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SYSTEM AND METHOD FOR NONINVASIVE BLOOD ANALYTE MEASUREMENTS

BBCKSBQUNP__ OF THE INDENTION

TECHNICAL FIELD

The invention relates to the measurement of blood analytes. More particularly, the 
invention relates to an intelligent system for noninvasive blood analyte prediction.

DESCRIPTION OF THE PRIOR ART

The goal of noninvasive blood analyte measurement is to determine the 

concentration of targeted blood analytes without penetrating the skin. Near infrared 

(NIR) spectroscopy is a promising noninvasive technology which bases 

measurements on the absorbance of low energy NIR light that is transmitted into a 

subject. The light is focused onto a small area of the skin and propagates through 

subcutaneous tissue. The reflected or transmitted light that escapes and is detected 

by a spectrometer provides information about the tissue contents that it has 

penetrated.

The absorbance of light at each wavelength is a function of the structural properties 

and chemical composition of the tissue. Tissue layers, each containing a unique 

heterogeneous particulate distribution, affect light absorbance through scattering. 

Chemical components, such as water, protein, fat and blood analytes, absorb light 

proportionally to their concentration through unique absorption profiles or signatures. 

The measurement of blood analyte concentrations is based on detecting the 

magnitude of light attenuation caused by the absorption signature of the targeted 

analyte. The process of calibration is the development of a mathematical 

transformation or model which estimates the blood analyte concentration from the 

measured tissue absorbance spectrum.
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However, accurate noninvasive estimation of blood analytes is presently limited by 

the dynamic nature of the sample, the skin and living tissue of the subject. 

Chemical, structural and physiological variations occur that produce dramatic 

changes in the optical properties of the tissue sample.

See, for example, R. Anderson, J. Parrish, The optics of human skin, Journal of 

Investigative Dermatology, vol. 77(1), pp. 13-19 (1981); W. Cheong, S Prahl, A. 

Welch, A review of the optical properties of biological tissues, IEEE Journal of 

Quantum Electronics, vol. 26(12), pp. 2166-2185 (Dec. 1990); D. Benaron, D. Ho, 

Imaging (NIRI) and quantitation (NIRS) in tissue using time-resolved 

spectrophotometry: the impact of statically and dynamically variable optical path 

lengths, SPIE, vol. 1888, pp. 10-21 (1993); J. Conway, K. Norris, C. Bodwell, A new 

approach for the estimation of body composition: infrared interactance, The 

American Journal of Clinical Nutrition, 40, pp. 1123-1140 (Dec. 1984); S. Homma, T. 

Fukunaga, A. Kagaya, Influence of adipose tissue thickness in near infrared 

spectroscopic signals in the measurement of human muscle, Journal of Biomedical 

Optics, 1(4), pp. 418-424 (Oct. 1996); A. Profio, Light transport in tissue, Applied 

Optics, vol. 28(12), pp. 2216-2222 (June 1989); and M. Van Gemert, S. Jacques, H. 

Sterenborg, W. Star, Skin optics, IEEE Transactions on Biomedical Engineering, vol. 

36(12), pp. 1146-1154 (Dec. 1989).

These variations include the following general categories:

1. Covariation of spectrally interfering species. The NIR spectral absorption profiles 

of blood analytes tend to overlap and vary simultaneously over brief time periods. 

This produces spectral interference and necessitates the measurement of 

absorbance at more independently varying wavelengths than the number of 

interfering species.

2. Sample heterogeneity. The tissue measurement site has multiple layers and 

compartments of varied composition and scattering. The spectral absorbance 

versus wavelength is related to a complex combination of the optical properties 

and composition of these tissue components. Therefore, a general
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representation or model of the tissue absorbance spectrum is nonlinear and 

difficult to realize on the basis of first principles.

3. State Variations. Variations in the subject’s physiological state effect the optical 

properties of tissue layers and compartments over a relatively short period of 

time. Such variations, for example, may be related to hydration levels, changes 

in the volume fraction of blood in the tissue, hormonal stimulation, temperature 

fluctuations and blood hemoglobin levels.

4. Structural Variations. The tissue characteristics of individuals differ as a result of 

factors that include hereditary, environmental influences, the aging process, sex 

and body composition. These differences are largely anatomical and can be 

categorized as slowly varying structural properties producing diverse tissue 

geometry. Consequently, the tissue of a given subject has distinct systematic 

spectral absorbance features or patterns that can be related directly to specific 

characteristics such as dermal thickness, protein levels and percent body fat. 

While the absorbance features are repeatable by subject, over a population of 

subjects they produce confounding nonlinear spectral variation. Therefore, 

differences between subjects are a significant obstacle to the noninvasive 

measurement of blood analytes through NIR spectral absorbance.

In a nondispersive system, variations similar to (1) above are easily modeled through 

multivariate techniques, such as multiple linear regression and factor based 

algorithms. Significant effort has been expended to model the scattering properties 

of tissue in diffuse reflectance although the problem outlined in (2) above has been 

largely unexplored. Variations of the type listed in (3) and (4) above causes 

significant nonlinear spectral variation for which an effective solution has not been 

reported. For example, several reported methods of noninvasive glucose 

measurement develop calibration models that are specific to an individual over a 

short period of time.

3



WO 00/42907 PCT/US00/01378

5

10

15

20

25

30

35

40

See, for example, K. Hazen, Glucose determination in biological matrices using 

near-infrared spectroscopy, Doctoral Dissertation, University of Iowa (Aug. 1995); J. 

Burmeister, In vitro model for human noninvasive blood glucose measurements, 

Doctoral Dissertation, University of Iowa (Dec. 1997); and M. Robinson, R. Eaton, D. 

Haaland, G. Koepp, E. Thomas, B. Stallard, P. Robinson, Noninvasive glucose 

monitoring in diabetic subjects: a preliminary evaluation, Clin. Chem, 38/9, pp. 1618- 

1622(1992).

This approach avoids modeling the differences between subjects and therefore 

cannot be generalized to more individuals. However, the calibration models have 

not been tested over long time periods during which variation of type (4) above may 

require recalibration. Furthermore, the reported methods have not been shown to be 

effective over a range of type (3) above variations.

It would be desirable to provide a method and apparatus for compensating for the 
variations described above.

SUMMRRV OF THE INUENTION

The invention provides a method and apparatus for compensating for covariation of 
spectrally interfering species, sample heterogeneity, state variations, and structural 
variations through an intelligent pattern recognition system that is capable of 
determining calibration models that are most appropriate for the subject at the time 
of measurement. The calibration models are developed from the spectral 
absorbance of a representative population of subjects that have been segregated 
into groups. The groups or classes are defined on the basis of structural and state 
similarity, such that the variation within a class is small compared to the variation 
between classes. Classification occurs through extracted features of the tissue 
absorbance spectrum related to the current subject state and structure.

The invention provides an intelligent system for measuring blood analytes 

noninvasively. The system operates on a near infrared absorbance spectrum of in 

vivo skin tissue. The hierarchical architecture employs a pattern classification 

engine to adapt the calibration to the structural properties and physiological state of
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the subject as manifested in the absorbance spectrum. A priori information about 

the primary sources of sample variability is used to establish general categories of 

subjects. The spectral interference is reduced by applying calibration schemes 

specific to the various categories, resulting in improved prediction accuracy and 

parsimonious calibrations.

Two classification rules are disclosed:

• The first rule assumes that the classes are mutually exclusive and applies 
specific calibration models to the various subject categories.

• The second rule uses fuzzy set theory to develop calibration models and blood 
analyte predictions. Therefore, each calibration sample has the opportunity to 
influence more than one calibration model according to its class membership. 
Similarly, the predictions from more than one calibration are combined through 
defuzzification to produce the final blood analyte prediction.

BRIEF DESCRIPTION_ _ OF THE DRRLUINGS

Fig. 1 is a block schematic diagram of an architecture of an intelligent system for 
noninvasive measurement of blood analytes according to the invention;

Fig. 2 is a typical noninvasive absorbance spectrum;

Fig. 3 is a block schematic diagram of a pattern classification system according to 
the invention;

Figs. 4A and 4B provide two different flow diagrams showing two embodiments of 
the herein disclosed pattern classification system, where Fig. 4A shows subject 
classes that are mutually exclusive, and where Fig. 4B shows fuzzy classification 
applied to assign class membership to more than one class, both according to the 
invention;

Fig. 5 is a block schematic diagram showing a general calibration system for 
mutually exclusive classes according to the invention;

Fig. 6 is a block schematic diagram showing an example of parallel calibration 
models for mutually exclusive classes according to the invention;
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Fig. 7 is a block schematic diagram showing a general calibration system for fuzzy 
class assignments according to the invention;

Fig. 8 is a block schematic diagram showing an example of parallel calibration 
models for fuzzy set assignments according to the invention;

Fig. 9 is a block schematic diagram of an intelligent measurement system instrument 
according to the invention;

Fig. 10 is a block schematic diagram of the intelligent measurement system with 
crisp classification rules according to the invention;

Fig. 11 is a flow diagram showing processing steps for preprocessing 1 and feature 
extraction 1 of Fig. 10, according to the invention;

Fig. 12 is a flow diagram showing processing steps of preprocessing 2 and feature 
extraction 2 of Fig. 10, according to the invention;

Fig. 13 is a block schematic diagram showing membership rules according to the 
invention;

Fig. 14 is a block schematic diagram of an intelligent measurement system with 
fuzzy classification according to the invention;

Fig. 15 is a flow diagram showing preprocessing a feature extraction processes for 
the fuzzy classification system shown in Fig. 14, according to the invention;

Fig. 16 provides a pair of graphs that plot the membership function for the fuzzy 
classification system of Fig. 14, where two features are used to determine the 
degree of membership in the sex and age related sub-sets, according to the 
invention;

Fig. 17 is a block schematic diagram showing fuzzy membership rules according to 
the invention; and

Fig. 18 is a block schematic diagram showing the defuzzification process according 
to the invention.

