illustrating a further example architecture of a

streaming service according to specific embodiments of the invention. As further
elaborated in FIG. 4, a Real-time Reception Manager according to specific
embodiments of the present invention, may be wrapped by a set of core APIs.

FIG. 4, as will be understood from the teachings provided herein, shows
additional details and structure of an example server module constructed according to
the architectural principals illustrated in FIG. 3, with the general API wrapping of FIG.
3 further specified as the four different APIs illustrated. As will be understood in the
art, the distinctions of the different APIs shown in FIG. 4 can be understood as an
implementation feature of specific systems, and API definitions, in some embodiments,

may be universal and accessible to various external managers.

-11-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

FIG. 5 is a block diagram illustrating a further example architecture of a
streaming server according to specific embodiments of the invention. This figure shows
an as implemented configuration of a server according to the present invention, and

provides further details of data flow.

RECEPTION MANAGER (RM)
As described above, RM defines a set of communication principles (protocols)

for other managers to use to complete streaming/management requests.

In particular embodiments, RM does this by defining various standard interfaces
(e.g. APIs) for use by each of the interacting managers and then by providing the
necessary logic to translate a access request coming from, for example, the network
manager through the server reception API, to, for example a File Manager to determine
the availability of a file location, and then to a Streaming Manager to handle the time
critical exchange of data.

For many kinds of communications, all inter-manager communications requests
can be understood to pass through the RM. Thus, for most types of requests, each
manager communicates its requests to RM and receives any necessary responses from
RM. RM internally decides which managers to invoke to service a particular request
and invokes those managers and gathers results to present to the requesting process.

As shown in FIG. 4 and in FIG. 5, an RM according to specific embodiments
can be understood to include the following components.

APIs

Server Reception API (SRAPI): provide an interface to communications with
users, both client users and administrators. In specific embodiments, this API can be
understood to exchange requests and data with one or more Network Managers, such as
an HTTP Interface, FTP Interface, or RTSP interface and/or with one or more User
Interface/Administration Managers that can provide administrative access either through
a local system console or through an network protocol that allows for system
administration, such as SNMP.

In specific embodiments, SRAPI provides various interface functionality.
General examples of the types of functions that can be defined within SRAPI and called
by managers that interact with SRAPI are provided below. Other functions may also be
defined within SRAPI. For each function, a manager calls the function with the

-12-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

arguments defined for the function and receives function-defined returned results. The
various managers are responsible for translating between the specific device or protocol
that they are managing (such as HTTP, for example) and the SRAPI interface. Each
called SRAPI function is received by the RM, which coordinates a response with other
managers and through other APIs, as discussed below, and then returns any results back
to the calling manager in the API defined format. The manager then translates any
results to an appropriate format or device (such as HTTP). SRAPI can include functions
such as those shown below. For these and other function examples provided, the
function names will indicate to those of skill in the art generally what the functions do.
The arguments and/or data structures passed by the functions will vary with different
implementations. Coordination and distribution of functional tasks among managers is
generally handled by RM.

It will be understood from the teachings herein, that managers for various
protocols, encoders, services or file systems, will include logic for translating valid API
requests to the command format or protocol required by the underlying entity to which
those managers relate and will include logic for translating back from the entities native
response format to a format specified by the API. This generally will be a straight
forward programming tasks given a defined set of APIs and a particular native format.
Examples of functions specified by SRAPI include:

Server Reception Specific

Init(); Unlnit()
User Access/Management
UserLogin(); UserLogout(); AddUser(); AddGroup()
Server Service Specific
StartService(); StopService(); GetServiceStatus()
File System (Fs) Specific
GetFilelnfo(); CopyFile(); GetFsSession(); GetFsPerformance();
GetDisklInfo()
Streaming System Specific
ConnectStream(); OpenStream(); CloseStream(); PauseStream()
EventLog & SessionLog
AddEventLog(); GetLatestEventLogs()

13-

15

20

25

30

WO 01/22682 PCT/US00/26084

Server Messaging
MsgReceiverRegister(); MsgReceiverUnRegister()

It will be understood from the teachings provided herein that the arguments and
returned values for these functions may be variously defined in specific
implementations according to the invention.

Data Management API (DAPI): provides access to one or more various data
sources to facilitate various functions, such as, in specific embodiments, user
authentication and access, session and event logging, and storage and retrieval of file or
streaming clip data. General examples of the types of functions that can be defined
within DAPI are provided below. Other functions may also be defined within DAPI.
For each function, generally the RM calls the function with the arguments defined for
the function and receives function-defined returned results. The various managers are
responsible for translating between the specific device or protocol that they are
managing (such as flat text storage or a particular DBMS, for example) and the DAPI
interface. DAPI can include functions such as:

GetUserInfo(); AddUser(); UpdateUser(); DeleteUser();
LinkUserToGroup(); AddSessionLog(); GetLatestEventLog();

In particular embodiments, a DAPI may also include a set of functions for
storing and retrieving data relating to files or clips stored in 31 party file systems, where
that data is not supported by those file systems. This data might include such items as
clip duration, clip ID, owner, # of frames, etc. For file systems that do not support
storing this type of data within the file system itself, a File System Manager will ensure
that this additional data is stored and can be retrieved from a separate data source,
through functions provided in DAPI.

File Systems API (FSAPI): provides a standard interface to various underlying
file systems and/or encoding systems and their associated managers. General examples
of the types of functions that can be defined within FSAPI are provided below. Other
functions may also be defined within FSAPIL. For each function, generally either RM or
a streaming manager as described herein calls the function with the arguments defined
for the function and receives function-defined returned results. The various File System

Managers are responsible for translating between the specific File System that they are

-14-

10

20

25

30

WO 01/22682 PCT/US00/26084

managing and for providing various buffering and caching functions for that file system,
as described further herein. FSAPI can include functions such as:

System Management

FsStart(); FsStop()
Disk Setup and Configuration

FsGetDiskInfo(); FsFormatDisk(); FsConfig()
State/Session/Performance

FsGetStatus(); FsGetPerformance(); FsGetSession(); FsKillSession()
Directory/FileInfo

FsGetFileInfo(); FsSetFileUpdatableInfo(); FsCreateDirectory()
File movement

FsCopy(); FsRename(); FsDelete(); FsImport(); FsExport()
File data operation

FsOpen(); FsRead(); FsWrite(); FsClose(); FSEndOfFile();

FsSetPosition()

Streaming Systems API (SSAPI): provides a standard interface to underlying
streaming services and their associated managers. General examples of the types of
functions that can be defined within SSAPI are provided below. Other functions may
also be defined within SSAPI. For each function, generally RM calls the function with
the arguments defined for the function and receives function-defined returned results.
The various Streaming Systems Managers are responsible for translating between the
specific Streaming Service that they are managing and for providing various buffering
and caching functions for that file system, as described further herein. SSAPI provides
access to managers that handle time-critical exchanges of data. This API provides a set
of objects and/or functions that can be accessed by RM and in some cases by FM
relating to streaming services. Thus, different streaming service providers can be
accessed through a server according to the present invention, while only modifying the
translations provided by the managers. SSAPI can include functions such as:

StmStart(); StnStop(); StmGetStatus(); StmGetPerformance();
StmGetSession(); OpenStmy(); CloseStm();

-15-

10

20

25

30

WO 01/22682 PCT/US00/26084

Internal Components of RM
RM is shown in FIG. 4 and in FIG. 5 with a number delineated internal

functional modules. These are illustrated to provide further understanding of the
internal functions handled by the RM, though the RM may in fact be implemented as a
single logic routine without the individually delineated modules shown.

