
(12) United States Patent
Goetsch et al.

USOO9659061B2

US 9,659,061 B2
May 23, 2017

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR EFFICIENT AGGREGATION
OF NUMEROUS DATAUSING SPARSE BIT
SETS

(71) Applicants: Adam K. Goetsch, Sammamish, WA
(US); Nicholas W. West, Redmond,
WA (US)

(72) Inventors: Adam K. Goetsch, Sammamish, WA
(US); Nicholas W. West, Redmond,
WA (US)

(73) Assignee: ServiceSource, San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 513 days.

(21) Appl. No.: 13/894,353

(22) Filed: May 14, 2013

(65) Prior Publication Data

US 2014/0344298 A1 Nov. 20, 2014

(51) Int. Cl.
G06F 7/00
G06F 1700
G06F 7/30

(52) U.S. Cl.
CPC G06F 17/30501 (2013.01)

(58) Field of Classification Search
CPC G06F 17/30501; G06F 17/30592: G06F

(2006.01)
(2006.01)
(2006.01)

17/30088; G06F 17/30333; G06F
17/30336; G06F 17/30489; G06F
17/30949; G06F 17/30985; G06F

17/30548
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,266,706 B1* 7/2001 Brodnik et al. TO9,242
2003/0195898 A1* 10/2003 Agarwal et al. TO7/103 R
2004/0024729 A1* 2/2004 Worley 707/1
2004/0210564 A1* 10, 2004 Oksanen 707/3
2004/0220972 A1* 11/2004 Bhattacharjee et al. ... 707/200
2014/0122791 A1* 5/2014 Fingerhut et al. T11 108

* cited by examiner

Primary Examiner — Susan Chen
(74) Attorney, Agent, or Firm — Mersenne Law

(57) ABSTRACT
A data-processing technique for increasing data-size capac
ity and improving query speed on large datasets where fields
within records are replaced by integers representing distinct
values of those fields, the integers drawn from a densely
populated range, wherein a computer data storage structure
is initialized and maintained to represent a large number of
binary values (“bits') within a smaller number of actual
machine-memory bits of the computer. Representative struc
tures and operations thereon, as well as applications of the
data structure to Support more-Sophisticated data structures
and operations, are described and claimed.

18 Claims, 8 Drawing Sheets

intern Source Data

1 to

Accept tiser Ouery

Decompose Complex
Guery into Subqueries

Initialize Sparse Bit Set

Yes Record included No
i subqugy Resu

140

-1

Set Bin EiSet Clear Eii BitSet

170

Combine Subquery Bit
Set with Earlier Bit Set(s)

(for each subquery)

Report Query Result
190

U.S. Patent May 23, 2017 Sheet 1 of 8 US 9,659,061 B2

Intern Source Data

1

Accept User Query
1

Decompose Complex
Query into Subqueries

f

Initialize Sparse Bit Set
f

1 O

3O

15O

ReCOrd Included
in Subqugly ReSult

Set Bit in Bit Set Clear Bit in Bit Set

17O

(for each record)

Combine Subquery Bit
Set with Earlier Bit Set(s)

18O

Report Query Result
190

(for each Subquery)

US 9,659,061 B2 Sheet 2 of 8 May 23, 2017 U.S. Patent

0 0 0 0 ---------0 0 0 0 0 T T T 0 II 0 T T T T T T T T 0 0 0 0 ---------0000 : S??g quê?BA|nbE

