
US 20200342566A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0342566 A1

BLOCH (43) Pub . Date : Oct. 29 , 2020

(54) MANAGING DATA FOR TRANSPORTATION

(71) Applicant : DISPLAYLINK (UK) LIMITED ,
Cambridge (GB)

GO9G 5/395 (2006.01)
GO9G 5/14 (2006.01)

(52) U.S. CI .
CPC G06T 1/60 (2013.01) ; G06F 12/0875

(2013.01) ; G06T 1/20 (2013.01) ; G09G 5/393
(2013.01) ; GO9G 2340/02 (2013.01) ; G09G
5/14 (2013.01) ; G06F 2212/608 (2013.01) ;
GO9G 2370/00 (2013.01) ; G09G 2350/00

(2013.01) ; GO9G 5/395 (2013.01)

(72) Inventor : Cezary Boguslaw BLOCH , Katowice
(PL)

(21) Appl . No .: 16 / 957,072

(22) PCT Filed : Dec. 17 , 2018

PCT / GB2018 / 053646 (86) PCT No .:
$ 371 (c) (1) ,
(2) Date : Jun . 22 , 2020

(30) Foreign Application Priority Data

Dec. 22 , 2017 (GB) 1721762.1

(57) ABSTRACT
Managing data for transportation is provided via storing data
at a host device , where the data is processed and encapsu
lated into transport units having a maximum size . The data
is divided and processed into processed portions of varying
size . The processed portions are stored sequentially into an
output buffer to form the transport units , with a potential
start field space left between each processed portion . A set
of processed portions stored in the output buffer is deter
mined based on sizes of the processed portions , the set
starting after a previous actual start field where the set has
a size less than the maximum size and a potential start field
space after a last of the processed portions in the set is
replaced by an actual start field to define the set . Sets of
processed portions delimited by actual start fields may then
be output .

Publication Classification
(51) Int . Cl .

G06T 1/60 (2006.01)
GO6F 12/0875 (2006.01)
G06T 1/20 (2006.01)
GO9G 5/393 (2006.01)

11 12

Application Input
Buffer Encoder Output

Buffer
Output
Engine

13 16 17 14 18 15

11

12

Patent Application Publication

Application

Input Buffer
-
Encoder

Output Buffer

Output Engine

Oct. 29 , 2020 Sheet 1 of 7

13

16

17

14

18

15

Figure 1

US 2020/0342566 A1

Patent Application Publication Oct. 29 , 2020 Sheet 2 of 7 US 2020/0342566 A1

24 25

B

B

A A

Figure 2
23 18 22 21

Patent Application Publication Oct. 29 , 2020 Sheet 3 of 7 US 2020/0342566 A1

31 32

Figure 3
18 22 21

41

A

B

?

D

Patent Application Publication

42

?

B

C

43

A

B

C

D

E

44

?

B

Oct. 29 , 2020 Sheet 4 of 7

Key :

Actual TU Header Potential TU Header

45 : Size of TU

Data

US 2020/0342566 A1

Figure 4

51

Patent Application Publication

A

i

ii

B

i

C

i

ii D

i

ii

56

TU1 : A
TU Length = i + ii

Actual TU Header

TU2 : B TU Length = i

Oct. 29 , 2020 Sheet 5 of 7

52

Potential TU Header

TU3 : C
TU Length = i + ji

Data

TU4 : D TU Length = i + ii + current

53 : Accumulated Size 54 : Max TU Size

US 2020/0342566 A1

Figure 5

S61 : Tile Group Processed

Patent Application Publication

$ 62 : Tile Group Written to Memory

Yes

$ 63 : TU Size
Exceeded ?

No

Oct. 29 , 2020 Sheet 6 of 7

S6Y1 : New TU Created

S6N1 : Increment Accumulated Size

S6Y2 : Reset Accumulated
Size

US 2020/0342566 A1

Figure 6

S71 : Data Processed

Patent Application Publication

S72 : Data Written to Memory

Yes

S73 : Processing
Complete ?

No

S74 : Assign TU Header

Oct. 29 , 2020 Sheet 7 of 7

S75 : Add Next Portion S76 : Increment Accumulated
Size

No

S77 : TU Size Exceeded ?

