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(57) ABSTRACT 
A data-processing technique for increasing data-size capac 
ity and improving query speed on large datasets where fields 
within records are replaced by integers representing distinct 
values of those fields, the integers drawn from a densely 
populated range, wherein a computer data storage structure 
is initialized and maintained to represent a large number of 
binary values (“bits') within a smaller number of actual 
machine-memory bits of the computer. Representative struc 
tures and operations thereon, as well as applications of the 
data structure to Support more-Sophisticated data structures 
and operations, are described and claimed. 
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METHOD FOR EFFICIENT AGGREGATION 
OF NUMEROUS DATAUSING SPARSE BIT 

SETS 

CONTINUITY AND CLAIM OF PRIORITY 

This is an original U.S. patent application. 

5 

2 
BRIEF DESCRIPTION OF DRAWINGS 

Embodiments of the invention are illustrated by way of 
example and not by way of limitation in the figures of the 
accompanying drawings in which like references indicate 
similar elements. It should be noted that references to “an 
or “one' embodiment in this disclosure are not necessarily 
to the same embodiment, and Such references mean “at least 
one.’ 

FIELD 10 FIG. 1 shows an overview of process using an embodi 
ment of the invention in executing a database query. 

The 1nVent1On relates to preparing data for information FIG. 2 shows a sample data structure that may be used by 
retrieval. More specifically, the invention relates tO methods an embodiment. 
for transforming data structures and data objects with the FIG. 3 shows a different data structure that may be used 
purpose of facilitating further processing thereof. is by an embodiment. 

BACKGROUND FIG. 4 explains how an embodiment may convert 
between different memory representations to achieve 
improved performance or reduced resource utilization. 

The relentless advances in computing power and storage FIG. 5 outlines a method for improving complex query 
capacity whose underpinnings are recognized as conforming 20 performance with several instances of embodiments of the 
to Moore's Law ensures that ever more data (both kinds and invention. 
quantities) are being collected and made available for analy: FIG. 6 shows how an embodiment can be used to augment 
sis. Hardware and software improvements raise the practical another data structure and improve its performance. 
limits on data set sizes that can be examined and manipu- FIG. 7 outlines a first method performed with the aug 
lated but there 1S still a large and growing gap between big as mented data structure of FIG. 6. 
data and “interactively explorable data.” That is, while it is FIG. 8 outlines a second method performed with the 
possible to execute queries and compute aggregate values augmented data structure of FIG. 6. 
over petabytes of data, the queries often take hours or even FIG. 9 shows how a preferred embodiment can benefit 
clays to run-one can obtain answers, but they are only f v. a prel rom maintaining additional information about its structure. useful if one knows the right questions before beginning. For 
exploring and investigating datasets—for learning the right 30 DETAILED DESCRIPTION 
questions to ask—faster query turnaround is essential. 

Techniques for improvin l erformance on 
"miwar Stact Ca ifier. She p sizes that can Embodiments of the invention form part of a suite of data 
be explored interactively, reduce the hardware requirements management techniques that expand the envelope of data 
for conducting data investigations, and/or answer more- 3s quantities and analyses that can be performed interactively. 
complicated questions quickly. Such techniques may be of Real-time exploration of vast data sets is a powerful tool that 
significant value in this field. can help managers of systems that collect data about their 

operations, identify, characterize and understand nuances of 
SUMMARY the systems. Improved understanding, in turn, can help 

inform changes to optimize the system. 
Embodiments of the invention improve data processing In describing the operations and benefits of this invention, 

operations such as queries (including queries joining tables) it is helpful to have a specific dataset in mind. The inventors 
and computations of aggregate metrics by reducing raw have used embodiments to analyze data collected from 
memory requirements and increasing locality of access. Internet web services, so a simplified version of a web server 
Thus, the techniques permit faster query execution, and the log file will be used as an example here. Table 1 shows a few 
queries can operate over larger data set sizes. records from Such a log file: 

TABLE 1. 