O IT I O II 0

SEINO TTV

S?OXIEIZ ITV

S?ONIEIZ TTV

U.S. Patent May 23, 2017 Sheet 3 of 8 US 9,659,061 B2

Bit COunt: 7220 31 O
Bit ValueS: All ZERO

Bit COunt: 16 32O
Bit ValueS: 0110111011101011

Bit Count: 88 33O

fig 3 Bit ValueS: All ONE

U.S. Patent May 23, 2017 Sheet 4 of 8 US 9,659,061 B2

Initialize Sparse Bit Set
w/ Default Representation

41 O

Clear ACCumulatorS

42O

Other Representation
iS Better

Automatically Re-Encode
to Better Representation

48O

Optimize, Re-Encode to
Freeze Sparse Bit Set

490

U.S. Patent May 23, 2017 Sheet S of 8 US 9,659,061 B2

Decompose Complex
Query into Subqueries

1

Initialize Plurality of
Sparse Bit Sets

5

FOr EaCh ReCOrC

5

1O

For Each Subquery
5

Update Bit Set per
Data Record & Subquery

5

Next ReCOrd

5

fig5

U.S. Patent May 23, 2017 Sheet 6 of 8 US 9,659,061 B2

ey

O Value corresponding to key 0
1. Value corresponding to key 1

17 Value corresponding to key 17

38 Value corresponding to key 38

63O 61O

fig 6

U.S. Patent May 23, 2017 Sheet 7 of 8 US 9,659,061 B2

Set Bit Corresponding
to Integer Key

7

Store Value in Dictionary
keyed by Integer Key

1O

Find Bit Corresponding
to Integer Key

8

Set

82O 1O
84O

-1
Clear

Check Bit State

Look Up Key in Dictionary
Return Default Value

Or "NOt FOLIrO" 850

Return Keyed Value
86O

US 9,659,061 B2
1.

METHOD FOR EFFICIENT AGGREGATION
OF NUMEROUS DATAUSING SPARSE BIT

SETS

CONTINUITY AND CLAIM OF PRIORITY

This is an original U.S. patent application.

5

2
BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the invention are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate
similar elements. It should be noted that references to “an
or “one' embodiment in this disclosure are not necessarily
to the same embodiment, and Such references mean “at least
one.’

FIELD 10 FIG. 1 shows an overview of process using an embodi
ment of the invention in executing a database query.

The 1nVent1On relates to preparing data for information FIG. 2 shows a sample data structure that may be used by
retrieval. More specifically, the invention relates tO methods an embodiment.
for transforming data structures and data objects with the FIG. 3 shows a different data structure that may be used
purpose of facilitating further processing thereof. is by an embodiment.

BACKGROUND FIG. 4 explains how an embodiment may convert
between different memory representations to achieve
improved performance or reduced resource utilization.

The relentless advances in computing power and storage FIG. 5 outlines a method for improving complex query
capacity whose underpinnings are recognized as conforming 20 performance with several instances of embodiments of the
to Moore's Law ensures that ever more data (both kinds and invention.
quantities) are being collected and made available for analy: FIG. 6 shows how an embodiment can be used to augment
sis. Hardware and software improvements raise the practical another data structure and improve its performance.
limits on data set sizes that can be examined and manipu- FIG. 7 outlines a first method performed with the aug
lated but there 1S still a large and growing gap between big as mented data structure of FIG. 6.
data and “interactively explorable data.” That is, while it is FIG. 8 outlines a second method performed with the
possible to execute queries and compute aggregate values augmented data structure of FIG. 6.
over petabytes of data, the queries often take hours or even FIG. 9 shows how a preferred embodiment can benefit
clays to run-one can obtain answers, but they are only f v. a prel rom maintaining additional information about its structure. useful if one knows the right questions before beginning. For
exploring and investigating datasets—for learning the right 30 DETAILED DESCRIPTION
questions to ask—faster query turnaround is essential.

Techniques for improvin l erformance on
"miwar Stact Ca ifier. She p sizes that can Embodiments of the invention form part of a suite of data
be explored interactively, reduce the hardware requirements management techniques that expand the envelope of data
for conducting data investigations, and/or answer more- 3s quantities and analyses that can be performed interactively.
complicated questions quickly. Such techniques may be of Real-time exploration of vast data sets is a powerful tool that
significant value in this field. can help managers of systems that collect data about their

operations, identify, characterize and understand nuances of
SUMMARY the systems. Improved understanding, in turn, can help

inform changes to optimize the system.
Embodiments of the invention improve data processing In describing the operations and benefits of this invention,

operations such as queries (including queries joining tables) it is helpful to have a specific dataset in mind. The inventors
and computations of aggregate metrics by reducing raw have used embodiments to analyze data collected from
memory requirements and increasing locality of access. Internet web services, so a simplified version of a web server
Thus, the techniques permit faster query execution, and the log file will be used as an example here. Table 1 shows a few
queries can operate over larger data set sizes. records from Such a log file:

TABLE 1.

N Timestamp Visitord IPAddress ArticleTitle

1 2012-04-21 21:11:48.00 679101S 1.1.271.10 Intellectual Diversity and Engineering Safety Margins
2 2012-04-18 16:56:35.00 72284.08 1312.8.233 G8 States Condemn NK Nuclear Moves
3 2012-04-1918:03:31.00 7810819 168.192.189.72 G8 States Condemn NK Nuclear Moves
4 2012-04-16 O6:19:17.00 69474.23 4.1.168.263 G8 States Condemn NK Nuclear Moves
S 2012-04-15 11:37:45.00 S67524 1740.234.39 50-year-old Mom looks 23
6 2012-04-15 16:14:45.00 7245320 108.132.259.187 Miami judge accuses Apple and Samsung of using courts as business