Yes

US 2020/0342566 A1

Figure 7

US 2020/0342566 A1 Oct. 29 , 2020
1

MANAGING DATA FOR TRANSPORTATION

BACKGROUND

[0001] This invention relates to a method and device of
managing data , for example image data , which may be
compressed , to arrange it for transportation , for example
across a bandwidth limited transport connection to an output
display , such as a display device .
[0002] It is common for data , such as image or audio data
to be processed after being generated , to prepare it for
transport to a destination . For example , a colour image may
first be subjected to a colour transform to transform the
colour information (e.g. RGB values) into a different colour
domain (e.g. YUV or YCbCr) . The colour information is
then subjected to a mathematical transform (such as the
Discrete Cosine Transform , or a Haar transform) to produce
a series of coefficients . These coefficients are then quantized
(effectively divided by predetermined numbers) and then
entropy encoded , to further reduce the amount of data that
is actually transmitted . At the receiving end , the data is
decompressed by performing reverse quantization and
reversing the chosen transform to reconstruct the original
block . The aim of entropy encoding is to assign optimal
variable - length codes to different symbols according to their
frequency in the stream , so a symbol that appears frequently
in the stream will have a shorter code than a symbol that
appears less frequently . This reduces the overall volume of
the data in transmission .
[0003] If the portions of data are of different sizes , then
allowance must be made for all the portions , of whatever
size , to be stored in the output buffer in the correct sequence .
In a known technique , in relation to image data , the output
buffer is divided into areas , each of a size sufficient to store
a maximum size of the processed in this case , compressed)
data . Since the transport units have a maximum size , a
predetermined number of the areas of the output buffer are
therefore designated for each transport unit .
[0004] As will be appreciated , a considerable amount of
space in the output buffer is therefore wasted , and some
transport units may end up with somewhat less data than
they could have due to the need to make sure there is
sufficient size for all the portions of data , even if there sizes
are not known prior to processing .
[0005] It is therefore an object of the invention to alleviate
the problems mentioned above .

[0011] determining a set of the sequential processed por
tions stored in the output buffer , the sequence starting after
a previous actual start field wherein the set has a size that
does not exceed the maximum size for a transport unit , based
on sizes of the sequential processed portions stored in the
output buffer , wherein the set comprises at least one pro
cessed portion ; and
[0012] replacing a potential start field space after a last of
the sequential processed portions in the determined set by an
actual start field to define the set of sequential processed tiles
as being of less than the maximum size for a transport unit ;
[0013] wherein the sets of processed portions in the output
buffer delimited by actual start fields may be output over the
transmission medium .
[0014] In a preferred embodiment , determining the set of
the sequential processed portions comprises , after each
processed portion is stored in the output buffer :
[0015] determining whether a size of the newly processed
portion stored in the output buffer , together with the sizes of
previously stored sequential processed portions stored in the
output buffer after a previous actual start field exceeds the
maximum size for a transport unit , and , if it is determined
that the size of the newly processed portion stored in the
output buffer , together with the sizes of previously stored
sequential processed portions stored in the output buffer
after a previous actual start field exceeds the maximum size
for a transport unit , then replacing the potential start field
space immediately prior to the newly processed portion
stored in the output buffer with the actual start field .
[0016] In an embodiment , determining the set of the
sequential processed portions comprises :
[0017] starting at an actual start field , determining a cumu
lative size of the sequential processed portions , until the
cumulative size exceeds the maximum size for a transport
unit ; and
[0018] replacing , with the actual start field , the potential
start field space immediately prior to a last processed portion
stored in the output buffer whose size was added to the
cumulative size to cause the cumulative size to exceed the
maximum size of the transport unit .
[0019] Preferably , the method further comprises storing
information in a memory , the information indicating , for
each set of sequential processed portions , a position of each
actual start field for the set , and a position of an end of the
set in the output buffer .
[0020] The portions of data are preferably divided into
groups , wherein each portion of data of each group is
processed sequentially and stored in the output buffer
sequentially in a section of the output buffer , and wherein
each group of portions of data is processed in parallel and
stored in a separate section of the output buffer .
[0021] Preferably , the data comprises display data , the
amount of data comprises a frame of image data , the client
device is a display device for displaying the frame of image
data and the method is performed at a Graphics Processing
Unit , GPU .
[0022] In one embodiment , processing comprises process
ing using an encoding algorithm to provide an encoded
portion of data , wherein the start field preferably comprises
a header .
[0023] According to a second aspect the invention pro
vides a processing unit comprising a processor configured to
perform the method described above . Preferably , when the