N Timestamp Visitord IPAddress ArticleTitle 

1 2012-04-21 21:11:48.00 679101S 1.1.271.10 Intellectual Diversity and Engineering Safety Margins 
2 2012-04-18 16:56:35.00 72284.08 1312.8.233 G8 States Condemn NK Nuclear Moves 
3 2012-04-1918:03:31.00 7810819 168.192.189.72 G8 States Condemn NK Nuclear Moves 
4 2012-04-16 O6:19:17.00 69474.23 4.1.168.263 G8 States Condemn NK Nuclear Moves 
S 2012-04-15 11:37:45.00 S67524 1740.234.39 50-year-old Mom looks 23 
6 2012-04-15 16:14:45.00 7245320 108.132.259.187 Miami judge accuses Apple and Samsung of using courts as business 

strategy 
7 2012-04-18 11:56:33.00 7361691. 17.138.182.27 Symposium on Rehnquist's Fourth Amendment 
8 2012-04-16 19:53:11.00 75.18724 2100.201.1SO Intellectual Diversity and Engineering Safety Margins 
9 2012-04-1904:32:48.00 2467978 109.11.332.54 Shark Makes Off with Fisherman's Catch 
10 2012-04-16 07:40:22.00 6855973 109.200.221.5 U.S. lawmakers in danger of becoming relevant 
11 2012-04-16 11:10:09.00 6038595 109.150.38.308 Watch celebrity blooper reels reenacted by cats 
12 2012-04-1815:40:42.00 6487.469 109.255.248.65 Shark Makes Off with Fisherman's Catch 

13 2012-04-1908:51:19.00 7510984 109.113.220.106 Miami judge accuses Apple and Samsung of using courts as business 
strategy 

14 2012-04-17 15:54:21.00 6936315 109.113.220. 106 Currency and security issues in Upper Elbonia 
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In the sample data file, each multi-field record memori 
alizes a request from a client to retrieve a resource available 
from the server. N is an integer index of the record within the 
file; Timestamp is the date and time when the client 
requested the resource; Visitorld is an integer identifying the 
client; IPAddress is an Internet Protocol address of the 
clients computer; and ArticleTitle is the name of the 
requested resource. Other parts of the web server system 
attempt to ensure that Visitorlds are unique among clients, 
yet unchanging from request to request of any particular 
client. The records in a log file may be sorted by one of the 
fields (often the Timestamp field) but this is not essential. 
Unsorted or partially-sorted input data may be encountered 
if the embodiment processes data comprising concatenated 
log files from several different servers. 

FIG. 1 is a flow chart outlining the central operations of 
an embodiment. First, the source data (a plurality of multi 
field records of a common format) are read and interned 
(110). Interning is a process of assigning a unique integer to 
each distinct value of some or all fields of all the input 
records, as described in greater detail in co-pending U.S. 
patent application Ser. No. 13/791,281 by the same inven 
tors. The disclosure of that application is incorporated by 
reference here. 

Through interning, each record is converted into a set of 
field elements, some or all of which are actually integers 
representing a particular field value. The interned (represen 
tative) integers are chosen from densely-populated ranges, 
which for simplicity will be considered to run from 1 (one) 
to the number of distinct values encountered in the corre 
sponding field of the input dataset. Interned ranges may have 
Some unused or skipped values, and some administrative 
values (integers that represent concepts like “no data present 
in this field” or “illegal value') but the overwhelming 
majority of the integers will correspond to a distinct value of 
the field. Some interning processes will assign representa 
tive integers whose numeric order mirrors an order of the 
original data (Such as a temporal order of timestamps, or an 
alphabetic order of article titles), while other interning may 
result in first-seen-first-assigned or essentially random 
ordering of representative integers. It is important to recog 
nize that the range of integers for one field may be of a 
different size than the range of integers for another field— 
this corresponds to a different number of distinct values 
encountered in each field. 

Next, a query about the data is received from a user (120). 
The query may be stated in any appropriate language, but for 
purposes of this explanation, the common SQL query lan 
guage will be used. An example query that might be issued 
against the sample data set under consideration here is: 

Listing 1 

10 SELECT 

20 VisitorID, COUNT(DISTINCT IPAddress), COUNT 
(DISTINCT ArticleTitle) 

3O FROM 
40 SampleDataset 
50 WHERE 
60 Timestamp > 11/07/2011 03:35:00 PM AND 
70 Timestamp < 12/07/2012 12:00:00 PM 
80 GROUP BY 
90 VisitorD 
100 ORDER BY 
110 COUNT(DISTINCT ArticleTitle) DESC 

