
(19) United States
US 2010.0218150A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0218150 A1
Baumgartner et al. (43) Pub. Date: Aug. 26, 2010

(54) LOGIC DESIGN VERIFICATION
TECHNIQUES FOR LIVENESS CHECKING

(75) Inventors: Jason R. Baumgartner, Austin, TX
(US); Paul Roessler, Austin, TX
(US); Ohad Shacham, Kfar
Monash (IL); Jiazhao Xu, Mount
Kisco, NY (US)

Correspondence Address:
DLLON & YUDELL LLP
8911 N. CAPITAL OF TEXAS HWY. SUITE 2110
AUSTIN, TX 78759 (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(21) Appl. No.: 12/393,779

(22) Filed: Feb. 26, 2009

2O4.

Assign liveness gates and
accumulators to netlist

2O6

Assign single loop gate to provide loop
signal for all of the liveness gates

Perform selected amount of
semi-formal analysis of design

2O7
208

No.1ny of the liveness
gates asserted?

Yes
209

No Assert loop

Yes
210

Assert the single loop gate
and record the liveness
gates that are asserted

214

Perform additional amount

Report liveness violation if the first state is
repeated and an associated one of the

Publication Classification

(51) Int. Cl.
G06F 7/50 (2006.01)

(52) U.S. Cl. .. 71.6/5
(57) ABSTRACT

A technique for verification of a logic design (embodied in a
netlist) using a liveness-to-safety conversion includes assign
ing liveness gates for liveness properties of the netlist and
assigning a single loop gate to provide a loop signal for the
liveness gates. Assertion of the single loop gate is prevented
when none of the liveness gates are asserted. A first state of the
netlist is sampled and the sampled first state provides an
initial state for a first behavioral loop for at least one of the
liveness gates following the assertion of the single loop gate.
The sampled first state of the first behavioral loop is compared
with a later state of the first behavioral loop to determine if the
sampled first state is repeated. A liveness violation is returned
when the sampled first state is repeated and an associated one
of the liveness gates remains asserted for a duration of the first
behavioral loop.

212
he netlist

213
Initialize accumulators

of Semi-formal
analysis to provide a later state

- 215

Compare the first state with a
later state of the netlist

200 Sample first state oft

Yes
All accumulato
deasserted?

NO

Fiveness gates is asserted

Yes
Resample state?

220

Patent Application Publication Aug. 26, 2010 Sheet 1 of 4 US 2010/021815.0 A1

3

CO
O
v

.
wn

.
O

3

US 2010/021815.0 A1

ONON

eun?e? pepunoqun se

Aug. 26, 2010 Sheet 3 of 4

|-908 - J

Patent Application Publication

US 2010/021815.0 A1 Aug. 26, 2010 Sheet 4 of 4

007

Patent Application Publication

807+
907

US 2010/021815.0 A1

LOGIC DESIGN VERIFICATION
TECHNIQUES FOR LIVENESS CHECKING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is related to commonly
assigned U.S. patent application Ser. No. (Attorney
Docket No. AUS92009001OUS1), entitled “LOGIC
DESIGN VERIFICATION TECHNIQUES FOR LIVE
NESS CHECKING WITH RETIMING” by Jason R. Baum
gartner et al. which was filed on even date herewith and is
incorporated herein by reference in its entirety for all pur
poses.

BACKGROUND

0002 1. Field
0003. This disclosure relates generally to integrated cir
cuit logic design verification and, more specifically, to inte
grated circuit logic design verification techniques for liveness
checking.
0004 2. Related Art
0005. In general, formal verification involves rigorously
proving that an integrated circuit (IC) logic design (design)
satisfies an associated specification. Typically, the specifica
tion of a verification problem includes a netlist representation
of a design and a set of expected values for specified nets of
the netlist. As an example, a verification problem may include
determining whethera state exists in which a particular signal
is asserted, where assertion of the particular signal indicates a
fault. Using formal verification, an attempt is made to find a
counter-example trace that includes a sequence of net values
over time (states) that leads to an assertion of a particular
signal or prove that no counter-example trace exists that leads
to the assertion of the particular signal.
0006 Formal verification is often performed using state
space search algorithms, which include unbounded and
bounded exhaustive search algorithms. Bounded exhaustive
search algorithms attempt to find an assertion of a particular
signal that occurs within N time-steps from an initial state of
a design. Unbounded exhaustive search algorithms increase
Nuntil no states are encountered that have not already been
encountered for smaller values of N (a condition referred to
as a fixed-point). If no path from an initial state to a violating
state (i.e., a state in which the particular signal is asserted) is
encountered before the fixed-point is reached, then correct
ness of a design can be inferred.
0007. The number of verification cycles required to per
forman exhaustive state space search increases exponentially
with the number of state elements (e.g., registers, latches,
flip-flops, etc.). This exponential relationship makes formal
Verification impractical for designs containing a large number
of state elements (e.g., one-hundred or more state elements).
As a result, semi-formal verification has been employed as a
Verification technique for large designs. Semi-formal verifi
cation leverages formal algorithms by applying the formal
algorithms to larger designs in a resource-bounded manner.
While requiring less computation time (as compared to for
mal verification), semi-formal verification may only achieve
partial verification coverage.
0008 Verification constraints (constraints) are constructs
that may be employed in design verification applications. A
constraint may be implemented as a specially-labeled gate
(i.e., a constraint gate) in a netlist of a design. In general, a

Aug. 26, 2010

constraint represents a limitation on the freedom of a verifi
cation tool to explore a state space of a design. For example,
a constraint may prevent a verification application from
exploring any time-step trace in which any of one or more
constraints evaluate to a logical Zero during any of the T time
steps. Typically, a constraint defines a portion of a state space
of a design that is irrelevant for Verification purposes and, as
Such, would unnecessarily consume verification resources if
the constraint were verified. As one example of a constraint,
a design may be constrained to prevent new transfers of data
when a buffer is full. In general, constraining inputs of the
design to prohibit data transfers when the buffer is full means
that a verification tool does not cover states that represent the
design accepting new data transfers when the buffer is full.
0009. In the absence of a constraint, a typical verification
problem is stated as, for example, find a step trace that exhib
its a violation of a property or prove that no Such trace exists
for any j”. With a constraint, the same verification problem
may be expressed as, for example, find a step trace that
exhibits a violation of a property and does not exhibit a logical
Zero value for any constraint in any of the steps, or prove
that no such trace exists for any . Because constraints alter
the semantics of a verification problem, constraints have the
potential to cause a property that could be reached by a design
to become unreachable. As such, it is desirable to select
constraints judiciously. In general, constraints should not
alter semantics of a verification problem. A constraint, for
example, that would prevent a verification tool from discov
ering a valid assertion of a signal should not be permitted.
Because constraints prohibit the exploration of certain other
wise reachable states, redundancy removal algorithms may
leverage constraints to enable greater gate merging. In par
ticular, redundancy removal algorithms may merge gates that
are equivalent in all states reachable along paths that do not
violate any constraints, even if the merged gates are not
equivalent in Some states that are reachable only after violat
ing a constraint.
0010. As previously mentioned, a verification tool oper
ates on a model of a design known as a netlist. A netlist
includes gates and edges, which represent interconnections
between gates. A gate may, for example, fall into one of four
broad functional categories: constant gates, random gates,
combinational gates, and state elements (e.g., registers and
sequential gates, such as latches and flip-flops). A constant
gate produces a logic level that does not vary with time. A
random gate (also referred to as a primary input) may assume
any logic level in any time-step independent of all other gates.
A combinational gate is a logical element such as an AND
gate, an OR gate, a NAND gate, a NOR gate, etc. A sequential
gate has an associated initial value function and a next state
function. The value of a sequential gate at time 0 (tO) is the
value of the initial value function. The value of a sequential
gate at time i+1 is equal to the value of the next state function
of the sequential gate at time i.
0011. A cutpoint gate may be introduced (into a modified
netlist) by replacing a sequential gate in an original netlist
with a random gate. An output of a random gate drives the
same inputs in the modified netlist as an associated sequential
gate drove in an original netlist. Unlike the inputs of the
sequential gate in the original netlist, however, the inputs of
the random gate are random inputs that are not connected to
any other elements of the modified netlist. Inputs to a random
gate can assume any value on any gate cycle irrespective of
other stimulus applied to a design. As such, the net effect of

