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© (57) Abstract: Embodiments of the invention enable dynamic level boosting of operations across virtualization layers to enable effi
cient nested virtualization. Embodiments of the invention execute a first virtual machine monitor (VMM) to virtualize system hard -
ware. A nested virtualization environment is created by executing a plurality of upper level VMMs via virtual machines (VMs).

o These upper level VMMs are used to execute an upper level virtualization 10 layer including an operating system (OS). During oper
ation of the above described nested virtualization environment, a privileged instruction issued from an OS is trapped and emulated

o via the respective upper level VMM (i.e., the VMM that creates the VM for that OS). Embodiments of the invention enable the emu -
lation of the privileged instruction via a lower level VMM. In some embodiments, the emulated 15 instruction is executed via the
first VMM with little to no involvement of any intermediate virtualization layers residing between the first and upper level VMMs.



ENABLING EFFICIENT NESTED VISUALIZATION

FIELD

Embodiments of the invention generally pertain to computing devices, and more

particularly to enabling efficient nested virtualization.

BACKGROUND

Systems utilize virtual machines (VMs) to allow the sharing of an underlying physical

machine and its resources. The software layer providing virtualization to the VMs is referred to

as a virtual machine monitor (VMM) or hypervisor. A VMM acts as a host to the VMs by

operating in a super-privileged "root mode," while the VMs run guest operating system (OS) and

application software in a "non-root mode" at a normal privilege level. The VMM also presents

system software executing on the VMs (e.g., OS and application software) with an abstraction of

the physical machine.

The VMM is able to retain selective control of processor resources, physical memory,

interrupt management and data input/output (I/O). One method the VMM utilizes to retain

control is through a "trap-and-emulate" process. When an OS executed via a VM attempts to

execute a privileged instruction that conflicts with another OS or the VMM itself (e.g., access a

hardware resource), the VMM "traps" such attempts and "emulates" the effect of the instruction

in a manner that does not interfere with the other OS and its own requirements. The emulation by

the VMM may itself include privileged instructions which can access hardware resources.

Nested virtualization (also referred to as "layered virtualization") refers to a root-mode

VMM running a non-root mode VMM as a guest. The above described trap-and-emulate

technique is applied to privileged instructions in the non-root mode VMM, which makes the

number of traps for emulating one privileged instruction in an OS exaggerated exponentially in

the nested environment. Frequent context switches due to multiple levels of trap-and-emulate

greatly hurt overall system performance in such an environment.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures having illustrations given by way

of example of implementations of embodiments of the invention. The drawings should be

understood by way of example, and not by way of limitation. As used herein, references to one

or more "embodiments" are to be understood as describing a particular feature, structure, or

characteristic included in at least one implementation of the invention. Thus, phrases such as "in

one embodiment" or "in an alternate embodiment" appearing herein describe various



embodiments and implementations of the invention, and do not necessarily all refer to the same

embodiment. However, they are also not necessarily mutually exclusive.

FIG. 1 is a block diagram of a system utilizing nested virtualization according to an

embodiment of the invention.

FIG. 2 is a block diagram of nested VMMs according to an embodiment of the invention.

FIG. 3 is a block diagram illustrating fast virtual machine state transfer according to an

embodiment of the invention.

FIG. 4 illustrates a storage hierarchy for a nested virtualization environment according to

an embodiment of the invention.

FIG. 5 is a flow diagram of a process according to an embodiment of the invention.

FIG. 6 is a block diagram of a system that may utilize an embodiment of the invention.

Descriptions of certain details and implementations follow, including a description of the

figures, which may depict some or all of the embodiments described below, as well as discussing

other potential embodiments or implementations of the inventive concepts presented herein. An

overview of embodiments of the invention is provided below, followed by a more detailed

description with reference to the drawings.

DETAILED DESCRIPTION

Embodiments of an apparatus, system and method for enabling efficient nested

virtualization are described herein. In the following description numerous specific details are set

forth to provide a thorough understanding of the embodiments. One skilled in the relevant art

will recognize, however, that the techniques described herein can be practiced without one or

more of the specific details, or with other methods, components, materials, etc. In other

instances, well-known structures, materials, or operations are not shown or described in detail to

avoid obscuring certain aspects.

