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(57) ABSTRACT 

A technique for verification of a logic design (embodied in a 
netlist) using a liveness-to-safety conversion includes assign 
ing liveness gates for liveness properties of the netlist and 
assigning a single loop gate to provide a loop signal for the 
liveness gates. Assertion of the single loop gate is prevented 
when none of the liveness gates are asserted. A first state of the 
netlist is sampled and the sampled first state provides an 
initial state for a first behavioral loop for at least one of the 
liveness gates following the assertion of the single loop gate. 
The sampled first state of the first behavioral loop is compared 
with a later state of the first behavioral loop to determine if the 
sampled first state is repeated. A liveness violation is returned 
when the sampled first state is repeated and an associated one 
of the liveness gates remains asserted for a duration of the first 
behavioral loop. 
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LOGIC DESIGN VERIFICATION 
TECHNIQUES FOR LIVENESS CHECKING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application is related to commonly 
assigned U.S. patent application Ser. No. (Attorney 
Docket No. AUS92009001OUS1), entitled “LOGIC 
DESIGN VERIFICATION TECHNIQUES FOR LIVE 
NESS CHECKING WITH RETIMING” by Jason R. Baum 
gartner et al. which was filed on even date herewith and is 
incorporated herein by reference in its entirety for all pur 
poses. 

BACKGROUND 

0002 1. Field 
0003. This disclosure relates generally to integrated cir 
cuit logic design verification and, more specifically, to inte 
grated circuit logic design verification techniques for liveness 
checking. 
0004 2. Related Art 
0005. In general, formal verification involves rigorously 
proving that an integrated circuit (IC) logic design (design) 
satisfies an associated specification. Typically, the specifica 
tion of a verification problem includes a netlist representation 
of a design and a set of expected values for specified nets of 
the netlist. As an example, a verification problem may include 
determining whethera state exists in which a particular signal 
is asserted, where assertion of the particular signal indicates a 
fault. Using formal verification, an attempt is made to find a 
counter-example trace that includes a sequence of net values 
over time (states) that leads to an assertion of a particular 
signal or prove that no counter-example trace exists that leads 
to the assertion of the particular signal. 
0006 Formal verification is often performed using state 
space search algorithms, which include unbounded and 
bounded exhaustive search algorithms. Bounded exhaustive 
search algorithms attempt to find an assertion of a particular 
signal that occurs within N time-steps from an initial state of 
a design. Unbounded exhaustive search algorithms increase 
Nuntil no states are encountered that have not already been 
encountered for smaller values of N (a condition referred to 
as a fixed-point). If no path from an initial state to a violating 
state (i.e., a state in which the particular signal is asserted) is 
encountered before the fixed-point is reached, then correct 
ness of a design can be inferred. 
0007. The number of verification cycles required to per 
forman exhaustive state space search increases exponentially 
with the number of state elements (e.g., registers, latches, 
flip-flops, etc.). This exponential relationship makes formal 
Verification impractical for designs containing a large number 
of state elements (e.g., one-hundred or more state elements). 
As a result, semi-formal verification has been employed as a 
Verification technique for large designs. Semi-formal verifi 
cation leverages formal algorithms by applying the formal 
algorithms to larger designs in a resource-bounded manner. 
While requiring less computation time (as compared to for 
mal verification), semi-formal verification may only achieve 
partial verification coverage. 
0008 Verification constraints (constraints) are constructs 
that may be employed in design verification applications. A 
constraint may be implemented as a specially-labeled gate 
(i.e., a constraint gate) in a netlist of a design. In general, a 

Aug. 26, 2010 

constraint represents a limitation on the freedom of a verifi 
cation tool to explore a state space of a design. For example, 
a constraint may prevent a verification application from 
exploring any time-step trace in which any of one or more 
constraints evaluate to a logical Zero during any of the T time 
steps. Typically, a constraint defines a portion of a state space 
of a design that is irrelevant for Verification purposes and, as 
Such, would unnecessarily consume verification resources if 
the constraint were verified. As one example of a constraint, 
a design may be constrained to prevent new transfers of data 
when a buffer is full. In general, constraining inputs of the 
design to prohibit data transfers when the buffer is full means 
that a verification tool does not cover states that represent the 
design accepting new data transfers when the buffer is full. 
0009. In the absence of a constraint, a typical verification 
problem is stated as, for example, find a step trace that exhib 
its a violation of a property or prove that no Such trace exists 
for any j”. With a constraint, the same verification problem 
may be expressed as, for example, find a step trace that 
exhibits a violation of a property and does not exhibit a logical 
Zero value for any constraint in any of the steps, or prove 
that no such trace exists for any . Because constraints alter 
the semantics of a verification problem, constraints have the 
potential to cause a property that could be reached by a design 
to become unreachable. As such, it is desirable to select 
constraints judiciously. In general, constraints should not 
alter semantics of a verification problem. A constraint, for 
example, that would prevent a verification tool from discov 
ering a valid assertion of a signal should not be permitted. 
Because constraints prohibit the exploration of certain other 
wise reachable states, redundancy removal algorithms may 
leverage constraints to enable greater gate merging. In par 
ticular, redundancy removal algorithms may merge gates that 
are equivalent in all states reachable along paths that do not 
violate any constraints, even if the merged gates are not 
equivalent in Some states that are reachable only after violat 
ing a constraint. 
0010. As previously mentioned, a verification tool oper 
ates on a model of a design known as a netlist. A netlist 
includes gates and edges, which represent interconnections 
between gates. A gate may, for example, fall into one of four 
broad functional categories: constant gates, random gates, 
combinational gates, and state elements (e.g., registers and 
sequential gates, such as latches and flip-flops). A constant 
gate produces a logic level that does not vary with time. A 
random gate (also referred to as a primary input) may assume 
any logic level in any time-step independent of all other gates. 
A combinational gate is a logical element such as an AND 
gate, an OR gate, a NAND gate, a NOR gate, etc. A sequential 
gate has an associated initial value function and a next state 
function. The value of a sequential gate at time 0 (tO) is the 
value of the initial value function. The value of a sequential 
gate at time i+1 is equal to the value of the next state function 
of the sequential gate at time i. 
0011. A cutpoint gate may be introduced (into a modified 
netlist) by replacing a sequential gate in an original netlist 
with a random gate. An output of a random gate drives the 
same inputs in the modified netlist as an associated sequential 
gate drove in an original netlist. Unlike the inputs of the 
sequential gate in the original netlist, however, the inputs of 
the random gate are random inputs that are not connected to 
any other elements of the modified netlist. Inputs to a random 
gate can assume any value on any gate cycle irrespective of 
other stimulus applied to a design. As such, the net effect of 
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introducing cutpoints into a netlist may be to over-approxi 
mate the behavior of a design, as a random gate can simulate 
behavior of the sequential gate, while the converse is not 
necessarily true. As an over-approximate model of an original 
netlist, a modified netlist may include states from which a 
target gate could not be asserted in the original netlist. 
0012 Retiming techniques, which were originally devel 
oped for enhanced synthesis, have more recently been pro 
posed to enhance verification (i.e., reduce verification time) 
through reduction in latch (flip-flop) count. Generally speak 
ing, retiming refers to the process of moving latches across 
combinational gates. In general, many prior art retiming algo 
rithms have shifted every gate in a design under verification 
by an arbitrary amount, which may pose challenges to the use 
of retiming in a verification setting under the presence of 
constraints. 
0013 Liveness checking of a design refers to verification 
of properties (of the design), which are used to assess whether 
the design eventually behaves in a correct manner. For 
example, when Verifying an arbiter, it may be desirable to 
check a property that, for example, states every request pre 
sented to the arbiter is eventually granted. Any counter 
example trace to the property must be of infinite length to 
show a request that never receives a grant (i.e., an infinite 
length sequence of bad behavior). A counter-example trace is 
often represented using a finite-length trace, where some 
suffix of the trace (denoted by assertion of a specially-added 
LOOP signal (with a corresponding loop gate) added by a 
verification tool), which starts with a state and ends with the 
same state, may be infinitely repeated. For example, assum 
ing that a traceruns from time '0' (t0) to time '50' (t50) and the 
LOOP signal is asserted at time 20 (t20), an initial state of a 
design at time t20 must correspond to a final State of the 
design at time t50 for a valid counter-example for the suffix 
(which extends from times t20 to t50). Semantically, the 
finite-length trace represents an infinite length counter-ex 
ample as Suffix (loop) behavior may be repeated as many 
times as desired to provide a request without a grant scenario. 
0014 Liveness checking may be contrasted with safety 
checking, which may be represented by checking whether a 
given signal of a design is ever asserted to a logical one. In 
general, safety checking refers to design verification of a 
property that may be disproven in a finite amount of time. In 
contrast, liveness checking refers to design verification of a 
property that requires an infinite amount of time to disprove. 
Liveness checking for a design can be cast as safety checking 
for the design through a known transformation, which facili 
tates sampling a current state of the design and later checking 
for a repetition of the state which completes a behavioral loop. 
However, the known transformation effectively doubles state 
elements of the design during verification and, as such, adds 
Substantial overhead to a verification process. 