SUMMARY

[0006] Accordingly , in a first aspect , the present invention
provides a method of managing data , the method compris
ing :
[0007] receiving an amount of data at a host device ,
wherein the data is to be processed and encapsulated into
transport units having a maximum size for transport over a
transmission medium to a client device ;
[0008] storing the data in an input buffer , the data being
divided into a plurality of portions ;
[0009] processing each portion of data into processed
portions of data of varying size ;
[0010] storing the processed portions sequentially into an
output buffer to form the transport units , wherein processed
portions are stored with a potential start field space left
between processed portions in the output buffer ;

US 2020/0342566 A1 Oct. 29 , 2020
2

data comprises display data , the processing unit may be a
Graphics Processing Unit , GPU .
[0024] According to a third aspect , the invention provides
a host device comprising such a GPU , a CPU and an output
transport mechanism .
[0025] In one embodiment , the CPU is configured to
encapsulate the sets of portions of encoded display data into
transport units and to output the transport units to a display
device over the bandwidth limited transmission medium .
[0026] According to another aspect , the invention pro
vides a system for managing display data comprising such a
host device and a display device coupled to the host device
by the bandwidth limited transmission medium , wherein the
display device comprises means configured to :
[0027] receive the encoded portions of display data via the
transport medium from the host device ;
[0028] decode the encoded portions of display data ; and
[0029] output the display data for display .
[0030] Preferably , the display device comprises a pair of
display panels for displaying the frame of display data ,
wherein the display device and the pair of display panels are
incorporated in a wearable headset .
[0031] The wearable headset preferably comprises a vir
tual reality or an augmented reality headset .
[0032] In this way , the output buffer is easily compacted
with an appropriate amount of processed / compressed data to
maximize the size of each transport unit , so as to facilitate
the encapsulation of the transport unit .

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Embodiments of the present invention will now be
described , by way of example only , with reference to the
accompanying drawings , in which
[0034] FIG . 1 shows a block diagram of a system that may
utilise an embodiment of the invention ;
[0035] FIG . 2 shows a schematic diagram of how a frame
of display data is output to the output buffer in a known
system ;
[0036] FIG . 3 shows a schematic diagram of how a frame
of display data is output to the output buffer according to an
embodiment of the present invention ;
[0037] FIG . 4 shows a collection of the data from FIG . 3
in more detail ;
[0038] FIG . 5 shows a number of portions of processed
data in an output buffer ;
[0039] FIG . 6 shows a flow diagram of an embodiment of
the invention ; and
[0040] FIG . 7 shows a flow diagram of an alternative
embodiment of the invention .

the client device [12] , which may be a display control device
capable of outputting the data for display and therefore
connected to a display device . The display device may be a
single display panel such as a television or desktop monitor
or multiple panels which may be separated by optical
elements . The display device may also be a head - mounted
device such as a virtual - reality or augmented - reality headset ,
and accordingly the display control device [12] may be
co - located with the display device such that they share a
single housing .
[0043] Alternatively , the data may be bulk data being
transmitted to the client device [12] for further processing or
storage , audio data being transmitted to the client device
[12] to be played through speakers or headphones connected
to the client device [12] , or any combination of types of data .
[0044] The host computing device [11] first includes an
application [13] which produces data and instructions for
how it should be manipulated to produce an appropriate
output for transmission to the client device [12] . It may be
running on a general - purpose processor such as a Central
Processing Unit (CPU) on the host computing device [11] .
The application [13] is connected to an execution unit [14]
which performs further processing and manipulation on the
data as appropriate for its type . For example , if the data is
display data the execution unit [14] may be a Graphics
Processing Unit (GPU) , or it may be a general - purpose
processor such as a CPU , or a dedicated processing engine
with a limited purpose .
[0045] For the purposes of this embodiment of the inven

