PC[‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
. International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 91/10191
GOGF 9/44, 9/46 : Al (43) International Publication Date: 11 July 1991 (11.07.91)
(21) International Application Number: PCT/JP90/01680 | (74) Agent: IGETA, Sadakazu; Fujitsu Limited, 1015, Kami-
kodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211

(22) International Filing Date: 21 December 1990 (21.12.90) P).
(30) Priority data: ' (81) Designated States: AT (European patent), BE (European
1/337031 26 December 1989 (26.12.89) JP patent), CA, CH (European patent), DE (European pa-
1/337032 26 December 1989 (26.12.89) JP tent), DK (European patent), ES (European patent), FR

(European patent), GB (European patent), GR (Euro-
pean patent), IT (European patent), JP, LU (European
(71) Applicant (for all designated States except US): FUJITSU LI- patent), NL (European patent), SE (European patent),
MITED [JP/JP]; 1015, Kamikodanaka, Nakahara-ku, US.
Kawasaki-shi, Kanagawa 211 (JP).

(72) Inventors ; and Published

(75) Inventors/Applicants (for US only) : AOE, Shigeru [JP/JP]; With international search report.
5-3-11-702, Yashio, Shinagawa-ku, Tokyo 140 (JP). KA-
KEHI, Gen [JP/JP]; 20-9-101, Edaminami 5-chome,
Midori-ku, Yokohama-shi, Kanagawa 227 (JP). RYU,
Tadamitsu [JP/JP]; 1-604, Konandai Kotohausu,
1151-121, Kamigocho, Sakae-ku, Yokohama-shi, Kana-
gawa 247 (JP).

(54) Title: OBJECT ORIENTED DISTRIBUTED PROCESSING SYSTEM

(57) Abstract

A system for distributing processing between terminals (T; ~ Tj,) connected via a communication network (30). Each
terminal (T;) is provided with at least one method group (32) and a memory unit (34) to store data files. An originating term-
inal, e.g., terminal (T}) accesses data elsewhere in the distributed system by generating a message. The message includes a
terminal code identifying an object to access a terminal (T;) to execute an object, a method code identifying a method for
accessing the data and a command name containing or identifying the desired data. The terminal, e.g., terminal (T5), con-
taining the desired data, decodes the message and accesses a data file in the memory unit (34) containing the desired data
identified by the command name. The message may also include a selector and reset conditions which control the sequence
of data processing in the terminals (T and T,) so that the processing of the originating (T;) and data accessing (Tj) termi-
nals can be coordinated. When the processing identified by the method code is completed in the data accessing terminal
(T,), a message including the resulting data is sent from the data accessing terminal (T,) to the originating terminal (T;). Ob-
jects according to the present invention may contain a method without data and may be transmitted from one ternimal to
another as data. Thus, any application or operating system program can be replaced or added by transmitting an object con-

taining that program as data. :

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Central African Republic
Congo
Switzerland
Cote d'lvoire
Cameroon
Czechoslovakia
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinea

Greece

Hungary

taly

Japan

Democratic People’s Republic
of Korea

Republic of Korea
Liechtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Sencgal
Sovict Union
Chad

Togo

United States of America

ey

-

WO 91/10191 ' ' PCT/JP90/01680

10

15

20

25

30

'35

DESCRIPTION

OBJECT ORIENTED DISTRIBUTED PROCESSING SYSTEM

Technical Field

The present invention is directed to object oriented
distributed processing in a system of computers at '
terminals connected by a communication network and, more
particularly, to communication between objects stored
and executed in the terminals to perform processingrof

software.

Background Art
In conventional distributed data processing systems,

if a first terminal requires data stored in a second
terminal, the first terminal requests the data and the
second terminal transmits the data to the first terminal
so that the first terminal can process the data. The
transmission of raw data which is typically higherrin
volume than processed data requires a high capacity
communication network and limits the number of terminals
which can be connected together before significantly
reducing overall throughput of the system.

Large distributed processing systems contain a large
number of terminals, each having its own computer
system. When changes are made to the operation of the
distributed processing system, the computer system at
each terminal must be updated. Most conventional
distributed processing systems do not have the .
capability to update the operating system of the
computer systems at the terminals via the communication
network. |

In computer systems using object oriented 7
architecture, abstracted data (instance) and a program
(method) spécifying processing of the data are together
treated as an object. Data processing is carried out by
processing the methods in such objects and'communicating
messages therebetween. In object oriented processing,

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

wherever the data is located, procedures for processing
the data will be located also. Execution of these
procedures is triggered by message transfer between
objects, including the transmission of resulting data in
messages after processing of data in an object is
completed.