Embodiments of the invention enable dynamic level boosting of operations across

virtualization layers to enable efficient nested virtualization. Embodiments of the invention

execute a first virtual machine monitor (alternatively referred to herein as the Lo VMM) to

virtualize system hardware. A nested virtualization environment is created by executing a

plurality of upper level VMMs via virtual machines (VMs). These upper level VMMs are each

used to execute an upper level virtualization layer including an operating system (OS).

During operation of the above described nested virtualization environment, a privileged

instruction issued from an OS is trapped and emulated via the respective upper level VMM (i.e.,

the VMM that creates the VM for that OS). The emulation in the respective upper level VMM

further includes more privileged instructions which are trapped and emulated by the underlying



parent VMM (i.e., the VMM that creates the VM for that upper level VMM). This trap and

emulation process may continue until reaching the first VMM, which owns physical resources;

this consequently results a long emulation path from the OS's point of view. Embodiments of the

invention enable the emulation of the privileged instruction via a lower level VMM. In some

embodiments, the emulated instruction is executed via the first VMM with little to no

involvement of any intermediate virtualization layers residing between the first and upper level

VMMs, and thus provides an efficient nested execution environment.

FIG. 1 is a block diagram of a system utilizing nested virtualization according to an

embodiment of the invention. System 100 may be included in a system server, desktop computer

device, a mobile computer device, or any other any device utilizing a processor and system

memory.

As shown in the example embodiment of FIG. 1, system 100 includes system hardware

110 and host VMM 112. Hardware 110 includes a processor (e.g., a single core or multi-core

processor, or any other type of processing device such as a general purpose processor, a

microcontroller, a signal processor, and application processor, etc.) that supports a super-

privileged mode of operation — i.e., "root mode," used by host VMM 112 to support VM

environments. "Root mode" as used herein may either refer to a new super-privilege mode

introduced by hardware 110 specially for VMM 112 (so that the OS still runs its normal

privilege mode without modification), or refer to existing most privileged mode in hardware 110

(by de-privileging the OS to a lower privilege mode with modification). Host VMM 112 may be

any hypervisor compatible with hardware 110. For example, host VMM 112 may be a program

or module loaded into memory and executed by the processor of hardware 110; host VMM 112

may also be firmware-based or hardware-based.

Host VMM 112 provides a virtualization environment to emulate resources of hardware

110 — e.g., processor time slices, memory addresses and I/O resources. These resources may be

referred to as virtual resources as they are assigned to the various VMs executing on system 100.

Said VMs interpret the virtual resources as if they are included in a dedicated physical machine.

System 100 implements nested virtualization as it includes VMMs executed within

virtualization layers as described below. Additional virtualization levels of system 100 are

labeled in FIG. 1 as L _i, L , and L +i . Host VMM 112 may alternatively be referred to herein as

Lo VMM, as it is the bottom level virtualization level of the nested virtualization environment

shown in FIG. 1.

In this embodiment, L _i VMM 120 is executed in virtualization layer L _i (i.e., via a VM

at that level) to provide virtualized resources corresponding to hardware 100 to an OS (i.e., L

OS 132) and a VMM (i.e., VMM 130) one level higher; VMM 130 is executed in



virtualization layer L (i.e., via a VM at that level) to provide virtualized resources corresponding

to hardware 100 to an OS one level higher (i.e., L +i OS 142); and so on for any additional

virtualization layers in system 100, such as layer L +i including VMM 140.

OS 132 and 142 operate at a "non-root mode", so that any attempts to execute privileged

instructions are subjected to a "trap-and-emulate process". System hardware 100 traps individual

privileged instructions issued by an OS (e.g., L OS 132). In one embodiment, system hardware

100 may directly inject a trap event into parent "non-root mode" VMM 120 (which creates the

VM for said OS). In another embodiment, system hardware 100 may first deliver the trap event

to root-mode host VMM 112, and then root-mode host VMM 112 injects a virtual trap event into

upper level VMMs until reaching parent "non-root mode" VMM 120. In both embodiments,

VMM 120 then starts the emulation process for said privileged instruction, which may include

more privileged instructions (e.g., VMREAD and VMWRITE instructions) which may then

further trigger more "trap-and-emulate" process following same flow as described above.

For prior art solutions executing nested virtualization environments such as system 100,

the overhead to run a VM at layer Ln is much higher than running a VM at level L _i, because a

normal trap-and-emulation path in the L layer incurs multiple further trap-and-emulation paths

to be serviced by L _i VMM 120 (and thus, iterate until reaching host VMM 112). The overheard

for running a VM at level L +i is even higher, comparatively speaking, as a normal trap-and-

emulation path in the L +i layer incurs multiple further trap-and-emulation paths to be serviced

by L„ VMM 130, and thus L„_i VMM 120 along with host VMM 112, and so forth for additional

virtualization layers.