US 2010/021815.0 A1

introducing cutpoints into a netlist may be to over-approxi
mate the behavior of a design, as a random gate can simulate
behavior of the sequential gate, while the converse is not
necessarily true. As an over-approximate model of an original
netlist, a modified netlist may include states from which a
target gate could not be asserted in the original netlist.
0012 Retiming techniques, which were originally devel
oped for enhanced synthesis, have more recently been pro
posed to enhance verification (i.e., reduce verification time)
through reduction in latch (flip-flop) count. Generally speak
ing, retiming refers to the process of moving latches across
combinational gates. In general, many prior art retiming algo
rithms have shifted every gate in a design under verification
by an arbitrary amount, which may pose challenges to the use
of retiming in a verification setting under the presence of
constraints.
0013 Liveness checking of a design refers to verification
of properties (of the design), which are used to assess whether
the design eventually behaves in a correct manner. For
example, when Verifying an arbiter, it may be desirable to
check a property that, for example, states every request pre
sented to the arbiter is eventually granted. Any counter
example trace to the property must be of infinite length to
show a request that never receives a grant (i.e., an infinite
length sequence of bad behavior). A counter-example trace is
often represented using a finite-length trace, where some
suffix of the trace (denoted by assertion of a specially-added
LOOP signal (with a corresponding loop gate) added by a
verification tool), which starts with a state and ends with the
same state, may be infinitely repeated. For example, assum
ing that a traceruns from time '0' (t0) to time '50' (t50) and the
LOOP signal is asserted at time 20 (t20), an initial state of a
design at time t20 must correspond to a final State of the
design at time t50 for a valid counter-example for the suffix
(which extends from times t20 to t50). Semantically, the
finite-length trace represents an infinite length counter-ex
ample as Suffix (loop) behavior may be repeated as many
times as desired to provide a request without a grant scenario.
0014 Liveness checking may be contrasted with safety
checking, which may be represented by checking whether a
given signal of a design is ever asserted to a logical one. In
general, safety checking refers to design verification of a
property that may be disproven in a finite amount of time. In
contrast, liveness checking refers to design verification of a
property that requires an infinite amount of time to disprove.
Liveness checking for a design can be cast as safety checking
for the design through a known transformation, which facili
tates sampling a current state of the design and later checking
for a repetition of the state which completes a behavioral loop.
However, the known transformation effectively doubles state
elements of the design during verification and, as such, adds
Substantial overhead to a verification process.

SUMMARY

0015. According to one aspect of the present disclosure, a
technique for verification of a logic design (embodied in a
netlist) using a liveness-to-safety conversion includes assign
ing liveness gates for liveness properties of the netlist and
assigning a single loop gate to provide a loop signal for the
liveness gates. Assertion of the single loop gate is prevented
when none of the liveness gates are asserted. A first state of the
netlist is sampled and the sampled first state provides an
initial state for a first behavioral loop for at least one of the
liveness gates following the assertion of the single loop gate.

Aug. 26, 2010

The sampled first state of the first behavioral loop is compared
with a later state of the first behavioral loop to determine if the
sampled first state is repeated. A liveness violation is returned
when the sampled first state is repeated and an associated one
of the liveness gates remains asserted for a duration of the first
behavioral loop. The technique may be implemented by
instructions executed in a computer system.
0016. According to another aspect of the present disclo
Sure, a technique for performing liveness checking of a logic
design embodied in a netlist includes attempting to prove that
a liveness gate cannot remain asserted for a bound k that
corresponds to a number of time-steps in a first trace. When
the liveness gate does not remain asserted for the bound k,
an unbounded proof of correctness is returned. When the
liveness gate remains asserted for the bound k, the technique
attempts to prove that a first state of the first trace can be
repeated during a second trace. When the first state is repeated
during the second trace and the liveness gate remains
asserted, a concatenated trace (including the first and second
traces) is returned that corresponds to an unbounded failure.
The technique may be implemented by instructions executed
in a computer system.

BRIEF DESCRIPTION OF TELE DRAWINGS

0017. The present invention is illustrated by way of
example and is not intended to be limited by the accompany
ing figures, in which like references indicate similar ele
ments. Elements in the figures are illustrated for simplicity
and clarity and have not necessarily been drawn to scale.
0018 FIG. 1 is a diagram of an example computer system
that may be employed to execute a verification tool config
ured according to the present disclosure.
0019 FIG. 2 is a flowchart of an example process for
Verification of an integrated circuit logic design (design),
according to one embodiment of the present disclosure.
0020 FIG. 3 is a flowchart of an example process for
Verification of a retimed design, according to another embodi
ment of the present disclosure.
0021 FIG. 4 is a flowchart of an example process for
Verification of a design, according to yet another embodiment
of the present disclosure.