Applying object oriented techniques to a distributed
data processing system is not easily accomplished due to
the need to maintain the linkage between data and method
of an object, to determine where an object is located
and to communicate between objects. One way of
implementing object oriented techniques in a distributed
processing system is to maintain a database in each
terminal of the objects in all of the terminals. In a
large system, this requires a large amount of overhead

‘due to the size of the memory required and the time and

communication traffic required to update the object
location database in each of the terminals.

An object of the present invention is to provide
object oriented processing in all terminals of a
distributed processing system, executed as if in a
single processing system.

Another object of the present invention is to
provide a system for distributed data processing in
which objects can be obtained by one terminal from
another terminal without maintaining an object location
database in all terminals.

A further object of the present invention is to
provide a distributed processing system capable of
transmitting changes to the operating system programs of
the distributed processing system'to the terminals via
the communication network of the distributed processing

‘systen.

- Yet another object of the present invention is to
provide a method for linking objects regardless of their
location or content.

WO 91/10191 PCT/JP90/01680

10 -

15

20

25

30

35

DISCLOSURE OF INVENTION

" In a distributed processing system having a
plurality of terminals connected via a communication
network, object oriented processing is performed by
communicating via messages containing a terminal code, a
method code identifying processing of data and a command
containing data or identifying data in an object to be
processed. The method identified by the method code is
executed by the terminal identified by the terminal
code. Messages may cohtain multiple submessages, where
each submessage includes a terminal code, a method code
and a command. The command may identify an object in
one terminal which is to be installed in the terminal
identified by the terminal number. This object may be a
new program or a replacement for an existingrprdgram in
the terminal identified by the terminal number. The
program may be an application program or an operating
system program. Objects may contain methods without
data, thereby permitting any type of program to be
updated. :

The terminal code may identify an object for
transmitting the message to the terminal where the
object identified by the object code is located. If the
terminal code is zero or null, the object will be looked
for in the terminal in which the object generating the

‘message is executing. If the terminal number is

unknown, the object identified by the terminal code will
identify an object which will perform proceseing to
locate the object in one of the other terminals on the
system. '

The command in the object code may include a
selector condition and a reset condition for identifying
how the method identified by the method code is to be
initiated and how to proceed when the sequence starting
with the method identified by the method code has '
completed execution, respectively. The command code

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

-4 -

may contain a message for identifying an object for
obtaining data for the method identified by the method
code to process in the terminal identified by the
terminal code.

These objects, together with other objects and
advantages which will be subsequently apparent, reside
in the details of constitution and operation as more
fully hereinafter described and claimed, reference being
had to the accompanying drawings forming a part hereof,
wherein like reference numerals refer to like parts
throughout.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a distributed

processing system to which the present invention can be
applied;

Fig. 2 is a block diagram of one of the terminals;

Fig. 3 is a chart of the command link and sequence
files;

Fig. 4 is a flowchart of processing to locate an
object according to the present invention;

Fig. 5 is a flowchart of processing to update a
program in a remote terminal;

Fig. 6 is a flow diagram of object sequencing in the
prior art;

Fig. 7 is a conceptual block diagram of processing
in a terminal having an object required by another
terminal and illustrating the use of common objects;

Fig. 8 is a flow diagram of object sequencing using
common objects according to the present invention;

Fig. 9 is a flowchart of sequencing using common
objects according to the present invention; and

Fig. 10 is a flowchart of processing using common
objects according to the present invention.

«)

-

‘V()91/10191 : 7 PCT/JP90/01680

10

15

20

25

30

35

-5 =

BEST MODE OF CARRYING OUT THE INVENTION

As illustrated in Fig. 1, a plurality of terminals T,
~ T, are connected via a communication network 30, such
as a local area network (LAN), intelligent network (IN),
integrated services digital network (ISDN). In the case
of ISDN, a dedicated line is preferably used for
carrying supervisory information, while object commands
and responses thereto are communicated by ISDN. Each
terminal T, has program modules stored in method groups
32 and data stored in a data file 34. An object
executes in one of the terminals by executing the
program stored in one of the method groups and '
identified as being the method for that object. When
the method is instructed to begin execution of another
object, e.g., to obtain data from the second object, a
message is generated having the general format G below

G = {(Ty: Mjr I): (T: M, in); eee } 4

where T; is a terminal code, M; a method code and I, the
name of an instance and any one or two of the (T, Mjrand
I,) may be missing, as described below.