6
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DETHILED DESCRIPTION OF THE INDENTION

The intelligent measurement system herein disclosed provides improved NIR 

noninvasive blood analyte measurement accuracy. This is accomplished by defining 

subpopulations or classes of subjects whose structure and state produce similarly 

featured NIR absorbance spectra. The classes have improved homogeneity leading 

to a reduction in variation related to the optical properties and composition of the 

sample. Because the interference is reduced while the magnitude of the blood 

analyte absorbance signal is unchanged, a substantial increase in signal-to-noise 

ratio is realized.

One goal of the intelligent measurement system (IMS) is to measure blood analytes 

noninvasively over a diverse population of subjects at various physiological states. 

The method is to classify subjects according to their state and structure and apply a 

combination of one or more existing calibration models to predict the blood analytes.

The architecture of the IMS is shown in Fig. 1 and consists of a conventional three- 

layer hierarchy (see, for example, P. Antsaklis, K.Passino, ed., An Introduction to 

Intelligent and Autonomous Control. Boston; Kluwer Academic Publishers (1992)) 

that operates in conjunction with an algorithm manager 10. The execution layer 16 

receives the tissue absorbance spectrum from an instrument 28 and performs 

rudimentary preprocessing 29. The coordination layer 14 performs feature extraction

25. A classification system 26 is used to classify the subject according to extracted 

features that represent the state and structure of a sample. Based on the 

classification, the predictions from one or more existing calibration models 27 are 

used to form a glucose estimate 24. The classification and blood analyte prediction 

are passed to the management level 12 and action is taken based on the certainty of 

the estimate. The management level is also responsible for coordinating 22 all 

algorithmic events, monitoring the performance 21 based on the class, adapting the 

rules 20 as necessary, and maintaining information regarding system state 23.

Within the framework of Fig. 1, two different approaches to classification are 

proposed. The first approach uses classes that are mutually exclusive. The second
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approach applies fuzzy set theory to form a classifier and prediction rules which 

allow membership in more than one class. The framework also allows for the 

detection of outliers, the determination of samples that are significantly different from 

the existing classes, and long-term monitoring of the system performance.

Measurement and Preprocessing

The sample measurement or tissue absorbance spectrum is the vector me9Iw of 

absorbance values pertaining to a set of N wavelengths that span the near

infrared (700 to 2500nm). A typical plot of m versus λ is shown in Fig. 2. Assuming 

that variation in the target analyte is evident in a consistent absorbance signature, 

the absorbance measurement can be performed either transmissively, through 

diffuse reflectance, or through alternate methods without negatively impacting the 

proposed algorithm. The number of necessary wavelengths is a function of the 

cross correlation between the target analyte and the interfering species. For 

noninvasive applications with significant variation within and between individuals, the 

entire spectrum is useful.

Preprocessing 29 (Fig. 1) includes operations such as scaling, normalization, 

smoothing, derivatives, filtering and other transformations that attenuate the noise 

and instrumental variation without affecting the signal of interest. The preprocessed 

measurement, xe91w, is determined according to:

x-h(A,m) ( 1 )

where is the preprocessing function.

Pattern Recognition System

A set of subject groups or classes exists with members that are defined by the 

similarity of specific features. Grouping of the subjects according to the features 

reduces the spectral variation related the diverse structural properties of the subject 

population and physiological states encountered. The spectral absorbance 

measurements corresponding to the classes are more homogeneous than the entire 

population. The magnitude of the spectral signal of the target analyte, however, 

remains unchanged. Therefore, calibration models for predicting blood analytes that 
8
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are specific to subject classes are expected to be less complex and have an 

improved level of accuracy.

The pattern recognition system is designed to classify new spectral measurements 

into the previously defined classes through structural and state similarities as 

observed in the tissue absorbance spectrum. Class membership is an indication of 

which calibration model(s) is(are) most likely to estimate the concentration of the 

target blood analyte accurately. Therefore, the pattern classification system is the 

essence of the proposed intelligent measurement system shown in Fig. 1.

Fig. 3 is a more detailed representation of the pattern classification system. The 

system has two general functions:

• The extraction of features, and

• The classification of the features according to a classification model and decision 

rule.

Feature extraction 25 is any mathematical transformation that enhances a particular 

aspect or quality of the data that is useful for interpretation. The classification model 

30 is a method for determining a set of similarity measures with the predefined 

classes. The decision rule is the assignment of class membership 32 on the basis of 

a set of measures calculated by a decision engine 31 (see, for example, R. Duda, P. 

Hart, Pattern Classification and Scene Analysis. John Wiley and Sons, New York 

(1973); and J. Schurmann, Pattern Classification, A Unified View of Statistical and 

Neural Approaches. John Wiley & Sons, Inc., New York (1996)).

Within this framework, two different classification schemes are proposed. The first 

scheme, shown in Fig. 4A, provides a classification system 43 that assumes that the 

classes are mutually exclusive and forces each measurement to be assigned to a 

single class 45. The scheme shown in Fig. 4B employs a fuzzy classifier 44 that is 

not mutually exclusive. This allows a sample to have membership in more than one 

class simultaneously and provides a number between zero and one indicating the 

degree of membership in each class 46.

9



WO 00/42907 PCT/US00/01378

5

10

15

20

25

30

35

Feature Extraction

Feature extraction is any mathematical transformation that enhances a quality or 

aspect of the sample measurement for interpretation (see, for example, R. Duda, P. 

Hart, Pattern Classification and Scene Analysis. John Wiley and Sons, New York 

(1973)). The purpose of feature extraction in Fig. 1 is to represent concisely the 

structural properties and physiological state of the tissue measurement site. The set 

of features is used to classify the subject and determine the calibration model(s) 

most useful for blood analyte prediction,

The features are represented in a vector, ze9IM that is determined from the 

preprocessed measurement through:

ζ = /(λ,χ) (2)

where f. is a mapping from the measurement space to the feature space.

Decomposing /(·) yields specific transformations, ((·): for determining a

specific feature. The dimension, Mh indicates whether the ith feature is a scalar or a 

vector and the aggregation of all features is the vector z. When a feature is 

represented as a vector or a pattern, it exhibits a certain structure indicative of an 

underlying physical phenomenon.

The individual features are divided into two categories:

• Abstract, and

• Simple.

Abstract features do not necessarily have a specific interpretation related to the 

physical system. Specifically, the scores of a principal component analysis are 

useful features, although their physical interpretation is not always known. The utility 

of the principal component analysis is related to the nature of the tissue absorbance 

spectrum. The most significant variation in the tissue spectral absorbance is not 

caused by a blood analyte but is related to the state, structure, and composition of 

the measurement site. This variation is modeled by the primary principal

10
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components. Therefore, the leading principal components tend to represent 

variation related to the structural properties and physiological state of the tissue 

measurement site.

Simple features are derived from an a priori understanding of the sample and can be 

related directly to a physical phenomenon. Useful features that can be calculated 

from NIR spectral absorbance measurements include but are not limited to:

1. Thickness of adipose tissue (see, for example, J. Conway, K. Norris, C.. Bodwell, 

A new approach for the estimation of body composition: infrared interactance, 

The American Journal of Clinical Nutrition, 40, pp. 1123-1140 (Dec. 1984); and S. 

Homma, T. Fukunaga, A. Kagaya, Influence of adipose tissue thickness in near 

infrared spectroscopic signals in the measurement of human muscle, Journal of 

Biomedical Optics, 1(4), pp. 418-424 (Oct. 1996)).

2. Tissue hydration (see, for example, K. Martin, Direct measurement of moisture in 

skin by NIR spectroscopy, J. Soc. Cosmet. Chem., vol. 44, pp. 249-261 

(Sept./Oct. 1993)).

3. Magnitude of protein absorbance (see, for example, J. Conway, K. Norris, C. 

Bodwell, A new approach for the estimation of body composition: infrared 

interactance, The American Journal of Clinical Nutrition, 40, pp. 1123-1140 (Dec. 

1984)).