DETAILED DESCRIPTION

0022. As will be appreciated by one of ordinary skill in the
art, the present invention may be embodied as a method,
system, or computer program product. Accordingly, the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident Software, microcode, etc.), or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit.” “module,” or
“system.” Furthermore, the present invention may take the
form of a computer program product on a computer-usable
storage medium having computer-usable program code
embodied in the medium.
0023. Any suitable computer-usable or computer-read
able storage medium may be utilized. The computer-usable or
computer-readable storage medium may be, for example, but
is not limited to, an electronic, magnetic, optical, electromag
netic, infrared, or semiconductor system, apparatus, or
device. More specific examples (a non-exhaustive list) of the
computer-readable storage medium includes: a portable com
puter diskette, a hard disk, a random access memory (RAM),

US 2010/021815.0 A1

a read-only memory (ROM), an erasable programmable read
only memory (EPROM) or Flash memory, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, or a magnetic storage device. It should be noted that
the computer-usable or computer-readable storage medium
could even be paper or another Suitable medium upon which
the program is printed, as the program can be electronically
captured, via, for instance, optical scanning of the paper or
other medium, then compiled, interpreted, or otherwise pro
cessed in a suitable manner, if necessary, and then stored in a
computer memory. In the context of this disclosure, a com
puter-usable or computer-readable storage medium may be
any medium that can contain or store the program for use by
or in connection with an instruction execution system, appa
ratus, or device.
0024 Computer program code for carrying out operations
of the present invention may be written in an object oriented
programming language. Such as Java, Smalltalk, C++, etc.
However, the computer program code for carrying out opera
tions of the present invention may also be written in conven
tional procedural programming languages. Such as the “C”
programming language or similar programming languages.
0025. The present invention is described below with ref
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0026. These computer program instructions may also be
stored in a computer-readable memory that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, Such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
0027. The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operations to be performed
on the computer or other programmable apparatus to produce
a computer implemented process Such that the instructions
which execute on the computer or other programmable appa
ratus implement the functions/acts specified in the flowchart
and/or block diagram block or blocks. As may be used herein,
the term “coupled includes both a direct electrical connec
tion between blocks or components and an indirect electrical
connection between blocks or components achieved using
one or more intervening blocks or components.
0028. In general, known approaches for liveness checking
have failed to address efficient modeling of liveness checks
for semi-formal search paradigms, which may non-exhaus
tively explore a behavior of an IC logic design (design) under
verification. Furthermore, known approaches for liveness
checking have generally failed to provide an efficient auto

Aug. 26, 2010

mated mechanism to leverage multiple distinct algorithms
and models of liveness foran overall more efficient and robust
Verification process.
0029. According to one or more aspects of the present
disclosure, efficient and robust techniques for verifying live
ness properties (e.g., by converting them to safety properties)
and applying a semi-formal verification paradigm (to achieve
correctness proofs or obtain valid counter-examples) are dis
closed herein. According to one or more embodiments, a
technique to prevent exploration ofuseless behavioral loops,
after which no liveness violations may occur, is disclosed. In
general, the technique not only benefits non-exhaustive
search algorithms (e.g., semi-formal search algorithms), but
may also enhance proof of correctness (e.g., by reducing a
degree of over-approximation). According to other aspects of
the present disclosure, various techniques may be employed
to simplify verification processes associated with the live
ness-to-safety conversion. According to various embodi
ments, techniques are implemented to leverage multiple mod
els and verification paradigms to solve liveness checking
problems efficiently and robustly.
0030. With reference to FIG. 1, an example computer sys
tem 100 is illustrated that may be configured to execute a
Verification tool (configured to Verify an integrated circuit
logic design (design)) and a retiming engine (configured to
retime latches of the design for the verification tool) that are
configured according to various embodiments of the present
disclosure. The computer system 100 includes a processor
102 that is coupled to a memory subsystem 104, a display
106, an input device 108, and mass storage device(s) 110. The
memory Subsystem 104 includes an application appropriate
amount of Volatile memory (e.g., dynamic random access
memory (DRAM)) and non-volatile memory (e.g., read-only
memory (ROM)). The display 106 may be, for example, a
cathode ray tube (CRT) or a liquid crystal display (LCD). The
input device 108 may include, for example, a mouse and a
keyboard. The mass storage device(s) 110 (which may
include, for example, a compact disc read-only memory (CD
ROM) drive and/or a hard disk drive (HDD)) are configured to
receive or include discs that store appropriate code (e.g., an
operating system (OS), a verification tool including a retim
ing engine, etc.).
0031. According to various aspects of the present disclo
sure, a netlist is defined to include a finite directed graph with
Vertices (representing gates) and edges (representing inter
connections between gates). The gates may include constant
gates, random gates (primary inputs), combinational gates
(e.g., AND gates, OR gates, NAND gates, and NOR gates),
and State elements (e.g., registers and sequential gates such as
latches and flip-flops). As noted above, a sequential gate has
two associated components: a next-state function; and an
initial-value function. The associated components of a
sequential gate are represented as other gates in the graph.
Semantically, for a given sequential gate, a value appearing at
an initial-value function gate at time '0' (where the time to is
an initialization or reset time) is applied as the value of the
sequential gate at time to and a value appearing at a next-state
function gate at timei is applied to the sequential gate at time
i+1. A set of values for all state elements in a netlist is
referred to herein as a state.
0032. When employing a safety-to-liveness conversion,
selected gates in a netlist may be labeled target gates and
liveness gates. Target gates correlate to safety properties,
where a goal of the verification process is to find a way to

US 2010/021815.0 A1

drive a logical one to a target gate, or to prove that no Such
assertion of the target gate is possible. A liveness gate corre
lates to a different type of property that requires verification.
In particular, the goal is to demonstrate that a liveness gate
may be held at a logical one forever (and to generate a
counter-example trace that illustrates the liveness property, if
a valid counter-example trace is found), or to prove that the
liveness gate cannot stay at a logical one forever. In a liveness
counter-example, a liveness gate may be employed that ini
tializes to logical Zero and at Some point in a counter-example
trace becomes and stays at a logical one, assuming the
counter-example trace is valid.
0033 For example, for a counter-example of a request (for
a bus) never receiving a grant, a liveness gate initializes to a
logical Zero, transitions to a logical one when a request is
detected, and transitions to a logical Zero when a grant is
detected. For a valid counter-example, the liveness gate must
transition to a logical one and remain at a logical one for the
length of a trace suffix. Semantically, the suffix of the trace
where the LOOP signal asserts to and remains at a logical one
represents a state repetition sequence that may be infinitely
repeated. In general, a liveness gate must evaluate to a logical
one throughout a trace suffix in order for the suffix to consti
tute a valid counter-example.
0034 Constraint gates, which represent constraints, may
be implemented to artificially limit the stimulus that can be
applied to a random gate of a design. For example, when
searching for a way to drive a target gate to a logical one, a
verification process may adhere to the rule that every con
straint gate must evaluate to a logical one for every time-step
up to and including the time-step at which the target gate is
asserted. As one example, a constraint may be added to drive
a logical one exactly when a vector of a random gate evaluates
to even parity. Without this constraint, a verification tool
would explore valuations with even or odd parity to the ran
dom gate. In the above case, only even parity would be
explored.
0035. A known technique for casting liveness properties to
safety targets is to duplicate the state elements of a netlist.
Under the control of a new random gate, representing asser
tion of a LOOP signal, the duplicated state elements sample
and hold a current state of a design. The termination of a
behavioral loop can then be detected by comparing the
sampled State in the duplicated State elements with a current
state of the netlist. Provided that an associated liveness gate
remains asserted to a logical one during the duration of the
LOOP signal (which can be detected by an accumulator that
remembers any deassertion of the liveness gate since asser
tion of the LOOP signal), a valid counter-example to the
liveness property is indicated. It should be appreciated that
the resulting process may be implemented Solely as a safety
target.
0036) Numerous algorithms may be employed when
attempting to verify safety targets of a netlist. Formal verifi
cation algorithms attempt to exhaustively verify a design,
againstall behaviors, to expose design flaws and yield proofs
of correctness. There are numerous types of formal algo
rithms, from techniques which exhaustively enumerate an
exact set of reachable states of the netlist to over-approximat
ing techniques such as induction. Exact techniques (e.g.,
reachability analysis) are advantageous as they typically
always generate conclusive results (i.e., pass or fail). How
ever, exact techniques are computationally expensive and, as
Such, are typically only applicable to relatively small netlists.