Each terminal T, includes the components illustrated
in Fig 2. A system interface 40 is connected to the
communication network 30. ' A processor 42 receives input
from an operator via an input device 44 which may be a
keyboard or other peripheral, including graphic tablet,
tapé or floppy disk drive, etc. An output device 46,
such as a CRT display, printer, the tape or floppy disk
drive, etc., provides output to the operétor. The
objects (methods and instances) are stored in a memory'
unit 48, such as a hard disk drive, and are addressed by
a systém table 50 which may be stored in the memory unit
48 and in random access memory (not shown) in the
processor 42. An example of a commercial embodiment of

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

the terminal illustrated in Fig. 2 is a personal
computer.

The system table 50 is one of the most important
tables in each terminal T;. As illustrated in Fig. 3,
the system table includes part of a command link file 52
and all of a sequence file 54. The command link file 52
stores the location and size of all objects stored in
the memory unit 48. The method entries 56 in the
command link file 52 are included in the system table
because they identify the programs which constitute and
can be executed by the system controlling the operation
of the terminal T,. The command link file 52 also
includes instance entries 58 which identify the location
and size of data stored in the memory unit 48.

When the message G above is received by terminal T;,
the object may be interpreted method M00003 and instance
I00003. The processor 42 can retrieve the method M00003
and instance I00003 by accessing the system table 50 to
determine their address and size, as indicated by the
dashed lines in Fig. 2.

The command link file 52 permits the same block of
code or data to be used in more than one object. 1In the
example illustrated in Fig. 3, methods M00001 and M00004
have the same address and size. However, the instances,
100001 and I00004, forming objects with these methods
are stored in different locations, although they are the
same size. Thus, the same method (stored at address
A00007482) can be used to process different data,
depending on which name (M00001 or M00004) is used.
Similarly, the same data can form different objects by
being combined with different methods. For example, one
method may transfer data to or from the terminal T;,
while another method processes the same data in the
terminal T,.

When a new object is to begin control of the
processor 42, the processing illustrated in Fig. 4 is

WO 91/10191 ' - PCT/JP90/01680

10 -

15

20

25

30

35

executed. First, the new object name is stored 60 in an
object management table. Next, the terminal number 7
associated with this object in the message controlling
the triggering of the new object, is compared 62 with
the terminal number, e.g. T,, of the terminal performing
this process. If there is a match and the address in
the command link file 52 indicates the method is stored
in terminal T,, the object is moved 64 from the memory
unit 48 to the execution area (not shown) in the
processor 42. When the terminal number assoc1ated in
the message with the new object name does not match 62
the'terminal number of the terminal performing this
process or the address of the method and instance of an
object refer to another terminal as indicated for object
000003 (method M00003 and instance I00003), a message is
sent 66 to the terminal, e.g. T,, identified in the

- message or address field of the command link file to

trigger the object in that terminal (T,). This is done
by triggering an object with the same name as the
terminal number (T,) in the terminal T, executlng the
process illustrated in Fig. 4.

- When the terminal number indicates that the terminal
in which the object to be executed is unknown, first the
system table 50 of the terminal (T,) executing the
process is checked 68 for the object name. If the
object name is found 70, the object is moved 64 to the
execution area of the processor 42. If the object name
is not found 70, an object is triggered to access a
master system file. The master system file keeps a
record of the location of all objects. The master

‘systenm file may be located in the communication network

30 or in one of the terminals (a server). 7
Alternétively, a copy of the master system file may be
located in each of the terminals. However, this last
alternative requires a significant amount of overhead to
maintain the master system file.

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

-8 =

When an object is located in a different terminal,
the object may be executed there or transferred to
another terminal, including a terminal requesting its
execution. In the preferred embodiment, when an object
not presently stored in a terminal is desired to be
executed, the object will be executed in the terminal in
which it is stored. To provide other terminals with an
object stored in terminal T,, for example, the processing
steps illustrated in Fig. 5 are executed. This process
is termed a learning method and may be used to transfer
any application programs or system programs when all are
in the form of objects.

As illustrated in Fig. 5, when an object transfer
request is received 74 by terminal T,, e.g. via the
input device 44, the requested object is accessed 76 in

memory unit 48 via the system table 50. The object is

decomposed 78 in byte data for transfer 80 as an entity
to the second terminal, e.g. terminal T,. Depending upon
the type of transfer request received, the entire object
may be transferred 80 after decomposition, or only the
method or data in the object. The requested portion or
entirety of the object is transferred 80 by transmitting
a message including the object (or portion thereof) as
entity data. Terminal T, receives 82 the message
including the entity data, composes 84 the object for
installation and stores 86 the object in the memory unit
48 in terminal T,. In addition, the system table 50 in
terminal T, is updated 86 with the object name. If the
object name previously existed in the system table, the
address and (if necessary) size of the object will be
updated to reflect the object just stored.