4. Scattering properties of the tissue (see, for example, A. Profio, Light transport in 

tissue, Applied Optics, vol. 28(12), pp. 2216-2222 (June 1989); W. Cheong, S. 

Prahl, A. Welch, A review of the optical properties of biological tissues, IEEE 

Journal of Ouantum Electronics, vol. 26(12), pp. 2166-2185 (Dec. 1990); and R. 

Anderson, J. Parrish, The optics of human skin, Journal of Investigative 

Dermatology, vol. 77(1), pp. 13-19 (1981)).

5. Skin thickness (see, for example, R. Anderson, J. Parrish, The optics of human 

skin, Journal of Investigative Dermatology, vol. 77(1), pp. 13-19 (1981); and M.

11
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Van Gemert, S. Jacques, H. Sterenborg, W. Star, Skin optics, IEEE Transactions 

on Biomedical Engineering, vol. 36(12), pp. 1146-1154 (Dec. 1989).

6. Temperature related effects (see, for example, A. Patterson, Modeling the 

thermal effects of blood flow in human skin, The South African Mechanical 

Engineer, vol. 28, pp. 179-182 (May 1978)).

7. Age related effects (see, for example, W. Andrew, R. Behnke, T. Sato, Changes 

with advancing age in the cell population of human dermis, Gerontologia, vol. 10, 

pp. 1-19 (1964/65); W. Montagna, K. Carlisle, Structural changes in aging human 

skin, The Journal of Investigative Dermatology, vol. 73, pp. 47-53 (1979); and J. 

Brocklehurst, Textbook of Geriatric Medicine and Gerontology. Churchill 

Livingstone, Edinburgh and London, pp.593-623 (1973)).

8. Spectral characteristics related to sex.

9. Pathlength estimates (see, for example, R. Anderson, J. Parrish, The optics of 

human skin, Journal of Investigative Dermatology, vol. 77(1), pp. 13-19 (1981); 

and S. Matcher, M. Cope, D. Delpy, Use of water absorption spectrum to 

quantify tissue chromophore concentration changes in near-infrared 

spectroscopy, Phys. Med. Biol., vol. 38, 177-196 (1993)).

10. Volume fraction of blood in tissue (see, for example, M. Van Gemert, S. 

Jacques, H. Sterenborg, W. Star, Skin optics, IEEE Transactions on Biomedical 

Engineering, vol. 36(12), pp. 1146-1154 (Dec. 1989)).

11. Spectral characteristics related to environmental influences.

12. Hematocrit levels.

Spectral decomposition is employed to determine the features related to a known 

spectral absorbance pattern. Protein and fat, for example, have known absorbance 

signatures that can be used to determine their contribution to the tissue spectral

12
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absorbance. The measured contribution is used as a feature and represents the 

underlying variable through a single value.

Features related to demographic information, such as age, are combinations of 

many different effects that cannot be represented by a single absorbance profile. 

Furthermore, the relationship of demographic variables and the tissue spectral 

absorbance is not deterministic. For example, dermal thickness and many other 

tissue properties are statistically related to age but also vary substantially as a result 

of hereditary and environmental influences. Therefore, factor based methods are 

employed to build models capable of representing variation in the measured 

absorbance related to the demographic variable. The projection of a measured 

absorbance spectrum onto the model constitutes a feature that represents the 

spectral variation related to the demographic variable.

The compilation of the abstract and simple features constitutes the M-dimensional 

feature space. Due to redundancy of information across the set of features, optimum 

feature selection and/or data compression is applied to enhance the robustness of 

the classifier.

Classification

Feature extraction determines the salient characteristics of measurements that are 

relevant for classification. The goal of the classification step is to determine the 

calibration model(s) that is/are most appropriate for the measurement. In this step, 

the subject is assigned to one of many predefined classes for which a calibration 

model has been developed and tested. Because the applied calibration model is 

developed for similar tissue absorbance spectra, the blood analyte predictions are 

more accurate than those obtained from a universal calibration model.

As depicted in Fig. 3, pattern classification generally involves two steps:

• A mapping (30), and

13
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• A decision engine (31).

The mapping measures the similarity of the features to predefined classes and the 

decision engine assigns class membership.

In the following discussion, two general methods of classification are described. The 

first method uses mutually exclusive classes and therefore assigns each 

measurement to one class. The second method uses a fuzzy classification system 

that allows class membership in more than one class simultaneously. Both methods 

require prior class definitions as described subsequently.

Class Definition

The development of the classification system requires a data set of exemplar 

spectral measurements from a representative sampling of the population. Class 

definition is the assignment of the measurements in the exploratory data set to 

classes. After class definition, the measurements and class assignments are used 

to determine the mapping from the features to class assignments.

Class definition is performed through either a supervised or an unsupervised 

approach (see, for example, J. Schurmann, Pattern Classification. A Unified View of 

Statistical and Neural Approaches, John Wiley & Sons, Inc., New York (1996)). In 

the supervised case, classes are defined through known differences in the data. The 

use of a priori information in this manner is the first step in supervised pattern 

recognition which develops classification models when the class assignment is 

known. For example, the majority of observed spectral variation can be modeled by 

three abstract factors which are related to several physical properties including body 

fat, tissue hydration, and skin thickness. Categorizing subjects on the basis of these 

three features produces eight different classes if each feature is assigned a "high" 

and "low" value. The drawback of this approach is that attention is not given to

14
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spectral similarity and the number of classes tends to increase exponentially with the 

number of features.

Unsupervised methods rely solely on the spectral measurements to explore and 

develop clusters or natural groupings of the data in feature space. Such an analysis 

optimizes the within cluster homogeneity and the between cluster separation. 

Clusters formed from features with physical meaning can be interpreted based on 

the known underlying phenomenon causing variation in the feature space. However, 

cluster analysis does not use a priori information and can yield inconsistent results.

A combination of the two approaches is applied to use a priori knowledge and 

exploration of the feature space for naturally occurring spectral classes. Under this 

approach, classes are first defined from the features in a supervised manner. Each 

set of features is divided into two or more regions and classes are defined by 

combinations of the feature divisions. A cluster analysis is performed on the data 

and the results of the two approaches are compared. Systematically, the clusters 

are used to determine groups of classes that can be combined. After 

conglomeration the number of final class definitions is significantly reduced 

according to natural divisions in the data.

Subsequent to class definition a classifier is designed through supervised pattern 

recognition. A model is created based on class definitions which transforms a 

measured set of features to an estimated classification. Because the ultimate goal of 

the classifier is to produce robust and accurate calibration models, an iterative 

approach must be followed in which class definitions are optimized to satisfy the 

specifications of the measurement system.

Statistical Classification

The statistical classification methods are applied to mutually exclusive classes 

whose variation can be described statistically (see, for example, J. Schurmann, 

Pattern Classification, A Unified View of Statistical and Neural Approaches, John

Wiley & Sons, Inc., New York (1996); and J. Bezdek, S. Pal, eds., Fuzzy Models for 

Pattern Recognition. IEEE Press, Piscataway, NJ (1992)). Once class definitions
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have been assigned to a set of exemplary samples, the classifier is designed by 

determining an optimal mapping or transformation from the feature space to a class 

estimate which minimizes the number of misclassifications. The form of the mapping 

varies by method as does the definition of optimal. Existing methods include linear 

discriminant analysis (see, for example, R. Duda, P. Hart, Pattern Classification and 

Scene Analysis. John Wiley and Sons, New York (1973)), SIMCA (see, for example, 

S. Wold, M. Sjostrom, SIMCA: A method for analyzing chemical data in terms of 

similarity and analogy, Chemometrics: Theory and Application, ed. B. Kowalski, 

ACS Symposium Series, 52 (1977)), k nearest-neighbor (see, for example, R. Duda, 

P. Hart, Pattern Classification and Scene Analysis. John Wiley and Sons, New York 

(1973)), and various forms of artificial neural networks (see, for example, S. Haykin, 

Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ, Prentice- 

Hall (1994); and Y. Pao, Adaptive Pattern Recognition and Neural Networks. 

Addison-Wesley Publishing Company, Inc., Reading, MA (1989)).

The result is a function or algorithm that maps the feature to a class, c, according to:

c = f(z) (3)

where c is an integer on the interval [1,P ] and P is the number of classes. The 

class is used to select or adapt the calibration model as discussed below in 

connection with calibration.

Fuzzy Classification

While statistically based class definitions provide a set of classes applicable to blood 

analyte estimation, the optical properties of the tissue sample resulting in spectral 

variation change over a continuum of values. Therefore, the natural variation of 

tissue thickness, hydration levels, and body fat content, among others, results in 

class overlap. Distinct class boundaries do not exist and many measurements are 

likely to fall between classes and have a statistically equal chance of membership in 

any of several classes. Therefore, hard class boundaries and mutually exclusive 

membership functions appear contrary to the nature of the target population.