strategy
7 2012-04-18 11:56:33.00 7361691. 17.138.182.27 Symposium on Rehnquist's Fourth Amendment
8 2012-04-16 19:53:11.00 75.18724 2100.201.1SO Intellectual Diversity and Engineering Safety Margins
9 2012-04-1904:32:48.00 2467978 109.11.332.54 Shark Makes Off with Fisherman's Catch
10 2012-04-16 07:40:22.00 6855973 109.200.221.5 U.S. lawmakers in danger of becoming relevant
11 2012-04-16 11:10:09.00 6038595 109.150.38.308 Watch celebrity blooper reels reenacted by cats
12 2012-04-1815:40:42.00 6487.469 109.255.248.65 Shark Makes Off with Fisherman's Catch

13 2012-04-1908:51:19.00 7510984 109.113.220.106 Miami judge accuses Apple and Samsung of using courts as business
strategy

14 2012-04-17 15:54:21.00 6936315 109.113.220. 106 Currency and security issues in Upper Elbonia

US 9,659,061 B2
3

In the sample data file, each multi-field record memori
alizes a request from a client to retrieve a resource available
from the server. N is an integer index of the record within the
file; Timestamp is the date and time when the client
requested the resource; Visitorld is an integer identifying the
client; IPAddress is an Internet Protocol address of the
clients computer; and ArticleTitle is the name of the
requested resource. Other parts of the web server system
attempt to ensure that Visitorlds are unique among clients,
yet unchanging from request to request of any particular
client. The records in a log file may be sorted by one of the
fields (often the Timestamp field) but this is not essential.
Unsorted or partially-sorted input data may be encountered
if the embodiment processes data comprising concatenated
log files from several different servers.

FIG. 1 is a flow chart outlining the central operations of
an embodiment. First, the source data (a plurality of multi
field records of a common format) are read and interned
(110). Interning is a process of assigning a unique integer to
each distinct value of some or all fields of all the input
records, as described in greater detail in co-pending U.S.
patent application Ser. No. 13/791,281 by the same inven
tors. The disclosure of that application is incorporated by
reference here.

Through interning, each record is converted into a set of
field elements, some or all of which are actually integers
representing a particular field value. The interned (represen
tative) integers are chosen from densely-populated ranges,
which for simplicity will be considered to run from 1 (one)
to the number of distinct values encountered in the corre
sponding field of the input dataset. Interned ranges may have
Some unused or skipped values, and some administrative
values (integers that represent concepts like “no data present
in this field” or “illegal value') but the overwhelming
majority of the integers will correspond to a distinct value of
the field. Some interning processes will assign representa
tive integers whose numeric order mirrors an order of the
original data (Such as a temporal order of timestamps, or an
alphabetic order of article titles), while other interning may
result in first-seen-first-assigned or essentially random
ordering of representative integers. It is important to recog
nize that the range of integers for one field may be of a
different size than the range of integers for another field—
this corresponds to a different number of distinct values
encountered in each field.

Next, a query about the data is received from a user (120).
The query may be stated in any appropriate language, but for
purposes of this explanation, the common SQL query lan
guage will be used. An example query that might be issued
against the sample data set under consideration here is:

Listing 1

10 SELECT

20 VisitorID, COUNT(DISTINCT IPAddress), COUNT
(DISTINCT ArticleTitle)

3O FROM
40 SampleDataset
50 WHERE
60 Timestamp > 11/07/2011 03:35:00 PM AND
70 Timestamp < 12/07/2012 12:00:00 PM
80 GROUP BY
90 VisitorD
100 ORDER BY
110 COUNT(DISTINCT ArticleTitle) DESC

In English, this query calls for a report of the number of
different IP addresses used by each visitor, and the number

10

15

25

30

35

40

45

50

55

60

65

4
of different articles viewed by each visitor, during the
13-month period from November 2011 to December 2012,
sorted so that the most active readers are displayed first. It
is appreciated that, especially for very large datasets, aggre
gate functions such as COUNT and DISTINCT are expen
sive (they require significant memory, processing resources
and/or time to compute). Embodiments of the invention
allow such functions to be performed more cheaply.
A conventional query-planner may decompose a complex

query like the example above into a set of simpler subqueries
(130). Then, for each subquery, the system initializes a
sparse bit set (140) sized to accommodate the result of the
Subquery, and processes the input data records (or a Subset
thereof) to divide them into two classes (included in the
result, or excluded from the result) (150). For each record of
one of the classes, a corresponding bit in the sparse bit set
is set (160) or cleared (170).