SUMMARY 

0015. According to one aspect of the present disclosure, a 
technique for verification of a logic design (embodied in a 
netlist) using a liveness-to-safety conversion includes assign 
ing liveness gates for liveness properties of the netlist and 
assigning a single loop gate to provide a loop signal for the 
liveness gates. Assertion of the single loop gate is prevented 
when none of the liveness gates are asserted. A first state of the 
netlist is sampled and the sampled first state provides an 
initial state for a first behavioral loop for at least one of the 
liveness gates following the assertion of the single loop gate. 
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The sampled first state of the first behavioral loop is compared 
with a later state of the first behavioral loop to determine if the 
sampled first state is repeated. A liveness violation is returned 
when the sampled first state is repeated and an associated one 
of the liveness gates remains asserted for a duration of the first 
behavioral loop. The technique may be implemented by 
instructions executed in a computer system. 
0016. According to another aspect of the present disclo 
Sure, a technique for performing liveness checking of a logic 
design embodied in a netlist includes attempting to prove that 
a liveness gate cannot remain asserted for a bound k that 
corresponds to a number of time-steps in a first trace. When 
the liveness gate does not remain asserted for the bound k, 
an unbounded proof of correctness is returned. When the 
liveness gate remains asserted for the bound k, the technique 
attempts to prove that a first state of the first trace can be 
repeated during a second trace. When the first state is repeated 
during the second trace and the liveness gate remains 
asserted, a concatenated trace (including the first and second 
traces) is returned that corresponds to an unbounded failure. 
The technique may be implemented by instructions executed 
in a computer system. 

BRIEF DESCRIPTION OF TELE DRAWINGS 

0017. The present invention is illustrated by way of 
example and is not intended to be limited by the accompany 
ing figures, in which like references indicate similar ele 
ments. Elements in the figures are illustrated for simplicity 
and clarity and have not necessarily been drawn to scale. 
0018 FIG. 1 is a diagram of an example computer system 
that may be employed to execute a verification tool config 
ured according to the present disclosure. 
0019 FIG. 2 is a flowchart of an example process for 
Verification of an integrated circuit logic design (design), 
according to one embodiment of the present disclosure. 
0020 FIG. 3 is a flowchart of an example process for 
Verification of a retimed design, according to another embodi 
ment of the present disclosure. 
0021 FIG. 4 is a flowchart of an example process for 
Verification of a design, according to yet another embodiment 
of the present disclosure. 