In English, this query calls for a report of the number of 
different IP addresses used by each visitor, and the number 
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4 
of different articles viewed by each visitor, during the 
13-month period from November 2011 to December 2012, 
sorted so that the most active readers are displayed first. It 
is appreciated that, especially for very large datasets, aggre 
gate functions such as COUNT and DISTINCT are expen 
sive (they require significant memory, processing resources 
and/or time to compute). Embodiments of the invention 
allow such functions to be performed more cheaply. 
A conventional query-planner may decompose a complex 

query like the example above into a set of simpler subqueries 
(130). Then, for each subquery, the system initializes a 
sparse bit set (140) sized to accommodate the result of the 
Subquery, and processes the input data records (or a Subset 
thereof) to divide them into two classes (included in the 
result, or excluded from the result) (150). For each record of 
one of the classes, a corresponding bit in the sparse bit set 
is set (160) or cleared (170). 

Steps 150 and 160 or 170 are repeated for the other 
records in the dataset so that the sparse bit set identifies 
records that match the subquery. This bit set is combined 
with bit sets computed by other subqueries of the user's 
query (180) according to the query execution plan. Finally, 
the query result is reported to the user (190). For example, 
a requested aggregate quantity may be printed or plotted, or 
the records that satisfy the query conditions may be placed 
in a result set that can be subjected to further manipulations 
or queries. 
Combining sparse bit sets can be clone pair-wise: two 

input sets can be joined to create a union; intersected to 
create a common subset; or exclusively-ORed to identify 
bits that are set in exactly one of the two sets. (Set inversion 
or negation, a single-operand function, rounds out the most 
useful operations on bit sets.) Another useful operation on a 
bit set is to count the number of set (or clear) bits. 

It should be noted that the interning operation provides a 
rough count of the number of distinct values for each 
interned field, and this count is useful to set the size and/or 
number of bit sets that may be required to execute a query. 
For example, in the foregoing sample query, the maximum 
representative value interned for the VisitorID field gives the 
number of rows that the query will report, while the maxi 
mum representative value interned for the ArticleTitle field 
establishes the length (i.e., the number of bits) of a sparse bit 
set that can collect information for the DISTINCT (Article 
Title) subquery, and the number of bits set in such a bit set 
answers the COUNT (DISTINCT ArticleTitle) portion of the 
query. 

Logically speaking, a sparse bit set is simply an array of 
binary values, each element of which can indicate one of two 
states (Zero or one, high or low, included or excluded, etc.) 
However, by representing the array as discussed here, a large 
number of bits can be managed in a much smaller amount of 
space in general, a sparse bit set occupies fewer real 
(machine) bits than the number of bits in the bit set. 
(Conceptually, this is like data compression, where 1024 
bits’ worth of data might be represented with only 256 bits 
of storage.) 

Since interning is particularly effective for read-only 
datasets, a preferred embodiment of the invention caches 
many of the sparse bit sets that are created while executing 
Subqueries. Then, if the decomposition of another user query 
happens to include a previously-executed subquery, the 
subquery's result sparse bit set can be retrieved from the 
cache instead of being recomputed by scanning through the 
complete dataset. This caching can significantly improve 
performance, but since sparse bit sets are often much smaller 
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than the total number of bits they represent, fewer machine 
resources—less memory—is required to answer queries. 

Sparse bit sets may be represented by a hierarchical (tree) 
structure as shown in FIG. 2, the tree comprising a root 210, 
possibly one or more internal nodes 220, 230, 240, and one 
or more leaves 250-290. Each leaf represents one or more 
actual bits, which may be all zeroes (250, 260,270), all ones 
(280), or an appropriately-sized array of bits containing a 
mixture of values (290). For efficient representation and 
manipulation by a standard programmable processor, leaf 
nodes should generally represent a power-of-two sized num 
ber of bits. (The exception to this rule is for the odd bits out 
of the last leaf, when the total number of bits is not a power 
of two. For example, since the tree of FIG. 2 represents 99 
bits, leaf 250 represents only 35 bits.) Further, it is appre 
ciated that most contemporary computers manipulate bits in 
groups of at least eight, and commonly in groups of 32, 64. 
or even 128 bits. These numbers are, of course, powers of 
two; but an efficient implementation would choose one of 
these natural word sizes as the basic leaf-node size, and 
manage its sparse bit structures as power-of-two multiples of 
the natural word size, rather than arbitrary powers of two. 