The three masters illustrated are can be understood as distributing commands to
specific underlying file or streaming managers. These masters handle broadcasting
commands and gathering results across groups of specific managers, and also perform
functions that require multiple managers to work together concurrently.

Server Master: This module can be understood to provide various accessing
and scheduling logic within the RM, including communication between the Streaming
System Master and the File System Master. This module is a part of the RM and can be
understood as a helper module in the RM.

File System Master: This module can be understood to provide various overall
control and interface functions to of various file system devices.

Streaming System Master: This module can be understood to provide various
overall control of streaming sessions provided by the RTSE.

User Authentication & Access Control: This logic/module can be understood
as the internal RM logic that handles these functions and communicates with other
managers. This function also could be understood as a separate manager
communicating through the User Profile API to the data storage for the user profile.

Messaging & Logging: This logic/module can be understood as the internal RM
logic that handles these functions and communicates with other managers. This
function also could be understood as a separate manager communicating through the
Event Log API and Session Log API to various possible data storage for this data.

RM General Operation
RM can be understood as performing an overall manager/coordinator role for

RTSE plus a reception role for receiving outside requests directed to the RTSE and
coordinating the servicing of those requests. In specific embodiments, RM performs
message routing (e.g. job distribution), co-ordination, and outside-interfacing duties.
RM generally has application and packaging knowledge that other managers do not. RM

performs functions such as:

-16-

15

20

25

30

WO 01/22682 PCT/US00/26084

Initialization - bring up the appropriate modules/managers for different
applications of the RTSE. After the initialization, all managers are ready to report their
current status to Reception Manager for central control.

Access Control - Ensure different level of access control for various Function
calls and requests to playback or record various media clips, login/logout, etc., so that
other managers do not have to perform these functions.

User Interface control — RM can perform various tasks based on data in the
user profile, such as translating between file system paths and a user home directory
path. RM can also perform disk quota checking for users and groups; License Key
Checking (Expiration, Application Type, etc.); Format Guard (disable this functionality
according to License Key); System Guard (disable this functionality according to
License Key).

RM Execution Operation
During its execution life time, the RM and its relationship with other managers

can be understood as follows. When the Server is initializing/uninitializing, RM
determines the application packaging and co-relation of the other managers, because
managers can be packaged differently for different specific implementations.

First of all, a main executable (e.g. a server UI) will pass RM the application
type to be launched. Then, RM will find the software license key and verify it.
Verifications can include such things as application, expiry date, machine name,
version, platform, server maximum capability, etc. RM reads some parameters/settings
from non-volatile storage (e.g. an OS Registry) Parameters can include data for such
things as security level; event logging storage type (DB file, text file, etc.)
corresponding to different Event Logging Modules; User Profile type (DB file, LDAP,
text file, etc.) corresponding to different User Profile Modules; streaming session
logging storage type (DB file, or W3c format text file, etc.).

RM will then initialize the appropriate managers in appropriate sequence. In
particular embodiments, RM initializes a Server Master (a helper inside RM), which is
responsible to bring up File System Master first, then Streaming System Master. The
File System Master (another helper inside RM) will bring up the appropriate/adequate
file system managers (e.g. according to license and application) and can also perform

inter-file-systems functions (e.g. Xcopy) and group functions. Streaming System

-17-

10

20

25

30

WO 01/22682 PCT/US00/26084

Master (another helper inside RM) will initialize the appropriate/adequate streaming
managers (e.g. according to license and application) and can also perform inter-
streaming-systems functions and group functions.

The Server Master will pass a handle of the File-System-Master to each of
Streaming Managers, so that individual Streaming Managers can talk directly to File-
System-Master (therefore, all file managers) to perform data retrieval and recording.

RM will also bring up other necessary modules, such as User Profile
(Authentication and Access Control); one or more of the Messaging and Logging
modules, and one or more of Session Logging Modules. These modules can
communicate with Database Management APIs to store or retrieve data in a variety of
data formats.

RM will then run through an initialization check-list to ensure system-integrity,
and screen out problems in advance. This check-list can include such tasks as:

test if the operator launching the server could perform low-level disk access;

ask the appropriate File Manager to test the machine's disk
capability/availability;

ask the appropriate Streaming Manager to test the machine's network
capability/availability;

ask the appropriate User-Profile Manager, and challenge it if it does not contain
adequate tables/accounts/groups.

appropriate reverse sequence.

User Request Handling
When RTSE is running, RM performs User Request Handling. RM handles the

User login/logout request. For a successful login, the caller will receive a UserHandle
number from RM. For the same user raising any other request, the request coming into
RM should include that UserHandle for identification. In specific implementations,
exchanges of the UserHandle will be encrypted to increase security. For every single
user request, RM will check if the user can perform such a function-call and also check
if the user can access (read or write) to the target media object (if applicable) based on
such parameters as: the system's security level, the user's profile, and/or the target media

object's properties. If the security control is passed, RM will also enforce some other

-18-

15

20

25

30

WO 01/22682 PCT/US00/26084

restriction specified in the software license key; for example, a user cannot access
Mpeg2 media object if the key specified MP3 files only. RM handles most of these
inter-manager tasks, eliminating most of the need for inter-manager direct
communication.

If the checks are passed, in specific embodiments, RM will check if the request’s
parameters have to be transformed. For example, RM may convert file paths containing
'~' to a user's home directory (e.g. /usr/username) using data stored in the user’s profile
to support a user home directory shortcut without requiring each file manager to be
aware of a particular request’s user 'home directory' or of the home directory shortcut
notation.

Finally, if all checks are passed, then RM will pass the request and parameters to
the appropriate manager(s) to handle the request. In specific embodiments and in some
instances, a UserHandle will be removed from the parameters list before passing to the
appropriate manager(s), while RM will keep track of the user information for returning

results.

RM Handling of user requests
Most of the user request will be in the general forms (-> indicates data flow):

user request -> RM -> the appropriate manager;

results from the appropriate manager -> RM -> user.

However, for some complex request, the RM may have to call multiple

managers or helpers, such as:
user request -»> RM -> the appropriate manager 1
RM -> the appropriate manager 2
RM -> the appropriate manager 3;
or

user request (e.g. XCOPY) -> RM ->
the appropriate master -> the appropriate manager 1
-> the appropriate manager 2.
results from different manager -> RM (packaged the results) ->

user.

For many requests, Streaming and File Managers need not to talk to other
managers directly. However, in some instances, streaming manager will directly send
requests to file manager (via File System Master in some embodiments) for real-time

data retrieval and/or data storing. However, in general, other managers do not talk to

-19-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

one another, but instead direct requests to RM, which translates and passes messages to
other managers.

Regarding the "Streaming Manager -> File Manager" communication, it is
originated by a user request through RM to the Streaming Manager to start streaming a
media file. Therefore, RM has already ensured that the user request is under the
security control and that's why this inter-manager communications need not to

subsequently involve RM.

Event/Session Handling
When the RTSE is running, event/session message handling is performed by

RM. RM can receive event/session messages from all other managers and in specific
instances can consolidate and possibly redistribute messages. Here, messages is just one
way of information passing, not a request. Therefore, the sender does not expect a
result or reply.