Aug. 26, 2010

In general, over-approximating techniques are more readily
scaled than exact techniques. Unfortunately, over-approxi
mating techniques may be inconclusive and generate spurious
failures due to the nature of the over-approximation, which
may not be valid with respect to an original design.
0037 Semi-formal verification algorithms are scalable
techniques which may be useful in exposing design flaws.
However, semi-formal verification algorithms are generally
incapable of yielding proofs of correctness, as semi-formal
Verification algorithms generally do not fully explore a
behavior of a design. For example, a semi-formal verification
technique may employ random simulation to sample various
reachable states of a design and then perform resource
bounded exhaustive search to explore all states reachable
within N time-steps from the various reachable states.
0038. As noted above, according to at least one aspect of
the present disclosure, a technique is implemented to prevent
the exploration of useless behavioral loops, after which no
liveness violations may occur. In general, the technique ben
efits incomplete search techniques (e.g., semi-formal analy
sis) and may also enhance proof of correctness by, for
example, reducing a degree of over-approximation. In the
previously-mentioned liveness-to-safety conversion, it is
possible for a sampled behavioral loop to become irrelevant
due to a variety of reasons. As a first example, a liveness gate
may deassert after a LOOP signal is asserted (and a state of an
associated netlist is sampled). In this case, an associated trace
suffix does not constitute a valid counter-example for the
liveness gate that deasserted. As a second example, when a
state of a behavioral loop is sampled too early, the sampled
state is not repeatable even if a later state of the behavioral
loop is repeatable and would constitute a valid counter-ex
ample.
0039. When exhaustive formal analysis of a design is per
formed, the above two occurrences are not particularly impor
tant as the occurrences are merely irrelevant behaviors that
are eventually explored and ignored and, as Such, any relevant
counter-examples are still found. However, when employing
semi-formal searches, the two occurrences may render the
semi-formal searches ineffective. A straight-forward solution
to the above problem is generally complicated.
0040. One may attempt to prevent problems associated
with the first example by preventing the LOOP signal from
asserting until a liveness gate first asserts. However, for effi
ciency, it is usually desirable to only create one loop gate to
track the LOOP signal for all liveness gates of a netlist with
multiple liveness properties. In this case, the LOOP signal
may assert before a given one of the liveness gates asserts.
One may attempt to prevent problems associated with the
second example by checking for the repetition of any state
since the assertion of the LOOP signal, as contrasted with
merely checking for a repetition of a state when the LOOP
signal first asserts. However, such an approach does not usu
ally work for symbolic analysis (e.g., Boolean satisfiability
(SAT) or binary decision diagram (BDD) based analysis) or
when the Solution is implemented in a hardware device, since
it is usually not possible to enumerate an arbitrarily large set
of states using a finite-sized netlist.
0041 According to at least one aspect of the present dis
closure, the assertion of a LOOP signal may be prevented
from occurring when no liveness gate is at a logical one. In
general, not beginning a behavioral loop when no liveness
gate is at a logical one prevents a semi-formal search from
wasting resources. According to another aspect of the present

US 2010/021815.0 A1

disclosure, a constraint may be added that not all accumula
tors that track deassertion of respective liveness gates can flag
Such invalid conditions. In general, this forces a semi-formal
search to backtrack as soon as the search becomes useless
with respect to all liveness properties (as the constraint is not
met when all the accumulators for the liveness gates are
deasserted) and, thus, precludes the inefficiency exhibited in
the first example. The above-mentioned constraint may also
advantageously enhance the ability of over-approximate for
mal analysis techniques to render a proof of correctness, as
constraints preclude the reachability of certain behaviors of
the design. In this case, states which are succeeded by deas
sertion of the liveness gates become constrained which
reduces the over-approximation inherent in Such techniques.
0042. To fully address inefficiencies associated with the
second example, a reset mechanism may be built into the
LOOP signal assertion to allow periodic resampling of the
state. For efficiency, it is usually desirable that the underlying
semi-formal search procedure not resample too frequently.
For example, employing a fifty percent bias would result in
resampling every second time-step. Resampling of a state
may be implemented by, for example, implementing a con
figurable bias for the random signal to trigger resampling of
the state. A more intricate Solution may be employed to allow
a semi-formal search to adaptively tailor itself. For example,
a resampling trigger may be based upon specific criteria, e.g.,
a range of time-steps relative to an initial state or relative to a
user-specified or automatically derived scenario having been
encountered in a design (e.g., a user of a verification tool, or
an automated process, may specify one or more coverage
goals which reflects a scenario of interest for the design (e.g.,
a buffer of a design becoming full or an arbiter receiving ten
simultaneous requests)) and behavioral loop sampling may
occur concurrently with or within a specified time-range after
one of the scenarios is encountered.

0043. Various techniques may be employed to simplify the
Verification problem associated with liveness-to-safety con
version. For example, Verification performance may be
improved if redundancy is eliminated from a netlist. That is,
if two state elements can be determined to behave identically
in all reachable states, Verification performance may be
enhanced by merging one of the state elements into the other
state element. Similarly, if two state elements can be demon
strated to be antivalent (opposite) in all reachable states,
verification performance may be enhanced if one of the state
elements is merged into the inverse of the other state element.
Causing duplicate state elements to initialize equivalently to
counter-part state elements that they shadow and causing the
duplicate state elements to update to concurrently identical
values as the counter-part state elements that they shadow
(until the LOOP signal asserts) preserves dependency rela
tions between original state elements of the netlist and the
duplicated State elements.
0044 According to another aspect of the present disclo
sure, sampling of a behavior loop state (as dictated by a LOOP
signal assertion) may be configured to specific points in time
to better utilize semi-formal search. To reduce resource
requirements (e.g., when a SAT-based analysis is used to
detect state repetition), checking for repetition of a sampled
behavior loop state may be forced to occur within a specific
time-range after sampling of the state, upon a user generated
coverage event, or an automatically generated coverage
event.