on , the processing comprises encoding , which includes
compression of the data . Due to the nature of most com
pression algorithms , the processed portions of data output by
the execution unit [14] are of varying sizes even where the
input portions of data are all the same size . This is an
example only and other processing may be carried out such
as scaling , defragmentation , encryption , etc.
[0046] The execution unit [14] includes an input buffer
[16] in which the received data is divided into portions for
processing , an encoder [17] , and an output buffer [18] .
Naturally , there may be other processing engines if alterna
tive or multiple processes are carried out on the data , and the
encoder [17] may not be a separate engine but a program run
in the execution unit [14] .
[0047] The execution unit [14] is connected to an output
engine [15] , which fetches encoded data from the output
buffer [18] and transmits it to the client device [12] using a
wired or wireless connection . The output engine [15] may
also actually comprise a program running on a general
purpose processor such as a CPU .
[0048] The application [13] , execution unit [14] , and out
put engine [15] are here shown as separate modules , but they
may be combined ; for example , the application [13] may
perform its own encoding , meaning that it comprises both
the application [13] and execution unit [14] as described
here .
[0049] FIG . 2 shows the results of processing according to
known art in a system such as that shown in FIG . 1. In this
example , the data is a frame of display data [21] produced
by the application [13] and divided into tiles or tile groups [22] : geometrically - shaped portions of display data which
can be processed as independent units . The tiles [22] are
represented by a grid superimposed on the image [21] in the
Figure and are encoded as separate portions of data .

DETAILED DESCRIPTION OF THE DRAWINGS

[0041] Thus , FIG . 1 shows a system comprising a host
computing device [11] and a client device [12] . The host
computing device [11] contains several engines [13 , 14 , 15]
which generate and process data for transmission to the
client device [12] . There may be other internal engines and
areas of memory in each device [11 , 12] , including engines
on the client device [12] for decoding , decompressing ,
decrypting , and otherwise reversing reversible processing
carried out on the data in the execution unit [14] of the host
device [11] , but for clarity they are not shown here .
[0042] The data may , for example , be display data for
display on a display device connected to or integrated into

US 2020/0342566 A1 Oct. 29 , 2020
3

[0050] Processed portions of data [24] are stored in the
output buffer [18] in a format with specific offsets , here also
represented by a grid . Each tile [22] is fetched by the
encoder [17] , encoded independently of the other tiles [22] ,
and placed in its designated location [23] in the output buffer
[18] . The tiles [22] are shown in the Figure to all be the same
size , though in practice they may be different sizes ; for
example , the size of the frame [21] may not be evenly
divisible , resulting in a row or column of smaller tiles [22]
along one side . This does not affect the encoding or storing
processes .
[0051] The format of the output buffer [18] can result in
significant wasted space [25] , since the system must assume
the worst case and allot a large area of memory [23] for each
encoded tile [24] . The memory used [25] is shown hatched
with horizontal lines . In a case where the encoding process
significantly reduces the volume of the data , such as the
top - left tile [22A] , which corresponds to the top - left area
[23A] of the output buffer [18] , allotted memory that is not
used [25] is wasted as the small amount of encoded data [24]
requires as much memory [23] to be allocated as a tile [22]
that has a much larger volume after compression , such as the
top - right tile [22B) , which corresponds to the top - right area
[23B] of the output buffer [18] . This waste is propagated to
the transmission mechanism , since each portion of pro
cessed data [24] is either transmitted in its own packet or
must be copied into a separate buffer before it can be
prepared for transmission , adding another step to the pro
cessing as well as requiring additional memory access ,
which takes time and therefore slows down the production
and transmission of the data .
[0052] FIG . 3 shows the results of processing according to
an embodiment of the invention in a system such as that
shown in FIG . 1 , using the same example frame [21] of
display data as input as that shown in FIG . 2. In this
embodiment , processed portions of data [31] are stored in
the output buffer [18] without specific offsets and therefore
the output buffer [18] does not have allocated areas per tile
[22] . This is shown by the removal of the grid from the
output buffer [18] compared to FIG . 2 .
[0053] In some embodiments , portions of data from a
single input , in this case the frame [21] , may be divided into
groups and each portion of data in each group processed
sequentially . The output buffer [18] may also be divided into
multiple sub - buffers each containing data from a respective
group . This improves parallel processing since each group
can be processed in parallel and the data stored sequentially
in its respective sub - buffer , each sub - buffer acting in the
same way as the full output buffer [18] herein described . The
output buffer [18] may also be part of a shared memory
which is also used for other purposes .
[0054] In a system according to the invention , tiles [22]
are encoded and put in the output buffer [18] in a similar way
to the conventional system shown in FIG . 2 , but instead of
each portion of processed data [31] being placed in an
allocated area of memory [23] , the data is stored sequentially
such that only a small gap [32] is left between portions [31] .
This means that only the area of memory shaded with
horizontal lines is allocated and unused , so there is likely to
be significantly less wasted space either in the memory itself
or in the eventual packets used for transmission to the client
device [12] . Even in the case where encoding does not
significantly reduce the volume of the data and the same
space that would have been allocated for the worst - case