Another possible implementation of the sparse bit sets of 
an embodiment is the linked list shown in FIG. 3. Each node 
of the list comprises a bit count and information about the 
bits represented by the node. For example, node 310 repre 
sents a large number of Zero bits, followed by a short, literal 
segment of bits whose values are directly represented (320), 
and then a run of all-one bits (330). Linked lists can be very 
space-efficient, but finding and setting or clearing bits can be 
slower than in other representations. In a linked list, there is 
less benefit to maintaining blocks as power-of-two multiples 
of the basic word size, but an implementation may favor 
Such sizes anyway, so that conversions to and from the 
previously-described hierarchical tree format can be per 
formed more efficiently. 

In some embodiments, the instructions and data that are 
operable to manipulate and maintain a sparse bit set will 
collect statistical information about the set, such as the 
number of set bits or the average run length. A preferred 
embodiment may include automatic representation mutation 
as outlined in FIG. 4. 
When a new sparse bit set is initialized (e.g., with a 

maximum size chosen based on the number of interned 
values its bits may be called on to represent), a default 
representation is chosen (410) and statistical information 
accumulators are cleared (420). Then, as bits are set or 
cleared (430), the current representation is altered accord 
ingly (440) and the statistical accumulators are updated 
(450). “Altered accordingly depends on the present bit-set 
representation and the bit value that it is desired to store. For 
example, if a bit is set in an “all ZERO' leaf node, the node 
may be split into two (a smaller “all ZERO node and a 
“literal bits' node containing mostly zero bits, plus the 
newly-set bit). Setting a bit in an “all ONE' leaf node 
requires no changes; and setting or clearing a bit in a “literal 
bits' node can be accomplished without changing the struc 
ture of the tree or linked list representation. 

Periodically, the representation may be optimized (460). 
For example, if a series of natively-represented bits have all 
been set to the same value, then the series may be replaced 
with an “all ZERO” or “all ONE' node. In addition, con 
secutive leaves that encode the same value may be replaced 
with a single node representing the combined bits. 

If the current representation is Sub-optimal (e.g., it occu 
pies more space than another representation would, or its 
access times are slower than another representation) (470) 
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6 
then the sparse bit set may be automatically re-encoded 
using a superior structure (480). When the sparse bit set has 
been completely calculated (i.e., when a subquery has been 
finished), a final optimization and re-encoding may be 
performed to “freeze' the bit set before caching it (490). 
This re-encoding may prefer to optimize the bit set for 
reduced space or for faster access. 

Proceeding from this overview of the function and pos 
sible implementations of a sparse bit set according to an 
embodiment of the invention, we turn to techniques to 
further improve their efficiency. First, it should be noted that 
a pass through all records of a data set (Such as described in 
connection with FIG. 1) is a computationally expensive 
undertaking. Datasets may be too large to fit in memory, so 
a beginning-to-end pass involves reading consecutive por 
tions of the data from secondary storage (such as a hard disk 
or solid-state drive), processing them, and then moving on to 
the next portion. FIG. 5 shows how a query processing 
system can execute a complex query more efficiently than 
simply re-scanning the data set once for each subquery that 
must be answered to compute the complex query result. 
As in FIG. 1, the complex query is decomposed into a 

plurality of simple queries (130). Query planning also deter 
mines how to combine the simple-query results to yield the 
desired information. Next, a plurality of sparse bit sets are 
initialized, each to hold results of one of the subqueries 
(510). Then a single pass is made through the dataset, and for 
each record (520), and for each subquery (530), the corre 
sponding sparse bit set is updated to reflect whether the 
record is “in” or “out of the result set for the subquery 
(540), before proceeding to the next record (550). 

In other words, instead of one pass through the dataset for 
each Subquery, the plurality of Subqueries are executed in 
parallel during a single pass through the dataset. This allows 
the cost of loading dataset blocks from secondary storage to 
be amortized over all of the subqueries, rather than being 
paid in full for each independent subquery. The trade-off is 
that the plurality of sparse bit sets must be simultaneously 
accessible so that results for each subquery can be recorded, 
but the memory efficiency of the bit sets representation 
usually makes this a net positive. 