Steps 150 and 160 or 170 are repeated for the other
records in the dataset so that the sparse bit set identifies
records that match the subquery. This bit set is combined
with bit sets computed by other subqueries of the user's
query (180) according to the query execution plan. Finally,
the query result is reported to the user (190). For example,
a requested aggregate quantity may be printed or plotted, or
the records that satisfy the query conditions may be placed
in a result set that can be subjected to further manipulations
or queries.
Combining sparse bit sets can be clone pair-wise: two

input sets can be joined to create a union; intersected to
create a common subset; or exclusively-ORed to identify
bits that are set in exactly one of the two sets. (Set inversion
or negation, a single-operand function, rounds out the most
useful operations on bit sets.) Another useful operation on a
bit set is to count the number of set (or clear) bits.

It should be noted that the interning operation provides a
rough count of the number of distinct values for each
interned field, and this count is useful to set the size and/or
number of bit sets that may be required to execute a query.
For example, in the foregoing sample query, the maximum
representative value interned for the VisitorID field gives the
number of rows that the query will report, while the maxi
mum representative value interned for the ArticleTitle field
establishes the length (i.e., the number of bits) of a sparse bit
set that can collect information for the DISTINCT (Article
Title) subquery, and the number of bits set in such a bit set
answers the COUNT (DISTINCT ArticleTitle) portion of the
query.

Logically speaking, a sparse bit set is simply an array of
binary values, each element of which can indicate one of two
states (Zero or one, high or low, included or excluded, etc.)
However, by representing the array as discussed here, a large
number of bits can be managed in a much smaller amount of
space in general, a sparse bit set occupies fewer real
(machine) bits than the number of bits in the bit set.
(Conceptually, this is like data compression, where 1024
bits’ worth of data might be represented with only 256 bits
of storage.)

Since interning is particularly effective for read-only
datasets, a preferred embodiment of the invention caches
many of the sparse bit sets that are created while executing
Subqueries. Then, if the decomposition of another user query
happens to include a previously-executed subquery, the
subquery's result sparse bit set can be retrieved from the
cache instead of being recomputed by scanning through the
complete dataset. This caching can significantly improve
performance, but since sparse bit sets are often much smaller

US 9,659,061 B2
5

than the total number of bits they represent, fewer machine
resources—less memory—is required to answer queries.

Sparse bit sets may be represented by a hierarchical (tree)
structure as shown in FIG. 2, the tree comprising a root 210,
possibly one or more internal nodes 220, 230, 240, and one
or more leaves 250-290. Each leaf represents one or more
actual bits, which may be all zeroes (250, 260,270), all ones
(280), or an appropriately-sized array of bits containing a
mixture of values (290). For efficient representation and
manipulation by a standard programmable processor, leaf
nodes should generally represent a power-of-two sized num
ber of bits. (The exception to this rule is for the odd bits out
of the last leaf, when the total number of bits is not a power
of two. For example, since the tree of FIG. 2 represents 99
bits, leaf 250 represents only 35 bits.) Further, it is appre
ciated that most contemporary computers manipulate bits in
groups of at least eight, and commonly in groups of 32, 64.
or even 128 bits. These numbers are, of course, powers of
two; but an efficient implementation would choose one of
these natural word sizes as the basic leaf-node size, and
manage its sparse bit structures as power-of-two multiples of
the natural word size, rather than arbitrary powers of two.

Another possible implementation of the sparse bit sets of
an embodiment is the linked list shown in FIG. 3. Each node
of the list comprises a bit count and information about the
bits represented by the node. For example, node 310 repre
sents a large number of Zero bits, followed by a short, literal
segment of bits whose values are directly represented (320),
and then a run of all-one bits (330). Linked lists can be very
space-efficient, but finding and setting or clearing bits can be
slower than in other representations. In a linked list, there is
less benefit to maintaining blocks as power-of-two multiples
of the basic word size, but an implementation may favor
Such sizes anyway, so that conversions to and from the
previously-described hierarchical tree format can be per
formed more efficiently.

In some embodiments, the instructions and data that are
operable to manipulate and maintain a sparse bit set will
collect statistical information about the set, such as the
number of set bits or the average run length. A preferred
embodiment may include automatic representation mutation
as outlined in FIG. 4.
When a new sparse bit set is initialized (e.g., with a

maximum size chosen based on the number of interned
values its bits may be called on to represent), a default
representation is chosen (410) and statistical information
accumulators are cleared (420). Then, as bits are set or
cleared (430), the current representation is altered accord
ingly (440) and the statistical accumulators are updated
(450). “Altered accordingly depends on the present bit-set
representation and the bit value that it is desired to store. For
example, if a bit is set in an “all ZERO' leaf node, the node
may be split into two (a smaller “all ZERO node and a
“literal bits' node containing mostly zero bits, plus the
newly-set bit). Setting a bit in an “all ONE' leaf node
requires no changes; and setting or clearing a bit in a “literal
bits' node can be accomplished without changing the struc
ture of the tree or linked list representation.