If RM receives an Event message, it will send it to the appropriate Event
Logging Module(s). Also, if a main executable (e.g. Server UIM) is registered by RM
to receive an event message, RM will forward the message to that executable.
Likewise, if RM receives a session message, it will send it to the appropriate Session
Logging Module(s). Also, if the main executable (e.g. Server UIM) is registered by RM
to receive session message, RM will forward the message to that executable. Therefore,

various managers need not to talk to Event/Session Logging Modules directly.

STREAMING FILE MANAGER (FM)
Conventional file systems, such as Microsoft’s FAT or NTFS, generally do not

provide sufficient performance or access services for handling continuous media data.
To address these issues, a Streaming File Manager according to specific embodiments
of the present invention is used and provides an overhead-reduced file system kernel
designed to perform real-time (e.g. time-critical) media streaming. The module is simple
but powerful enough to handle real-time streaming requests.

However, commercial file systems such as Microsoft FAT or NTFS do provide
some benefits. For example, many third party vendors develop applications and utilities
on top of these file systems. To capture these benefits, while allowing for acceptable
streaming performance, an FM according to specific embodiments of the present

invention supports both time-sensitive Streaming File Systems (superior support for

220-

15

20

25

30

WO 01/22682 PCT/US00/26084

continuous media streaming) and one or more widely-used conventional commercial file
systems (one generalized example is a Window File System). A Streaming File System
can support high-performance streaming service and the Window File System can
provide less-powerful streaming but rich third party support for file manipulation.

According to further specific embodiments of the present invention, instead of
simply supporting two individual file systems to meet different needs, the present
invention may also create a proxy relation between these two file systems. In this
embodiment, a Cache Module views the Window File System as a media archival and
Streaming File System as a proxy streaming engine.

In this design, all media content manipulation (such as backup, file transfer) can
be either by file system provided commands, file system provided utilities, or third party
applications. In the meantime, the Streaming File System can act as a proxy to handle
real-time streaming services.

From the teachings provided herein, it will be understood that the Streaming File
Manager and the Encoding File Manager can generally be referred to as Streaming
Source Managers. In specific embodiments, both types of managers are accessed
through the same File System APIs and to external modules may be accessed as generic

streaming data sources.

FM System Diagram and Components
FIG. 6 is a block diagram illustrating an example system diagram of a Streaming

File Manager according to specific embodiments of the invention. This example is
provided as a specific embodiment of a file manager according to the present invention,
but it should be understood that other File Manager configurations can operate as part of
the invention as shown in the previous figures.

The function of each module in this example FM according to specific
embodiments can be understood as follows. It will be apparent from the teachings
herein that not every module shown is required for each instance of an FM. An FM
providing interface to a Windows File System may not need a Media Disk Handler that
provides formatting, for example, because those functions are provided by the
underlying file system.

Media Disk Handler can configure a storage device to be used as streaming

storage for a streaming file system. This consists of two major tasks: format and

- 21-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

performance measurement. As mentioned above, RTSE needs to guarantee the
streaming service, therefore, knowing the performance limitation on the underlying
storage device is a pre-requisite. For a proprietary Streaming File System, the file
format and storage allocation is totally under RTSE control and is not compatible with
commercial file systems. To layout the disk as Streaming File System format, a
configuration module provides a format function for formatting the storage in a
Streaming File System Format. (As discussed below, for Window File Systems or other
standard file systems, there is no need to perform a streaming specific “format”
operation.)

API Handler interacts with Real-time Reception Manager to receive all file
system service calls. It may call related internal modules to perform the service call or
forward the service call to appropriate modules.

Real-time Scheduler: When there are many streaming sessions running
concurrently, RTSE needs to arrange the service sequence among them to ensure every
session can maintain the necessary quality of service. Real-time Scheduler is
responsible for this. Because every session requires various amount of system resource
(for instance, a session requesting a high quality MPEG-2 video consumes more
resources than the one asking for low quality MP3 music clip), the module must ensure
the resource is used in a consistent and coherent way.

Buffer Manager manages data buffers reserved for streaming purposes. In a
particular embodiment, each streaming session has its own buffer to store the media data
retrieved by Disk Scheduler.

Admission Control controls the license issue at this point in the RTSE. There
are two levels of license control in RTSE. One level controls the whole system license.
The other level controls the license issue for each individual media file. For the whole
system license, RTSE uses two parameters to do the license protection: maximum
number of streams and maximum streaming bandwidth. For each individual media file,
RTSE limits the maximum number of streams accessing the file. Therefore, when a new
request comes in and is passed to Admission Control for verifying. The module ensures
the new request will satisfy both levels of license control.

Disk Scheduler arranges the IO requests and performs the storage read/write.

To take advantage of multiple processors architecture on many machine platforms,

22

10

15

20

25

WO 01/22682 PCT/US00/26084

RTSE can generate multiple Disk Scheduler threads and have them work concurrently
to improve overall system performance. Having multiple threads also facilitates
balanced system operation.

Cache Manager manages cache arrangements, especially between the streaming
file system and the conventional file system when that system is used as an archive for
the streaming file system. Cache Manager receives requests for streaming media files
and fetches profiles of the requested media file. In specific embodiments, Cache
Manager in a streaming FS File Manager can determine whether a media file exists in
the cache space (e.g. Streaming File System) and if not issue requests to a conventional
File System to download the media file into a Streaming File System and after
download has been started, returns the media profile information to API Handler. In a
non-streaming file system, Cache Manager can receive the requests from the streaming
FS manager and coordinate delivery of the data to the streaming FS.

The modules shown as Windows File System API and Streaming File System

API are the APIs that handle the interface with various underlying file systems.

Example Operation Of FM

Case 1: Real-time Reception Manager issues a playback request for a
particular media file.

1. API Handler receives the request and issues a request to Cache Manager to get the
profile of the requested media file.

2. Cache Manager checks whether the media file exists in the cache space (e.g.
Streaming File System).

3. If Cache Manager cannot find media file in the cache space, it issues a request to the
conventional (e.g. Windows) File System to download the media file into Streaming
File System. After download has been started for a period (e.g. a couple of seconds),
the Cache Manager returns the media profile information to API Handler.

4. API Handler receives the media profile information and asks Admission Control
modaule to verify the operation, e.g. it asks Admission Control whether a user can

access the file at the present time without violating operating parameters.

223

10

15

20

25

30

WO 01/22682 PCT/US00/26084

5.

10.

1.

Admission Control checks the license setting and make sure that admitting the new
request will not violate the license setting for the whole system as well as for the
requested media file.

If approved, API Handler passes the request to Real-time Scheduler to ask the
scheduler to create a streaming session.

Real-time Scheduler sends a buffer allocation request to Buffer Manager.

If Buffer Manager approves the request, it returns a block of memory space, and the
memory space pointer is returned. »

Real-time Scheduler gets the memory space pointer and reserves the memory space
for the newly created streaming session, creates a unique session ID for the request,
and puts the session into the session schedule list for service.

If session created successfully, the unique session ID will return to the caller (Real-
time Reception Manager).

If a session is created successfully, the Real-time Scheduler running in the
background to continue its scan through the session scheduling list will interact with

other modules to satisfy each scheduled session need.

Case 2: Playback the requested media file after the playback request is

granted.
API Handler receives the read request for a session (granted in Case 1) from Real-
time Reception Manager.
It passes the request to Real-time Scheduler asking for the required data.
Real-time Scheduler checks the session ID and determines where the data is stored
for the particular read operation and updates its internal session structure to reflect
the current media file offset location.

API Handler returns the data to the caller.