It is appreciated that some complex queries may contain 
nested subqueries where an inner subquery requires an 
independent pass through the dataset before an outer Sub 
query can be executed, but by performing as many subque 
ries as possible during each pass (and by caching and reusing 
previously-computed subquery results) overall performance 
can be improved. In fact, a system may be able to amortize 
the cost of a dataset scan among even more subqueries by 
aggregating subqueries from multiple complex queries, and 
even complex queries issued by multiple users. 
At any rate, once the multiple sparse bit sets correspond 

ing to the multiple subqueries have been computed, selected 
ones of them can be joined, intersected, concatenated, 
inverted and/or counted to produce the result sought by the 
complex query (550). Bit sets constructed by Boolean opera 
tions on another bit set (or another pair of bit sets) are 
conceptually simple: one merely indexes through the bits 
and performs the appropriate logical operation (AND, 
NAND, OR, NOR, XOR, XNOR, NOT) on the input bit(s) 
to obtain the output bit. However, this operation can be 
completed more quickly if multi-bit leaves or nodes of the 
sparse bit set are computed together. For example, a 300-bit 
“all ONE' leaf can be inverted to produce a 300-bit “all 
ZERO result, and a 700-bit “all ONE' leaf logically 
ANDed with any leaf representing up to the same number of 
bits, yields the second operand leaf. In other words, logical 
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operations between long blocks of same-valued bits can be 
optimized according to the following table: 

Input 1 Input 2 Operation Output 5 

All O Any AND All O (Input 1) 
All 1 Any AND Any (Input 2) 
All O Any OR Any (Input 2) 
All 1 Any OR All 1 (Input 1) 
All O Any XOR Any (Input 2) 10 
All 1 Any XOR ~Any (Input 2 Inverted) 

That is, the result of many binary Boolean operations is 
simply one or the other of the input operands. 
A practical, flexible and efficient implementation of a 15 

sparse bit set node might comprise the elements shown in the 
following listing: 

Listing 2 2O 

10 class SBSNode { 
2O union { 
30 struct { 
40 SBSNode *prev; 
50 SBSNode *nxt: 25 
60 } : 
70 struct { 
8O SBSNode *left; 
90 SBSNode *right: 
1OO 
110 
120 unsigned bitO; 30 
130 unsigned nbits: 
140 unsigned skip: 
150 bool literal; 
160 bool val: 
170 unsigned realbits: 
18O 35 

The node structure can be incorporated into a linked-list 
representation using the prev and nxt pointers, or into a 
binary tree using left and right. The index of the first bit a 
represented by the node is bit0, and nbits is the number of 
bits the node represents. Skip indicates the number of bits to 
be ignored at the beginning of the node's literal value 
(further details below). Literal indicates whether this node 
contains actually-represented bits, or is an “all-ZERO” or 45 
“all-ONE' node. Val distinguishes between the two types of 
all-the-same-value nodes, while the realbits array is where 
actually-represented bits are stored in a literal node. 
A node may use the skip element if a binary operation 

between two different sparse bit sets results in a partial 50 
masking between a uniform block of same-valued bits and 
a differently-sized block of actually-represented bits. This is 
shown in FIG. 9, a sample intersection (logical AND) 
between two, 32-bit sparse-bit-set operands. The first oper 
and comprises three leaves: eight all-ZERO bits 910, sixteen 55 
all-ZERO bits 920, and eight all-ONE bits 930. The second 
operand comprises two eight-bit leaves 940 and 950 (their 
values are immaterial, because of the short-cut AND opti 
mization mentioned above), and a sixteen-bit literal bit leaf 
960, whose bit values are represented by the letters A-P 60 
The result of the intersection is also contained in three 

leaves: eight all-ZERO bits 980, sixteen all-ZERO bits 990, 
and a copy 970 of literal leaf 960, where the skip value has 
been set so that the first eight bits (A-H) are ignored. Thus, 
only the last eight bits (I-P) appear in the result, as shown at 65 
977. Between the bit0, nbits and skip values of a leaf, the 
generic leaf-node structure of Listing 2 allows leaves to be 

8 
placed in trees or lists with great flexibility; without these 
values (or logical equivalents thereof) bits and leaves might 
often have to be shifted, masked, or otherwise manipu 
lated—time-consuming operations that an embodiment 
should try to avoid. 

Recall that bits in bit sets represent interned data values— 
integers chosen from a densely-populated range that corre 
spond to the literal values in the dataset. Since interned 
integers are often assigned in a numeric order that mirrors 
another order in the data (e.g., an alphabetical or temporal 
order), an in-order Scan through the bit set may yield 
pre-ordered data values. Therefore, by using data interning 
and sparse bit sets, a separate Sorting operation can often be 
avoided. 