Embodiments of the invention provide an approach for constructing a boundless nested

virtualization environment, wherein an OS executing within a virtualization level (e.g., L OS

132, L +i OS 142) is able to dynamically "level boost" its trap-and-emulation paths — i.e.

traverse across virtualization boundaries to a lower level VMM to improve performance. In some

embodiments, said trap-and-emulation paths may be level-boosted to Lo VMM 112, with little to

no involvement of any intermediate virtualization layers.

FIG. 2 is a block diagram of nested VMMs according to an embodiment of the invention.

In this embodiment, L VMM 210 functions as the primary root-mode VMM of system 200, and

nested VMMs 220, 230 and 290 function as nested guest non-root mode VMMs. Other

embodiments of the invention may include more or less virtualization levels shown in this

example, and may include more non-root mode VMMs in each virtualization level.

Each of said VMMs includes a Level Boost Policy (LBP) agent to either issue level boost

requests to its parent VMM (i.e., the one creating VM for said VMM), or determine whether a

level boost request from an upper level virtualization layer is appropriate. In this embodiment,



LBP agents 222, 232 and 292 are linked with LBP agent 212 in a chain configuration to

determine whether a virtualization instruction executed by any of upper level VMMs (e.g., 230

and 290) are able to be level boosted and how any system Service Level Agreement (SLA)

should be enforced at each level. Such SLA policies may include security/permission

considerations, resource availability, performance indicators, etc. under the control of the

administrator of system 200.

There may be various sources that trigger an LBP agent to issue a level boost request. In

one embodiment, the administrator of system 200 may ask a specific LBP agent to do a level

boost with a target boost level specified, based on some dynamic policy changes. In other

embodiments, a heuristic approach may be used by each LBP agent that dynamically issues a

level boost request under some special condition. In one embodiment, the level boost request

may be triggered when a sensitive instruction or a series of sensitive instructions are effectively

emulated in lower layers. In another embodiment, the SLA would be broken if continuing to run

in current virtualization layer, and thus a level boost is desired. Also it is to be understood that

embodiments of the invention do not necessarily limit the frequency of consequent level boost

requests for a given OS.

For example, if an upper level VMM such as L2 VMM 230 attempts to level boost an OS

executed included in virtualization layer L3, it issues a request to Li LBP 222 from LBP agent

232; said request from LBP agent 232 may further include SLA information describing the SLA

policy that was allocated for the OS included in virtual layer L3. L i VMM 220 may subsequently

merge the SLA policy information of L2 VMM 230 with SLA information carried in the level

boost request to ensure that no SLA policies are violated. Subsequently L i VMM 220 may send a

level boost request to Lo VMM 210 via Lo LBP agent 212, if further a level boost is feasible and

requested. In such scenarios where SLA policies are violated in any layer, the level boosting

request is rejected by destination LBP agent and no further action is taken.

In one embodiment of the invention, level boost requests issued from upper level LBP

agents provide next level LBP agent with virtual infrastructure information that each respective

VMM configures for their managed VMs, such as virtual network settings (IP/MAC/VLAN/etc.)

and virtual storage settings (image/format/etc. ) . Such information would be informative for next

level VMM to reconstruct the VM execution environment when level boost happens. Said

infrastructure information may be in a neutral format to allow for heterogeneous VMMs joining

in the boundless framework for system 200.

In some embodiments of the invention, when a VMM (230, 220 or 210) executes a level

boost request issued by an upper level VMM, the appropriate virtual processor context (e.g.,

virtual processor register contexts), virtual memory contents and virtual device context (e.g., OS



properties) of the boosted OS are fully copied from the upper level VMM to said VMM;

however, this process (referred to herein as "live migration", in a similar manner as moving the

VM from one system to another system) may be time-consuming and slow, and further does not

honor the fact that migration happens in the local system 200. Multiple copy instructions may

need to be executed to ensure short VM downtime. Furthermore, live migration may result in

unnecessary resource duplication because all resources (memory pages, virtual disks, etc.) will

be duplicated among multiple virtualization layers involved in the level boost process, as live

migration processes assume the destination is a new host. Thus, embodiments utilizing live

migration may not be optimal for systems with limited resources, or the system with frequent

level boost requirement.