Case 3: Reception Manager issues a recording request for a particular media

file.

API Handler receives the request and issues a request to Cache Manager to check
the existence of the file in current file system.

If the file is not available, API Handler asks Admission Control module to verify the

operation.

24-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

3.

Admission Control checks the license setting and make sure that admitting the new
request will not violate the license setting for the whole system.

If approved, API Handler passes the request to Real-time Scheduler to ask it to
create a streaming session.

Real-time Scheduler sends buffer allocation request to Buffer Manager.

If Buffer Manager approves and returns a block of memory space, the memory space
pointer is returned.

Real-time Scheduler gets the memory space pointer and reserves the memory space
for the newly created streaming session. Then, it creates a unique session ID for the
request and put the session into the session schedule list for service. In the
meantime, it updates the system media profile to reflect the new media file
information.

If the session is created successfully, the unique ID will return to the caller (Real-
time Reception Manager).

If the session is created successfully, the Real-time Scheduler running in the
background continues scanning through the session scheduling list and will interact

with other modules to satisfy each scheduled session need.

Case 4: Download a file from Window File System into Streaming File System
Cache Manager issues a get media profile operation to Window File System for a
particular file.

Cache Manager asks Admission Control module to verify the operation.

Admission Control checks the license setting and makes sure that admitting the new
request will not violate the license setting for the whole system as well as for the
requested media file.

If approved, Cache Manager passes the request to Real-time Scheduler to ask it to
create a streaming session.

Real-time Scheduler sends buffer allocation request to Buffer Manager.

If Buffer Manager approves and returns a block of memory space, the memory space
pointer is returned.

Real-time Scheduler gets the memory space pointer and reserves the memory space
for the newly created streaming session. Then, it creates a unique session ID for the

request and puts the session into the session schedule list for service.

25-

10

20

25

30

WO 01/22682 PCT/US00/26084

8. If session is created successfully, the unique ID will return to the caller.

9. Cache Manager uses the session ID to continuously retrieve data by issue read
operations to Real-time Scheduler.

10. After accumulating a period of data (such as a couple of second’s worth of data),
Cache Manager creates another recording request (specific to Streaming File
System) similar to Case 3.

11. The newly created recording session retrieves the data from data accumulated by
playback request (at Window File System).

12. This producer and consumer operation forms a data pipe between Window File
System and Streaming File System.

13. The download operation completes when all data is in Streaming File System.

14. Streaming File System updates its internal structure to reflect the new media file.

In a further embodiment, as will be understood from the teachings herein, the

FM interface shown in FIG. 6 is duplicated in separate instances for different

conventional file systems and different streaming file systems. In specific embodiments,

it will be understood that there is a separate FM for each file system and may also be a

separate encoder instance for each encoder.

ENCODING MANAGER (EM)

Underneath the Real-Time Encoding API lies the implementation of real-time
Encoding Manager/Module. FIG. 7 is a block diagram illustrating an example encoding
manager according to specific embodiments of the invention. An example flow chart of
Encoding Module operation is shown in FIG. 8. This module provides encoding device
initialization/termination, logical mapping of encoding device to file system object,
supporting file system semantics, routing control messages, set/get logical encoding
parameters, and generating video/audio bit-stream. According to specific embodiments,
there are two logical objects within the Encoding Module, e.g., Encoder Manager and
Configuration Manager. A specific examplé of runtime procedures may be understood
as follows.

1. Scan installed encoder(s):
The scanning process enables the system to recognize installed encoding devices,

either hardware or software implementations. During the scanning process, the

26-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

Encoding Module calls an API “GetDeviceCount” defined in Encoder Manager for
known encoder driver(s). The implementation of the API returns the number of
encoding devices available. The Encoder Manger also assigns unique “Selector ID”
and “Device ID” for each encoding device. The Selector ID is pre-registered in the
Encoding Module for each driver, but the Device ID is determined at runtime. Thus,
any addition or removal of any hardware or software encoding device will be
automatically recognized at this discovery process. It also provides a logical
enumeration of encoding devices, free from vendor-specific or system-specific

device enumeration.

. Instantiate encoder(s):

Once the system recognizes the existence of encoding devices, program control or
user interaction is used to create encoder instance(s). The Encoder Manager
manages every instance. Thus, all of the control operations (enable, disable, start,
stop, pause, and resume) are transparent to the callers for the heterogeneous
encoding devices.

Set/Get logical encoding parameters:

Each encoding device has its own capability and format in encoding video/audio bit-
stream. However, there are set standards by ITU, ISO, or vendors. Though the
values of the settings vary by encoders, the general physical requirements do not
change. For instance, the input connector types are standard ones. The color
adjustments for video are well-known coloring schemes. The audio adjustments are
also adhered to audio engineering standards. Hence, Configuration Manager defines
and manages a logical parameter set. The translation of these parameters to device-
specific settings is also provided by Configuration Manager so that it is transparent

to the callers, and can be tagged by the Selector ID.

. Apply parameter changes:

When the parameter change is going to be committed to the encoding device,
Encoder Manager works in accord with Configuration Manager. Configuration
Manager translates the settings to physically applicable values for the target device.
Encoder Manager applies the translated values to the target device. This logical
functionality separation between Encoder Manager and Configuration Manager

ensures that the Encoding Module can be further extended or scaled down. In a

-27-

10

15

20

25

30

WO 01/22682 PCT/US00/26084
scaled down application, the application might have several sets of pre-defined non-

changeable parameters that Encoder Manager at runtime can use directly. Such
application may run on embedded system or memory-stringent environments.
5. Generate encoded bit-stream(s):
Bit-stream generation is one of the most important end results. However, due to
hardware or software implementation in encoding device, handling of the bit-stream
varies. Some implementations require installation of software callback functions to
retrieve hardware-generated data in real-time; other implementations use an
asynchronous software event object to signal the availability of real-time encoded
data. In order for the applications running on top of the Encoding Module to be able
to pick up data without worrying about timing issues even on a non-real-time
operating system, Encoder Manager manages the per-encoding-instance circular
memory buffer for interrupt-driven or event-driven bit-stream handling. Data
available through both handling mechanisms are being redirected to the memory
buffer.
6. Data redirection for in-memory circular buffer:

To ensure a consistent and coherent access to the bit-stream, the Encoder Manager
provides a transparent API “GetEncoderBitStream” to access in-memory circular
buffer. The implementation uses a “laps” concept so that the callers know the bit-
stream offset from the beginning of encoded bit-stream. Hence, it provides a
synchronization mechanism for callers regardless of the timing or data. It also
adheres to the general semantics used in file system internal. Data can be copied or
redirected to the other streaming system modules or written to the file systems that

are supported by the operating system.

RTSE FURTHER SAMPLE SEQUENCES

The above managers collaborate with each other to achieve large-scale
streaming service. The engine is powerful enough to handle various types of real-time
file systems, various types of software and hardware encoding modules, various types of
database engines, various types of networking protocols, various types of real-time

media, and various types of streaming engines. The example engine illustrated in FIG.

28-

10

15

20

25

30

WO 01/22682 PCT/US00/26084
4 and FIG. 5 are for illustration purposes. The example sequences described below are

further for illustration purposes.

Sample Sequences of Client/Server Interactions

10.