scenario is used , the processed portions of data [31] are
prepared for transport when they are first written to the
output buffer [18] , reducing the need for additional process
ing and memory access .
[0055] The portions of data [22] may be processed serially
in an order such as in this example— left to right and top
to bottom . Alternatively , they may be processed in parallel
using , for example , multiple processing cores in the encoder
[17] which each fetch the next portion in a sequence and
encode it , then write the encoded portion of data at the end
of the set of sequential portions of processed data in the
output buffer [18] before fetching and encoding the next
portion of data from the input buffer [16] .
[0056] The space left [32] between portions of processed
data [31] in the output buffer [18] is enough to contain the
start field of a Transport Unit (TU) , and therefore is known
as a potential start field space or potential TU header , as a TU
header could be copied into this space if the next portion of
data would be at the beginning of a new TU .
[0057] This method has been described using display data
as an example input , but as previously mentioned any other
type of data could be processed and stored in the same way ,
provided it is capable of being divided into portions .
[0058] FIG . 4 shows a collection of sets of portions of data
[41 , 42 , 43 , 44) , each showing potential and actual TU
headers depending on the sizes of the different portions of
data . These may be separate sub - buffers as previously men
tioned , or they might be arranged end - to end in a single
output buffer [18] , but for clarity they are here shown
separately and arranged vertically . The maximum size of a
TU [45] is indicated with a vertical line in order to show how
the set of data portions to go into each TU is determined .
Portions of processed data are represented by white boxes ,
actual TU headers are represented by black boxes , and
potential TU headers are indicated using diagonal hatching .
[0059] The first set [41] contains four portions of data
[41A , 41B , 41C , 41D] of equal size . Portion 41A begins with
an actual TU header because it is the first portion in the TU .
It ends with a potential TU header , after which Portion 41B
has been put into the memory , and likewise Portion 41C .
Portion 41D , however , would make the set larger than the
predetermined maximum size for a TU [45] and therefore an
actual TU header is put into the potential TU header space
left at the end of Portion 41C . This means that the first TU
contains three portions of data [41A , 41B , 41C] , while in the
conventional system an analogous unit might only contain
one portion of data or the portions of data might need to be
copied into further buffers to be prepared for transmission .
[0060] The second set [42] begins with a single large
portion of data [42A] followed by two smaller portions
[42B , 42C] . However , both the first [41A) and second [42B]
portions begin with actual TU headers because Portion 42B
was just large enough that the combination of Portions 42A
and 42B was larger than the predetermined maximum size of
a TU [45] . The potential TU header between Portion 42B
and Portion 42A has therefore been replaced with an actual
TU header and Portions 42B and 42C form a separate TU .
[0061] The third set [43] contains three small portions of
data [43A , 43B , 43C] followed by two larger portions [43D ,
43E] . Naturally , Portion 43A begins with an actual TU
header , and Portions 43A , 43B , and 43C are all followed by
potential TU headers , but if Portion 43E were added to the
TU that begins with Portion 43A that TU would be larger
than the predetermined maximum size of a TU [45] . The