In the embodiment illustrated in FIG. 2, upper level VMMs 220, 230 and 290 each include

Fast VM State Transfer (FVMST) agents 224, 234 and 294 respectively. Said FVMST agents are

linked together with FVMST agent 214 included in Lo VMM 210 in chained manner, in order to

transfer a minimal amount of virtual processor state, virtual memory contests and virtual device

state in a level boost action. The rest of the virtual context can be reconstructed by destination

FMST agent in an intelligent and efficient way.

FIG. 3 is a block diagram illustrating fast virtual machine state transfer according to an

embodiment of the invention. In the event of a level-boost request as described above, an

FVMST agent of system 300 included in an upper level VMM may only copy a limited about of

virtual layer context to a FVMST module included in the next level VMM shown as dashed

boxes in boosted L2 VM context 301 and is described below.

In the example embodiment illustrated in FIG. 3, nested virtualization system 300 includes

upper layer Li VMM 320, which is shown to level boost L2 VM 330 executing L2 OS 332. Li

VMM 320 is shown to include virtual processor context 322, Physical-to-Machine (P2M)

mapping table 324, virtual memory 326 and device model 328 which together composes a full

execution context for L2 VM 330. Lo/Li/L2 are used here as an example.

Full virtual processor context 322 of L2 VM 330 may not necessarily need to be copied in

its entirety to Lo VMM 310, depending on the how nested virtualization is implemented in

system 300. In some of embodiments, the physical processor of system 300 may provide a one-

level virtualization architecture, where only Lo VMM 310 is allowed to control "non-root mode"

execution environment. All the upper level VMMs are supported by trap-and-emulate its control

attempts to "non-root mode" execution environment in L VMM 310. Said one-level

virtualization architecture may utilize a Virtual Machine Control Structure (VMCS).

In this embodiment, L VMM 310 utilizes a VMCS to store information for controlling

"non-root mode" execution environment on the physical processors of system 300 (one VMCS



structure for each virtual processor) and the states of each virtual machine in the system. The

VMCS may further contain, for example, state of the guests, state of the Lo VMM, and control

information indicating under which conditions the Lo VMM wishes to regain control during

guest execution. The one or more processors in system 300 may read information from the

VMCS to determine the execution environment of a VM and VMM, and to constrain the

behavior of the guest software appropriately. VMCS may not contain all the virtual processor

context, with a minimal set of states (e.g. some MSR contents, virtual interrupt states, etc.)

maintained by Lo VMM in its own format, as shown in additional virtual processor context 323.

In this embodiment, a VMCS state 322 is prepared by Li VMM 320 for its respective OS

(i.e., upper level OS such as L2 OS 332). The attempts by Li VMM 320 to operate VMCS 322

are trapped by the system 300 so that Lo VMM 310 can emulate the hardware behavior.

Consequently L VMM 310 creates a shadow VMCS based on captured settings for the L2 OS

332 (carried by VMCS 322) and its own settings (i.e., the L VMM settings) for the Li VMM,

shown in FIG. 3 as L2 VM shadow VMCS state 312. Thus, L2 OS 332 may be run under the

control of a shadow VMCS.

Therefore, L VMM 310 already includes the majority of the virtual processor state (i.e.,

L2 VM shadow VMCS state 312) to support the correct execution of OS 332. So FVMST

agents only exchange a minimal set of virtual processor context — i.e., the context which is not

contained in VMCS 312, such as emulated Model-Specific Registers (MSRs), pending virtual

interrupts, etc. Only this small portion of virtual process state is transferred from FVMST agent

321 to FVMST agent 311 to enable a fast VM state transfer, and is shown as additional virtual

processor context (copy) 313.

In some embodiments, the physical processor of system 300 may support "non-root mode"

VMMs to operate VMCS directly, in a so-called multiple-level virtualization support manner. In

such case, the upper level VMCS needs be copied so that full virtual processor context can be

correctly reconstructed.