A more appropriate method of class assignment is based on fuzzy set theory (see, 

for example, J. Bezdek, S. Pal, eds., Fuzzy Models for Pattern Recognition. IEEE
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Press, Piscataway, NJ (1992); C. Chen, ed., Fuzzy Logic and Neural Network 

Handbook, Piscataway, NJ, IEEE Press (1996); and L. Zadeh, Fuzzy Sets, Inform. 

Control, vol. 8, pp. 338-353 (1965)).

Generally, membership in fuzzy sets is defined by a continuum of grades and a set 

of membership functions that map the feature space into the interval [0,1] for each 

class. The assigned membership grade represents the degree of class membership 

with "1" corresponding to the highest degree. Therefore, a sample can 

simultaneously be a member of more than one class.

The mapping from feature space to a vector of class memberships is given by:

ck=fk(z) (4)

where k=1,2,...P, 4(·) is the membership function of the kth class, cke[0,1] for all k 

and the vector ce91p is the set of class memberships. The membership vector 

provides the degree of membership in each of the predefined classes and is passed 

to the calibration algorithm.

The design of membership functions use fuzzy class definitions similar to the 

methods previously described. Fuzzy cluster analysis can be applied and several 

methods, differing according to structure and optimization approach can be used to 

develop the fuzzy classifier. All methods attempt to minimize the estimation error of 

the class membership over a population of samples.

Calibration

Blood analyte prediction occurs by the application of a calibration model to the 

preprocessed measurement as depicted in Fig. 1. The proposed prediction system 

involves a calibration or set of calibration models that are adaptable or selected on 

the basis of the classification step. The following discussion describes the 

calibration system for the two types of classifiers.
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Mutually Exclusive Classes

In the general case, the designated classification is passed to a nonlinear model 

which provides a blood analyte prediction based on the subject classification and 

spectral measurement. This process, illustrated in Fig. 5, involves the modification 

of the estimation strategy for the current subject according to the structural tissue 

properties and physiological state manifested in the absorbance spectrum.

This general architecture necessitates a nonlinear calibration model 50, such as 

nonlinear partial least squares or artificial neural networks because the mapping is 

highly nonlinear. The blood analyte prediction for the preprocessed measurement x 

with classification specified by c is given by:

y = g(c,x) (5)

where g(·) is a nonlinear calibration model which maps x and c to an estimate of the 

blood analyte concentration, y .

In the preferred realization, shown in Fig. 6, a different calibration 60 is realized for 

each class. The estimated class is used to select one of p calibration models most 

appropriate for blood analyte prediction using the current measurement. Given that 

k is the class estimate for the measurement, the blood analyte prediction is:

y = gkW (6)

where gk(·) is the calibration model associated with the kth class.

The calibrations are developed from a set of exemplar absorbance spectra with 

reference blood analyte values and pre-assigned classification definitions. This set, 

denoted the “calibration set,” must have sufficient samples to completely represent 

the subject population and the range of physiological states in the subject 

population. The p different calibration models are developed individually from the 

measurements assigned to each of the p classes. The models are realized using 

known methods including principal component regression (see, for example, H. 

Martens, T. Naes, Multivariate Calibration. New York, John Wiley and Sons (1989)), 

partial least squares regression (see, for example, P. Geladi, B. Kowalski, Partial
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least-squares regression: a tutorial, Analytica Chimica Acta, 185, pp. 1-17 (1986)), 

and artificial neural networks (see, for example, S. Haykin, Neural Networks: A 

Comprehensive Foundation, Upper Saddle River, NJ, Prentice-Hall (1994)).

The various models associated with each class are evaluated on the basis of an 

independent test set or cross validation and the best set of models are incorporated 

into the Intelligent Measurement System. Each class of subjects then has a 

calibration model specific to it.

Fuzzy Class Membership

When fuzzy classification is employed the calibration is passed a vector of 

memberships rather than a single estimated class. The vector, c, is used to 

determine an adaptation of the calibration model suitable for blood analyte prediction 

or an optimal combination of several blood analyte predictions. In the general case, 

illustrated in Fig. 7, the membership vector and the preprocessed absorbance 

spectrum are both used by a single calibration 70 for blood analyte prediction. The 

calculation is given by:

y = g(c,x) (7)

where g(·) is a nonlinear mapping determined through nonlinear regression, 

nonlinear partial least squares or artificial neural networks. The mapping is 

developed from the calibration set described previously and is generally complex.

The preferred realization, shown in Fig. 8, has separate calibrations 80 for each 

class similar to that shown in Fig. 6. However, each calibration is generated using all 

measurements in the calibration set by exploiting the membership vector assigned to 

each measurement. In addition, the membership vector is used to determine an 

optimal combination of the p blood analyte predictions from all classes through 

defuzzification 81. Therefore, during calibration development a given measurement 

of the calibration set has the opportunity to impact more than one calibration model. 

Similarly, during prediction more than one calibration model is used to generate the 

blood analyte estimate.
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Each of the p calibration models of Fig. 8 is developed using the entire calibration. 

However, when the kth calibration model is calculated, the calibration measurements 

are weighted by their respective membership in the kth class. As a result, the 

influence of a sample on the calibration model of a particular class is a function of its 

membership in the class.

In the linear case, weighted least squares is applied to calculate regression 

coefficients and, in the case of factor based methods, the covariance matrix (see, for 

example, N. Draper, H. Smith. Applied Regression Analysis. 2nd Ed., John Wiley 

and Sons, New York (1981)).

Given a matrix of absorbance spectra Xke9Vxw and reference blood analyte 

concentrations Ye9V where r is the number of measurement spectra and w is the 

number wavelengths, let the membership in class kof each absorbance spectrum be 

the elements of e9T . Then the principal components are given by:

F = (8)

where M is the matrix of the first n eigen vectors of P.

The weighted covariance matrix P is determined through:

P = XkVXl (9)

where V is a square matrix with the elements of Ck on the diagonal.

The regression matrix, B, is determined through:

5 = F'VY. (10)

When an iterative method is applied, such as artificial neural networks, the 

membership is used to determine the frequency the samples are presented to the 

learning algorithm. Alternately, an extended Kalman filter is applied with a 

covariance matrix scaled according to V.
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The purpose of defuzzification is to find an optimal combination of the p different 

blood analyte predictions, based on a measurement’s membership vector that 

produces accurate blood analyte predictions. Therefore, defuzzification is a mapping 

from the vector of blood analyte predictions and the vector of class memberships to 

a single analyte prediction. The defuzzifier can be denoted as transformation such 

that:

= [y, y2 y3 ·■· (11)

where d(·) is the defuzzification function, c is the class membership vector and yk is 

the blood analyte prediction of the kth calibration model. Existing methods of 

defuzzification, such as the centroid or weighted average, are applied for small 

calibration sets. However, if the number of samples is sufficient, c/(·) is generated 

through a constrained nonlinear model.

Algorithm Manager

The algorithm manager 10 (see Fig. 1) is responsible for reporting results to the 

operator, coordinating all algorithmic events, monitoring the performance based on 

the class, and adapting the rules as necessary. Both class estimates and blood 

analyte predictions are reported to the algorithm manager. The classifier also 

generates a measure of the certainty of class membership. If the measurement 

does not fit into one of the existing classes the supervisor notifies the operator that 

the prediction is invalid. Further spectral measurements are taken to determine if the 

error is due to the instrument, measurement technique or sample. This error 

detection and correction algorithm is used to determine if more classes are 

necessary or if the instrument requires maintenance.

Implementation

The following discussion describes the implementation and experimental results of 

two forms of the Intelligent Measurement System for Blood Analyte Prediction (IMS) 

that were developed for the prediction of blood glucose concentration. It will be 

appreciated by those skilled in the art that other forms of the invention for other 

purposes may be developed. In the first form, a Crisp Classification System is used
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to determine one of four suitable prediction models. The second realization, denoted 

the Fuzzy Classification System, employs fuzzy membership rules to determine the 

class membership in each of six classes. The outputs of the corresponding six 

prediction models are combined using a defuzzification procedure to produce a 

single blood glucose prediction.

The discussion below first describes the overall instrument containing the IMS 

implementations and the subsequent discussion describes the operation of the two 

implementations. The final discussion details experimental results obtained from a 

clinical study.

The two implementations are specific to the prediction of blood glucose 

concentration. However, the invention is appropriate for the prediction of all blood 

analytes and other biological and other compounds that absorb in the NIR.

Instrument Description

The Intelligent Measurement System is implemented in a scanning spectrometer 

which determines the NIR absorbance spectrum of the subject forearm through a 

diffuse reflectance measurement. A block diagram of the integrated instrumentation 

and the IMS is shown in Figure 9 and includes the general instrument components, 

the IMS 90 and a display system (output device) 91. The instrument employs a 

quartz halogen lamp 92, a monochromater 93, a subject interface module 97, 

detector optics 98, and InGAs detectors 94. The detected intensity from the subject 

95 is converted to a voltage through analog electronics 94 and digitized through a 

16-bit A/D converter 96. The spectrum is passed to the IMS for processing and 

results in either a glucose prediction or a message indicating an invalid scan.