US 2020/0342566 A1 Oct. 29 , 2020
4

potential TU header at the end of Portion 43D has therefore
been replaced with an actual TU header at the beginning of
Portion 43E , which in turn ends with its own potential TU
header .
[0062] The fourth set [44] has two portions of data of
which Portion 44A is very large and occupies the whole TU
by itself . It is therefore followed by an actual TU header at
the beginning of Portion 44B .
[0063] FIG . 5 shows a number of portions of processed
data [51] in an output buffer [18] , comprising four TUS
[51A , 51B , 51C , 51D] , together with other values stored in
memory [52 , 53 , 54] in order to demonstrate the implemen
tation of the sequential storage .
[0064] At the top of the Figure , four TUs [51] are shown
stored sequentially in an output buffer [18] . Each TU begins
with an actual TU header , represented by a black box in
accordance with the convention established in FIG . 4. Also
in accordance with that convention , portions of processed
display data are represented with white boxes and potential
TU headers are represented by boxes hatched with diagonal
lines .
[0065] Each actual TU header is referenced by a pointer
[52] stored in a separate memory to allow access to that TU
by the output engine [15] when the data is transmitted to the
client device [12] . In this example , each pointer [52] stores
the offset of each TU [51] from the beginning of the output
buffer [18] , with the last pointer [52D) referencing the TU
that is currently being added to [51D) . There may also be
pointers to the end of each TU or indications of the locations
of the ends of the TUs may be otherwise stored or calculated ;
this may include storing the size of each TU with the
relevant pointer [52] . The separate memory also contains
two other values . The first [53] is an accumulated size
variable which contains the total size in memory of the TU
currently being filled [51D] ; i.e. the amount of
memory occupied by data added after the last actual TU
header . The second other value [54] stored in the separate
memory is the maximum TU size . This is predetermined
depending on the protocol used for transmission . It is
commonly a constant and is notified to the output engine
[15] and execution unit [14] upon setup of the connection to
the client device [12] .
[0066] The final portion of processed data [56] is outlined
with dashes . This is to represent the fact that this portion of
data [56] is newly processed and stored in memory and the
system has not yet determined whether it should begin a new
TU , as will be explained in the process shown in FIG . 6 .
[0067] FIG . 6 shows the process followed by an embodi
ment of the invention , with reference to FIG . 5 .
[0068] At Step S61 , a portion of data such as a tile or tile
group [22] is processed . In a system such as that shown in
FIG . 1 , this means that it is fetched from the input buffer [16]
and encoded in the encoder [17] .
[0069] At Step S62 , the processed portion of data [56] is
written into the output buffer [18] . According to a conven
tional method such as that shown in FIG . 2 , it would be
written into an allocated area [23] of the output buffer [18]
and the remainder of the allocated space [25] in that area left
empty , but in a system according to the invention such as
that shown in FIG . 3 all the portions [31] of processed data
are written into the output buffer [18] sequentially . This
means that a potential start field space is left after the
previous portion of display data [51Dii] and then the new

data [56] is written into the output buffer [18] immediately
after that gap . This is the processed portion of data outlined
with dashes in FIG . 5 [56] .
[0070] At Step S63 , the accumulated size [53] —i.e . the
size of the current TU [51D] — is compared to the maximum
TU size [54] . If the accumulated size [53] is greater than the
maximum TU size [54] , the potential start field space
between the previous portion [51Dii] and the new portion
[56] is replaced with an actual TU header , meaning that the
set of processed portions between this new actual TU header
and the previous actual TU header [51D) is a complete TU
and a new TV is created containing only the new processed
portion [56] (Step S6Y1) . The accumulated size [53] is also
reset to be only the size of the new processed portion [56]
(Step S6Y2) .
[0071] If the predetermined maximum TU size [54] has
not been exceeded , the potential start field space is left as it
is and the accumulated size [53] is simply incremented by
the size of the new portion [56] .
[0072] In both cases , the process then returns to Step 1 .
[0073] FIG . 7 shows an alternative process followed by a
different embodiment of the invention , also with reference to
FIG . 5 , using bulk storage data as an example . In this
process , however , the actual TU headers are not inserted
until processing is complete . The data will therefore only
include potential TU headers , there will be no pointers [52]
in memory when the process begins , and when the process
begins the accumulated size [53] will be 0 .
[0074] At Step S71 , a portion of data is taken from the
input buffer [16] . This may be , for example , the next 1 KB
of data being transmitted . It is then processed in this
embodiment , encoded — and written to memory in the output
buffer [18] at Step S72 , leaving a potential TU header
between itself and the previous portion of processed data .
[0075] At Step S73 , the execution unit [14] determines
whether processing is complete for the input ; for example ,
if all the data to be transmitted has been processed , or if
processing is complete for a single file . If not , the process
returns to Step S71 and the encoder [17] fetches the next
portion of data from the input buffer [16] .
[0076] If processing is complete , the process moves to
Step S74 . The first potential TU header in the output buffer
[18] is replaced with an actual TU header [51A) and the
address of the new actual TU header [51A] is stored as a
pointer [52A] in memory . This creates a new TU . The
execution unit [14] adds the first processed portion of data
to the new TU at Step S75 , at this stage by adding its size
to the accumulated size variable [53] at Step 876 .
[0077] The first TU header [51A] may in fact have been
assigned at the beginning of processing since there will be
at least one TU in the output buffer [18] . However , all other
TU headers will be assigned as part of this process .
[0078] At Step 577 , the execution unit [14] determines
whether the predetermined maximum TU size [54] has been
exceeded ; i.e. whether the accumulated size [53] is greater
than the maximum TU size [54] . This should not be the case
for the first portion of processed data [51Ai] , and at any
point if the only portion of processed data in a TU is too
large for a TU it may be an indication that the data should
be returned to the encoder [17] for re - encoding with different
parameters .
[0079] If the accumulated size [53] is not larger than the
maximum TU size [54] , as is the case for the second portion
of processed data [51Aii] shown in FIG . 5 , the process