The sequence file 54 (Fig. 3) enables predefined
sequences of methods to be stored in the system table
50. As an alternative to the message format G above, a
simplified message format G, may be used, where sf; is

o

WO 91/10191 , ' 'PCT/JP90/01680

10

15

20 -

25

30

35

= {T;:0;, sf;; TM:OM,_sfM esel}

a sequence flag indicating that the preceding object
name is a sequence number which should be looked for in
the sequence file 54. For example, if 0; in G, is
500001, methods M00001, M00003 and M00005 will be
executed in sequence. In a first alternative

_embodiment, the object name may identify a method and

the command fields of the sequence file 54 will be
searched for the corresponding method name when the
sequence flag is set. 1In this embodlment each method
may be limited to a single entry in the sequence file orr
some rule, such as first occurrence in the file may be
used to find the right sequence. In this case each
method may appear in as many sequences as desired, but
should start only one sequence. In a second alternative
embodiment, the sequence flag may be a sequence number
identifying the starting point of the sequence. 1In this
embodiment, the object name can be used to access the
first method and instance while the seqﬁence is being -
determined. '

Another way of sequencing objects according to the
present invention is to use common objects. In the
prior art, the only way to sequence objects was to link
one object to the next as illustrated in Fig. 5.
According to the present invention, messages may have
the format G, including a selector condition s; and a

G, = {T;:(0;, Si,)i Ty (Ogqr Siuqr i) ees}

reset condition r;. According to the present invention,
common objects permit the same object to be used in
different ways by different objects and to predefine a
variety of sequences in the common objects themselves

instead of in a sequence file. The selector condition

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

- 10 -

s; defines an entry point in the common object 0;. The
reset condition r; defines how the sequence ends.

It should be noted that common objects are not
limited to use in forming sequence objects. Sequence
objects have a defined structure with a beginning and
end. On the other hand, common objects have a defined
function and can be executed whenever that function is
required. For example, common objects can be used in
the kernel of an operating system to perform functions
whenever needed.

A very simple example of the use of common objects
in sequence will be provided first with reference to
Fig. 7 and message G; below. The beginning of message Gy
instructs

Gy = {T,:047 T,:(0,, a, r)}

terminal T, that objects are to be executed in terminal
T, and so message G; is transmitted to terminal T, by
executing an object called T, in terminal T,. Terminal
T, decodes the message G; to determine that for the first
object 0, method M, is to be executed using the data in
instance I, and then a second object 0, is to be
performed using method M2, by entering at (a), as
identified by the selector condition a. The data in
instance I, is processed by method M, and then processing
returns to terminal T,, as identified by the reset
condition r. No selector or reset condition is provided
for object 0,, because there is a single entry and exit
point for object O,.

An example of a few sequence objects 90 and common
objects 92 are illustrated in Fig. 8. Common objects
Oxr Og, and O, have three entry points, a, b and ¢, and
three exit points, but common object O, has an extra
entry point and common object O, has only one entry and
exit point. Processing of the common objects

E

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

- 11 -

illustrated in Fig. 8 will be discussed with reference
to the flowchart illustrated in Fig. 9.

First taking as an example the sequence initiated by -

sequence object 0,, common object 0, is triggered with
selector condition a and a reset condition to return to
the originating object (0,). Since the selector
condition is a, the selector condition matches in the
test 94 for condition a, and the appropriate condition
steps 96 are executed. After any common steps 98 are
executed, it is determined 100 whether a new common
6bject should be triggered. As indicated by the dashed
line across object 0, from entry point a, in this
example, common object O, is to be triggered 102 with
selector condition a. The reset condition is passed on
in the meséage which triggers common object O;. The same
steps of Fig. 9 are executed in common object 0p and a

' message is generated to trigger common object O, with

selector condition b and the same reset condition.