Case 1: Client requests to play back pre-recorded real-time media from server
Client requests to play back Movie A via web browser or other connection.
The request is transmitted to RTSE’s Network Manager via Internet or Intranet or
other communication channel.
Network Manager receives the request and verifies the security level of the remote
client and the client identity.
If the client has enough access authority, the request is passed to Streaming Manager
via Reception Manager.
Streaming Manager records down the active stream and passes the request to
Streaming File Manager.
Streaming File Manager verifies that there are sufficient resources available to
handle delivery of the requested stream and decides to accept or reject the current
request.
If accepted, Streaming File Manager starts the real-time scheduling to retrieve the
requested media to Streaming Manager.
Streaming Manager starts the real-time scheduling to deliver requested media to
remote client via pre-negotiated network protocols.
Client receives the data and presents the pre-recorded media to a user.
According to specific embodiments of the present invention, a client may allow a
user to perform virtual VCR functions such as index seek, fast forward, backward,
time seeking, pause, etc. These requests reach Network Manager, which passes

them through Reception Manager to Streaming Manager to control the stream.

Case 2: Client requests to play back live real-time channel from server.
Client requests to play Channel B via web browser or other connection.
The request is transmitted to RTSE’s Network Manager via Internet or Intranet or
other communication channel.
Network Manager receives the request and verifies the security level of the remote

client and the client identity.

229

10

15

20

25

30

WO 01/22682 PCT/US00/26084

4,

10.

If the client has enough access authority, the request is passed to Streaming Manager
via Reception Manager.

Streaming Manager records down the active stream and passes the request to an
Encoding File Manager.

Encoding File Manager verifies that there are sufficient resources available to
handle delivery of the requested stream to decide to accept or reject the current
request.

If accepted, Encoding File Manager starts the real-time scheduling to deliver the
requested media to Streaming Manager.

Streaming Manager starts the real-time scheduling to deliver requested media to
remote client via pre-negotiated network protocols.

Client receives the data and presents the pre-recorded media to a user.

According to specific embodiments of the present invention, a client may allow a
user to perform channel surfing functions or other functions appropriate for live
data. These requests reach Network Manager, which passes them through Reception

Manager to Streaming Manager to control the stream.

Case 3: Local Management Console communicates with RTSE
Local Management Console will first check if RTSE is running.
If it is not running, the Console will bring it up, and the RTSE Reception Manager
will start to listen for further commands.
Users of the console have to identify themselves through the console’s login
function.
After login, RTSE is ready to report its latest status to the console.
In specific embodiments, the operator may start RTSE services fully or partially
using the console, depending on operator needs.
The console provides Client Connection Management, Media Object (files or live
channels) Management, Server Settings & Managers Configurations.
The console may also facilitate Event Log Viewing and Performance Monitoring.
According to specific embodiments of the present invention, if the operator only
wishes to monitor RTSE operation, the operator may login as a monitoring-only user
and allow monitoring windows to run, without risking any unauthorized access

while the operator is away from the console.

-30-

WO 01/22682 PCT/US00/26084
9. When quitting the console, the operator can choose whether to stop RTSE or not.

10. If RTSE is stopped, all the client connections will be terminated.

10

20

25

30

Case 4: Remote Management Console communicates with RTSE

. Remote Management Console issues an HTTP-based (or other protocol, such as

SNMP) “check server status” request to RTSE’s HTTP (or other) Listener.

. If RTSE is not running, the HTTP request will be timed out and the Remote

Management Console reports the result.

. IfRTSE is running, its HTTP Listener will interpret the request and identify the

user’s rights through a login function.

. After login, HTTP Listener issues request of “check server status™ to Real-time

Reception Manager to get the server status streaming status back to HTTP Listener.

. HTTP Listener then packs the result into an HTML page back to the Remote

Management Console.

. Remote Management Console displays the result to Console’s display.
. The Remote Management Console can periodically query RTSE status.

. In addition to “check server status” request, Remote Management Console has

9%

requests such as “get streaming performance”, “get individual or overall streaming
LRI 13 3 &

sessions information”, “get streaming events”, “remotely import media file into

RTSE”, “remotely export media file out of RTSE”, etc.

Case 5: Proxy Example

. Client requests to play back movie A via web browser or other connection.

. The request is transmitted to RTSE’s Network Manager via Internet or Intranet or

other communication channel.

. Network Manager receives the request and verifies the security level of the remote

client and the client identity.

. If the client has enough access authority, the request is passed to Streaming Manager

via Reception Manager.

. Streaming Manager records down the active stream and passes the request to

Streaming File Manager.

. Streaming File Manager verifies that the requested media is available on a Windows

or other non-streaming conventional File System.

-31-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

7.

10.

11.

12.

13.
14.

If the request media is not available on a conventional File System, the request is
denied.

Determine the streaming resource for two different cases: (a) the requested media is
in conventional File System and has been cached in Streaming File System; or (b)
the requested media is in conventional File System but has not been cached in
Streaming File System.

Streaming File Manager verifies the storage resource to decide to accept or reject
the current request. 7

If approved, for case (a) in item 8, Streaming File Manager starts the real-time
scheduling to retrieve the requested pre-recorded media to Streaming Manager.

If approved, for case (b) in item 8, Streaming File Manager starts the real-time
scheduling to download the requested media from conventional File System into
Streaming File System. After a portion of data has been cached in the Streaming File
System, Streaming File Manager starts the real-time scheduling to retrieve the
requested media (just cached) to Streaming Manager.

Streaming Manager starts the real-time scheduling to deliver requested pre-recorded
media to remote client via pre-negotiated network protocols.

Client receives the data and starts play back of the pre-recorded media

According to specific embodiments of the present invention, a client may allow a
user to perform virtual VCR functions such as index seek, fast forward, backward,
time seeking, pause, etc. These requests reach Network Manager, which passes

them through Reception Manager to Streaming Manager to control the stream.

Case 6: Database Example
Access Control module in Reception Manager requests to find a specific user profile
by a user-name.
Data Management first locates the location and access mechanism of the User
Profile Table from server settings and configurations.
If the access mechanism is ODBC, DBM will bring up UserDbODBC to follow up
the request, UserDbODBC may get the Profile from all types of DBMS servers
which support ODBC.

-32-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

4.

If the access mechanism is DAO, DBM will bring up UserDbDAO to follow up the
request. The UserDbDAO is designed to use DAO to talk to Microsoft Jet Database

in an optimized way.

. If the access mechanism is LDAP, DBM will bring up UserDbLDAP to follow up

the request, UserDbLDAP will interface to the corresponding LDAP server to
access a distributed data repository.
Data Manager will return result to the Access Control in the same manner, no matter

what access mechanism has been used and where the data stored.

Example RTSE (Server) StartUp Procedure

According to specific embodiments of the present invention, as an example, the

following steps are performed when an example RTSE server (which may be

understood as generally configured as shown in FIG. 4 or FIG. 5) starts and then a client

connects:

1.

Reception Manager Initialization

Internal modules inside the Reception Manager are initialized and passed back their
stored settings from non-volatile storage to restore their previous states. Messaging
and logging features are then initialized to handle and store any messages coming
from other managers. User Authentication and Access Control are then turned on to
guard and protect the incoming requests from the managers using the Server
Reception API. The Server Master, Streaming System Master and File System
Master are invoked and ready to communicate with Streaming Managers and
File/Encoding Managers. After the initialization, all managers are ready to report
their current status to Reception Manager for central control.

Operator Login

Before any further Server Reception API function will be served, a user needs to
login with an operator role. User Authentication module maintains user profiles /
user groups and stores their operation rights. In specific embodiments, this may be
accomplished through use of external database store using the DAPI. Access
control module will authorize a request from the logged-in user by the request
operation type and the access rights about the involved media objects if any.