space in

US 2020/0342566 A1 Oct. 29 , 2020
5

returns to Step S75 and the execution unit [14] adds the next
portion of processed data [51Aii] to the set comprising the
current TU by leaving the potential TU header between the
first [51Ai] and second [51Aii] portions of processed data as
it is . It then increments the accumulated size [53] by the size
of the second portion of processed data [51Aii] at Step 876
and at Step 877 it once again determines whether the
accumulated size [53] is greater than the maximum TU size
[54] .
[0080] If the accumulated size [53] is not greater than the
maximum TU size [54] , the process once again returns to
Step S75 and continues repeating until the accumulated size
[53] exceeds the maximum TU size [54] or there is no more
data in the output buffer [18] .
[0081] If the accumulated size [53] does exceed the maxi
mum TU size [54] , as would be the case when the execution
unit [14] adds the third portion of processed data [51Bi] to
the TU [51A] , the process returns to Step 874 and the
execution unit [14] converts the potential TU header at the
beginning of the last portion of processed data added to the
set — in this case , the third portion of processed data
[51Bi] —into an actual TU header , thus creating a new TU
[51B] beginning with the third portion of processed data
[51Bi] . It therefore also resets the accumulated size [53] to
be the size of the third portion of processed data [51Bi] and
therefore the current total size of the new TU [51B] and
stores the location of the new actual TU header in memory
as a second pointer [52B] .
[0082] The process then continues to iterate through Steps
S74 - S77 until all the data in the output buffer [18] has been
divided into TUS .
[0083] Whichever method is used , once processing and
delimitating into TUs is complete , the output engine [15]
fetches the processed data and transmits the TUs to the client
device [12] , preferably encapsulated in appropriate packets .
[0084] Although only two particular embodiments have
been described in detail above , it will be appreciated that
various changes , modifications and improvements can be
made by a person skilled in the art without departing from
the scope of the present invention as defined in the claims .
We claim the following :
1. A method of managing data , the method comprising :
receiving an amount of data at a host device , wherein the

data is to be processed and encapsulated into transport
units having a maximum size for transport over a
transmission medium to a client device ;

storing the data in an input buffer , the data being divided
into a plurality of portions ;

processing each portion of the data into processed por
tions of the data of varying size ;

storing the processed portions sequentially into an output
buffer to form the transport units , wherein the pro
cessed portions are stored with a potential start field
space left between the processed portions in the output
buffer ;

determining a set of the sequential processed portions
stored in the output buffer , the set starting after a
previous actual start field wherein the set has a size that
does not exceed the maximum size , based on sizes of
the sequential processed portions stored in the output
buffer , wherein the set comprises at least one processed
portion ;

replacing a potential start field space after a last of the
sequential processed portions in the determined set by

an actual start field to define the set of the sequential
processed portions as being of less than the maximum
size for a transport unit ; and

wherein the set of sequential processed portions in the
output buffer delimited by actual start fields is output
over the transmission medium .

2. The method of claim 1 , wherein determining the set of
the sequential processed portions comprises , after each
processed portion is stored in the output buffer :

in response to determining that a size of a newly pro
cessed portion stored in the output buffer , together with
sizes of previously stored sequential processed portions
stored in the output buffer after a previous actual start
field exceeds the maximum size , and , replacing the
potential start field space immediately prior to the
newly processed portion stored in the output buffer
with the actual start field .

3. The method of claim 1 , wherein determining the set of
the sequential processed portions comprises :

starting at the actual start field , determining a cumulative
size of the sequential processed portions , until the
cumulative size exceeds the maximum size ; and

replacing , with the actual start field , the potential start
field space immediately prior to a last processed portion
stored in the output buffer whose size was added to the
cumulative size to cause the cumulative size to exceed
the maximum size .