Sparse bit sets according to an embodiment of the inven 
tion find application in Supporting another data-processing 
task, as well. Turning to FIG. 6, consider a "dictionary” data 
structure comprising a plurality of key/value pairs. When a 
dictionary uses integers chosen from a densely-populated 
range as keys, a sparse bit set can quickly provide an 
indication whether any particular integer exists in the dic 
tionary (without requiring a search through the stored keys 
to find the value). To store new values in a combination 
dictionary/sparse bit set (FIG. 7), the bit corresponding to 
the integer key is set in the sparse bit set (710), then the 
key/value entry is made in the dictionary (720). To retrieve 
a keyed value (FIG. 8), the bit corresponding to the integer 
key is located in the sparse bit set (810). If the bit is clear 
(820), the dictionary does not contain the value, so a default 
value may be returned (830). If the bit is set (840), then the 
computationally-expensive dictionary lookup is performed 
(850) and the corresponding value is returned (860). 
An embodiment of the invention may be a machine 

readable medium (including without limitation a non-tran 
sitory machine-readable medium) having stored thereon 
data and instructions to cause a programmable processor to 
perform operations as described above. In other embodi 
ments, the operations might be performed by specific hard 
ware components that contain hardwired logic. Those opera 
tions might alternatively be performed by any combination 
of programmed computer components and custom hardware 
components. 

Instructions for a programmable processor may be stored 
in a form that is directly executable by the processor 
(“object' or “executable' form), or the instructions may be 
stored in a human-readable text form called “source code' 
that can be automatically processed by a development tool 
commonly known as a “compiler” to produce executable 
code. Instructions may also be specified as a difference or 
“delta' from a predetermined version of a basic source code. 
The delta (also called a “patch') can be used to prepare 
instructions to implement an embodiment of the invention, 
starting with a commonly-available source code package 
that does not contain an embodiment. 

In some embodiments, the instructions for a program 
mable processor may be treated as data and used to modulate 
a carrier signal, which can Subsequently be sent to a remote 
receiver, where the signal is demodulated to recover the 
instructions, and the instructions are executed to implement 
the methods of an embodiment at the remote receiver. In the 
Vernacular, Such modulation and transmission are known as 
'serving the instructions, while receiving and demodulat 
ing are often called “downloading.” In other words, one 
embodiment "serves' (i.e., encodes and sends) the instruc 
tions of an embodiment to a client, often over a distributed 
data network like the Internet. The instructions thus trans 
mitted can be saved on a hard disk or other data storage 
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device at the receiver to create another embodiment of the 
invention, meeting the description of a machine-readable 
medium storing data and instructions to perform Some of the 
operations discussed above. Compiling (if necessary) and 
executing Such an embodiment at the receiver may result in 
the receiver performing operations according to a third 
embodiment. 

In the preceding description, numerous details were set 
forth. It will be apparent, however, to one skilled in the art, 
that the present invention may be practiced without some of 
these specific details. In some instances, well-known struc 
tures and devices are shown in block diagram form, rather 
than in detail, in order to avoid obscuring the present 
invention. 
Some portions of the detailed descriptions may have been 

presented in terms of algorithms and symbolic representa 
tions of operations on data bits within a computer memory. 
These algorithmic descriptions and representations are the 
means used by those skilled in the data processing arts to 
most effectively convey the substance of their work to others 
skilled in the art. An algorithm is here, and generally, 
conceived to be a self-consistent sequence of steps leading 
to a desired result. The steps are those requiring physical 
manipulations of physical quantities. Usually, though not 
necessarily, these quantities take the form of electrical or 
magnetic signals capable of being stored, transferred, com 
bined, compared, and otherwise manipulated. It has proven 
convenient at times, principally for reasons of common 
usage, to refer to these signals as bits, values, elements, 
symbols, characters, terms, numbers, or the like. 

It should be borne in mind, however, that all of these and 
similar terms are to be associated with the appropriate 
physical quantities and are merely convenient labels applied 
to these quantities. Unless specifically stated otherwise as 
apparent from the preceding discussion, it is appreciated that 
throughout the description, discussions utilizing terms such 
as “processing or “computing or “calculating or “deter 
mining or “displaying or the like, refer to the action and 
processes of a computer system or similar electronic com 
puting device, that manipulates and transforms data repre 
sented as physical (electronic) quantities within the com 
puter system's registers and memories into other data 
similarly represented as physical quantities within the com 
puter system memories or registers or other Such informa 
tion storage, transmission or display devices. 