DETAILED DESCRIPTION 

0022. As will be appreciated by one of ordinary skill in the 
art, the present invention may be embodied as a method, 
system, or computer program product. Accordingly, the 
present invention may take the form of an entirely hardware 
embodiment, an entirely software embodiment (including 
firmware, resident Software, microcode, etc.), or an embodi 
ment combining Software and hardware aspects that may all 
generally be referred to herein as a “circuit.” “module,” or 
“system.” Furthermore, the present invention may take the 
form of a computer program product on a computer-usable 
storage medium having computer-usable program code 
embodied in the medium. 
0023. Any suitable computer-usable or computer-read 
able storage medium may be utilized. The computer-usable or 
computer-readable storage medium may be, for example, but 
is not limited to, an electronic, magnetic, optical, electromag 
netic, infrared, or semiconductor system, apparatus, or 
device. More specific examples (a non-exhaustive list) of the 
computer-readable storage medium includes: a portable com 
puter diskette, a hard disk, a random access memory (RAM), 
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a read-only memory (ROM), an erasable programmable read 
only memory (EPROM) or Flash memory, a portable com 
pact disc read-only memory (CD-ROM), an optical storage 
device, or a magnetic storage device. It should be noted that 
the computer-usable or computer-readable storage medium 
could even be paper or another Suitable medium upon which 
the program is printed, as the program can be electronically 
captured, via, for instance, optical scanning of the paper or 
other medium, then compiled, interpreted, or otherwise pro 
cessed in a suitable manner, if necessary, and then stored in a 
computer memory. In the context of this disclosure, a com 
puter-usable or computer-readable storage medium may be 
any medium that can contain or store the program for use by 
or in connection with an instruction execution system, appa 
ratus, or device. 
0024 Computer program code for carrying out operations 
of the present invention may be written in an object oriented 
programming language. Such as Java, Smalltalk, C++, etc. 
However, the computer program code for carrying out opera 
tions of the present invention may also be written in conven 
tional procedural programming languages. Such as the “C” 
programming language or similar programming languages. 
0025. The present invention is described below with ref 
erence to flowchart illustrations and/or block diagrams of 
methods, apparatus (systems), and computer program prod 
ucts according to embodiments of the invention. It will be 
understood that each block of the flowchart illustrations and/ 
or block diagrams, and combinations of blocks in the flow 
chart illustrations and/or block diagrams, can be imple 
mented by computer program instructions. These computer 
program instructions may be provided to a processor of a 
general purpose computer, special purpose computer, or other 
programmable data processing apparatus to produce a 
machine, such that the instructions, which execute via the 
processor of the computer or other programmable data pro 
cessing apparatus, create means for implementing the func 
tions/acts specified in the flowchart and/or block diagram 
block or blocks. 
0026. These computer program instructions may also be 
stored in a computer-readable memory that can direct a com 
puter or other programmable data processing apparatus to 
function in a particular manner, Such that the instructions 
stored in the computer-readable memory produce an article of 
manufacture including instructions which implement the 
function/act specified in the flowchart and/or block diagram 
block or blocks. 
0027. The computer program instructions may also be 
loaded onto a computer or other programmable data process 
ing apparatus to cause a series of operations to be performed 
on the computer or other programmable apparatus to produce 
a computer implemented process Such that the instructions 
which execute on the computer or other programmable appa 
ratus implement the functions/acts specified in the flowchart 
and/or block diagram block or blocks. As may be used herein, 
the term “coupled includes both a direct electrical connec 
tion between blocks or components and an indirect electrical 
connection between blocks or components achieved using 
one or more intervening blocks or components. 
0028. In general, known approaches for liveness checking 
have failed to address efficient modeling of liveness checks 
for semi-formal search paradigms, which may non-exhaus 
tively explore a behavior of an IC logic design (design) under 
verification. Furthermore, known approaches for liveness 
checking have generally failed to provide an efficient auto 
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mated mechanism to leverage multiple distinct algorithms 
and models of liveness foran overall more efficient and robust 
Verification process. 
0029. According to one or more aspects of the present 
disclosure, efficient and robust techniques for verifying live 
ness properties (e.g., by converting them to safety properties) 
and applying a semi-formal verification paradigm (to achieve 
correctness proofs or obtain valid counter-examples) are dis 
closed herein. According to one or more embodiments, a 
technique to prevent exploration ofuseless behavioral loops, 
after which no liveness violations may occur, is disclosed. In 
general, the technique not only benefits non-exhaustive 
search algorithms (e.g., semi-formal search algorithms), but 
may also enhance proof of correctness (e.g., by reducing a 
degree of over-approximation). According to other aspects of 
the present disclosure, various techniques may be employed 
to simplify verification processes associated with the live 
ness-to-safety conversion. According to various embodi 
ments, techniques are implemented to leverage multiple mod 
els and verification paradigms to solve liveness checking 
problems efficiently and robustly. 
0030. With reference to FIG. 1, an example computer sys 
tem 100 is illustrated that may be configured to execute a 
Verification tool (configured to Verify an integrated circuit 
logic design (design)) and a retiming engine (configured to 
retime latches of the design for the verification tool) that are 
configured according to various embodiments of the present 
disclosure. The computer system 100 includes a processor 
102 that is coupled to a memory subsystem 104, a display 
106, an input device 108, and mass storage device(s) 110. The 
memory Subsystem 104 includes an application appropriate 
amount of Volatile memory (e.g., dynamic random access 
memory (DRAM)) and non-volatile memory (e.g., read-only 
memory (ROM)). The display 106 may be, for example, a 
cathode ray tube (CRT) or a liquid crystal display (LCD). The 
input device 108 may include, for example, a mouse and a 
keyboard. The mass storage device(s) 110 (which may 
include, for example, a compact disc read-only memory (CD 
ROM) drive and/or a hard disk drive (HDD)) are configured to 
receive or include discs that store appropriate code (e.g., an 
operating system (OS), a verification tool including a retim 
ing engine, etc.). 
0031. According to various aspects of the present disclo 
sure, a netlist is defined to include a finite directed graph with 
Vertices (representing gates) and edges (representing inter 
connections between gates). The gates may include constant 
gates, random gates (primary inputs), combinational gates 
(e.g., AND gates, OR gates, NAND gates, and NOR gates), 
and State elements (e.g., registers and sequential gates such as 
latches and flip-flops). As noted above, a sequential gate has 
two associated components: a next-state function; and an 
initial-value function. The associated components of a 
sequential gate are represented as other gates in the graph. 
Semantically, for a given sequential gate, a value appearing at 
an initial-value function gate at time '0' (where the time to is 
an initialization or reset time) is applied as the value of the 
sequential gate at time to and a value appearing at a next-state 
function gate at timei is applied to the sequential gate at time 
i+1. A set of values for all state elements in a netlist is 
referred to herein as a state. 
0032. When employing a safety-to-liveness conversion, 
selected gates in a netlist may be labeled target gates and 
liveness gates. Target gates correlate to safety properties, 
where a goal of the verification process is to find a way to 
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drive a logical one to a target gate, or to prove that no Such 
assertion of the target gate is possible. A liveness gate corre 
lates to a different type of property that requires verification. 
In particular, the goal is to demonstrate that a liveness gate 
may be held at a logical one forever (and to generate a 
counter-example trace that illustrates the liveness property, if 
a valid counter-example trace is found), or to prove that the 
liveness gate cannot stay at a logical one forever. In a liveness 
counter-example, a liveness gate may be employed that ini 
tializes to logical Zero and at Some point in a counter-example 
trace becomes and stays at a logical one, assuming the 
counter-example trace is valid. 
0033 For example, for a counter-example of a request (for 
a bus) never receiving a grant, a liveness gate initializes to a 
logical Zero, transitions to a logical one when a request is 
detected, and transitions to a logical Zero when a grant is 
detected. For a valid counter-example, the liveness gate must 
transition to a logical one and remain at a logical one for the 
length of a trace suffix. Semantically, the suffix of the trace 
where the LOOP signal asserts to and remains at a logical one 
represents a state repetition sequence that may be infinitely 
repeated. In general, a liveness gate must evaluate to a logical 
one throughout a trace suffix in order for the suffix to consti 
tute a valid counter-example. 
0034 Constraint gates, which represent constraints, may 
be implemented to artificially limit the stimulus that can be 
applied to a random gate of a design. For example, when 
searching for a way to drive a target gate to a logical one, a 
verification process may adhere to the rule that every con 
straint gate must evaluate to a logical one for every time-step 
up to and including the time-step at which the target gate is 
asserted. As one example, a constraint may be added to drive 
a logical one exactly when a vector of a random gate evaluates 
to even parity. Without this constraint, a verification tool 
would explore valuations with even or odd parity to the ran 
dom gate. In the above case, only even parity would be 
explored. 
0035. A known technique for casting liveness properties to 
safety targets is to duplicate the state elements of a netlist. 
Under the control of a new random gate, representing asser 
tion of a LOOP signal, the duplicated state elements sample 
and hold a current state of a design. The termination of a 
behavioral loop can then be detected by comparing the 
sampled State in the duplicated State elements with a current 
state of the netlist. Provided that an associated liveness gate 
remains asserted to a logical one during the duration of the 
LOOP signal (which can be detected by an accumulator that 
remembers any deassertion of the liveness gate since asser 
tion of the LOOP signal), a valid counter-example to the 
liveness property is indicated. It should be appreciated that 
the resulting process may be implemented Solely as a safety 
target. 
0036) Numerous algorithms may be employed when 
attempting to verify safety targets of a netlist. Formal verifi 
cation algorithms attempt to exhaustively verify a design, 
againstall behaviors, to expose design flaws and yield proofs 
of correctness. There are numerous types of formal algo 
rithms, from techniques which exhaustively enumerate an 
exact set of reachable states of the netlist to over-approximat 
ing techniques such as induction. Exact techniques (e.g., 
reachability analysis) are advantageous as they typically 
always generate conclusive results (i.e., pass or fail). How 
ever, exact techniques are computationally expensive and, as 
Such, are typically only applicable to relatively small netlists. 
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In general, over-approximating techniques are more readily 
scaled than exact techniques. Unfortunately, over-approxi 
mating techniques may be inconclusive and generate spurious 
failures due to the nature of the over-approximation, which 
may not be valid with respect to an original design. 
0037 Semi-formal verification algorithms are scalable 
techniques which may be useful in exposing design flaws. 
However, semi-formal verification algorithms are generally 
incapable of yielding proofs of correctness, as semi-formal 
Verification algorithms generally do not fully explore a 
behavior of a design. For example, a semi-formal verification 
technique may employ random simulation to sample various 
reachable states of a design and then perform resource 
bounded exhaustive search to explore all states reachable 
within N time-steps from the various reachable states. 
0038. As noted above, according to at least one aspect of 
the present disclosure, a technique is implemented to prevent 
the exploration of useless behavioral loops, after which no 
liveness violations may occur. In general, the technique ben 
efits incomplete search techniques (e.g., semi-formal analy 
sis) and may also enhance proof of correctness by, for 
example, reducing a degree of over-approximation. In the 
previously-mentioned liveness-to-safety conversion, it is 
possible for a sampled behavioral loop to become irrelevant 
due to a variety of reasons. As a first example, a liveness gate 
may deassert after a LOOP signal is asserted (and a state of an 
associated netlist is sampled). In this case, an associated trace 
suffix does not constitute a valid counter-example for the 
liveness gate that deasserted. As a second example, when a 
state of a behavioral loop is sampled too early, the sampled 
state is not repeatable even if a later state of the behavioral 
loop is repeatable and would constitute a valid counter-ex 
ample. 
0039. When exhaustive formal analysis of a design is per 
formed, the above two occurrences are not particularly impor 
tant as the occurrences are merely irrelevant behaviors that 
are eventually explored and ignored and, as Such, any relevant 
counter-examples are still found. However, when employing 
semi-formal searches, the two occurrences may render the 
semi-formal searches ineffective. A straight-forward solution 
to the above problem is generally complicated. 
0040. One may attempt to prevent problems associated 
with the first example by preventing the LOOP signal from 
asserting until a liveness gate first asserts. However, for effi 
ciency, it is usually desirable to only create one loop gate to 
track the LOOP signal for all liveness gates of a netlist with 
multiple liveness properties. In this case, the LOOP signal 
may assert before a given one of the liveness gates asserts. 
One may attempt to prevent problems associated with the 
second example by checking for the repetition of any state 
since the assertion of the LOOP signal, as contrasted with 
merely checking for a repetition of a state when the LOOP 
signal first asserts. However, such an approach does not usu 
ally work for symbolic analysis (e.g., Boolean satisfiability 
(SAT) or binary decision diagram (BDD) based analysis) or 
when the Solution is implemented in a hardware device, since 
it is usually not possible to enumerate an arbitrarily large set 
of states using a finite-sized netlist. 
0041 According to at least one aspect of the present dis 
closure, the assertion of a LOOP signal may be prevented 
from occurring when no liveness gate is at a logical one. In 
general, not beginning a behavioral loop when no liveness 
gate is at a logical one prevents a semi-formal search from 
wasting resources. According to another aspect of the present 
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disclosure, a constraint may be added that not all accumula 
tors that track deassertion of respective liveness gates can flag 
Such invalid conditions. In general, this forces a semi-formal 
search to backtrack as soon as the search becomes useless 
with respect to all liveness properties (as the constraint is not 
met when all the accumulators for the liveness gates are 
deasserted) and, thus, precludes the inefficiency exhibited in 
the first example. The above-mentioned constraint may also 
advantageously enhance the ability of over-approximate for 
mal analysis techniques to render a proof of correctness, as 
constraints preclude the reachability of certain behaviors of 
the design. In this case, states which are succeeded by deas 
sertion of the liveness gates become constrained which 
reduces the over-approximation inherent in Such techniques. 
0042. To fully address inefficiencies associated with the 
second example, a reset mechanism may be built into the 
LOOP signal assertion to allow periodic resampling of the 
state. For efficiency, it is usually desirable that the underlying 
semi-formal search procedure not resample too frequently. 
For example, employing a fifty percent bias would result in 
resampling every second time-step. Resampling of a state 
may be implemented by, for example, implementing a con 
figurable bias for the random signal to trigger resampling of 
the state. A more intricate Solution may be employed to allow 
a semi-formal search to adaptively tailor itself. For example, 
a resampling trigger may be based upon specific criteria, e.g., 
a range of time-steps relative to an initial state or relative to a 
user-specified or automatically derived scenario having been 
encountered in a design (e.g., a user of a verification tool, or 
an automated process, may specify one or more coverage 
goals which reflects a scenario of interest for the design (e.g., 
a buffer of a design becoming full or an arbiter receiving ten 
simultaneous requests)) and behavioral loop sampling may 
occur concurrently with or within a specified time-range after 
one of the scenarios is encountered. 