4. The method of claim 1 , further comprising storing
information in a memory , the information indicating , for
each set of sequential processed portions , a position of each
actual start field for the set , and a position of an end of the
set in the output buffer .

5. The method of claim 1 , wherein the portions of the data
are divided into groups , wherein each of the portions of the
data in each of the groups is processed sequentially and is
stored in the output buffer sequentially in a section of the
output buffer , and wherein each of the groups of the portions
of the data is processed in parallel and is stored in a separate
section of the output buffer .

6. The method of claim 1 , wherein the data comprises
display data , the amount of the data comprises a frame of
image data , the client device is a display device for display
ing the frame of the image data and the method is performed
at a Graphics Processing Unit (GPU) .

7. The method of claim 6 , wherein processing sequen
tially comprises processing using an encoding algorithm to
provide an encoded portion of the data .

8. The method of claim 7 , wherein the actual start field
comprises a header .

9. A processing unit comprising a processor configured to :
receive an amount of data , wherein the data is to be

processed and encapsulated into transport units having
a maximum size for transport over a transmission
medium to a client device ;

store the data in an input buffer , the data being divided
into a plurality of portions ;

process each portion of the data into processed portions of
the data of varying size ;

store the processed portions sequentially into an output
buffer to form the transport units , wherein the pro
cessed portions are stored with a potential start field
space left between the processed portions in the output
buffer ;

US 2020/0342566 A1 Oct. 29 , 2020
6

determine a set of the sequential processed portions stored
in the output buffer , the set starting after a previous
actual start field wherein the set has a size that does not
exceed the maximum size , based on sizes of the
sequential processed portions stored in the output buf
fer , wherein the set comprises at least one processed
portion ;

replace a potential start field space after a last of the
sequential processed portions in the determined set by
an actual start field to define the set of sequential
processed portions as being of less than the maximum
size for a transport unit ; and

wherein the set of processed portions in the output buffer
delimited by actual start fields is output over the
transmission medium .

10. The processing unit of claim 9 , wherein the processing
unit is a Graphics Processing Unit (GPU) .

11. A host device comprising the processing unit of claim
10 , a Central Processing Units (CPU) and an output trans
port mechanism .

12. The host device claim 11 , wherein the CPU is con
figured to encapsulate the set of the sequential processed
portions of the data that include encoded display data into
the transport units and to output the transport units to a
display device over the transmission medium .

13. A system for managing display data comprising the
host device of claim 11 and a display device coupled to the
host device by the transmission medium , wherein the dis
play device comprises means configured to :

receive the portions of the display data via the transmis
sion medium from the host device ;

decode the portions of the encoded display data ; and
output the decoded display data for display .
14. The system of claim 13 , wherein the display device

comprises a pair of display panels for displaying a frame of
the display data , wherein the display device and the pair of
display panels are incorporated in a wearable headset .

15. The system of claim 14 , wherein the wearable headset
comprises a virtual reality or an augmented reality headset .

16. The processing unit of claim 9 , wherein the processor
is configured to determine the set of the sequential processed
portions by , after each processed portion is stored in the
output buffer :

in response to determining that a size of a newly pro
cessed portion stored in the output buffer , together with
sizes of previously stored sequential processed portions
stored in the output buffer after a previous actual start
field exceeds the maximum size replacing the potential
start field space immediately prior to the newly pro
cessed portion stored in the output buffer with the
actual start field .

17. The processing unit of claim 9 , wherein the processor
is configured to determine the set of the sequential processed
portions by :

starting at an the actual start field , determining a cumu
lative size of the sequential processed portions , until
the cumulative size exceeds the maximum size for a
transport unit ; and

replacing , with the actual start field , the potential start
field space immediately prior to a last processed portion
stored in the output buffer whose size was added to the
cumulative size to cause the cumulative size to exceed
the maximum size .

18. The processing unit of claim 9 , wherein the processor
is further configured to store information in a memory , the
information indicating , for each set of the sequential pro
cessed portions , a position of each actual start field for the
set , and a position of an end of the set in the output buffer .

19. The processing unit of claim 9 , wherein the portions
of the data are divided into groups , wherein the processor is
further configured to process each of the portions of the data
in each of the groups sequentially and store in the output
buffer sequentially in a section of the output buffer , and
wherein the processor is further configured to process each
of the groups of the portions of the data in parallel and store
each of the groups in a separate section of the output buffer .