In common object O, it will be determined 94 that |
the selector condition is not a, but a match will be
found in the test 104 for selector condition b.
Therefore, the steps 106 for condition b will be
executed prior to the common steps 98. As indicated by
the dashed line entering common object O, at b, it will
be determined 100 that there are no more common objects
to be executed and so the reset condition will be tested

- 108. As noted above, the reset condition in the message

generated by sequence object 0, was to return to the
originating object. This reset condition is passed to
common object O, and therefore processing will return 110
by referencing the object management table to determine
the originating object. ' '
Processing of the other sequences illustrated in
Fig. 8 is similar. The sequence originating with
sequence object O, uses selector condition b in common
object 0, and proceeds to use the same selector condition

WO 91/10191 PCT/JP90/01680

10

15

20

. 25

30

35

- 12 -

in common object O,. At the end of the sequence, common
object O, is triggered with selector condition a. The
reset condition in the originating message from sequence
object 0, indicates that a new sequence object 0; is to
be triggered 112 by the final common object O, in the
sequence. The sequence originating in sequence object O,
passes through common objects 0, and O, before
terminating 114 in common object O,.

An example of the use of common objects is provided
in the flowchart illustrated in Fig. 10. The operations
of sequehce objects appear on the left side of Fig. 10,
while the operations of common objects appear on the
right. One or more sequence objects are used to receive
and initiate transfer 120 of data to a common object.
Thus, unique input routines are used to interface with
an operator or a peripheral device inputting application
specific data. A common object is used to store 122 the
data. The common object transfers 122 a command name,
identifying the data, to a sequence object. The
sequence object fetches the command and processes 124 as
required by the application. If it is determined 126
that editing is necessary, general purpose editing
routines stored as one or more common objects can be
used to edit 128 the data.

After any necessary editing, it is determined 130
whether any existing entity data is needed. 1If so, a
command name is transferred 132 to another common object
which extracts 134 the entity data and converts command
names to entity data. Processing is continued by a
sequence object which fetches 136 the entity data and
performs additional processing. According to the
present invention, commonly executed routines can be
stored as éommon objects, but flexibility in the order

in which they are executed and details of how they are
executed is provided.

WO 91/10191 ' 7 PCT/JP90/01680

10

- 13 -

INDUSTRIAL APPLICABILITY

The present invention relates to a distributed
data processing system and particularly to a system for
realizing distributed object oriented processing between
terminals connected via a communication network. 1In a
database system which is required to provide
sophisticated functions for diversification of
application modes in which a plurality of terminals are
connected via a communication network, the man-hours
required for system development increase as more
sophisticated functions are added. A system with
improved processing speed and reduced communication
traffic requiring less development time is provided.

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

- 14 -

CLATMS
What is claimed is:
1. A distributed processing system, comprising:
a communication network to transmit messages,
including data; and
- a plurality of terminals connected together by
said communication network, each terminal capable of
generating the messages, each of the messages having a
terminal number for identifying one of the terminals to
receive the message, a method code identifying
processing of data and a command for identifying data to
be processed.

2. A distributed processing system as recited in
claim 1, wherein each of said terminals comprises:

a memory unit to store objects, including
methods and instances;

a processor, operatively connected to said
communication network, to execute the methods stored in
said memory unit; and

a system table to store identifying information
on the location and execution sequence of the methods
stored in said memory unit.

3. A distributed processing system as recited in
claim 1, wherein each of said terminals comprises:

a memory unit to store objects, including
methods, at least one of the objects including a
learning method;

a processor, operatively connected to said
communication network, to execute the methods stored in
said memory unit; and

a system table to store identifying information
on the location and execution sequence of the methods
stored in said memory unit, said processor updating said
system table and the contents of said memory unit upon

WO 91/10191 PCT/JP90/01680

- 15 -

receipt of one of the messages from another terminal
instructing said processor to execute the learning
method stored in said memory unit.

5 " 4. A terminal in a distributed processing system,
comprising:
7 object storage means for storing objects,
including at least one object including a method;
system table means for storing identifying

10 information on location and execution sequence of the

objecfs stored in said object storage means; and
decomposing means for decomposing the method in
one of the objects into byte data in response to a
transfer request; ,

15 transfer means for transferring the byte data
decomposed by said decomposing means to another terminal
upon completion of the decomposing and for receiving an
updated object requested to be transferred to said
terminal; and '

20 : installation means for storing the updated
object into said objectrstdrage means and for updating
said system table means with an object name
corresponding to the updated object.

25 5. ‘A method for transferring programs in a
distributed processing system executing objects in
terminals, the objects inclusive of objects including a
method, said method comprising:

(a) receiving a transfer request at a first
30 terminal to transfer a selected object from the first
terminal to a second terminal; |
(b) decomposing the selected object into byte
data in response to the transfer request; '
(c) transferring the byte data decomposed in

35 step (b) to the second terminal upon completion of said

decomposing;

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

- 16 -~

(d) receiving the byte data at the second
terminal;

(e) composing the byte data to produce an
updated object corresponding to the selected object
requested to be transferred to the second terminal} and

(f£) storing the updated object and an object
name, corresponding to the updated object, in the second
terminal.