Alternately, the IMS can be employed with existing NIR spectrometers that are 

commercially available, including a Perstorp Analytical NIRS 5000 spectrometer or a 

Nicolet Magna-IR 760 spectrometer.
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Crisp Classification System

Overview

Figure 10 depicts an implementation of the IMS that involves subject classification 

through crisp or classical decision rules denoted IMS-CC. The objective of the 

classification is to determine which of four calibration models are applied for analyte 

prediction. This decision is accomplished through feature extraction 102, 103, 

classification 100, and application of a set of decision rules 104.

Prior to classification and calibration the measured noninvasive absorbance 

spectrum is subjected to an outlier detection 99 through principal components 

analysis (PCA). Spectra with significant deviations from the system’s PCA model 

are designated as unsatisfactory and rejected. Features related to the subjects sex 

and age are extracted through factor based techniques (PCA and PLS) after 

preprocessing 105, 106. The features are supplied to a set of decision rules 104 that 

determine which one of four classes 107, 108, 109, 110 best represents the 

absorbance spectrum of the subject, given the current state and structure of the 

tissue volume sampled during the measurement. While this implementation depicts 

four classes, the invention extends to the number of classes and features that are 

necessary for glucose prediction accuracy. Additional classes, for example, may be 

determined based on features related to hydration, skin thickness, thickness of 

adipose tissue, volume fraction of blood in tissue, blood pressure, hematocrit levels 

and others.

The absorbance spectrum is also preprocessed (Preprocessing 1) 105 in a manner 

suitable for calibration. Although the present implementation contains one method of 

preprocessing for all calibration models, the preferred realization supplies separate 

preprocessing methods for each calibration model. The calibration model that is 

applied to the spectrum is determined based on the classification described above 

and the model output is the glucose prediction. The implementation shown in Figure 

10 contains four calibration models associated with the four classes. However, in 

the general case an arbitrary number of calibrations are used equal to the number of

23



WO 00/42907 PCT/US00/01378

5

10

15

20

25

30

classes needed to represent the spectral variation of individuals using the 

instrument.

Detailed Description

NIR Spectral Measurement

The measured NIR spectrum m is a vector containing absorbance values evenly 

distributed in the wavelength range 1100-2500 nm. In the present application 

Λ/=1400. An example measurement is depicted in Figure 1.

Outlier Detection

The detection of spectral outliers is performed through a principal components 

analysis and an analysis of the residuals. First, the spectrum m is projected onto 

seven eigenvectors, contained in the matrix o, that were previously developed 

through a principal components analysis (on a calibration set of exemplary 

absorbance spectra) and are stored in the IMS-CC. The calculation is given by:

7

xPc„ = ^mok (12 )
Jt=l

and produces the 1 by 7 vector of scores, xpc0 where ok is the kth column of the 

matrix o. The residual q is determined according to:

q = m-xpcooT (13 )

and compared to three times the standard deviation of the expected residual (of the 

a calibration set). If greater, the sample is reported by the algorithm manager to be 

an outlier.

Processing 1 and Feature Extraction 1
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The first feature is the result of a classification of the subject into male and female 

categories and involves spectral preprocessing, decomposition through principal 

components analysis, and classification through linear discriminant analysis. The 

feature is not a determination of the subject's sex but rather provides a measure of 

the tissue volume sampled as compared to that of other subjects.

The process, depicted in Figure 11, receives the absorbance spectrum m from the 

outlier detection system 111. Wavelength selection 112 is applied to truncate the 

spectral range to regions with significant absorption due to fat in adipose tissue 

(1100 to 1400 nm). The spectrum is next processed through multivariate scatter 

correction 113 (see P. Geladi, D. McDougall, H. Martens, Linearization and Scatter- 

Correction for Near-Infrared Reflectance Spectra of Meat, Applied Spectroscopy, 

vol. 39, pp. 491-500, 1985) through a rotation that fits it to the expected or reference 

spectrum m contained in the Intelligent System and determined from a prior set of 

examplary samples. First, the spectrum is fit via linear regression according to:

m — α + bm + e ( 14 )

where a and b are the slope and intercept and e is the error in the fit. The spectrum 

is then corrected through:

where x is the processed absorbance spectrum. The processed spectrum is 

projected onto the eigenvectors, pk, that were previously developed through a 

principal components analysis 114 (on a calibration set of exemplary absorbance 

spectra) and are stored in the IMS-CC. The caicuiation, shown in Figure 11, 

produces the 1 by N vector of scores, xpc.

A discriminant function is applied to classify the subjects on the basis of the first M 

scores (M=5 is this application). The scores are rotated through a cross product with 

the discriminant , w, as depicted in Figure 11 to produce the scalar, L (115). This 

result is compared 116 to p , the center between the two classes. If /, > /, then the 

subject is classified as a female 118 and the feature z,=1. If not, the spectrum is 

classified as beloning to a male 117 and z,=0.
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Processing 2 and Feature Extraction 2

The second feature extraction process 103 (see Fig. 10) is represented in Figure 12 

and involves the prediction of the subject's age using a linear model developed 

through partial least squares regression (PLS). First, the wavelength range is 

truncated120 to the 1100 to 1800 nm region. Next, the subject's age is predicted 

through a calibration model that is part of the IMS-CC. The model, developed 

through PLS on a calibration set of exemplary samples, consists of a set of 

coefficients contained in the vector w and is applied as shown in Figure 12 to 

produce the age prediction a 121. The subject is classified as "young" or "old" by 

comparing a to the mean age a =49 as detailed in Figure 12, see 122. The result of 

the classification is the calculated feature, z2, which assumes vales of zero or one 

corresponding to a classification of "old" 123 or "young" 124 respectively.

Membership Rules

The membership rules 104, shown in Figure 13, determine the appropriate 

calibration model to predict the blood glucose concentration from the measured 

absorbance spectrum. Based on the two features, z, and z2, four classes are 

possible. The consequence of the decision it the selection of one of four calibration 

models to use to predict the blood glucose concentration denoted PLS 1-4.

This classification based on spectral data and not the obvious observation of the 

subject is necessary because it is indicative of the state of the subject's tissue. For 

example, a classification of "old" indicates that the subject's spectrum appears 

similar to the spectra previously gathered from older individual's. The results reflect 

gross spectral properties that are correlated to age but not necessarily deduced 

based on the actual chronological age.
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Preprocessing 3

The absorbance spectrum is processed specifically for calibration through MSC as 

described above and a 31-point Savisky-Golay first derivative in the form of a finite 

impulse response filter 125 (see A. Savitzky, M. Golay, Smoothing and 

Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., vol. 

36, no. 8, pp. 1627-1639, 1964). The result is mean-centered by subtracting, x, the 

mean processed absorbance spectrum from a calibration set of exemplary samples 

that is stored in the IMS-CC. Wavelength selection is performed to include the 

following wavelengths: 1100-1350 nm, 1550-1750 nm and 2050-2375 nm.

Prediction Model Selection 1 -2

Based on the subject’s classification, one of the four calibration models is selected 

for application as depicted in the two selectors 126, 127 of Figure 10.

Calibration Models PLS1, PLS2, PLS3, PLS4

The four calibration models 107-110 each consist of a 1xN vector of coefficients that 

map x to a prediction of glucose. Each set of coefficients was developed using 

samples (from a calibration set) that were classified as belonging to its associated 

class. Therefore, the models are limited to predicting glucose concentration levels 

on subjects that are classified in their respective classes.

Given the processed spectrum, x, the classification, c, and the model coefficients wc 

associated with c, the blood glucose prediction is given by:

y = Hwc.kxk (1θ)
A- = l

were wcifis the kth element of wc..
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Fuzzy Classification System

Overview

While the classification system based on distinct class boundaries shown in Figure 

10 provides a set of classes applicable to blood analyte estimation, the optical 

properties of the tissue sample vary over a continuum of values. Distinct class 

boundaries do not exist and many measurements are likely to fall between classes 

and have a statistically equal chance of membership in any of several classes. 

Therefore, hard class boundaries and mutually exclusive membership functions 

appear contrary to the nature of the target population.

The system shown in Figure 14, denoted the IMS-FC, employs fuzzy sets to define a 

continuum of grades in each of the classes. Rather than categorizing subjects into 

distinct and independent groups, this system determines the degree of membership 

of a particular subject in each of six classes (150-155). Therefore, each subject 

shares membership in every class and each of the parallel calibration models has 

the opportunity to contribute to the prediction of the blood analyte based.

The weighted combination (based on class membership) of the prediction of all 

calibration models in the system produces an apparent continuum of calibration 

models. Subjects falling mid-point between two classes, for example, are predicted 

using both rather than one of the two (calibration models) and produce a prediction 

with a greater level of confidence. Similarly, the calibrations are created through a 

weighted principal components regression (WPCR) and are not exclusive to a 

distinct population.