Aug. 26, 2010

0045. With reference to FIG. 2, a process 200 for verifica
tion of a logic design (embodied in a netlist) using a liveness
to-safety conversion is depicted. In block 202 the process 200
is initiated, at which point control transfers to block 204. In
block 204, liveness gates and accumulators are assigned for
each liveness property of the netlist. As noted above, the
accumulators remember any deassertion of an associated
liveness gate since assertion of the LOOP signal. Then, in
block 206, a single loop gate is assigned to provide a LOOP
signal for all of the liveness gates. Next, in block 207, a
selected amount of semi-formal analysis is performed for the
design. Then, in decision block 208, the process 200 deter
mines whether any of the liveness gates are asserted. If none
of the liveness gates are asserted in block 208, control loops
back to block 207 (where a selected amount of semi-formal
analysis of the design is performed) to prevent assertion of the
single loop gate (when none of the liveness gates are
asserted).
0046. In block 208, when at least one of the liveness gates

is asserted, control transfers to decision block 209 where the
process 200 determines whether a behavioral loop should be
initiated (i.e., whether a first state should be sampled and the
design checkpointed). When assertion of the LOOP signal is
not indicated, control transfers from block 209 to block 207.
When assertion of the LOOP signal is indicated, control
transfers from block 209 to block 210, where the single loop
gate is asserted and the liveness gates that are asserted are
recorded. Then, in block 212, a first state of the netlist is
sampled responsive to assertion of the single loop gate. The
sampled first state provides an initial state for a first behav
ioral loop for at least one of the liveness gates (following the
assertion of the single loop gate).
0047 Next, in block 213, the accumulators for the liveness
gates are initialized. Then, in block 214, an additional amount
of semi-formal analysis is performed in an attempt to provide
a later state that corresponds to the sampled first state. Next,
in decision block 215, the process 200 determines whether all
of the accumulators are deasserted. In this case, an associated
constraint is not met when all the accumulators for the live
ness gates are deasserted. That is, when all of the liveness
gates are deasserted, the previously performed semi-formal
analysis is no longer of value. If all of the accumulators are
deasserted in block 215, control transfers to block 207. If all
of the accumulators are not deasserted in block 215, control
transfers to block 216 where the sampled first state of the first
behavioral loop is compared with the later state (e.g., a ter
minal state of the first behavioral loop) of the netlist to deter
mine if the sampled first state is repeated.
0048. Then, in block 217, a liveness violation is returned if
the sampled first state is repeated and an associated one of the
accumulators (that tracks deassertion of the appropriate live
ness gate) remains asserted for a duration of the first behav
ioral loop. Following block 217, control transfers to decision
block 218, where the process 200 determines whether resa
mpling of a design state is indicated. When a resampling of
the design state is indicated in block 218 (e.g., when a trigger
is received), control transfers to block 207. For example, the
trigger may be based on a configurable bias to a random signal
of a random gate of the netlist. Alternatively, a more intricate
Solution may be employed to allow a semi-formal search to
adaptively tailor itself.
0049. For example, a resampling trigger may be based
upon specific criteria, e.g., a range of time-steps relative to an
initial state or relative to a user-specified or automatically

US 2010/021815.0 A1

derived scenario having been encountered in a design (e.g., a
user of a verification tool or an automated process may
specify one or more coverage goals which reflect a scenario of
interest for the design (e.g., a buffer of a design becoming full
oran arbiter receiving ten simultaneous requests)) and behav
ioral loop sampling may occur concurrently with or within a
specified time-range after one of the scenarios is encountered.
When a resampling of the design state is not indicated in
block 218, control transfers to decision block 219. In block
219 when a termination of the process 200 is not indicated
(e.g., when a first state is not repeated and the liveness gate is
still asserted), control transfers to block 214, where an addi
tional amount of semi-formal analysis is performed in an
attempt to provide a new later state that equals the sampled
first state. In block 219 when a termination of the process 200
is indicated, control transfers to block 220 where the process
200 terminates and control returns to a calling routine.
0050. According to another embodiment, a technique to
leverage multiple models and verification paradigms to solve
a liveness checking problem efficiently and robustly may be
implemented. The technique is based on the fact that if a
liveness property cannot be violated, then there exists a finite
bound for which an associated liveness gate cannot remain
asserted. When bound, a liveness property can be proven
correct with less overhead than required by a liveness-to
safety conversion, which requires duplicating all state ele
ments. In this case, it may be directly proven that a corre
sponding liveness gate cannot remain asserted for longer than
the specified bound (i.e., by checking a bounded liveness
condition), which requires only log(bound) additional state
elements instead of doubling the state element count of the
original netlist.
0051) The log(bound) state elements are used to imple
ment a counter to record how many time-steps a particular
liveness gate was asserted. In particular, the counter incre
ments by one each time-step and is reset to a logical Zero
whenever the liveness gate is deasserted. To assess whether
the liveness gate remained asserted for a bound number of
time-steps, a check is performed to determine whether the
counter reached a value for the bound. However, a given
bound is difficult to determine and if a trace is computed that
exceeds the given bound, the resulting trace cannot necessar
ily be extended to an infinite length counter-example. In this
case, it may be ambiguous as to whether the bound was too
small or whether the liveness property truly will fail. How
ever, if the bound is made adequately large, it becomes more
likely that the corresponding unbounded liveness property
truly will fail.
0052 According to this aspect of the present disclosure, a
technique is employed that iteratively probes for an adequate
bound to enable a proof of correctness, without the explicit
behavioral loop state check. In general, the technique lever
ages traces that show the bounds were exceeded to attempt to
more efficiently look for unbounded failures. The technique
may be run in parallel to and independently from proof of
correctness or falsification analysis and may be performed
directly upon unbounded behavioral loop checking. At the
outset, an initial value for a bound k is selected. While the
bound is not solved, an arbitrary verification algorithm may
be utilized to attempt to demonstrate that the liveness gate
cannot stick at a logical one for k time-steps. Assuming that
the liveness gate does not stick at a logical one for k time
steps, an unbounded proof of correctness is indicated.

Aug. 26, 2010

0053 When a trace is obtained showing that the liveness
gate can stick at a logical one for k time-steps, a specified
amount of resources may be employed to see if a state (e.g., a
terminal state) of the trace can be repeated while retaining the
liveness gate assertion. When state repetition is detected, the
resulting trace may be concatenated with the trace that indi
cates the liveness gate stuckatalogical one and the result may
be returned as an unbounded failure. If state repetition cannot
be detected, the bound may be increased to a new value (e.g.,
a user-specified value, or one derived automatically, Such as
by doubling the prior value) of k and the verification algo
rithm may be utilized with the new value of k in an attempt
to demonstrate that the liveness gate cannot stick at a logical
one for k time-steps.
0054 With reference to FIG. 3, an example process 300
for performing liveness checking of a logic design (embodied
in a netlist) is illustrated. The process 300 may be run in
parallel with the process 200 of FIG. 2. In this case, when one
of the processes 200 or 300 solves the problem, the remaining
process 300 or 200 is terminated. The process 300 is initiated
in block 302, at which point control transfers to block 304,
where a bound k is initialized to a selected value. Next, in
block 306, the process 300 attempts to prove a liveness gate
cannot remains asserted for k time-steps. Then, in decision
block 308, when a proof is obtained that the liveness gate
cannot remain asserted for k time-steps, an unbounded
proof of correctness is indicated and control transfers from
block 308 to block 318, where an unbounded proof of cor
rectness is returned. Following block 318, control transfers to
block 320, where the process 300 terminates and control
returns to a calling routine. In block 308, when a proof is not
obtained that the liveness gate cannot remain asserted fork
time-steps, a possible valid counter-example trace is indi
cated and control transfers to decision block 310.