6. A method as recited in claim 5, wherein said
decomposing in step (b) comprises the step of selecting
one of the method and data in the selected object for
said transferring in step (c).

7. A method for processing messages in a
distributed processing system having a plurality of
terminals connected by a communication network, said
method comprising the steps of:

(a) determining in a first terminal, for a
first message identifying a first object, whether the
first object is stored in the first terminal;

(b) triggering the first object in the first
terminal when said determining in step (a) determines
that the first object is stored in the first terminal;
and

(c) generating a second message to a second
terminal to locate the first object when said

determining in step (a) determines that the first object

is not stored in the first terminal.

8. A method as recited in claim 7, wherein all
messages generated in the distributed processing systenm,
including the second message generated in step (c),
include a terminal number for identifying one of the
terminals to receive the message, a method code

Y

WO 91/10191

10

15

20

25

30

35

PCT/JP90/01680

- 17 -

identifying pfocessing of data and a command for
identifying data to be processed.

9. A method as recited in qlaim 8, wherein said
determining in step (a) comprises comparing the terminal
number identifying the first terminal with the terminal

- number in the first message.

10. A method as recited in claim 9, wherein said
generating in step (c) comprises setting the terminal
number in the second message equal to the terminal
number in the first message when said comparing in step
(a) determines that the terminal in the first message is
not equal to the terminal number of the first terminal.

11. A method as recited in claim 10, further
comprising the steps of: = : _

(4) stdring method codes of each of the objects
stored in each of the terminals in a command link file
in each of the terminals, respectively, and all of the
method codes for all of the objects stored in all of the
terminals in a master system table;

(e) comparing the method code in the first
message with the method codes in the command link file
for the first terminal when said comparing in step (a)
determines that the terminal number of the first message
is unknown;

(f) executing step (b) when said comparing in
step (e) determines that the method code in the first
message is included in the message codes in the command
link file for the first terminal; and ' '

7 (g) generating a third message to access the
master system table when said comparing in step (e) '
determines that the method code in the first message is
excluded from the message codes in the command link file.

for the first terminal.

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

- 18 -

12. A method as recited in claim 7,
wherein said generating in step (c) comprises
the step of (cl) generating the second message with a
subset of a second object, and
wherein said method further comprises the steps
of:

(d) storing command names associated with
each of the objects stored in each of the terminals in a
command link file in each of the terminals,
respectively;

(e) storing the subset of the second
object in the second terminal upon receipt of the second
message at the second terminal; and

(f) storing a subset command name,
corresponding to the subset of the second object, in the
command link file of the second object.

13. A method as recited in claim 12, wherein said
generating in step (c) further comprises the step of
(c2) decomposing the second object into byte data prior
to said generating in step (c1).

14. A method as recited in claim 13, wherein said
generating in step (c2) comprises the step of
transferring all of the byte data decomposed from the
second object into the second message.

15. A method as recited in claim 13, wherein said
generating in step (c2) comprises the step of transfer-
ring a method portion of the byte data decomposed from
the second object into the second message.

)

16. A method as recited in claim 7,
wherein all messages generated in the
distributed processing system, including the second
message generated in step (c), include a terminal number

WO 91/10191 ' ' PCT/JP90/01680

- 19 -

for identifying one of the terminals to receive the
message and an object code, and '
wherein said method further comprises the steps
of: - 7 '
5 (d) determining whether the object code
includes a sequence file identifier; and
(e) executing sequence objects in a
sequence determined by entries in a sequence file when
said determining in step (d) determines that the object
10 code includes the sequence file identifier.

17. A method as recited in claim 7,
wherein all messages generated in the
distributed processing system, including the second
15 message geherated in step (c), include a terminal number
for identifying one of the terminals to receive the
message and an object code, and
wherein said method further comprises the steps
of:
20 (d) storing common objects in at least one
of the terminals; ' _ o

(e) determining whether the object code
includes a common object name, a selector condition and
a reset condition; , ' '

25 (f) triggering a corresponding common
object in dependence upon the common object name and the
selector condition when said determining in step (e)
determines that the object code includes the common
object name, the selector condition and the reset

30 condition; and '

(g) ending execution of the common objects
in dependence upon the reset condition when said
determining in step (e) determines that the object code
includes the common object name, the selector condition

35 and the reset condition. '

WO 91/10191 PCT/JP90/01680

10

15

20

25

30

35

- 20 -

18. A method as recited in claim 17, wherein said
triggering in step (f) comprises the steps of:

(f1) comparing the selector condition with
predetermined selector conditions in the corresponding :
common object; and

(£2) executing condition steps in the
corresponding common object identified by one of the
Predetermined selector conditions in dependence upon
said comparing in step (f1).