Similar to the IMS-CC, the fuzzy system (IMS-FC) classifies exclusively on the basis 

of spectral information. The measured absorbance spectrum is preprocessed for 

feature extraction. The features in this implementation are continuous (calculated) 

variables related to the absorption of body fat that is manifested spectrally and the 

apparent age of the sampled tissue volume. Fuzzification occurs through a set of
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membership functions that produce five membership values associated with the sub

sets male, female, young, middle aged and old. These membership values are 

transformed through decision rules 146 to produce the degree of class membership 

in each of six classes.

The spectrum is also preprocessed in a manner suitable for calibration and applied 

to each of the six calibration models. The results (six blood glucose estimates) are 

combined through the process of defuzzification 149 in which the degree of class 

membership is used to weight the influence of each prediction.

While the present implementation involves a specific number of features, classes, 

decision rules and calibrations models, the invention may use an arbitrary number of 

each in the configuration shown to produce a blood analyte predictions. Further, the 

invention covers the use of fuzzy classification for the purpose of blood analyte 

prediction or other analytes determinations.

Detailed Description

NIR Spectral Measurement

The measured NIR spectrum, m, 111 is a vector containing absorbance values 

evenly distributed in the wavelength range 1100-2500 nm. In the present application 

Λ/=1400 and an example measurement is depicted in Figure 1.

Outlier Detection

The detection 99 of spectral outliers is performed through a principal components 

analysis and an analysis of the residuals. First, the spectrum m is projected onto 

seven eigenvectors, contained in the matrix o that were previously developed
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through a principal components analysis on a calibration set and stored in the IMS- 

FC. The calculation is given by:

7

xpc<t =^mok (17)

and produces the 1 by 7 vector of scores, xpc0 where ok is the kth column of the 

matrix o. The residual, q, is determined according to:

q =m-xpcooT ( 18 )

and compared to three times the standard deviation of the expected residual 

determined from a calibration set. If greater, the sample is reported by the algorithm 

manager to be an outlier.

Processing 4 (140) and Feature Extraction 3 (141)

The first feature for the IMS-FC is related to the fat stored in adipose tissue as 

manifested through absorption bands in the 1100-1380 nm range. This feature is 

extracted, as shown in Figure 15A, by performing multiplicative scatter correction 

160 (described previously) on the 1100-1380 nm range. The absorbance value 

corresponding to the wavelength 1208 nm 161 is the value of the feature, z3, 

associated with the measured absorbance spectrum.

Processing 5 (143) and Feature Extraction 4 (144)

The second feature extraction, shown in Figure 15B, produces a prediction of the 

subject’s age based on the measured absorbance spectrum. First, the wavelength 

range is truncated to the 1100 to 1800 nm region 162. Next, the subject's age is 

predicted through a calibration model 163 that is part of the IMS-FC. The model, 

developed through PLS on a calibration set of representative samples, consists of a 

set of coefficients contained in the vector w and is applied as shown in Figure 12 to 

produce the age prediction z4.
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Fuzzy Membership Functions

The fuzzy membership functions 142, 145 are used to determine the degree of 

membership of the subject in specific sub-sets that are later combined through the 

decision rules. Each membership function maps the feature input to a value 

between 0 and 1 through a gaussian function. The general equation employed to 

represent the membership functions is:

y = (19)

where y is the degree of membership in a sub-set, z is the feature used to determine 

membership, z is the mean or center of the fuzzy sub-set and σ is the standard 

deviation.

In Figure 16, two broad sets are used that are denoted Membership Functions 1 

(142) and Membership Functions 2 (145). Membership Functions 1 represent the 

subject’s sex 170 using two sub-sets (male 173 and female 174). Membership 

Functions 2 uses three subsets, described below, to represent the age 171 of the 

subject. The degree of membership in each sub-set is calculated through Equation 

(15) and used through fuzzy operators and decision rules to assign class 

membership.

The first set of membership functions 170, shown in Figure 16 (top), are gaussian 

functions that determine the degree of membership in the male and female sub-sets 

based on the feature related to the absorption of fat (Feature 3). The mean and 

standard deviation associated with each sub-set (and used with Equation 15) were 

determined from a large population of subjects and are listed in Table 1. As shown 

in the figure, the greater z the more likely the subject falls into the category of 

females. Conversely, lower values of z give lower membership in the category of 

females and higher in the category of males.

The second set of membership functions 171, shown in Figure 16 (bottom), are 

gaussian functions that determine the degree of membership in the categories 
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5 young, middle aged and old based on the feature representing the prediction of age 

(Feature 4). The mean and standard deviation associated with each of the three 

categories were determined qualitatively based on inspection of a target population 

of subjects and are listed in Table 2.

Table 1. Parameters for the Membership Functions 1 plotted 
in Figure 16

Sub-Set Category Meai (AU)

Standard
Deviafon

(AU)

Females 0.6 0.03

Males 0.54 0.02

Table 2. Parameters of Membership Functions 2 plotted 
in Figure 16

Sub-Set Category
Mean

(Years)

Standard
Deviafon

(Years)

Young 30 7

Middle Aged 50 10

Old 70 7

Values for the feature inputs to the membership functions that are unusually high or 

low fall outside that expected range of the sub-sets and are assigned low 

membership values. This information is provided to the algorithm manager and

25 indicates that the subject belongs to a class for which a calibration model has not 

been constructed. For the current implementation when y<0.1 for all sub-sets the 

prediction is assigned a low confidence level.

The membership functions described have been designed for a specific population of

30 subjects and cannot be generalized to all potential individuals. The invention, 

however, covers the arbitrary use of membership functions to assign a degree of
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membership in a given class to a subject for blood analyte prediction. Other sub

sets, for example, include the level of hydration, skin thickness, thickness of adipose 

tissue, volume fraction of blood in tissue, blood pressure, and hematocrit levels. The 

number of sub-sets per general set can also be increased arbitrarily depending on 

the necessarily level of discrimination for the accurate prediction of blood analytes.

Fuzzy Decision Rules

The output of Membership Functions 1 and Membership Functions 2 are two and 

five membership values, respectively, that are associated with the sex and age 

related sub-sets. The decision rules 146 are a set of operators and inferences that 

combine the membership values of the sub-sets into the class membership used for 

blood glucose prediction. The specific rules, given in Error! Reference source not 

found., are all possible combinations of the sub-sets described previously. The rules 

employ the fuzzy “and” operator which is implemented by determining the minimum 

of the two sub-set membership values comprising its antecedent.

As an example of the class membership assignment process assume that a subject 

was determined to have values for features 3 and 4 of 0.55 AU and 60 years 

respectively. From Figure 16, the membership values in the male and female sub

sets are approximately 0.82 and 0.3 respectively. Similarly, the membership values 

for the young, middle aged and old sub-sets are 0, 0.6 and 0.35. From the rules in 

Figure 17 the following class membership values are calculated:

1. If Male AND Young = min(0.82, 0.0) = 0.0

2. If Male AND Middle Aged = min(0.82, 0.6) = 0.6

3. If Male AND Old = min(0.82, 0.35) = 0.35

4. If Female AND Young = min( 0.3, 0.0) = 0.0

5. If Female AND Middle Aged = min( 0.3, 0.6) = 0.3

6. If Female AND Old = min( 0.3, 0.35) = 0.3

The class membership vector, d, is given by:
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c/ = [0.0 0.6 0.35 0.0 0.3 0.3] (20 )

and is supplied to the defuzzification block for aggregation of the predicted glucose 

concentrations.

The consequent listed is the calibration model that is associated with each class, in 

the example, the second calibration model (WPCR2) 151 was created using spectra 

most similar to the measured spectrum. However, the measured spectrum also has 

membership in the third, fifth, and sixth classes. The degree of membership in the 

classes is used subsequently to determine the combination of calibration models for 

blood analyte prediction.

Preprocessing 6 (147)

The absorbance spectrum is processed specifically for calibration through MSC as 
described above and a 31-point Savisky-Goiay first derivative in the form of a finite 
impulse response filter (see A. Savitzky, M. Golay, Smoothing and Differentiation of 
Data by Simplified Least Squares Procedures, Anal. Chem., vol. 36, no. 8, pp.

1627-1639, 1964). The result is mean-centered by subtracting, x, the mean 

processed absorbance spectrum that is stored in the IMS-FC and was determined 

from a calibration set. Wavelength selection is performed to include the following 

wavelengths: 1100-1350 nm, 1550-1750 nm and 2050-2375 nm.

Calibration

The calibration process in Figure 14 involves the prediction of the blood analyte 

using all of the calibration models. Therefore, the calibration block represents a 

single input-multiple-output operation that produces six blood analyte predictions. 

The six calibration models each consist of a 1xN vector of coefficients that map x to 

a prediction of the blood glucose concentration. Each set of coefficients was 

developed using all samples in a population (the calibration set of exemplary 

samples). However, each calibration sample was weighted using weighted principal 

components regression as described in Equations 8-10. Therefore, the models are 

associated with the six classes.
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Given the processed spectrum, x, and the model coefficients, wc, associated with 

class c, the blood glucose prediction for the cth model is given by:

(21 )
k=l

were wCi/tis the kth element of wc.