Copying virtual memory contents is typically the most time-consuming resource

transferred in live migration mode. Thus, embodiment of the invention utilize the fact that nested

virtualization system 300 is included in a single local machine, and utilize a sharing protocol to

significantly reduce copying operations. In this embodiment, the only structure to be transferred

between Li VMM 320 and L0 VMM 310 is P2M mapping table 324 (a copy of which is shown

as table 314), which describes how guest physical addresses (and thus L2 VM virtual memory

326) in the L2 OS are mapped to the "machine addresses" in the Li VMM's view. L VMM 310

further a P2M table for Li VMM 320 (shown as element 316), which translates the "machine

address" in the Li VMM's view to the machine address in the L VMM's view. Utilizing both



P2M tables, Lo VMM 310 may translate the L2 OS guest physical addresses to the "machine

address" in the Lo VMM's view. Therefore, Lo VMM 310 can reuse the same memory pages (i.e.

virtual memory 326) allocated to the L2 OS without incurring any copy operation overhead and

resource duplication, and thus allow for a more flexible virtualization layer traverse. In some

embodiments, Li VMM 310 still marks those memory pages allocated from its pool to avoid

confliction usage by both VMMs.

In embodiments where a hardware extended paging technique (EPT) is utilized, and where

the nested virtualization implementation exposes virtual EPT (vEPT) to every nested level,

FVMST agents may further skip the transmission of P2M table 324, as to virtualize the vEPT

intrinsically requires pushing P2M translation information for L2 OS down to Lo VMM 310, in a

similar manner as the VMCS part.

Device model 328 tracks the virtual platform state for the L2 VM, including a variety of

device emulation logic, e.g., virtual disk, virtual Network Interrupt Card (NIC), virtual timer,

virtual CDROM, etc. Most virtual devices have a small state context which can be quickly

transferred by the FMVST agent, except two special types: virtual disk and virtual NIC. Virtual

disk is the largest context within device model, which contains the file system of L2 OS.

Transferring such large trunk of data is even more time-consuming than transferring memory

pages. In some embodiments of the invention, device models for VMMs, such as device model

328, implements the virtual disk in a centralized storage block (an example of which is

illustrated in FIG. 4 and described below), which can be directly accessed by all related VMMs

if permission is allowed. This removes the heaviest obstacle against fast state transfer. On the

other hand, virtual NIC is almost stateless, with its receive/transmit queues simply acting as a

pipe between external world and VM. What matters are the configuration parameters around

virtual NIC, e.g., IP address, MAC address, NAT setting, VLAN ID, etc. As discussed above,

this part of static information may be pre-transferred through an LBP agent to avoid occupying

extra time in this phase. Thus, FMVST agents 321 and 311 need only exchange a minimal

amount of data, shown as element 319, for boosted L2 VM context 301.

FIG. 4 illustrates a storage hierarchy for a nested virtualization environment according to

an embodiment of the invention. In this embodiment, a central storage hierarchy is utilized in

place of instead of duplicating virtual images in every nested layer.

In this embodiment, all images of virtualization layers Li 410, L2 420 . . . and L 490 are

hosted on local disk storage pool 402 included in hardware 401 of system 400. Lo VMM 405

establishes local network file server (NFS) 403, and exposes it to all upper level VMMs,

including Li VMM 412, L2 VMM 422 and L VMM 492 (alternatively, systems may utilize a

remote NFS rather than local disk storage without deviating from embodiments of the invention);



said upper level VMMs use local NFS 403 to access their virtualization layer image. Permission

control policy may be enforced so that unwanted access is prohibited from other layers when a

level boost is not triggered. Therefore, in this embodiment, the above described level-boost

operations do not require copying any virtual state content, as VMMs are able to access any

VMM virtual image.

In embodiments that utilize hardware input/output memory management units (IOMMU)

to allow device pass-throughs, no additional action is required except to maintain the same

virtual bus position as what the upper level OS (e.g., Li OS 414, L2 OS 424 and L„ OS 494)

already observe. The IOMMU mapping table already contains the mapping information to map

from upper level physical addresses to real machine addresses, and thus there is no need to

modify it. Thus, in embodiments of the invention creating boundless nested virtualization

environments, device direct memory accesses (DMAs) may still route to their original

destination since the same physical pages are used across nested layers.