Unauthorized requests will be rejected immediately.

-33-

10

15

20

25

30

WO 01/22682 PCT/US00/26084
3. Server Configuration

If necessary, Reception Manager & other mangers are ready to be configured to the
user’s preferences. General configurable setting includes aspect of Access Control,
Networking, Media Profile, and Logging. Individual manager specific configuration

may also be done if needed, e.g. video volume formatting, etc.

. Server Initialization/Start

Different combination of streaming/file/encoding/network managers may result in
different functionality of the server for different application requirements. Each
manager has initialization and startup procedure to enable their services. Reception

Manager allows these services to be started in a very flexible way.

. Server Performance Monitor

Managers report their performance details when started to RM. Reception Manager

redirects this data flow to any parties needed.

. Media Object Management

Through Reception Manager with access rights checking, Media Objects among file
mangers may be freely copied, pasted, deleted, moved, created, imported and
exported by authorized users. Media Objects in all file mangers supports same entry
point and hierarchical structure. Each Media Object Profile contains such
parameters as media format details, updateable clip title, author, descriptions,
license and its user/group access rights. Media Access Control is also applied to

directory levels.

. Client Connect

While a networking manager is up and running, management or playback clients can
establish connections to the server machine and talk to the Reception Manager
directly. Each connection can be logged and monitored clearly through Reception

Manager.

. Client Login

The Reception Manager requires each connection to have a valid login. Further
requests from the connection will be controlled by a logged-in user’s profile. Each

login session’s details will be stored via the Access Control module.

-34-

10

15

20

25

30

WO 01/22682 PCT/US00/26084

9. Client Media Object Browsing
Clients may browse into all File Mangers’ media object directories through the
Reception Manager. RM will filter out those files that the user has no authority to
browse.

10. Client: Start Media Object Streaming
The Reception Manager accepts client’s command to start streaming through a
specific streaming manger for a specific file manager’s media object. The two
managers will coordinate with each other to perform the streaming smoothly.
Connection’s status will be changed and monitored as needed.

11. Client Quit: Streaming Stop, Logout, and Disconnect
Reception Manager sends messages to other managers to clean the related
connection. Login control also reflects the login session removal.

12. Reception Manager Quit: Stop Server, Uninitializing Server, and Release
Resource
Reception Manager will stop the managers in appropriate sequence, then clean up its

internal modules.

EMBODIMENT IN A PROGRAMMED INFORMATION APPLIANCE
The invention can be implemented in hardware and/or software. In some

embodiments of the invention, different aspects of the invention can be implemented in
either client-side logic or a server-side logic, though the present invention will usually
be implemented in a server side device. As will be understood in the art, the invention
or components thereof may be embodied in a fixed media program component
containing logic instructions and/or data that when loaded into an appropriately
configured computing device cause that device to perform according to the invention.
As will be understood in the art, a fixed media program may be delivered to a user on a
fixed media for loading in a user’s computer or a fixed media program can reside on a
remote server that a user accesses through a communication medium in order to
download a program component.

FIG. 8 shows an information appliance (or digital device) 700 that may be
understood as a logical apparatus that can read instructions from media 717 and/or
network port 719. Apparatus 700 can thereafter use those instructions to direct server or

client logic, as understood in the art, to embody aspects of the invention. One type of

-35.

10

15

20

25

30

WO 01/22682 PCT/US00/26084

logical apparatus that may embody the invention is a computer system as illustrated in
700, containing CPU 707, optional input devices 709 and 711, disk drives 715 and
optional monitor 705. Fixed media 717 may be used to program such a system and may
represent a disk-type optical or magnetic media, magnetic tape, solid state memory, etc.
The invention may be embodied in whole or in part as software recorded on this fixed
media. Communication port 719 may also be used to initially receive instructions that
are used to program such a system and may represent any type of communication
interface, including telephone modem, network interfa(;e, ADSL or cable modem, or
wireless interface.

The invention also may be embodied in whole or in part within the circuitry of
an application specific integrated circuit (ASIC) or a programmable logic device (PLD).
In such a case, the invention may be embodied in a computer understandable descriptor
language which may be used to create an ASIC or PLD that operates as herein
described.

Thus, it will be understood from the teachings provided herein, unlike
commonly used streaming servers, a streaming system constructed according to specific
embodiments of the present invention, can handle generic streaming file systems by
adapting to those systems through a File Manager and can also utilize non-streaming, or
conventional file systems.

Similarly, a streaming system according to the invention, can handle streaming
data from generic hardware and software encoding modules. The architecture generally
described in FIG. 3 and more particularly in FIG. 4 and FIG. 5 also allows a streaming
system to handle generic database engines for processing real-time media and various
networking protocols to perform streaming service. Likewise, a system according to
specific embodiments of the present invention, can schedule large-scale real-time time
media concurrently from mass storage, to local memory and remote clients via Internet,
Intranet, Cable, and Wireless connections.

As described herein, according to specific embodiments, the present invention
also provides for a Real-Time Encoding API wherein the module that implements the
API, provides unique software plug-and-play features to scan and instantiate underlying
multi-vendor encoding devices. The encoding device can be hardware-based or

software-based encoder and may be independent of any system bus architecture.

-36-

WO 01/22682 PCT/US00/26084

10

15

20

25

30

The invention provides a coherent system design to address different market
segments. Services can be developed based on a generic File System API, and that File
System API can be adapted to work with any real-time bit-stream generating device.
Thus, a server according to the invention can enable applications such as Home
Security, Secured Live Broadcasting (for financial institutions, government agencies,
etc.), and In-house Broadcasting (for mid to large-size corporations and educational
institutions), and Remote Sensing & Monitoring.

A streaming system according to the invention also easily allows extension to
new technologies, such as additions for new encoding hardware/software, new video
formats, new file systems, new streaming protocols, etc. Such new technologies can
work seamlessly through the File System API without compromising or rewriting the
other collaborating modules/managers.

According to further specific embodiments, the present invention provides a
basis for a Software Development Kit (SDK) for hardware and software vendors that
allows vendors to program their hardware or software independent of the rest of the
real-time streaming system. New hardware or software encoding solution can be
introduced and integrated with existing or new applications/utilities simply by adapting

the new solutions through the File System APIs.

OTHER EMBODIMENTS
The processes, sequences or steps and features discussed above are related to

each other and each are believed independently novel in the art. The disclosed processes
and sequences may be performed alone or in any combination to provide a novel and
unobvious system or a portion of a system. It should be understood that the processes
and sequences in combination yield an equally independently novel combination as
well, even if combined in their broadest sense; i.e. with less than the specific manner in
which each of the processes or sequences has been reduced to practice as described
herein.

The streaming media delivery server module as described herein, in accordance
with one aspect of the present invention is robust, operationally efficient and cost-
effective. In addition, the present invention may be used in connection with
presentations of any type, including sales presentations and product/service promotion,

which provides the video service providers additional revenue resources.

-37-

WO 01/22682 PCT/US00/26084
While the forgoing and attached are illustrative of various aspects/embodiments

of the present invention, the disclosure of specific sequence/steps and the inclusion of
specifics with regard to broader methods and systems are not intended to limit the scope
of the invention which finds itself in the various permutations of the features disclosed

5 and described herein as conveyed to one of skill in the art.