Defuzzification

Defuzzification 149 is used to aggregate the multiple predictions into one through the 

degree of class membership. Prior to defuzzifying, the vector of class membership 

values d is normalized to unit length. The defuzzification process is shown in Figure 

18 and results in a prediction that is influenced the most by the calibration prediction 

associated with the class with the high degree of class membership.

The present implementation heavily biases the prediction in favor of the calibration 

model output with the highest degree of class membership. However, other 

implementations are also suggested by the invention (/.e. a simple average of all 

predictions or the average of all predictions corresponding to a membership value 

greater than a specified value).

Experimental Results

Overview

A study was performed to demonstrate the feasibility and performance of the two 

implementations (IMS-CC and IMS-FC). Diabetic subjects were scanned throughout 

the study and blood draws were taken to determine reference blood glucose 

concentrations. The subjects were separated at random into calibration and test 

sets to build and test the calibration models respectively. A standard (PLS) 

calibration was performed for the purpose of comparison. Finally, the performance 

of the two implementations was tested and compared to the standard calibration.
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Experiment

Diabetic subjects (266) of diverse age, sex, and ethnicity were recruited at a local 

diabetic care facility and detailed demographic information about each participant 

was recorded. Four replicate absorbance spectra were measured on each subject’s 

forearm and the number of samples per participant was limited to one. Venous 

blood draws, taken concurrently, were analyzed chemically via a hexakinase 

enzymatic method by an independent blood laboratory to determine reference 

glucose concentrations. The mean glucose concentration of the population was 120 

mg/dL and the standard deviation 50 mg/dL.

The data was divided into calibration and test sets using random selection. The 

calibration set was used to construct the models necessary for classification and 

calibration in Figure 10 and Figure 14. The test set was applied to the constructed 

systems and used to evaluate for evaluation.

Results

Standard Calibration.

For the purpose of comparison, a standard PLS calibration was developed and 

evaluated on the data after outlier analysis and preprocessing. The (PCA g-residual) 

outlier analysis was performed as described above and 36 samples were removed 

due to unusually high residuals. The absorbance spectrum was processed through 

MSC and a 31-point Savisky-Golay first derivative. The result was mean-centered 

by subtracting the mean spectrum of the calibration set from both the calibration and 

test sets.

PLS was applied to the calibration set and the number of factors (20) was selected 

by optimizing the prediction error through crossvalidation (leave-one-out). The final 

PLS calibration model was constructed using all calibration samples and 20 factors.
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Table 3. Prediction results comparing the intelligent Measurement 
System to standard calibration methods. IMS-CC corresponds to

the system with crisp classification (Fig. 10). IMS-FC includes 
fuzzy classification (Fig. 14).

20

Method of 
Prediction

Test Set Results Calibration Set Results

Relative
Error

(Percent)

Standard

Error of

Prediction

(mg/dL)

Correlation

Coefficient

Relative
Error

(Percent)

Standard

Error of

calibration

(mg/dL)

Correlation
Coefficient

PLS 262 43.9 0.48 26.2 43 0.53

IMS-CC 23.6 35.2 0.72 20.2 33.4 0.75

IMS-FC 19.7 30.5 0.8 18.4 29.5 0.82

Crisp Classification.

The outliers described in the prior section were removed and the calibration set was 

used to determine the parameters, eigenvectors and calibration models of the

25 structure in shown in Figure 10. This includes the eigenvectors (o) for the outlier 

analysis, the mean spectrum for MSC, the eigenvectors (p) and discriminant function 

(w) shown in Figure 11, the age calibration (w) of Figure 12, and the mean spectrum 

for MSC in Preprocessing 3 of Figure 10.
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The calibration set was then classified using the membership rules of Figure 13 and 

separated into four individual subsets. A calibration model was developed for each 

subset or class corresponding to calibration models PLS1-4 in Figure 10. Each 

calibration model was developed through PLS and factor selection was performed 

through cross validation on the calibration set.

The constructed IMS-CC was applied to the calibration and test sets and the results 

are listed in Table 3. The test set performance is seen to improve markedly over the 

base calibration indicating a performance improvement due to the system of 

prediction.

Fuzzy Classification.

The outliers described in the prior sections were removed and the calibration set was 

used to determine the parameters, eigenvectors and calibration models of the 

structure in shown in Figure 14. This includes the eigenvectors (o) for the outlier 

analysis, the mean spectrum for MSC in Figure 15A, the age calibration (w) of Figure 

15B and the mean spectrum for MSC in Preprocessing 3 of Figure 10. The 

membership functions and all other parameters described in the Fuzzy Classification 

System Section were applied.

The calibration set was then classified using the membership functions and rules of 

Figure 16 and Figure 17 to produce a vector of class membership values for each 

sample in the calibration set. The six calibration models shown in Figure 14 were 

developed using Equations 8-10 (weighted principal component regression). Each 

of the six calibration models was optimized through cross validation on the 

calibration set and the final model was produced using all calibration set samples 

and the optimal number of factors.

The constructed IMS-FC was applied to the calibration and test sets and the results 

are listed in Table 3. The test set performance is seen to improve markedly over 

both the base calibration and the IMS-CC system indicating a performance 

improvement due to the use of a fuzzy classification system.
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Discussion

The results in Table 3 demonstrate an improvement over the standard PLS model in 

accuracy, precision and significance. In addition, the IMS employing a fuzzy 

classification system (IMS-FC) was shown to outperform the IMS that used a crisp 

system. Since the IMS-FC used six classes as opposed to the four used by IMS-CC 

the results do not provide a final judgement regarding the performance of crisp 

versus fuzzy systems. However, when the number of data points is limited and the 

dimensionality of the problem great, the number of models that can be generated by 

IMS-CC is limited since an increase in classes causes a decrease in the data used 

to perform the calibrations associated with the classes. The IMS-FC does not share 

this limitation to the same extent since all samples are used to create the calibration 

models.

Finally, while the benefit of the IMS has been demonstrated further improvement in 

the results are necessary prior to application in a product. The main areas of 

necessary improvement are in the noise and stability of the instrument, the interface 

to the participant and the number of available samples for calibration.

Although the invention is described herein with reference to the preferred 

embodiment, one skilled in the art will readily appreciate that other applications may 

be substituted for those set forth herein without departing from the spirit and scope of 

the present invention. Accordingly, the invention should only be limited by the 

Claims included below.
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CLRIMS

1. A method for compensating for covariation of spectrally interfering species, 

sample heterogeneity, state variations, and structural variations, comprising the 

steps of:

providing an intelligent pattern recognition system that is capable of 

determining calibration models that are most appropriate for a subject at the time of 

measurement;

developing said calibration models from the spectral absorbance of a 

representative population of subjects that have been segregated into classes; and

defining said classes on the basis of structural and state similarity; 

wherein variation within a class is small compared to variation between

classes; and

wherein classification occurs through extracted features of a tissue 

absorbance spectrum related to current subject state and structure.

2. The method of Claim 1, further comprising the step of:

defining subpopulations or classes of subjects whose structure and state 

produce similarly featured NIR absorbance spectra;

wherein said classes have improved homogeneity leading to a reduction in 

variation related to optical properties and composition of a sample.

3. An intelligent system for measuring blood analytes noninvasively by operating on 

a near infrared (NIR) absorbance spectrum of in vivo skin tissue, said system 

comprising:

a pattern classification engine for adapting a calibration model to the 

structural properties and physiological state of a subject as manifested in said NIR 

absorbance spectrum; and

means for reducing spectral interference by applying calibration schemes 

specific to general categories of subjects that have been segregated into classes;

wherein a priori information about primary sources of sample variability is 

used to establish said general categories of subjects.
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4. The system of Claim 3, wherein said pattern classification engine applies a 

classification rule that assumes that said classes are mutually exclusive; and 

wherein said pattern classification engine applies specific calibration models to said 

general subject categories.

5. The system of Claim 3, wherein said pattern classification engine uses fuzzy set 

theory to develop calibration models and blood analyte predictions; wherein each 

calibration sample has an opportunity to influence more than one calibration model 

according to its class membership; and wherein predictions from more than one 

calibration are combined through defuzzification to produce a final blood analyte 

prediction.

6. The system of Claim 1, further comprising:

means for measuring blood analytes noninvasively over a diverse population 

of subjects at various physiological states;

said pattern classification engine classifying subjects according to their state 

and structure; and

said means for reducing spectral interference applying a combination of one 

or more existing calibration models to predict the blood analytes.

7. An intelligent system for measuring blood analytes noninvasively by operating on 

a near infrared (NIR) absorbance spectrum of in vivo skin tissue, said system 

comprising:

an execution layer that receives tissue absorbance spectra from an 

instrument and that performs rudimentary preprocessing;

a coordination layer that performs feature extraction;

a classification system that is used to classify a subject according to extracted 

features that represent the state and structure of a sample.

wherein predictions from one or more existing calibration models are used to 

form an analyte estimate based on said classification.