19. A method as recited in claim 17, wherein said
ending in step (g) comprises the steps of:

(g1) returning to the first object when the
first message was determined in step (e) to contain the
common object name of one of the common objects and the
reset condition is set to return;

(92) triggering a new sequence object when the
reset condition is set to trigger; and

(g3) terminating execution of the common
objects without returning or triggering when the reset
condition is set to terminate.

20. A message transmitted between objects in an
object oriented distributed processing system having a
plurality of terminals connected by a communication
network, said message comprising:

: a terminal number for identifying one of the
terminals to receive said message;
a method code identifying processing of data;

and ' :

a command for identifying data to be processed.

1]

21. A message as recited in claim 20, wherein said
command includes a sequence file identifier identifying
a sequence defined in a sequence file for executing
objects triggered by said message.

WO 91/10191 PCT/JP90/01680

- 2] -

22. A message as recited in claim 20, wherein said
command includes a selector condition and a reset '
condition when said method code identifies a common
object, the selector condition determining how the

5 common object executes and the reset condition
determining how execution of the common object and any
subsequent additional common objects ends.

23. A system table in an object oriented
10 distributed processing system having a plurality of
terminals connected by a communication network, said o
system table comprising:
a method code portion of a command link file
including fields for method name, address and size; and
15 a sequence file including fields for sequence
number, command name and next sequence number.

FIG. 1

WO 91/10191 PCT/JP90/01680
2/8
40
SYSTEM
FIG. 2 INTERFACE)
i /42 46
OUTPUT
48
" =
SYSTEM
TABLE |
FIG. 3
52
COMMAND LINK FILE (
NAME ADDRESS SIZE
100001 A0000358 | 00000535 |)
100002 A0001264 | 00000087
100003 T5:00013 | 00006294 | - INSTANCES
100004 A00005817 | 00000535 58
M00001 A00037482 | 00008195
M00002 A00005629 | 00000352 METHODS
M00003 T5:M00013 | 00042506 | (= 56
M00004 ADO057482 | 00008195
SYSTEM , SEQUENCE FILE Voo
TABLE < NAME SEQUENCE DATA
50 S00001 (ToMg,alg)»
(Ty:M2,bIn)»
END (a,b,om)
$00002 ToM1,14)>

WO 91/10191

-3/8

FIG. 4

- PCT/JP90/01680

STORE OBJECT NAME TO BE
TRIGGERED NEXTIN
OBJECT MANAGEMENT
TABLE

TERMINAL

~ ANOTHER

NO.?

REFER TO OWN
1B | SYSTEM TABLE

J

FIND

OBJECT NAME
9

YES

64 NO 72 66
ANE e v [
MOVE INTERNAL TRIGGER OBJECTTO SEND MESSAGE TO
OBJECTTO ACCESS MASTER OTHER TERMINALTO
EXECUTION AREA SYSTEM FILE TRIGGER OBJECT THERE
P tt—

WO 91/10191

4/8

(START)

74 Y
' RECEIVE
-~ OBJECT
TRANSFER
REQUEST

#

FIG.5

76
ACCESS OBJECT IN
MEMORY VIA SYSTEM
TABLE IN FIRST TERMINAL

'

DECOMPOSE
INTO BYTE
DATA

HECEIVE
ENTITY
AT SECOND
TERM|NAL

, TRANSFEH AS
ENTITY
TO SECOND
TERMINAL '

L COMPOSE
- OBJECT FOR

INSTALLATION

'

~ STORE OBJECTIN
MEMORY AND
OBJECT NAMEIN
SYSTEM TABLE OF
SECOND TERMINAL

>Ti

>To

PCT/JP90/01680

PCT/JP90/01680

WO 91/10191

5/8

90Ol4

WO 91/10191 ' PCT/JP90/01680

6/8

FIG.7

1

WO 91/10191 PCT/JP90/01680
7/8
ENTER -
FIG.9 96\
SELECTOR CONDITION
CONDITION a STEPS
a?
104
SELECTOR CONDITION
CONDITION b STEPS ™
b? Y
106—
B COMMON
~ STEPS
1
NEW
COMMON YES 02
OBJECT '
: 1/
TRIGGER NEW
COMMON
OBJECT
R RESET
CONDITION
110 ? /112
RETURNTO TRIGGER NEW
ORIGINATING , SEQUENCE
OBJECT TERMINATE OBJEQT