The present invention also relates to apparatus for per 
forming the operations herein. This apparatus may be spe 
cially constructed for the required purposes, or it may 
comprise a general purpose computer selectively activated 
or reconfigured by a computer program stored in the com 
puter. Such a computer program may be stored in a computer 
readable storage medium, including without limitation any 
type of disk including floppy disks, optical disks, compact 
disc read-only memory (“CD-ROM), and magnetic-optical 
disks, read-only memories (ROMs), random access memo 
ries (RAMs), eraseable, programmable read-only memories 
(“EPROMs), electrically-eraseable read-only memories 
(“EEPROMs), magnetic or optical cards, or any type of 
media suitable for storing computer instructions. 
The algorithms and displays presented herein are not 

inherently related to any particular computer or other appa 
ratus. Various general purpose systems may be used with 
programs in accordance with the teachings herein, or it may 
prove convenient to construct more specialized apparatus to 
perform the required method steps. The required structure 
for a variety of these systems will be recited in the claims 
below. In addition, the present invention is not described 
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10 
with reference to any particular programming language. It 
will be appreciated that a variety of programming languages 
may be used to implement the teachings of the invention as 
described herein. 
The applications of the present invention have been 

described largely by reference to specific examples and in 
terms of particular allocations of functionality to certain 
hardware and/or software components. However, those of 
skill in the art will recognize that larger data sets and faster 
query processing can also be accomplished by Software and 
hardware that distribute the functions of embodiments of 
this invention differently than herein described. Such varia 
tions and implementations are understood to be captured 
according to the following claims. 

We claim: 
1. A method of performing space-efficient data query 

operations, comprising: 
interning fields of a plurality of multi-field records to 

produce interned records representing the multi-field 
records; 

receiving a query to compute a result over the plurality of 
multi-field records; 

initializing a sparse bit set, said sparse bit set sized to 
accommodate a number of distinct values present in 
one of the fields of the plurality of multi-field records: 

dividing the interned records into two classes according to 
the query; and 

setting a bit in the sparse bit set for each interned record 
of one of the two classes, wherein 

an in-memory representation of the sparse bit set, exclu 
sive of overhead, occupies fewer bits than the number 
of distinct values present in the one of the fields of the 
plurality of multi-field records. 

2. The method of claim 1 wherein the in-memory repre 
sentation of the sparse bit set comprises a plurality of blocks, 
all but one of which represent a number of bits that is a 
power-of-two multiple of a natural word size, and each Such 
block containing exactly one of 

all clear bits; or 
all set bits; or 
a subordinate plurality of blocks of recursive structure, all 

of Such blocks having a power-of-two size; or 
the power-of-two multiple number of bits, each bit thereof 

in either a clear state or a set state. 
3. The method of claim 1 wherein the sparse bit set is a 

first sparse bit set, the method further comprising: 
repeating the receiving, initializing, dividing and setting 

operations to produce a second sparse bit set; and 
creating a third sparse bit set as a two-operand function of 

the first sparse bit set and the second sparse bit set. 
4. The method of claim 3 wherein the two-operand 

function is one of a union, an intersection, or an exclusive or 
of the first sparse bit set and the second sparse bit set. 

5. The method of claim 1, further comprising: 
determining a number of clear bits in the sparse bit set. 
6. The method of claim 1, further comprising: 
determining a number of set bits in the sparse bit set. 
7. A method for improving access speed for a key-value 

dictionary, comprising: 
initializing a sparse bit set and a key-value dictionary; 
receiving an integer-valued key and a corresponding 

value; 
setting a bit in the sparse bit set corresponding to the 

integer-valued key: 
inserting a key-value binding into the key-value diction 

ary, a key of said key-value binding equal to the 
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integer-valued key, and a value of the key-value bind 
ing equal to the corresponding value; 

repeating the receiving, setting and inserting operations; 
receiving an integer-valued search key: 
examining a bit in the sparse bit set corresponding to the 

integer-valued search key: 
if the bit in the sparse bit set corresponding to the 

integer-valued search key is clear, returning a default 
value; and 

if the bit in the sparse bit set corresponding to the 
integer-valued search key is set, searching the key 
value dictionary for the integer-valued search key and 
returning a value from a key-value binding correspond 
ing to the integer-valued search key. 