0043. Various techniques may be employed to simplify the 
Verification problem associated with liveness-to-safety con 
version. For example, Verification performance may be 
improved if redundancy is eliminated from a netlist. That is, 
if two state elements can be determined to behave identically 
in all reachable states, Verification performance may be 
enhanced by merging one of the state elements into the other 
state element. Similarly, if two state elements can be demon 
strated to be antivalent (opposite) in all reachable states, 
verification performance may be enhanced if one of the state 
elements is merged into the inverse of the other state element. 
Causing duplicate state elements to initialize equivalently to 
counter-part state elements that they shadow and causing the 
duplicate state elements to update to concurrently identical 
values as the counter-part state elements that they shadow 
(until the LOOP signal asserts) preserves dependency rela 
tions between original state elements of the netlist and the 
duplicated State elements. 
0044 According to another aspect of the present disclo 
sure, sampling of a behavior loop state (as dictated by a LOOP 
signal assertion) may be configured to specific points in time 
to better utilize semi-formal search. To reduce resource 
requirements (e.g., when a SAT-based analysis is used to 
detect state repetition), checking for repetition of a sampled 
behavior loop state may be forced to occur within a specific 
time-range after sampling of the state, upon a user generated 
coverage event, or an automatically generated coverage 
event. 
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0045. With reference to FIG. 2, a process 200 for verifica 
tion of a logic design (embodied in a netlist) using a liveness 
to-safety conversion is depicted. In block 202 the process 200 
is initiated, at which point control transfers to block 204. In 
block 204, liveness gates and accumulators are assigned for 
each liveness property of the netlist. As noted above, the 
accumulators remember any deassertion of an associated 
liveness gate since assertion of the LOOP signal. Then, in 
block 206, a single loop gate is assigned to provide a LOOP 
signal for all of the liveness gates. Next, in block 207, a 
selected amount of semi-formal analysis is performed for the 
design. Then, in decision block 208, the process 200 deter 
mines whether any of the liveness gates are asserted. If none 
of the liveness gates are asserted in block 208, control loops 
back to block 207 (where a selected amount of semi-formal 
analysis of the design is performed) to prevent assertion of the 
single loop gate (when none of the liveness gates are 
asserted). 
0046. In block 208, when at least one of the liveness gates 