8. The system of Claim 7, further comprising:

a management level for receiving said classification and blood analyte 

prediction, said management level taking action based on the certainty of said
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estimate, said management level coordinating all algorithmic events, monitoring 

performance based on class, adapting rules as necessary, and maintaining 

information regarding system state.

9. The system of Claim 7, wherein said classification system uses classes that are 

mutually exclusive.

10. The system of Claim 7, wherein said classification system applies fuzzy set 

theory to form a classifier and prediction rules which allow membership in more than 

one class.

11. The system of Claim 7, wherein said instrument performs absorbance 

measurement through any of transmissive, diffuse reflectance, or alternate methods.

12. The system of Claim 7, wherein number of necessary wavelengths in said 

spectra is a function of the cross correlation between a target analyte and interfering 

species, wherein an entire spectrum is used for noninvasive applications with 

significant variation within and between individuals.

13. The system of Claim 7, further comprising:

preprocessing means for scaling, normalization, smoothing, derivatives, 

filtering, and other transformations that attenuate noise and instrumental variation 

without affecting the signal of interest.

14. The system of Claim 13, wherein preprocessing, is determined according 

to:

x = h(X,nt)

where h:9IWx2 is a preprocessing function.

15. A pattern recognition method for estimating a concentration of a target blood 

analyte, comprising the steps of:
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classifying new spectral measurements into previously defined classes 

through structural and state similarities as observed in a tissue absorbance 

spectrum;

wherein class membership is an indication of which calibration model is most 

likely to accurately;

said pattern classification method comprising the steps of: 

extracting features; and

classifying said features according to a classification model and 

decision rule.

16. The method of Claim 15, wherein said feature extraction step is any 

mathematical transformation that enhances a particular aspect or quality of data that 

is useful for interpretation.

17. The method of Claim 15, wherein said classification model comprises means for 

determining a set of similarity measures with predefined classes.

18. The method of Claim 15, wherein said decision rule comprises means for 

assigning class membership on the basis of a set of measures calculated by a 

decision engine.

19. The method of Claim 17, further comprising the step of:

providing a classification system that assumes that said classes are mutually 

exclusive and that forces each measurement to be assigned to a single class.

20. The method of Claim 17, further comprising the step of:

providing a fuzzy classifier that is not mutually exclusive, wherein said fuzzy 

classifier allows a sample to have membership in more than one class 

simultaneously and provides a number between zero and one indicating a degree of 

membership in each class.

21. The method of Claim 15, wherein said feature extraction step comprises any 

mathematical transformation that enhances a quality or aspect of sample 

measurement for interpretation to represent concisely structural properties and
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physiological state of a tissue measurement site, wherein a resulting set of features 

is used to classify a subject and determine a calibration model that is most useful for 

blood analyte prediction.

22. The method of Claim 21, wherein said features are represented in a vector, 

zeS^that is determined from a preprocessed measurement through:

z =/(λ,χ)

where f. is a mapping from a measurement space to a feature space,

wherein decomposing /(·) yields specific transformations, ή{·): 9Ϊ for

determining a specific feature, wherein the dimension, Mh indicates whether an ith 

feature is a scalar or a vector and an aggregation of all features is the vector z, and 

wherein a feature exhibits a certain structure indicative of an underlying physical 

phenomenon when said feature is represented as a vector or a pattern.

23. The method of Claim 22, wherein individual features are divided into two 

categories comprising:

abstract features that do not necessarily have a specific interpretation related 

to a physical system; and

simple features that are derived from an a priori understanding of a sample 

and that can be related directly to a physical phenomenon.

24. The method of Claim 23, wherein features that can be calculated from NIR 

spectral absorbance measurements include any of:

thickness of adipose tissue; 

hematocrit level; 

tissue hydration;

magnitude of protein absorbance; 

scattering properties of said tissue; 

skin thickness;

temperature related effects; 

age related effects; 

spectral characteristics related to sex; 

pathlength estimates;
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volume fraction of blood in tissue; and

spectral characteristics related to environmental influences.

25. The method of claim 15, further comprising the step of:

employing spectral decomposition to determine features related to a known 

spectral absorbance pattern.

26. The method of claim 15, further comprising the step of:

employing factor based methods to build a model capable of representing 

variation in a measured absorbance related to a demographic variable;

wherein projection of a measured absorbance spectrum onto said model 

constitutes a feature that represents spectral variation related to said demographic 

variable.

27. The method of Claim 15, wherein said extraction step determines at least one 

calibration model that is most appropriate for measurement;

wherein a subject is assigned to one of many predefined classes for which a 

calibration model has been developed and tested.

28. The method of Claim 15, wherein said pattern classification step further 

comprises the steps of:

measuring the similarity of a features to predefined classes; and 

assigning class membership.

29. The method of Claim 28, wherein said measuring step uses mutually exclusive 

classes and assigns each measurement to one class.

30. The method of Claim 28, wherein said assigning step uses a fuzzy classification 

system that allows class membership in more than one class simultaneously.

31. The method of Claim 15, further comprising the step of:

assigning measurements in an exploratory data set to classes.

32. The method of Claim 31, further comprising the step of:
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using measurements and class assignments to determine a mapping from 

features to class assignments.

33. The method of Claim 32, further comprising the steps of:

defining classes from said features in a supervised manner, wherein each set

of features is divided into two or more regions, and wherein classes are defined by 

combinations of feature divisions;

designing a classifier subsequent to class definition through supervised 

pattern recognition by determining an optimal mapping or transformation from the 

feature space to a class estimate which minimizes the number of misclassifications; 

and

creating a model based on class definitions which transforms a measured set 

of features to an estimated classification.

34. The method of Claim 33, wherein a mapping from feature space to a vector of 

class memberships is given by:

=fk(z)

where k=1,2,.,.P, fk(·) is a membership function of the kth class, cke[0,1] for all k 

and the vector ce9Tp is the set of class memberships; wherein said membership 

vector provides a degree of membership in each of said predefined classes and is 

passed to a calibration algorithm.

35. The method of claim 34, wherein blood analyte prediction occurs by application 

of a calibration model to a preprocessed measurement

36. The method of Claim 35, wherein said calibration model comprises either of 

nonlinear partial least squares or artificial neural networks.

37. The method of Claim 35, wherein blood analyte prediction for a preprocessed 

measurement x with classification specified by c is given by:

y = g(c,x)
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where <?(·) is a nonlinear calibration model which maps x and c to an estimate of the 

blood analyte concentration, y .

38. The method of Claim 35, wherein a different calibration is realized for each 

class.

39. The method of Claim 38, wherein estimated class is used to select one of p 

calibration models most appropriate for blood analyte prediction using a current 

measurement, wherein given that k is the class estimate for said measurement, 

blood analyte prediction is:

y = gk(*)

where gk(·) is the calibration model associated with the kth class.

40. The method of Claim 38, wherein said calibrations are developed from a set of 

exemplar absorbance spectra with reference blood analyte values and pre-assigned 

classification definitions.

41. The method of Claim 20, wherein a calibration model is passed a vector of 

memberships, where a vector, c, is used to determine an adaptation of said 

calibration model suitable for blood analyte prediction or an optimal combination of 

several blood analyte predictions.

42. The method of Claim 41, wherein a membership vector and preprocessed 

absorbance spectrum are both used by a single calibration model for blood analyte 

prediction, where the calculation is given by:

where g(·) is a nonlinear mapping determined through any of nonlinear regression, 

nonlinear partial least squares, or artificial neural networks.

43. The method of Claim 41, wherein separate calibrations are used for each class; 

and wherein each calibration is generated using all measurements in a calibration 

set by exploiting a membership vector assigned to each measurement.
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44. The method of Claim 43, wherein said membership vector is used to determine 

an optimal combination of p blood analyte predictions from all classes through 

defuzzification.

45. The method of Claim 44, wherein each of the p calibration models is developed 

using an entire calibration.

46. the method of Claim 45, wherein calibration measurements are weighted by 

their respective membership in a kth class when a kth calibration model is 

calculated; wherein weighted least squares is applied to calculate regression 

coefficients in a linear case, and wherein a covariance matrix is used in a factor 

based methods case.

47. The method of Claim 44, wherein said defuzzification is a mapping from a vector 

of blood analyte predictions and a vector of class memberships to a single analyte 

prediction, wherein said defuzzifier can be denoted as transformation such that:

where d(·) is the defuzzification function, c is a class membership vector and yk is a 

blood analyte prediction of a kth calibration model.

48. The method of Claim 15, further comprising the step of:

providing an algorithm manager for reporting results to an operator, 

coordinating all algorithmic events, monitoring performance based on class, and 

adapting rules as necessary.

49. The method of Claim 48, wherein both class estimates and blood analyte 

predictions are reported to said algorithm manager

50. The method of Claim 48, wherein said algorithm manager notifies said operator 

that a prediction is invalid if a measurement does not fit into one of the existing 

classes: wherein further spectral measurements are taken to determine if said error 

is due to an instrument, a measurement technique, or a sample; and wherein said
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