0055. In block 310, the process 300 determines whether a
first trace is obtained (i.e., whether the liveness gate remained
asserted for k time-steps. If a first trace is not obtained,
control transfers from block 310 to block 306. If a first trace
is obtained, control transfers from block 310 to block 312. In
block 312, the process 300 attempts to prove that a state (e.g.,
a terminal state) of the first trace is repeated during a second
trace while the liveness gate remains asserted. Next, in block
314, the process 300 determines if the state of the first trace is
repeated in the second trace while the liveness gate remains
asserted (i.e., whether a second trace is obtained). If the state
of the first trace is not repeated during the second trace,
control transfers from block 314 to block 321. In block 321,
the process determines whether the analysis is to terminate.
0056. Iftermination of the process is not indicated in block
321, control transfers to block 322 where the bound k is
updated. From block 322, control transfers to block 306. If
termination of the process is indicated in block 321, control
transfers to block 320. If the state of the first trace is repeated
during the second trace and the liveness gate remains
asserted, control transfers from block 314 to block 316. In
block 316 a concatenated trace (including the first and second
traces) is returned as an unbounded failure. Following block
316, control transfers to block 320. The process 300 may be
run in parallel to and independently from proof of correctness
or falsification analysis and may be performed directly upon
unbounded behavioral loop checking.
0057. In general, the disclosed techniques may be
employed to enhance virtually any verification paradigm. For
example, the techniques disclosed herein are broadly appli

US 2010/021815.0 A1

cable to formal verification techniques (e.g., BDDs and
SATs) and semi-formal techniques which perform incom
plete verification. The disclosed techniques may also be
implemented in hardware acceleration frameworks. For
example, as the process 200 of FIG. 2 may be implemented
solely through altering a netlist representation of a problem,
the problem can be readily implemented in a hardware accel
eration framework or executed through a fabricated chip.
0058 As noted above, retiming is a technique that is
employed (during verification) to reduce the number of
latches in a design by shifting the latches across combina
tional gates. The number of latches shifted backward across a
given gate is referred to herein as the lag of the given gate.
The lag of a gate represents the number of time-steps that the
gate, after retiming, delays the valuations of that gate before
retiming. Retiming has been demonstrated to be a powerful
technique to enhance verification, due to the ability of retim
ing to reduce latch count in a design. However, the use of
retiming as a simplifying pre-processing technique for live
ness checking is a highly intricate process. For example,
employing retiming with liveness checking requires guaran
teeing that any verification result obtained after retiming
maps to a consistent result on a design prior to retiming.
0059. According to another embodiment of the present
disclosure, a technique is disclosed that uses retiming as a
simplifying pre-process to the Verification of liveness prop
erties. In particular, the retiming formulation is constrained
such that verification results obtained subsequent to retiming
imply valid results for the design prior to retiming. In general,
the disclosed technique facilitates consistent mapping of
results across a retiming engine and, in this manner, makes the
use of retiming transparent to a user.
0060 Liveness checks often require the specification of
fairness constraints, which impose restrictions on behavior
(during a behavioral loop) that may be presented as a failure.
For example, assuming an arbiter under Verification has a
skewed priority Scheme Such that high-priority requests
always take priority over low-priority requests, an infinite
sequence of high-priority requests may starve out low-prior
ity requests in a valid design. In this case, reporting of failures
where high-priority requests within a behavioral loop starve
out low-priority requests should be avoided. In this example,
the deassertion of high-priority requests may be specified as a
fairness constraint.

0061 According to this aspect of the present disclosure,
certain gates are labeled as liveness gates or fairness gates. As
noted above, a liveness gate correlates to a liveness property
that is to be verified. In particular, to prove a liveness property,
the goal is to demonstrate that the liveness gate may be held at
a logical one forever (and to generate a counter-example trace
illustrating the scenario if a valid counter-example trace is
found), or to prove that the liveness gate cannot stay at a
logical one forever. As noted above, in a liveness counter
example, a special gate (i.e., a loop gate), which initializes to
a logical Zero and at Some point in a trace becomes and stays
at a logical one, is employed. Semantically, the Suffix of the
trace where the LOOP signal is at a logical one represents a
state repetition sequence which may be infinitely repeated. As
noted above, a liveness gate must evaluate to a logical one
throughout the Suffix to constitute a valid counter-example. In
contrast, a fairness gate is a gate which must be asserted to a
logical one for at least one time-step within any behavioral
loop that is returned as a valid counter-example.

Aug. 26, 2010

0062 Retiming in the presence of liveness is a non-trivial
problem, as retiming may shiftgates of the design by different
amounts and in this manner alter the semantics of the liveness
and fairness problem. For example, assuming a liveness gate
is forward retimed by five time-steps and a fairness gate is
forward retimed by four time-steps, the retimed behavior of
the liveness gate is effectively five time-steps earlier than the
original design and the retimed behavior of the fairness gate is
effectively four time-steps earlier than the original design.
Assuming that a liveness counter-example trace is obtained
based upon the post-retiming design (which shows the fair
ness condition occurring at the first time-step of the LOOP
signal assertion), when the counter-example trace is mapped
back to the original design (to undo the effects of retiming on
the trace), the behavior of the liveness gate will be delayed
five time-steps and the behavior of the fairness gate will be
delayed four time-steps. In this case, the assertion of the
fairness condition may actually occur one time-step earlier
than the assertion of the liveness signal and the retimed trace
may not correlate to a valid counter-example for the original
design.
0063. An additional complication is that a LOOP signal
must be properly presented on a mapped counter-example
trace, clearly illustrating a start and an end of a behavioral
loop. Because every gate may generally be lagged by a dif
ferent amount in retiming, the process of mapping retimed
traces to the original design (which delays retimed values by
their lag), may extend mapped traces beyond a repeatable
state sequence. For example, a design that repeats states S1,
S2, ..., S8 would have a valid liveness counter-example that
includes eight time-steps. However, after retiming, a mapped
counter-example may appear as S1, S2,..., S8, S1, S2, which
erroneously indicates that the design transitions from state S2
back to state S1 to constitute a valid behavioral loop.
0064. According to one or more aspects of the present
disclosure, to address the above issues, a retiming engine
(which computes lags for each gate to facilitate an optimal
reduction in latches) is forced to retime all liveness and fair
ness gates in a netlist by the same value. As the lags of all other
gates is arbitrary, a retiming engine is still provided enough
flexibility to enable an optimal reduction in latches. In order
to retime all liveness and fairness gates in a netlist by the same
value (which allows an arbitrary retiming engine without
customization to be employed), a netlist graph viewed by a
retiming engine (more particularly, a retiming solver of the
retiming engine) is manipulated to cause all liveness gates
and fairness gates to be the same gate. In this case, instead of
passing the liveness and fairness gates as distinct gates to the
retiming engine, the liveness and fairness gates are relabeled
as a single Super gate.
0065 For example, assuming a liveness gate is imple
mented by an AND gate having two inputs and one output and
a fairness gate is implemented by an OR gate having three
inputs and two outputs, a Super gate would be represented as
having five inputs and three outputs. In this manner, from the
viewpoint of the retiming engine, every liveness and fairness
gate of the original netlist is a single node in the graph. In this
case, every incoming edge to every target gate and constraint
gate of the original netlist is an incoming edge to the new
Supergate and every outgoing edge from every target gate and
constraint gate of the original netlist is an outgoing edge from
the Super gate.
0.066 Given an optimal retiming solution which adheres
to the above criterion, counter-example traces may be deter