Periodically, the representation may be optimized (460).
For example, if a series of natively-represented bits have all
been set to the same value, then the series may be replaced
with an “all ZERO” or “all ONE' node. In addition, con
secutive leaves that encode the same value may be replaced
with a single node representing the combined bits.

If the current representation is Sub-optimal (e.g., it occu
pies more space than another representation would, or its
access times are slower than another representation) (470)

10

15

25

30

35

40

45

50

55

60

65

6
then the sparse bit set may be automatically re-encoded
using a superior structure (480). When the sparse bit set has
been completely calculated (i.e., when a subquery has been
finished), a final optimization and re-encoding may be
performed to “freeze' the bit set before caching it (490).
This re-encoding may prefer to optimize the bit set for
reduced space or for faster access.

Proceeding from this overview of the function and pos
sible implementations of a sparse bit set according to an
embodiment of the invention, we turn to techniques to
further improve their efficiency. First, it should be noted that
a pass through all records of a data set (Such as described in
connection with FIG. 1) is a computationally expensive
undertaking. Datasets may be too large to fit in memory, so
a beginning-to-end pass involves reading consecutive por
tions of the data from secondary storage (such as a hard disk
or solid-state drive), processing them, and then moving on to
the next portion. FIG. 5 shows how a query processing
system can execute a complex query more efficiently than
simply re-scanning the data set once for each subquery that
must be answered to compute the complex query result.
As in FIG. 1, the complex query is decomposed into a

plurality of simple queries (130). Query planning also deter
mines how to combine the simple-query results to yield the
desired information. Next, a plurality of sparse bit sets are
initialized, each to hold results of one of the subqueries
(510). Then a single pass is made through the dataset, and for
each record (520), and for each subquery (530), the corre
sponding sparse bit set is updated to reflect whether the
record is “in” or “out of the result set for the subquery
(540), before proceeding to the next record (550).

In other words, instead of one pass through the dataset for
each Subquery, the plurality of Subqueries are executed in
parallel during a single pass through the dataset. This allows
the cost of loading dataset blocks from secondary storage to
be amortized over all of the subqueries, rather than being
paid in full for each independent subquery. The trade-off is
that the plurality of sparse bit sets must be simultaneously
accessible so that results for each subquery can be recorded,
but the memory efficiency of the bit sets representation
usually makes this a net positive.

It is appreciated that some complex queries may contain
nested subqueries where an inner subquery requires an
independent pass through the dataset before an outer Sub
query can be executed, but by performing as many subque
ries as possible during each pass (and by caching and reusing
previously-computed subquery results) overall performance
can be improved. In fact, a system may be able to amortize
the cost of a dataset scan among even more subqueries by
aggregating subqueries from multiple complex queries, and
even complex queries issued by multiple users.
At any rate, once the multiple sparse bit sets correspond

ing to the multiple subqueries have been computed, selected
ones of them can be joined, intersected, concatenated,
inverted and/or counted to produce the result sought by the
complex query (550). Bit sets constructed by Boolean opera
tions on another bit set (or another pair of bit sets) are
conceptually simple: one merely indexes through the bits
and performs the appropriate logical operation (AND,
NAND, OR, NOR, XOR, XNOR, NOT) on the input bit(s)
to obtain the output bit. However, this operation can be
completed more quickly if multi-bit leaves or nodes of the
sparse bit set are computed together. For example, a 300-bit
“all ONE' leaf can be inverted to produce a 300-bit “all
ZERO result, and a 700-bit “all ONE' leaf logically
ANDed with any leaf representing up to the same number of
bits, yields the second operand leaf. In other words, logical

US 9,659,061 B2
7

operations between long blocks of same-valued bits can be
optimized according to the following table:

Input 1 Input 2 Operation Output 5

All O Any AND All O (Input 1)
All 1 Any AND Any (Input 2)
All O Any OR Any (Input 2)
All 1 Any OR All 1 (Input 1)
All O Any XOR Any (Input 2) 10
All 1 Any XOR ~Any (Input 2 Inverted)

That is, the result of many binary Boolean operations is
simply one or the other of the input operands.
A practical, flexible and efficient implementation of a 15

sparse bit set node might comprise the elements shown in the
following listing:

Listing 2 2O

10 class SBSNode {
2O union {
30 struct {
40 SBSNode *prev;
50 SBSNode *nxt: 25
60 } :
70 struct {
8O SBSNode *left;
90 SBSNode *right:
1OO
110
120 unsigned bitO; 30
130 unsigned nbits:
140 unsigned skip:
150 bool literal;
160 bool val:
170 unsigned realbits:
18O 35

The node structure can be incorporated into a linked-list
representation using the prev and nxt pointers, or into a
binary tree using left and right. The index of the first bit a
represented by the node is bit0, and nbits is the number of
bits the node represents. Skip indicates the number of bits to
be ignored at the beginning of the node's literal value
(further details below). Literal indicates whether this node
contains actually-represented bits, or is an “all-ZERO” or 45
“all-ONE' node. Val distinguishes between the two types of
all-the-same-value nodes, while the realbits array is where
actually-represented bits are stored in a literal node.
A node may use the skip element if a binary operation

between two different sparse bit sets results in a partial 50
masking between a uniform block of same-valued bits and
a differently-sized block of actually-represented bits. This is
shown in FIG. 9, a sample intersection (logical AND)
between two, 32-bit sparse-bit-set operands. The first oper
and comprises three leaves: eight all-ZERO bits 910, sixteen 55
all-ZERO bits 920, and eight all-ONE bits 930. The second
operand comprises two eight-bit leaves 940 and 950 (their
values are immaterial, because of the short-cut AND opti
mization mentioned above), and a sixteen-bit literal bit leaf
960, whose bit values are represented by the letters A-P 60
The result of the intersection is also contained in three

leaves: eight all-ZERO bits 980, sixteen all-ZERO bits 990,
and a copy 970 of literal leaf 960, where the skip value has
been set so that the first eight bits (A-H) are ignored. Thus,
only the last eight bits (I-P) appear in the result, as shown at 65
977. Between the bit0, nbits and skip values of a leaf, the
generic leaf-node structure of Listing 2 allows leaves to be

8
placed in trees or lists with great flexibility; without these
values (or logical equivalents thereof) bits and leaves might
often have to be shifted, masked, or otherwise manipu
lated—time-consuming operations that an embodiment
should try to avoid.

Recall that bits in bit sets represent interned data values—
integers chosen from a densely-populated range that corre
spond to the literal values in the dataset. Since interned
integers are often assigned in a numeric order that mirrors
another order in the data (e.g., an alphabetical or temporal
order), an in-order Scan through the bit set may yield
pre-ordered data values. Therefore, by using data interning
and sparse bit sets, a separate Sorting operation can often be
avoided.

Sparse bit sets according to an embodiment of the inven
tion find application in Supporting another data-processing
task, as well. Turning to FIG. 6, consider a "dictionary” data
structure comprising a plurality of key/value pairs. When a
dictionary uses integers chosen from a densely-populated
range as keys, a sparse bit set can quickly provide an
indication whether any particular integer exists in the dic
tionary (without requiring a search through the stored keys
to find the value). To store new values in a combination
dictionary/sparse bit set (FIG. 7), the bit corresponding to
the integer key is set in the sparse bit set (710), then the
key/value entry is made in the dictionary (720). To retrieve
a keyed value (FIG. 8), the bit corresponding to the integer
key is located in the sparse bit set (810). If the bit is clear
(820), the dictionary does not contain the value, so a default
value may be returned (830). If the bit is set (840), then the
computationally-expensive dictionary lookup is performed
(850) and the corresponding value is returned (860).
An embodiment of the invention may be a machine

readable medium (including without limitation a non-tran
sitory machine-readable medium) having stored thereon
data and instructions to cause a programmable processor to
perform operations as described above. In other embodi
ments, the operations might be performed by specific hard
ware components that contain hardwired logic. Those opera
tions might alternatively be performed by any combination
of programmed computer components and custom hardware
components.

Instructions for a programmable processor may be stored
in a form that is directly executable by the processor
(“object' or “executable' form), or the instructions may be
stored in a human-readable text form called “source code'
that can be automatically processed by a development tool
commonly known as a “compiler” to produce executable
code. Instructions may also be specified as a difference or
“delta' from a predetermined version of a basic source code.
The delta (also called a “patch') can be used to prepare
instructions to implement an embodiment of the invention,
starting with a commonly-available source code package
that does not contain an embodiment.