is asserted, control transfers to decision block 209 where the 
process 200 determines whether a behavioral loop should be 
initiated (i.e., whether a first state should be sampled and the 
design checkpointed). When assertion of the LOOP signal is 
not indicated, control transfers from block 209 to block 207. 
When assertion of the LOOP signal is indicated, control 
transfers from block 209 to block 210, where the single loop 
gate is asserted and the liveness gates that are asserted are 
recorded. Then, in block 212, a first state of the netlist is 
sampled responsive to assertion of the single loop gate. The 
sampled first state provides an initial state for a first behav 
ioral loop for at least one of the liveness gates (following the 
assertion of the single loop gate). 
0047 Next, in block 213, the accumulators for the liveness 
gates are initialized. Then, in block 214, an additional amount 
of semi-formal analysis is performed in an attempt to provide 
a later state that corresponds to the sampled first state. Next, 
in decision block 215, the process 200 determines whether all 
of the accumulators are deasserted. In this case, an associated 
constraint is not met when all the accumulators for the live 
ness gates are deasserted. That is, when all of the liveness 
gates are deasserted, the previously performed semi-formal 
analysis is no longer of value. If all of the accumulators are 
deasserted in block 215, control transfers to block 207. If all 
of the accumulators are not deasserted in block 215, control 
transfers to block 216 where the sampled first state of the first 
behavioral loop is compared with the later state (e.g., a ter 
minal state of the first behavioral loop) of the netlist to deter 
mine if the sampled first state is repeated. 
0048. Then, in block 217, a liveness violation is returned if 
the sampled first state is repeated and an associated one of the 
accumulators (that tracks deassertion of the appropriate live 
ness gate) remains asserted for a duration of the first behav 
ioral loop. Following block 217, control transfers to decision 
block 218, where the process 200 determines whether resa 
mpling of a design state is indicated. When a resampling of 
the design state is indicated in block 218 (e.g., when a trigger 
is received), control transfers to block 207. For example, the 
trigger may be based on a configurable bias to a random signal 
of a random gate of the netlist. Alternatively, a more intricate 
Solution may be employed to allow a semi-formal search to 
adaptively tailor itself. 
0049. For example, a resampling trigger may be based 
upon specific criteria, e.g., a range of time-steps relative to an 
initial state or relative to a user-specified or automatically 



US 2010/021815.0 A1 

derived scenario having been encountered in a design (e.g., a 
user of a verification tool or an automated process may 
specify one or more coverage goals which reflect a scenario of 
interest for the design (e.g., a buffer of a design becoming full 
oran arbiter receiving ten simultaneous requests)) and behav 
ioral loop sampling may occur concurrently with or within a 
specified time-range after one of the scenarios is encountered. 
When a resampling of the design state is not indicated in 
block 218, control transfers to decision block 219. In block 
219 when a termination of the process 200 is not indicated 
(e.g., when a first state is not repeated and the liveness gate is 
still asserted), control transfers to block 214, where an addi 
tional amount of semi-formal analysis is performed in an 
attempt to provide a new later state that equals the sampled 
first state. In block 219 when a termination of the process 200 
is indicated, control transfers to block 220 where the process 
200 terminates and control returns to a calling routine. 
0050. According to another embodiment, a technique to 
leverage multiple models and verification paradigms to solve 
a liveness checking problem efficiently and robustly may be 
implemented. The technique is based on the fact that if a 
liveness property cannot be violated, then there exists a finite 
bound for which an associated liveness gate cannot remain 
asserted. When bound, a liveness property can be proven 
correct with less overhead than required by a liveness-to 
safety conversion, which requires duplicating all state ele 
ments. In this case, it may be directly proven that a corre 
sponding liveness gate cannot remain asserted for longer than 
the specified bound (i.e., by checking a bounded liveness 
condition), which requires only log(bound) additional state 
elements instead of doubling the state element count of the 
original netlist. 
0051) The log(bound) state elements are used to imple 
ment a counter to record how many time-steps a particular 
liveness gate was asserted. In particular, the counter incre 
ments by one each time-step and is reset to a logical Zero 
whenever the liveness gate is deasserted. To assess whether 
the liveness gate remained asserted for a bound number of 
time-steps, a check is performed to determine whether the 
counter reached a value for the bound. However, a given 
bound is difficult to determine and if a trace is computed that 
exceeds the given bound, the resulting trace cannot necessar 
ily be extended to an infinite length counter-example. In this 
case, it may be ambiguous as to whether the bound was too 
small or whether the liveness property truly will fail. How 
ever, if the bound is made adequately large, it becomes more 
likely that the corresponding unbounded liveness property 
truly will fail. 
0052 According to this aspect of the present disclosure, a 
technique is employed that iteratively probes for an adequate 
bound to enable a proof of correctness, without the explicit 
behavioral loop state check. In general, the technique lever 
ages traces that show the bounds were exceeded to attempt to 
more efficiently look for unbounded failures. The technique 
may be run in parallel to and independently from proof of 
correctness or falsification analysis and may be performed 
directly upon unbounded behavioral loop checking. At the 
outset, an initial value for a bound k is selected. While the 
bound is not solved, an arbitrary verification algorithm may 
be utilized to attempt to demonstrate that the liveness gate 
cannot stick at a logical one for k time-steps. Assuming that 
the liveness gate does not stick at a logical one for k time 
steps, an unbounded proof of correctness is indicated. 
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0053 When a trace is obtained showing that the liveness 
gate can stick at a logical one for k time-steps, a specified 
amount of resources may be employed to see if a state (e.g., a 
terminal state) of the trace can be repeated while retaining the 
liveness gate assertion. When state repetition is detected, the 
resulting trace may be concatenated with the trace that indi 
cates the liveness gate stuckatalogical one and the result may 
be returned as an unbounded failure. If state repetition cannot 
be detected, the bound may be increased to a new value (e.g., 
a user-specified value, or one derived automatically, Such as 
by doubling the prior value) of k and the verification algo 
rithm may be utilized with the new value of k in an attempt 
to demonstrate that the liveness gate cannot stick at a logical 
one for k time-steps. 
0054 With reference to FIG. 3, an example process 300 
for performing liveness checking of a logic design (embodied 
in a netlist) is illustrated. The process 300 may be run in 
parallel with the process 200 of FIG. 2. In this case, when one 
of the processes 200 or 300 solves the problem, the remaining 
process 300 or 200 is terminated. The process 300 is initiated 
in block 302, at which point control transfers to block 304, 
where a bound k is initialized to a selected value. Next, in 
block 306, the process 300 attempts to prove a liveness gate 
cannot remains asserted for k time-steps. Then, in decision 
block 308, when a proof is obtained that the liveness gate 
cannot remain asserted for k time-steps, an unbounded 
proof of correctness is indicated and control transfers from 
block 308 to block 318, where an unbounded proof of cor 
rectness is returned. Following block 318, control transfers to 
block 320, where the process 300 terminates and control 
returns to a calling routine. In block 308, when a proof is not 
obtained that the liveness gate cannot remain asserted fork 
time-steps, a possible valid counter-example trace is indi 
cated and control transfers to decision block 310. 

0055. In block 310, the process 300 determines whether a 
first trace is obtained (i.e., whether the liveness gate remained 
asserted for k time-steps. If a first trace is not obtained, 
control transfers from block 310 to block 306. If a first trace 
is obtained, control transfers from block 310 to block 312. In 
block 312, the process 300 attempts to prove that a state (e.g., 
a terminal state) of the first trace is repeated during a second 
trace while the liveness gate remains asserted. Next, in block 
314, the process 300 determines if the state of the first trace is 
repeated in the second trace while the liveness gate remains 
asserted (i.e., whether a second trace is obtained). If the state 
of the first trace is not repeated during the second trace, 
control transfers from block 314 to block 321. In block 321, 
the process determines whether the analysis is to terminate. 
0056. Iftermination of the process is not indicated in block 
321, control transfers to block 322 where the bound k is 
updated. From block 322, control transfers to block 306. If 
termination of the process is indicated in block 321, control 
transfers to block 320. If the state of the first trace is repeated 
during the second trace and the liveness gate remains 
asserted, control transfers from block 314 to block 316. In 
block 316 a concatenated trace (including the first and second 
traces) is returned as an unbounded failure. Following block 
316, control transfers to block 320. The process 300 may be 
run in parallel to and independently from proof of correctness 
or falsification analysis and may be performed directly upon 
unbounded behavioral loop checking. 
0057. In general, the disclosed techniques may be 
employed to enhance virtually any verification paradigm. For 
example, the techniques disclosed herein are broadly appli 