US 2010/021815.0 A1

mined by extracting values using known techniques and map
ping the LOOP signal of the counter-example trace by delay
ing the LOOP signal by an amount equal to the lag of the
liveness and fairness gates and truncating a length of the
mapped counter-example trace to a length of the trace
received upon the retimed design (plus the lag of the liveness
and fairness gates). In general, this ensures that the LOOP
signal assertion reflects a repeatable state pattern consistent
with the original design.
0067. In an alternate embodiment, the restriction that all
liveness and fairness gates be retimed by the same amount
may be relaxed to allow different lags as long as each fairness
gate is lagged no greater amount than any liveness gate.
Retiming under this relaxed restriction still preserves liveness
checking, given the key observation that such a retiming
Solution cannot cause the illusion that a fairness gate is
asserted during a liveness-asserting behavioral loop. In par
ticular, the liveness-asserting behavioral loop may only
“begin earlier in the retimed design than assertion of the
fairness gate. In this case, the fairness gate is guaranteed to
assert during the behavior loop. Whereas the equivalent-lag
restriction described above has an elegant graph-based retim
ing formulation, the alternate restriction is more difficult to
enforce through graph manipulation. Restrictions associated
with the alternate embodiment may be enforced on the retim
ing solution through post-processing of the retimed Solution
to alter possible violating lags. For example, retiming solvers
that directly operate on a series of equations that reflect a
graph to be optimized (e.g., integer linear programming solv
ers as mentioned in “Retiming Synchronous Circuitry’.
Lieserson and Saxe, Algorithmica (1991) 6) may directly
impose the restriction by adding a set of appropriate con
straints (e.g., “fairness gate f i has lag less-than-or-equal-to
liveness gate 1 j') to be solved. The LOOP signal manipula
tion during counter-example trace manipulation discussed
above can be taken to be the lag of the liveness gate associated
with the counter-example trace.
0068 Traditionally, when checking normal safety proper

ties such as can this gate ever evaluate to a logical one?, it is
important to verify time-steps that are effectively discarded
from a retiming formulation due to forward retiming. For
example, an assertion may only occur due to the propagation
of initial values of latches. In this case, when latches are
forward-retimed beyond a safety property gate, the retiming
process may erroneously report the property as unassertable
even though it truly is assertable under the initial values. This
problem is addressed in traditional retiming flows by check
ing the initial forward-retimed time-steps independent of the
Verification on the resulting retimed design.
0069. However, when performing liveness checking, there

is no need to analyze the early retimed-away time-steps as any
infinitely repeatable sequence of behavior may be decom
posed into a behavioral loop (which begins arbitrarily late
within a counter-example trace) by unrolling valuations
within the behavioral loop and delaying the behavioral loop
as late as desired. For example, assuming that a behavioral
loop repeats from times t2 to tT, a corresponding liveness gate
may be retimed by four time-steps. Instead of incurring the
overhead of trying to find a counter-example trace including
prefix time-steps (which have been forward-retimed off of the
netlist), a counter-example trace only on the retimed netlist
effectively starting at time ta may be sought.
0070 The fact that there is a counter-example behavioral
loop from times t2 to t7 on the original netlist implies that

Aug. 26, 2010

there is a counter-example behavioral loop from times t2+i to
t7+i for any positive T. In this case, a valid counter-example
behavioral loop may be found from times to to t5 on the
retimed design, which correlates to times tA to time t9 on the
original design. Once Such a counter-example trace has been
obtained, the retiming engine may attempt to map the
counter-example trace to a minimal-length counter-example
by post-processing the trace (as the trace is mapped) while
determining if a valid behavioral loop is encountered earlier
in the trace. In this case, from the retimed trace it is known that
the behavioral loop has length of five and from the retiming
result it is known that the liveness gates were retimed by four
time-steps.
0071. As such, a check determines if the liveness signal is
asserted in time-frame 'i' of the mapped trace (for less than
the lag of the liveness gates (which in this case is four)) and
then if state in the mapped trace matches state N-i of the
counter-example trace (where N is the length of the mapped
trace). In this case, the LOOP signal may be asserted starting
at time and k-i time-steps may be pruned from the trace,
where k is the amount by which the liveness gates were
retimed (which in this example is four).
(0072. With reference to FIG.4, a process 400 for verifica
tion of a retimed logic design using liveness checking is
depicted. The process 400 is initiated in block 402, at which
point control transfers to block 404. In block 404, a liveness
gate is assigned to a liveness property for an original netlist.
Next, in block 406, a fairness gate is assigned to a fairness
constraint for the original netlist. In this case, the fairness gate
is associated with the liveness gate and is asserted for at least
one time-step during any valid behavioral loop associated
with the liveness gate. Then, in block 408, the original netlist
is retimed, using a retiming engine, to provide a retimed
netlist. In this case, all of the liveness and fairness gates of the
retimed netlist are retimed by a same value or different lags
are allowed as long as the fairness gate is not lagged by a
greater amount than the liveness gate. In the case of multiple
fairness gates and multiple associated liveness gates, each of
the fairness gates is constrained to not be lagged by a greater
amount than any of the liveness gates.
(0073. Next, in block 410, verification is performed on the
retimed netlist using a selected technique. Then, in decision
block 412, the process 400 determines if a proof of correct
ness is obtained on the retimed netlist. If a proof of correct
ness is obtained on the retimed netlist, control transfers from
block 412 to block 413 where the proof of correctness is
returned for the original netlist. Following block 413, control
transfers to block 420 where the process 400 terminates and
control returns to a calling routine. If a proof of correctness is
not obtained on the retimed netlist, control transfers from
block 412 to decision block 414. In block 414, the process 400
determines if a counter-example trace is obtained on the
retimed netlist. If a counter-example trace is not obtained on
the retimed netlistin block 414, control transfers to block 420.
0074. If a counter-example trace is obtained on the retimed
netlist in block 414, control transfers to block 415 where the
counter-example trace for the retimed netlist is mapped to the
original netlist. Then, in block 416, a length of the mapped
counter-example is minimized. Next, in block 418, a liveness
violation for the original netlist is returned in the form of the
minimized length mapped counter-example. Following block
418, control transfers to block 420.