In some embodiments, the instructions for a program
mable processor may be treated as data and used to modulate
a carrier signal, which can Subsequently be sent to a remote
receiver, where the signal is demodulated to recover the
instructions, and the instructions are executed to implement
the methods of an embodiment at the remote receiver. In the
Vernacular, Such modulation and transmission are known as
'serving the instructions, while receiving and demodulat
ing are often called “downloading.” In other words, one
embodiment "serves' (i.e., encodes and sends) the instruc
tions of an embodiment to a client, often over a distributed
data network like the Internet. The instructions thus trans
mitted can be saved on a hard disk or other data storage

US 9,659,061 B2

device at the receiver to create another embodiment of the
invention, meeting the description of a machine-readable
medium storing data and instructions to perform Some of the
operations discussed above. Compiling (if necessary) and
executing Such an embodiment at the receiver may result in
the receiver performing operations according to a third
embodiment.

In the preceding description, numerous details were set
forth. It will be apparent, however, to one skilled in the art,
that the present invention may be practiced without some of
these specific details. In some instances, well-known struc
tures and devices are shown in block diagram form, rather
than in detail, in order to avoid obscuring the present
invention.
Some portions of the detailed descriptions may have been

presented in terms of algorithms and symbolic representa
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the preceding discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing or “computing or “calculating or “deter
mining or “displaying or the like, refer to the action and
processes of a computer system or similar electronic com
puting device, that manipulates and transforms data repre
sented as physical (electronic) quantities within the com
puter system's registers and memories into other data
similarly represented as physical quantities within the com
puter system memories or registers or other Such informa
tion storage, transmission or display devices.

The present invention also relates to apparatus for per
forming the operations herein. This apparatus may be spe
cially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com
puter. Such a computer program may be stored in a computer
readable storage medium, including without limitation any
type of disk including floppy disks, optical disks, compact
disc read-only memory (“CD-ROM), and magnetic-optical
disks, read-only memories (ROMs), random access memo
ries (RAMs), eraseable, programmable read-only memories
(“EPROMs), electrically-eraseable read-only memories
(“EEPROMs), magnetic or optical cards, or any type of
media suitable for storing computer instructions.
The algorithms and displays presented herein are not

inherently related to any particular computer or other appa
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will be recited in the claims
below. In addition, the present invention is not described

5

10

15

25

30

35

40

45

50

55

60

65

10
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.
The applications of the present invention have been

described largely by reference to specific examples and in
terms of particular allocations of functionality to certain
hardware and/or software components. However, those of
skill in the art will recognize that larger data sets and faster
query processing can also be accomplished by Software and
hardware that distribute the functions of embodiments of
this invention differently than herein described. Such varia
tions and implementations are understood to be captured
according to the following claims.

We claim:
1. A method of performing space-efficient data query

operations, comprising:
interning fields of a plurality of multi-field records to

produce interned records representing the multi-field
records;

receiving a query to compute a result over the plurality of
multi-field records;

initializing a sparse bit set, said sparse bit set sized to
accommodate a number of distinct values present in
one of the fields of the plurality of multi-field records:

dividing the interned records into two classes according to
the query; and

setting a bit in the sparse bit set for each interned record
of one of the two classes, wherein

an in-memory representation of the sparse bit set, exclu
sive of overhead, occupies fewer bits than the number
of distinct values present in the one of the fields of the
plurality of multi-field records.

2. The method of claim 1 wherein the in-memory repre
sentation of the sparse bit set comprises a plurality of blocks,
all but one of which represent a number of bits that is a
power-of-two multiple of a natural word size, and each Such
block containing exactly one of

all clear bits; or
all set bits; or
a subordinate plurality of blocks of recursive structure, all

of Such blocks having a power-of-two size; or
the power-of-two multiple number of bits, each bit thereof

in either a clear state or a set state.
3. The method of claim 1 wherein the sparse bit set is a

first sparse bit set, the method further comprising:
repeating the receiving, initializing, dividing and setting

operations to produce a second sparse bit set; and
creating a third sparse bit set as a two-operand function of

the first sparse bit set and the second sparse bit set.
4. The method of claim 3 wherein the two-operand

function is one of a union, an intersection, or an exclusive or
of the first sparse bit set and the second sparse bit set.