US 2010/021815.0 A1 

cable to formal verification techniques (e.g., BDDs and 
SATs) and semi-formal techniques which perform incom 
plete verification. The disclosed techniques may also be 
implemented in hardware acceleration frameworks. For 
example, as the process 200 of FIG. 2 may be implemented 
solely through altering a netlist representation of a problem, 
the problem can be readily implemented in a hardware accel 
eration framework or executed through a fabricated chip. 
0058 As noted above, retiming is a technique that is 
employed (during verification) to reduce the number of 
latches in a design by shifting the latches across combina 
tional gates. The number of latches shifted backward across a 
given gate is referred to herein as the lag of the given gate. 
The lag of a gate represents the number of time-steps that the 
gate, after retiming, delays the valuations of that gate before 
retiming. Retiming has been demonstrated to be a powerful 
technique to enhance verification, due to the ability of retim 
ing to reduce latch count in a design. However, the use of 
retiming as a simplifying pre-processing technique for live 
ness checking is a highly intricate process. For example, 
employing retiming with liveness checking requires guaran 
teeing that any verification result obtained after retiming 
maps to a consistent result on a design prior to retiming. 
0059. According to another embodiment of the present 
disclosure, a technique is disclosed that uses retiming as a 
simplifying pre-process to the Verification of liveness prop 
erties. In particular, the retiming formulation is constrained 
such that verification results obtained subsequent to retiming 
imply valid results for the design prior to retiming. In general, 
the disclosed technique facilitates consistent mapping of 
results across a retiming engine and, in this manner, makes the 
use of retiming transparent to a user. 
0060 Liveness checks often require the specification of 
fairness constraints, which impose restrictions on behavior 
(during a behavioral loop) that may be presented as a failure. 
For example, assuming an arbiter under Verification has a 
skewed priority Scheme Such that high-priority requests 
always take priority over low-priority requests, an infinite 
sequence of high-priority requests may starve out low-prior 
ity requests in a valid design. In this case, reporting of failures 
where high-priority requests within a behavioral loop starve 
out low-priority requests should be avoided. In this example, 
the deassertion of high-priority requests may be specified as a 
fairness constraint. 

0061 According to this aspect of the present disclosure, 
certain gates are labeled as liveness gates or fairness gates. As 
noted above, a liveness gate correlates to a liveness property 
that is to be verified. In particular, to prove a liveness property, 
the goal is to demonstrate that the liveness gate may be held at 
a logical one forever (and to generate a counter-example trace 
illustrating the scenario if a valid counter-example trace is 
found), or to prove that the liveness gate cannot stay at a 
logical one forever. As noted above, in a liveness counter 
example, a special gate (i.e., a loop gate), which initializes to 
a logical Zero and at Some point in a trace becomes and stays 
at a logical one, is employed. Semantically, the Suffix of the 
trace where the LOOP signal is at a logical one represents a 
state repetition sequence which may be infinitely repeated. As 
noted above, a liveness gate must evaluate to a logical one 
throughout the Suffix to constitute a valid counter-example. In 
contrast, a fairness gate is a gate which must be asserted to a 
logical one for at least one time-step within any behavioral 
loop that is returned as a valid counter-example. 
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0062 Retiming in the presence of liveness is a non-trivial 
problem, as retiming may shiftgates of the design by different 
amounts and in this manner alter the semantics of the liveness 
and fairness problem. For example, assuming a liveness gate 
is forward retimed by five time-steps and a fairness gate is 
forward retimed by four time-steps, the retimed behavior of 
the liveness gate is effectively five time-steps earlier than the 
original design and the retimed behavior of the fairness gate is 
effectively four time-steps earlier than the original design. 
Assuming that a liveness counter-example trace is obtained 
based upon the post-retiming design (which shows the fair 
ness condition occurring at the first time-step of the LOOP 
signal assertion), when the counter-example trace is mapped 
back to the original design (to undo the effects of retiming on 
the trace), the behavior of the liveness gate will be delayed 
five time-steps and the behavior of the fairness gate will be 
delayed four time-steps. In this case, the assertion of the 
fairness condition may actually occur one time-step earlier 
than the assertion of the liveness signal and the retimed trace 
may not correlate to a valid counter-example for the original 
design. 
0063. An additional complication is that a LOOP signal 
must be properly presented on a mapped counter-example 
trace, clearly illustrating a start and an end of a behavioral 
loop. Because every gate may generally be lagged by a dif 
ferent amount in retiming, the process of mapping retimed 
traces to the original design (which delays retimed values by 
their lag), may extend mapped traces beyond a repeatable 
state sequence. For example, a design that repeats states S1, 
S2, ..., S8 would have a valid liveness counter-example that 
includes eight time-steps. However, after retiming, a mapped 
counter-example may appear as S1, S2,..., S8, S1, S2, which 
erroneously indicates that the design transitions from state S2 
back to state S1 to constitute a valid behavioral loop. 
0064. According to one or more aspects of the present 
disclosure, to address the above issues, a retiming engine 
(which computes lags for each gate to facilitate an optimal 
reduction in latches) is forced to retime all liveness and fair 
ness gates in a netlist by the same value. As the lags of all other 
gates is arbitrary, a retiming engine is still provided enough 
flexibility to enable an optimal reduction in latches. In order 
to retime all liveness and fairness gates in a netlist by the same 
value (which allows an arbitrary retiming engine without 
customization to be employed), a netlist graph viewed by a 
retiming engine (more particularly, a retiming solver of the 
retiming engine) is manipulated to cause all liveness gates 
and fairness gates to be the same gate. In this case, instead of 
passing the liveness and fairness gates as distinct gates to the 
retiming engine, the liveness and fairness gates are relabeled 
as a single Super gate. 
0065 For example, assuming a liveness gate is imple 
mented by an AND gate having two inputs and one output and 
a fairness gate is implemented by an OR gate having three 
inputs and two outputs, a Super gate would be represented as 
having five inputs and three outputs. In this manner, from the 
viewpoint of the retiming engine, every liveness and fairness 
gate of the original netlist is a single node in the graph. In this 
case, every incoming edge to every target gate and constraint 
gate of the original netlist is an incoming edge to the new 
Supergate and every outgoing edge from every target gate and 
constraint gate of the original netlist is an outgoing edge from 
the Super gate. 
0.066 Given an optimal retiming solution which adheres 
to the above criterion, counter-example traces may be deter 
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mined by extracting values using known techniques and map 
ping the LOOP signal of the counter-example trace by delay 
ing the LOOP signal by an amount equal to the lag of the 
liveness and fairness gates and truncating a length of the 
mapped counter-example trace to a length of the trace 
received upon the retimed design (plus the lag of the liveness 
and fairness gates). In general, this ensures that the LOOP 
signal assertion reflects a repeatable state pattern consistent 
with the original design. 
0067. In an alternate embodiment, the restriction that all 
liveness and fairness gates be retimed by the same amount 
may be relaxed to allow different lags as long as each fairness 
gate is lagged no greater amount than any liveness gate. 
Retiming under this relaxed restriction still preserves liveness 
checking, given the key observation that such a retiming 
Solution cannot cause the illusion that a fairness gate is 
asserted during a liveness-asserting behavioral loop. In par 
ticular, the liveness-asserting behavioral loop may only 
“begin earlier in the retimed design than assertion of the 
fairness gate. In this case, the fairness gate is guaranteed to 
assert during the behavior loop. Whereas the equivalent-lag 
restriction described above has an elegant graph-based retim 
ing formulation, the alternate restriction is more difficult to 
enforce through graph manipulation. Restrictions associated 
with the alternate embodiment may be enforced on the retim 
ing solution through post-processing of the retimed Solution 
to alter possible violating lags. For example, retiming solvers 
that directly operate on a series of equations that reflect a 
graph to be optimized (e.g., integer linear programming solv 
ers as mentioned in “Retiming Synchronous Circuitry’. 
Lieserson and Saxe, Algorithmica (1991) 6) may directly 
impose the restriction by adding a set of appropriate con 
straints (e.g., “fairness gate f i has lag less-than-or-equal-to 
liveness gate 1 j') to be solved. The LOOP signal manipula 
tion during counter-example trace manipulation discussed 
above can be taken to be the lag of the liveness gate associated 
with the counter-example trace. 
0068 Traditionally, when checking normal safety proper 