US 2010/021815.0 A1

0075 Accordingly, a number of techniques have been dis
closed herein that generally reduce liveness checking verifi
cation time for integrated circuit logic designs.
0076. The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0077. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0078. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present invention has been presented for
purposes of illustration and description, but is not intended to
be exhaustive or limited to the invention in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
0079. Having thus described the invention of the present
application in detail and by reference to preferred embodi
ments thereof, it will be apparent that modifications and
variations are possible without departing from the scope of
the invention defined in the appended claims.

What is claimed is:
1. A method of Verification of an integrated circuit logic

design embodied in a netlist using a liveness-to-safety con
version as set forth by instructions executed by a computer
System, comprising:

assigning, by one or more instructions executed in the
computer system, liveness gates for liveness properties
of the netlist;

Aug. 26, 2010

assigning, by one or more instructions executed in the
computer system, a single loop gate to provide a loop
signal for the liveness gates;

preventing, by one or more instructions executed in the
computer system, assertion of the single loop gate when
none of the liveness gates are asserted;

sampling, by one or more instructions executed in the
computer system, a first state of the netlist, the sampled
first state providing an initial state for a first behavioral
loop for at least one of the liveness gates following the
assertion of the single loop gate;

comparing, by one or more instructions executed in the
computer system, the sampled first state of the first
behavioral loop with a later state of the first behavioral
loop to determine if the sampled first state is repeated;
and

returning a liveness violation as an output of the computer
system when the sampled first state is repeated and an
associated one of the liveness gates remains asserted for
a duration of the first behavioral loop.

2. The method of claim 1, further comprising:
sampling by one or more instructions executed in the com

puter system, responsive to a trigger, a second state of
the netlist when the sampled first state has not been
repeated, the sampled second state corresponding to an
initial state for a second behavioral loop:

comparing, by one or more instructions executed in the
computer system, the sampled second state of the second
behavioral loop with a later state of the second behav
ioral loop to determine if the sampled second state is
repeated; and

returning a liveness violation when the sampled second
state is repeated and an associated one of the liveness
gates remains asserted for a duration of the second
behavioral loop.

3. The method of claim 2, wherein the trigger for the
sampling of the second state is based on a configurable bias to
a random signal of a random gate of the netlist.

4. The method of claim 2, wherein the trigger for the
sampling of the second state is based on a time-step relative to
the initial state for first behavioral loop.

5. The method of claim 2, wherein the sampling of the
second state is triggered based on a scenario encountered in
the logic design.

6. The method of claim 1, further comprising:
checking, by one or more instructions executed in the com

puter system, for repetition of the first state within a
specific time-range after sampling of the first state, upon
a user generated coverage event, or an automatically
generated coverage event.

7. The method of claim 1, wherein the comparing, by one
or more instructions executed in the computer system, the
sampled first state of the first behavioral loop with a later state
of the netlist to determine if the sampled first state is repeated
occurs within a specific time range after the sampling of the
sampled first state, or a specified coverage event.

8. The method of claim 1, further comprising:
detecting, by one or more instructions executed in the

computer system, that a first liveness gate, included in
the liveness gates, deasserted after the initial state is
sampled and before the initial State is repeated; and

discontinuing, by one or more instructions executed in the
computer system, the comparing along the first behav

US 2010/021815.0 A1

ioral loop when the first liveness gate deasserted after the
initial state is sampled and before the initial state is
repeated.

9. The method of claim 1, further comprising:
assigning, by one or more instructions executed in the

computer system, a constraint gate to accumulators of
the netlist that track deassertion of respective ones of the
liveness gates, wherein a constraint associated with the
constraint gate specifies that all of the accumulators
cannot flag a deassertion; and

discontinuing, by one or more instructions executed in the
computer system, the comparing along the first behav
ioral loop when the constraint is violated.

10. A method of performing liveness checking of an inte
grated circuit logic design embodied in a netlist as set forth by
instructions executed by a computer system, comprising:

attempting, by one or more instructions executed in the
computer system, to prove that a liveness gate cannot
remain asserted for a bound k that corresponds to a
number of time-steps in a first trace;

returning as an output of the computer system, when the
liveness gate does not remain asserted for the bound k,
an unbounded proof of correctness;

attempting by one or more instructions executed in the
computer system, when the liveness gate remains
asserted for the bound k, to prove that a first state of the
first trace can be repeated during a second trace while the
liveness gate remains asserted; and

returning as an output of the computer system, when the
first state is repeated during the second trace and the
liveness gate remains asserted, a concatenated trace that
corresponds to an unbounded failure, the concatenated
trace including the first and second traces.

11. The method of claim 10, further comprising:
attempting by one or more instructions executed in the

computer system, when the first state is not repeated
during the second trace and the liveness gate remains
asserted, to prove that the liveness gate cannot remain
asserted for the bound k that corresponds to the number
of time-steps in a third trace;

returning as an output of the computer system, when the
liveness gate does not remain asserted for the bound k,
an unbounded proof of correctness;

attempting, by one or more instructions executed in the
computer system, to prove that a second State of the third
trace can be repeated during a fourth trace while the
liveness gate remains asserted; and

returning as an output of the computer system, when the
second state is repeated during the fourth trace and the
liveness gate remains asserted, a concatenated trace that
corresponds to an unbounded failure, the concatenated
trace including the third and fourth traces.

Aug. 26, 2010

12. The method of claim 11, wherein the first state corre
sponds to a terminal state of the first trace.

13. The method of claim 12, wherein the second state
corresponds to a terminal state of the third trace.

14. The method of claim 10, further comprising:
removing by one or more instructions executed in the com

puter system, as an initial operation, redundancy from
the netlist.

15. The method of claim 11, further comprising:
modifying, by one or more instructions executed in the

computer system, when the first state is sampled during
the first trace.

16. The method of claim 15, further comprising:
modifying, by one or more instructions executed in the

computer system, when the second state is sampled dur
ing the third trace.

17. The method of claim 10, further comprising:
checking by one or more instructions executed in the com

puter system, based on a predetermined condition, for a
repeat of the first state during the first trace.

18. The method of claim 17, wherein the predetermined
condition corresponds to a specific time that is Subsequent to
sampling of the first state.

19. The method of claim 17, wherein the predetermined
condition corresponds to a specific event that is Subsequent to
sampling of the first state.

20. A computer system configured to Verify a logic design
embodied in a netlist using a liveness-to-safety conversion,
comprising:

a memory Subsystem configured to store code; and
a processor coupled to the memory Subsystem, wherein the

processor is configured to execute code to:
assign liveness gates for liveness properties of the

netlist;
assign a single loop gate to provide a loop signal for the

liveness gates;
prevent assertion of the single loop gate when none of

the liveness gates are asserted;
sample a first state of the netlist, the sampled first state

providing an initial state for a first behavioral loop for
at least one of the liveness gates following the asser
tion of the single loop gate;

compare the sampled first state of the first behavioral
loop with a later state of the behavioral loop to deter
mine if the sampled first state is repeated; and

return a liveness violation when the sampled first state is
repeated and an associated one of the liveness gates
remains asserted for a duration of the first behavioral
loop.