Embodiments of the invention thus reduce overheard processing associated with a

boundless nested virtualization environment, thereby increasing the usefulness of such

environments. For example, embodiments of the invention may be used to significantly improve

the performance of legacy applications when they are executed within a VM by an OS which is

virtualized by another VMM. By level boosting the legacy applications to the same level as its

hosting OS, as described above, performance is greatly improved. In another example, nested

virtualization may be used to develop and test a VMM; by utilizing embodiments of the

invention, one can level boost all upper level OS operations to Lo VMM 405, reconstruct an

upper level VMM with a new patched binary, and then move all OS operations back to the

patched VMM without service interruption and virtual infrastructure reconstruction. In another

example, level boosting may be used to compensate feature-missing environments, by boosting a

VM from a less-powerful VMM, which lacks of emulating some features (such as 3D graphics

computing, Single SIMD (Single Instruction Multiple Data) Extensions (SSE) instructions, etc.),

down to a more-powerful VMM with necessary the feature. This can be done back-and-forth

dynamically based on whether applications within that VM actually require said feature.

FIG. 5 is a flow diagram of a process according to an embodiment of the invention. Flow

diagrams as illustrated herein provide examples of sequences of various process actions.

Although shown in a particular sequence or order, unless otherwise specified, the order of the

actions can be modified. Thus, the illustrated implementations should be understood only as

examples, and the illustrated processes can be performed in a different order, and some actions

may be performed in parallel. Additionally, one or more actions can be omitted in various



embodiments of the invention; thus, not all actions are required in every implementation. Other

process flows are possible.

Process 500 is implemented in a system that is capable of executing a nested virtualization

environment, shown as processing block 502. Said nested virtualization environment may

comprise any of the example embodiments described above — i.e., a root mode VMM managing

a first upper level virtualization layer, and one or more "non-root" mode VMMs managing

additional upper level virtualization layers.

Processing block 504 is executed to detect and trap a privileged instruction issued from an

upper level OS. To enhance system performance, it is determined whether the trapped instruction

may be "level-boosted" — i.e., emulated by the lower level VMM rather than the upper level

non-root mode VMM managing the OS that issued the privileged instruction. The determination

may come from several sources: spontaneous request based on an administrative decision, or a

heuristics decision based on configured polices. If it is determined that the OS may be level

boosted, 506. The appropriate VM context is moved (e.g., copied) to the next (i.e., lower) level

VMM, 508. As described above, there may be scenarios where requests to level boost said

instruction is denied — e.g., a violation of an SLA policy. In such scenarios, the level boosting

may be reverted if necessary.

Said level boost operations may continue until the lowest possible level VMM (e.g. the

root mode VMM) is reached. As described above, in other embodiments of the invention, the

lowest possible level VMM accesses the appropriate virtualization layer context — i.e., virtual

processor context and virtual memory contents, directly with little to no involvement of any

intermediate virtualization layers residing between itself and upper level VMMs.

Whether or not the instruction is level boosted, it is still emulated via one of the VMMs,

510, and the nested virtualization environment continues to execute. As described above,

embodiments of the invention will typically level boost the request, significantly increasing

performance over prior art solutions. As said in some examples, level boost may be reverse-

ordered by moving a VM back to upper level VMM, when earlier level boost request is not valid

any more. This is however not reflected in this process example.

FIG. 6 is a block diagram of a system that may utilize an embodiment of the invention.

System 600 may describe a server platform, or may be included in, for example, a desktop

computer, a laptop computer, a tablet computer, a netbook, a notebook computer, a personal

digital assistant (PDA), a server, a workstation, a cellular telephone, a mobile computing device,

an Internet appliance, an MP3 or media player or any other type of computing device.

System 600 may include processor 610 to exchange data, via system bus 620, with user

interface 660, system memory 630, peripheral device controller 640 and network connector 650.



Said system hardware may be virtualized via a hypervisor or VMM. System 600 may further

execute a nested virtualization environment, and dynamically level boost operations across

virtualization layers as described above.

System 600 may further include antenna and RF circuitry 670 to send and receive signals

to be processed by the various elements of system 600. The above described antenna may be a

directional antenna or an omni-directional antenna. As used herein, the term omni-directional

antenna refers to any antenna having a substantially uniform pattern in at least one plane. For

example, in some embodiments, said antenna may be an omni-directional antenna such as a

dipole antenna, or a quarter wave antenna. Also for example, in some embodiments, said antenna

may be a directional antenna such as a parabolic dish antenna, a patch antenna, or a Yagi antenna.

In some embodiments, system 600 may include multiple physical antennas.

While shown to be separate from network connector 650, it is to be understood that in

other embodiments, antenna and RF circuitry 670 may comprise a wireless interface to operate in

accordance with, but not limited to, the IEEE 802.11 standard and its related family, Home Plug

AV (HPAV), Ultra Wide Band (UWB), Bluetooth, WiMax, or any other form of wireless

communication protocol.