ties such as can this gate ever evaluate to a logical one?, it is 
important to verify time-steps that are effectively discarded 
from a retiming formulation due to forward retiming. For 
example, an assertion may only occur due to the propagation 
of initial values of latches. In this case, when latches are 
forward-retimed beyond a safety property gate, the retiming 
process may erroneously report the property as unassertable 
even though it truly is assertable under the initial values. This 
problem is addressed in traditional retiming flows by check 
ing the initial forward-retimed time-steps independent of the 
Verification on the resulting retimed design. 
0069. However, when performing liveness checking, there 

is no need to analyze the early retimed-away time-steps as any 
infinitely repeatable sequence of behavior may be decom 
posed into a behavioral loop (which begins arbitrarily late 
within a counter-example trace) by unrolling valuations 
within the behavioral loop and delaying the behavioral loop 
as late as desired. For example, assuming that a behavioral 
loop repeats from times t2 to tT, a corresponding liveness gate 
may be retimed by four time-steps. Instead of incurring the 
overhead of trying to find a counter-example trace including 
prefix time-steps (which have been forward-retimed off of the 
netlist), a counter-example trace only on the retimed netlist 
effectively starting at time ta may be sought. 
0070 The fact that there is a counter-example behavioral 
loop from times t2 to t7 on the original netlist implies that 
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there is a counter-example behavioral loop from times t2+i to 
t7+i for any positive T. In this case, a valid counter-example 
behavioral loop may be found from times to to t5 on the 
retimed design, which correlates to times tA to time t9 on the 
original design. Once Such a counter-example trace has been 
obtained, the retiming engine may attempt to map the 
counter-example trace to a minimal-length counter-example 
by post-processing the trace (as the trace is mapped) while 
determining if a valid behavioral loop is encountered earlier 
in the trace. In this case, from the retimed trace it is known that 
the behavioral loop has length of five and from the retiming 
result it is known that the liveness gates were retimed by four 
time-steps. 
0071. As such, a check determines if the liveness signal is 
asserted in time-frame 'i' of the mapped trace (for less than 
the lag of the liveness gates (which in this case is four)) and 
then if state in the mapped trace matches state N-i of the 
counter-example trace (where N is the length of the mapped 
trace). In this case, the LOOP signal may be asserted starting 
at time and k-i time-steps may be pruned from the trace, 
where k is the amount by which the liveness gates were 
retimed (which in this example is four). 
(0072. With reference to FIG.4, a process 400 for verifica 
tion of a retimed logic design using liveness checking is 
depicted. The process 400 is initiated in block 402, at which 
point control transfers to block 404. In block 404, a liveness 
gate is assigned to a liveness property for an original netlist. 
Next, in block 406, a fairness gate is assigned to a fairness 
constraint for the original netlist. In this case, the fairness gate 
is associated with the liveness gate and is asserted for at least 
one time-step during any valid behavioral loop associated 
with the liveness gate. Then, in block 408, the original netlist 
is retimed, using a retiming engine, to provide a retimed 
netlist. In this case, all of the liveness and fairness gates of the 
retimed netlist are retimed by a same value or different lags 
are allowed as long as the fairness gate is not lagged by a 
greater amount than the liveness gate. In the case of multiple 
fairness gates and multiple associated liveness gates, each of 
the fairness gates is constrained to not be lagged by a greater 
amount than any of the liveness gates. 
(0073. Next, in block 410, verification is performed on the 
retimed netlist using a selected technique. Then, in decision 
block 412, the process 400 determines if a proof of correct 
ness is obtained on the retimed netlist. If a proof of correct 
ness is obtained on the retimed netlist, control transfers from 
block 412 to block 413 where the proof of correctness is 
returned for the original netlist. Following block 413, control 
transfers to block 420 where the process 400 terminates and 
control returns to a calling routine. If a proof of correctness is 
not obtained on the retimed netlist, control transfers from 
block 412 to decision block 414. In block 414, the process 400 
determines if a counter-example trace is obtained on the 
retimed netlist. If a counter-example trace is not obtained on 
the retimed netlistin block 414, control transfers to block 420. 
0074. If a counter-example trace is obtained on the retimed 
netlist in block 414, control transfers to block 415 where the 
counter-example trace for the retimed netlist is mapped to the 
original netlist. Then, in block 416, a length of the mapped 
counter-example is minimized. Next, in block 418, a liveness 
violation for the original netlist is returned in the form of the 
minimized length mapped counter-example. Following block 
418, control transfers to block 420. 
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0075 Accordingly, a number of techniques have been dis 
closed herein that generally reduce liveness checking verifi 
cation time for integrated circuit logic designs. 
0076. The flowchart and block diagrams in the figures 
illustrate the architecture, functionality, and operation of pos 
sible implementations of systems, methods and computer 
program products according to various embodiments of the 
present invention. In this regard, each block in the flowchart 
or block diagrams may represent a module, segment, or por 
tion of code, which comprises one or more executable 
instructions for implementing the specified logical function 
(s). It should also be noted that, in some alternative imple 
mentations, the functions noted in the block may occur out of 
the order noted in the figures. For example, two blocks shown 
in Succession may, in fact, be executed Substantially concur 
rently, or the blocks may sometimes be executed in the reverse 
order, depending upon the functionality involved. It will also 
be noted that each block of the block diagrams and/or flow 
chart illustration, and combinations of blocks in the block 
diagrams and/or flowchart illustration, can be implemented 
by special purpose hardware-based systems that perform the 
specified functions or acts, or combinations of special pur 
pose hardware and computer instructions. 
0077. The terminology used herein is for the purpose of 
describing particular embodiments only and is not intended to 
be limiting of the invention. As used herein, the singular 
forms “a”, “an and “the are intended to include the plural 
forms as well, unless the context clearly indicates otherwise. 
It will be further understood that the terms “comprises” and/ 
or “comprising, when used in this specification, specify the 
presence of stated features, integers, steps, operations, ele 
ments, and/or components, but do not preclude the presence 
or addition of one or more other features, integers, steps, 
operations, elements, components, and/or groups thereof. 
0078. The corresponding structures, materials, acts, and 
equivalents of all means or step plus function elements in the 
claims below, if any, are intended to include any structure, 
material, or act for performing the function in combination 
with other claimed elements as specifically claimed. The 
description of the present invention has been presented for 
purposes of illustration and description, but is not intended to 
be exhaustive or limited to the invention in the form disclosed. 
Many modifications and variations will be apparent to those 
of ordinary skill in the art without departing from the scope 
and spirit of the invention. The embodiment was chosen and 
described in order to best explain the principles of the inven 
tion and the practical application, and to enable others of 
ordinary skill in the art to understand the invention for various 
embodiments with various modifications as are suited to the 
particular use contemplated. 
0079. Having thus described the invention of the present 
application in detail and by reference to preferred embodi 
ments thereof, it will be apparent that modifications and 
variations are possible without departing from the scope of 
the invention defined in the appended claims. 