-38-

WO 01/22682 PCT/US00/26084

10

15

20

25

WHAT IS CLAIMED:

1. A method of providing streaming services from a flexible and expandable
streaming server architecture comprising:
using a central reception manager to communicate with a plurality of cooperating
semi-autonomous interface managers, wherein said interface managers handle
different types of operations relating to streaming services;
using a file systems interface to handle communication of data with one or more data
sources and to handle exchange of said data with a streaming interface manager;
and
using said streaming interface manager to exchange time-critical streaming data with

a communications network.

2. The method of claim 1 wherein said central reception manager receives user

requests and distributes those requests to various appropriate other managers.

3. The method of claim 1 wherein said one or more data sources comprise:

at least two different file systems, including at least one streaming file system.

4. The method of claim 1 wherein said one or more data sources comprise:
at least two different file systems, including at least one streaming file system and at

least one conventional file system.

5. The method of claim 1 further comprising:
using a network interface to communicate with one or more clients via a network;
and
using user and database interfaces along with user authentication and access control

logic to authenticate a user and a media request.

6. The method of claim 1 further comprising:
using said file systems interface to communicate with a file system manager for a
conventional file system and a file system manager for a streaming file system,
said file system managers each providing admission control, cache management,

buffer management and scheduling.

-39.

WO 01/22682 PCT/US00/26084

10

15

20

25

7. The method of claim 1 wherein said file systems interface provides a standard
interface to said central manager and said streaming interface managers while allowing

integration of various streaming and conventional file systems.

8. The method of claim 1 wherein said file systems interface provides a standard
interface to said central manager and said streaming interface managers while allowing

integration of various live data streaming encoders.

9. The method of claim 1 wherein there are multiple instances of said file systems

interface, each instance providing an interface for a different file system.

10. A system providing streaming data services comprising:
a central manager;
a plurality of other managers providing interfaces to various services;
wherein at least one of said services comprises exchange of streaming data; and
wherein said central reception manager provides application programming interfaces

to said plurality of other managers.

11. The system of claim 10 wherein said other managers comprise:
a streaming manager providing communications of one or more streaming sessions
according to one or more protocols; and
a file manager providing a standard interface to one or more data sources of

streaming data.

12. The system of claim 11 wherein said streaming manager handles requests from
said central reception manager and calls streaming file manager and an encoding file
manager and further wherein said streaming manager takes the data from either
streaming file manager or encoding file manager and schedules said data for delivery to

remote clients via any pre-negotiated networking protocols.

13. The system of claim 11 wherein said file manager comprises:

an encoding file manager providing interface to one or more encoders.

14. The system of claim 11 wherein said file manager comprises:

-40-

WO 01/22682 PCT/US00/26084

10

15

20

25

an encoding file manager and encoding instances providing interface to one or more

encoders.

15. The system of claim 13 wherein said encoders comprise generic hardware and

software encoding modules.

16. The system of claim 13 wherein said encoding file manager bridges different
hardware and/or software encoders to handle delivery of real-time data to said central

manager via a generic file system APL

17. The system of claim 11 wherein said file manager comprises:

one or more streaming file managers providing interface to one or more file systems.

18. The system of claim 17 wherein said file manager further provides an interface

for a streaming file system and a conventional file system.

19. The system of claim 11 wherein said other managers further comprise:
a network manager providing management and interface to one or more network

listeners according to one or more network communication protocols.

20. The system of claim 11 wherein said other managers further comprise:
an administration manager providing interface to one or more administrative console

functions.

21. The system of claim 11 wherein said other managers further comprise:
a user interaction manager providing interface to one or more user interaction

console functions.

22. The system of claim 11 wherein said other managers further comprise:

a data manager providing interface to one or more data stores.

23. The system of claim 11 wherein said streaming manager provides interfacing to
one or more streaming services provided by one or more protocols consisting of the

group RTP Streaming, HTTP Streaming, and Real-time Streaming.

41-

WO 01/22682 PCT/US00/26084

10

15

20

25

24. The system of claim 11 wherein said one or more data sources comprise two or

more different streaming file systems.

25. The system of claim 10 wherein said central manager defines a set of
communication protocols for said plurality of other collaborating managers to complete

streaming and management requests from clients and consoles.

26. The system of claim 10 wherein said central manager performs the following:
retrieving stored data from a streaming data source manager;
processing requests from a network manager;
processing requests from an administration manager;
processing database requests to/from a database manager;
processing user interaction requests from a user interaction manager; and

processing requests from a streaming manager.

27. The system of claim 26 wherein said streaming data source manager comprises

an encoding file manager that transfers live streaming data.

28. The system of claim 26 wherein said streaming data source manager comprises a

streaming file manager that handles pre-stored streaming data.

29. The system of claim 11 wherein said streaming data source manager handles
delivery of pre-stored data in a variety of storage systems and schedules concurrent

stream requests from said streaming manager.

30. The system of claim 11 wherein said streaming file manager comprises:
an admission control module;
a scheduler;
a media disk module; and

a cache module.

31. A real-time reception manager comprising:
a streaming systems API providing interface to one or more streaming managers;
a server reception API providing interface to one or more other managers;

a data management API providing interface to one or more data sources; and

42

WO 01/22682 PCT/US00/26084
a file systems API providing interface to one or more streaming data source

managers; and
a server master communicating with a streaming system master and a file system

master.

5 32. The system of claim 31 further comprising:
a user authentication and access control module communicating with said database

management API.

33. The system of claim 31 wherein said streaming managers further comprise:
one or more network managers;
10 one or more administration managers; and

one or more user interface managers.

34. A real-time encoding manager comprising:
an interface with a file system API;
one or more vendor hardware driver APIs;
15 one or more vendor software driver APIs; and
each of said hardware and software driver APIs communicating via an operating

system to one or more drivers associated with one or more encoders.

35. A file manager for use in a streaming engine comprising:

a media disk handler that configures a storage device to be used for streaming
20 storage, including formatting and performance measurement;

an interface handler for handling communications with outside modules;

a real-time scheduler that arranges service sequence among running streaming

sessions to ensure that said sessions can maintain quality of service;

a buffer manager that manages data buffers reserved for streaming purposes; and

25 a disk scheduler that arranges I/O requests and performs storage read/write to a

physical storage device.

36. The system of claim 35 wherein multiple disk scheduler threads may be

generated and work concurrently to utilize a multiple processor architecture.

43

WO 01/22682 PCT/US00/26084
37. The system of claim 35 further comprising an admission control module that

controls access to streaming data based on access policies.

38. The system of claim 35 wherein for a streaming file system, file format and

storage allocation are under control of said file manager.

5 39. The system of claim 35 further comprising:
a cache module that views a non-streaming file system as a media archive and a
streaming file system as a proxy streaming engine and wherein said streaming file
system can act as a proxy to handle time critical streaming of files downloaded

from said non-streaming file system.

10 40. A method of managing a real-time media service request at a streaming file
manager comprising:
receiving a request at an interface handler of said streaming file manager;
issuing a request to a cache manager to retrieve a profile of a requested media file;
said cache manager determining whether said media file exists in a streaming file
15 system,
if said media file is not found in said streaming file system, said cache manager
issuing a request to a conventional file system to download said media file into
said streaming file system and after download has proceeded for an interval, said
cache manager returning said profile to said interface handler; and

20 passing said request to a scheduler to create a streaming session.

41. The method of claim 40 further comprising:

sending a buffer allocation request to a buffer manager;

if said buffer manager approves and returns a block of memory space, returning a
memory space pointer;

25 said scheduler receiving said memory space pointer and reserving memory space for

a newly created streaming session;

said scheduler creating a unique session id for said request and placing said session
into a session schedule list for service; and

if said session is created successfully, returning said unique session id to a calling

30 reception manager.