8. The method of claim 7 wherein the default value 
indicates that the key-value dictionary does not contain a 
value corresponding to the integer-valued search key. 

9. The method of claim 7 wherein the integer-valued key 
is an integer from a densely-utilized range of integers. 

10. The method of claim 9, further comprising: 
receiving a non-integer-valued key; 
converting the non-integer-valued key to a corresponding 

integer drawn from a densely-utilized range of integers; 
and 

using the corresponding integer as the integer-valued key. 
11. A non-transitory computer-readable medium contain 

ing instructions and data to cause a programmable processor 
to perform operations comprising: 

initializing a sparse bit set structure to accommodate a 
predetermined number of bits with a predetermined 
initial value, said sparse bit set structure occupying 
fewer bits in a memory of the programmable processor 
than the predetermined number of bits: 

modifying the sparse bit set structure to represent one bit 
with a complement of the predetermined initial value, 
a remainder of said predetermined number of bits 
retaining their previous values, said modification yield 
ing a modified sparse bit set structure that occupies 
fewer bits in the memory of the programmable proces 
sor than the predetermined number of bits: 

accessing the modified sparse bit structure to retrieve a 
current value of an identified one of the predetermined 
number of bits; and 

returning the current value of the identified one of the 
predetermined number of bits. 

12. The non-transitory computer-readable medium of 
claim 11, containing additional data and instructions to 
cause the programmable processor to perform operations 
comprising: 

concatenating the sparse bit set structure with a second 
sparse bit set structure to produce a third sparse bit set 
structure representing a number of bits no Smaller than 
a sum of the predetermined number of bits and a second 
predetermined number of bits represented by the sec 
ond sparse bit set structure, said third sparse bit set 
structure occupying fewer bits in the memory of the 
programmable processor than the sum of the predeter 
mined number of bits and the second predetermined 
number of bits. 
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12 
13. The non-transitory computer-readable medium of 

claim 11, containing additional data and instructions to 
cause the programmable processor to perform operations 
comprising: 

computing a Boolean operation between the sparse bit set 
structure and a second sparse bit set structure to pro 
duce a third sparse bit set structure representing a 
number of bits no smaller than a greater of the prede 
termined number of bits and a second predetermined 
number of bits represented by the second sparse bit set 
structure, said third sparse bit set structure occupying 
fewer bits in the memory of the programmable proces 
sor than the sum of the predetermined number of bits 
and the second predetermined number of bits. 

14. The non-transitory computer-readable medium of 
claim 13 wherein the Boolean operation is one of AND, 
NAND, OR, NOR, XOR or XNOR. 

15. The non-transitory computer-readable medium of 
claim 11, containing additional data and instructions to 
cause the programmable processor to perform operations 
comprising: 

computing a unary operation on the sparse bit set structure 
to produce a second sparse bit set structure representing 
at least the predetermined number of bits, said second 
sparse bit set structure occupying fewer bits in the 
memory of the programmable processor than the pre 
determined number of bits. 

16. The non-transitory computer-readable medium of 
claim 11 wherein the sparse bit set structure comprises at 
least one leaf node, and wherein each of the at least one leaf 
node represents one of 

a plurality of clear (“ZERO”) bits: 
a plurality of set (“ONE”) bits; or 
a plurality of literal bits. 
17. The non-transitory computer-readable medium of 

claim 16 wherein modifying the sparse bit set structure 
comprises: 

splitting the at least one node into a plurality of child 
nodes, said plurality of child nodes representing a 
number of bits equal to a number of bits represented by 
the at least one node; and wherein 

the plurality of child nodes represent a substantially 
identical plurality of bits as the at least one node, except 
that the plurality of child nodes represent a single 
changed bit value from the plurality of bits of the at 
least one node. 

18. The non-transitory computer-readable medium of 
claim 11, containing additional data and instructions to 
cause the programmable processor to perform operations 
comprising: 

optimizing the sparse bit structure to represent an identi 
cal predetermined number of bit values while occupy 
ing fewer bits in the memory than the lesser of the 
predetermined number of bits and a number of bits in 
the memory occupied by the sparse bit structure prior 
to the optimizing operation. 

k k k k k 