What is claimed is: 
1. A method of Verification of an integrated circuit logic 

design embodied in a netlist using a liveness-to-safety con 
version as set forth by instructions executed by a computer 
System, comprising: 

assigning, by one or more instructions executed in the 
computer system, liveness gates for liveness properties 
of the netlist; 
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assigning, by one or more instructions executed in the 
computer system, a single loop gate to provide a loop 
signal for the liveness gates; 

preventing, by one or more instructions executed in the 
computer system, assertion of the single loop gate when 
none of the liveness gates are asserted; 

sampling, by one or more instructions executed in the 
computer system, a first state of the netlist, the sampled 
first state providing an initial state for a first behavioral 
loop for at least one of the liveness gates following the 
assertion of the single loop gate; 

comparing, by one or more instructions executed in the 
computer system, the sampled first state of the first 
behavioral loop with a later state of the first behavioral 
loop to determine if the sampled first state is repeated; 
and 

returning a liveness violation as an output of the computer 
system when the sampled first state is repeated and an 
associated one of the liveness gates remains asserted for 
a duration of the first behavioral loop. 

2. The method of claim 1, further comprising: 
sampling by one or more instructions executed in the com 

puter system, responsive to a trigger, a second state of 
the netlist when the sampled first state has not been 
repeated, the sampled second state corresponding to an 
initial state for a second behavioral loop: 

comparing, by one or more instructions executed in the 
computer system, the sampled second state of the second 
behavioral loop with a later state of the second behav 
ioral loop to determine if the sampled second state is 
repeated; and 

returning a liveness violation when the sampled second 
state is repeated and an associated one of the liveness 
gates remains asserted for a duration of the second 
behavioral loop. 

3. The method of claim 2, wherein the trigger for the 
sampling of the second state is based on a configurable bias to 
a random signal of a random gate of the netlist. 

4. The method of claim 2, wherein the trigger for the 
sampling of the second state is based on a time-step relative to 
the initial state for first behavioral loop. 

5. The method of claim 2, wherein the sampling of the 
second state is triggered based on a scenario encountered in 
the logic design. 

6. The method of claim 1, further comprising: 
checking, by one or more instructions executed in the com 

puter system, for repetition of the first state within a 
specific time-range after sampling of the first state, upon 
a user generated coverage event, or an automatically 
generated coverage event. 

7. The method of claim 1, wherein the comparing, by one 
or more instructions executed in the computer system, the 
sampled first state of the first behavioral loop with a later state 
of the netlist to determine if the sampled first state is repeated 
occurs within a specific time range after the sampling of the 
sampled first state, or a specified coverage event. 

8. The method of claim 1, further comprising: 
detecting, by one or more instructions executed in the 

computer system, that a first liveness gate, included in 
the liveness gates, deasserted after the initial state is 
sampled and before the initial State is repeated; and 

discontinuing, by one or more instructions executed in the 
computer system, the comparing along the first behav 
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ioral loop when the first liveness gate deasserted after the 
initial state is sampled and before the initial state is 
repeated. 

9. The method of claim 1, further comprising: 
assigning, by one or more instructions executed in the 

computer system, a constraint gate to accumulators of 
the netlist that track deassertion of respective ones of the 
liveness gates, wherein a constraint associated with the 
constraint gate specifies that all of the accumulators 
cannot flag a deassertion; and 

discontinuing, by one or more instructions executed in the 
computer system, the comparing along the first behav 
ioral loop when the constraint is violated. 

10. A method of performing liveness checking of an inte 
grated circuit logic design embodied in a netlist as set forth by 
instructions executed by a computer system, comprising: 

attempting, by one or more instructions executed in the 
computer system, to prove that a liveness gate cannot 
remain asserted for a bound k that corresponds to a 
number of time-steps in a first trace; 

returning as an output of the computer system, when the 
liveness gate does not remain asserted for the bound k, 
an unbounded proof of correctness; 

attempting by one or more instructions executed in the 
computer system, when the liveness gate remains 
asserted for the bound k, to prove that a first state of the 
first trace can be repeated during a second trace while the 
liveness gate remains asserted; and 

returning as an output of the computer system, when the 
first state is repeated during the second trace and the 
liveness gate remains asserted, a concatenated trace that 
corresponds to an unbounded failure, the concatenated 
trace including the first and second traces. 

11. The method of claim 10, further comprising: 
attempting by one or more instructions executed in the 

computer system, when the first state is not repeated 
during the second trace and the liveness gate remains 
asserted, to prove that the liveness gate cannot remain 
asserted for the bound k that corresponds to the number 
of time-steps in a third trace; 

returning as an output of the computer system, when the 
liveness gate does not remain asserted for the bound k, 
an unbounded proof of correctness; 

attempting, by one or more instructions executed in the 
computer system, to prove that a second State of the third 
trace can be repeated during a fourth trace while the 
liveness gate remains asserted; and 

returning as an output of the computer system, when the 
second state is repeated during the fourth trace and the 
liveness gate remains asserted, a concatenated trace that 
corresponds to an unbounded failure, the concatenated 
trace including the third and fourth traces. 
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12. The method of claim 11, wherein the first state corre 
sponds to a terminal state of the first trace. 

13. The method of claim 12, wherein the second state 
corresponds to a terminal state of the third trace. 

14. The method of claim 10, further comprising: 
removing by one or more instructions executed in the com 

puter system, as an initial operation, redundancy from 
the netlist. 

15. The method of claim 11, further comprising: 
modifying, by one or more instructions executed in the 

computer system, when the first state is sampled during 
the first trace. 

16. The method of claim 15, further comprising: 
modifying, by one or more instructions executed in the 

computer system, when the second state is sampled dur 
ing the third trace. 

17. The method of claim 10, further comprising: 
checking by one or more instructions executed in the com 

puter system, based on a predetermined condition, for a 
repeat of the first state during the first trace. 

18. The method of claim 17, wherein the predetermined 
condition corresponds to a specific time that is Subsequent to 
sampling of the first state. 

19. The method of claim 17, wherein the predetermined 
condition corresponds to a specific event that is Subsequent to 
sampling of the first state. 

20. A computer system configured to Verify a logic design 
embodied in a netlist using a liveness-to-safety conversion, 
comprising: 

a memory Subsystem configured to store code; and 
a processor coupled to the memory Subsystem, wherein the 

processor is configured to execute code to: 
assign liveness gates for liveness properties of the 

netlist; 
assign a single loop gate to provide a loop signal for the 

liveness gates; 
prevent assertion of the single loop gate when none of 

the liveness gates are asserted; 
sample a first state of the netlist, the sampled first state 

providing an initial state for a first behavioral loop for 
at least one of the liveness gates following the asser 
tion of the single loop gate; 

compare the sampled first state of the first behavioral 
loop with a later state of the behavioral loop to deter 
mine if the sampled first state is repeated; and 

return a liveness violation when the sampled first state is 
repeated and an associated one of the liveness gates 
remains asserted for a duration of the first behavioral 
loop. 