WO 91/10191 ' ' PCT/JP90/01680

8/8 .
FIG. 10
- (C START e 2 |
RECEIVE & TRANSFER |
DATA TO COMMON
OBJECT |
| > ; .‘ /122
- STORE DATA AND TRANSFER
| COMMAND NAMING DATA
AN ' -~
FETCH COMMAND AND -
PROCESS DATA
128
126 ! p
EDITING YES ~ EDITENTITY
NECESSARY — DATA
TRANSFER COMMAND | -
NAME TO COMMON '
OBJECT
l
| %
EXTRACT ENTITY DATA,
o CONVERT COMMAND NAME(S)
| TO ENTITY DATA
136 \ ! i
FETCH ENTITY DATA

INTERNATIONAL SEARCH REPORT
Intemational Application No PCT /JP 90/01680

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ¢
According to international Patent Classification (iPC) or to both National Classification and IPC

jpcS, G 06 F 9/44, G 06 F 9/46

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System | Classification Symbols

ol G 06 F

Documentation Searched other than Minimum Documentation
{0 the Extent that such Documents are Inciuded in the Fields Searched ¢

Ill. DOCUMENTS CONSIDERED TO BE RELEVANT?
Category * | Citation of Document, ¥ with Indication, where appropriate, of the relevant passages 12

l Relevant to Claim No. 13

Y ACM Transactions on Computer Systems, 1-5,7-8,20
vol. 6, no. 1, February 1988,

ACM, (New York, NY, us), .
E. Jul et al.: "Fine-grained mobility
in the Emerald System",

pages 109-133, . '

see page 111, lines 3-6; page 114,
lines 1-19, section 3.2 :

Y Informationstechnik IT, vol. 30, no. 6, 1-3,7-8
December 1988, R. Oldenbourg Verlag,
(Miinchen, DE), ' '
G. Barth et al.: n"Objektorientierte
Programmierung", '

pages 404-421,

see page 405, right-hand column,
lines 10-37

-/

“T" {ater document published after the international filing date
or priority date and not in conflict with the application but

* Special categories of cited documents: ®

“A" document defining the general state of the art which is not h h
Corsidered to be of particular relevance ::;t:.e‘ ‘tignundlmlnd the principle or theory undaeriying the
“E" eariier document but published on or after the international ux" ‘document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
e d%gu'r‘nicnt w‘tgch may t?r%w‘ :oubt& on“prioélt;y cl?im(szhor involve an inventive step :
which is cited to establish the pubiication date ol another sy" document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to invoive ln' inventive step when the
“Q" decument referring to an oral disciosure, uss, exhibition or document is combined with one or more other such docu-
other means :mrti‘u. .r:’eh combination bsing obvious to-a person skilled
n the art. :

“p" document published prior to the international filing date but

fater than the priority date claimed “g" document member of the same patent family

IV. CERTIFICATION
Dats of the Actual Completion of the international Search Date of Mailing of this international Search Report
19th March 1991 23.04 91

international Searching Authority - Signature of Authorized Officer o

EUROPEAN PATENT OFFICE

P
_miss T. MORTENSE A /, .
Form PCT/ISA/210 (second shest) (Janusry 1985) v

International Application No PCT/ JP 9 0 / 01680

I1l. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category ¢

Citation of Document, 'Y with indication, where appropriate, of the relevant passages

Relevant to Claim No.

Y

Microprocessing and Microprogramming,
vol. 24, no. 1-5, 'Supercomputers:
Technology and Applications’,
Fourteenth EUROMICRO Symposium on
Microprocessing and Microprogramming
(EUROMICRO '88), Zurich, 29 August -
1 September 1988, edited by S. Winter

et al., (North-Holland, Amsterdam, NL),

S.T. Krolak et al.: "DEOS - A
dynamically extendible object-
oriented system",

pages 241-248,

see section 3.2

Hewlett-Packard Journal, vol. 40, no. 4,

August 1989, (Palo Alto, CA, US),
J.A. Dysart: "The new wave object
management facility",

pages 17-23,

see page 22, right-hand column, line

39 - page 23, left-hand column, line
3

2-5

23

4,5

Form PCT/ISA 210{extra sheet) (January 1985)

-2~

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