-44-

WO 01/22682 PCT/US00/26084
42. A method of managing a real-time media service request at a streaming file

manager comprising:
receiving a request at an API handler of said streaming file manager to record a
streaming file;
5 issuing a request to a cache manager to retrieve a profile of a requested media file;

accepting a recording session for said streaming file session.

43. A method of moving a file from a conventional file system to a streaming file
system comprising:

issuing a get media profile operation from a cache manager to a conventional file

10 system for a particular file;
issuing a request to a scheduler to create a streaming session;
if said session is created successfully, returning a session ID to said cache manager;
and
said cache manager using said session ID to continuously retrieve data by issuing

15 read operations to said scheduler.

44. The method of claim 43 further comprising:
after retrieval has proceeded for an interval, said cache manager issuing another

request to said scheduler.

45. The method of claim 43 further comprising:
20 said scheduler sending a buffer allocation request to a buffer manager;
said buffer manager approving said request and returning a block of memory space
pointed to by a memory space pointer;
said scheduler receiving said pointer and reserving memory space for a newly created
streaming session;
25 said scheduler creating a unique session ID for the request; and

said scheduler placing said session into a session schedule list for service.

46. The method of claim 43 wherein a newly created recording session retrieves the

data from data accumulated by playback request at said conventional file system.

-45-

WO 01/22682 PCT/US00/26084

10

15

20

25

47. The method of claim 43 wherein said request forms a data pipe between said

conventional file system and streaming file system.

48. A method of handling a request for playing back streaming media comprising:

receiving a request to play back a media selection at a network manager via a
network;

said network manager receiving said request and verifying a security level of a
remote client identity;

passing said request to a streaming manager via a central reception manager
interface;

said streaming manager recording the active stream and passing said request to a
streaming source manager;

said streaming source manager verifying a storage resource to decide to accept or
reject said request;

if approved, said streaming source manager starting real-time scheduling to retrieve
requested media to said streaming manager; and

streaming manager beginning real-time scheduling to deliver requested media to

remote client via negotiated network protocols.

49. The method of claim 48 further comprising;
receiving a request to perform a virtual VCR function at said network manager to

control the status of the stream.

50. The method of claim 48 wherein said streaming source manager comprises a

streaming file manager and said media selection comprises a prerecorded media file.

51. The method of claim 48 wherein said streaming source manager comprises an

encoding file manager and said media selection comprises live real-time media.

52. The method of claim 50 wherein said streaming source manager verifying a
storage resource further comprises:
determining if the requested media is available on a conventional file system and if

not denying the request;

-46-

WO 01/22682 PCT/US00/26084
determining the streaming resource for two different cases: (a) the request media is in

said conventional file system and been cached in said streaming file system; or (b)
the requested media is in said conventional file system but not been cached in
streaming file system;
5 if approved, for case (a) said streaming file manager initiating real-time scheduling to
retrieve requested pre-recorded media to said streaming manager;
if approved, for case (b), streaming file manager initiating real-time scheduling to
download the requested media from said conventional file system into streaming
file system; and
10 after a portion of data has been cached in the streaming file system, streaming file
manager initiates real-time scheduling to retrieve just cached requested media to

streaming manager.

-47-

WO 01/22682 PCT/US00/26084

1/8

104

GLOBAL STREAMING GATEWAY

STORAGE

Reception Manager
Streaming File Manager
Encoding File Manager

Network Manager
Administration Manager

Streaming Manager

Database Manager

User Interaction Manager
MANAGER

SERVER
\ MODULE

PROCESSOR

COMMERCIAL
INFORMATION
DATABASE

!

NETWORK INTERFACE

WO 01/22682

Local
Console

Java
Console

2/8

HTTP
Streaming

Streaming
Manager

Administration
Manager

User Interface

Manager
Jet Engine
Data Manager
sQL
Engines
Others
Engine
RTSP
Listener

The Spider-Web Architecture of RTSE

Core Reception
Manager

Real-time
Streaming

Encoding
File Managers

File Managers

Network Manager

TCP
Listener

FIG 3

Listener

ubP

PCT/US00/26084

Software
Encoder

WO 01/22682

3/8

Administration
Managers

Managers

{ User Interface

Network
Managers

|

]

Server Reception API

PCT/US00/26084

User Authentication & Access Control

Messaging & Logging

Real-time Reception Manager

Server Master

Streaming
System Master

File System
Master

Streaming Systems
API

Streaming
Managers

File Systems API

File/Encoding

Data
Management /
APls

Managers

FIG 4

DBMS or
Other Data
Sources

WO 01/22682

SNMP
Interface

Local
Management
Console
Interface

User Interface/Administration Managers

|

4/8

PCT/US00/26084

HTTP RTSP FTP
Interface Interface Interface

Network Managers

Server Reception API

|

Reception Manager

User

Authentication

& Access
Control

Messaging &

Server Master

Logging

\ 1\

System

Streaming

Master

Management/
Data APIs

User Profile AP!

Session Log API

Event Log API

File System Meta

fi

Data

Info API

File System
Master

Streaming Systems
AP!

Optional
Manager
Control for
Other
Streaming
Services

l

Other
Streaming
Service

Broadband
Streaming
Manager

DBMS;
LDAP;
Flat
Files; or
other
Data
Sources

File Systems API
| RTEncoding API |

|

i

A

Custom NT/3rd
SFS FS
Manager Manager
| |
Custom NT (or 3d
Streaming Party)
File File
System System

Encoding Manager

Encoding Encoding
Instance 1 Instance 2
[I
Encoder 1 Encoder 2

WO 01/22682 PCT/US00/26084
Reception Manager
File System API
Media Disk API Handler
Handler .
| | |
Cache Real-time Admission
Manager Scheduler Control
]
Disk
l—- Scheduler
Buffer
Manager

Window File System API

Streaming File System API

Window File Sytem formatted Storage Devices
(Disks, Jukebox, Tape, etc.)

Streaming File System formatted Storage
Devices (Disks)

WO 01/22682

PCT/US00/26084

6/8

Real-Time Encoding Manager

Real-Time Store or
Forward Service

Real-Time Media Message
or Advertisement Service

Real-Time Broadcasting or!
Muiticasting Service

RTSE File System API

RTSE Plug-and-Play Real-Time Encoding AP!

Vender A HW Vender B H/W Vender C H/W Vender D SIW Vender E SIW
Driver API Driver API Driver API Encoding API Encoding API
Operating System
Vender A HW Vender B HW Vender C HW Comenc pucto!
Driver Driver Driver I Denc',v:rp "

WO 01/22682 PCT/US00/26084

7/8

Begin

:

Scan Installed
Encoders

Any Encoder?

Yes

\ 4

Instantiate
Encoders

For Each Encoder,

Yes Start Encoding?

Set/Get Device-
independent Encoding
Parameters for Individual
Encoder Deallocate
Encoder
Instance?
Apply Parameter
Changes to Yes
Individual Encoder e
Yes
Generate Encoded
Bit-Stream

Data
Redirection for
in-Memory
Circular Buffer

Stop
Encoding?

WO 01/22682 PCT/US00/26084

8/8
- ~ — 700
. ~
1 705 77
719 . g
AY AAa] AR |Aasa RS
- +— 711
709 _/

FIGY

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