5. The method of claim 1, further comprising:
determining a number of clear bits in the sparse bit set.
6. The method of claim 1, further comprising:
determining a number of set bits in the sparse bit set.
7. A method for improving access speed for a key-value

dictionary, comprising:
initializing a sparse bit set and a key-value dictionary;
receiving an integer-valued key and a corresponding

value;
setting a bit in the sparse bit set corresponding to the

integer-valued key:
inserting a key-value binding into the key-value diction

ary, a key of said key-value binding equal to the

US 9,659,061 B2
11

integer-valued key, and a value of the key-value bind
ing equal to the corresponding value;

repeating the receiving, setting and inserting operations;
receiving an integer-valued search key:
examining a bit in the sparse bit set corresponding to the

integer-valued search key:
if the bit in the sparse bit set corresponding to the

integer-valued search key is clear, returning a default
value; and

if the bit in the sparse bit set corresponding to the
integer-valued search key is set, searching the key
value dictionary for the integer-valued search key and
returning a value from a key-value binding correspond
ing to the integer-valued search key.

8. The method of claim 7 wherein the default value
indicates that the key-value dictionary does not contain a
value corresponding to the integer-valued search key.

9. The method of claim 7 wherein the integer-valued key
is an integer from a densely-utilized range of integers.

10. The method of claim 9, further comprising:
receiving a non-integer-valued key;
converting the non-integer-valued key to a corresponding

integer drawn from a densely-utilized range of integers;
and

using the corresponding integer as the integer-valued key.
11. A non-transitory computer-readable medium contain

ing instructions and data to cause a programmable processor
to perform operations comprising:

initializing a sparse bit set structure to accommodate a
predetermined number of bits with a predetermined
initial value, said sparse bit set structure occupying
fewer bits in a memory of the programmable processor
than the predetermined number of bits:

modifying the sparse bit set structure to represent one bit
with a complement of the predetermined initial value,
a remainder of said predetermined number of bits
retaining their previous values, said modification yield
ing a modified sparse bit set structure that occupies
fewer bits in the memory of the programmable proces
sor than the predetermined number of bits:

accessing the modified sparse bit structure to retrieve a
current value of an identified one of the predetermined
number of bits; and

returning the current value of the identified one of the
predetermined number of bits.

12. The non-transitory computer-readable medium of
claim 11, containing additional data and instructions to
cause the programmable processor to perform operations
comprising:

concatenating the sparse bit set structure with a second
sparse bit set structure to produce a third sparse bit set
structure representing a number of bits no Smaller than
a sum of the predetermined number of bits and a second
predetermined number of bits represented by the sec
ond sparse bit set structure, said third sparse bit set
structure occupying fewer bits in the memory of the
programmable processor than the sum of the predeter
mined number of bits and the second predetermined
number of bits.

5

10

15

25

30

35

40

45

50

55

12
13. The non-transitory computer-readable medium of

claim 11, containing additional data and instructions to
cause the programmable processor to perform operations
comprising:

computing a Boolean operation between the sparse bit set
structure and a second sparse bit set structure to pro
duce a third sparse bit set structure representing a
number of bits no smaller than a greater of the prede
termined number of bits and a second predetermined
number of bits represented by the second sparse bit set
structure, said third sparse bit set structure occupying
fewer bits in the memory of the programmable proces
sor than the sum of the predetermined number of bits
and the second predetermined number of bits.

14. The non-transitory computer-readable medium of
claim 13 wherein the Boolean operation is one of AND,
NAND, OR, NOR, XOR or XNOR.

15. The non-transitory computer-readable medium of
claim 11, containing additional data and instructions to
cause the programmable processor to perform operations
comprising:

computing a unary operation on the sparse bit set structure
to produce a second sparse bit set structure representing
at least the predetermined number of bits, said second
sparse bit set structure occupying fewer bits in the
memory of the programmable processor than the pre
determined number of bits.

16. The non-transitory computer-readable medium of
claim 11 wherein the sparse bit set structure comprises at
least one leaf node, and wherein each of the at least one leaf
node represents one of

a plurality of clear (“ZERO”) bits:
a plurality of set (“ONE”) bits; or
a plurality of literal bits.
17. The non-transitory computer-readable medium of

claim 16 wherein modifying the sparse bit set structure
comprises:

splitting the at least one node into a plurality of child
nodes, said plurality of child nodes representing a
number of bits equal to a number of bits represented by
the at least one node; and wherein

the plurality of child nodes represent a substantially
identical plurality of bits as the at least one node, except
that the plurality of child nodes represent a single
changed bit value from the plurality of bits of the at
least one node.

18. The non-transitory computer-readable medium of
claim 11, containing additional data and instructions to
cause the programmable processor to perform operations
comprising:

optimizing the sparse bit structure to represent an identi
cal predetermined number of bit values while occupy
ing fewer bits in the memory than the lesser of the
predetermined number of bits and a number of bits in
the memory occupied by the sparse bit structure prior
to the optimizing operation.

k k k k k