Various components referred to above as processes, servers, or tools described herein may

be a means for performing the functions described. Each component described herein includes

software or hardware, or a combination of these. The components can be implemented as

software modules, hardware modules, special-purpose hardware (e.g., application specific

hardware, ASICs, DSPs, etc.), embedded controllers, hardwired circuitry, etc. Software content

(e.g., data, instructions, configuration) may be provided via an article of manufacture including a

computer storage readable medium, which provides content that represents instructions that can

be executed. The content may result in a computer performing various functions/operations

described herein. A computer readable storage medium includes any mechanism that provides

(i.e., stores and/or transmits) information in a form accessible by a computer (e.g., computing

device, electronic system, etc.), such as recordable/non-recordable media (e.g., read only

memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage

media, flash memory devices, etc.). The content may be directly executable ("object" or

"executable" form), source code, or difference code ("delta" or "patch" code). A computer

readable storage medium may also include a storage or database from which content can be

downloaded. A computer readable medium may also include a device or product having content

stored thereon at a time of sale or delivery. Thus, delivering a device with stored content, or

offering content for download over a communication medium may be understood as providing

an article of manufacture with such content described herein.



CLAIMS

1. A method comprising:

executing a first virtual machine monitor (VMM) to virtualize system hardware;

executing an upper level VMM via a virtual machine (VM) to create a nested

virtualization environment;

trapping a privileged instruction issued from an upper level OS via the upper level VMM;

copying an VM execution context from the upper level VMM to a lower level VMM; and

emulating the privileged instruction via the lower level VMM, the lower level VMM to

receive an indication of the trapped privileged instruction from one of a physical processor of the

system hardware or a parent VMM hosting the lower level VMM.

2 . The method of claim 1, wherein the nested virtualization environment comprises one or

more intermediate virtualization layers included between the first VMM and the upper level

VMM, the first VMM to receive the indication of the trapped privileged instruction directly from

the physical processor.

3 . The method of claim 1, wherein copying an execution context from the upper level VMM

to the lower level VMM includes copying a subset of a virtual processor context stored in the

upper level VMM to the lower level VMM.

4 . The method of claim 1, wherein copying an execution context from the upper level VMM

to the lower level VMM includes copying a physical-to-machine (P2M) mapping table stored in

the upper level VMM to the lower level VMM.

5 . The method of claim 1, wherein the upper level VMM to store the execution context in a

network file server (NFS), the NFS accessible to the VMMs.

6 . The method of claim 5, wherein the NFS is included in a host machine, the host machine

further including the nested virtualization environment.

7 . The method of claim 1, further comprising:

copying a VM configuration pattern from the upper level VMM to the lower level VMM.

8. A non-transitory computer readable storage medium including instructions that, when

executed by a processor, cause the processor to perform a method comprising:



executing a first virtual machine monitor (VMM) to virtualize system hardware;

executing an upper level VMM via a virtual machine (VM) to create a nested

virtualization environment;

trapping a privileged instruction issued from an upper level OS via the upper level VMM;

copying an execution context from the upper level VMM to a lower level VMM; and

emulating the privileged instruction via the lower level VMM, the lower level VMM to

receive an indication of the trapped privileged instruction from one of a physical processor of the

system hardware or a parent VMM hosting the lower level VMM.

9 . The non-transitory computer readable storage medium of claim 8, wherein the nested

virtualization environment comprises one or more intermediate virtualization layers included

between the first VMM and the upper level VMM, and the first VMM to receive the indication

of the trapped privileged instruction directly from the physical processor.

10. The non-transitory computer readable storage medium of claim 8, wherein copying an

execution context from the upper level VMM to the lower level VMM includes copying a subset

of a virtual processor context stored in the upper level VMM to the lower level VMM.

11. The non-transitory computer readable storage medium of claim 8, wherein copying an

execution context from the upper level VMM to the lower level VMM includes copying a

physical-to-machine (P2M) mapping table stored in the upper level VMM to the lower level

VMM.

12. The non-transitory computer readable storage medium of claim 8, wherein the upper

level VMM to store an execution context in a network file server (NFS), and the NFS is

accessible to the VMMs.

13. The non-transitory computer readable storage medium of claim 12, wherein the NFS is

included in a host machine, the host machine further including the nested virtualization

environment.

14. The non-transitory computer readable storage medium of claim 8, the method further

comprising:

copying a VM configuration pattern from the upper level VMM to the lower level VMM.



15. A system comprising:

platform hardware including a processor and a memory;

a root mode virtual machine monitor (VMM) to present virtualized platform hardware to

one or more virtualization layers; and

a non-root mode VMM executed via a virtual machine (VM);

wherein the non-root mode VMM to further

trap a privileged instruction issued from an upper level OS, and

copy an execution context to a lower level VMM; and

wherein the lower level VMM to further

receive an indication of the trapped privileged instruction from one of the

processor of the platform hardware or a parent VMM hosting the lower level VMM,

reconstruct the execution context based on the copied execution context, and

emulate the privileged instruction.

16. The system of claim 15, further comprising:

one or more intermediate virtualization layers between the root mode VMM and the non-

root mode VMM, wherein the root mode VMM to receive an indication of the trapped privileged

instruction directly from the processor of the platform hardware.

17. The system of claim 15, the non-root mode VMM to further copy a subset of a virtual

processor context to the lower level VMM.

18. The system of claim 15, the non-root mode VMM to further copy a physical-to-machine

(P2M) mapping table to the lower level VMM.

19. The system of claim 15, further comprising a network file server (NFS) accessible to the

VMMs of the system, wherein the non-root VMM to store an execution context in the network

file server.

20. The system of claim 19, further comprising a host machine further including NFS, the

VMMs to access configuration patterns for the non-root mode VMM stored on the NFS.

21. The system of claim 15, the non-root VMM to further a copy a VM configuration pattern

to the lower level VMM.















International application No.
INTERNATIONAL SEARCH REPORT

PCT/CN201 1/084458

A. CLASSIFICATION OF SUBJECT MATTER

G06F 9/455 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IP C

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G06F9/-; G06F17/-; G06F15/-; H04L; H04Q; H04W; H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS,CPRSABS,MOABS,TWABS,DWPI,SIPOABS,CNTXT,CJFD,SIPONPL,GOOGLE,3GPP:

Virtual+, virtual w machine w monitor, hypervisor?, nest+, layer+, privileged, context, copy+, host+

C . DOCUMENT S CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X EP2339462A1 (INTEL CORPORATION) 29 Jun. 2011 (29.06.2011) 1-21

paragraphs [0009]-[0041] in the description

A US20091131 10 A l (VMWARE, INC.) 30 Apr. 2009 (30.04.2009) 1-21

the whole document

A US2011047547 A 1 (BENNETT, Steven M. et al.) 24 Feb. 2011 (24.02.2011) 1-21

the whole document

l~~l Further documents are listed in the continuation of Box C . 1 See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date
or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention

"E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention

international filing date cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim (S) or
"Y" document of particular relevance; the claimed invention

which is cited to establish the publication date of another
cannot be considered to involve an inventive step when the

citation or other special reason (as specified) document is combined with one or more other such
"O" document referring to an oral disclosure, use, exhibition or documents, such combination being obvious to a person

other means skilled in the art

"P" document published prior to the international filing date " & "document member of the same patent family

but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

09 Aug. 2012 (09.08.2012) 13 Sep. 2012 (13.09.2012)
Name and mailing address of the ISA/CN Authorized officer
The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China HAO,Zhengyu
100088 Telephone No. (86-10
Facsimile No. 86-10-62019451

)62413550

Form PCT ISA /210 (second sheet) (July 2009)



INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/CN20 11/084458

Patent Documents referred Publication Date Patent Family Publication Date
in the Report

EP 2339462 A l 29.06.2011 U S 201 1153909 A l 23.06.2011

CN 102103517 A 22.06.2011

JP 201 1134320 A 07.07.2011

US20091 13110A1 30.04.2009 US20091 13425 A l 30.04.2009

US20091 13424 A l 30.04.2009

US20091 13216A1 30.04.2009

US20091 1311 1A l 30.04.2009

US201 1047547 A l 24.02.2011 EP 17501 99 A l 07.02.2007

JP 2007035045 A 08.02.2007

TW 200729037 A 0 1 .08.2007

JP 20101 18085 A 27.05.2010

JP 2012074071 A 12.04.2012

TW 336051B B 1 11 .01 .201 1

U S 2007028238 A l 0 1 .02.2007

Form PCT/ISA /210 (patent family annex) (July 2009)


	abstract
	description
	claims
	drawings
	wo-search-report

